A Technique for Calibrating the Phase Detector of Wideband Radars Using a Phase Modulation and Demodulation Scheme

by Thomas J. Pizzillo and H. Bruce Wallace

ARL-TR-1567

May 1998

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
A Technique for Calibrating the Phase Detector of Wideband Radars Using a Phase Modulation and Demodulation Scheme

Thomas J. Pizzillo and H. Bruce Wallace
Sensors and Electron Devices Directorate

Approved for public release; distribution unlimited.
Abstract

A signal processing method is presented for correcting imbalances in the phase-detection channels of a coherent, wideband radar. Several papers have addressed this problem by the use of the fast Fourier transform (FFT) as a narrowband filter (see F. E. Churchill, G. W. Ogar, and B. J. Thompson, The Correction of I and Q Errors in a Coherent Processor, IEEE Trans. Aerosp. Electron. Syst., AES-17 (January 1981), pp 131-137, and H. Bruce Wallace and Thomas J. Pizzillo, A Technique for Calibrating the Phase Detector of a Wideband Radar Using an External Target, Army Research Laboratory, ARL-TR-1521 (March 1998)). The present technique relies upon phase modulation of the transmitted waveform, then demodulation of the phase of the received waveform, and finally the integration and normalization of the waveform. There is one constraint; the number of phase-modulation/demodulation steps is restricted to $4k$, where k is an integer greater than 0. The technique is not dependent upon the target or the phase and gain flatness of the radar waveform. Errors remaining after application of this technique depend on the signal-to-noise ratio and errors in the phase modulator.
Contents

1. Introduction .. 1
2. Development of the Signal Model ... 1
3. Example of Calibration Technique With Simulated Data .. 5
4. Conclusions ... 7
Distribution .. 9
Report Documentation Page .. 13

Figures

1. Generalized narrowband phase-detector system ... 2
2. Coefficients of equation (7) with uniformly distributed phase
 modulator errors of ± 3° ... 4
3. FFT of simulated response to point target with a 3-percent gain imbalance,
 a 3° phase imbalance, and a 10-percent dc offset ... 5
4. Data of figure 3 with M = 4 and no phase-modulator errors .. 6
5. Data of figure 3 with M = 4 and uniformly distributed phase-modulator
 errors of ± 3° .. 6
1. Introduction

Inverse synthetic aperture radars (ISARs) transmit a wideband waveform to derive range information. Most systems use a linear- or stepped-frequency modulated waveform, generated by either analog or digital means, that may be processed with a fast Fourier transform (FFT) to create a high-resolution range profile. To be effective, the returned signal that the radar measures must be related to the transmitted signal or to an internal reference signal in a known fashion. While this comparison may be made in a wideband phase-comparison receiver, this report concentrates on the use of a narrowband phase-detector system with stepped frequency. In this class of system, the received signal is down-converted into a narrowband signal and then separated into the received two coherent signal channels that are then mixed with two orthogonal local oscillator (LO) signals. The calibration technique presented here is an improvement of the method in Wallace and Pizzillo\(^2\) and Churchill\(^3\) in that the calibration does not require the FFT and reduces processing time. In addition, it improves on the method in Wallace and Pizzillo\(^2\) in that the dc components are removed as part of the process and it does not generate correction factors; thus it eliminates errors associated with estimates in the corrected data.

This report introduces our basic assumptions and develops a signal model based on them. This technique will then be applied to simulated data and performance efficiency will be considered.

2. Development of the Signal Model

Figure 1 is a block diagram of the pertinent portions of the transmit and receive sections of the radar. A 4-GHz coherent oscillator (COHO) is split before being phase-modulated in the transmitter and used as the LO for the phase detector in the receiver. The resultant in-phase (I) and quadrature-phase (Q) signals define the real and imaginary parts of the received signal. Before the phase detector, this signal is of the form

\[
S(f,m) = Ae^{i\left(\frac{\Theta(f)}{M} + \frac{2\pi m}{M}\right)},
\]

(1)

where \(f = [f_1, f_2, ..., f_N]\) represents the \(N\) frequency steps of a pulse compression system; \(\Theta(f)\) represents the relative phase that is linearly...
Figure 1. Generalized narrowband phase-detector system.

dependent on frequency; \(m = [1... m ... M] \) is the number of phase-modulation steps for each frequency step; and \(A \) is the amplitude of the received signal that has been scattered by the target. With the exception of noise corruption, this is the ideal form of the signal to be processed by the phase detector. Additionally, if the phase detector were perfect, the measured outputs from each channel for a point target would be represented by two \(M \times N \) arrays that are then digitally demodulated, integrated, and normalized to produce two \(1 \times N \) row vectors:

\[
\hat{I}(f) = [A \cos (\theta(f_1)) ... A \cos (\theta(f_n)) ... A \cos (\theta(f_N))] , \text{ and}
\]

\[
\tilde{Q}(f) = [A \sin (\phi(f_1)) ... A \sin (\phi(f_n)) ... A \sin (\phi(f_N))] .
\]

In reality, the radar modifies the signal when it is transmitted and received due to imperfections in the system components. Figure 1 shows circuit elements that represent these imperfections: the phase modulator has a fixed, differential phase error, \(\pm \Delta_m \circ \), associated with each step, \(m \). The 90° hybrid actually shifts the LO 90° \(\pm \delta \), where \(\delta \) is a fixed differential phase error. The mixers have dc offsets represented as a voltage source referenced to ground, and the gain throughout the phase-detector system is different for the \(I \) and \(Q \) channels represented by \(G \). Because there is no loss in generality, all the error signals due to these imperfections, except dc offset and the phase-modulator error, are represented as occurring in the \(Q \) channel.

The measured signal is that which is actually produced by the radar phase detector before the digital processing. It includes the effects of each of the imperfections diagrammed in figure 1 as well as corruptions due to imperfections in the transmitted waveform, the wideband receiver, and any effects due to targets that are not purely pointlike. Because these are introduced before the phase detector, each channel is affected equally in both amplitude and phase. The effect on the \(n^{th} \) component of equation (1) due to a measurement made from the combined, imperfect system is
\[i_m(f_n) = A \cos \left(\theta(f_n) + \frac{2\pi m}{M} + \Delta_m \right) + V_{dci}, \]

and

\[\tilde{Q}_m(f_n) = GA \sin \left(\theta(f_n) + \delta + \frac{2\pi m}{M} + \Delta_m \right) + V_{dco}, \]

where \(i_m(f_n) \) and \(\tilde{Q}_m(f_n) \) are the measured I and Q signals of the \(n \)th frequency step and the \(m \)th modulation step, \(G \) represents the gain imbalance in the phase-detector channels (assumed to be positive and real), \(\delta \) represents the phase imbalance introduced by the imperfect 90° hybrid, \(\Delta_m \) is the error in the \(m \)th modulation step, and \(V_{dci} \) and \(V_{dco} \) are the dc offsets. If we assume that the target of opportunity from which we would like to measure our calibration is a point target, we need only one complete \(M \times N \) measurement to correct for all errors. This assumption is reasonable, provided the target response remains within one range cell for the duration of the measurement. The signal that is to be demodulated, integrated, and normalized is formed with equation (3) as two components of a complex pair:

\[S(f_n) = \sum_{m=0}^{M-1} e^{-j\frac{2\pi m}{M}} \left[i_m(f_n) + j\tilde{Q}_m(f_n) \right]. \]

By substituting the Euler form for the trigonometric functions in equation (4), combining \(V_{dci} \) and \(V_{dco} \) into a single term \(V \), and dropping the functional dependencies to simplify notation, we have

\[S = \frac{A}{2} \sum_{m=0}^{M-1} e^{-j\frac{2\pi m}{M}} \left[e^{j\left(\theta + \frac{2\pi m}{M} + \Delta_m \right)} + e^{-j\left(\theta + \frac{2\pi m}{M} + \Delta_m \right)} + G \left(e^{j\left(\theta + \delta + \frac{2\pi m}{M} + \Delta_m \right)} - e^{-j\left(\theta + \delta + \frac{2\pi m}{M} + \Delta_m \right)} \right) + V \]. \]

Multiplying through by the demodulation factor, factoring \(e^{j\theta} \) from each term, and rearranging we get

\[S = \frac{A e^{j\theta}}{2} \sum_{m=0}^{M-1} \left[1 + Ge^{j\delta} \right] e^{j\Delta m} + e^{-j\left(\frac{2\pi m}{M} + \Delta_m \right)} - Ge^{-j\left(\frac{2\pi m}{M} + \Delta_m \right)} + Ve^{-j\left(\frac{2\pi m}{M} \right)} \]. \]

Next we consider our sum, term by term:

\[S = \frac{A e^{j\theta}}{2} \left[1 + Ge^{j\delta} \right] \Delta + \left(1 - Ge^{-j\delta} \right) e^{-j2\theta} \beta + Ve^{-j\theta} \Gamma, \]

where \(\Delta = \sum_{m=0}^{M-1} e^{j\Delta m}, \beta = \sum_{m=0}^{M-1} e^{-j\left(\frac{4\pi m}{M} + \Delta_m \right)}, \) and \(\Gamma = \sum_{m=0}^{M-1} e^{-j\frac{2\pi m}{M}} \) are complex constants. If we now constrain \(M = 4k, k = 1, 2, ..., \) then \(\Gamma = 0 \) and equation (7) becomes

\[S = \frac{A e^{j\theta}}{2} \left[1 + Ge^{j\delta} \right] \Delta + \left(1 - Ge^{-j\delta} \right) \beta. \]
If the phase modulator were perfect and the Δ_m's were 0, then the complex constant Δ would evaluate to the real value M and the complex constant β would evaluate to 0. This would reduce equation (8) to

$$\tilde{S} = \frac{M}{2} \left(1 + Ge^{i\delta} \right) Ae^{i\theta}.$$

(9)

This shows that the correct phase and amplitude of the target may be recovered having only been modified by a complex constant:

$$C = \frac{M}{2} \left(1 + Ge^{i\delta} \right).$$

(10)

Because the calibration reflector measurement is modified by the same coefficient, C is normalized in the same manner as all other range and radar constants and equation (10) reduces to the ideal signal of equation (2):

$$\tilde{S}(f) = Ae^{i\theta(f)} = I(f) + jQ(f).$$

(11)

An analysis of each of the three coefficients from equation (8), assuming a uniformly distributed phase-modulator error, indicates that a more relaxed constraint than $M = 4k$ may suffice depending on the sensitivity of the system, namely $M > 2$ as indicated in figure 2. These plots were generated with a Monte Carlo simulation of 50 data sets with the Δ_m's chosen from a uniform distribution $U[-3^\circ, 3^\circ]$. If the error due to β is intolerable, one may measure the exact phase shift for each step desired and store these values in a lookup table so that the exact value may be used in the demodulation portion of this process. This ensures that β goes to 0 for $M = 4k$.

Figure 2. Coefficients of equation (8) with uniformly distributed phase modulator errors of $\pm 3^\circ$.
3. Example of Calibration Technique
 With Simulated Data

First we consider a single step; that is, let $M = 1$ in equation (3). A full
discussion of the spectral characteristics of an ideal complex pair as well
as the individual effects of dc offset and gain and phase distortions on the
spectral components may be found in Scheer and Kurtz. It concludes
that a gain imbalance provides amplitude errors at the target response of
$(A/2)(1 + G)$ and of $(A/2)(1 - G)$ at the image response. The effect due
to nonorthogonality may be expressed as an amplitude error of
$(A/2)(1 + e^{j\delta})$ at the target response and $(A/2)(1 - e^{j\delta})$ at the image
response. Extending this argument, it is easy to show that the combined
phase and gain distortions provide the target response with an amplitude
error of $(A/2)(1 + Ge^{j\delta})$ and the image response with an amplitude error
of $(A/2)(1 - Ge^{j\delta})$. These are two of the terms of equation (7) in addition
to the dc term that would be present for the case $M = 1$. Figure 3 shows
the effect of a 3-percent gain imbalance, $G = 1.03$, a 3° phase imbalance,
$\delta = 3^\circ$, and a dc offset in the I and Q channels of 10 percent. Figure 4
shows the same data as figure 3 for the case $M = 4$ and no phase-
modulation errors; that is, the Δ_n's = 0. Both the image response and the
dc response have been eliminated and the target response has increased
as a result of the $M = 4$ multiplier. Figure 5 shows the same data as

![Figure 3. FFT of simulated response to point target with a 3-percent gain
imbalance, a 3° phase imbalance, and a 10-percent dc offset.]

Y = FFT of $\tilde{S}(f_n)$ in equation (4).

Figure 4. Data of figure 3 with $M = 4$ and no phase-modulator errors. The effect of the phase-modulation error is an image response 62 dB down from the target response that results from the combined errors of the system, $\beta^*(A/2)(1 - Ge^{i\delta})$.

Figure 5. Data of figure 3 with $M = 4$ and uniformly distributed phase-modulator errors of $\pm 3^\circ$.

*Y = FFT of \tilde{S} in equation (9).
4. Conclusions

A method for correcting the I and Q imbalances of a wideband radar has been presented that requires no internal phase-calibration hardware. The technique relies upon phase modulation of the transmitted signal and then digital demodulation, integration, and normalization of a single data set to eliminate distortions due to gain and phase imbalances as well as dc offsets in the signal channels. Some image response remains after processing if errors in the phase modulator are not accounted for; however, these errors may readily be resolved with the exact modulator values stored in a lookup table.
Distribution

Adminstr
Defns Techl Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Minister of Defense
Attn A Priou
Paris 22333
France

Ofc of the Dir Rsrch and Engrg
Attn R Menz
Pentagon Rm 3E1089
Washington DC 20301-3080

Ofc of the Secy of Defns
Attn ODDRE (R&AT) G Singley
Attn ODDRE (R&AT) S Gontarek
The Pentagon
Washington DC 20301-3080

OSD
Attn OUSD(A&T)/ODDDR&E(R) R Tru
Washington DC 20301-7100

Under Secy of Defns for Rsrch & Engrg
Attn Rsrch & Advncd Techlgy
Depart of Defns
Washington DC 20301

CECOM
Attn PM GPS COL S Young
FT Monmouth NJ 07703

CECOM NVESD
Attn AMSEL-RD-NV-ASD M Kelley
Attn AMSEL-RD-NV-TISD F Petito
FT Belvoir VA 22060

CECOM
Sp & Terrestrial Commctn Div
Attn AMSEL-RD-ST-MC-M H Soicher
FT Monmouth NJ 07703-5203

Dir of Assessment and Eval
Attn SARD-ZD H K Fallin Jr
103 Army Pentagon Rm 2E673
Washington DC 20301-0163

Dpty Assist Secy for Rsrch & Techl
Attn SARD-TT F Milton Rm 3E479
The Pentagon
Washington DC 20301-0103

Hdqtrs Dept of the Army
Attn DAMO-PDT D Schmidt
400 Army Pentagon Rm 3C514
Washington DC 20301-0460

MICOM RDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 35898-5240

NGIC
Attn Iang RSC S Carter
Charlottesville VA 22902-5396

US Army Armament RDE Ctr
Attn SMCAR-FSP-A1 M Rosenbluth
Attn SMCAR-FSP-A1 R Collett
Picatinny Arsenal NJ 07806-5000

US Army CECOM NVESD
Attn AMSEL-RD-NV-RSPO A Tarbell
Attn AMSEL-RD-SR-R J Borowick
Mailstop 1112
FT Monmouth NJ 07703-5000

US Army Edgewood Rsrch, Dev, & Engrg Ctr
Attn SCBRD-TD J Vervier
Aberdeen Proving Ground MD 21010-5423

US Army Info Sys Engrg Cmd
Attn ASQB-OTD F Jenia
FT Huachuca AZ 85613-5300

US Army Materiel Sys Analysis Agency
Attn AMXSY-D J McCarthy
Aberdeen Proving Ground MD 21005-5071

US Army Matl Command
Attn AMCDEM Dir for Plans & Analysis
5001 Eisenhower Ave
Alexandria VA 22333-0001

US Army Matl Cmd
Dpty CG for RDE Hdqtrs
Attn AMCRD BG Beauchamp
5001 Eisenhower Ave
Alexandria VA 22333-0001
Distribution (cont’d)

US Army Matl Cmd
Prin Dpty for Acquisition Hdgqts
Attn AMCDCG-A D Adams
5001 Eisenhower Ave
Alexandria VA 22333-0001

US Army Matl Cmd
Prin Dpty for Techlgy Hdgqts
Attn AMCDCG-T M Fisette
5001 Eisenhower Ave
Alexandria VA 22333-0001

US Army Missile Lab
Attn AMSMI-RD Advanced Sensors Dir
Attn AMSMI-RD Sys Simulation & Dev Dir
Attn AMSMI-RD-AS-MM G Emmons
Attn AMSMI-RD-AS-MM H Green
Attn AMSMI-RD-AS-MM M Christian
Attn AMSMI-RD-AS-MM M Mullins
Attn AMSMI-RD-AS-MM W Garner
Attn AMSMI-RD-AS-RPR Redstone Sci Info Ctr
Attn AMSMI-RD-AS-RPT Techl Info Div
Attn AMSMI-RD-SS-HW S Mobley
Redstone Arsenal AL 35809

US Army Natick Rsrch, Dev, & Engrg Ctr
Acting Techl Dir
Attn SSCNC-T P Brandler
Natick MA 01760-5002

US Army Rsrch Ofc
Attn G Iafrate
4300 S Miami Blvd
Research Triangle Park NC 27709

US Army Rsrch Ofc
Attn B D Guenther
Attn C Church
PO Box 12211
Research Triangle Park NC 27709-2211

US Army Simulation, Train, & Instrmntn Cmd
Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726

US Army Tank-Automtv & Armaments Cmd
Attn AMSTA-AR-TD C Spinelli
Bldg 1
Picatinny Arsenal NJ 07806-5000

US Army Tank-Automtv Cmd
Rsrch, Dev, & Engrg Ctr
Attn AMSTA-TA J Chapin
Warren MI 48397-5000

US Army Test & Eval Cmd
Attn R G Pollard III
Aberdeen Proving Ground MD 21005-5055

US Army Test & Eval Cmd
Attn STEWS-TE-AF P Moreno
Attn STEWS-TE-LG S Dickerson
White Sands Missile Range NM 88002

US Army Train & Doctrine Cmd
Battle Lab Integration & Techl Dirctrt
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

US Military Academy
Dept of Mathematical Sci
Attn MAJ D Engen
West Point NY 10996

USACRREL
Attn G D Ashton
Attn SWOE G Koenig
Attn SWOE P Welsh
72 Lyme Rd
Hanover NH 03755

USAE Waterways Exprmnt Sta
Attn CEWES-EE-S J Curtis
Attn CEWES-EN-C W West
3909 Halls Ferry Rd
Vicksburg MS 39180-6199
Distribution (cont’d)

USATEC
Attn J N Rinker
Attn P Johnson
7701 Telegraph Rd
Alexandria VA 22315-3864

Nav Rsrch Lab
Attn 2600 Techl Info Div
4555 Overlook Ave SW
Washington DC 20375

Nav Surface Warfare Ctr
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

Nav Weapons Ctr
Attn 38 Rsrch Dept
Attn 381 Physics Div
China Lake CA 93555

AFMC Rome LAB/OC 1
Attn J Bruder
Griffiss AFB NY 13441-4314

Eglin Air Force Base
Attn 46 TW/TXSWM B Parnell
211 W Eglin Blvd Ste 128
Eglin AFB FL 32542-5000

GPS Joint Prog Ofc Dir
Attn COL J Clay
2435 Vela Way Ste 1613
Los Angeles AFB CA 90245-5500

USAF Wright Lab
Attn WL/MMGS B Sundstrum
Attn WL/MMGS R Smith
101 W. Eglin Blvd Ste 287A
Eglin AFB FL 32542-6810

Sandia Natl Lab
PO Box 5800
Albuquerque NM 87185

DARPA
Attn B Kaspar
Attn L Stotts
Attn Tech Lib
701 N Fairfax Dr
Arlington VA 22203-1714

University of Texas
ARL Electromag Group
Attn Campus Mail Code F0250 A Tucker
Austin TX 78712

Eviron Rsrch Inst of MI
Attn C L Arnold
PO Box 134001
Ann Arbor MI 48113-4001

Georgia Inst of Techlgy
Georgia Tech Rsrch Inst
Attn Radar & Instrmntn Lab N C Currie
Attn Radar & Instrmntn Lab R McMillan
Attn Radar & Instrmntn Lab T L Lane
Atlanta GA 30332

Ohio State Univ Elect Sci Lab
Attn R J Marhefka
Columbus OH 43212

Univ of Michigan Radiation Lab
Attn F Ulaby
Attn K Sarabandi
3228 EECS Bldg 1301 Beal Ave
Ann Arbor MI 48109-2122

VA Polytechnic Inst & State Univ
Elect Interaction Lab
Attn G S Brown
Bradley Dept of Elect Engrg
Blacksburg VA 24061-0111

Dir for MANPRINT
Ofc of the Deputy Chief of Staff for Prsnnl
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300
Lockheed Martin Corp Elect & Missile Div
Attn E Weatherwax
5600 Sand Lake Rd Mail Stop 450
Orlando FL 32819

MIT Lincoln Lab
Attn E Austin
Attn W Keicher
PO Box 73
Lexington MA 02173-9108

Simulation Tech
Attn A V Saylor
Attn D P Barr
PO Box 7009
Huntsville AL 35807

US Army Rsrch Lab
Attn AMSRL-CS-AL-TP Tech Pub (3 copies)
Attn AMSRL-SE J M Miller
Attn AMSRL-SE J Pellegrino
Attn AMSRL-SE-D E Scannell
Attn AMSRL-SE-EE Z G Sztankay
Attn AMSRL-SE-E D Wilmot
Attn AMSRL-SE-R B Wallace
Attn AMSRL-SE-RM C Ly
Attn AMSRL-SE-RM D Hutchins
Attn AMSRL-SE-RM D Wikner
Attn AMSRL-SE-RM E Burke
Attn AMSRL-SE-RM G Goldman
Attn AMSRL-SE-RM H Dropkin
Attn AMSRL-SE-RM J Nemarich
Attn AMSRL-SE-RM J Silverstein
Attn AMSRL-SE-RM J Silvious
Attn AMSRL-SE-RM D Vance
Attn AMSRL-SE-RM R Dahlstrom
Attn AMSRL-SE-RM R Wellman
Attn AMSRL-SE-RM E Adler
Attn AMSRL-SE-RM R Harris
Attn AMSRL-SE-RM K Tom
Attn AMSRL-SE-RM W Wiebach
Attn AMSRL-SE-RM J Speulstra
Attn AMSRL-SE-RM J Clark
Attn AMSRL-SE-RM T Pizzillo (20 copies)
Attn AMSRL-SE-RU B Scheiner
Attn AMSRL-SE-RU J Sichina
Adelphi MD 20783-1197
A signal processing method is presented for correcting imbalances in the phase-detection channels of a coherent, wideband radar. Several papers have addressed this problem by the use of the fast Fourier transform (FFT) as a narrowband filter (see F. E. Churchill, G. W. Ogar, and B. J. Thompson, The Correction of I and Q Errors in a Coherent Processor, IEEE Trans. Aerosp. and Electron. Syst., AES-17 (January 1981), pp 131–137, and H. Bruce Wallace and Thomas J. Pizzillo, A Technique for Calibrating the Phase Detector of a Wideband Radar Using an External Target, Army Research Laboratory, ARL-TR-1521 (March 1998)). The present technique relies upon phase modulation of the transmitted waveform, then demodulation of the phase of the received waveform, and finally the integration and normalization of the waveform. There is one constraint; the number of phase-modulation/demodulation steps is restricted to $4k$, where k is an integer greater than 0. The technique is not dependent upon the target or the phase and gain flatness of the radar waveform. Errors remaining after application of this technique depend on the signal-to-noise ratio and errors in the phase modulator.