
RL-TR-97-255 
In-House Report 
April 1998 

OPTICAL NEURAL NETWORK CLASSIFIER 
ARCHITECTURES 

Mark A. Getbehead, James B. Rosetti, Wesley E. Foor, Samuel P. Kozaitis 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

AIR FORCE RESEARCH LABORATORY 
ROME RESEARCH SITE 

ROME, NEW YORK 

JmQ QUALIFY mSFEiSTED s 

<jn 



This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS). At NTIS it will be releasable to the general public, 
including foreign nations. 

RL-TR-97-255 has been reviewed and is approved for publication. 

APPROVED: 
ANDREW R. PIRICH, Chief 
Photonics Processing Branch 

FOR THE DIRECTOR: *~L&^1~) "^ - Ä^^^ 
GARY DTBARMORE, Maj, USAF 
Chief, Rome Operations Office 
Sensors Directorate 

If your address has changed or if you wish to be removed from the Air Force Research 
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by 
your organization, please notify AFRL/SNDP, 25 Electronic Parkway, Rome, NY 13441- 
4515. This will assist us in maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public repotting burden lor tbis collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching easting da a sources, gathering and ma ntaimng the data needed, and completing and viewing 
■SSmOMmZm. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggests for reducmg this buj^den to Washington Headquarters Services, Directorate for Information 

0™ere ionsand Reports 1216 Jefferson Davis Highway/Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (070401881, Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

 April 1998 

3. REPORT TYPE AND DATES COVERED 

In-House      Oct 96 - Sep 97 
4. TITLE AND SUBTITLE 

OPTICAL NEURAL NETWORK CLASSIFIER ARCHITECTURES 

6. AUTHOR(S) 
Mark A. Getbehead, James B. Rosetti, Wesley E. Foor (Air Force Research Lab) 
Samuel P. Kozaitis (Florida Institute of Technology) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory/SNDP 
25 Electronic Parkway 
Rome NY 13441-4515 

9. SP0NS0RINGIM0NIT0RING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory/SNDP 
25 Electronic Parkway 
Rome NY 13441-4515 

5. FUNDING NUMBERS 

C     ■ 
PE 
PR 
TA 
WU 

N/A 
62702F 
4600 
PI 
33 

. PERFORMING ORGANIZATION 
REPORT NUMBER 

RL-TR-97-255 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

RL-TR-97-255 

11. SUPPLEMENTARY NOTES 

Air Force Research Laboratory Project Engineer: Mark A. Getbehead/SNDP/(315) 330-4146 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT {Maximum 200 words) 
We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize 
real-time processing and classification of high-dimensional data for Air Force Hostile Target Identification (HTI). This 
architecture utilizes a grayscale-input radial basis function neural network based on a previously demonstrated binary-input 
version. The greyscale-input capability broadens the range of applications for the classifier by allowing it to handle 8 bit 
input data. We characterized a key component of this system, a variable phase retarder, and found that the phase uniformity 
changed less than 7% with applied voltage. An optical wavelet transform preprocessor is also discussed. The preprocessor 
produces a reduced feature set of multiwavelet images to improve training times and discrimination capability of the neural 
network. The design uses a joint transform correlator (JTC) to provide cross correlations of multiple input images. We 
present experimental results for a JTC which used four input images generated with a spatial light modulator. We then 
propose using wavelet functions as input images to perform a multiwavelet feature extraction. The results from the retarder 
characterization and optical wavelet transform work were to be used in a software simulation of the neural network system to 
determine its feasibility. However, this work remains unfinished as this project was canceled due to budget cuts. 

14. SUBJECT TERMS 

Optical Neural Networks, Radial Basis Functions, Pattern Recognition, Optical Wavelet 
Transform, Multiscale Image Processing 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

56 
16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

UL 

OTIC QTJALEC2 IB jgi^O'^ÜtAJ i 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 238.18 
Designed using Perform Pro, WHSIDI0R, Oct 94 



Abstract 

We present an adaptive opto-electronic neural network hardware architecture 
capable of exploiting parallel optics to realize real-time processing and classification of 
high-dimensional data for Air Force Hostile Target Identification (HTI). This 
architecture utilizes a grayscale-input radial basis function neural network based on a 
previously demonstrated binary-input version. The greyscale-input capability broadens 
the range of applications for the classifier by allowing it to handle 8 bit input data. We 
characterized a key component of this system, a variable phase retarder, and found that 
the phase uniformity changed less than 7% with applied voltage. An optical wavelet 
transform preprocessor is also discussed. The preprocessor produces a reduced feature 
set of multiwavelet images to improve training times and discrimination capability of the 
neural network. The design uses a joint transform correlator (JTC) to provide cross 
correlations of multiple input images. We present experimental results for a JTC which 
used four input images generated with a spatial light modulator. We then propose using 
wavelet functions as input images to perform a multiwavelet feature extraction. The 
results from the retarder characterization and optical wavelet transform work were to be 
used in a software simulation of the neural network system to determine its feasibility. 
However, this work remains unfinished as this project was canceled due to budget cuts. 
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1. Introduction 

Adaptive neural networks are considered to be promising architectures for real-time 
pattern recognition. Due to the large network sizes required for real-world problems 
involving imagery, these adaptive networks will be most useful for solving real-time 
problems if they are implemented in parallel hardware. The parallel processing 
capabilities of opto-electronic systems together with the relatively simple computational 
requirements of artificial neural networks make optics a natural candidate for hardware 
implementations of neural computing systems. Optical computing systems however, 
typically suffer from optical device imperfections and system noise that can degrade 
performance. By employing adaptive on-line training techniques these noise sources can 
be incorporated into an error-driven learning process to provide improved system 
performance. Neural networks therefore offer an opportunity to realize parallel optical 
computing systems that tolerate noise. 

The radial basis function (RBF) neural network has been successfully used in 
many multi-dimensional classification applications including 3D object recognition, 
radar signal classification,3 face recognition,4'5 fingerprint recognition 6, speech 
recognition,7 and handwritten character recognition.8'9'10 Other applications of RBF 
neural networks include nonlinear function approximation,11'12'' kernel regression  , 
'neural beamforming' for phased-array antennas1,415'16'17 equalization of time-dispersive 
communication channels, and nonlinear modeling and prediction for echo cancellation in 
the presence of nonlinear distortion.18 Previous experiments have shown that RBF 
networks have similar classification performance to backpropagation neural networks 
while typically incurring shorter training times.8 Both all-electronic19 and opto- 
electronic20'10 parallel hardware implementations of RBF networks have been reported. 

An important extension of current RBF networks, and a major topic in this report, 
is the development of an optical RBF network classifier permiting analog and complex 
valued input signals. One particular application of a complex-input system is radar 
direction finding. A new antenna beamforming approach 'neural beamforming', has been 
developed at Air Force Research Laboratory by researchers Major Jeffrey Simmers and 
Dr. Hugh Southall of RL/ERAS and Terry O'Donnell from the ARCON 
Corporation.14'15'16'17 Their goal is to design neural processing algorithms that can adapt 
to low cost phased-array antennas, even if the antennas behave in a nonlinear manner, are 
imperfectly manufactured, or become degraded after some period of time. Neural 
beamforming techniques can decrease antenna manufacturing and maintenance costs and 
increase mission time and performance between repair actions. The group is now 
beginning to search for parallel processing hardware in order to meet this signal 
processing demand. The analog adaptive optical RBF classifier system, described in this 
report, may present a viable solution to this large, real-time problem. 

The training time of a neural network can be decreased by reducing the size of the 
feature set. In addition, the quality of features input to the neural network will influence 



its recognition rate. In applications using focal plane imagery, the image pixels can be 
used as features. However, image pixels are typically numerous and form an 
unnecessarily large feature set. 

Image edges are a more compact feature set than image pixels. Edges represent 
important image features like object boundaries and textures. Multiscale edge features 
are required to represent objects and textures of different sizes.21 Wavelet transforms, 
currently popular in signal processing, perform a multiscale or multiresolution analysis of 
an image. The resulting wavelet representation contain edge features at multiple scales. 
We can extract multiple wavelet-scale version of an image with an optical imaging 
system based on the joint-transform correlator (JTC). 

The main difference between a JTC and a conventional Vanderlugt (4f) correlator 
is that the images in the JTC are encoded in the spatial domain. In terms of their output, 
both types of correlators perform the same operation, the cross-correlation between two' 
images. In a 4f correlator, the Fourier transform of an input image is imaged onto the 
Fourier transform of a reference image. In a JTC, both input and reference images are 
input simultaneously in the spatial domain, then the Fourier transform is performed. The 
JTC has certain advantages when compared to the 4f correlator such as ease of alignment 
and avoiding spatial filter synthesis.22,23 

Although most configurations of the JTC use two input images, the use of 
multiple input images may allow additional functions to be performed. For example, an 
image and two different wavelets were used in a JTC for multispectral (multiwavelet) 
wavelet feature extraction of the image.24 In this approach, different versions of an input 
image corresponding to different wavelet scales appeared at different locations in the 
output plane. Another JTC configuration used three inputs, but required an additional 
electronic optical processing step to implement the wavelet transform.25 Another 
approach used two SLMs with holographic mask to produce a wavelet-based JTC.26 In 
addition, a JTC was used with a single reference image and multiple inputs,27 and color 
pattern recognition was achieved with a multichannel approach.28 Although the wavelet 
transform has provided an application for a JTC with multiple inputs29, a generalized JTC 
with multiple inputs may find more applications including those in other areas if its 
output function was properly described. 

One goal of this project was to develop an optical wavelet preprocessor. This 
preprocessor design uses a JTC to extract multiscale features from an input image and 
provide these features to an optical RBF classifier. 

In this report, we begin in Chapter 2 by reviewing theory of adaptive radial basis 
function neural networks. We then describe the architecture for a optical RBF classifier 
that facilitates on-line learning to offer robustness to noise and optical system 
imperfections. In Chapter 3, we propose a grayscale-input data classifier for use with 
non-binary (8 bit or analog) signals. We then present results of the characterization of a 
variable retarder to be used for the image subtraction. In Chapter 4, we describe ongoing 



work in the development of a multiscale optical wavelet transform system intended for 
use as an image preprocessor for the classifier. The general theory of a conventional JTC 
is presented then extended to a multiple input JTC. We show experimental results for a 
joint transform correlator which used four input images generated with a spatial light 
modulator. We then describe how a multiple-input JTC can be used for multiwavelet 
analysis and propose an architecture that has the same space-bandwidth product as a two- 
input JTC. Finally, in Chapter 5, we present conclusions and future directions for this 
work. 



2. Binary Input Neural Network Classifier. 

In this chapter we briefly describe a binary-input data optical radial basis function (RBF) 
neural network classifier. Many classifier applications either use binary data directly or 
may be converted to a binary data format with acceptable degradation including: optical 
character recognition, fingerprint identification, (edge-enhanced) template matching, and 
certain disparity computations. More details of this binary-input system design and its 
application to handwritten digit recognition can be found in earlier publications10'30 and 
also in our report from a previous project.31 

2.1 Radial Basis Function Neural Networks 

A single-output multilayer neural network can be regarded as a continuous input-output 
mapping, 9tN->9?. The network should behave well in the presence of noise and correctly 
generalize when a previously unseen input pattern is presented. To obtain these 
characteristics we may impose smoothing constraints on the input-output mapping as 
derived from regularization techniques and approximation theory.1 Approximation 
theory attempts to provide an optimal solution to approximating a continuous 
multivariate function/(x), with an approximating junction f(w,x), where x is a N 
dimensional input vector and w is a parameter vector used to minimize the approximation 
error. The set of M input vectors comprise the training set on which the desired input- 
output mapping, {x, ->/(x(); i =\,...,M }, is defined. 

The RBF approximation scheme arises when certain symmetry assumptions are 
made about the smoothing constraints utilized in the regularized solution and corresponds 
to an approximating function of the form 

M 

/o,*)=2a.exp 
x-t' 

1=1 aj 
(2.1) 

where {t!} is a set of center locations, {a,} are the corresponding center widths, and {a,} 
are a set of weighting factors. These three sets define the parameters of w. 

The approximation function given above can be represented in the form of a one- 
layer neural network as shown in Figure 2.1. The hidden layer RBF node response is 
given by 

y. = exp 
'   'x-tf' 

(2.2) 



where t' is the neuron center and a, is the neuron width. In contrast to conventional 
networks, which use inner products, the first layer requires the calculation of a Euclidean 
distance. In addition, the neuron response is not sigmoidal but corresponds to a exp(- 
x^O2) function. For a multiple-output RBF network, the kth output node response to an 
input vector x is given by 

M 

r=i 

'-jx-tf 
(2.3) 

Oh where aik is the connection weight between the ith RBF node and the km output node. A 
class-based clustering algorithm was applied to the training set to improve the first layer 
hardware efficiency and to eliminate redundant center locations. 

Bias Node 

Input Layer 

CZUfi 

cm h 

Output Layer 

RBF Layer 

Figure 2.1: Schematic diagram of RBF neural network for digit recognition. 



One can train parameters {a,} and {a,*} by minimizing the squared error at each 
output node, using a gradient descent technique. The squared error of the kth output node 
in the presence of the single input vector x' is defined as 

(^)2=[A(w,x')-/t(x')]2 

The gradient descent update equation for thep'h RBF width is 

'P 
K*J 

-^(/^(Ix'-tf^exp 
\2\ 

(2.4) 

where aa is the acceleration constant for the width update. The update equation for the 
interconnection weight between the pth RBF node and the k'h output node is 

A(apk) = aa(El
kYcxV 

x'-H 
(2.5) 

where ao is the acceleration constant for the weight update. The iterative update 
equations are applied after each training input vector is presented. 

2.2 Previous Results 

In previous work, we used handwritten digit recognition to evaluate the performance of 
our RBF neural network classifier.    We trained and tested a software version of the 
network described above. The best results obtained were 100.0% recognition of the 
training set and 97.7% correct recognition of the testing set data. These recognition rates 
serve as a baseline for evaluating the performance of future optical RBF neural network 
designs. 

2.3 Optical RBF Neural Network 

Here we describe an optoelectronic implementation of a parallel RBF neural network 
classifier. The hardware implementation of the RBF classifier is composed of two 
subsystems; the first is a parallel Euclidean distance computer, which we implement in 
optics. This subsystem is spatially multiplexed and makes use of two-dimensional SLM's 
to represent the center locations. The second subsystem evaluates the basis functions and 
performs the interconnect weighting between the RBF layer and the output layer. An 
electronic hardware design is proposed for implementing the postprocessing subsystem. 



In our system the optically computed distances are captured with a CCD camera and the 
postprocessor is simulated in software. 

2.3.1 Parallel Optical Distance Computation 
The first layer of the RBF neural network computes the Euclidean distance between the 
input and each of the centers. The Euclidean distances {d1} , between vector x and the 
centers {t1}, can be written as 

7=1 ;'=i 

(2.6) 

where 

d,
]=xJt

i
J+xJij, (2.7) 

for the case of binary vectors. The overbar indicates a bitwise complement. We can 
implement this distance computation in parallel hardware by using the optical system 
shown in Figure 2.2. This system is spatially multiplexed, in contrast with previously 

9(1 ^9 
demonstrated time-multiplexed optical disk-based systems.  '   The light in LEG 1 of the 
system illuminates the input SLM, labeled x and is then collimated in the y direction and 
imaged in the x direction onto the centers SLM, labeled t). The result that appears 
immediately behind the centers SLM is the product term { Xjtj ; z'=l,... ,M; j=l,... ,N}, 

Postprocessing Chip 

Contrast Reversal SLM 
(LCLV) 

Figure 2.2: Dual-rail vector-matrix multiplier used as a parallel optical distance 
computer. 



which is required in the distance computation. LEG 2 of the system forms the products 

[Xjt]} 

in a similar fashion. The results of these vector-matrix multipliers are simultaneously 
imaged onto a contrast-reversing liquid-crystal light valve (LCLV) SLM, where they are 
superimposed to form the terms {d'j}. The result of the contrast reversal yields the {d)} 

terms and the final integration operation 1% d), is performed with a cylindrical lens. 
For real-time operation, electronically addressed one-dimensional SLM's would be used 
for the x and x inputs. 

The accuracy of the optical distance computation and its influence on 
classification rate were quantified in a previous effort.22 It was found that the average 
rms error for the optical distance computation over the testing set of handwritten digits 
was 29%. The large magnitude of this error lead us to believe that we would have a large 
classification error in our system. The errors in the optical distance computation were 
due to device imperfections and system noise. 

The optically computed distances were fed into a simulation of the radial basis 
function (RBF) neural network to determine the overall recognition rate for the optical 
classifier. The resulting recognition rate of 31.0% was very poor. It did not agree with 
the 97.7% testing recognition rate from the RBF network simulations reported in Section 
2.2. It was evident that the distance errors caused by the optical system imperfections had 
a catastrophic effect upon the overall system performance. 

2.3.2 Parallel Basis Function Evaluation 

We now consider the second subsystem of the RBF classifier, which performs the basis 
function evaluation and output interconnect weighting. The block diagram in Figure 2.3 
shows a possible electronic implementation of the subsystem for the single output case.20 

Each array of 198 modules provides a single network output; therefore, we require ten 
such arrays for our application. Note that all of the proposed operations are local, with 
exception of the global sum, and are compactly achievable in analog VLSI circuitry. It is 
also possible, however, that digital techniques would be desirable in order to increase 
processing speed and/or accuracy within the postprocessor. In this nonadaptive 
postprocessor the network center widths and interconnection weights can be trained off 
line in software and then downloaded to the chip during operation. In our current neural 
network the electronic postprocessor chip is emulated in software. 

2.3.3 Overview of Previous Results from a System Noise Analysis 

To determine why the optical distance computation and consequently the 
recognition rate were so bad, we performed a noise analysis of the optical RBF system in 
a previous effort.22 This was done using a detailed computer model that used parameters 
taken from the actual optical hardware. The noise terms that were incorporated in the 
model included optical system imperfections (illumination nonuniformities, input and 
centers SLM finite contrast, and optical system point-spread function), LCLV response 



(intensity transfer function and spatial resolution), and detector response (analog-to- 
digital quantization error and detector random noise). Each noise term was characterized 
in terms of its effect on the optical distance computation. The model performed well as it 
produced a recognition rate of 28.0% vs. 31.0% for the actual optically computed data. 
Simulation results indicated the liquid crystal light valve, used for contrast reversal, was 
the primary error source in the system. 

Detector 

Module 2 

(l/02)2 -*Kx) 

a2 

f X 
-X 
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i 

Figure 2.3: Non-adaptive RBF postprocessing chip for a single-output network. 

2.4 Adaptive Optical Radial Basis Function Neural Network 

As we have seen in Section 2.3, our optical hardware network performance greatly suffers 
because of errors in distance computation caused by optical system imperfections and 
noise. We expect that by training our optical system in the presence of these 
imperfections, the network will compensate for these errors and its performance will 
more closely match that of the software RBF network. In this section we consider an 

20 adaptive postprocessor. 

By modifying the non-adaptive single-output postprocessor presented in Section 
2.3, we can incorporate error feedback in order to implement on-line network training. 
Using the electronic module shown in Figure 2.4, we can directly implement the gradient 
descent update Equations (2.4) and (2.5). In addition to error feedback for each module, 
we also require accumulation registers for adapting both the RBF widths and weights in 
an iterative fashion. As in the non-adaptive case we require ten arrays, each consisting of 



198 modules for the optical fully-parallel implementation of the digit recognition RBF 
network shown in Figure 2.1. 

Simulation results indicated that on-line training compensated for optical 
imperfections and errors and significantly improved the performance of the classifier. 
Using the actual optically computed testing distances together with the on-line learning 
gave a final recognition rate of 92.67%. The adaptive optical system provided almost a 
60% increase in recognition performance as compared with the non-adaptive optical RBF 
classifier. Therefore there is a significant improvement imparted by adaptive on-line 
training. 

i 
-OCr 
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Figure 2.4: Adaptive RBF postprocessing chip module. 
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3. Grayscale Input Neural Network Classifier 

In this chapter we describe a design for a grayscale input distance computer for use with 
our RBF classifier. We show that by modifying the distance computation optics of the 
binary classifier system we can develop a grayscale input capable classifier. In essence 
we replace the XOR functions with optical image subtraction optics. In this chapter, we 
briefly present an appropriate optical image subtraction method. Next, we present 
characterization results for a liquid crystal variable retarder we plan to employ in our 
system. 

3.1 Optical Image Subtraction 

Because of its simplicity we chose to perform the real-time image subtraction by a phase 
shifting method33, rather than by Fourier methods34'35 or electrooptic (via SLMs) effect 
methods.36 Reviews of optical image subtraction techniques are given in Ebersole   and 
Liu and Chao.37 

In a coherent optical system, the simplest way to achieve image subtraction is by a 
phase shifting method. As shown in Figure 3.1, two paths are split from a single coherent 
source and each illuminates an image. A phase plate or variable phase retarder is placed 
in one of the two paths to create a phase delay of n which multiplies the image in that 
path by ein = -1. The image subtraction is completed when the two paths are added 
together in the combining beamsplitter. The detector array (i.e., postprocessing chip) 
detects the magnitude of the amplitude image subtraction, which is our desired distance 
measure. 

The Euclidean distances {d1}, between the input vector x and the centers {t1}, can 
be directly computed as d' = \x-1'\ 2. We make use of a variable phase retarder in order to 
easily adjust the phase delay without disturbing the position of the mounted optical 
components. The capability of phase delay adjustments also permits us to perform 
software error analysis over a wide operating range. We begin by characterizing the 
liquid crystal variable retarder to be used in our system. 

3.2 Retardance Uniformity of the Meadowlark Optics Liquid Crystal 
Variable Retarder 

In this section, we characterize the Meadowlark Optics liquid crystal variable 
retarder. The objective is to measure the uniformity of retardance across its aperture. In 
previous experiments we measured the amount of retardance the device produced as a 
function of voltage. 

11 
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Figure 3.1: Optical image subtracter using phase-shifter. 
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Figure 3.2: Optical image subtracter used as a grayscale-input parallel distance 
computer. 
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3.2.1 Theory of Operation 
The retarder operates on the principle of birefringence. Birefringence is the property 
where a material exhibits two different indices of refraction along two different optical 
paths. These refractive indices are termed the ordinary refractive index, n0, and 
extraordinary refractive index, ne. Recall the equation for the speed of light, v, traveling 
through some material is 

v = c/n, (3.1) 

where c is the speed of light in a vacuum, and n is the index of refraction parallel to the 
axis of polarization of the light. For the type of material used in this retarder, ne > n0, and 
thus ne is termed the slow axis and n„ is termed the fast axis. Light polarized parallel to 
the slow axis travels slower than light polarized parallel to the fast axis. 

The retarder consists of a liquid crystal material sandwiched between two glass 
windows. Each of these windows has a layer of optically transparent, electrically 
conductive indium tin oxide (ITO) applied. The liquid crystal is a birefringent material 
whose birefringence is dependent upon the alignment of the liquid crystal molecules. This 
alignment can be changed by applying an electric field, via the ITO, which changes the 
orientation of the molecules. The long axis of the molecules determines the slow axis, 
and with no electric field applied, the molecules lie parallel to the glass windows and 
exhibit a maximum index of refraction, ne. When an electric field is applied, the 
molecules start to align themselves with the field which decreases ne, and thus decreases 
the amount of birefringence. 

To demonstrate a use of the retarder, assume linearly polarized light, whose axis 
of polarization is aligned between the fast and slow axis of the birefringent material, is 
incident on the retarder. This causes the phase of one orthogonal component of the light 
to lag the other which changes the polarization of the light. By varying the electric field, 
one can obtain various output polarizations. These polarizations range from linear to 
elliptical to circular, depending on how much one orthogonal component is lagged behind 
the other. This change in polarization can be used to make the device act as a variable 
attenuator by placing a polarizer and analyzer before and after the device, respectively. If 
the incident light's axis of polarization is 45 degrees from the slow (or fast) axis of the 
retarder (Figure 3.3), the resulting transmittance, Tis the following function of 
retardance, R: 

r = sin2(l). (3-2) 
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Figure 3.3: Retarder used as an attenuator 

Another use of the retarder is to adjust the optical path length of light. If one aligns the 
axis of polarization of linearly polarized light to the slow axis of the retarder, that 
polarization will undergo a phase change caused by ne. Thus, varying ne by applying an 
electric field across the liquid crystal material, one can dynamically adjust the optical path 
length. This is how the retarder is to be used in the experiment. 

3.2.2 Procedure 

The uniformity measurements are made using the principle described in "Theory of 
Operation" and shown in 3.3. The setup used is shown in Figure 3.4.   The beam splitter 
and optical power meter A are used to monitor any fluctuations in the laser's output 
power in order to compensate for it. The resulting amplitude measured by the optical 
power meter B is a sine squared function of the retardance. Translating the device across 
the incident laser will give a profile of the retardance. 

The device was mounted on two Klinger programmable translation stages. The 
stages were moved 2 mm in each axis. A 10 by 10 array of data points was collected 
across the face of the device at four different applied voltages (retardances). This was 
repeated 10 times (runs) to ensure data integrity. The four different voltages were chosen 
to allow enough optical power to reach the detector (to reduce sensitivity to noise) and to 
give an adequate sample across the operating voltages of the device (see Figure 3.5). The 
retardance was then calculated and graphed. For each voltage, the standard deviation of 
each array point of the 10 runs was calculated to make sure the data was valid. 

3.2.3 Results 

For each array point across the aperture, the standard deviation was calculated using the 
values for all ten runs. Table 3.1 shows the maximum standard deviation found. Also is 
shown the retardance of that data point, averaged across the ten runs. 
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Figure 3.4: Experiment Setup 
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Figure 3.5: Optical Power Vs. Applied Voltage 
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2 Volts 3 Volts 4 Volts 10 Volts 
Average Retardance (radians) 2.54 1.34 0.527 0.527 
Maximum Standard Deviation 0.0417 0.0110 0.00822 0.00134 

Table 3.1: Accuracy of Measurements. 

Table 3.2 shows minimum and maximum phase retardance found for one data run which 
is typical of the other nine runs. Note, the average retardance in this table refers to the 
average of the 100 data points for this run only (not to be confused with the averages in 
Table 3.1). This table shows the retardance varies across the aperture no more than seven 
percent. 

2 Volts 3 Volts 4 Volts 10 Volts 
Minimum Retardance 2.54 1.32 0.513 0.495 
Maximum Retardance 2.70 1.40 0.574 0.543 
Average Retardance 2.65 1.36 0.537 0.527 

Table 3.2: Minimum and Maximum Retardance Values 

Figures 3.6 through 3.9 are graphs of this run. These graphs show how the phase varies 
spatially across the aperture for each applied voltage. 
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Figure 3.6: Phase Uniformity at 2V 
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Spatial Phase Uniformity, 3V (radians) 
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Figure 3.7: Phase Uniformity at 3V 
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Figure 3.8: Phase Uniformity at 4V 

17 



Spatial Phase Uniformity, 10V (radians) 
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Figure 3.9: Phase Uniformity at 10V 

3.2.4 Conclusions 
The spatial phase uniformity does appear to change with different voltages applied. 
However, the difference is not large (less than seven percent). The project was canceled 
before these results could be fed into a simulation of the neural network to see what 
impact this small variation would have. If it would adversely affect the operation of the 
network, a more complete characterization of the device would be required. 



4. Optical Wavelet Preprocessing 

In this chapter we present an imaging system, based on the joint transform correlator 
(JTC), that produces a multiple wavelet-scale features from an input image. This system 
could be used as a preprocessor by providing the features to our optical neural network 
classifier. In the next section, we briefly describe the general theory of a conventional 
JTC and then we extend the discussion to multiple inputs. Next, we provided some 
experimental results to verify the results of the theory. Finally, we describe how a 
multiple-input JTC can be used for multiwavelet analysis and propose an architecture that 
has the same space-bandwidth product as a two-input JTC. Note that all figures for this 
chapter are at the end of the chapter. 

4.1 Conventional joint-transform correlator 

To perform the correlation operation with a JTC, functions are encoded in the 
input plane. A schematic diagram of a conventional JTC is shown in Figure 4.1. To 
perform the cross-correlation between the images b(x,y) and d(x,y), they are centered atx 
= +a. A lens produces the Fourier transform when the input plane is illuminated with 
coherent light. In the Fourier plane, the complex light field is 

U = B(p,q)<Jap + D(p,q)ejap, (4.1) 

where B(p,q) is the Fourier transform of b(x,y), and similarly for d{x,y). A square-law 
device, such as a liquid crystal light valve, is placed in the Fourier plane before another 
lens which performs the Fourier transform. 

Alternatively, a camera can be used to record the power spectrum and display it on 
a spatial light modulator (SLM) before the Fourier transform is performed. The output 
intensity distribution from a square-law detector can be written as 

\U\2 = Ulf = [B(p,q) d*p + D(p,q)eJap] [B(p,q) dap + D(p,q)ejap]*. (4.2) 

Multiplying terms, taking the Fourier transform, and grouping terms results in 

/ = b(x,y) ® b(x,y) + d(x,y) ® d(x,y) + b{x,y) ® d(x+2a, y) + d(x,y) ® b(x-2a, y),   (4.3) 
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in the output plane, where ® indicates the correlation operation. The first two terms are 
the autocorrelations of the input functions and appear on the optical axis. The third and 
fourth terms are the cross-correlation between the two input functions and appear atx = 
Via shown in Figure 4.1. 

4.2 Multiple-input joint transform correlator 

We considered a JTC with an arbitrary number of input images arranged along a 
line. We used the JTC as in Figure 4.1 but considered n inputs separated by a in the input 
plane arranged along the x-axis as shown in Figure 4.2. The images were labeled aj(x,y) 
to zn(x,y), with the center image labeled as a(n+1)/2(x,y). Using this configuration, the 
complex light field in the Fourier plane was 

U = Mp,q)e^2)    +A2(p,q)e^2)    ...An+](p,q)+...An(p,q)e   ^2)    . (4.4) 

The output intensity distribution from a square-law detector was written as \U\2= 
UxU*. Multiplying nxn terms, taking the Fourier transform, and grouping terms 
resulted in 2n - 1 locations in the output plane where a correlation response would occur. 
The output plane was described as 

Y,ai(x,y)®ai(x,y) 

1 

]Ta,.(x, y)®a,.+I(x + a, y) + £«,-(*,y)®a.+2(x + 2a,y)+...  £a,(x, y)®aiHn_n(x + (n-l)a, y) 
;=i ;=! I=I 

1 n-2 n-(n-l) 

^aM(x,y)®ai(x-a,y) + Y,ai+2(x,y)®ai(x-2a,y)+... ^a^ix^)®^^^-^-!^^) 

;=i 

n-\ (4.5) 

The first term in brackets in Eq. (4.5) contains the DC terms which is the sum of 
the autocorrelations of all the input images. The second term in brackets correspond to n 
- 1 terms to the left of the DC term which are shown in Figure 4.3; each one of these 
terms is separated by a distance a. The third term is similar to the second but 
corresponds to the right of the DC term in Figure 4.3. In addition, the terms on each side 
of the DC term are the same but rotated by 7t radians as in a conventional JTC. 
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4.3 Experimental results with the multiple-input JTC 

We obtained experimental results to verify the operation of a multiple-input JTC. 
We used a JTC with an input displayed on film and an optically addressed SLM in the 
Fourier plane. We used a model SPT-25 optically-addressed SLM operating in a 
transmissive mode, manufactured by Micro-Optics Technologies Inc. To operate the 
device, light of 400nm -500nm is used as write light which is absorbed by a photosensor 
layer. Light of 600nm - 1 lOOnm is used as the read light that carries the write-light 
information. A DC bias of 2V - 15V is placed across the device for proper operation. 

Our experimental set-up is shown schematically in Figure 4.4. The Argon laser 
used a lOx microscope objective, 25mm pinhole and f = 250 mm lens in the spatial filter 
assembly. The filter was a narrowband laser filter centered at 515 nm. Note that this 
wavelength is outside of the specification of the SLM, but we obtained better results with 
this line than with the 488nm line of the laser. The illuminating light just before the input 
plane had a power of 4.0 mW and both Fourier transform lenses had a focal length of f 
=500mm. The He-Ne laser used as the read light of the SLM used a lOx microscope 
objective, 10mm pinhole and f = 250 mm lens in the spatial filter assembly. The voltage 
across the SLM was 12.5V. 

The input plane consisted of four of the same images as shown in Figure 4.5 
where a = 1.5mm. The images were each labeled as f(x,y) and substituted into Eq. (4.5); 
the expected output plane was described schematically as in Figure 4.6. The output plane 
consisted of a bright spot on the optical axis and four responses on either side. The 
responses located at distances a and 3a from the optical axis had the same intensity, as 
did the responses located at 2a and 4a. The responses at a and 3a differed from those at 
2a and 4a by a factor of two which would correspond to a factor of four if the power 
spectrum was detected. 

The experimental result corresponding to the left half of Figure 4.6 is shown in 
Figure 4.7. The optical axis corresponding to the center of Figure 4.6 is shown to the far 
right of Figure 4.7. Two bright spots along the x-axis corresponded to the autocorrelation 
responses located at distances a and 3a from the optical axis. Two additional 
autocorrelations appeared at a distance of 2a and 4a from the optical axis. A profile plot 
along the x-axis through the autocorrelation peaks is shown in Figure 4.8 where the peaks 
can be seen more clearly. 

4.4  Multiwavelet feature extraction 

4.4.1 Wavelet transform 
The wavelet transform has shown to be useful in many areas including that of 

pattern recognition.38 The wavelet transform can be thought of as a correlation between a 
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wavelet and an input signal. The two-dimensional wavelet transform of an image/(*,y) 
can be written as 

Wf(a,b) = \jf(x,y) w*ab{x,y) dxdy, (4.6) 

where Wab(x,y) is a set of wavelets that are dilated and shifted versions of a wavelet 
w(x,y), where 

wab(x>y) = ~w 
1   (x-bx  *-0 

\   a        a   j 
(4.7) 

where a is a scale factor and bx and by are translations in the x and y directions 
respectively. Because a wavelet can be thought of as a bandpass filter, an image can be 
viewed in a particular scale or frequency band after cross-correlation with a wavelet. The 
cross-correlation result is the image corresponding to the frequency band of the wavelet; 
it is not necessary to perform an additional inverse transform. 

To display a version of an input image that corresponds to one wavelet scale using 
a JTC, one input is the image of interest and the other is the wavelet function.39 The 
resulting image then appears at the output of the JTC. Because wavelets have zero mean, 
this may present a difficulty in the implementation. To remove the DC component from 
the wavelet function, it was experimentally shown that the wavelet function could be 
encoded in phase.24 

To view an image corresponding to more than one frequency band, the image 
should be cross-correlated with differently scaled wavelets separately. The results of the 
cross-correlations are summed to produce an image corresponding to multiple frequency 
bands. If the sum is coherent, then positive and negative contributions to the output image 
are possible which is necessary for the general case. 

4.4.2 Multiwavelet analysis 
Under certain conditions the input arrangement in Figure 4.2 could produce a 

version of an input image corresponding to multiple wavelet scales. We considered an 
example that produced a version of an input image that corresponded to two wavelet 
scales. In other words, the output image corresponded to the sum of the cross- 
correlations of the input image and two different wavelets. To perform this type of 
operation we referred to Figure 4.2 and set n - 5, and as(x,y) = 0. We considered the 
input image f(x,y) at locations aj(x,y) and a2(x,y), so f(x,y) = ai(x,y)= <i2(x,y). Finally, we 
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set a wavelet corresponding to one scale wj(x,y) = a4(x,y), and the wavelet at another 
scale w2(x,y) = a5(x,y) as shown in Figure 4.9. 

The response in the output plane was obtained by substituting the appropriate 
variables in Eq. (4.5), and was represented schematically as shown in Figure 4.11. The 
third term from the DC is the term of interest here. It was the coherent sum of 
correlations of the input image and two different wavelets at two different scales. A 
diagram of the input and output planes for three wavelet scales were shown in Figures 
4.10 and 4.12. 

In general, a version of an input image corresponding to m wavelet scales could 
be produced. A total of 2m inputs are needed, m replicated input images on one side of 
the optical axis and m wavelet images on the other. There would be (4m-2)/2 correlation 
results appearing on each side of the central autocorrelation peak. The mth response from 
the far end on either side would contain the sum of the images at the different scales. 

The separation of the input and wavelet images must be far enough apart so that 
the output images do not overlap. We considered the maximum widths of the input 
image and wavelet functions to be A, and Dw respectively, where A > Dw. Assuming the 
system has unit magnification, then the maximum sizes in the output plane for the input 
image autocorrelation and input image-wavelet cross-correlations are 2D„ and A + Av 
respectively. In general, it can be seen (from Figure 4.11 for example) that to separate all 
the output images then the equality 

a > 1/2 (4A) (4-8) 

must hold. However, we are primarily interested in the off-axis terms which do not 
include autocorrelations of the input scenes. In addition, the input images are the same 
and if an object within them moves, they will move together. Therefore, the condition in 
Eq. (4.8) will correspond to a separation between images in the input plane of 

a>Dt + 2Dw, (4.9) 

to avoid overlap in the output plane. 

4.4.3 Simulation 
To simulate the result we used a Bessel-Gaussian wavelet,24 that was described as 
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where s is related to the width of the bandpass response, a is the scale factor, and r is the 
distance from the origin. 

We performed simulations with an image of an airplane/(;c,y) placed into the 
configuration of Figure 4.9 using a total of 512 x 512 pixels. The image of the plane 
contained 50 x 50 pixels and a was set to 50 pixels. For wi(x,y) and w2(x,y) values of aj = 
0.7 and a2=\2 were used respectively. The center portion of the input plane is shown in 
Figure 4.13 before subtraction of the DC of the wavelet images. Although the input 
images were placed a distance Dt apart in violation of Eq. (4.9), the airplanes were 
separated by a distance of aboutA + Dwj + Dw2, where Dwj and Dw2 were the width of 
the wavelet functions. 

The power spectrum was shown in Figure 4.14 and the output plane was shown in 
Figure 4.15 and consisted of nine responses. The three responses consisting of the one 
along the optical axis, and the ones immediately to the right and left of the optical axis at 
+a were autocorrelation responses. They all had large values and overlapped with each 
other. In addition, they overlapped the responses located +2a from the optical axis. 
Therefore, the large spot in Figure 4.15 consisted of five correlation responses and was 
shown for different values of thresholds in Figure 4.16. 

The remaining correlations were the ones of interest and consisted of two on each 
side of the large central spot. The two remaining responses on the left hand side of 
Figure 4.15 were expanded and shown in Figure 4.17. The response on the left 
corresponded to the wavelet with a2 = 1.2 and the one on the right corresponded to the 
sum of the wavelets with aj and a2. Changing at to at = 1.0 changed the response on the 
right but not on the left as shown in Figure 4.18. A small part of the correlation between 
the image and the wavelet with associated with aj can be seen in the left side of the 
image. 

4.4.4 Implementation 

To implement the multiple-input JTC optically a few points must be considered. 
One is the removal of the DC from the wavelet image. Wavelets have zero mean, so the 
wavelet image cannot be used directly. One solution is to display the wavelet in phase24 

or use a DC block arrangement. 

Because more than one scale of a wavelet is used in our arrangement, both 
multiple wavelet and multiple input images, one each for every scale of the wavelet used. 
The most straight forward approach would be to display all images on an SLM and use a 
single lens in the JTC. Although wavelets and their scales could be changed dynamically, 
the large space-bandwidth product and size of Fourier transform lens would limit the 
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number of wavelet scales that could be used. To reduce the restriction on the lens, the 
input and wavelet portions of the input plane can be split and focused separately each 
with a Fourier transform lens. 

For the input image side, the image needs to be split into multiple images. This 
could be performed by conventional optics using beam splitters and mirrors. 
Alternatively, a holographic element could be used to split the input images and possibly 
include the lens as schematically shown in Figure 4.19. A similar arrangement could be 
used on the wavelet side. The wavelet itself is fixed and does not move; however, the 
selection of different wavelet scales, or different wavelets that could be changed 
dynamically would be desirable. It is possible that a spatially multiplexed hologram 
could be used. This might be accomplished by a deflection system on the beam that is 
incident on the holographic element. 

4.5 Results 

We showed how a JTC could be used with multiple input images, and how a 
multiple-input JTC can be used for multiwavelet analysis of an input image. Using an 
image and wavelet as inputs, for m wavelet scales, m versions of the wavelet and m 
copies of the input image need to be generated. The output consisted of 4m-1 correlation 
results, one of which is the desired output. Using holographic elements, the space- 
bandwidth product of the system can be made the same as for a two-input joint-transform 
correlator. In addition, the relationship between the wavelet scales can be made 
independent by increasing the space-bandwidth of the system. Because an output image 
can be produced that corresponds to multiple wavelet scales, the system is potentially 
more useful than one that corresponds to a single scale. 
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Figure 4.1: Schematic diagram of a conventional joint-transform correlator. 
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Figure 4.3: Output plane of multiple-input JTC. 
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Figure 4.4: Experimental set-up of multiple input JTC. 
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Figure 4.5: Input image used in experiment. 
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Figure 4.6: Input image used in experiment. 
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Figure 4.7: Left hand side of output plane obtained experimentally when Figure 4.5 was 
used as the input plane intensity distribution. 
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Figure 4.8: Left hand side of output plane obtained experimentally when Figure 4.5 was 
used as the input plane intensity plot of x axis. 
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Figure 4.9: Input plane for multiwavelet processing two wavelet scales. 
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Figure 4.10: Input plane for multiwavelet processing three wavelet scales. 
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Figure 4.12: Output plane for multiwavelet processing three wavelet scales. 
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Figure 4.13: Center portion of input plane used in simulation experiments. 

Figure 4.14: Output of multiwavelet simulation power spectrum. 
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Figure 4.15: Output of multiwavelet simulation output plane. 
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Figure 4.16: Center portion of output plane thresholded at three different values showing 
the overlap of correlation responses. 
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Figure 4.17: Close-up view of left hand side of Fig. 11. Response on left is for a2=l .2, 
response on right is for al + a2, where al = 0.7. 
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Figure 4.18: Close-up view of left hand side of Fig. 11. Response on left is for a2=l .2 
response on right is for al + a2, where al = 1.0. 
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Figure 4.19: Schematic diagram of multiple-input JTC used for multiwavelet analysis. 
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5. Conclusion 

We have reviewed the theory of radial basis function (RBF) neural networks. We 
presented a binary-input spatially multiplexed parallel optical system capable of 
implementing a RBF classifier. The first layer of the neural network was composed 
entirely of parallel processing optics. The optics compute the Euclidean distances 
between a 100 bit input vector and 198 centers in parallel. An optical binary-input first 
layer was demonstrated in a previous project.31 An electronic postprocessor that 
implements the second layer of the neural network would have to be fabricated to realize 
the system's full potential. 

We described a design for extending the binary-input adaptive optical RBF neural 
network classifier to permit analog input signals. This design used a grayscale spatial 
light modulator (SLM) and replaced the first layer hardware with image subtraction 
optics. The key component of the image subtraction optics was a variable phase retarder. 
The retarder was characterized and its phase uniformity changed less than 7% with 
applied voltage. 

The next step in the development of a grayscale classifier would be to obtain and 
characterize a grayscale SLM. Then, we would dvelop a computer model and both the 
variable phase retarder and grayscale SLM parameters would be incorporated into the 
computer simulations. Finally, the optical portion of the system would be fabricated and 
compared to the computer model. 

We discribed an optical wavelet transform intended for use as a multi-wavelet 
image preprocessor for our classifier. The design used an optical joint transform 
correlator (JTC) to provide cross correlations of multiple input images. We showed 
experimental results for a JTC which used four input images generated with a spatial light 
modulator. Using wavelet functions, this multiple-input JTC can be used to perform a 
multiwavelet analysis of an input image. Using an image and wavelet as inputs, form 
wavelet scales, m versions of the wavelet and m copies of the input image need to be 
generated. The output consisted of Am-1 correlation results, one of which is the desired 
output. The relationship between the wavelet scales can be made independent by 
increasing the space-bandwidth of the system. This produces a multiscale output image 
that corresponds to multiple wavelet scales. This might prove to be more useful than one 
that corresponds to a single scale. 

We characterized critical building blocks of an opto-electronic analog RBF neural 
network classifier. Future efforts will concentrate on building a analog-input classifier 
and extending the system further to allow for complex-valued input signals. One of the 
target applications for this classifier would be the new antenna beamforming approach 
'neural beamforming' mentioned in Chapter 1. '  '  ' 
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The results this project were to be used in a software simulation of the analog- 
input RBF neural network to determine its feasibility. If feasible the design would have 
been implemented in hardware. However, this work remains unfinished as this project 
was canceled due to budget cuts. 
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