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FINAL REPORT 

Contract ONR N00014-93-0194 

Project title: Temporal processing with neural networks 
Principal investigator: Jeffrey L. Elman 
Period of time covered by report: 12/1/92-11/30/96 

1. Brief overview of scientific achievements: 

The research carried out under this contract focussed on four efforts, all 
involving the processing of temporal sequences by neural networks (1-3) or the effect 
of imposing a spatio-temporal gradient on network learning (4): 

(1) Assessing alternative neural network techniques for problems involving 
temporal coding. 

(2) Development of tools for analyzing recurrent networks, so that the solu- 
tions of successfully trained networks can be better understood; 

(3) Development of a dynamical systems theory approach to computation in 
recurrent networks. 

(4) Development of biologically and cognitively plausible techniques for 
enhancing training. 

Work in the initial area was carried out with Thomas Rebotier (a doctoral stu- 
dent in the Cognitive Science department at UCSD). We constructed a suite of prob- 
lems, including economic indices, seismic data, strings generated from various 
classes of grammars, speech data, and acoustic data. Second, we have developed 
local implementations of Time Delay Neural Networks, Hidden Markov Models, 
Backpropagation Through Time, and Simple Recurrent Networks. [This work was 
reported in detail in earlier progress reports and will not be summarized here.] 

Work in the second and third areas was done in collaboration with Rebotier, 
Paul Rodriguez (another doctoral student in Cognitive Science) and Janet Wiles 
(University of Queensland). We used various techniques for analyzing the movement 
of networks' internal state vectors through state space, over time; the goal is to 
understand how the networks make use of state space and temporal dynamics to 
encode temporal information. 

Work in the final section was done with Thomas Rebotier, in collaboration 
with Mark Johnson (University College of London) and Jeff Shrager (University of 
Pittsburgh). Development of biologically and cognitively plausible techniques for 
enhancing training. The goals were two-fold: (i) to account for the spatial differentia- 
tion, over time, of initially multipotent embryonic cortex; and (ii) to extend the com- 
putational capacities of Hebbian learning by imposing a spatio-temporal gradient on 
the learning process. 



2. Summary of results 

2.1 Benchmarks. 
This work was reported in detail in earlier progress reports and will not be 

summarized here. 

2.2 Analytic tools. 
A common complaint regarding neural networks (when they are offered as 

models of biological processes) is "what value is there in replacing one black box (e.g., 
the brain) with another black box (e.g., a neural network that emulates some brain- 
like capability)." The complaint is reasonable, since much of the value of a model pre- 
sumably lies in our ability to probe it to a greater extent than is possible with biolog- 
ical systems (for which invasive procedures are limited and highly regulated, and for 
which non-invasive tests have a lesser degree of precision). However, it is also a com- 
plaint which is now somewhat dated, since most network researchers recognize that 
network analysis plays a crucial role in validating the models they construct. 

Under the current contract, a number of novel network analyses have been 
developed and utilized. Many of these are not novel in other fields, but their applica- 
tion to neural network research is (and in many cases, the research supported by the 
current contract was the first to utilize them). These include the use of principal 
components analysis; projection pursuit; multidimensional scaling; and contribution 
analysis. In the relatively short period since the beginning of this contract (1992), 
many of these tools have become standard in the field. 

2.3 Development of a dynamical systems account of computation in recur- 
rent neural networks. 

Relatively little is still known about the computational properties of recurrent 
networks. Despite early proofs about Turing capability (J. Pollack's thesis), and more 
recent important work by Seligmann and Sontag, we still lack the kind of analysis 
for recurrent networks which the Chomsky hierarchy provides for discrete automata. 
The Chomsky hierarchy maps machines onto grammars, and indicates the computa- 
tional benefits which result from extending machine resources in a principled way. 

Recently, as part of the work supported by this contract, Janet Wiles, Paul 
Rodriguez, and I have undertaken a series of studies which have as their goal under- 
standing how traditional formal languages (as classified by the Chomsky hierarchy) 
might be processed by recurrent networks. Ultimately, we hope to understand what 
the natural classes of languages are (because conceivably the natural class of lan- 
guages processed by recurrent networks may not be commensurate with the class of 
languages defined under the Chomsky hierarchy). In the short term, our focus is to 
understand how recurrent networks carry out computation; our specific perspective 
has been to study this using dynamical systems analysis. 

In initial studies, we found that a recurrent network could process a Context 
Free Grammar (anbn e.g., some number of a's followed by an equal number of b's) by 
setting two dynamical regimes. In the first regime (when the network is in "counting 
up" mode, inputing a's), the network has an attracting fixed point (with oscillatory 
behavior); this is shown in Figure la. In the second regime (when the network is in 



"counting down" mode, receiving b's), the network has a repelling fixed point (again, 
with oscillatory behavior); this is shown in Figure lb. By precisely equilibrating the 
rate of contraction of the attracting fixed point with the rate of expansion of the 
repelling fixed point, and by ensuring that in the transition from the last a to the 
first b, the network moves to a distance from the second fixed point which is matched 
to the distance from the first fixed point, the network guarantees that when the final 
b is input it will recognize the end of string. In more recent studies, we have 
extended this work to more complex languages, including the palindrome language 
xoP (a string of inputs, x, followed by xP , the string in reversed form). This language 
is interesting because it resembles center-embedded relatively clauses found in natu- 
ral language (e.g., "The book that the girl read is missing."). 
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Figure 1. Vector flow fields for two dynamical regimes of network trained on crbn language, (a) 
Flow field while a's are input; (b) flow field while b's are input. 

2.4 Interactions between learning and timing. 
Many of the neural models for temporal processing which have been studied to 

date suffer from scaling problems. The models work well with restricted data or on 
toy problems. Attempts to scale up to larger data sets or to time series in which the 
temporal relationships are more complex often do not work well. This problem of 
scaling is of course not unique to neural network models; the failure to scale is a 
chronic problem of many models. 

I have recently become interested in the possibility that the developmental 
trajectory which humans undergo may interact with the learning of complex behav- 
iors. An inordinately long portion of the human life cycle is spent in a period of 



immaturity; given the vulnerability of the immature state this would seem to be evo- 
lutionarily maladaptive. On the other hand, there may be positive consequences to 
delayed development. My hypothesis is that in fact certain problems are best 
learned by "starting small"—i.e., with limited resources. I have been studying this 
possibility in two realms. 

(a) In the first, I attempted to train a simple recurrent network to process 
strings generated by a context-free grammar. (This is a category of formal languages 
into which human languages are minimally classified; human languages may in fact 
be somewhat more complex.) Although humans appear able to learn such gram- 
mars, recurrent networks consistently failed, across a wide ranging of training con- 
ditions. However, when the networks were trained in an incremental fashion, they 
succeeded in learning the data sets. Incremental training was carried out in either 
of two ways (both worked equally well). In the first regime, networks were trained 
on a subset of strings which were shorter in duration and which contained no 
embeddings. After mastering this simpler data set, the networks were given increas- 
ingly more complex data. In the second regime, networks were trained from the 
beginning on the final complex data set. However, noise was injected every two or 
three tokens during early portions of training. This noise effectively interfered with 
the learning of the more complex data. As training progressed, the periodicity of the 
noise was increased in two or three word increments and eventually eliminated. In 
both regimes, learning was rapid and generalization was high. The technique is sim- 
ilar to a hypothesis proposed by Newport for children. The assumption is that early 
resource limitations force the networks to focus on the major sources of variance, and 
that this provides a necessary scaffolding for the networks to learn more complex 
interactions exhibited by longer sentences. Thus, for the networks to achieve the 
final "adult" competence requires that they go through a maturational period which 
resembles that of children. 

Figure 2a shows the internal state space of a network which was trained in 
the non-incremental fashion; the state space is relatively unstructured and fails to 
encode temporally significant information. Figure 2b shows the internal state space 
of a network which was trained in the incremental manner described above. The 
state space is well-structured and encodes grammatically relevant information. 

(b) In the second series of experiments (done in collaboration with Jeff 
Shrager and Mark Johnson) I have been interested in the possible computational 
benefits of another developmental pattern, namely the fact that neo-natal human 
cortex undergoes waves of synaptic proliferation followed by synaptic pruning. These 
waves do not occur everywhere simultaneously. Instead, they last over a period of 
several years and pass over different spatial regions of cortex at different points in 
time. 

The initial series of experiment, carried out by Kerszberg, Dehaene, and 
Changeux and replicated by Shrager, Johnson, and myself, involved a slab of 
'pseudo-cortex', shown in Figure 3. This slab consisted of a 30x30 matrix of nodes. 
Each node received random inputs from neighbors following a Gaussian probability 
distribution, such that connections from near neighbors was more probable than 
from distal units. Each node in addition received input from two afferents (marked A 
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Figure 2. Plot of hidden unit activation patterns (in response to presentation of 10,000 word 
inputs), shown in coordinates of first 3 principal components, (a) Network which failed in the 
task, (b) Network which succeeded in the task, after being trained with an incremental regime. 

and B), which fired randomly and simultaneously. The connection matrix for the slab 
was modified according to a Hebbian learning rule. After learning, the question was 
asked of each node, what function of the two afferents is it computing. Most nodes 
remained off, but some fired whenever A was on; others fired whenever B was on; 
others became AND units, etc. This was the expected result. 

However, when learning progresses in a staged manner—modeling the move- 
ment over time of a "trophic factor" through the matrix, such that columns under- 
neath the TF wave are more plastic while those elsewhere decay or do not learn— 
then a different result is obtained. We have found that if the TF wave moves from 
left to right, so that the left-most columns are early learners and the right-most col- 
umns are late learners, then the units on the left develop as in the first condition. 
However, a significant number of units in the late learning columns become XOR 
units. This is a surprising result given the known problem with Hebbian learning 
and non-correlated input patterns; it results from the fact that the TF wave allows 
early learning units to develop which become sensitive to OR and AND functions. 
The late learning units then take as their input not only the external afferents but 
the outputs of these OR and AND units, and that makes it possible for them to learn 
XOR. This result is promising because it demonstrates that a learning rule of known 
biological plausibility but known computational limitation may be "salvaged" by sub- 
jecting learning to a maturational regime which is itself plausible. 

The work to date only involves temporally static stimuli. We are now trying to 
extend this finding to conditions in which stimuli are more complex and which 
involve temporal dependencies. 
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