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Numerical Methods for Accurate Computation of Design Sensitivities 

Dawn L. Stewart 

(ABSTRACT) 

This work is concerned with the development of computational methods for approximating 
sensitivities of solutions to boundary value problems. We focus on the continuous sensitiv- 
ity equation method and investigate the application of adaptive meshing and smoothing 
projection techniques to enhance the basic scheme. The fundamental ideas are first devel- 
oped for a one dimensional problem and then extended to 2-D flow problems governed by 
the incompressible Navier-Stokes equations. Numerical experiments are conducted to test 
the algorithms and to investigate the benefits of adaptivity and smoothing. 
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Chapter 1 

Introduction 

During the past decade, considerable effort has been devoted to the development of com- 
putational tools for the analysis, design, control and optimization of complex physical 
systems. Sensitivity analysis plays an important role in all aspects of this effort. Many 
simulation tools can be enhanced by using local information provided by state sensitivities 
to obtain "near-by" solutions. For example Godfrey ([20]) used flow sensitivities to reduce 
computational time in simulations of multi-species, chemically reacting flows. Sensitivity 
methods have long been used to design and optimize structures (see [23], [18] ). Moreover, 
sensitivity reduction is often employed in the design robust feedback controllers (see [15]^ 
[26], [16], [27], [28]). In recent years, applications of gradient based optimization algorithms 
to multi-disciplinary design optimization (MDO) problems have lead to renewed interest 
in state sensitivities as one method to compute cost function gradients (see [4], [7]). 

In order to make effective use of sensitivities in analysis, design, and control, accurate and 
efficient computational algorithms are essential. In addition, the natural trade-off between 
accuracy and efficiency can often be exploited to produce the best overall computational 
tool for a specific application. For example, when used to enhance a simulation tool, accu- 
racy may be more important than speed. However, when used for gradient computations 
in an optimization loop, speed may be more crucial than high accuracy. 

Two early numerical techniques employed for sensitivity calculations were the straight- 
forward finite difference calculations and the "discretize-then-differentiate" approach. The 
"discretize-then-differentiate" scheme approximates sensitivities by first employing some 
discretization scheme to approximate the solution to a PDE and then implicitly differenti- 
ating this result to to obtain a sensitivity approximation scheme. Recent advances in this 
area include the development of automatic differentiation packages (see [32], [21]), like AD- 
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IFOR, which given source code for state calculations, generates source code for sensitivity 
calculations. 

There are a number of significant disadvantages to each of the above approaches. One 
disadvantage of finite difference techniques is that they are computationally intensive since 
they require two flow solves at different parameter values to form a difference quotient. In 
large aerospace flow problems, this is sometimes an extremely severe requirement because 
mesh generation itself can take weeks to months. In addition, it is not generally known 
a-priori what is a sufficiently small step size to ensure accurate approximations, making it 
difficult to incorporate these ideas into optimizations schemes. A procedure for estimat- 
ing an optimal step-size is described in [30]. The optimal step-size attempts to balance 
truncation error and round-off error. Unfortunately, since the discretization is generally 
non-uniform, the truncation error varies from point to point so that the results must be 
used in combination with some other decision algorithm. 

A disadvantage of the "discretize-then-differentiate" technique is that in cases where the 
mesh is parameter dependent, as is the case in shape optimization problems, then differ- 
entiation of the discrete PDE leads to mesh sensitivities on the right hand side. Although 
there has been much work done in recent years to get a handle on these quantities (see 
[38]), calculating mesh derivatives is still not well understood, particularly in cases where 
the meshes are prescribed adaptively. 

In recent years several new approaches have been developed in an attempt to alleviate 
some of the disadvantages of the two approaches mentioned above. The idea is to em- 
ploy a "differentiate-then-discretize" scheme or the so-called continuous sensitivity equa- 
tion method (SEM). The SEM consists of implicitly differentiating the PDE to obtain a 
sensitivity equation (SE). Then both the PDE and the SE are discretized to obtain finite 
dimensional equations for numerical approximations to the PDE and the SE. 

This technique reduces some of the problems mentioned above. The SEM eliminates the 
need for a second flow solve saving costly computer time. Also, since the differentiation is 
done before the discretization, it eliminates the need to calculate "mesh" derivatives, an 
exceedingly difficult task especially in the case of complicated 2-D and 3-D flow problems. 
The method has another advantage. The sensitivity equations are always linear and, in 
principal, it is simple to modify existing flow solvers so that one additional Newton step 
at the end of a flow solve is sufficient to approximate sensitivities. This feature makes the 
SEM an easy approach to implement. 

The SEM produces an approximation for the solution to the continuous sensitivity equation. 
In some cases, especially in the case of optimization, what one really needs is the sensitivity 
of the discrete solution.  These solutions are not necessarily equivalent.  Because of this 
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discrepancy, it is not obvious that the SEM would lead to convergence of the optimization 
algorithm. However, recent theoretical and numerical studies have shown that this issue 
can often be addressed. 

In [11], Burkardt applied this sensitivity approximation scheme to a shape optimization 
problem involving incompressible fluids. He found that in many cases the SEM gave suf- 
ficiently good approximations to allow the optimization algorithm to converge. However, 
Burkardt also provided examples where the differences between the discrete sensitivities 
and the numerical solution of the continuous sensitivity equation were large enough to de- 
stroy the convergence of the optimizer. This was true even in cases where the finite element 
method had done a good job approximating the solution of the continuous problem. He 
also found some problems at higher Reynolds number flows. One of the issues which may 
have been a factor is the accuracy of the flow derivative information used in the sensitivity 
calculation. We will show in this paper that improved derivative information can dras- 
tically improve the sensitivity approximations and, in turn, have dramatic effects on the 
performance of an optimization scheme. 

In [3], Borggaard provided a partial analysis of this problem. He proved that if the discrete 
approximation to the continuous sensitivity equation was "close enough" to the sensitiv- 
ity of the discrete solution, then an appropriately chosen optimization algorithm would 
converge. He also showed that using the SEM, rather than the finite difference approach, 
could reduce CPU times by 50 percent or more. This is an extremely important savings 
for high-cost flow problems. 

The influence of flow discontinuities on sensitivity approximations was investigated by 
Appel in [2]. Appel compared all three sensitivity approximation techniques on Euler flows 
as well as the 1-D Riemann problem, a problem for which an exact solution is known. He 
found that the shocks in the solution led to errors in the sensitivity approximations for all 
of the techniques. 

We are interested in applications that lend themselves to physics based modeling. Specif- 
ically, we shall concentrate on problems where the governing equations are differential 
equations. We use a simple boundary value problem in one spatial dimension (1-D) to in- 
troduce the ideas and illustrate the various methods. This model problem is described by 
an ordinary differential equation. Once the basic ideas and techniques have been tested on 
this 1-D problem, we turn to more substantial problems from fluid dynamics. In particular, 
we consider 2-D fluid flows governed by the Navier-Stokes equations. 



Chapter 2 

A 1-D Model Problem 

In this chapter, we consider a simple 1-D non-linear boundary value problem. We formulate 
an optimization problem and provide a detailed presentation of the SEM. We use finite 
elements to construct approximations and compare the numerical results to exact solutions. 
The goal of this chapter is to use the model problem to describe the basic ideas, identify 
the fundamental issues, and set the stage for more complex problems to come. 

2.1    Model Problem 

We concentrate on the boundary value problem defined by the non-linear differential equa- 
tion 

cP 1 d    ( \ 
3 

0   for 0 < x < q, (2.1) 

with boundary conditions 

w(0) = 0       and       w(q) = 4. (2.2) 

For each q > 1, the exact solution to this boundary value problem is given by 

w(x) = w(x, q) = 4dx + ^q      '   - 2(q - 1). (2.3) 

Let 0 < xi < x2 < ... < xp < 1 be fixed locations and assume that Wj is data representing 

4 
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values ofw(x) at Xj. Consider the inverse design problem: Find q* > 1 such that 

1   p 

W) < JP(q) = 2 £(«>(£;,«) ~ ^))2' (2-4) 

where w(a:,g) is the solution of (2.1) - (2.2) and the integer p represents the number of 
data points. In gradient-based optimization one needs the derivative 

VqJP{q) = ^(wixj, q) - w^—wixj, q). (2.5) 

One approach to the evaluation of this gradient at q is to "compute" the state, w(xjt q), 
the sensitivity, ^w{xj,q), and form the computation (2.5). This involves first solving (2.1) 
- (2.2) for w(x,q) and then computing the sensitivity -§-w(x,q). 

2.2    The Sensitivity Equation 

One benefit of using the model problem is that we can calculate the sensitivity -§-w(x,q) 
by direct differentiation of (2.3). In particular, V 

^w{x'q) = ^fkß-2- (2-6) 

On the other hand, we can implicitly "differentiate" the boundary value problem (2.1) - 

(2.2) and obtain a boundary value problem for the sensitivity -§-w(x,q) = s(x,q) = s(x). 
It follows that s(x) satisfies the linear differential equation 

d2    , ,     3 
s(x) + ö dx2 v '     8 

with boundary conditions 

d    t ^ 
Txw{x) 

l2 
d      <    N n s(x) = 0, (2.7) 

dx 

5(0) = 0       and        s{q) = -—w(q). (2.8) 

It is important to be cautious when using (2.2) to derive the boundary conditions for the 
sensitivity equation. The first boundary condition, 

5(0) = -w(0) = 0, 
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is rather obvious. However, deriving the second boundary condition in (2.8) can be tricky 
(especially in 2-D and 3-D domain optimization problems). Using the boundary condition 
(2.2), the chain rule leads to the correct boundary condition 

O=^(M)-{|«<*.«) + |~(«,»)}| 

Since this is a model for a more difficult applied problem for which we would not know the 
state, w, and the sensitivity, s, exactly, we are interested in constructing good methods for 
obtaining numerical approximations of these quantities. 

2.3    Domain Mapping 

For computational purposes, a series of transformations are used to first map the prob- 
lem to a fixed "computational domain" and second to transform the non-homogeneous 
boundary conditions to homogeneous Dirichlet conditions. This is standard in many CFD 
(computational fluid dynamics) algorithms. What is not typical is that we apply a similar 
transformation to the sensitivity equation. Let T : [0, q] -» [0,1] be defined by 

T(x, q) = - = £. (2.9) 

To avoid confusion, we use x for the independent variable on [0, q] and £ for the independent 
variable on [0,1]. Note that T = T(x,q) depends explicitly on the "shape parameter" q. 
For each q > 1, the inverse transformation 

[T(x,q)]-l^M(Z,q):[0,l]^[0,q] 

is defined by 

M(Z,q)=q£ = x. (2.10) 

Let w(£) = w(£,q) = w(M(£,q),q) and define z{£) by 

*(0=2(£,?) = «>(£)-4£. (2.11) 

Applying this transformation, we obtain the Dirichlet problem defined on the computational 
domain [0,1] by the differential equation 

d2   ,*      1 

'i*®+*' = 0 (2.12) 
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with Dirichlet boundary conditions 

z(0) = 0       and       z(l) = 0. (2.13) 

In a similar manner, we transform the sensitivity equation (2.7) - (2.8) to the computational 
domain [0,1]. In particular, we let §(£) = s(£,q) = s{M(£,q),q) and define pfaq) by 

—w(l) 
P(0=P^,q) = m + ^~t (2.14) 

It follows that the transformed sensitivity p(£) satisfies the equation 

d2 d 

with Dirichlet boundary conditions 

p(0) = 0        and        p(l) = 0. (2.16) 

In practice, one must use some numerical scheme to solve the boundary value problem (2.1) 
- (2.2), and the computation of -§-w(x, q) must be accomplished by using this approximate 
solution. We approach this problem by solving the corresponding sensitivity equation. 
As shown below, there are many "natural" numerical schemes that one can employ in this 
approach. Although we discuss several schemes, we will concentrate on a projection method 
approach in later chapters. The basic idea can be extended to complex aerodynamic flow 
problems. However, many theoretical and technical issues are not yet settled. 

Comment: It is important to note that the construction of the transformed state equation 
(2.12) - (2.13) and the transformed sensitivity equation (2.15) - (2.16) requires the derivative 
(in space) of the transformation M(£,q). In particular, one needs %M($,q) or else a 
numerical approximation of ^M{£,q). This issue is addressed in many CFD codes and 
there are good methods for dealing with this problem (e.g. see [38]). However, there is no 
need to compute the derivative j-qM{^q) with this approach. On the other hand, if one 
transforms the state equations and then derives the sensitivity equation for the transformed 
state equation, then the chain rule requires the calculation of -^M&q). In particular, if 
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d(t,q) = %z(Z,q), then 

=   -ff>{M& q), q) + ■£»&(& q), <?)^M(£, q) 

=   ^q) + £w(M(^q),q)^-M(^q). 

Consequently, the difference between the transformed sensitivity s(£) and the sensitivity of 
the transformed state d(£) is given by the difference 

d(Z, q) ~ m q) = ^(Af({, q), «)^M(f, q). (2.17) 

The right hand side of (2.17) is the continuous version of the "mesh" gradient and the 
source of considerable computational complexity. Consequently, one advantage of mapping 
both the state and the sensitivity equation is that the computation of this gradient can be 
eliminated. 

Finally, we note that once z(£,q) and p(£,q) are computed on [0,1], the state w(x,q) and 
sensitivity s(x, q) can be recovered on [0, q] by 

w(x, q) = w{T{x, q), q) = z{T(x, q),q) + 4T(x, q), (2.18) 

and 

s(x, q) = s(T(x, q), q) = p(T(x, q), q) - 
i*(l,tf) + 4' 

T(x,q), (2.19) 

respectively. When applying the inverse transforms to the numerical solutions, there is the 
possibility that numerical errors can be induced. In particular, the map T(x, q) is often 
constructed numerically for practical CFD problems. Moreover, in equation (2.19) the 
presence of the derivative -§^z(l,q) at the boundary can introduce additional errors. These 
are practical issues that are important to address in more complex problems. However, 
observe once again that it is not necessary to compute a mesh gradient to transform back 
to the physical domain. 
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2.4    Computational Algorithms 

We turn now to the issue of approximating the coupled system denned by the state equation 

dfA0 + 
d_ T3 

^(e)+4 (2.20) 

and sensitivity equation 

with boundary conditions 

and 

d z(t) + 4J i"a-*T' 
z(0) = z(l) = 0, 

p(0)=p(l)=0, 

(2.21) 

(2.22) 

(2.23) 

respectively. It is important to observe that (2.20)-(2.21) is weakly coupled in the sense 
that (2.21) does not feed back into (2.20). We take advantage of this structure to develop 
a family of numerical schemes for computing the sensitivity p(£). 

Note that for each q > 1, z(£,q) and p(£,q) exist and belong to H%(0,1) fl#*((), 1). Let 
v = #o(0,l) x F0

X(0,1) and observe that for each (</>(■),%/;{•)) <E V the solution pair 
(z(-),p(-)) satisfies the weak system 

-(*'(•).*'(•))+ ^ ([*'(-)+4]3,*(.))=0 

-(,'(.),,'(.)) + 2(rv(.)+4]2(p(.)-[M 

where (•, •) denotes the L2 inner-product. 

+ 4 M-)) = o, 

(2.24) 

(2.25) 

2.5    A Finite Element Scheme 

Although there are several possible choices for finite element spaces, we shall limit our 
discussion to the simplest (convergent) scheme. We note that in more complex problems 
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one must choose these spaces with care to ensure the algorithm satisfies the appropriate 
convergence criteria (inf-sup conditions, etc.). Let h = (^- j^) and denote by Vh the 
product space 

V*^(0,l)x6ow(0,l)CV, (2.26) 

where Sf(0,1) denotes the subspace of H$(0,1) consisting of continuous piecewise linear 
functions with nodes at &• = jfc, i = 1,2,... , K. Let hf (•) and hf{-) denote the standard 
"hat" functions with nodes & and £,•, respectively. Also let 

N 

^(o=x;^(o (2.27) 

and 

j=i 

Af 

P*(0=I>Äf(0 (2.28) 
i=i 

be Galerkin approximations of the pair (z(-),p(-)) in Vh. Consider the Galerkin approxi- 
mations 

r^l^K .^•)+4 A"(-)> = o, (2.29) 

d_ 

dt 
d Mi PM(-)^hf(.) 

<% 

3 +— 
8q\l<% 

d T2 

^0 + 4 
di P

M(-)~ 
i^(i) + 4' 

Af(-))=0 (2.30) 

for t = 1,2,... , N and j = 1,2,... , M. 

Note that pM(-) depends on zN(-) and its spatial derivative ^zN(-) on [0,1]. To emphasize 
the dependence we let pN'M{-) denote the solution of (2.30), given that zN(-) obtained from 
(2.29) is used in (2.30), and let 

At,q) = (*s(t,q),prr'M(t,q)) (2.31) 

denote the solution pair. At this point, there are two important observations that play a 
key role in the construction of accurate numerical sensitivities. 
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• The freedom to choose separate finite element spaces for the state z(£, q) and the 
sensitivity p(f, q) allows for the development of schemes that simultaneously converge 
to the state and sensitivity. In addition, both h-refinement (mesh refinement) and 
p-refinement (the selection of higher order elements) can be combined to construct 
numerical solutions of vhß, q) = (zN(£, q),pN>M(£, q)) so that the error in pN'M(£, q) 
is sufficiently small to ensure convergence of optimal design algorithms based on the 
SEM (see [3], [7], [5]). 

• The solution pN>M(0 depends not only on zN(£) but also its derivative ^(f). 

Moreover, since zN{£) is piecewise linear, ^z*(£) is a piecewise constant (discontin- 
uous) function. However, the actual transformed sensitivity p(£) is smooth, and one 
might expect to lose at least one order of accuracy in pN>M(£). In fact, things can be 
much worse unless special care is exercised. 

There are two obvious "fixes" to address these issues. One could use higher order splines 
for the sensitivity variable p(f). However, this method will be more expensive, and it is 
not reasonable to expect great improvements unless higher order schemes are also used 
for the state equation. The other obvious fix is to use mesh refinement in M (assuming 
accuracy in N). There is a third approach that makes use of "smoothing projections." The 
idea is similar to the method used to obtain a-posteriori error estimators for adaptive mesh 
generation (see [8], [24], [41], [42]). This approach will be outlined in Chapter 4 and applied 
to the model problem and to a 2-D fluid flow problem. 

2.6    Numerical Results 

We use the FEM scheme outlined above to construct approximations to the state and the 
state sensitivities. We also evaluate the use of the state sensitivities in an optimization 
algorithm to solve the inverse design problem outlined in Section 2.1. 

2.6.1    Convergence of Solutions for the Boundary Value Problem 
and Sensitivity Equation 

In this section, we compare the finite element approximations of the solutions to the state 
and sensitivity equations with their exact solutions. First, we note that the finite element 
scheme converges to the exact solution of the nonlinear problem (for each q > 1). Figure 
(2.1) shows the finite element approximations to the solution of the boundary value problem 
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q=2 q=2 

- 

— Exact 

■ N=2 

0 O.S 1 1.5 2 

q=1.2 

s?^ 

// —Exact 

- N=4 

. ̂  

—Exact 

■N=4 

O 0.5 1 1.5 

q=1.2 

1.5 

S*^ ■ 

/ —Exact 

• N=8 

Figure 2.1: Numerical Approximations to the Solution of the Boundary Value Problem at 
q = 2 and q = 1.2 

at two parameter values: q = 2 and q = 1.2. Notice that at 9 = 2, the JV = 4 finite element 
model provides an excellent match to the exact solution. However, when q = 1.2 one 
sees that a finer mesh (N = 8) is required to obtain the same order of accuracy. This 
convergence is expected because the gradient of the solution becomes singular as q -* 1+ 
and hence the problem becomes stiff in this parameter region. This is also the case for the 
sensitivity equation. 

Consider the corresponding finite element approximations of the sensitivity equation. 
Recall that N and M define the meshes for the state and sensitivity equations, respectively. 
Figure (2.2) shows the finite element approximations for the sensitivity with q = 1 and 
N = M ranging from 2 to 16. Observe in Figure (2.3) that although the finite element 
scheme produces excellent solutions to the state equation when TV = 4, the error in the 
corresponding sensitivity does not diminish until N = M = 16. 

As mentioned before, one obvious "fix" is to use mesh refinement in M. Figure (2.4) 
shows the results for this technique when N = 2 and M ranges from 2 to 16. Note that 
improvements in the accuracy of the sensitivity approximation are limited by the accuracy 
of the state approximation. When we increased N to 4, the sensitivity errors were decreased 
(see Figure (2.5)). 

The stiffness of the problem near q = 1 increases the difficulty of getting good sensitivity 
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Figure 2.2: Numerical Approximations to the Solution of the Sensitivity Equation at q = 2 
using piecewise constant (PWC) derivatives 

Error for flow 
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Figure 2.3: L2 Error of the Solution and Sensitivity Approximations at q = 2 
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Figure 2.4: Numerical Approximations to the Solution of the Sensitivity Equation at q = 2 
using PWC derivatives with N = 2 and mesh refinement in M 

approximations. Figures (2.6) and (2.7) show that the sensitivity approximations become 
unreliable as q -»• 1+ even though the state approximations are still fairly good.  Figure 
(2.8) displays the difference between the L2 error in the state approximation and the L2 

error in the sensitivity approximation. As N, M increases we obtain convergence of the 
scheme, but the approximations for smaller N, M contain large errors and the convergence 
of the finite element approximation to the analytical solution is not at all monotone. Figure 
(2.9) is a graph of the L2 error of the sensitivity approximations for various values of q. 
We shall observe similar behavior in the next section, where we approximate solutions to 
2-D flow problems. 
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Figure 2.5: Numerical Approximations to the Solution of the Sensitivity Equation at q = 2 
using PWC derivatives with N = 4 and mesh refinement in M 
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Figure 2.6: Numerical Approximations to the Solution of the Sensitivity Equation at q = 1.4 
using piecewise constant (PWC) derivatives 
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Figure 2.7: Numerical Approximations to the Solution of the Sensitivity Equation at q = 1.2 
using piecewise constant (PWC) derivatives 
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Figure 2.8: L2 Error of the Solution and Sensitivity Approximations at q = 1.2 
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Figure 2.9:   L2 Error of Sensitivity Approximations using Piecewise Constant (PWC) 
Derivatives 
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2.6.2    Optimization Results 

We now return to the inverse design problem presented in §2.1 and evaluate the conver- 
gence properties of an optimization scheme using the sensitivity equation method. After 
discretization, the infinite dimensional inverse problem (2.4) becomes: Find q* > 1 such 
that 

A   1 
^*)<^) = ^E(^(%?)-^ (2.32) 

J'=I 

where wN(x,q) is obtained using (2.18). Notice that the gradient has the form 

d VTfo) = XK(*„g) - ^)|V (%*). 
J=l 

dq (2.33) 

The sensitivity equation method applied to the optimization problem replaces f-wN(£j, q), 
the sensitivity of the discrete solution, with an approximation to «(£-■, q), sN>M(xi q) from 
(2.19). 

The standard Gauss-Newton algorithm is used to approximate q* . The algorithm solves a 
least squares problem at each iteration and proceeds as described in Table 2.1: 

Given q0 and u). 
Set iteration counter: i = 0 
Compute wf = wN(qj) 
Compute s?'M = sN>M(qi) 
While (t < max iterations AND \\VqJ

N(qi)\\ > tolerance ) Do 
Calculate step 6q 
Set qi+1 = qi+6q 
Compute wf+l = wN(qi+l) 
Compute <'f = sN>M(qi+1) 
Increment Counter 

EndWhile 

Table 2.1: Gauss-Newton Algorithm 

The "data" to be matched, denoted by ibj in (2.4), is indicated by pluses in Figures (2.10) 
- (2.11). This data set was generated by randomly perturbing the value of w(xi) in (2.3) 
using q = 2 and q = 1.4 with p = 4,16 data points. Table 2.2 shows the numerical values 
of the data for comparison purposes. 
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p=4 
q= 2 q=1.4 

Xj w{Xj) Wj perturbation w(Xj) Wj perturbation 
0.1250 0.4495 0.4516 0.0021 0.8248 0.7431 -0.0817 
0.2500 0.8284 0.7722 -0.0563 1.3541 1.3875 0.0335 
0.5000 1.4641 1.4080 -0.0561 2.1394 1.9848 -0.1546 
0.7500 2.0000 1.8338 -0.1662 2.7553 2.5758 -0.1795 

p=16 

q= 2 q=1.4 
Xj w(Xj) Wj perturbation w(Xj) Wj perturbation 

0.0312 0.1213 0.1126 -0.0088 0.2677 0.2690 0.0013 
0.0625 0.2361 0.2207 -0.0154 0.4806 0.4480 -0.0326 
0.0938 0.3452 0.3670 0.0218 0.6629 0.6375 -0.0254 
0.1250 0.4495 0.4372 -0.0123 0.8248 0.7563 -0.0685 
0.1562 0.5495 0.5916 0.0421 0.9720 0.9772 0.0052 
0.1875 0.6458 0.6611 0.0154 1.1079 1.0335 -0.0744 
0.2188 0.7386 0.7651 0.0265 1.2347 1.2820 0.0473 
0.2500 0.8284 0.8687 0.0403 1.3541 1.4106 0.0565 
0.3125 1.0000 0.9091 -0.0909 1.5749 1.4821 -0.0928 
0.3750 1.1623 1.2674 0.1051 1.7768 1.6265 -0.1503 
0.4375 1.3166 1.2486 -0.0680 1.9641 1.9460 -0.0181 
0.5000 1.4641 1.6086 0.1445 2.1394 2.0504 -0.0890 
0.5625 1.6056 1.6483 0.0427 2.3048 2.0950 -0.2098 
0.6250 1.7417 1.9067 0.1651 2.4619 2.3973 -0.0646 
0.6875 1.8730 1.9668 0.0938 2.6117 2.8040 0.1922 
0.7500 2.0000 1 2.0554 0.0554 2.7553 2.9296 1 0.1743  1 

Table 2.2: Matching Data for the Optimization 
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+    4 data points 

o    16 data points 

 actual solution 
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Figure 2.10: Data generated at q = 2 
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+    4 data points 

o    16 data points 
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Figure 2.11: Data generated at q = 1.4 
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Figure 2.12: The Cost Function and Its Approximations for p = 16 and q* ~ 2. 

Cost Function for 16 Data Points 

Figure 2.13: The Cost Function and Its Approximations for p = 16 and q* ~ 1.4. 
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The exact cost functional, J(q), and several approximations to it, JN(q) are plotted in 
Figures (2.12)-(2.13) for the case where p = 16 and q* ~ 2 and q* ~ 1.4, respectively. 

Although we made several runs with various data sets, we present the results of two runs. 

• Case 1: The solution was calculated for q = 2.0 and the noise vector in Table (2.2) 
was added to obtain data for optimization. Here, the optimal q is approximately 
q* ~ 2. The optimization algorithm was started at qinit = 1.2. 

• Case 2: In this case, the solution was calculated for q = 1.4 and the noise vector in 
Table (2.2) was again added to obtain data for optimization. Here, the optimal q is 
approximately q* ~ 1.4. Here, the optimization algorithm was started at qinU = 2.0. 

The scheme was considered converged when the norm of the gradient of the cost functional 
was less than 10-7. Notice that the simulations were performed using sensitivities calculated 
using the natural piecewise constant finite element gradient approximations. Tables (2.3) - 
(2.4) show the results of these simulations as N, M ranged from 2 to 128. The time for the 
runs was measured in seconds and the runs were performed on a Silicon Graphics Onyx2. 
Notice, the effect of the bad sensitivities on the convergence of the optimization scheme for 
Case 1 when N = M. As expected, larger values of N, M were required for convergence 
of the optimization algorithm for Case 2. 

In Chapter 4, we return to this problem and use smoothing projections to enhance sen- 
sitivity computations and convergence. We turn now to the 2-D Navier-Stokes equations 
and discuss two specific flow problems. 
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N M CONV/DNC ITERATIONS TIME JN 
q 

2 2 DNC 20 31.4 2.4088 1.21993 
2 5 CONV 17 3.1 0.32610 1.94862 
4 4 DNC 20 68.3 2.6252 1.15545 
4 9 CONV 15 6.6 0.26469 1.94795 
8 8 DNC 20 143.1 3.1942 1.08641 
8 17 CONV 11 7.4 0.24332 1.94328 
16 16 DNC 20 334.7 3.0308 1.16909 
16 33 CONV 12 16.0 0.24235 1.93902 
32 32 DNC 20 916.6 3.1796 1.18975 
32 65 CONV 20 42.1 0.24278 1.93771 
64 64 DNC 20 4323.1 0.24276 1.93477 
64 129 CONV 12 191.9 0.242783 1.93747 
128 128 CONV 10 252.2 0.24285 1.93584 

ives e2.3: Optir nization Results . for p = 16, qopt ~ 2, qinit = 1.2, PWC Derivat 

N M CONV/DNC ITERATIONS TIME JN\ q 
2 2 DNC 20 0.6 0.86393 1.83807 
2 b DNC 20 32.5 0.72436 1.33907 
4 4 DNC 20 63.3 0.54447 1.48191 
4 9 DNC 20 68.4 0.52754 1.4419 
8 8 DNC 20 134.9 0.60045 1.38030 
8 17 DNC 20 61.3 0.50601 1.47419 
16 16 DNC 20 293.2 0.78813 1.33031 
16 33 CONV 18 18.8 0.41994 1.43638 
32 32 CONV 11 6.8 0.41001 1.41986 
32 65 CONV 16 13.2 0.41046 1.42342 
64 64 CONV 13 33.7 0.40820 1.41681 
64 129 CONV 17 58.0 0.40858 1.42048 
128 128 CONV 12 192.7 0.40774 1.41605 

2.4: C )ptimi zation Results for p = 16, qopt ~ 1-4, Omit = 2.0, Pi NC Deriva 



Chapter 3 

2-D Flow Problems 

We now turn to problems in fluid dynamics. We present the flow equations and derive 
the sensitivity equations as for the 1-D model problem. An adaptive finite element tech- 
nique is described and used to solve the state and sensitivity equations. The numerical 
approximations are presented to investigate the convergence of the adaptive grids. 

3.1    The Navier-Stokes Equations 

We consider steady-state 2-D flow of an incompressible, viscous fluid in a bounded domain 
ß C M2 with a Lipschitz-continuous boundary T. Our discussion and presentation will 
follow the notation in [19] with the exception that, in most cases, vector notation will be 
used for ease of presentation. Let u = [u(x,y),v(x,y)]T represent the velocity field, and 
define the stress tensor, r, by 

r(u)=yu[Vu+(Vu)r] (3.1) 

where \x denotes the viscosity. Kundu, in [31], gives the differential form of the principle of 
conservation of mass as 

^ + V-(pu) = 0, (3.2) 

where p is the fluid density. A fluid is incompressible if its density does not change with 
pressure. The steady incompressible form the continuity equation then becomes 

V - u = 0. (3.3) 

24 
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The steady-state statement of conservation of momentum is the Navier-Stokes equation: 

-V • r(u) + VP + p(u - Vu) = pf, (3.4) 

where P denotes the ambient pressure and f represents a density of body forces per unit 
mass (e.g. gravity). In general, the viscosity // is a function of the temperature. Since we 
neglect temperature differences for the problems we consider herein, p is assumed to be 
constant and can be taken outside the derivative. This, along with the fact that the flow 
is incompressible, gives the following identity: 

V-r(u)=/iZ\u. (3.5) 

As commonly done, we set 

P p 
p = T>    v =    ' (3-6) P P K    ' 

where p is the kinematic pressure and v is the kinematic viscosity. Then, using (3.5) the 
system (3.3)-(3.4) becomes 

Vu   =0 1 . 
-vZhi + Vp + u-Vu   =f /        ln   "• (3J) 

It is useful to consider a non-dimensionalized form of the Navier-Stokes equations. To do 
this, define a length scale L, a velocity scale U, and a reference pressure p0, for the flow. 
The dimensionless variables for the flow can be defined as follows: 

x = I,     u = -,and    P = P-^-. 

The non-dimensional Navier-Stokes equations can be written as 

pUL 

V^ü   =0 
faAu + Vp + ü • Vu   =f, in   fi. (3.8) 

where f is the non-dimensionalized f.   Dropping the tilde's and defining the Reynolds 
number, Re = ^, we have 

V-u   =0 1 .      n 

-^Zhi + Vp + u-Vu   =f /        m   a (3-9) 

For ease of notation and to maintain consistency with [19], replace -^ with v to obtain the 
working version of the Navier-Stokes equation. 

V-u   =0   1 
-^u + Vp + u-Vu   =f. /        in   a (3-10) 
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3.2    The Homogeneous Dirichlet Problem 

We begin by considering the case of the homogeneous Dirichlet boundary condition 

u = 0       on   T. (3.11) 

In order to discuss existence and uniqueness and to introduce the variational form of the 
problem, we introduce some standard function spaces as well as some necessary bilinear 
and trilinear forms. 

3.2.1    Function Spaces and Notation 

As usual, we let L2(Q) denote the space of square integrable functions and (-, •) and 
denote the L2 inner product and norm, respectively. Let 

L2
0(ty = {q£L2(n):    fqdQ^O} 

The Sobolev spaces, Hl and HQ, are 

H\Q) = {v€ L2(Q): g,g € L2(Q)}, and 

HQ(0) = {v£ H1: v\T = 0}, 

with inner product, (•, -)u norm, || - \\u and seminorm, |-|15 defined by 

/      \       /      \ , fiu   dt>       .du   dv, 

respectively. 

||u||i = (M, U)\'
2
, and 

i _ (i^L du\    idu du\Y/2 

Also, denote by H x(fi) the dual space consisting of bounded linear functionals on flj(ß). 
The norm for H~1{Q) is given by 

IMI-=     sup     <M. 
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Recall the trace theorem (see [10]) which proves the existence of a trace operator 7 as 
follows: 

Theorem 1. Let Q, be bounded, and suppose £1 has a piecewise smooth boundary. In addi- 
tion, suppose Q. satisfies the cone condition. Then there exists a bounded linear mapping 

1:Hl{tt)-±L\Tl        \\l{v)\\ < Nli, (3.12) 

such that 'jv = v\T for all v <E C^fl). 

As noted in [39], the range of the trace operator is H^2(T).   The norm for functions g 
belonging to Hl/2(T) can be defined by 

IMI1/2 =     inf     \\v\\x. 
v=g on r 

The vector-valued counterparts of these spaces in K? will be denoted by bold-face symbols, 
i.e., 

H1^) = (F1^))2 = {v : Vi £ H1^)    for » = 1,2}, 

H"1^) = (H-\ty)2 = {v.Vi<= H-'iü)    for » = 1,2}, 

HV«(r) = (H^(T))2 = {v : v< € H^T)    for i = 1,2}, etc. 

The norm for Hx(0) is defined by 

/ 2 \ 1/2 

IMIi=(X>||? 

The divergence free subspace of Hj(ft), Z0, is given by 

Z0 = {v€Hj(fi)|V-v = 0}. 

We define the following bilinear form: 

a0 (u, v) =  / i/Vu: Vv dQ       V u, v € H1 (Q) 

n 

where 

feA^i fei) 
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Also, let 

b(u,q) = -fqV-udn       Vu£H1(Q),\/q£L2(n), 

and 

ai(w;u, v) =  / (w • Vu) • vdQ       V u, v, w € H1^). 

n 

3.2.2    Existence and Uniqueness of Solutions to the Variational 
Form 

We present some basic results regarding the existence and uniqueness of solutions to the 
variational form of the homogeneous Navier-Stokes problem as presented in [19]. To begin, 
we note that the homogeneous partial differential equation (3.10)-(3.11) can be written in 
variational form as follows. 

Variational Problem 1. Given f G H-X(ß), find a pair {u,p) € Z0 x L
2

0(Q) such that: 

a0(u, v) + 0l(u; u, v) + b(u,p) = (f, v)       V v G Hl
0(Q). (3.13) 

Recall that the trilinear form, ai(-; -, •) has some nice properties described in the following 
lemma. 

Lemma 1. Let u, v e H1^) and let w e Hx(fi) with V - w = 0 and w • n|r = 0. Then, 
the trilinear form oi(-; •, •) is continuous on (Hl(Q,))3 and satisfies: 

a1(w;u,v) + a1(w;v,u) = 0, (3.14) 

Oi(w;v,v)=0. (3.15) 

Now, the existence result from [19] follows: 

Theorem 2. For f € H"1^), there exists at least one pair (u,p) € Z0 x £g(fi) which 
satisfies (3.13). 

In order to discuss the uniqueness of the solutions (u,p) to (3.13), we introduce the norm 
of the trilinear form ax(-; •, •), denoted N, and defined by 

A/- ax(w;u,v) 
N=    SUP    i   II   i • (3.16) 

u,v,w^0 
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We also set: 

Figure 3.1: Sample Domain with Boundaries 

z'o = SUP Ti   • Ifll*   = 

Theorem 3. Iff e H"1^) and 

W/v2) llf Ik < 1. 
then the Variational Problem 1 has a unique solution (u,p) € Z0 x Ljj(ß). 

(3.17) 

(3.18) 

3.3    The Nonhomogeneous Dirichlet Problem 

Now consider the more general case of a nonhomogeneous Dirichlet boundary condition 

u = g       on   T. (3.19) 

Denote by I\-, 0 < i < p, the connected components of the boundary V as depicted in 
Figure (3.1). We shall henceforth assume that 

L g-nds = 0,       0<i<p. (3.20) 
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The variational form of the nonhomogeneous partial differential equation (3.10)- (3.19) is 
obtained using standard weak formulations. In particular, we consider the problem: 

Variational Problem 2. Given f € H"1^), find a pair (u,p) € H^ft) x Lftß) such 
that: 

a0 (u, v) + oi (u; u, v) + 6(u, p)   = (f, v)       V v <E Hj (ft) 
V-u   =0       in   ft \ (3.21) 

u   = g       on   T. 

In order to prove existence for the nonhomogeneous problem, we need the following tech- 
nical result due to Hopf (see Lemma 2.3, page 287 in [19]). 

Lemma 2. Let g e H*(r) satisfy (3.20).  For any s > 0, there exists a function u0 = 
u0(e) € Hx(ft) such that 

V-u0 = 0,        u0|r = g, (3.22) 

|ai(v;uo,v)|<e|v|?        V v € Z0 (3.23) 

The following existence theorem may be found in [19]. 

Theorem 4. Let f € HT^ß) and g e H*(r) satisfying (3.20).  There exists at least one 
pair (u,p) € Hx(ft) x Ljj(fi) which is a solution of (3.21). 

Before stating the uniqueness result again, we make a few definitions.  For any function 
uo € H^ft), define 

p(u0) = sup   u  '   °'   \ (3.24) 
vezo        v. 

and 

ll'(f;«o)lk = sup^i (3.25) 
v€Z0     V x 

V ' 

where 

(/, v) = (f, v) - a0(u0, v) - ai(u0; u0, v). (3.26) 

Define f0 = *b(ß,f,g) as in [19] by 

vQ = inf |p(uo) + (A/]|/(f; u0)||Z'o) *; u0 € Hx(ft) satisfies (3.22)} . (3.27) 

The basic uniqueness result for (3.21) is found in [19]. We state it below for convenience. 
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Theorem 5. Assume the hypothesis of Theorem I Ifv > H)(fi,f,g), then the Variationd 
Problem 2 has a unique solution (u,p) € H^O) x Ljj(fl). 

REMARK: Although the results above provide existence and uniqueness for the basic 
Navier-Stokes problems, they do not address the continuity and differentiability of these 
solutions with respect to the parameter q. For example, in the problems considered below 
we have fi = fi(q), f = f(q), and/or g = g(q) so that v0 = 1^,(0, f,g) = n>(ft,f,g,q), 
where q G Rn is some parameter defining the flow. We need to establish the smoothness 
of these mappings in order to address the existence and uniqueness of solutions to the 
sensitivity equations. This is the subject of the following sections. 

3.4    An Abstract Framework for Navier-Stokes 

In this section, we present an abstract framework for analyzing the dependence on q of 
solutions to the nonhomogeneous Dirichlet problem for the Navier-Stokes equations. We 
will show the continuity of solutions with respect to parameters for two specific cases and 
we will conclude with results about the differentiability of those solutions. We extend the 
framework in [19] to certain parameter dependent flows. 

3.4.1    The Framework 

Let X and X be two Banach spaces and Q C A C Rn, where Q is open and A is compact. 
Given a Cp-mapping (p > 1) 

F:(q,u)€AxX-> F(q, u) G X, (3.28) 

we are interested in solutions to the state equation 

F(q,u) = 0. (3.29) 

Let {(q, u(q)); q £ A} be a branch of solutions of equation (3.29). This means that 

q ->• u(q) is a continuous function from A into X, and (3.30) 

F(q,u(q)) = 0. (3.31) 
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Moreover, we suppose that these solutions are nonsingular in the sense that: 

DuF(q, u(q)) is an isomorphism from X onto X, Vq e A. (3.32) 

As an immediate consequence of (3.32), it follows from the Implicit Function Theorem (see 
e.g. [40]) that q -+ u(q) is a ^-function from A into X. 

3.4.2    Using the Framework 

We now show that the parameter-dependent Dirichlet problem for the Navier-Stokes equa- 
tions in the velocity-pressure formulation (3.10) - (3.19) fits into this abstract framework. 
We assume that any/all of the following hold: 

g   =   g(q),        and/or (3.33) 
f =  f(q) (3.34) 

where qGQCylCJKnisa design parameter for the flow. Define 

X = X = tfCfi) x L2
0(n), (3.35) 

and the intermediate space 

y = H-1(0)xV, (3.36) 

where V = {g € Hx/2(r); Jr. g • n ds = 0,0 < i < p}. Next we define a linear operator T 

as follows: given (f„g,) e Y, we denote by (u»,p,) = T(f„g.) € X the solution of the 
Dirichlet problem for the Stokes equations: 

V-u* = 0 in    Q 
-Z\u* + Vp* = f. in   £1 

u, = g* on   r 
(3.37) 

= g* on   r J 

In addition, let P : Q -> Y be defined by 

P(q)=0f(q),g(q)), (3.38) 

and the non-linear operator NC : X ->■ Y be given by 

A£(» = (v,P))=(I(vl^ + v2^),o), (3.39) 
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where v is the constant -^ as before. 

Now finally, with the data (f, g)eFwe associate a (^-mapping G from Q x X into Y 
defined by 

G : (q, v) -+ G(q, v) = NC{v) - P(q) (3.40) 

and we set 

F(q,v) = v + TG(q,v). (3.41) 

The following result follows directly from Lemma 3.1 in [19]. 

Lemma 3. The pair (u(q),p(q)) € H1^) x Lg(fi) is a solution of (3.10) - (3.19) if and 
only t/(q,«(q)) is a solution of (3.29) where u(q) = (u(q),p(q)/i/) anrf öftere i/ie spaces 
X and A" are defined by (3.35) and the compound mapping, F, is defined by (3.41). 

3.4.3    Continuity of Solutions with Respect to Data 

We now address the continuity of solutions (u(q),p(q)) to (3.10)-(3.19) with respect to 
changes in the parameter q. We assume the map q € Q -* (g(q),f(q)) € V x H-1(fi) 
is continuously Frechet differentiable. Note, that this is certainly true for the cylinder 
problem presented in §3.7.1. 

To begin, we need Lemma 1.3.2 from [19]. 

Lemma 4. There exists a continuous linear function V : V -> Hx(fi) such that for each 
g € V, we have w = 2?(g) satisfies 

V • w = 0, and w|r = g iv = 0, and w|r = g 1 
l|w||i < C||g||x/2        /■ <3-42) 

The following corollary is a direct consequence of Lemma 4. 

Corollary 1.  The map from q e Q -> 2>(g(q)) € H^ß) is Frechet differentiable. 

In order to analyze the parameter-dependent solution to the weak form of the nonhomo- 
geneous Navier-Stokes problem, we need a result analogous to Lemma 2 for parameter- 
dependent boundary functions. The following result may be established by a straight 
forward extension of Lemma 2.3 in [19]. 
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Lemma 5. There exists a continuous linear function T : A x M+ -¥ Hl(Q) such that for 
each q G A, e > 0 

JT(q,e) = u0(q) (3.43) 

where u0(q) is defined by Lemma 2 and satisfies 

V • u0(q) = 0,        Uo(q)lr = g(q), (3.44) 

and 

k(v;u0(q),v)|<e|v|J (3.45) 

for each v G Z0. 

We now consider continuity with respect to the right hand side function f. We again 
consider an_abstract framework for the Navier-Stokes equations. We define a map Q : 
X xy -> Z. Here, X is the set of forcing functions, f € H_1(ß), and y is defined as 
follows: 

y = {(u,p) : u G Hä(ß), and p € H\Q)/M} . (3.46) 

The range of £ is contained in 

Z = H-\n)xL2
Q(Cl) (3.47) 

and Q is defined by 

0(a; = f, y = (u, p)) = (-z/Z\u + (u - V)u + Vp - f, V • u). (3.48) 

Note that £ e C1 and the Frechet derivative at a point (x0 = f0, y0 = (u0,p0)) is given by 

[DQ(x0,y0)](z,y) = -f + (u0 • V)u + (u • V)u0 + Vp - vAu 
Vu (3.49) 

It is also clear that (u,p) satisfies the homogeneous Navier-Stokes equations, (3.10) - (3.11), 
with right hand side f if and only if Q (x = f, y = (u, p)) = 0. 

The Implicit Function Theorem implies that (u,p) is a continuously differentiable function 
of f if the linear map [Dyg(x0, y0)] is an isomorphism. But this is equivalent to the condition 
that the homogeneous sensitivity equation has a unique solution in y for each f G i7_1(ft). 
We_show in the following that the sensitivity equation does indeed have a unique solution 
in y, so that we have (u,p) is a Cl function of f. We will then return to the smoothness of 
solutions to the parameter-dependent Navier-Stokes equations. 



Däwn L. Stewart Chapter 3. 2-D Flow Problems 35 

3.5    Analysis of the Sensitivity Equations 

We begin by stating a general form of the sensitivity equations for the parameter-dependent 
Navier-Stokes equations. We show that if we have a unique solution (u,p) of the Navier- 
Stokes problem, then we have a unique solution (s, r) of our sensitivity equation. Lastly, 
we will use an abstract formulation of the Navier-Stokes problem and the implicit function 
theorem to show that the solution (u,p) is in fact a nonsingular solution of the Navier- 
Stokes problem. 

3.5.1    A General Formulation of the Sensitivity Equations 

Let q G 2R+ represent some fixed sensitivity parameter qi: (1 < i < N). Now denote the 
sensitivity forcing function, f^(q), by f* and the boundary function, JjJ(g), by g£. Lastly, 
recall that in some cases £2 = ft(q). Then as in the case of the 1-D model problem, the 
sensitivity equations are obtained by implicitely differentiating the flow equations and their 
associated boundary conditions. The sensitivity equations fit into the following general 
form. Given f* G H"1^) and g* G H*(r) satisfying (3.20) and (u,p) a solution of (3.10)- 
(3.19), find a pair (s,r) € Hx(fi) x Ll(Q) such that (s,r) satisfies 

V-s   =0 in 
-vAs + Vr + u - Vs + s • Vu   = f* in       Cl   \ . (3.50) 

s   =g* on 

We can write the variational form of (3.50) as: 

Variational Problem 3. Given f* £ H~l(Ü) andg*g e H^(r) satisfying (3.20) and(u,p) 
a solution (3.10)-(3.19), find a pair (s,r) G H\Q) x L2

0(Q) such that: 

a0(s, z) + ax(u; s, z) + ai(s; u, z) + 6(z, r)   = (f*, z) 
V - s   = 0 in   Q,   } , (3.51) 

s   =g* on   T 

Vz G Hj(fi). 

3.5.2    Existence and Uniqueness of Solutions to the Sensitivity 
Equations 

We state and prove the following existence and uniqueness result following [19]. 
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Theorem 6. Assume the hypotheses of Theorem 5. If (u,p) is a unique solution of the 
Variational Problem 2, then there exists a unique solution, (s,r), to Variational Problem 
3. 

Proof. In order to check that the equations (3.51) have a unique solution, it is sufficient to 
prove that the bilinear form 

(s, z) -> c(s, z) = a0(s, z) + oi (u; s, z) + ax (s; u, z) (3.52) 

is V-elliptic. But it follows from (3.15) that 

c(s, s) = v |s|i + oi(s; u, s)       Vs € Z0. (3.53) 

Now, assume that v > u0 where z/0 is defined by (3.27).   Then, there exists a function 
u0 G H^ß) such that 

V-u0   =   0,        u0|r = g* 

u>p(uo)   +   (JV||J(r;uo)||zi)*. 

Next, setting u = u0 + w, we have by (3.16) and (3.24) 

K(s;u,s)|   <   |o1(s;u0,s)| + |a1(s;w,s)| 

Since 

we obtain 

v - p(u0) 
v      ; 

so that the ellipticity property holds. 

3.6    Differentiability of Solutions with Respect to q 

We return now to the smoothness of solutions to the parameter-dependent Navier-Stokes 
equations. 
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Note that the parameter u0 = z/0(q) is a continuous function of q in this case since the 
map from q ->■ u0 is continuous and the map from u0 -* p is continuous. With this, the 
continuity of the map (f,g) -> (u,p), and the fact that q -> (f(q),g(q)) is C\ we can'now 
establish the following result. 

Theorem 7. assume &a* q G Q ü such that^u > vQ(q). There exists a neighborhood, Q 
ofq,q€QQQCA such that for all q e Q the solution of the variational, parameter- 
dependent Navier-Stokes equations (3.21), with f = f(q) andg = g(q) exists and is unique. 
Moreover, the solution is a C1 function of q. 

Proof: We consider the map F defined by (3.41). We have shown that there exists QcifP1 

so that we have a branch of solutions {(q,«(q));q € ß}, i.e. that both (3.30) and (3.31) 

hold for q € Q, for both cases presented in §3.4.3 above. 

We now turn our attention to the Frechet derivative of F, DUF. We have 

[DuF(q,u)]{q,u)   =   u + T[DuG(q,ü)](q,u) (3.55) 

=   u + T[DuMC(q,ü)](u) (3.56) 

Again, the fact that DUF is an isomorphism can be shown to be equivalent to the fact that 
the homogeneous, sensitivity equation has a unique solution for all q G Q. We have shown 
in §3.5.2 that the sensitivity equation does indeed have a unique solution. Then, by the 
Implicit Function Theorem, we have that q -»• (u(q),p(q)) is a Cl function from Qinto X. 

3.7    Two Specific Problems and Their Sensitivity 
Equations 

We now return to analyzing design sensitivities and focus on two specific parameter- 
dependent flow problems along with their sensitivity equations. 

3.7.1    Flow around a Cylinder 

We begin by considering the standard problem of 2-D flow around a cylinder. This prob- 
lem, a non-homogeneous Dirichlet problem on a bounded domain, is modeled on the prob- 
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(-2,1) 

(-2,-1) 

(L,l) 

(L,-l) 

Figure 3.2: Geometry for 2-D Flow around a Cylinder 

lern where the boundary is an infinite strip. We assume parabolic inflow into a chan- 
nel containing a cylindrical obstruction whose geometry is shown in Figure (3.2). Here, 
ß = [-2, L] x [-1,1], where L e M+ is a fixed number. We assume that L is large enough 
for the outflow to have returned to the same parabolic velocity profile present at the inflow. 
The governing equations are the 2-D incompressible Navier-Stokes equations presented ear- 
lier (see (3.10)) with f = 0. The boundary conditions at the inflow and outflow are given 
by 

u(-2, y; q) = u(L, y; q) = (l+g)(l-2/2) 
0 (3.58) 

for -1 < y < 1, where q € M+ is a parameter describing the strength of the inflow. No- 
penetration and no-slip conditions are applied on the top, bottom, and cylinder sidewalls 
(i.e. u = 0). 

We are interested in calculating sensitivities with respect to the inflow parameter q. As 
before with the case of the 1-D model problem, define the sensitivity as follows: 

/  Ft ri \ 

(3.59) 

The sensitivity equations are obtained by implicitly differentiating the system (3.10) and 
its associated boundary conditions with respect to the parameter q. Assuming the order 
of differentiation can be interchanged, we obtain the following: 

V-s   =0 
in   Q. -vAs + V (j-gpj + u • Vs + s • Vu   =0 

Observe that this sensitivity equation does not assume a fully developed flow. 

} (3.60) 
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Figure 3.3: Geometry for Flow over a Bump 

The sensitivity boundary conditions at the inflow and outflow are obtained by differentiat- 
ing (3.58) producing 

s(-2, y; q) = s(L, y; q) (i - y2) 
0 -i<y<i. (3.61) 

After differentiation, the no-penetration, no-slip conditions for u imply no-penetration, no- 
slip conditions for s. In §3.5 , we present the weak form of these sensitivity equations and 
prove an existence result. 

3.7.2    Flow over a Bump 

We also consider a problem examined by Burkardt in [11], In particular, the problem is 2-D 
incompressible flow over a bump in a channel. The geometry of the channel is indicated 
in Figure (3.3) with ti = [0,L] x [0,3], where L > 0 is again a fixed number representing 
the length of the channel. As before, the governing equations for this problem are the 
2-D incompressible Navier-Stokes equations presented earlier (see (3.10)) with f = 0. The 
boundary conditions for the flow are as follows: 

u(0,y) = u(L,y) = 
0 (3.62) 
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for 0 < y < 3, where A = 0.5 was a constant parameter describing the strength of the 
inflow. Again, no-penetration and no-slip conditions are applied on the top and bottom 
channel sidewalls as well as on the bump. 

For this application, we examine a shape sensitivity. Here, the shape of the bump is a 
cubic spline determined by a parameter, q. We examine two cases: q = q1 e Rl and 
q = (ft, 92, «») € Rz. We seek to find the sensitivity of the flow in the channel to changes 
in q, which we denote s,-1 (jag) = {Uqvvqi). 

We have to solve a separate set of linear sensitivity equations for each sensitivity. The 
sensitivity equations are: 

V-St   =0  . 
(3.63) -uAsi + V (j-qP) + u • Vsi + Si - Vu   =0 in   £L 

uqi(x,y)   = 

vqi{x,y)   = 

on the bump; 

on the bump; 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

In this case, the sensitivity boundary conditions are given by 

%(z, y) = 0 at the inflow, outflow, top, and bottom walls; 
vn(xi V) = 0 at the inflow, outflow, top, and bottom walls; 

du dh(x, q) 

dy    % 
dv dh(x, q) 
dy    dqi 

where h(x, q) denotes the y-coordinate of the boundary of Q for 1 < x < 3. We generate 
h(x,q) using a cubic spline with free boundary conditions. If q € R1, qt specifies the 
height of the spline at x = 2.0. In this case, h(x, q) satisfies the following: 

h(xj q) is piecewise cubic, 
Ä(l.q) = Ä(3,q) = 0, I 

h'(l,q) = h'(2,q) = h'(3,q)=0 J 

For q € R3, qx, q2, and q3 specify the height of the spline at x = 1.5,2.0, and 2.5, respec- 
tively. Here, h(x, q) satisfies 

h(x, q) is piecewise cubic, 
Ml,q) = M3,q) = 0, 

h(1.5,q) = qi 
h(2.0,q) = q2 

/i(2.5, q) = qz 

ti(l,q) = ti(3,q) = 0 
h'(x,q) is continuous at x = 1.5,2.0, and 2.5 

(3.69) 
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3.8    A Finite Element Formulation 

Since exact solutions to the Navier-Stokes equations are unavailable except for the simplest 
of problems, we now turn our attention to finding good methods for computing approxi- 
mations to the solutions of the flow equations. We will use a finite element approach to 
solve our variational problems and, later, our weak sensitivity equations as well. 

3.8.1    The Discrete Variational Problem and Finite Element 
Spaces 

To begin, we choose a family of finite element spaces, V£(ß) and S*(ß), for approximating 
velocity and pressure, respectively. Here h is some measure of the size of the grid used to 
divide ft into finite elements. Then the finite dimensional weak form of the homogeneous 
Dirichlet problem becomes: 

Variational Problem 4. Given f e H"1^), find a pair (nh,ph) € V0
A(ft) x S#(ft) such 

that: 

a0(u
ft, vA) + fll(u

A; uA, vA) + b(vh,ph)   = (f, vA)        V vh e VA(ft) 1 
b(u»,qh) = 0   VgAG50

A(ß) j (3-70) 

When solving Navier-Stokes, the inclusions of our finite element spaces, VA C Hj(ft) and 
So C Zrjj(ß) in our infinite dimensional function spaces are not by themselves sufficient to 
produce a stable, meaningful approximation. For stability, the finite element spaces must 
also satisfy the additional div-stability or inf-sup condition. Three equivalent forms of this 
condition from [22] are given below. 

A finite element space is said to satisfy the div-stability or inf-sup condition if and only if 
one of the following equivalent conditions holds: 

• Given any qh € SQ, 

(¥v»evj \    lv li   / 

where the constant 7 > 0 may be chosen independent of h and of the particular choice 
ofgA€S#. 
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• Given any qh € Sft there exists vA € VA such that 

KvV)>7lk*llo|vA|ls (3.72) 

where the constant 7 > 0 may be chosen independent of h and of the particular choice 
ofg*€Sft. 

• There exists a 7 > 0, independent of h, such that 

^^»(iiSft)57- (3-73) 

As noted in [22], the div-stability condition (3.71) - (3.73) loosely ensures that as h -»• 0 
discretely divergence free functions tend to divergence free functions. 

The discrete Weak Formulation 4 is solved in the primitive variables, uh and ph. The 
weak form is discretized using the 7 node Crouzier-Raviart triangular element (see Figure 
(3.4)) which is a type of "bubble" element described in [14]. This element uses a so-called 
enriched quadratic velocity interpolant and a discontinuous linear pressure. Then, if % is 
some triangulation of our domain, Q, the finite element space, Sft can be formally defined 
as follows: 

So = |?:ge51(A),A€7^; [qd(l = o\, where (3.74) 

where Si (A) is the space of linear polynomials on the triangle, A. The velocity finite 
element space is the space of continuous piecewise quadratic polynomials augmented in 
each triangle, A € Th, by the cubic bubble function that vanishes on the three edges of A. 
Thus, 

V£ = {v : v € [S2(A) e B2(A)], A € Th;       v € C0(fi);       v = 0 on T],        (3.75) 

where, for any A £ Th, 

B2(A) = {v e S2(A) : v = A^Asu,        u e S0(A)}. (3.76) 

Here, A^x), i = 1,2,3, denote the barycentric coordinates of the point x e A with respect 
to the vertices of A, see [14]. 

3.8.2    The Penalty Method 

The pressure degrees of freedom are treated by the penalty method as in [17]. The penalty 
method allows for the uncoupling of the momentum and continuity equations through the 
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X  Pressure Node 
(1 nodal point + 2 derivatives) 

O Velocity Node 
(7 nodal points) 

Figure 3.4: Crouzier-Raviart element 

use of a small perturbation parameter, e. This provides large computational advantages 
as it reduces the size of the system of equations being solved and eliminates the need for 
partial pivoting when solving the resultant linear systems. 

The idea of the penalty method is to perturb the continuity equation with a small term 
containing the pressure: 

ep+V-u = 0. (3.77) 

One can consider this perturbation as the introduction of a slight artificial compressibility. 
With this perturbation, the pressure p is expressed as 

p = -ßV • u, (3.78) 

so that once a solution for u is known, p is determined by the relation (3.78). Here ß = 1/e 
is called the penalty parameter. With (3.78), we can eliminate pressure from the discrete 
form of the momentum equation. It can be shown that a solution (ir5,^) of the system, 

-ßV  u   =p\        .     „ 
-^u + Vp + u-Vu   =f /        m   n" (3-79) 

approaches the solution of the unperturbed system (3.10) as ß -» oo (see [37] for details 
for the homogeneous and nonhomogeneous cases). 
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3.8.3    An Implementation Method 

Let 0j-(x), j = 1,2,...,N and ^(x), / = 1,2,...M be basis functions for the finite 
element spaces Vft and S#, respectively. The Galerkin approximations (\ih,ph) of the 
penalized variational form can be written as 

h       \ X—^ /   U^( 
u (x)   =   2^Uj(f}j(x), or, alternately f    hj 

3=1 \  V   \ 

uh{x) 

x) 
E,=i Wj>i(x) 

E,=iV;(x) 
M 

pAW = J>^(*)- 

(3.80) 

(3.81) 
i=i 

Substituting these approximations into the penalized, discrete weak form, we obtain the 
following system of Galerkin equations: 

a0(u
h,<f>j)+a1(vih;uh,<!>j) + b(<j>j,p

h)   =   (f, <f>.)   j = 1,2,.. .,N and      (3.82) 

ßb(uh,if>,)   =   {ph, ^>    Z = 1,2,...,M. (3.83) 

Using the definitions of a0, ax, and 6 and separating the momentum equations into u, v 
components for clarity, we can write (3.82) - (3.83) in integral form as: 

/ Jn 

f 
■k- "~1^fK* vVuh ■ V(f>i + ( uh—- + v 

(• dx 

^.V*+,^+^)*-/ä; 

rffi = / Jn 
h&dtt, i = l,2,...,N    (3.84) 

-//[ 
duh     dvh 

dx       dy 

dtt =   I f2<pidn, * = 1,2,...,JV    (3.85) 
./fi 

^,rffi =   / p%dü, / = 1,2,...,M.  (3.86) 

Equation (3.86) can be written more succinctly in matrix-vector notation as 

-ßLTuh = Dph 

where, 

uÄ e J22ivr, UA = [tti, U2, • • • , UN, Vi, V2, . . . , Vjvf 

(3.87) 

(3.88) 

(3.89) 
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and D € RMxM is the pressure mass matrix 

Dij = j 1>ii>j dQ       i, j = 1,2,..., M, 
Jn 

and L € ]RMx2N is the continuity matrix defined as follows: 

L   =//n^dfi i = l,2,...,M, i = l,2,...,JV 
"     Xk^^dü      i = l,2,...,M,j = N+l,N+2,. 

We can solve (3.87) for ph so that 

pA = -ßD-lLTuh. 

(3.90) 

..,2JV 
(3.91) 

(3.92) 

To linearize (3.84) - (3.85), we consider an iterative method where we write the solution at 
the new level, n, as the sum of the preceding level, n - 1, and a correction: 

uh,n _ uh,n-l + $nh,n-l 
(3.93) 

Substituting (3.93) into the convective terms of (3.84) - (3.85) and neglecting the quadratic 
terms in On, the linearized form of the convective terms of the discrete momentum equations 
become 

f  U^ + Zn-^^M-l^ 
Jn L ox dx dx 

Quh,n-1 Bi,h,n . a».h,n-l 

dy dy dy fadtt      (3.94) 

/ Ju 
A.»**""1 M „M-10^2 _ „M-i^rL u""~—z 1-«' ox dx 

v, 
dx 

.,h,n dvh'n~l + vh,n-ldv^_ _ ^n-ldv^-1 

dy dy dy 

for i = 1,2,..., N. 

In matrix-vector form, the linearized convective terms can be written as 

N(nh'n-1)\ih'n - g, 

where JV^'""1) € JR?N*™. The matrix N is defined as 

Nuu   ':   N, 

<pidÜ       (3.95) 

(3.96) 

N = 
" uu     •     ■* * uv 

-<<W     •     Nvv 

(3.97) 
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with the submatrices defined by the following: 

i^h=l(«. + v" 

Jn 
*: 

Quh,n-l 

dy 

gvh,n-l 

dy dx 

-fiidQ, and 
Jn 

<t>: 

<t>i du, 

(f>i d£l, 

(3.99) 

(3.100) dy    ""-"— r-~Hj-ja*,   dx 

for t, j = 1,2,..., TV. The vector g € 1?2JV is given by 

9i    = In (>»-^ + „M-i&Jri) fc dQ i = 1,2,..., JV 

P2 = /n («M-ia^ii + „M-^) ^ dn i = i, 2,..., JV. 

(3.101) 

g 
Pi 

#2 

with 

With these definitions, the complete, linearized momentum equations (3.84) - (3.85) can 
be written in matrix-vector notation as 

Suh'n + N(uh'n-1)nh^n + rLD-xLT^n = h + g, 

where S G jR2iVx2^ is the diffusion matrix with 

f */nV&-V^ i,j = l,2,...,N 
S*>i = S   v In V(f>i-N ■ V^-_JV   i, j = N+l, N+2, ...,2N 

[_ 0 otherwise. 

and the right-hand side vector h € M2N defined by 

with/711    =Inh<t>idn   i = l,2,...,N 
h2 I h2   =/n/2^dß   *" = 1,2,...,JV. 

(3.102) 

(3.103) 

(3.104) 

We finish this section with a few notes about the structure of the matrices L, 5, and D for 
the Crouzier-Raviart element described in § 3.8.1 above. First, note that with the use of 
the discretized continuity and momentum equations and Gauss' theorem that the velocity, 
and in turn, the pressure derivatives at the centroid of the element can be written in terms 
of the other nodal quantities. This results in a velocity approximation, uA, determined by 
six nodal points and a pressure approximation, ph, determined by one nodal point. The 
numerical advantage of this element then is that the number of equations and unknowns 
in each element is reduced by 3, without affecting the accuracy of the approximation. In 
addition, the matrix D can be written as a diagonal matrix with entries DM representing 
the area of element e*. For further details on the implementation of the penalty function 
method with the Crouzier-Raviart element, the reader is referred to [17]. 
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3.8.4    Adaptive Methodology 

The basic idea of adaptive gridding is to use some error estimation technique to evaluate 
the quality of your finite element approximation and to strategically modify the grid based 
on that evaluation. The grid modification scheme allows the user control over element size 
and grading. This process has been shown to be successful in resolving shear, stagnation 
points, jets, and wakes (see [34], [33], [24], [29], [25]). The two main elements of the adaptive 
process are error estimation and grid generation. We discuss each of these below. 

Error Estimation 

The error estimation is performed using an approach introduced by Zhu and Zienkiewicz 
(see [41], [42], [1]) and involves the postprocessing of stresses and strains. Recall that the 
energy norm of u is 

m\E 

\ 

/ r(u) : r(u) dfl, (3.105) 

or, given in Cartesian coordinates, 

MB 

N / 
^ —   OH]     A(^L 

dy     dx) \dy dn. (3.106) 

Note that the energy norm has a very similar form to the H1 seminorm. In fact, it can be 
shown that they are equivalent norms. Using the energy norm for the velocity, define the 
so-called Stokes norm of the solution as 

(».P)I|5 = V'IHII + IIPII (3.107) 

As pointed out in [35] the use of the energy norm over the Hl seminorm offers some 
advantages especially to the engineering community. Note that both the velocity and 
pressure norms are expressed in terms of surface forces which are the quantities of prime 
interest in engineering fluid mechanics. Secondly, errors computed in these norms can be 
interpreted as errors in the stresses which can then easily be related to errors in global 
quantities such as lift and drag. 

The Zhu and Zienkiewicz approach uses the Stokes norm to measure the error, e(u,p) = 
(lie* - u'Spe* -ph), where (uex,pex) is the exact solution of the flow problem and (uh,ph) 
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is the finite element approximation. Then the norm of the error is 

He(u>p)IU = y/\Kx-uh\\2E + \\Pex-ph\\2. (3.108) 

We concentrate on forming an approximation to \\uex - uh\\E. Since the exact solution, 
and more particularly the gradients of the exact solution are not known, the approach is to 
use the finite element approximation to construct approximations to these gradients. Note 
that the finite element approximations to the gradients are discontinuous across element 
faces while the exact gradients are, in most cases, continuous across the domain. Thus, 
the first goal in error estimation is to obtain continuous approximations to the discontin- 
uous finite element gradients. Two methods have been evaluated for this process: global 
projections and local least squares projections. Global projections are done over the entire 
domain, Q, and involve finding the best approximation to the discontinuous finite element 
gradients in the original continuous finite element space. For example, if a piecewise linear 
approximation of the flow solution is calculated, then the finite element gradient is piece- 
wise constant and discontinuous across elements. The global projection would replace the 
piecewise constant gradient approximation with a piecewise linear approximation calcu- 
lated by projecting the piecewise constant function onto the original finite element basis 
functions. The local least squares projections, however, are done node by node and only 
consider gradient information from subdomains of Q which contain the current node. Thus, 
a series of smaller projections are done in combination with some averaging techniques to 
obtain a continuous gradient projection for the entire domain, ft. The details of each of 
these projection techniques will be described further in Chapter 4. 

The \\pex -ph\\ is similarly approximated except that we construct a continuous, quadratic 
approximation of pex using local projections of the discontinuous linear finite element ap- 
proximations. Once this is done the L2 norm can be calculated as usual. 

We now return to the issue of adaptive gridding to briefly describe the remeshing strategy. 

Remeshing Strategy 

Once error estimates are obtained for each element, say eh a new mesh density (or element 
size), d, is calculated which requires equidistribution of the element errors across all the 
elements. For example if we wish to reduce the error in each element by a factor of 7, then 
the target error, eT, for an element in the new mesh can be given by 

7e 
er = 7n (3.109) 
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where e is the error over the entire domain and N is the number of elements. If one assumes 
that the finite element method is of order k, then it is reasonable to write 

et   =   eft* (3.110) 
er   =   cdk, (3.111) 

where ft is the current element size and d is the "ideal" element size we seek. Clearly, we 
have assumed that we are in the asymptotic range of the finite element method and that 
the convergence constant, c, is the same for both meshes. This may or may not be the 
case. Nevertheless, the system (3.110) - (3.111) can be solved for the new mesh density, d, 
obtaining 

(   7e   \1/k 

d={^7N)   h- <3-112) 
The new element size computation is done for each of the dependent variables in the 
problem, e.g. velocity, pressure, and an ideal mesh density is obtained for each. The one 
used for the generation of the new mesh is the minimum of each of these. 

The details of the actual redefinition of the mesh are omitted here. We refer the interested 
reader to [24] and [25]. 

Despite the rather major assumptions made above, this adaptive remeshing strategy works 
remarkably well. The strategy has been verified in a series of numerical experiments for a 
variety of flow types (see [34], [33], [24], [29], [25]). We use this adaptive strategy in the 
problems investigated below. 

3.9    Some Numerical Results 

In this section, we apply the computational techniques outlined above to the two problems 
presented in §3.7 above and investigate convergence of the approximate solution as the 
mesh is refined. 

3.9.1    Flow around a Cylinder 

Consider first the cylinder problem presented in §3.7.1 . We again assume parabolic inflow 
into the channel as follows: 

u(-2,t/;?) = (1+tfXl-V) 
0 i < y < l. (3.113) 
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The outflow boundary condition is modified, however, since applying the Dirichlet boundary 
condition at the outflow causes numerical instability (see [17]). A free boundary condition 
is used which requires 

-p(L, y; q)n + r(u(L, y; q)) - n =   0, \ 
v(L,m)=   0   /        -K»<1 (3-114) 

where n is the outward normal at the end of the channel. No-flow and no-slip conditions 
are applied on the top, bottom, and cylinder sidewalls. 

As noted earlier, we wish to approximate the sensitivity of the solution with respect to 
the inflow parameter q. The sensitivity boundary conditions at the inflow are obtained as 
before, with 

s(~2,y;q) (i - y2) 
o -i < y < l. (3.115) 

The computational outflow boundary conditions for sensitivity become 

-r(L,y;q)h + r(s(L,y;q))-n=   0,1 
su(L,y]q)=   0   / ~1<y<1- (3-116) 

Numerical results for this flow problem were generated using the approximation techniques 
outlined in §3.8. The Reynolds number for the calculations was Re = 100, the length of 
the channel was 8 (L = 6), and the sensitivity parameter was q = 0. Contour plots of 
the u, ^-velocity fields as well as the u, w-velocity sensitivities are given in Figures (3.6) - 
(3.9). In Figure (3.5), the initial and adapted grids are shown. It is clear that the mesh 
is refined around the cylinder and in areas of large velocity gradients. This gives improved 
approximations of the velocity field as can be seen in Figures (3.6) and (3.7). Since the 
mesh refines on the velocity field, it is convenient that, for this problem, the sensitivity 
flow field is similar to the velocity field, so that as the mesh refines we obtain improved 
sensitivity approximations as well (see Figures (3.8)-(3.9)). It is important to note that 
this is not always the case as is shown in [8J. The code has been modified by Jeff Borggaard 
to adapt on the sensitivity field as well and some results for this will be shown later. 
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a) Initial Mesh (1219 nodes/563 elements) 

b) Second Adapted Mesh (1439 nodes/677 elements) 

c) Fourth Adapted Mesh (19600 nodes/10818 elements) 

Figure 3.5: Initial and Adapted Meshes for Cylinder Problem 
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a) Initial Mesh 

b) Second Adapted Mesh 

c) Fourth Adapted Mesh 

-0.2 0.12 .15 0.77 

■■• ■■■«M»ffi«mnn«i«—i 

l.i 1.7 

Figure 3.6: u-Velocity Contours for Flow around a Cylinder 
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a) Initial Mesh 

X^  -A>       Z^ 
njw^^v/^: -„-'V..- 

' OKOQAQ    d 
b) Second Adapted Mesh 

c) Fourth Adapted Mesh 

-1-0.83-0.67 -0.5-0.33-0.17        0 0.17 0.33    0.5 0.67 0.83        1 

Figure 3.7: v-Velocity Contours for Flow around a Cylinder 

1 
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a) Initial Mesh 

b) Second Adapted Mesh 

c) Fourth Adapted Mesh 

-1.1 -0.67 7-0.18 0.3 0.79 1.3 1.1 

Figure 3.8: u-Velocity Sensitivity Contours for Flow around a Cylinder 
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a) Initial Mesh 

b) Second Adapted Mesh 

c) Fourth Adapted Mesh 

-1-0.83-0.67-0.5-0.33-0.17       '0*0.17 0.33    0.5 0.67 0.83        1 

Figure 3.9: v-Velocity Sensitivity Contours for Flow around a Cylinder 
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a) Initial Mesh (625 Nodes/276 Elements) 

b) Second Adapted Mesh (1094 Nodes/505 Elements) 

c) Fourth Adapted Mesh (3962 Nodes/1901 Elements) 

Figure 3.10: Initial and Adapted Meshes for Bump Problem 

3.9.2    Flow over a Bump 

We next consider the flow over a bump problem presented in §3.7.2. The outflow boundary 
condition for the computations is again taken to be a free boundary condition as follows: 

-P{L, y, q)n + r(u(L, y; q)) ■ n =   0, 1 
v(L,y;q)=   0   J 0 < y < 3. (3.117) 

The Reynolds number for the calculations was Re = 100 and the length of the channel 
was L = 8. The initial and adapted grids are shown in Figure (3.10). Contour plots for 
tt, v velocities and sensitivities are displayed in Figures (3.11) - (3.12). Note that the mesh 
refines in the area of the bump and the elements are allowed to become larger downstream 
in the channel where the flow is again quadratic. The bump problem is similar to the 
cylinder problem in that the sensitivities are largest in the same areas where the mesh 
refines. Thus we obtain improved approximations for sensitivities as we refine the mesh for 
the flow. 



Dawn L. Stewart Chapter 3. 2-D Flow Problems 57 

So far we have developed sensitivity equations for both 1-D and 2-D parameter dependent 
differential equations. We have obtained good numerical approximations for the continuous 
sensitivity equations using an adaptive finite element technique. In the 1-D problem, there 
were parameter ranges for which it became difficult to obtain good sensitivity approxima- 
tions. For the 2-D flow problems, we observed that significant refinement was needed to 
obtain "good" sensitivity approximations. In the next chapter, we look at a projection 
technique for obtaining better derivative approximations for the state. We will show that 
these derivative approximations improve the accuracy of the sensitivity calculations and, 
in addition, stabilize those calculations, over larger parameter ranges. 
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a) u-Velocity Contours - Initial Mesh 

b) u-Velocity Contours - Second Adapted Mesh 

c) u-Velocity Contours - Fourth Adapted Mesh 

0 0.091 0.18 0.27 0.37 0.46 0.55 0.64 

d) v-Velocity Contours - Initial Mesh 

e) v-Velocity Contours - Second Adapted Mesh 

f) v-Velocity Contours - Fourth Adapted Mesh 
/"e-r^ffiüEaasHffl 

-0.07 -0.054 -0.038 -0.022 -0.006 0.01 0.026 0.042 0.058 0.074 0.09 

Figure 3.11: u,v-Velocity Contours for Flow over a Bump 
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a) u-Velocity Sensitivity Contours - Initial Mesh 

b) u-Velocity Sensitivity Contours - Second Adapted Mesh 

c) u-Velocity Sensitivity Contours - Fourth Adapted Mesh 

-5.5 
—— \m \ i'i   < 

-4.6 -3.6 -2.7 -1.8 -0.86 0.071 

d) v-Velocity Sensitivity Contours - Initial Mesh 

e) v-Velocity Sensitivity Contours - Second Adapted Mesh 

f) v-Velocity Sensitivity Contours - Fourth Adapted Mesh 

isaoaisasssai "$:% 

-1.1    -0.93    -0.75    -0.58       -0.4    -0.23    -0.056    0.12       0.29       0.47      0.64 

Figure 3.12: u,v-Velocity Sensitivity Contours for Flow over a Bump 



Chapter 4 

Gradient Approximations 

4.1    Improving the Gradient Approximations 

The goal of this chapter is to describe how projection techniques can be used to obtain 
better sensitivity approximations by obtaining better state gradient approximations. There 
are a number of ways to do this. In the following chapter, we analyze a global and local 
projection technique for calculating continuous gradient approximations and evaluate their 
impact on providing improved sensitivity values. 

4.2    1-D Model Problem 

Recall that the approximate sensitivity equation (2.30) for the 1-D model problem has the 
form 

+^<|^>-£?).''?(->H       (4.1, 
where j — 1,2,... , M and 

^(0 = ^(0 + 4. (4.2) 

60 
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Here, gN(£) is a piecewise step function providing an approximation of the spatial deriva- 
tives needed in (4.1). Even in higher dimensions or when using higher order basis functions, 
the finite element derivatives will be discontinuous across element faces. As in the error 
estimation technique described above, we seek to replace gN(£) with a continuous function 
which we will denote gN(£). We will now describe global and local projection schemes for 
constructing this function. 

4.2.1    A Global Projection Scheme 

In its simplest form, this approach replaces the discontinuous piecewise constant function 
9N{0 by its projection onto the space of piecewise linear splines on the mesh defined by 
the nodes &. Thus, we consider the space 

N+l 

SN=<9(t)  : 9(0 = ^9^(0    , (4.3) 
i=0 

where hf(-) are the hat functions defined in §2.5. Observe that Stf C SN and SN contains 
functions with non-zero trace on the boundary of [0,1]. 

Here, we let gN(£) be the orthogonal projection of gN(£) onto SN. In particular, 

        N+l 

9N(0 = J2&h?(0 (4-4) 
i=0 

where ß = (ß0, ßt,... , ßN+i)T is the solution of a linear system of the form 

MGß = Fa (4.5) 

and a — (au a2,... , aN)T contains the coefficients defined by the finite element approxi- 
mation of zN(£). Therefore, 

^(0 = f>^f(0, (4.6) 

MG is the (N + 2) x (N + 2) global mass matrix 

MG=[{h?(.),h»(.))]T, (4.7) 
and F is the (N + 2) x N matrix 

F = (^f(-)^f(-)) (4.8) 

for i = 1,2,... , N and j, k = 0,1,2,... , N + 1. 



Dawn L. Stewart Chapter 4. Gradient Approximations 62 

4.2.2    A Local Projection Scheme 

In addition to the global projection scheme, we consider a local projection scheme which 
involves performing a series of local projections on subdomains of ft = [0,1]. At each 
element vertex, &, we define the subdomain ft; to be the union of all elements for which & 
is a vertex. In Qh define &•(£) to be the least squares projection of 9N(0\Ü. onto the space 
of linear polynomials spanned by monomial basis functions. Denote these basis functions 
as Pi(0 = 1 and P2(f) = f- On the subdomain ft;, we express the projection as 

2 

ä(6 = X>^)> (4-9) 

where the vector a = (aua2)
T contains the coefficients of the basis functions. These 

coefficients are determined by solving the normal equation system 

MLa = b. (4.10) 

The matrix ML is of the form 

ML=[(Pi(.),Pj{.))\tk], (4.11) 

for i,j = 1,2. The vector on the right side of the equation is 

b=[(Pi(-),9N(-))\n], (4.12) 

for i = 1,2. Then, on Q we define the continuous local projection to be 

JV+l 

9»(t) = 229i(t<)h?{{). (4.13) 
i=0 

With higher order finite elements and in higher dimensions, one must resolve the value of 
gN(£) at a non-vertex node. An averaging technique is generally used. The technique will 
be described in more detail in the next section. 

4.2.3    Numerical Results 

Derivative Approximations 

Figures (4.1) and (4.2) show the finite element derivative and its local and global projections 
against the exact spatial derivative for a N = 4, q = 2.0 and N = 8, q = 1.2, 
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Derivative and Approximations with N = 4 and q = 2 

--PWC 

- - Global 

Local 

 Exact 

0 0.1        0.2        0.3        0.4       0.S        0.6        0.7        0.8       0.9 1 

Figure 4.1: Finite Element Derivatives with Projections at N = 4 and q = 2 

Derivative and Approximations with N = 8 and q = 1.2 

0 0.1        0.2       0.3        0.4       0.5        0.6        0.7       0.8       0.9 1 

Figure 4.2: Finite Element Derivatives with Projections at N = 8 and q = 1.2 
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Figure 4.3: I? Error on each Element for N = 4 and q = 2 
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Figure 4.4: L2 Error on each Element for N = 8 and q = 1.2 
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L2 Errors 
TV = 4 and q = 2 N = 8 and q = 1.2 

PWC 
Global 
Local 

0.4330 
0.2165 
0.2954 

1.1432 
0.8760 
1.0501 

Table 4.1: L2 Errors for the Derivative Approximations 

respectively. Clearly, the global and local projections give different results. Since we have 
an exact solution, and thus its spatial derivative, we can calculate element by element L2 

errors as well as overall L2 errors for the whole domain for each derivative approximation. 
Figures (4.3) - (4.4) show the L2 element errors for the two cases, q = 2.0, fN = 4 and 
q = 1.2, /N = 8, repectively. The L2 errors over the whole domain for each of these 
cases is summarized in Table (4.1). Note that the errors for the local projection technique 
are highest near the boundary, but that away from the boundary the local projection 
technique actually has less error than the global projection technique for these. We now 
analyze these techniques in calculating sensitivities for varying discretizations (N, M) and 
parameter values (q) to understand better how the improved derivative approximations 
affect our numerical sensitivities. 

Sensitivity Approximations 

Figures (4.5), (4.6), and (4.7) display the sensitivity approximations using the three dif- 
ferent derivative approximations against the exact sensitivities for q = 2.0, 1.4, and 1.2, 
respectively. It is clear that the use of a projection technique greatly improves the accuracy 
of our sensitivity approximations, especially as q ->■ 1. Recall that at q = 1.4 and q = \.2 
our sensitivity approximations obtained using PWC derivatives were extremely inaccurate 
so that the approximations do not even show up on the graphs in Figures (4.6) and (4.7) 
for some values of N. As shown in Figure (4.8), the local projections clearly decrease the L2 

error of the sensitivities for a given N and q. Moreover, the most promising result is that 
the projections stabilize the calculations over the parameter range. The local projections 
give slightly better sensitivity approximations for some values of q. Figure (4.9) compares 
the L2 error of sensitivities calculated using local projections with the error calculated using 
global projections. Note that as N increases, the global projections do a better job than 
local projections over a wider range of q. This is not surprising since the global projec- 
tion is the "best" least squares linear approximation (using the finite element basis) of the 
piecewise continuous finite element derivative in the limit. 
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Figure 4.5: Sensitivity Approximations at q — 2 
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Figure 4.6: Sensitivity Approximations at q = 1.4 
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Figure 4.7: Sensitivity Approximations at q = 1.2 

L2 Error of Sensitivities 

Figure 4.8: Model Problem - L2 Error of Sensitivity Approximations (PWC and Local) 
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L2 Error of Sensitivities 

Global: N=4 
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Figure 4.9: Model Problem - L2 Error of Sensitivity Approximations (Global and Local) 
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Optimization Results 

We evaluated the same two cases considered in §2.6.2 above: (Case 1) qinit = 1.2 with 
q* ~ 2 and (Case 2) qinit = 2.0 with q* ~ 1.4. This time the simulations were performed 
using the piecewise linear derivative approximations. Tables (4.2) - (4.5) show the results 
of these simulations as TV, M ranged from 2-128. Note that the use of the piecewise linear 
derivative approximations clearly improved the results of the optimization algorithm for 
Case 1 and that the global and local projection schemes provided very similar results. The 
improvement was not as marked for Case 2, however the scheme did converge for the case 
N = M = 16 with the improved gradient approximations and did not with the piecewise 
constant derivatives. In addition, the local scheme to slightly less time to converge than 
the global projection scheme (see Tables (4.4) - (4.5)). 
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N M CONV/DNC ITER TIME W q 
2 2 CONV 20 9.43 .32586 1.9604 
2 5 CONV 16 9.06 .32548 1.9514 
4 4 CONV 15 17.80 .26463 1.9509 
4 9 CONV 15 12.91 .26468 1.9481 
8 8 CONV 12 27.01 .24327 1.9423 
8 17 CONV 13 25.84 .24326 1.9421 
16 16 CONV 13 27.95 .24235 1.9375 
16 33 CONV 13 31.62 .24235 1.9376 
32 32 CONV 12 77.32 .24272 1.9361 
32 65 CONV 12 78.90 .24273 1.9361 
64 64 CONV 12 288.06 .24274 1.9359 
64 129 CONV 11 302.73 .24274 1.9359 
128 128 1 CONV 11 355.10 .24285    1.9358 

Table 4.2: Optimization Results for Case 1, Global Projection Scheme 

N M CONV/DNC ITER TIME \JN 
q 

2 2 CONV 20 9.43 .32586 1.9604 
2 5 CONV 16 9.06 .32548 1.9514 
4 4 CONV 15 17.80 .26463 1.9509 
4 9 CONV 15 12.91 .26468 1.9481 
8 8 CONV 12 27.01 .24327 1.9423 
8 17 CONV 13 25.84 .24326 1.9421 
16 16 CONV 13 27.95 .24235 1.9375 
16 33 CONV 13 31.62 .24235 1.9376 
32 32 CONV 12 77.32 .24272 1.9361 
32 65 CONV 12 78.90 .24273 1.9361 
64 64 CONV 12 288.06 .24274 1.9359 
64 129 CONV 11 302.73 .24274 1.9359 
128 128 CONV 11 355.10 .24285 1.9358 

Table 4.3: Optimization Results for Case 1, Local Projection Scheme 
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N M CONV/DNC ITER TIME JN 
q 

2 2 DNC 20 2.06 .93423 2.3054 
2 5 DNC 20 64.37 .72262 1.3530 
4 4 DNC 20 133.51 .53248 1.4557 
4 9 DNC 20 132.27 .52703 1.4405 
8 8 DNC 20 127.18 .48242 1.5029 
8 17 DNC 20 143.56 .50490 1.4791 
16 16 CONV 14 28.69 .41967 1.4329 
16 33 CONV 15 33.07 .41973 1.4322 
32 32 CONV 15 13.22 .41001 1.4197 
32 65 CONV 11 12.75 .41001 1.4196 
64 64 CONV 13 45.43 .40819 1.4168 
64 129 CONV 14 48.74 .40819 1.4167 
128 128 CONV 1 13 258.93 1 .40774    1.4160 

Table 4.4: Optimization Results for Case 2, Global Projection Scheme 

N M CONV/DNC ITER TIME ||J" q 
2 2 DNC 20 60.82 .73574 1.4154 
2 5 DNC 20 64.60 .72273 1.3634 
4 4 DNC 20 130.65 .53216 1.4558 
4 9 DNC 20 131.56 .52991 1.4513 
8 8 DNC 20 133.27 .50451 1.4830 
8 17 DNC 20 133.92 .50470 1.4807 
16 16 CONV 14 30.00 .41968 1.4328 
16 33 CONV 16 32.03 .41974 1.4322 
32 32 CONV 11 11.21 .41000 1.4197 
32 65 CONV 15 14.34 .41001 1.4196 
64 64 CONV 13 44.45 .40820 1.4168 
64 129 CONV 12 45.70 .40819 1.4168 
128 128 CONV 12 253.86 .40774    1.4160 

Table 4.5: Optimizations Results for Case 2, Local Projection Scheme 
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Figure 4.10: Typical Subdomain of an Element Vertex & 

4.3    A Local Projection for Higher Dimensions 

In this section, we describe the local projection scheme employed in the error estimation 
module of the finite element code described in Chapter 2. This local projection scheme is 
virtually the same as the local scheme for the 1-D Model Problem discussed in Section 4.2.2 
above, yet is presented for a two dimensional problem below since the use of higher order 
finite elements in higher dimensions adds some complexities which were not previously 
discussed. 

Again, the local projection scheme involves performing a series of projections on subdomains 
of Q,. The projected gradients are given as polynomial expansions around a given vertex, 
£i, of a finite element mesh. The subdomain, fy., over which the projection consists of 
all elements having £t = (*;,&) as a vertex. Figure (4.10) illustrates a typical subdomain 
a finite element mesh of quadratic triangles. In principle, the choice of the degree of 
the polynomial expansion for the improved gradient approximation is independent of the 
selection of the finite element basis being used. However, in practice, the degree of the 
polynomial expansion is chosen to match the degree of the finite element basis employed. 
This leads to an order of accuracy improvement in the gradient approximations. For all 
the numerical results presented in Chapter 5 below, quadratic triangular finite elements 
were used and so the locally projected gradients are written as polynomials of degree two 
on Clt.. 
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At element vertices, ^^ and $3, we define g* to be the local least squares projection of 
the finite element derivative, Vuft, onto the space of quadratic polynomials. For ease of 
notation, we denote VuA by gh. Letting P = [l,x,y,x2,xy,y2] denote the basis functions 
of this space, we can express each component of the gradient projection, g* and g*, as 

g£ = Pra*     and,     g*y = PTay (4.14) 

where the vectors a«, £4, € JR6 contain the coefficients of the basis functions. These coeffi- 
cients are obtained by solving the following least-squares problems: 

min-/    (g£-gj)dfi    and,     min^ /   (gj-gj)dft (4.15) 

Thus, for each component of g*, we solve the following 6x6 system of linear equations for 
as and aj,: 

/ 

I 
PTPdQ 

PTPdtt 

{ax} = \     PTg*dn \ (4.16) 

{*y} = <        PT4d^ \ ■ (4-17) 

The finite element fluxes, g£ and gj, are obtained in the usual manner by differentiating 
the finite element basis functions. Note that the left hand matrix is independent of the 
quantity being projected and thus can be viewed as the projection matrix for node, £•, 
and can be used for obtaining locally projected derivative approximations for all of the 
dependent variables (e.g. u, v, and T) as long as the projection basis, P, is not changed. 

Once we are done, we have a quadratic expression for the locally projected derivative, g*, 
at each vertex. Let g^ denote the expression for g* obtained by solving the systems (4.16)- 
(4.17) where % is the subdomain associated with element vertex, £x. Define g| and g| 
similarly for the remaining element vertices, £2 and £3. We need a unique definition of g* 
for any point, £ inside the element (see Figure (4.11)). For quadratic elements, there are 
several ways to do this. I describe the technique employed in the current version of the 
code. 

Unique nodal values of g* at the element vertices, which we denote g£, g|, and g%, are 
simply defined as follows: 

&* = g&(&),    » = 1,2,3. (4.18) 

Nodal values for the midside nodes are obtained by averaging the values of the polynomial 
expressions for g* at the endpoints of element side. For example, 

g*(£i2) = ~ (sl (€12) + gfe (£12)) • (4.19) 
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Figure 4.11: Element with Three Quadratic Expressions for g* 

Then, at any point £ in the element, the value of the locally projected derivative g* at £ is 

6 

g*(£) = 2>iSi (4.20) 
j=i 

where the Nj are the quadratic basis functions for the finite element space and the g^ are 
the nodal values of the locally projected derivative obtained as describe above. 

In the next chapter, we apply the local projection technique described above in order to 
obtain improved sensitivity approximations for two flow problems. 



Chapter 5 

Numerical Results for 2-D Problems 

We now return to the two specific flow problems described in §3.7 to see if the projection 
techniques described in §4.3 can be used to obtain improved sensitivity approximations. 
We begin by considering the cylinder problem discussed in §3.7.1. 

5.1    Flow Around a Cylinder 

Numerical approximations to the state and sensitivities for this problem were calculated 
over a range of Reynolds numbers. In each case, the results obtained for the initial and 
first adapted meshes were compared to an approximation which was generated by adapting 
to a very fine, final mesh and then interpolating the "true" solution from the final mesh 
onto the initial or first adapted meshes. On this final mesh, both schemes converged to 
solutions differing by less than 10~3. For comparison purposes, we chose the unprojected 
solution on the final mesh as the "true" solution. 

We note that the length of the channel was 8 (i.e., L = 6) for all of the runs in this section. 
This length was not sufficient for the flow at the outflow to return to the parabolic inflow 
especially over the range of Reynolds numbers being considered, however, it was sufficient 
to meet the computational "free" outflow boundary condition. We will use the Re = 350 
case to show that the results for the higher Reynolds cases, were not affected by the length 
of the channel. 

In this chapter, we will also use an adaptive technique which refines on sensitivity errors as 
well as flow errors. This technique is completely analogous to the technique used to refine 

75 
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on the flow errors (see [9]). In the results which follow, we will be careful to identify meshes 
which were adapted on approximations of flow errors and meshes which were adapted on 
approximations of both flow and sensitivity errors. 

We present a detailed error analysis of the velocity sensitivities s for two Reynolds numbers, 
Re = 100 and Re = 350. We begin with the results at Re = 100. Figure (5.1) shows the 
initial mesh, the first adapted meshes, and final mesh for this case. Notice that we present 
three first adapted meshes: one adapted on the flow only, one adapted on both the flow 
and the sensitivities calculated with unprojected derivatives, and one adapted on both the 
flow and sensitivities calculated with projected derivatives. At this Reynolds number, the 
difference between these three meshes is less dramatic than it is at Re = 350, yet we present 
all of them for consistency and comparison purposes. 

As expected, the scheme employing the locally projected derivatives gives better sensitivity 
results as seen in Figures (5.2) and (5.3). In these figures, recall that the "true" solution 
is the unprojected solution on the final mesh interpolated onto the initial mesh. Once this 
interpolation is made, node by node errors can be calculated. These errors are shown in 
Figure (5.4). From these plots, we can see that the local projection scheme reduces the 
maximum error by about a factor of 2. 

We also look at the sensitivity solutions using schemes on the first adapted mesh. The 
first adapted mesh (for the flow) is shown in Figure (5.1b). The sensitivity results for the 
unprojected and locally projected derivative schemes for this mesh are shown in Figures 
(5.5) and (5.6). In these figures, the "true" solution is now the unprojected solution on the 
final mesh interpolated onto the first adapted mesh. Note that the difference between the 
approximations using the projected gradients and those using the "natural" finite element 
derivatives is no longer as apparent. Again, a node by node comparison was made. These 
errors are shown in Figures (5.7a,b) - (5.8a,b) and were plotted on the same scales used 
for the initial mesh for easy comparison. We also plotted nodal errors for the two schemes 
in the cases where we adapted on the flow and the sensitivities (see Figures (5.7c,d) - 
(5.8c,d)). At this Reynolds number, there does not seem to be a significant advantage 
gained by adapting on both the flow and sensitivity errors. 
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a) Initial Mesh (1219 nodes/563 elements) 

b) First Adapted Mesh - Flow Only (956 nodes/444 elements) 

c) First Adapted Mesh - Flow & Unprojected Sens (1082 nodes/504 elements) 

d) First Adapted Mesh - Flow & Projected Sens (1066 nodes/496 elements) 

e) Final Mesh (19600 nodes/10818 elements) 

Figure 5.1: Meshes for Cylinder Problem at Re = 100 
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a) Unprojected 

b) Projected 

c) "True" Solution 
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Figure 5.2: u-Velocity Sensitivities on Initial Mesh for Re = 100 
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a) Unprojected 

b) Projected 

c) "True" Solution 
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Figure 5.3: v-Velocity Sensitivities on Initial Mesh for Re = 100 



Dawn L. Stewart Chapter 5. Numerical Results for 2-D Problems 80 

a) Error in u Sensitivitities - Unprojected Derivatives 
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b) Error in u Sensitivitities - Projected Derivatives 
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c) Error in v Sensitivitities - Unprojected Derivatives 
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d) Error in v Sensitivitities - Projected Derivatives 

Figure 5.4: Error of Sensitivity Approximations on Initial Mesh for Re = 100 
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a) Unprojected Derivatives 

b) Projected Derivatives 
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Figure 5.5: u-Velocity Sensitivities on First Adapted Mesh for Re = 100 
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Figure 5.6: v-Velocity Sensitivities on First Adapted Mesh for Re = 100 
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a) Unprojected Derivatives, Adapt on Flow Only 

b) Projected Derivatives, Adapt on Flow Only 

c) Unprojected Derivatives, Adapt on Flow and Sensitivity 

d) Projected Derivatives, Adapt on Flow and Sensitivity 

Figure 5.7:   Error of u-Velocity Sensitivity Approximations on First Adapted Mesh for 
Re = 100 
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a) Unprojected Derivatives, Adapt on Flow Only 

(3 /O 

b) Projected Derivatives, Adapt on Flow Only 

c) Unprojected Derivatives, Adapt on Flow and Sensitivity 

d) Projected Derivatives, Adapt on Flow and Sensitivity 
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Figure 5.8:   Error of v-Velocity Sensitivity Approximations on First Adapted Mesh for 
Re = 100 
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u 
v 

Sv 

U 

V 

Off 

Initial Mesh 
Unproj 

1.7397E-01 
9.0160E-02 
5.0463E-01 
2.2453E-01 

Proj 
1.7397E-01 
9.0160E-02 
2.8227E-01 
1.3050E-01 

Unproj (Flow) 
1.0313E-01 
4.5997E-02 
3.4173E-01 
1.4487E-01 

Proj (Flow) 
First Adapted Meshes 

1.0313E-01 
4.5997E-02 
3.5800E-01 
1.1039E-01 

Unproj (Flow fc Sens) 
7.2637E-02 
3.3000E-02 
2.5988E-01 
9.1075E-02 

Proj (Flow fc Sens) 
5.3305E-02 
2.8115E-02 
2.7273E-01 
7.6292E-02 

Table 5.1: L2 Errors for Flow and Sensitivities at Re = 100 

In order, to get an overall evaluation of the errors, we used the node by node errors to 
calculate an L2 error over the entire domain for the flow and the sensitivities (see Table 
(5.1)). This more clearly shows the 50% reduction of the error for the local projection 
scheme on the initial mesh. Note that the errors for u, v on the first adapted meshes are 
the same for the unprojected and projected schemes on the mesh that was refined only on 
the flow, but are slightly different (since the meshes are slightly different) when the meshes 
were also refined on the sensitivity. Note that adapting on the flow and sensitivity errors 
not only improved the sensitivity approximations over those obtained by adapting on the 
flow alone, but also improved the numerical approximations for the flow. 

We now turn to the results for Re = 350. We begin by comparing the state and sensitivity 
approximations for L = 6 and L = 15 to ascertain whether or not the length of the channel 
affects our results. Figure (5.9) shows the initial meshes for the two channel lengths as well 
as the u, v velocity contours. It is clear that the flow more nearly returns to the inflow for 
the longer channel. However, the results for the shorter channel are very similar to those for 
the longer channel in the areas where they overlap. In fact, Figures (5.10) and (5.11) show 
that the dramatic difference between the sensitivities obtained with unprojected derivatives 
and those obtained using locally projected derivatives occur in both the long and the shorter 
channels. This gives us reasonable confidence that the length of the channel is not affecting 
our results. 

We now return to complete the same error analysis for Re = 350 that we did for Re = 
100. The initial and first adapted meshes are shown in Figure (5.12). Note that the 
difference between the three first adapted meshes is definitely greater at this Reynolds 
number. This is due, at least in part, to the greater discrepancy between the flow error, 
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the unprojected sensitivity error, and the projected sensitivity error. At this Reynolds 
number, the differences between the sensitivities calculated with the two different derivative 
schemes is now dramatic as can be seen in Figures (5.13) - (5.14). The node by node error 
analysis (see Figure (5.15)) shows that locally projected derivatives are definitely better, 
although at this Reynolds number, both approximations contain fairly larger errors. Using 
the locally projected derivatives to calculate sensitivities reduces the overall L2 error by 
about 600% (see Table (5.2)). 

The same analysis is done on the first adapted meshes (See Figures (5.16) - (5.19)). Here, 
adapting on the flow as well as the sensitivity makes a greater difference in the error 
reduction from the initial mesh to the first adapted mesh. This is easily seen in the 
overall L2 errors for the approximate flow and sensitivities displayed in Table (5.2). It is 
interesting to note that the errors for all the quantities are less for the Projected (Flow & 
Sensitivity) than they are for the Unprojected (Flow & Sensitivity) despite the fact that 
the Unprojected (Flow & Sensitivity) mesh is quite a bit finer. 

To conclude, we observe that using the locally projected derivatives clearly stabilizes the 
calculations over a larger range of Reynolds numbers as it did in §4.2.3 for the 1-D model 
problem. Plots of the overall L2 sensitivity errors on the initial mesh are shown in Figures 
(5.20) - (5.21). In addition, the mesh refinement very effectively reduces the errors for 
the flow and the sensitivities. At most Reynolds numbers, after the mesh is refined once, 
there is little difference between the sensitivities calculated with the unprojected and lo- 
cally projected techniques. At higher Reynolds numbers, however, using locally projected 
derivatives to calculate sensitivities remains advantageous. 

We now turn our attention to obtaining numerical approximations to the design sensitivities 
for the flow over a bump problem. 
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Initial Mesh 
Unproj Proj 

u 1.4808E-00 1.4808E-00 
V 4.1024E-01 4.1024E-01 
su 1.9438E+01 3.6791E-00 
$v 3.0582E-00 5.8348E-01 

First Adapted Meshes 
Unproj (Flow) Proj (Flow) Unproj (Flow & Sens) Proj (Flow & Sens) 

u 9.6580E-01 9.6580E-01 3.5985E-01 2.8674E-01 
V 2.6044E-01 2.6044E-01 1.0257E-01 7.7747E-02 

"U 3.8080E-00 3.1614E-00 1.1145E-00 1.0423E-00 
Sy 1.5339E-00 8.7266E-01 3.4686E-01 2.9430E-01 

Table 5.2: L2 Errors for Flow and Sensitivities at Re = 350 
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a) Initial Mesh - L = 6 
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b) Initial Mesh-L= 15 

c) u Velocity Contours - L = 6 

d) u Velocity Contours - L = 15 

2* ^N^'W^--^ £^ Ajd 
e) v Velocity Contours - L = 6 
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f) v Velocity Contours - L = 15 

Figure 5.9: Initial Meshes and u,v-Velocity Contours for L = 6,15 and Re = 350 
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a) u Velocity Sensitivity Contours, Unprojected Derivatives: L = 6 

■0.95      -0.53 -0.1 0.32        0.74 1.2 1.6 

b) u Velocity Sensitivity Contours, Projected Derivatives: L = 6 

c) u Velocity Sensitivity Contours, Unprojected Derivatives: L = 15 

-0.95 -0.53 -0.1 0.32 0.74 1.2 1.6 

d) u Velocity Sensitivity Contours, Projected Derivatives: L = 15 

Figure 5.10: u-Velocity Sensitivity Contours for L = 6,15 and Re = 350 
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a) v Velocity Sensitivity Contours, Unprojected Derivatives: L = 6 
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b) v Velocity Sensitivity Contours, Projected Derivatives: L = 6 
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c) v Velocity Sensitivity Contours, Unprojected Derivatives: L = 15 
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d) v Velocity Sensitivity Contours, Projected Derivatives: L = 15 

Figure 5.11: v-Velocity Sensitivity Contours for L = 6,15 and Re — 350 
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a) Initial Mesh (1219 nodes/563 elements) 

b) First Adapted Mesh - Flow Only (1164 nodes/542 elements) 

c) First Adapted Mesh - Flow &Unprojected Sens (2249 nodes/1071 elements) 

d) First Adapted Mesh - Flow & Projected Sens (1556 nodes/732 elements) 

e) Final Mesh - (21998 nodes/10818 elements) 

Figure 5.12: Meshes for Cylinder Problem at Re = 350 
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a) Unprojected Derivatives 

b) Projected Derivatives 

c) "True" Solution 

Figure 5.13: u-Velocity Sensitivities on Initial Mesh for Re = 350 
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a) Unprojected Derivatives 

b) Projected Derivatives 

c) "True" Solution 

-0.8-0.64-0.48-0.32-0.16 0   0.16   0.32   0.48   0.64     0, 

Figure 5.14: v-Velocity Sensitivities on Initial Mesh for Re = 350 
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a) Error in u Sensitivities - Unprojected Derivatives 

0 0.46 0.92 1.4 2.3 2.8 

b) Error in u Sensitivities - Projected Derivatives 

c) Error in v Sensitivities - Unprojected Derivatives 

d) Error in v Sensitivities - Projected Derivatives 

Figure 5.15: Error of Sensitivity Approximations on Initial Mesh for Re = 350 
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1^'^— 
a) Unprojected Derivatives 

b) Projected Derivatives 

c) "True" Solution 

-0.95      -0.53 -0.1        0.32 0.74 1.2 1.6 

Figure 5.16: u-Velocity Sensitivities on First Adapted Mesh for Re = 350 
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a) Unprojected Derivatives 

b) Projected Derivatives 

c) "True" Solution 

-TT-™4"- 0.48- 0 ?3 2 - 07l6'  ;'    0   0.16   0.32 0!48* OJSI"™ 0, 

Figure 5.17: v-Velocity Sensitivities on First Adapted Mesh for Re = 350 
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a) Unprojected Derivatives, Adapt on Flow Only 

b) Projected Derivatives, Adapt on Flow Only 

c) Unprojected Derivatives, Adapt on Flow and Sensitivity 

d) Projected Derivatives, Adapt on Flow and Sensitivity 

mmssasesss txsrsasas:: 

0        0.46        0.92 1.4 1.8 

Figure 5.18: Error of u-Velocity Sensitivity Approximations on First Adapted Mesh for 
Re = 350 
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a) Unprojected Derivatives, Adapt on Flow Only 

b) Projected Derivatives, Adapt on Flow Only 

c) Unprojected Derivatives, Adapt on Flow and Sensitivity 

d) Projected Derivatives, Adapt on Flow and Sensitivity 

0     0.1     0.2     0.3     0.4     0.5     0.6     0.7     0.8     0.9 

Figure 5.19:  Error of v-Velocity Sensitivity Approximations on First Adapted Mesh for 
Re = 350 



Dawn L. Stewart Chapter 5. Numerical Results for 2-D Problems 99 

16 

14 

12 

10 

-- Unprojeded 

— Projected 

200 250 
Re 

Figure 5.20: Flow About Cylinder - L2 Error of u-Sensitivity Approximations on Initial 
Mesh 

2.5 

Unprojected 
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Re 
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Figure 5.21: Flow About Cylinder - L2 Error of v-Sensitivity Approximations on Initial 
Mesh 
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5.2    Flow over a Bump 

We begin by doing a qualitative comparison of the sensitivity values we obtain, with those 
presented in [11]. We will point out some of the difficulties of calculating shape sensitivities 
and show how the process of error estimation and grid refinement is extremely important 
in obtaining accurate numerical approximations of the sensitivities for these problems. 

Figure (5.22) displays vector sensitivity plots for ct = a1 = 0.5, A = 0.5, and L = 10. These 
plots are qualitatively very comparable to those presented on page 172 in [11]. As Burkardt 
notes, the shape sensitivities for smaller Reynolds numbers appear as "whirlpools" and are 
predominately localized to the region above the bump. As the Reynolds number increases, 
however, the effect of the bump is carried downstream. This is especially apparent in Figure 
(5.22c). 

Another effect of increasing the Reynolds number on flow calculations, is that the task 
of meeting the outflow boundary conditions becomes more challenging numerically. We 
clearly see this effect in the Re = 500 case shown in Figure (5.23). With a channel length 
of L = 10, the flow was not able reach the parabolic flow profile of the inflow. So for this 
case, we lengthened the channel to L = 20. Notice also that we are getting a large secondary 
"whirlpool" further downstream from the bump. This phenomenon did not appear in the 
sensitivities presented in [11]. We will examine this further for the case Re = 1000. 

We used the case of Re = 1000 to examine a number of issues relating to our sensitivity 
approximations. First, we investigate the secondary "whirlpool" which appears in our 
sensitivity calculations. We also evaluate the accuracy of the sensitivity approximations 
near the bump. We do this by using the error estimation and grid refinement process 
presented in §3.8.4. The mesh was adapted only on flow errors. Figure(5.24) shows the 
initial mesh, which is similar in density to the one used in [11], and the adapted meshes. 
Note that the mesh refines where one would expect, in the regions of large velocity gradients 
around and downstream from the bump. It is also refining at the outflow in an effort to 
accurately meet the outflow boundary condition. 

Figures (5.25) and (5.26) display u and v contours for the flow on the initial and adapted 
meshes. It is important to note that as the mesh refines, the contours smooth and the 
accuracy of the gradients in u and v are greatly improved especially in the vicinity of the 
bump. This lack of accuracy of the velocity gradients on the initial mesh greatly hampers 
our ability to obtain good sensitivity approximations. This is seen by noting that the 
sensitivity boundary conditions on the bump, (3.66) - (3.67) require approximations to the 
velocity gradients on the boundary. If there are large errors in the velocity gradients, there 
will be large errors in the sensitivity approximations. This effect can be seen in Figures 
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(5.27) - (5.29). As the gradient approximations are improved in the second and third 
adapted meshes, the values of the sensitivities become much more accurate, not only in the 
local area of the bump, but downstream as well. Note also that the secondary "whirlpool" 
which appeared in the Re = 500 case, is seen on the initial mesh in this case also. As the 
mesh is refined, however, the size of the "whirlpool" is diminished until it is almost gone 
as can be seen in Figure (5.29c). 
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a) Re = 1 

b)Re = 10 

/  / / • ** - 

c) Re = 100 

Figure 5.22: Sensitivity Vectors, L = 10, Flow over a Bump 
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a) u Contour Plot, Re = 500, L = 10 
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b) Sensitivity Vector Plot, Re = 500, L = 10 

c) u Contour Plot, Re = 500, L = 20 
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d) Sensitivity Vector Plot, Re = 500, L = 20 (Part of Channel) 

Figure 5.23: u-Velocity Contours and Sensitivity Vectors, Re = 500, Flow over a Bump 
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a) Initial Mesh 

b) First Adapted Mesh 

c) Second Adapted Mesh 

d) Third Adapted Mesh 

Figure 5.24: Flow over a Bump, Initial and Adapted Meshes for Re = 1000, L = 20 
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a) u Contour Plot, Re = 1000, Initial Mesh 

b) u Contour Plot, Re = 1000, First Adapted Mesh 

c) u Contour Plot, Re = 1000, Second Adapted Mesh 

d) u Contour Plot, Re = 1000, Third Adapted Mesh 

^^BJ^^^■--7:.^^^^ul!■^:^^^r'^■T:r.?.1^"^"^^X"Z**"'Cf*:I^ 

-0.045 0.039 0.12 0.21 0.29 0.38 0.46 0.55 

Figure 5.25: u-Velocity Contours for Flow over a Bump 
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a) v Contour Plot, Re = 1000, Initial Mesh 

b) v Contour Plot, Re = 1000, First Adapted Mesh 

c) v Contour Plot, Re = 1000, Second Adapted Mesh 

d) v Contour Plot, Re = 1000, Third Adapted Mesh 

-0.025 -0.012 0.0015 0.015 0.028 0.041 0.054 0.068 0.081 0.094 0.11 

Figure 5.26: v-Velocity Contours for Flow over a Bump 
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a) u Sensitivity Contour Plot, Re = 1000, Initial Mesh 

<7 

b) u Sensitivity Contour Plot, Re = 1000, First Adapted Mesh 
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c) u Sensitivity Contour Plot, Re = 1000, Second Adapted Mesh 

d) u Sensitivity Contour Plot, Re = 1000, Third Adapted Mesh 

^^^^^^^^Tr^r^STTJ^^^^^^^lt^^t":-'-'--:^''- 
-7.1 -5.9 -4.6 -3.3 -2 -0.77 0.5 

Figure 5.27: u-Velocity Sensitivity Contours for Flow over a Bump 
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a) v Sensitivity Contour Plot, Re = 1000, Initial Mesh 

b) v Sensitivity Contour Plot, Re = 1000, First Adapted Mesh 

c) v Sensitivity Contour Plot, Re = 1000, Second Adapted Mesh 

d) v Sensitivity Contour Plot, Re = 1000, Third Adapted Mesh 

*»!CCT=:£Ea2CTE3r=3=3532K£r.-:2i!: 
-3.1 -2.7 -2.4 -2 -1.6 -1.3 -0.93 -0.57 -0.21 0.14 0.5 

Figure 5.28: v-Velocity Sensitivity Contours for Flow over a Bump 



Dawn L. Stewart Chapter 5. Numerical Results for 2-D Problems 109 

a) Sensitivity Vector Plots, Re = 1000, Initial Mesh 

mhnäi^ ■.■■■■ 

b) Sensitivity Vector Plots, Re = 1000, First Adapted Mesh 

'^uM0° 
c) Sensitivity Vector Plots, Re = 1000, Second Adapted Mesh 

Figure 5.29: Sensitivity Vector Plots on Initial and Adapted Meshes 
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Analysis of Cost Functionate and Gradients - An Optimization Issue 

We now turn to the issue of using numerical approximations of the state and sensitivities 
to approximate cost functionals and their gradients. We do a comparison with a problem 
considered in Chapter 11 of [11]. In this chapter, Burkardt presents what he refers to as 
a discretized sensitivity failure. We will evaluate his results and show that the process of 
adaptive mesh refinement is key to obtaining good cost function and gradient evaluations 
in order to prevent inaccurate results from an optimization code. 

We look at the numerical experiment carried out in §11.2 of [11]. We evaluate the following 
cost functional: 

i   P 

J\u(x, y), q) = - J>*(3, w) - «r«*(3, Vi)f. (5.1) 
*=i 

Here, P is the number of matching points and for the results we present herein P was fixed 
at 15. The matching points, (3, &), i = 1,2, • • • , P, were evenly distributed along the line 
x = 3,y £ [0,3]. Also, the target profile, uTaT9(3,y), was obtained by computing a finite 
element solution with the shape parameter, qTars = (0.375,0.5,0.375)r, and A = 0.5, and 
then interpolating to obtain the values for uT(3, y{), i = 1,2, - • - , P. 

The gradient of the cost function with respect to q is expressed as 

VqJ
h = 2>*(3, Vi) - ttr-»(3, yi))^-(3, Vi). (5.2) 

The SEM uses the discrete approximation of the continuous SE as before to approximate 
the value of the cost gradient. We will denote this approximations of the cost gradient by 
Vq Jh, thus we have 

p 

VqJ
h « Vq Jh = 2>A(3, JH) - «r^(3, yi))s

h(3, Vi). (5.3) 
*=i 

In order to nearly duplicate the numerical experiment carried out by Burkardt, we have 
L = 10, Re = 1 and we generated the matching profile from the initial mesh for qTorff. We 
calculated the values of the cost functional Jh and its gradient along a line parameterized 
by 5, connecting q = (-0.117,0.419, -0.149)T at S = 0 and q = (0.375,0.5,0.375)r at 
S = 25. This is the same line along which Burkardt explored. His results are presented in 
Table (11.2) on page 153, and Figures (11.3) and (11.4), page 145 of [11]. 
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s Qi Q2 03 Jft-103 (VqJ
fc-S)-103 JÄ-103 (VqJ

A-5)-103 

Initial Mesh 03 Mesh 
0 -0.117 0.419 -0.149 16.9 -0.99 12.1 -0.56 
1 -0.097 0.422 -0.128 16.3 -1.03 11.7 -0.57 
2 -0.077 0.425 -0.107 15.5 -1.00 11.3 -0.58 
3 -0.057 0.428 -0.086 14.6 -0.94 10.8 -0.60 
4 -0.038 0.432 -0.065 13.7 -0.91 10.3 -0.61 
5 -0.018 0.435 -0.044 12.9 -0.92 9.95 -0.62 
6 0.001 0.438 -0.023 12.2 -1.04 9.49 -0.63 
7 0.020 0.441 -0.002 11.4 -1.00 9.02 -0.65 
8 0.040 0.444 0.018 10.6 -0.96 8.56 -0.67 
9 0.060 0.448 0.039 9.72 -0.99 8.00 -0.68 
10 0.079 0.451 0.060 9.02 -1.15 7.48 -0.70 
11 0.099 0.454 0.081 8.35 -1.07 6.95 -0.72 
12 0.119 0.457 0.102 7.46 -1.08 6.39 -0.74 
13 0.138 0.461 0.123 6.21 -0.77 5.76 -0.75 
14 0.158 0.464 0.144 5.62 -0.78 5.17 -0.76 
15 0.178 0.467 0.165 5.00 -0.79 4.56 -0.77 
16 0.197 0.470 0.186 4.38 -0.78 3.94 -0.76 
17 0.217 0.474 0.207 3.70 -0.76 3.27 -0.75 
18 0.237 0.477 0.228 3.08 -0.74 2.66 -0.72 
19 0.256 0.480 0.249 2.47 -0.70 2.07 -0.68 
20 0.276 0.483 0.270 1.89 -0.64 1.51 -0.62 
21 0.296 0.487 0.291 1.33 -0.56 0.99 -0.53 
22 0.316 0.490 0.312 0.72 -0.50 0.57 -0.42 
23 0.335 0.493 0.333 0.32 -0.35 0.25 -0.29 
24 0.355 0.496 0.354 0.11 -0.21 0.05 -0.13 
25 0.375 0.500 0.375 0.00 0.00 0.01 0.05 
26 0.394 0.503 0.396 0.06 0.16 0.16 0.28 
27 0.414 0.506 0.417 0.31 0.38 0.53 0.53 
28 0.434 0.509 0.438 0.81 0.63 1.16 0.81 
29 0.453 0.513 0.459 1.63 0.92 2.08 1.13 
30 0.473 0.516 0.480 1 2.72 1.22 3.30 1.48 

Table 5.3: Values of Jh along a Line, Re - 1, and A = 0.5 
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Our results are displayed in Table (5.3) and Figures (5.30) - ( 5.31). Burkardt reported 
a local maximum at S - 5. As seen in Figure (5.30), we do not get the same results on 
the initial mesh. In order to determine if the difference was due to not having sufficient 
accuracy on the initial mesh, we also presented the results for meshes which were refined on 
the flow field. It is possible that the difference between our results and those of Burkardt 
could be due to our having fixed the value of A at 0.5. It is also possible that the difference 
is a result of numerical inaccuracies due to discretization differences. 

We did one more numerical experiment exactly similar to the one described above with 
one exception, we now used Re = 100. Figure (5.32) - (5.33) show the cost function and 
gradient along the same line explored above. Note that adapting the mesh is even critical 
to obtaining accurate, smooth cost and gradient approximations at this Reynolds number. 
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15 
S 

Figure 5.30: Values of Jh(q(S)) along a line. 
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Cost Gradient dJ/dS along a Line - Re = 1 

Figure 5.31: Values of riJ/'g5)) along a line 
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Cost Function - Re = 100 

Figure 5.32: Values of Jh(q(S)) along a line. 

Cost Gradient dJ/dS along a Line - Re =100 

Figure 5.33: Values of dJh{^{S)) along a line. 



Chapter 6 

Conclusions 

The primary goal of this work was to develop and analyze new algorithms for accurate 
computation of design sensitivities. We focused on finite element schemes applied to the 
continuous sensitivity equation. The SEM is more efficient than standard finite difference 
schemes. However, accuracy has been an issue for flow problems. Our work concentrated 
on two methods for improving accuracy without compromising speed. 

The first method used enhanced spatial derivative approximations in the sensitivity equa- 
tion. Local and global projection techniques were employed to obtain higher accuracy in 
the derivative approximations. These projection techniques not only provided better sen- 
sitivity approximations at a fixed parameter value, but also stabilized the numerics over 
greater parameter ranges. For the 1-D model problem, the local projection did better than 
the global projection at most parameter values when the mesh was coarse. As the mesh 
refined, however, the use of global projection techniques provided more accurate sensitiv- 
ities. At this point there are no theoretical results to explain this behavior. This issue is 
something that needs to be addressed in future work. 

The second technique, mesh refinement based on errors in the flow, also dramatically im- 
proved the sensitivity approximations. This was especially true in the case of high Reynolds 
number calculations or in shape sensitivity problems, as in the case of flow over a bump. In 
addition, we showed that at higher Reynolds numbers adapting on errors in the sensitivities, 
as well as the flow, improved the accuracy of the sensitivity approximations. The refine- 
ment is important in the case of shape problems since accurate gradient approximations of 
the state are needed to specify the sensitivity boundary conditions. 

We discovered that when these two techniques were used for approximating sensitivities for 

115 
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use in the calculation of cost function gradients, the convergence properties of optimization 
algorithms was greatly improved. 

There are many issues which were not addressed in this dissertation which will be the 
subject of future research. These include the development of schemes specifically targeted 
to improve the accuracy of local projections at the boundaries. Also, a study of diagonal- 
ization methods for use in optimization algorithms must be carried out to determine how 
the trade-off between the accuracy of cost function/gradient approximations and speed of 
convergence. Finally, improved error estimates are needed to prove convergence of these 
numerical techniques and to evaluate rates of convergence for the different state derivative 
approximations. 
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