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1    Introduction 

Background 

Considerable engineering judgment is needed for an operator to interpret the 
quality of concrete from the signals of ultrasonic pulse echo (UPE) 
measurements. Literally thousands of slightly different UPE signals can be 
obtained from various concretes. Personnel may need years of training to 
recognize and identify the complicated signal patterns in the pulse echo 
technologies of ultrasonics and radar. Automating the interpretation process 
would reduce the dependency on the judgment of highly trained personnel and 
would improve the consistency of the decision-making process. A computerized 
system such as the artificial neural network (ANN) should be used for performing 
objective signal interpretations so that the subjective decisions of various 
operators are reduced or eliminated. 

An ANN system is a mathematical technique that can make intelligent 
decisions automatically by means of a computer. ANNs imitate human brain 
behavior in the way they perform tasks. The idea of a network of neurons, or 
separate computational elements, working collectively to perform complex tasks 
dates back to Hebb (1949). In the 1980s, ANNs were developed that could 
distinguish voices and faces (Windsor et al. 1993). ANN algorithms can be 
trained to recognize certain signal features using known examples; then the 
trained ANN can be applied to an unknown but similar problem to interpret those 
signal features. Specific examples can be fed to the ANN, and it can generalize 
to learn the whole as long as the specific examples are a representation of the 
whole. In other words, unseen signals that the ANN has not encountered in 
training can be properly classified by the ANN as long as the data used to train 
the ANN have similar characteristics as the unseen data. 

One benefit of the ANN is the fact that it is not necessary to program an 
algorithm or set of rules for processing the raw signal as is necessary with 
conventional computer programs. One does not have to know the relationship 
(mathematical function that relates the independent variables to the dependent 
variable) between electrical features of the UPE signal and the physical condition 
of the concrete. The ANN has adaptive capabilities that permit it to discover 
relationships among variables when first trained with known examples. In 
addition to the ability to generalize, ANN algorithms can (a) be implemented in 
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parallel for real-time answers, (b) relate nonlinear multiple variables, (c) handle 
noise in the signals, and (d) handle great variability in a magnitude of inputs. 
Furthermore, ANN algorithms do not require a mathematical function to relate 
variables. As stated by Taha and Hanna (1995), "Neural Networks are attracting 
an enormous amount of attention in many Civil Engineering disciplines—because 
they represent a class of robust, non-linear models capable of learning 
relationships from data." This method is referred to as neurocomputing as 
opposed to the very familiar technique to all engineers of programmed computing 
(Hecht-Nielsen 1989). 

An ANN can be trained so that the computer can classify the UPE signals 
from concrete of known quality/deterioration and then interpret UPE signals on 
concrete of unknown quality. Then only a minimum level of training will be 
necessary for operators to perform UPE measurements on concrete structures and 
diagnose the condition of the material. Consistent objective decisions can then 
be made by the computer rather than the subjective decisions of various human 
operators. A trained ANN offers the potential of a successful on-line, real-time, 
flaw-detection system for concrete capable of operating at high speeds (Windsor 
et al. 1993). 

Objective 

The objective of this investigation was to determine the feasibility of using the 
ANN to automate the interpretation of UPE signals made from concrete 
possessing deterioration of the continuous-interface type. 

Scope of Report 

Chapter 2 of this report describes a laboratory prototype UPE system 
developed at the U.S. Army Engineer Waterways Experiment Station (WES) and 
defines two categories of crack defects in concrete. Chapter 3 explains the 
procedures for engineering microcracks in specimens. Chapter 4 explains the 
process for rating the degree of microcracking and for collecting UPE training 
data. Chapter 5 describes the architecture of the ANN and its application to UPE 
data. Chapter 6 contains conclusions and recommendations derived from this 
investigation. 
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2    Laboratory Prototype UPE 
System 

UPE systems are important diagnostic tools when only one concrete surface is 
accessible for the measurement In 1986, a high-resolution laboratory UPE 
system for detecting defects in concrete (Figure 1) was developed at WES under 
the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research 
Program (Thornton and Alexander 1987). The transmitter is a low quality 
factor (Q) piezoelectric array composed of lead metaniobate elements. The center 
frequency operates at about 190 kHz. The bandwidth contains energy from 
below 50 kHz to just over 350 kHz. The pulse length is short, only two and one- 
half to three cycles, which is critical for UPE systems (an ultrasonic pulse 
velocity (UPV) system can have a pulse length of 50 to 100 cycles since the time- 
of-arrival (TOA) of the first cycle is the only important criterion). The receiver is 
a commercial unit, Panametrics Model A301S, which also has a low Q and is 
resonant at 0.5 MHZ. The receiver operates in the broadband portion of its 
frequency spectrum curve at frequencies below resonance. The pair of 
transmitting and receiving transducers are shown in Figure 2. More information 
on the UPE system and a history of UPE development in concrete are given in 
Alexander and Thornton (1988). 

Although the operation of the ultrasonic hardware is acceptable and the 
needed information about the quality/deterioration of the concrete is likely 
contained in the UPE signals, it is not a straightforward problem to interpret the 
condition of the concrete from those signals. Crack defects can generally be 
divided into two categories: those that have discrete interfaces and those that 
have continuous interfaces. 

Interpretation of UPE Signals 
from Discrete Interfaces 

WES staff members have performed studies to develop measurement criteria 
for detecting discrete interfaces in concrete using the UPE system Although 
some digital signal processing algorithms are used to help interpret the signals, all 
of the evaluation must be performed manually. Discrete interfaces are present 
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Figure 1.   Laboratory UPE system 

Figure 2.  Close-up of UPE transducers 
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when detecting embedded steel, measuring thicknesses of various elements, and 
detecting voids, delaminations, and embedded objects, etc. TOAs of echoes from 
discrete interfaces occur at definite locations in the signal as evidenced by the 
sharp transitions of amplitude that occur when an echo is received. Currently, 
various algorithms exist that will permit researchers to improve the use of the 
computer for locating and displaying (interpret) discrete echoes in the signal. 
Figure 3 shows the type of UPE signal that the system records when the concrete 
is sound. The TOA of the backwall echo is about 106 usec for this particular 
concrete element, 235 mm (9.25 in.) in thickness. A discrete interface, such as 
the example shown, will return one primary echo at a definite TOA. 

Interpretations of Signals 
from Continuous Interfaces 

For deterioration of the type caused by alkali-silica reaction, fire damage, 
freeze and thaw damage, etc., the interfaces are continuous rather than discrete. 
Measurement criteria have not been developed for correlating the electrical 
features of the signals with the physical features of deterioration in the concrete. 
Thousands of microcracks with random lengths, widths, positions, and directions 
can exist This type of amorphous deterioration can return a multitude of 
interfering echoes rather than the less complicated discrete echoes seen from 
reinforcement bars and backwall surfaces as shown in Figure 3. In Figure 4, a 
typical UPE signal is recorded from the measurement of a microcracked 
specimen. As can be seen, there are many interfering echoes arriving at all TOAs 
for continuous interfaces. Note that the reflected energy is spread throughout the 
time-domain signal in the case of continuous interfaces, and the reflected energy 
is located at discrete TOAs for signals from discrete interfaces. To develop 
measurement criteria, it is necessary to build a specimen library of uniformly 
cracked specimens for which the type and magnitude of the cracks are known. 
The ANN is ideally suited for this type of problem because a mathematical 
procedure or algorithm does not have to exist for relating signal features to 
physical features in the concrete. 
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3    Engineering of Microcracks 

Procedures for Engineering Microcracks 

Three procedures for producing controlled deterioration in the form of 
microcracks were investigated. One was based on a sulfate-based expansion 
mechanism, and two were based on an expansive alkali-silica reaction. 

a. The sulfate-based procedure was based on American Society for Testing 
and Materials (ASTM) C 452 (1994b), using a high-CjA cement 
[RC 756(3)] and varying levels of gypsum, Terra Alba (CaSO^Hp), to 
cause expansion. Gypsum levels were adjusted to give 1-, 5-, and 
15-percent S03, by mass of cement Sulfate ions react with hydrated 
calcium aluminate to form ettringite, a highly expansive reaction product 

b. One of the alkali-silica procedures was based on ASTM C 227 (1994a). 
Mortar bars were made with a high-alkali cement [RC 756(3)] and graded 
sand (ASTM C 778 1994d) and Pyrex glass as aggregate. Pyrex glass is 
very reactive with high-alkali cement resulting in a well-characterized 
expansion. Six Pyrex/sand combinations were investigated. Three 
combinations were made by using Pyrex glass passing a No. 100 sieve as 
1-, 5-, and 15-percent replacement for the fine aggregate specified in 
ASTM C 227. The other three combinations were made with Pyrex 
passing a No. 50 sieve but were retained on a No. 100 sieve. 

c. The other alkali-silica procedure was also based on ASTM C 227. Mortar 
bars were made with a high-alkali cement [RC 756(3)] and a mixture of 
Beltane opal and graded sand (ASTM C 778) as aggregate. Opal 
constituted 3 percent by mass of the total aggregate. Opal is a somewhat 
less reactive aggregate than Pyrex, but the expansion mechanism is the 
same. 

The most expansion was obtained from the sulfate-based procedure. Figure 5 
shows how the mortar bars expanded against time for the 15-percent gypsum 
replacement The rate of expansion was almost constant from 2 days of age up to 
22 days. 

8 
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Experimentation with Mixture Design of Mortar 

The first concrete mixture was based on the sulfate-mediated expansion. 
Plaster of Paris (CaS04.I/2H20), supplied under the trade name "Cal-Seal 60," 
manufactured by the Halliburton Company, was used as the source of sulfate ions 
because of an inadequate supply of gypsum. The plaster content was 15 percent 
by mass of cement and caused the S03 content to be about 8.8 percent, by mass of 
cement. The concrete, with a water-cement ratio (w/c) of 0.52, experienced 
problems. The concrete was very dry and experienced a set immediately after it 
was removed from the mixer before the slump could be measured. There was 
concern that it might have been a flash (hard) set rather than a false (weak) set. 
Rather than taking a chance of getting hardened concrete stuck in the concrete 
mixer, the WES team decided to halt the casting of concrete specimens and make a 
trial mortar batch to determine if the set could be easily broken by mixing. The 
coarse aggregate in the concrete was replaced by an equal amount of fine 
aggregate, by weight, for the test mortar. The w/c of 0.52 was maintained for the 
mortar, but it was very dry. Although no false set was noticed in the mortar, more 
Cal-Seal was added to the mixture until a set occurred. The mortar mixer was 
able to break up the set, and the set did not immediately return when the mixer was 
shut off. This confirmed that the concrete set was a false set rather than a flash 
set. It was suspected that a lower-strength design for the concrete might be more 
likely to expand and develop cracks due to less constraint, so it was decided to 
increase the flow measurement by increasing the w/c. To get the proper flow 
measurement on the mortar, raising the w/c from 0.52 to 1.06 was required. 

Design of Concrete Mixture 

The cement used in the concrete was RC-756(3), which, as mentioned, had 
high alkali and high C3A contents. Plaster, Halliburton's Cal-Seal 60, was the 
additive used that reacted with the C3A in the cement to cause expansion. Sodium 
citrate was added as extra insurance to retard hydration and prevent a false set. 
The amount of sodium citrate added was equal to 1 percent of the Cal-Seal by 
weight. One control specimen was cast without the Cal-Seal and sodium citrate. 
Since, as mentioned, low-strength concrete is more apt to expand and crack than 
high-strength concrete, the w/c was increased from 0.52 to 0.85. Since the fine 
aggregate in the mortar has more surface area than the coarse aggregate in 
concrete, the latter required a lower w/c for the concrete than the 1.06 used for the 
mortar. It was decided that the cement would be replaced with the same 
15 percent of Cal-Seal as determined by the mortar bar testing. One control 
specimen was cast without Cal-Seal, and the other five specimens contained the 
same amount of Cal-Seal. Both the fine and coarse aggregate were of limestone. 
The coarse aggregate had a maximum diameter of 19 mm (3/4 in.). 

10 
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Accelerating the Reaction 

It was desired to manufacture at least six specimens that had varying degrees 
of deterioration from chemically induced cracking. Rather than attempt to vary 
the percentage of Cal-Seal to obtain various levels of defective concrete, a 
different method was tried. Since the reaction is dependent on the presence of 
moisture and temperature, it was decided to immerse the major part of each 
specimen in water at 38 °C (100 °F). A rule of thumb states that the rate of 
reaction doubles for every 5.6-C0 (10-F°) increase in temperature. When the 
proper level of deterioration had been obtained, then the specimens were to be 
removed from the high temperature and moisture in hopes of terminating the 
expansive reaction at that level of deterioration. 

Placement of Concrete 

Six forms made of marine plywood were used to cast 2- by 2- by 0.5-ft (0.16- 
by 0.61- by 0.15-m) specimens. After mixing, it was determined that the slump of 
the control specimen measured 89 mm (3-1/2 in.). The slump measured 152 mm 
(6 in.) in the first batch of test concrete, and the slump was not measured in the 
next three batches. The slump was higher in the evaluation specimens, probably 
due to the retardation from the sodium citrate. The concrete was placed in the 
forms, and metal supports were inserted into the fresh concrete as a base for 
bonding metal tabs for length-change measurements with the Whittemore gauge 
(later it was found that the moisture from the water bath kept causing the bond to 
fail on the tabs and this procedure was abandoned). The concrete was poker- 
vibrated, and the top surface of the concrete was screeded level with the forms. 
The concrete was then covered with wet burlap and covered with a sheet of 
vaporproof plastic for a couple of days before stripping the forms. 

Curing of Specimens in Hot Bath 

The forms were stripped on the second day after casting, and the specimens 
were moved to a water bath in the temperature-controlled room. The water bath 
temperature was maintained at 38°C (100 °F). At that time, the specimens were 
supported on one of the 0.61- by 0.15-m (2- by 0.5-ft) ends, and the water was 
brought to a height of 76 mm (3 in.) above the base of the specimens. After 
17 days, the specimens had not experienced any expansion, and the water level 
was brought up 76 mm (3 in.) more. When no expansion was observed for 
4 days, the water level was brought up to the full height of the tank. The 
specimens were then submerged to a depth of 406 mm (16 in.). Eight inches (two- 
hundred-three millimetres) were left above the water level, but the specimens were 
still covered with wet burlap and a vaporproof plastic sheet. The water level was 
maintained by occasionally adding water to the tank as it evaporated. 
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Deterioration-Measurement Standards Created 

A plot of the UPVs through the 0.61-m- (2-ft-) wide specimens is shown in 
Figure 6. It was decided to increase the interval between measurements, since 
there was no noticeable change in UPV until after about 23 days of curing in the 
water bath (UPV measurements were made every weekday from the day the 
specimens went into the water bath) and the concrete was obviously not 
duplicating the action of the mortar bars (Figure 5). Although cracking was still 
not detectable visually after about 28 days, the UPVs had begun to decrease. 
However, the investigators failed to note the significance of the change and 
almost forgot to continue their measurements until the 48th day. At that time, it 
was finally noticed that one of the specimens had developed numerous cracks. It 
was immediately removed from the water and heat and stored at normal room 
temperature and humidity. The V-meter was used to make the UPV 
measurements, and the frequency of operation of the transducers were 54 kHz. It 
was interesting to note that the reaction had different rates for each of the five 
specimens, although they were supposed to be identical. All of the specimens 
were removed from the water bath on the ages of 48,49, and 50 days. UPV 
measurements were continued after the specimens were taken to a dry room with 
temperature about 40 °C (72 °F). The direction of the UPVs turned around and 
increased for awhile until they reached a constant value after about 1 week. The 
UPVs varied from about 1,737 m/sec (5,700 ft/sec) for Specimen No. 6, the 
specimen having the worse deterioration, to about 4,877 m/sec (16,000 ft/sec) for 
the control specimen. A time-history of the UPV for Specimen No. 6 can be seen 
in Figure 7. Note that the velocity of Specimen No. 6 dropped to about 
1,280 m/sec (4,200 ft/sec) (Figure 7) while in the bath but increased to 
1,737 m/sec (5,700 ft/sec) (Figure 6) after being removed from the bath for 
1 week. 
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4    Ultrasonic Measurements 
for ANN 

Rating the Degree of Microcracking 

It may be intuitive mat the UPE signals contain information about the degree 
of microcracks in a concrete specimen. However, without having a standard 
method of classifying the degree of microcracking in each deterioration standard, 
it is not possible for the ANN to develop an association between the UPE signals 
and the degree of cracks in each specimen. A method is needed to classify me 
degree of cracks that can be specified in a number of ways. One could count the 
number of cracks on a given surface and use that number as an index to classify 
the amount of cracks throughout the specimen; or one could measure the 
amplitude of attenuation of an ultrasonic pulse through the concrete. On the 
other hand, one could measure the UPV through the thickness and determine an 
index. 

The V-meter measures the UPV according to ASTM C 597, "Standard Test 
Method for Ultrasonic Pulse Velocity Through Concrete" (1994c). This was 
chosen to be the method for rating the degree of microcracks, because the UPV 
was very sensitive to the deterioration. (Remember that UPV measurements 
require access to opposite sides of the specimen and can easily be performed in 
the laboratory; whereas in the field, many structures such as bridges, pavements, 
etc. have only one surface that is readily accessible.) These UPVs would provide 
the target values that the ANN would aim for in the training phase. 

It was decided not to core the specimens and develop a calibration curve 
relating the UPVs of the cores with the compressive strength of the cores. The 
investigators wanted to keep the standards for future ultrasonic and radar testing. 
Although the compressive strength is considered by some people to be an 
absolute criterion for measuring the quality of a concrete element, the researchers 
opted for the UPV evaluation, a comparative evaluation, as the indicator of 
deterioration, so that they would not have to sacrifice the specimens. Also, it is 
known that UPVs can always be calibrated against compressive strength with the 
proper calibration curves should the researchers choose to do so at a later date. 
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Collection of UPE Training Data for ANN 

Figures 8 and 9 show all of the microcracked specimens and a close-up of one 
of the more heavily cracked specimens, respectively. The cracks were labeled 
with a black marker to visually emphasize the deterioration. Although only a few 
cracks were highlighted for the photographs, there were many more present on 
the surface. 

The measurement configuration is shown in Figure 10. The WES researchers 
chose measurement locations near the center on each specimen to prevent 
interfering, extraneous echoes from the boundary. (Rayleigh waves travel on the 
surface and can be received from the boundaries before the longitudinal echoes 
can be received from the backwall, if the measurement is made too close to the 
edge of the specimen). The total number of UPE measurements is equal to four 
measurements per location times nine locations per specimen times six 
specimens, or 216 total measurements. The WES researchers made the four UPE 
measurements at each grid intersection by rotating the transducers 90 deg each 
time to make the transducer coupling variable. 

The researchers measured the level of deterioration in nine locations by 
making UPV measurements through the 152-mm (6-in.) thickness of each of the 
specimens with the V-meter. The ANN would use the UPE measurements as the 
input and the UPV measurements as the target data. In other words, these four 
UPE signals would see one level of deterioration as determined by the V-meter 
reading. 

Broad, Uniform Distribution 
of Deterioration Created 

Although mere were six specimens whose mixture design was meant to be 
identical (one control did not contain sulfate), the amount of deterioration was 
variable in the specimens with age. The deterioration occurred at different rates 
for each of the specimens, permitting the WES investigators to obtain a fairly 
uniform distribution of velocities and hence deterioration. Also, there was 
variability of the UPV throughout a given specimen. The target velocities were 
obtained through the 152-mm (6-in.) thickness (remember the curing velocities 
were obtained through the 0.61-m (2-ft) dimension that was above water). The 
distribution of the target UPVs is shown in Figure 11. Actually, a very uniform 
distribution of UPVs ranging from about 1,737 m/sec (5,700 ft/sec) in Specimen 
No. 6 to about 4,877 m/sec (16,000 ft/sec) in the control specimen (Specimen 
No. 1) was obtained. 
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Figure 8.  All six microcracked specimens 

Figure 9.  Close-up of one microcracked specimen 
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Rgure 10.   Measurement configuration. (To convert inches to millimetres, 
multiply by 25.4; to convert feet to metres, multiply by 0.3048.) 

18 
Chapter 4  Ultrasonic Measurements for ANN 



CO 
LLI 

111 

8i 
< 

o -~   u. 
LU co 
CO 
-I 

tu 
t 
o o 
UJ 
> 

Q. 
O 

UJ 

oS 
i* 

~4- 

4 
4 

4 
4 
4 
4 
4 
4 

1 

4 
4 
\ 

CM 

on 
UJ 
ffi 

H 
Z 
UJ 
2 
UJ 
tc 

< 111 

eo 
■«a- o 
CO 

CvOI-X 03S/U -A1I0013A 

CO 

■E 
0 
■a c 
00 ♦* 
CO 

c o 

o 

CD 
TJ 
«^ 
o 
CO 
> 
Q. 
3 
«5 

2 

LL 

Chapter 4  Ultrasonic Measurements for ANN 19 



5    Application of ANNs to UPE 
Data 

20 

Description of ANN Neuron and Architecture 

ANNs are designed to mimic the operation of the human brain; hence, they are 
referred to as a branch of artificial intelligence. The brain has a significant 
capability to perform pattern recognition, and the ANN system can emulate the 
functions performed by the biological neurons and are ideal for real-time results. 
A diagram of an artificial neuron is shown in Figure 12. The input lines model 
the dendrites (input nerve fibers) of the brain. They collect the activity being 
received, similar to the brain, and pass it on to the following artificial neuron in 
the network. The output lines model the axons (output nerve fibers) of the brain 
and receive the information from the artificial neuron and pass the processed 
information to the next artificial neuron in the network. The weights on the 
connection lines and the biases on the transfer function model the synapses of the 
brain which determine the importance or lack of importance of a particular 
activity arriving at that point (Hinten 1992). 

The following illustration points out how the weights and biases are adjusted 
in me ANN. Human beings learn by repeatedly observing the outcomes of their 
responses to external stimuli. Consider the process of learning how to shoot a 
basketball properly. There are many input variables (independent variables) that 
determine the success of the shot, and in the beginning of the learning process, it 
is difficult to know which variables are important and which are not There is 
only one output variable (dependent variable), and that variable is the proximity 
of the basketball to the net once a shot is made. If the basketball hits the net the 
majority of the time that the basketball is thrown, men the person is properly 
trained and all the synapses (weights) in the brain are properly adjusted to 
indicate the importance of the various input variables. Variables such as how to 
place one's feet, how to bend or not bend one's body, the direction that a person's 
body faces, the correct placement of one's hand(s) on the ball, the position of the 
arms, etc., might be important variables. After an individual throws the 
basketball a few thousand times and continually notes the error between the 
actual outcome (where the balls lands) and the target solution (a basket), the 
feedback to the brain will result in an automatic adjusting of the weights for each 
variable until the shooter begins to get better at hitting the basket Maybe the 
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individual will find that the type of shoes worn or what was eaten for lunch is not 
too important for hitting the basket; so those weights will take on a low or zero 
value for their importance. In this same manner, the ANN learns how to get 
closer and closer to the target values of the problem. 

There are many classes of ANNs: perceptions, linear, back propagation, radial 
basis networks, etc. The architecture can differ within a class. The type of 
problem being solved determines the class chosen. The architecture of a network 
consists of a description of the number of layers a network has, the number of 
neurons in each layer, the type of transfer function in each layer, the way the 
layers are connected to each other, and the number of network inputs. Both the 
neuron model and the architecture of the neural network determine how a 
network transforms its input into an output ANNs have the potential to reduce 
the calculation time required as many inputs can be received in parallel, weighed, 
and analyzed simultaneously. The data in this investigation were not trained or 
tested in parallel, but they could be implemented in parallel for the field unit 
should the calculation time need to be reduced for faster real-time results. 

Design Considerations for Creating Model 

Transfer functions 

The software used in this investigation was the Neural Network Toolbox by 
MATLAB™ (Demuth and Beale 1992). This package has a number of features 
that permit an improvement in the procedure to develop optimal ANN models for 
a particular application. The package contains a number of transfer functions, but 
three of the most popular are the hard limit or threshold output (values of 0 or 1), 
linear output (any value), or nonlinear output (any value between -1 and 1). The 
problem in this investigation required the use of the nonlinear transfer function. 
It is not possible to get the correct output for a problem without choosing the 
proper transfer function. All of the transfer functions in MATLAB™have the 
option of including a bias for the transfer functions. The bias can be a constant, 
or it can take on a value as it learns. This particular investigation used the bias 
that learns. The net input of the transfer function is the sum of the weighted 
inputs wxp and the bias b, where w represents the value of the weight for that 
neuron and p represents the value of the input arriving on that connection line. 
The sum of all weights (w) times the input value (p) plus b is the argument of the 
transfer function. 

Determination of architecture 

The architecture of the network of artificial neurons that was ultimately used 
in this investigation is shown in Figure 13. The multiple-layer feed-forward 
model was the appropriate model for this investigation. (Feed-forward means 
that the information flows in only one direction through the network.) This 
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Figure 13. Architecture of artificial neural network 

configuration requires the back propagation (BP) learning rule for training the 
network. The architecture of a BP network is not completely determined prior to 
training by the problem to be solved. It is an empirical process that takes some 
time to develop. The number of inputs to the network is related to the number of 
neurons in the first layer, and the number of neurons in the output layer is 
constrained by the number of outputs required by the problem (in this case, one). 
However, the number of layers between the first and the output layer and the 
number of neurons in those intermediate or hidden layers are up to the designer. 
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Importance of hidden layer 

It requires a trial-and-error process of checking the error in the training and 
evaluating to optimize the hidden layers. (They are called hidden layers because 
they are not in direct communication with the input and the output data.) In fact, 
it has been determined that no significant improvement is obtained by increasing 
the number of hidden layers from one to two. Also, the training time increases 
exponentially with more layers (Er et al. 1995). Optimizing the number of 
neurons in the hidden layer is of critical importance. The more nodes the hidden 
layer has, the more complex the mapping an ANN can perform. (Mapping is the 
mathematical process within the ANN that permits it to correctly convert the 
input into output data.)  However, too many nodes in the layer can increase 
training time and cause memorization or overfitting of the data. The mapping can 
be overly specific to the training set and unable to generalize for other similar 
type data (Kirk and Lewcock 1995). Insufficient learning takes place if there are 
not enough nodes (neurons) in this layer. This is also referred to as underfitting 
of the data. MATLAB™ has a graphical representation mat permits one to 
observe the error during training. 

BP learning rule 

The learning rule referred to as the BP algorithm follows the mathematical 
method of steepest gradient descent to minimize the network error from the error 
equation. The difference between the network output value and the target value 
is calculated and then squared for each epoch (an epoch is one iteration of all the 
data) for each of the 186 signals. Then the squared terms are summed from all 
the outputs to determine the total error from all training signals. This error (not 
the data) is then propagated backwards through the network, and the weights and 
biases are changed in proportion to the magnitude of the error. After several 
thousand epochs, the network is trained. The error equation can be visualized as 
an error surface where there are local and global minima. The smallest error 
results when a global minimum is found. The process can be illustrated by a 
mountain range (Demuth and Beale 1992). In that mountain range are many 
valleys, and only one of them has the lowest elevation- That is the global 
minimum that is being sought in the training. As mentioned, the BP learning rule 
follows the mathematical technique of steepest gradient descent Imagine a 
marble rolling down a surface; the route it would take to get to the lowest 
elevation, the quickest, would be that of the steepest gradient descent There are 
a couple of disadvantages of the BP learning rule: (a) a slow learning speed and 
(b) the risk that a local minima may trap the network before reaching the desired 
global minima. The more neurons in an intermediate layer, the more freedom a 
network has (i.e. more variables to optimize) to find a global solution or a low 
error for a local solution. Although more neurons increase the training time, they 
also increase the chance that a local minimum will yield a low error, assuming 
one is unable to obtain the global minima. 

For the first iteration of the input data, the weights and biases are set 
randomly. However, it may be that the first try will yield a poor solution. It may 
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not be possible to find the global minimum, and the error of the local minimum 
that is found may not be satisfactory. A trial and error process of reinitializing the 
weights and biases may be necessary. The initialization process can be thought 
of as the starting position that is given to the marble somewhere on the mountain. 
Some starting positions on the mountain for the marble are more advantageous, 
and it may obtain a lower valley at a faster rate than some other position. 

Learning rate and momentum 

Adding a momentum term to the BP algorithm decreases the probability that 
the network will get stuck in a shallow minimum on the error surface and helps 
decrease training times. The momentum term causes the weight to adjust steadily 
in the same average direction. Another important parameter in the training is the 
learning rate. This network parameter controls the rate of the weight adjustment 
Too large a value for the learning rate results in unstable learning. The network 
can jump over valleys in the error surface that may give a suitable solution. Too 
small a value results in incredibly long training times. An adaptive learning rate 
decreases training time by keeping the learning rate reasonably high while 
ensuring stability. 

Data Preparation, Training, and Performance 

Development of measurement criteria for microcracks 

Some measurement criteria were developed for microcracks rather than 
training the ANN system on the raw input data. It was found that the higher 
frequencies of the reflected ultrasonic pulse are attenuated more from specimens 
having greater deterioration than from those specimens that are of higher quality. 
Also, the cumulative reflected energy of the UPE signals is less for the more 
deteriorated specimens than from the specimens that are sound. The dissipation 
of energy is probably greater because many of the smaller wavelengths (higher 
frequencies) from the transmitted pulse that correspond to the dimensions of the 
cracks encounter more obstacles in the specimens having greater deterioration 
and create scattering and destructive interference. 

Preprocessing of signals to emphasize important information 

Although it is not necessary to determine the relationship between signal 
features (independent variables) and deterioration (dependent variable) for 
training the ANN, it saves training time and makes the system more sensitive 
when the signals are preprocessed to emphasize the critical features, remove 
unrelated information, and reduce the amount of data. Figure 14 shows how 
typical raw signals from microcracked specimens as seen in Figure 4 have been 
conditioned to make the input data more sensitive for the ANN. First, the time- 
domain signal was converted to a frequency-domain signal by taking the Fast 
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Fourier Transform (FFT) and obtaining the power spectral density (PSD). Then, 
the PSD or energy curve was integrated with respect to frequency to yield the 
cumulative energy curve seen in Figure 14. This particular procedure for signal 
manipulation is known as Parseval's theorem It was noted that of the 
2,048 points in each integrated curve, only the first 352 points carried the bulk of 
the information. That is, there was almost no energy above 352 kHz. All points 
were trimmed from the data above the 352 points. Then the curve containing the 
352 points was decimated by removing 3 points for every 4 to reduce the 
information to 88 points. Since the curve was smooth, no significant information 
was lost in reconstructing the shape of the curve with fewer points. 

Concrete acts as low-pass mechanical filter 

The curve on the bottom of the graph (Figure 14) was obtained from 
measurements on sound concrete and shows that the accumulated reflected 
energy (12.5 joules) is high for the sound concrete. The curve on the top shows 
that the accumulated reflected energy (0.2 joules) is lower for one of the blocks 
possessing the unsound concrete. The cumulative energy from the unsound 
concrete is only about 1/60 of the cumulative energy from the sound concrete. 
Also, it was noted that the cumulative energy from the sound concrete is made up 
of both low and high frequencies. The reflected energy from the unsound 
concrete is made up of only lower frequencies (<100 kHz), since the higher 
frequencies (>100 kHz) have been filtered by the deteriorated concrete. The 
concrete acts as a mechanical low-pass filter on the energy components of the 
ultrasonic pulse. 

Training procedure for ANN 

The ANN is trained by supervised learning. The process of supervised 
learning is accomplished by presenting the network with a set of input and output 
values. Then, the connection weights are altered by a process called learning. 
Each of the 186 signals used for training the network contained 88 points. Five 
UPE measurements were reserved from each concrete block for a total of 
30 signals for testing the performance (validation phase) of the trained network. 
The connection weights and biases were given random values for the first 
iteration. It took over 50,000 epochs and 15 hr to train the model. The ANN 
looks at its own error for each signal by subtracting the network-estimated 
velocity (network output) from the measured velocity (target values), squaring the 
difference, summing all the squared differences for each signal, calculating the 
mean of those errors, and using the magnitude of the error to proportionally 
readjust and recalculate all the weighing factors until the error function is reduced 
to a minimum. 

Performance of ANN on training data 

The graph in Figure 15 shows the difference between the output UPV that the 
ANN estimated and the target UPV. The least-squares fit gave a correlation 
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coefficient of 98.6 percent The greatest error in the interpretation lies in the 
range from 2,438 to 3,353 m/sec (8,000 to 11,000 ft/sec). It is important that the 
network be able to generalize beyond the training examples instead of simply 
memorizing them In the literature, memorizing is also referred to as overfitting 
and overlearning of the data Also, the ANN should never be trained with the 
data used to test the model (Meier and Rix 1995). 

Performance of ANN on test data 

Figure 16 shows the performance of the ANN system to estimate the target 
UPV on specimens not used in the training. The x-axis is the target velocity, and 
the y-axis is the output velocity. A least-squares fit of the data yielded an 
84.8-percent correlation coefficient. The performance of the ANN was better in 
predicting sound concrete. Although the fit was satisfactory, it is possible that 
the fit can be improved. Since the fit on the training data was high (correlation 
coefficient 98.6 percent), the network might have ova-learned (overfitted, 
memorized, etc.) the data and was unable to generalize on the test data properly. 
Remember mat the test data came from the same concrete standards and should 
have been representative of the training data. 
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Conclusions and 
Recommendations 

Conclusions 

This is a first attempt in civil engineering to create concrete deterioration 
standards containing uniform microcracks of differing degrees. This 
investigation was initiated to determine if it was feasible to use the ANN to 
automate the interpretation of UPE signals made from concrete possessing 
deterioration of the continuous-interface type. The result of this investigation 
indicates that the ANN can be used to automate the interpretation of UPE signals 
and does it efficiently. The system was able to rank all six concrete deterioration 
standards in the correct order of deterioration. 

Later tests in the laboratory on a poor concrete indicated mat the V-meter does 
not measure the correct UPV for weak signals. The display of the TOA of the 
pulse from the V-meter is apparently triggered by a threshold circuit If the 
ultrasonic pulse arriving at the receiving transducer has been seriously attenuated, 
the system may trigger on the fifth cycle, the ninth cycle, or the number of the 
cycle that has enough amplitude to trigger the display rather than the desired first 
cycle. The result of this phenomenon is that the V-meter measurement obtains a 
number that may be more closely related to the attenuation of the concrete rather 
than the UPV of the concrete. As noted earlier in the text, the quantity measured 
for the target velocity is not important as long as that quantity correlates with the 
degree of deterioration. However, for those who may attempt to reproduce this 
work, it may be advantageous to keep the consideration above in mind. 

It should be noted that the ANN is not sufficient alone to provide the complete 
job of automation for defects of the continuous-interface type. A number of 
conventional or standard types of signal processing techniques, such as FFT, 
mathematical integration, PSD, etc., would be required to complete the job of 
automatic interpretation. Other types of signal processing techniques can be used 
to clean the data of noise, enhance certain desired features, and eliminate other 
unwanted features. 

The use of the ANN in automated systems has the potential to reduce 
dependency on highly skilled personnel, make use of less-experienced personnel, 
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and permit higher consistency in the decision-making process for evaluating the 
condition of concrete. Development of a UPE field unit with an on-line computer 
for making real-time data acquisition and interpretation is now occurring under 
the U.S. Army Corps of Engineer's Construction Productivity Advancement 
Research Program. This system should permit an improved detection of 
delaminations in bridge decks. 

Recommendations 

Only one concrete mixture design was studied. Now that it has been shown 
that the ANN performs well within the limits of the study, future work should 
consider other variables, especially the various types and sizes of coarse 
aggregates. The results of this investigation should allow the technology to 
have widespread use when commercialized, should the UPE system gain 
popularity. As the authors were very early on the learning curve in 1992, the 
ANN model developed may not be an optimum model. Although it may 
perform well, it is believed that the training time, complexity, and the 
performance of the network on test data can be improved. More is now known 
about the importance of optimizing the number of neurons in the hidden layer, 
processing the input data in such a way that the amount of data fed to the 
network can be reduced further, and the introduction of complex neurons into 
the field of ANN. Recently, the ANN has been developed to take a complex 
input rather than a real input as was done in this investigation (Masters 1994). 
UPE signals have the property of the signals being composed of magnitude and 
phase when transformed to the frequency domain and, hence, are ideally suited 
for complex neurons. 
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