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ABSTRACT 

A mathematical modelling technique is described for estimating true temperature 
profiles of data obtained from long time constant thermocouples, which were used in 
fuel fire tests designed to determine the sensitivity of explosive ordnance. Although 
acquired temperature data indicated a test failure, the modelling and ensuing analysis 
showed that the test was valid. The devised model is then further investigated to 
provide a higher degree of confidence in the original methodology and conclusions. 
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A Mathematical Technique for Estimating True 
Temperature Profiles of Data Obtained from 

Long Time Constant Thermocouples 

Executive Summary 

This technical note documents original work conducted in establishing a mathematical 
modelling technique for estimating true temperature profiles of data obtained from 
long time constant thermocouples. It then describes further analysis of the original 
modelling and ensuing results, which was performed to provide a higher degree of 
confidence in the original methodology and conclusions. 

Thermocouples were used to measure temperature in smoke generator tests, in which 
the criteria for a successful test was that at least two thermocouples, out of a total of 
four (placed in specified positions around the ordnance), measured a temperature 
above 550°C within 30 seconds of test ignition. These tests involve fuel fire testing to 
determine the sensitivity of explosive ordnance in accordance with International and 
Australian Insensitive Munitions policies. As the selected thermocouples had a time 
constant of approximately 13 seconds, the readings from the thermocouples did not 
accurately indicate the true temperature at a given time. Instead, the readings had a 
marked lag, and the test results were inconclusive. 

A mathematical modelling technique was used to estimate true temperature profiles of 
the data obtained from the thermocouples, knowing only the data acquired by the 
thermocouples at given time intervals, and the thermocouple time constant. The basic 
mathematical analysis consisted of modelling the thermocouple using Laplace 
transforms. By fitting a polynomial expression to the time dependent thermocouple 
output data, it was possible to compute the temperature stimulus. Further analysis was 
then performed to complement the original analysis, by examining observed 
anomalies in the original results, and by using expanded domains for the polynomial 
data fits. 

Results from the modelling showed that two out of the four thermocouples did 
actually measure true temperatures above 550°C within 30 seconds after ignition, thus 
indicating a valid test. Further practical testing in the field was therefore not required. 

Although this investigation was directed at finding a particular solution for a defined 
customer problem, the devised mathematical methodology, could be used in any 
scenario, where the time constant of a transducer acquiring data is large when 
compared to the actual data acquisition time, provided the time constant is itself not a 
variable. 
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1. Background and Introduction 

This technical note documents original work conducted in estabhshing a mathematical 
modelling technique for estimating true temperature profiles of data obtained from 
long time constant thermocouples. It then describes further analysis of the original 
modelling and ensuing results, to provide a higher degree of confidence in the original 
methodology and conclusions. 

As stated in the [American Society For Testing and Materials {ASTM} Special Technical 
Publication 470 1970 p 131], 'no instrument responds instantly to a change in its 
environment. Thus, in a region where temperature is changing, a thermocouple will 
not be at the temperature of its environment and hence cannot indicate the true 
temperature'. The [ASTM 1970 p 132] then states that 'it is common practice to 
characterise the response of a temperature sensor by a first order thermal time 
constant x 

Thermocouples having a long thermal time constant were used in fuel fire tests by the 
Army's Engineering Development Establishment (EDE) Environmental Test Facility 
(ETF) Salisbury (now part of the Army Technology and Engineering Agency). The ETF 
had been tasked to perform fuel fire testing, one of a series of tests required to 
determine the sensitivity of explosive ordnance in accordance with international and 
Australian Insensitive Munitions policies. Previous work in this regard had been led 
by Explosives Ordnance Division (EOD) of MRL, and the thermocouples normally 
used by EOD were also used by ETF in the mini-fuel fire tests of Generators Smoke 
Training CSS60-80. 

Using the acquired thermocouple data, the specified successful testing criteria that 'at 
least two thermocouples out of a total of four, placed in specified positions around the 
ordnance, measured temperatures above 550°C within 30 seconds after test ignition', 
was not met. However, as the thermocouples used had a thermal time constant of 
approximately 13 seconds which is long when compared to the actual duration of data 
acquisition, the readings from the thermocouples did not accurately indicate the true 
temperature at a given time. Instead, the readings had a marked lag, and the test 
results were therefore inconclusive. 

It was not practicable to repeat the tests with shorter time constant thermocouples, so 
an analysis of the results was attempted to compensate for the long time constant. The 
original task therefore consisted of estimating actual true temperature profiles, 
knowing only the original acquired thermocouple data from the testing, and the test 
authority specified 13 second time constant of the thermocouple. Both the acquired 
data and time constant were assumed to be valid throughout the modelling and 
analysis. 
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The original analysis, however, did not investigate expanded domains for the acquired 
thermocouple data fit, and did not investigate what appeared to be offset anomalies in 
the calculated results. Further result analysis was therefore conducted some time after 
the original work was completed. The purpose of this further analysis was to provide a 
greater degree of confidence in the methodology initially used, by examining the 
observed anomalies in the original results, and by further modelling the results with a 
greater variety of parameter selection and range. This analysis provided the stimulus 
for the publication of the entire work as a technical note, as the original work by the 
author had not been formerly published. 

The original: 

• method of approach, 
• modelling procedure, 
• implementation of the model and 
• original conclusions 

will first be examined, 
followed by subsequent analysis in greater detail of : 

• expanded domains for data fits and, 
• offset anomalies in the original results at time t = 0 seconds. 

2. Original Method Of Approach 

After preliminary investigations into the problem, it was decided that a mathematical 
approach would be the best method available to compensate for the thermocouple 
time constant, as test re-runs using shorter time constant thermocouples were not 
feasible at the time. This eventually proved to be relatively straightforward using 
Laplace transforms, and is depicted in Figure 1 which shows the basic system as a 
function of time (t) and the equivalent system transformed into the S plane. 

• f(t) is the desired temperature stimulus which is required to be found, 
• y(t) is the measured temperature by the thermocouple, and 
• h(t) is the transfer function (output/input) of the thermocouple. 

The thermocouple was modelled using Laplace transforms as H(s), a polynomial 
expression was fitted to the time dependent thermocouple output data and 
transformed to Y(s), the resultant input was calculated as F(s) = Y(s)/H(s), and then 
the inverse Laplace transform was applied to predict the form of the temperature 
stimulus/(f). The entire procedure therefore is basically a 'de-convolution' of Y(s). 



DSTO-TN-0133 

For the system in Figure 1 the output can be expressed as : 

Y(s) = F(s) H(s) therefore        F(s) = Y(s) / H(s) 

The problem is to find transforms for the output Y(s) and the thermocouple H(s). 

m 
(Input) 

h(t) 

Thermocouple 

(System Output) 

Transforming the above system into the S plane gives 

F(s) 
(Input) 

H(s) 

(System Transfer 
Function) Y(s) 

(System Output) 

Figure 1: Mathematical Representations Of The System 

3. Original Mathematical Modelling Procedure 

3.1 Modelling the Output y(t) 

Referring to Figure 1, y(t) is the output produced by the thermocouple and is measured 
by the thermocouple during the fuel fire test. A least squares curve fitting program 
was used on this data to produce a polynomial expression for the output as a function 
of time, which was then easily transformed into the S plane as Y(s). 

Raw data obtained from thermocouples 1 & 4 is shown in Appendix A Table A.l, 
along with a plot in Figure A.l. Note that data for thermocouples 2 & 3 has not been 
used, as it was obvious from the acquired data that they would not have measured the 
required 550°C at any time, having only measured maximums less than 150°C, 30 
seconds after ignition. 
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Each thermocouple data set was referenced to ambient temperature, and data from 
zero to 31 seconds was then input into a curve fitting program. Referencing to ambient 
was done as it was assumed that more than five time constants had elapsed before 
ignition, and it was not initially known if the ambient offset would affect the results. 
The final model therefore represents temperature referenced to zero degrees. Hence, 
all results, need to be adjusted by adding the ambient value. As discovered in the later 
analysis, this referencing to ambient was not required. 

The curve fitting program used, was a modified GW Basic version of that described in 
[Rugg & Feldman 1980]. This program fits a calculated polynomial y(t) to a set raw 
data pairs according to Equation (1). 

*=0 

where 

• Ms time, 
• N is the order of the polynomial, and 
• Uk are the coefficients. 

Increasing the polynomial order N, results in a better fit to the data points. This is 
measured by the percentage goodness of fit (PGF). The PGF is calculated as shown in 
Equation (2). 

A 
.2 

PGF = 100jl--  (2) 

where 

• V,- are the actual y raw data values, 

• v,. are the calculated y values using Equation (1), 

• y is the mean value of y, and 

• i is the number of raw data pairs entered for the fit. 

3.1.1 Data For Thermocouple One (TC #1) 

TC #1 raw data was referenced to a measured ambient temperature of 17.6 C and a 
second order polynomial fit with a PGF of 99.6% is given in Equation (3). This model 
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was considered accurate enough for TC #1, as the ensuing analysis showed that this 
thermocouple had easily reached the required temperature with no ambiguity. 

yl(t)= 03t2 + 4.93? - 5.82 (3) 

3.1.1 Data For Thermocouple Four (TC #4) 

TC #4 raw data was referenced to a measured ambient temperature of 19.7 C 1 and 
third and fourth order polynomials yielding PGF's of 99.86% and 99.87% respectively 
are given in Equations (4 & 5). 

v4(0 = -0.025?3 + I34t2 - 5t +10 

v4(r) = -0.00084?4 + 0.029f3 + 0.237?2 + 2.568? + 0.36 

(4) 

(5) 

Two polynomials were used to model this system output in order to investigate the 
dependence of results on the type of data fit, as the ensuing analysis showed a 
marginal test pass. Different degrees of polynomials will produce differing error 
profiles in the fit, and Figure (2) shows the actual error in degrees Celsius between the 
actual acquired raw thermocouple data, and the fitted data calculated from the third 
and fourth order polynomials given in Equations (4 & 5). 

o 
o 

LU 

S 
3 +-» 
2 
Q) 
Q. 
E 

 -♦— 3rd Order Error 
—X—4th Order Error 

Figure 2: Actual Error In Degrees Celsius Between The Acquired Raw Data and Fitted Data 
From the Third and Fourth Order Polynomials For TC #4 

1 The difference in measured ambient for TC #1 and TC #4 was assumed to have resulted from 
an error in the thermocouple calibration at low temperatures. 
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3.2 Modelling the Thermocouple H(s) 

To derive an appropriate mathematical model for the thermocouple, the following 
published information from the [ASTM 1970 P 131 - 134] was used. The [ASTM 1970 p 
132] states that the 

'thermocouple can be represented by a first order, first degree, linear, differential 
equation, the solution of which is given in Equation (6). 

T=Ce~"z + -e",z {rce"r 
dt (6) 

where 

• T is the sensor temperature at time r, 
• Te is the environment temperature at time f, 
• C is a constant of integration, and 
• r is the time constant. 

For a ramp change in temperature (as found in a furnace being heated at a uniform 
rate), Equation (6) reduces to that shown in Equation (7). 

(Tc-T) = RT (7) 

Equation (7) states that if an element is immersed for a long time in an environment 
whose temperature is rising at a constant rate JR = dTJdt, then T is the interval between 
the time when the environment reaches a given temperature (Te) and the time when 
the element reading (T) indicates this temperature .' 
Figure 3 shows this graphically. 

'For a step change in temperature (as when a thermocouple is plunged into a constant 
temperature bath), Equation (6) reduces to that shown in Equation (8). 

(Te-T) = (Te-Tl)e-"r (8) 

where 

• Te is the final temperature value to be reached, 
• Ti is the initial temperature value, and 
• T is the thermocouple element reading. 

Equation (8) shows that for a step input, after one time constant (lx) the sensor will 
indicate 63.2% of the temperature step value (Te - Ti), and for practical purposes the 
sensor will reach the new temperature after approximately 5 time constants (5x).' 
Figure 4 shows this graphically. 
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Note that the ordnance ignition could be thought of in terms of a step change followed 
by an unknown (but ramp like) increase in temperature. This is however an over 
simplification but is useful to show the effects of the thermocouple time constant. 

Effects on the time constant value are also described in the [ASTM 1970 p 132,133], but 
for this particular purpose, it has been assumed that the time constant will remain a 
constant 13 seconds (i.e. r= 13), especially as it later stated in the [ASTM 1970 p 133], 
that 'the time constant usually is represented adequately by the first order time 
constant x.' 

From the foregoing discussion, it was originally concluded by the author, that the 
thermocouple could be modelled in electronic terms as an RC integrating network 
with a time constant of 13 seconds. This information is represented in Figure 5. 

(Ein) 
R 

C (Eout) 

T = RC = 13 seconds 

Figure 5: Electronic Model Of Thermocouple 

The transfer function of the RC integrating circuit H(s) (i.e. output (Eout) /input (Ein)) 
is derived as shown in Equation (9) and becomes the mathematical model for the 
thermocouple, with RC (x) assumed to be a constant 13 seconds. 

H(s) = 
1/sC 

R +1 / sC 

1 1 

RCs + 1     rs+1 
(9) 

Note that the method of obtaining H(s) by using an electrical analogy for the 
thermocouple, was used by the author simply due to familiarity in this area of 
technology. A full derivation is given in [Lancaster 1987]. 

It was later shown by Mr. Martin Gill, a Senior Research Scientist of the 
Communications Division, Electronic and Surveillance Research Laboratory (ESRL) 
Defence Science and Technology Organisation Salisbury (DSTO), that the 
thermocouple transfer function could have been derived directly from Equation (6). 
The working for this is given in Appendix B. 
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4. Original Implementation Of Model 

4.1 TC # 1 Implementation 

Equation (3) represents the data acquired by TC #1. This is reproduced below and then 
transformed into the S plane as Equation (10) by using a table of selected Laplace 
transforms given in [Cochran et al. 1987]. The required system input Fi(s) is then 
calculated in Equation (11). 

7,(0= 0-3'2 + 4.93?-5.82 

Taking the Laplace transform results in: 

YiW_0£ + «*_!« (10) 
s s s 

Applying the output to the system transfer function gives the input in the S plane as : 

Y,(s) /0.6    4.93    5.82 A 

w>-m~ia+l){T+——r> 
0.6z    0.6    4.93r    4.9    •„      5.8 

■ + • 2    ■    3 + + — -(5.8T + —) (11) 
s        s s        s s 

Note that in Equation (11), the 5.8x is a constant term in the S plane. When transformed 
back to the time domain, this only produces an impulse response at time zero, and has 
therefore been ignored. 

The inverse transform of Equation (11) (but ignoring the 5.8x) term, yields Equation 
(12), which is the required true temperature polynomial. 

/,(0 = 0.6rt + 03t2 + 4.93r + 4.9? - 5.8 

= 0.3/2 + 12.7? + 58.3 (12) 

At t = 30 and z = 13 seconds, Equation (12) yields 709°C . Adding the ambient yields 
726°C /which is in excess of the required 550°C, thus indicating a test pass. A plot of 
results is shown in Figure 6. 

Note that results are obtained assuming that the polynomial data fits for the acquired 
temperature output data y(t) are valid from zero to infinity seconds (i.e. the integration 
period over which the Laplace transform for a function is obtained). 
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Figure 6: TC #1 Acquired Raw Data, Second Order Data Fit y(t), and Estimated True 
Temperature f(t) (All Plots Ambient Adjusted) 

4.2 TC # 4 Implementation 

Equations (4 & 5) represent two models of the data acquired by TC #4. The model from 
Equation (4) will be investigated first. It is reproduced below and then transformed 
into the S plane as Equation (13). The required system input F4(s) is then calculated in 
Equation (14) and transformed into the time domain in Equation (15). 

y4(0 = -0.025f3 + 1.34f2 - 5f +10 

Taking the Laplace transform results in : 

Y4(s) = - 
0.15     2.68     5.0     10 

(13) 
s s        s        s 

Applying the output to the system transfer function gives the input in the S plane as : 

10 
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r/^    Y4(s)    / ,   0.15     2.68     5.0     10s 

0.15T    0.15    2.68T    2.68    5.0T    5.0    10 
= -—— -—4-+——+——-——r+— +10T

        (14) s s s s3       s        s       s 

Note that in Equation (14), the 10x is a constant term in the S plane. As was done for 
TC #1, this is ignored in the results. 

The inverse transform of Equation (14) (but ignoring the 10x) term, yields Equation 
(15), which is the required true temperature polynomial. 

/4(?) = -0.075T?2 - 0.025?3 + 2.68T? + 1.34?2 - 5.0T - 5? + 10 

= - 0.025?3 + 0.365?2 + 29.84? - 55 (15) 

At t = 30 and T = 13 seconds, Equation (15) yields 494°C . Adding the ambient yields 
514°C, which is below the required 550°C However this is not the maximum of the 
polynomial. The derivative of Equation (15) is shown in Equation (16), of which the 
roots to the quadratic are 25.4 and -15.6. Therefore there is a turning point at 25.4 The 
second derivative of Equation (15) is shown in Equation (17) which is negative at 
t = 25 A, thus indicating a local maximum at t = 25 A. 

-£- = -0.07'5t2 + 0.73? + 29.8 (16) 
dt 

j2 . d'fA 4 
2=-0.150?+ 0.73 (17) 

dt 

At t = 25.4, Equation (15) yields 530°C . Adding the ambient yields 549.6°C, which is a 
very marginal result on the required 550°C 

The fourth order polynomial fit for TC #4 will now be investigated in a similar manner 
to that done for the third order. 

Equation (5) is reproduced below and then transformed into the S plane as Equation 
(18). 

y4(0 = -0.00084?4 + 0.029?3 + 0.237?2 + 2568? + 0.36 

v . ,       0.2     0.174    0.474     2.568    0.36 
Y<(s)=~+—+—+—+— <18» 

11 
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Y,(s) /   0.2     0.174    0.474     2.568    0.36> 

0.02T     0.02     0.174r     0.174     0.474r 
-——-—

T + —i— + —r~ + —2— s s s s s 
0.474    2.568r     2.568      0.36      A^ 
—— + + —i— +  + 0.36r (19) 

s s s s 

The inverse transform of Equation (19) (but ignoring the 0.36x) term, yields Equation 
(20), which is the required true temperature polynomial. 

fA{t) = -0.00083r4 - 0.0139/3 + 1.361/2 + 8.722/ + 33.64 (20) 

At t = 30, Equation (20) yields 472°C. Adding the ambient yields 492°C ,which is below 
the required 550°C. However, this is not the maximum of the polynomial. The 
maximum can found using a similar procedure to that for Equation (15), in which a 
maximum turning point for a real root of the first derivative is found at t = 24.85. (The 
derivative of Equation (20) has three real roots of approximately 24.85, -34.4 and -3.1. 
(Note: The roots to the cubic polynomial derivative of Equation (20) were found using 
an unpublished 'C program 'CubicRoot' by G. D. Young.) 

At t = 24.85, Equation (20) yields 561°C . Adding the ambient yields 581°C , which is in 
excess of the required 550°C, thus indicating a test pass using the fourth order 
polynomial fit. 

5. Original Analysis Of Model Results 

5.1 TC#1 Analysis 

The results from section 4.1 indicate that even with a simple data fit for the output of 
TC #1, at t = 30, the temperature was calculated to be approximately 726°C ,which is 
far in excess of the required 550°C. TC #1 therefore easily reached the required 
temperature at the specified time, and will not be dealt with in the remainder of this 
technical note. 

12 
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5.2 TC# 4 Analysis 

From section 4.2, the results obtained with a third order polynomial data fit, represent 
only a marginal test pass, but with a fourth order polynomial fit, the estimated output 
of TC #4, at t = 24.85, was calculated to be approximately 581°C, which indicates an 
acceptable test pass. Figure 7 shows ambient adjusted plots, for TC #4 original 
acquired raw temperature data, against plots for the estimated actual true temperature 
fi(t), using both the third and fourth order polynomial data fits. The original results for 
TC #4 were marginal, but adequate for the purpose of the original exercise. Further 
investigation into these results however will be conducted in section 7 of this technical 
note to examine: 

the effect of the domain of acquired data used for the fit, and 
reasons for the observed offset occurring in the estimated results at t ■■ 0. 
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Figure 7: TC #4 Acquired Raw Data and Estimated True Temperature Data fit) For 3rd and 4th 

Order Data Fits (All Plots Ambient Adjusted) 

13 
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6. Original Conclusions 

Without further analysis, the following original conclusions were established : 

Within the accuracy of the curve fitting procedure, acquired data, and thermocouple 
time constant factor, it can be concluded that: 

• Two thermocouples have measured a true temperature in excess of 550°C within 30 
seconds of ignition, but one must be considered marginal. 

• The accuracy of the results is very dependent on the type of data fit used for the 
thermocouple acquired temperature data, and the results from the mathematical 
process can only be considered estimates. 

7.     Further Result Analysis 

7.1 Investigation Of Expanded Domains For The Data Fits 

It is evident from Figure 7, that the data fit for y(t) has a significant impact on the 
estimated results obtained. It can therefore be assumed, that the time period over 
which the data is modelled will also have an impact on the results. To investigate this 
assumption, TC #4 data was modelled using a third order polynomial, over a domain 
from zero to 45 seconds after ignition. Equation (21) shows the model referenced to 
zero degrees. A data fit of 99.48% was obtained. 

y4 (t) = - 0.00947/3 + 0.5415/2 + 5.44? - 14.8 (21) 

Using the data fit in Equation (21) instead of Equation (4) in section 4.2, yields 
Equation (22) for fA (t), which is the required estimated true temperature polynomial 
referenced to zero degrees. 

/4(0 = - 0.00946/3 + 0.17/2 + 19.48/ + 55.90 (22) 

This result (adjusted for ambient) is plotted in Figure 8, and once again shows a 
marginal pass for TC #4, with an estimated temperature of 557.6°C at t = 30 after 
adding the ambient offset. It can therefore be concluded that when using an expanded 
domain for the third order polynomial data fit, TC #4 has measured a true temperature 
in excess of 550°C within 30 seconds of ignition, although the result must be 
considered marginal. 

14 
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TC #4 data was also modelled using a fourth order polynomial, over a domain from 
zero to forty five seconds. Equation (23) shows the model referenced to zero degrees. A 
data fit of 99.81% was obtained. 

v4(0 = 0.00063&4 - 0.0668&3 + 2.\9t2 - 10.63/ + 17.7 (23) 

Using the data fit in Equation (23) instead of Equation (5) in section 4.2, yields 
Equation (24) for f4(t), which is the required estimated true temperature polynomial 

referenced to zero degrees. 

f4(t) = 0.0006375*4 - 0.0333/3 - 0.4It2 + 46.3/ - 120 

Equation (24) (adjusted for ambient) is also shown plotted in Figure 8. 
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Figure 8: TC #4 Acquired Raw Data and Estimated True Temperature Dataf(t) For Expanded 
3rd and 4th Order Data Fits (All Plots Ambient Adjusted) 
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The predicted results from Equation (24) however, show a marginal fail for TC #4, 
with an estimated temperature of 537.0°C at t = 30 after adding on the ambient. 

The results from Equations (22 & 24), indicate that the type of data fit, and the time 
domain chosen for the data fit, have a significant effect on the final results, and concur 
with the original conclusions in section 6. 

7.2 Investigation Of The Calculated Offset Anomaly 

Of some concern in the original estimated results, was the large temperature offsets at 
t = 0 for both the third and fourth order results, even though the model was derived 
with zero temperature offset. However, as the results around t = 0 have no bearing on 
the test pass/fail criteria, this anomaly can be partially ignored. The reason for the 
large offsets at t = 0, can be explained by investigating the first order f term in each of 
the fitted polynomials. This term represents a pure ramp output, and as explained in 
the following text, is the predominate term in producing the large f = 0 offsets. 

Assume the system transfer function is identical to the 13 second time constant 
thermocouple (shown in Equation (25)). 

i.e.       H(s) = -±- (25) 
13s + l 

Assume also that the system output is a linear ramp as shown in Equation (26). 

i.e. y{t) = t (26) 

Equation (26) transformed into the S plane is given in Equation (27). 

Y(s) = p- (27) 

The estimated system input F(s) is shown in Equation (28). 

Y(s)     13s+ 1     13s      1      13      1 

The inverse transform for F(s) in Equation (28), is given in Equation (29). 

/(/) = 13 + r (29) 

Equation (29) indicates the input must consist of a ramp identical to the output but 
offset by a step of magnitude 13 at t = 0. This behaviour is in agreement with that 
explained in section 3.2 and in particular Figure 3. 
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8. Final Conclusions 

This technical note has shown a mathematical modelling technique for estimating true 
temperature profiles of data obtained from long time constant thermocouples which 
were used in fuel fire tests to determine the sensitivity of explosive ordnance. The 
thermocouple was modelled using Laplace transforms as H(s), a polynomial 
expression was fitted to the time dependent thermocouple output data and 
transformed to Y(s), the resultant input was calculated as F(s) = Y(s)/H(s), and then 
the inverse Laplace transform was applied to predict the form of the temperature 
stimulus/(f). 

Within the accuracy of the curve fitting procedure, acquired data, and thermocouple 
time constant factor, it can be concluded that: 

• the mathematical modelling has shown that two thermocouples have measured a 
true temperature in excess of 550°C within 30 seconds of ignition, but one must be 
considered marginal. This indicates a valid test, whereas the acquired raw 
temperature data indicated a test failure. 

• The accuracy of the results is very dependent on the type of data fit and time 
domain used for the thermocouple acquired temperature data, and the results from 
the mathematical process can only be considered estimates. 

• The mathematical modelling method of approach appears reasonable. 
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Appendix A 

Data Acquisition Time TC # 1 Acquired TC # 4 Acquired 
(seconds) After Ignition Temperature Data Temperature Data 

0 17.6 19.7 
1 22.4 23.1 
2 25.2 25.2 
3 26.5 29.3 
4 32.0 37.5 
5 38.2 45.1 
6 44.4 52.7 
7 53.4 58.9 
9 73.4 72.0 
10 83.8 86.6 
11 98.4 103.2 
12 115.0 113.0 
13 131.8 134.5 
14 153.4 154.1 
15 168.7 172.9 
16 185.4 186.1 
17 206.3 204.3 
18 214.7 232.1 
19 230.0 248.7 
20 238.3 257.7 
21 246.6 273.6 
22 260.5 286.7 
23 274.3 304.5 
24 296.3 348.1 
25 318.2 374.3 
26 334.5 381.6 
27 346.1 387.6 
28 360.2 390.3 
29 392.9 396.3 
30 441.7 400.9 
31 482.7 410.0 
32 512.5 415.3 
33 523.7 419.9 
34 531.7 421.9 
35 546.2 425.9 
37 594.6 448.3 
39 619.9 465.5 
41 629.9 470.8 
43 641.3 488.7 
45 626.6 522.4 

Table A.l: Sample Of Acquired Raw Data For TC #1 and TC #4 
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Appendix B 

The following derivation of the thermocouple transfer function from its descriptive 
equation was performed by Mr. Martin Gill, a Senior Research Scientist of the 
Communications Division Electronic and Surveillance Research Laboratory (ESRL) 
Defence Science and Technology Organisation Salisbury (DSTO). 

As stated in the body of the technical note, the thermocouple can be represented by a 
first order, first degree, linear, differential equation, the solution of which is given in 
Equation (B.l). 

1 'r 
T(t) = Ce-"r + -e-'lT \Te(t)e"rdt 

T * 

where 

• T is the sensor temperature at time t, 
• Te is the environment temperature at time t, 
• C is a constant of integration, and 
• ris the time constant. 

Differentiating Equation (B.l) with respect to t yields Equation (B.2) 

dT(t)    -Ce~"T     1 
( ' "\ -tlT 1 1 p 

-e-"T  \Te(t)e"Tdt 

V o J 

-r J> 
Substitution of (B.l') into (B.2) yields Equation (B.3): 

dm = -Ce^_ _hT(t)_ Ce -,/r) + Ic-./r T (t)e«, 
dt x rv '    z 

(B.l) 

+ -e~"r Te(t)e"r (B.2) 
dt r 

Re-arranging Equation (B.l) we note that: 

\Te(t)e"Tdt = T(t)-Ce-"z (B.l') 

= ~{Te(t)-T(t)) (B.3) 
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Transforming Equation (B.3) into the S plane but ignoring initial conditions yields 
Equation (B.4) : 

sT(s) = -(Te(s)-T(s)) 

Re-arranging Equation (B.4) yields Equation (B.5): 

(B.4) 

TYM    +1!      T'(S) T(s)ls + _j=__ (B.5) 

The thermocouple output is T(s), and the input is Te(s) and hence the transfer function 
H(s) (output / input) is shown in Equation (B.6): 

/        \ 

H(s) = 
T(s)      (1 

Te(s) " s+- 
TS +   1 

(B.6) 
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