
AFRL-SN-RS-TR-1998-49 
In-House Report 
April 1998 

QUANTUM COMPUTING 

Sponsored by 
Ballistic Missile Defense Organization 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

mam 053 
The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Ballistic Missile Defense Organization or the U.S. Government. 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 
ROME RESEARCH SITE 

ROME, NEW YORK 

MIC QUALITY DJ8PECTED 1 



This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS). At NTIS it will be releasable to the general public, 
including foreign nations. 

AFRL-SN-RS-TR-1998-49 has been reviewed and is approved for publication. 

,t/£* /- \ 

APPROVED: 
GREGORY J.ZAGAR 
Chief, RF Photonics Branch 
Sensors Directorate 

$&i~Ä1P»&— FOR THE DIRECTOR: 
ROBERT G POLCE, Acting Chief 
Rome Operations Office 
Sensors Directorate 

If your address has changed or if you wish to be removed from the Air Force Research 
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by 
your organization, please notify AFRL/SNDR, 25 Electronic Parkway, Rome, NY 13441- 
4515. This will assist us in maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 07040188 

E^&SM aSSg imSV* SS«£Sd1.t 5E?JLS1. * **£ >£-> RedoC.n Projeo, ,07M.Q188). Woshin,., DC 205C3.  

1. AGENCY USE ONLY (Leave blankl 2. REPORT DATE 

April 1998 

3. REPORT TYPE AND DATES COVERED 

In-House      Jan 96 - Sep 97 

4. TITLE AND SUBTITLE 

QUANTUM COMPUTING 

6. AUTHOR(S) 

Steven P. Hotaling 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory/SNDR 
25 Electronic Parkway 
Rome NY 13441-4515 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

5. FUNDING NUMBERS 

C    -    N/A 
PE   -    61102F/62702F 
PR   -    2300/4600 
TA   -    06/P1 
WU -    02/20 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFRL-SN-RS-TR-1998-49 

Ballistic Missile Defense Organization 
7100 Defense Pentagon 
Washington DC 20301-7100 

Air Force Research Laboratory/SNDR 
25 Electronic Parkway 
Rome NY 13441-4515 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-SN-RS-TR-1998-49 

11. SUPPLEMENTARY NOTES 

Air Force Research Laboratory Project Engineer: Steven P. Hotaling/SNDR/(315) 330-2487 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
This report presents the derivation of quantum mechanical Hamiltonians and quantum logics as applied to the concept ot 
quantum computation. The Hamiltonians and quantum logics derived herein are potentially realizable in spin-bearing solid 
state crystals or trapped ionic species. The study of quantum mechanical analogues to conventional digital computers is m its 
infancy and there is still much speculation regarding the eventual successful building of a quantum computer. 

14. SUBJECT TERMS 

Quantum Physics, Quantum Computing, Quantum Electro Dynamics (QED) 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

UL 
Standard Form 298 [Rev. 2-89) (EG) 
Prescribed by ANSI StA 239.18 
Designed using Perform Pro, WHS/DIOR, Oct S4 



Abstract 

This report presents the derivation of quantum 
mechanical Hamiltonians and quantum logics as 
applied to the concept of quantum computation. 
The Hamiltonians and quantum logics derived 
herein are potentially realizable in spin-bearing 
solid state crystals or trapped ionic species. The 
study of quantum mechanical analogues to 
conventional digital computers is in its infancy 
and there is still much speculation regarding the 
eventual successful building of a quantum 
computer. 
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PREFACE 

Unfühlend Ist die Natur Goethe[l] 

Science, argued Bertrand Rüssel deals with known facts, philosophy with speculation. 

However, theoretical science, especially it seems, the so-called quantum theory, is somehow 

an adventure comprising both. Schrödinger explains further— "The great revelation of 

quantum theory was that features of discreteness were discovered in the Book of Nature, 

in a context in which anything other than continuity seemed absurd according to the views 

held until then."[2] 

Quantum Theory is really not a physical theory at all — certainly not in the same sense 

as general relativity or electromagnetics, in which all laws and knowledge can be derived 

from first principles. We are thus left with the unsatisfying title: Quantum Mechanics. This 

name is really quite precise, for like an automobile mechanic, the quantum mechanic really 

does not know the inner physics of each part of his apparatus, he knows how to "measure 

and fix"the"state"of the machinery. Max Born argued that it is quite unknowable- almost 

religiously. All one may "know" according to Born is that a measurement has taken place, 

don't ask, as Einstein and deBroglie whether or not a particle "knows" its spin, simply 

measure it and then go home. [3] 

in 



It is this strange world of quantum mechanics, which admits that strange things happen- 

such as superposition of states, that we enter when seeking to pr  ;■:. m quantum compu- 

tation.   This world is one in which Nobel prize-winning physicists argue violently about 

interpretations of experiments and extrapolations of theories. Yet, it is also the very basis 

of our universe. The very strangeness of quantum mechanical superposition and coherence 

allows for formulation of new computational structures at the atomic scale.  From a hard- 

ware perspective, imagine a switch (analogue to a modern day VHSIC transistor) comprised 

of only one atom- with quantum bit (q-bit) switching times in the fractional femtoseconds. 

From a software perspective, the quantum computation community has realized that the 

ability to store and process information at the quantum mechanical scale holds the poten- 

tial to formulate and solve problems of much higher computational complexity than that of 

current-day supercomputers. 

Information is physical in nature. This is true whether it is represented as our fingers, 

stones, beads on an abacus, writing on paper, voltages in a transistor circuit, or even quantum 

mechanical spin states of atomic species. The ability to store and manipulate the latter is 

referred to herein as quatüum computation. Quantum Computation represents, quite 

literally, the Quantum Limit of Information.    Quantum computation may be the 

vehicle to access the ultimate "fast lane"in information dominance.   The old adage ,"the 

quick and the dead" is more applicable today than ever. Whole economies dominate or are 

subjugated based solely upon the speed by which they process information. "From now on, 

the world will be split between the fast and the slow. Historically, power has shifted from the 

slow to the fast'. In fast economies, advanced technology speeds production. Fast economies 

generate wealth faster than slow ones." [4] 

As discussed in the last section, information is not an abstract entity. It is inextricably 

tied to a physical representation. As such it is subject to the laws of physics. This idea goes 

far beyond Shannon-Weiner -type theories of information, which by and large, deal with 

communication channel capacity, stochastic analysis thereof, etc. These earlier systems 

treat information as a classical (non-quantum) entity. Modem day digital computers utilizing 

micron-sized transistors, although they are designed using quantum mechanical principles, 
* 

are still dealing with large statistical ensembles of electrons to represent logical "1" and 

IV 



"0" states. These large statistical ensembles are handled with statistical mechanics and 

measured with integrating volt/amp meters. So the present day information representation 

and processing technology, although faster than the wheels and gears of the Charles Babbage 

computation machine, is still in the same computational complexity class as the Babbage 

machine, with bits of information represented by entities which obey classical (non-quantum) 

physics. A significant amount of work in quantum computation deals with the impact of the 

quantum nature of the information upon practical device design. 

Quantum information, as opposed to digital information of todays computers, is not rep- 

resentable without the laws of quantum physics. For example, a quantum state's information 

content originates from the following: 

1. The state of a particle is represented by a vector | ip(t)) in a Hubert space: H. 

The above statement carries the implication that since 7i is a vector space, then there is 

a superposition principle for the vector | ip(t)). That is, that a linear combination of vectors 

is a state vector: 

liK*)> = E«M0> (L1) 
»=i 

This superposition property of q-bits implies that a binary quantum register (a register in 

which only the truth values up (|) and down(j) - analogous to "l"and"0"of classical digital 

computer logic) has not only an admittable basis of 2nstates, but also coherent superpositions 

of those 2nstates. Eckert, gives the following simplified example of a three bit quantum 

register: [5] 

(1.2) 

+C010     I     1T0+ con litt) 

+cioo   I   TU> + cioi ITi'T) 

+cno   I   m> + cm|TTT> 

Where ^indicates the binary (radix-2) number system and {0,l}3indicates a three bit 

number. There are 2ndifferent states of this register, which implies that 2ndifferent numbers 

*>' =       E      C*> 1 *2> 
*2={o.i}3 

cooo |Ui) + cooi|UT> 



could be represented. In the quantum superposed 2n—dimensional Hubert space, as opposed 

to the classical binary computer register, coherent superpositions of all of these states exist 

at once. This is quite different from classical computation. This fact gives remarkable power 

to the quantum computer over conventional digital computers: A quantum computer can 

follow several paths at once. 

2. Any measurable state | $) is described by an operator Q acting in H and this operator 

is an observable. Thus a state is represented by an observable. 

3. If a particle is in a sate | \&), then any measurement of the variable (corresponding to) 

Q, will give the eigenvalues u with probability P(k>) ct\ (u \ ty) |2 .The result of measurement 

yields | u>) from | \&). 

4. The state vector obeys the Schrödinger equation (for the nonrelativistic case): 

ihjt | *(*)> = H | ¥(*)> (1.3) 

The relativistic case is treated by the Dirac Equation. [7] 

Returning to the measurement problem, it appears that the measurement of the variable 

fi changes the state, which is a superposition of the form: 

l*> = I»H*> (i-4) 

collapsing the state into the eigenstate | u>). 

The effect of the measurement of the state as discussed above, leads to a discussion of 

reversibility of measurements and hence to reversible computation. Current digital logic 

in conventional computers is irreversible. This leads to considerations of fan-out— the 

number of gates which may be driven from (or connected to ) another gate. Irreversibility 

implies some minimum dissipation associated with computation. The unitary nature of 

quantum computations (and hence their reversible nature) departs significantly from the 

afore stated irreversible computational elements of present -day computation. Thus, the type 

of algorithms a quantum computer is capable of running force us to re-think the physics of the 

computation — that is, to derive a new theory of information representation commensurate 

with quantum systems.   This hits at the very foundations of present state of the art of 
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computational science — so much so, that the quantum computation community speaks of 

"reprogramming the computer scientists to learn the physics of quantum information theory. 

As discussed above, the unitarity hence reversibility of quantum transformations gives 

the quantum computer designer the ability to greatly increase algorithm parallelism through 

the ability to operate on not just a "quantum register" (q-register) but also on a coherent 

superposition of states of that q-register. In terms of computational complexity classes, this 

yields an exponential increase in computational speed for computationally hard problems 

like factoring. The problem of deriving quantum information theory is being viewed as a 

community-wide problem by this program through the work of Schulman and Privman at 

Clarkson University[6] . 

Furthermore, the effects of decoherence upon a state is also of fundamental interest for 

quantum memory implementation. This is a consequence of the statement that there's no 

free lunch. Consider the standard quantum mechanical problem of a particle in a box. Each 

interaction with the box or any outside entity causes decoherence. Decoherence limits the 

power of quantum computation. However, the way that we obtain the result of calculations 

from the computer is through interactions. The problem of deriving theories and practical 

work-arounds to decoherence effects is being considered in this program. 

To summarize, this program is in the earliest stages of derivation of fundamentals of 

quantum information theory as applied to quantum computational concepts. The eventual 

goal is to derive quantum mechanical computers in the solid state. The early experimental 

and theoretical work in this area by this author and others[8] is a starting point, but much 

work needs to be done to continue to a physical realization of an operational quantum 

computational engine. 

Chapter 1 presents the application of the concept of quantum information to the deriva- 

tion of the interaction Hamiltonians corresponding to the quantum NOT and EXCLUSIVE- 

OR (XOR) gates. The spin Hamiltonians synthesized in Chapter 1 are generalized and 

applied to a system containing both electronic and nuclear spins in an Electron-Nuclear 

Double Resonance (ENDOR) formulation of quantum gate structures in Chapter 2. The 

derivation of a radix R>2 quantum computational scheme is presented in Chapter 3. A 

summary is presented in Chapter 4. 
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Chapter 1 

Design of Gates for Quantum 

Computation 

As discussed in the preface, the problem of logic design for quantum computation is very 

different than that for present-day digital computers. In this chapter, the result of considering 

quantum spin systems to be the physical realization of quantum bits (q-bits) is carried to 

the design of quantum logic gates. As expected, the first step in the design of quantum logic 

gates is the derivation of the interaction Hamiltonian corresponding to the gate operation. 

This is followed by an analysis of its properties and realization in a physical system. At 

present, the first two steps have been performed by our group (Hotaling at Rome Lab, and 

Privman et.al. at Clarkson University), while the last step, the critical quantum engineering 

has yet to be performed. The earlier experiments by the author and others, have operated 

upon statistical ensembles of spin systems, but singlet states must be used to fully utilize 

the computational complexity (read power) of quantum computation; Sustainable coherent 

states must be generated, manipulated and interfaced to the macroscopic world. The first 

section presents the quantum NOT gate design. The next sections discuss the quantum 

exclusive or (XOR) gate in terms of two- and three-spin interactions, respectively. 



1.1 The Quantum NOT Gate Hamiltonian 

This section was published as a paper in the International Journal of Modern Physics B in 

1997, and hence, the present section is a preprint of that paper. 

DESIGN OF GATES FOR QUANTUM COMPUTATION: 
THE NOT GATE 

DIMA MOZYRSKY and VLADIMIR PRIVMAN 
Department of Physics, Clarkson University, Potsdam, New York 1S699-58&0, USA 

STEVEN P. HOTALING 
Air Force Materiel Command, Rome Laboratory/Photonics Division 

25 Electronic Parkway, Rome, New York 13441-4515,  USA 

Received 17 April 199# 

We offer an alternative to the conventional network formulation of quantum computing. 
We advance the ana/05 approach to quantum logic gate/circuit construction. As an illus- 
tration, we consider the spatially extended NOT gate as the first step in the development 
of this approach. We derive an explicit form of the interaction Hamiltonian correspond- 
ing to this gate and analyze its properties. We also discuss general extensions to the 
case of certain time-dependent interactions which may be useful for practical realization 
of quantum logic gates. 

1. Introduction 

The fundamental physics of reversible quaiitum-mechanical computation has re- 
ceived much attention recently.1 Quantum computer is a hypothetical quantum- 
coherent system that functions as a programmable calculational apparatus. Such a 
computer will have to be drastically different from its classical counterparts. It will 
enable solution of certain problems1 much faster than the classical computer: the 
quantum interference property yields1 the fast-factoring (Shor's), as well as certain 
other fast algorithms. Recent theoretical results have included identification of uni- 
versal reversible two-bit gates2 and advances3 in error correction. There have also 
been experiments4 realizing a simple gate. 

Nevertheless, the idea of construction of a macroscopic computer out of a large 
number of quantum bits (qubits) is ellusive5 at the present stage of technology. The 
main obstacle is the sensitivity of coherent quantum evolution and interference to 
undesirable external interactions such as noise or other failures in operation.1,5,e 

Even though a number of error correction schemes have been proposed,3 not all 
types of error can be corrected. This particularly applies to the analog nature of 
quantum computers8 which will be addressed below. 

Quantum computers are naturally analog in their operation because in order to 
use the power of quantum interference, one has to allow any linear combination of 



the basis qubit states. By analog errors we mean those minor variations in the input 
and output variables and in the system's dynamics which cannot on their own be 
identified as erroneous in an analog device because its operation involves continuous 
values of variables (so that the fluctuated values are as legal as the original ones). 
By noise errors we mean those that result from single-event problems with device 
operation, or from external influences, or from other failures in operation. In the 
quantum case the latter errors also include the decoherence effects due to influences 

of the environment. 
Error-correction techniques can handle the noise errors but not the analog errors. 

Indeed consider a state Q|1> + ß\0) and a nearby state a'\l) + ß'\0), where a' 
is close to a, while ß' is close to ß. Here |1) and |0> denote the basis qubit or 
spin states in the notation reminiscent of the classical bit states 1 and 0. Both 
linear-superposition states are equally legal as input or output quantum states. 
Furthermore in the conventional picture of a quantum computer1 which assumes 
a network of a multitude of simple gate-units each being controlled externally, the 
analog errors can proliferate and be magnified in each step of the computation. 

In this work we therefore adopt a view typical'of the "classical" analog com- 
puter approach, of designing the computer as a single unit performing in one-shot a 
complex logical task instead of a network of simple gates each performing a simple 
"universal-set" logical function. In this case the computer as a whole will still be 
subject to analog errors. However, these will not be magnified by proliferation of 
sub-steps each of which must be exactly controlled. Indeed, quantum (and more 
generally reversible) computation must be externally timed: the time scale of the 
operation of each gate is determined by the interactions rather than by the relax- 
ation processes as in the ordinary computer. Furthermore, gate interactions must 
be externally switched1 on and off because the gates affect each other's operation. 

In fact, we consider it likely that technological advances might first allow design 
and manufacturing of limited size units, based on several tens of atomic two-level 
systems, operating in a coherent fashion over sufficiently large time interval to 
function as parts of a larger classical (dissipative) computer which will not maintain 
quantum coherent operation over its macroscopic dimensions. We would like these 
to function as single analog units rather than being composed of many gates. 

While in principle in a reversible computational unit input and output spins 
(qubits) need not be different, for larger units interacting with the external world 
it may be practically useful to consider input and output separate (or at least not 
identical). Indeed, the interactions that feed in the input need not necessarily be 
identical to those interactions/measurements that read off the output. 

In light of these considerations we consider in this work a spatially extended NOT 
gate based on two spins: one input and one output. Actually, we have to address a 
complicated set of problems: can multispin computational units be designed with 
short-range, two-particle interactions? Can they accomplish logical functions with 
interactions of the form familiar in condensed matter or other experimental systems? 
These and similar questions can only be answered by multispin-unit calculations 



which will have to be numerical. Analytical results are limited to ih simplest gates 
such as NOT and XOR, the latter studied in Ref. 7, and they prov.de only a partial 
picture. 

This work is organized as follows. In Sec. 2 we consider a simple, "textbook" 
example: the one-qubit NOT gate. It is considered for illustration only and allows 
us to introduce the notation in a simple setting and exemplify some general ideas. In 
Sec. 3 we consider the NOT gate with spatially separated input and output qubits. 
The interaction Hamiltonian derived for this gate, Eq. (21) below, establishes that 
it can be operated by the internal interactions alone so that external-field effects 
can perhaps be reserved for the clocking of the internal interactions. Furthermore, 
it suggests the type of local internal interactions to be used in more complicated 
systems where the computer as a whole is treated as a many-body system with 
time-independent interactions. 

The conventional formulation1 of quantum computing involves the external on 
and off switching of the interactions. In Sec. 4, we show that this requirement 
can be relaxed and the time dependence be given by other time-dependent interac- 
tions (protocols) which are smoother than the on/off shape. Section 4 also offers a 
summarizing discussion. 

2. The Simple NOT Gate 

In this section we consider the NOT gate based on a two-state system. Such a gate 
has been extensively studied in the literature,1 so that our discussion is a review 
intended to set up the notation and illustrate methods useful in more complicated 

situations. We label by (j) and (j) the two basis states. The NOT gate cor- 

responds to those interactions which, over the time interval A«, accomplish the 
following changes: 

G)-"■(!) • 

The phases a and ß are arbitrary. The unitary matrix U, that corresponds to this 
evolution, is uniquely determined, 

The eigenvalues of U are given by 

Ul = ei(a-HJ)/2     and     U2 = _ci(a+/J)/2 ^ (4) 

while the eigenvectors, when normalized and regarded as matrix columns, yield the 
following transformation matrix T which can be used to diagonalize U: 



T-V2\e<°'*   -e'V'J- (5) 

Thus, we have 

Here the dagger superscript denotes Hermitian conjugation. 
We next use the general relation 

to identify the time-independent Hamiltonian in the diagonal representation. Rela- 
tions. (4) yield the energy levels: 

ft  , 2irft/„      1\ .   {) 

where JVi and N^ are arbitrary integers. The Hamiltonian is then obtained from 
the relation 

H-T(*   ;)T. (9) 

as a certain 2x2 matrix. The latter is conveniently represented in terms of the unit 
matrix X and the conventional Pauli matrices ax,ay,(rz. We get 

H = -5S<° + » + 5[(* + * + 5)] 2Af 

1\    TZ n — A\ / r, — ft\ 1 
(10) {*-*-!) [(-2i*),.+(-.2i*) 

To effect the gate operation, the interaction must be switched on for the time 
interval At. The constant part of the interaction energy (the part proportional to 
the unit matrix I) is essentially arbitrary; it only affects the average phase (a+ß)/2 
of the transformation (l)-(2). Thus this term can be omitted. 

The nontrivial part of (10) depends on the integer N = Ni — N? which is 
arbitrary, and on one arbitrary angular variable 

a-ß 

Thus we can use the Hamiltonian in the form 

(11) 

H = S {N ~ \) KC0S7)<T*+ (sin 7^] • (12) 



For a spin-1/2 two-state system such an interaction can be obtained by applying 
a magnetic field oriented in the ArF-plane at an angle 7 with the Ar-axis. The 
strength of the field is inversely proportional to the desired time interval Af, and 
various allowed field values are determined by the choice of N. 

We note that during application of the external field the up and down quantum 
states in (l)-(2) are not the eigenstates of the Hamiltonian. If the time interval Ar 
is not short enough, the energy-level splitting \E\ - E?\ oc \N — || can result in 
spontaneous emission which is just one of the undesirable effects destroying quantum 
coherence. Generally, when implemented in a condensed matter matrix for instance, 
the two states of the qubit may lie within a spectrum of various other energy levels. 
In that case, in order to minimize the number of spontaneous transition modes, the 
best choice of the interaction strength would correspond to minimizing \Ei - E?\, 
i.e.,to|A^-|| = i. 

3. The Spatially Extended NOT Gate 

In this section we consider a spatially extended NOT gate consisting of two spins: 
input and output. We will describe these spins by four-state vectors and matrices 
labeled according to the following self-explanatory convention: 

'0.1 

02 

03 

,04, 

= a1|TT) + a2|Ti)+a3|lT)+a4|ll) 

=aiG),0G)o+a2(ö),e(i)o 

HJ.noJo.HMJo-      (I3) 

Here I and O denote Input and Output.  In what follows we will omit the direct- 
product symbols ® when multiplying expressions with subscripts I and O. 

The desired transformation should take any state with «13 = 0,4 = 0 into a state 
with components 1 and 3 equal zero, i.e., Input up yields Output down. Similarly, 
any state with aj — a2 = 0 should evolve into a state with components 2 and 4 
equal zero, corresponding to Input down giving Output up. The general evolution 
operator must therefore be of the form 

U = 

(° 0 Ihz VIA \ 

U21 U22 0 0 
0 0 £/T33 ty 

U41 u42 0 0 / 

(14) 

which depends on 16 real parameters. However, one can show that the requirement 
of unitarity, UW = 1, imposes 8 conditions so that the number of real parameters 
is reduced to 8.   A lengthy but straightforward algebraic calculation then shows 

6 



that the following parametrization covers all such unitary matrices: 

U = 

( 0 0 e^sinfi ei/9cosfi 
_ei(a+p-r,)sinT     etPC0SX 0 0 

0 0 ei6cosft -e^+Ä-x)sinn 

e^'sinT 0 0 elQ cos T 

\ 

/ 

(15) 

Here all the angular variables are unrestricted although we could limit. Q and T to 
the range [0,7r/2] without loss of generality. 

In order to make the calculation analytically tractable, we will restrict the num- 
ber of free parameters to four by considering the case 

U 

{ o 
0 
0 

\eia 

0      0 ,iß 

=»/> 

0 
0 

0      0 

eiS     0 

0      0 / 

(16) 

This form has been favored for the following reasons. Firstly, the structure of a 
single phase-factor in each column is similar to that of the two-dimensional matrix 
encountered in Sec. 2. Secondly, the form (16) contains Hermitian-t/ cases (ß = —a, 
p = 0 or 7T, 6 = 0 or TT). Therefore, the eigenvalues, which are generally on the unit 
circle for any unitary matrix, may be positioned more symmetrically with respect 
to the real axis, as functions of the parameters. These observations suggest that an 
analytical calculation may be possible. 

Indeed, the eigenvalues of U turn out to be quite simple: 

Ui A°+ß)/2 u2 
A°+ß)/2 u3 = etp u\ = e it (17) 

The diagonalizing matrix T made up of the normalized eigenvectors as columns is 

Infill      eiß/2      o      0 \ 

>/2 

0 0 v/2 0 

0 0 0 v/2 

UiQ/2 -_eta/2 0 0 

(18) 

The next step in the calculation is to identify the energy levels. We chose the 
notation such that the energies E\t2 are identical to (8). The other two energies are 
given by 

_ h        27T/i mr        _ h r     2ith.. 

^-Mp+TiN"   B< = -Äis + ^N« <19> 
The Hamiltonian is then obtained as in Sec. 2. It is convenient to avoid cumbersome 
expressions by expressing it in terms of the energies; the latter will be replaced 
by explicit expressions (8), (19) when needed. The resulting 4x4 matrix has 
been expressed in terms of the direct products involving the unit matrices and 
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the Pauli matrices of the Input and Output two-state systems. This calculation is 
straightforward but rather lengthy. We only report the result: 

H = \{2Ey + 2E2 + E3+ E4) + \{EZ - E4)(azl - azö) 
4 4 

+ \{2EX + 2E2 -Ez-E4)aziaz0 
4 

+ -(£i - E2) f COS—— \ ((JxlCTxO - VylVyO) 

+ ~{El - E2) I Sin -y- J {<?xl<JyO + VyWxO) ■ (20) 

As in Sec. 2, we note that the constant part of the Hamiltonian can be changed 
independently of the other coupling constants and it can be discarded. Recall that 
we can generally vary the integers NI^^A and the variables a, /?, p, 6. The "con- 
stant" part is in fact proportional to X\ ®Io- However, we avoid this cumbersome 
notation and present the terms in the Hamiltonian in a more physically transparent 
form. 

The Hamiltonian in (20) has also terms linear in the Pauli matrices (in the spin 
components for spin systems). These correspond to interactions with externally 
applied fields which in fact must be of opposite direction for the Input and Output 
spins. We try to avoid such interactions: hopefully, external fields will only be used 
for "clocking" of the computation, i.e., for controlling the internal interactions of 
the Input and Output two-state systems. Thus, we will assume that E3 = E4 so 
that there are no terms linear in the spin components, in the Hamiltonian. 

Among the remaining interaction terms, the term involving the z-components 
in the product form azi<Jzo (= oz\ ®o"zo)> has an arbitrary coefficient, say, £. The 
terms of order two in the x and y components have free parameters similar to those 
in (11)-(12) in Sec. 2. The final expression is 

H = —Eaz\azo 

+ ^Ki\N~2) KCOS7)(a*I<r*° ~°yiayo) + (sin7)(<7xi<ty> + ^yiö-io)]• 

(21) 

Here TV = N\ — N2 must be integer. In order to minimize the spread of the energies 
Ei and E2 we could choose |iV - 1/2| = 1/2 as in Sec. 2. Recall that we already 
have £3 = E4. Actually, the energy levels of the Hamiltonian in the notation 
(21) are 

* = -* + s("-5)-   ^ = -f-öM)'   *■< = '■      (22) 

Thus further degeneracy (of three levels but not all four) can be achieved by varying 
the parameters. 
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4. Time-Dependent Interactions. Discussion 

The form of the interactions in (21) is quite unusual as compared to the traditional 
spin-spin interactions in condensed matter models. The latter usually are based 
on the uniaxial (Ising) interaction proportional to azaz, or the planar A'!-model 
interaction proportional to axax+aycry, or the isotropic (scalar-product) Heisenberg 
interaction. The spin components here are those of two different spins (not marked). 
The interaction (21) involves an unusually high degree of anisotropy in the system. 
The x and y components are coupled in a tensor form which presumably will have 
to be realized in a medium with well-defined directionality, possibly, a crystal. 

All the interaction Hamiltonians considered thus far were constant for the dura- 
tion of the gate operation. They must be externally controlled. However, we note 
that the application of the interaction need not be limited to the time-dependence 
which is an abrupt on/off switching. Indeed, we can modify the time dependence 

according to 
H(t) = f(t)H, (23) 

where we use the same symbol H for both the original time-independent interac- 
tion Hamiltonian such as (21) and the new, time-dependent one, H(t). The latter 
involves the "protocol" function }{t). The shape of this function, nonzero during 
the operation of the gate from time t to time t + At, can be smooth. 

For Hamiltonians involving externally applied fields, such as (12), it may be 
important to have a constant plus an oscillatory components (corresponding to 
constant and electromagnetic-wave magnetic fields, for instance). However, the 

protocol function must satisfy 

t+At 
f{t')dt' = M, (24) 

/ 

and therefore it cannot be purely oscillatory; it must have a constant or other 
contribution to integrate to a nonzero value in accordance with (24). 

The possibility of the modification (23) follows from the fact that the general 

relation 

U = 
_i f+A< H(t')dt'/h 

o        J t (25) 
time-ordered 

does not actually require time ordering as long as the Hamiltonian commutes with 
itself at different times. This condition is satisfied by (23). Furthermore, if the 
Hamiltonian can be written as a sum of commuting terms then each term can 
be multiplied by its own protocol function. Interestingly, the Hamiltonian of the 
"paramagnetic resonance" NOT gate, reviewed by DiVincenzo in Refs. 1, is not 
of this form. It contains a constant part and an oscillatory part but they do not 
commute. Note that the term proportional to £ in (21) commutes with the rest of 
that Hamiltonian. The terms proportional to cos 7 and sin 7 do not commute with 
each other though. Rather, they anticommute, in (21), as such terms do in (12). 



In summary, we have derived expressions for the interaction Hamiltonians appro- 
priate for the NOT gate operation in two-state systems. The expressions obtained 
will be useful in identifying materials where there is hope of actually realizing such 
gates, in writing down model Hamiltonians for more complicated, multispin config- 
urations, and in studying these gates as individual components, for instance, with 
dissipation added. 
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1.2 The Two-Spin Exclusive-OR (XOR) Gate Hamiltonian 

This section was published as a paper on the World Wide Web with the Los Alamos National 

Laboratory Quantum Physics web site. Hence, the present section is a preprint of that paper. 
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ABSTRACT 

The analog nature of quantum computing makes constructing logical 

operations from many simple gates inappropriate. We explain this and 

then propose to design multispin quantum gates in which the input and 

output two-state systems (spins) are not necessarily identical. We outline 

the design criteria for such devices and consider an example of a two- 

spin interaction Hamiltonian which accomplishes the quantum XOR gate 

function for a system of three spins: two input and one output. 
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Dimensions of semiconductor computer components will soon reach 

[1] about 0.25/im = 2500 Ä, which is well above the atomic sizes. How- 

ever, it is generally expected that in time atomic dimensions will be 

reached and coherent quantum computing will have to be explored. Some 

studies [2] have considered how quantum mechanics affects the founda- 

tions of computer science, e.g., limitations on classical computation due 

to quantum fluctuations, etc. A more recent development [3] has been to 

utilize the quantum-coherent nature of components of atomic dimensions 

for more efficient computations. 

Quantum computing may be faster than classical computing [3]. Er- 

ror correction techniques [4], unitary operations corresponding to the 

simplest logic gates [3] and some Hamiltonians for gate operation have 

been explored. Ideas on how to combine the simplest quantum gates have 

been put forth [5]. Experimentally, there are several atomic-scale systems 

where the simplest quantum-gate functions have been recently realized 

[6] or contemplated [3,7]. 

There remain, however, many conceptual difficulties with quantum 

computing [2,3]. The reversibility of coherent quantum evolution implies 

that the time scale At of the operation of quantum logic gates must be 

built into the Hamiltonian. As a result, all the proposals available to date 

assume that computation will be externally timed, i.e., interactions will 
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be switched on and off, for instance, by laser radiation. 

This implies that if logical operations are constructed from a small 

set of simple gates, then each such gate will have to be precisely con- 

trolled from outside. In ordinary classical (i.e., macroscopic, irreversible) 

computing, the NAND gate is an example of a universal gate. From it 

complicated logical operations can be constructed. In the classical case, 

however, it is the internal relaxation processes in the basic-set gate(s) 

that determine the time scale of their operation (equilibration) At. We 

consider it extremely unlikely that one would ever be able to control ex- 

ternally, in a coordinated fashion, millions of simple reversible quantum 

gates in order to operate a macroscopic computer. 

Furthermore, quantum computers are naturally analog [8] in their 

operation. In order to use the power of quantum superposition of states, 

one has to allow linear combinations of the basis qubit states |1) and 

|0). Analog errors are difficult to correct. By analog errors we mean 

those minor variations in the input and output variables which cannot 

on their own be identified as erroneous in an analog device because its 

operation involves continuous values of variables (so that the fluctuated 

values are as legal as the original ones). By noise errors we term those that 

result from single-event problems with device operation, or from external 

influences that include decoherence in the quantum case, or from other 
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failures in operation. All errors in a digital device (i.e., deviations from 

correct discrete values) can be systematically decreased or eliminated in 

each step of a calculation. Similarly, the noise errors in analog devices 

can be corrected or decreased. 

However, the analog errors cannot be corrected. Consider a state 

a|l) + ß\0) and a nearby state a'|l) + ß'\0) + £\ Cj\j), where a' is close 

to a, ß' is close to ß, while Cj are small. The latter terms represent 

possible admixture of quantum states \j) other than the two qubit states. 

Indeed, it is likely that a multistate atomic-dimension system will be 

used with two particular states serving as the two-state "qubit." Both 

states are equally legal as input and output quantum states. We could 

restrict input or output to a vicinity of certain states, for instance, the 

basis states |1) and |0), thus moving towards digitalization. However, we 

then loose the quantum-interference property. Another important effect, 

decoherence, that would require a density matrix description, falls in the 

noise-error category. 

Modern error-correction techniques [3,4] can handle the noise errors 

but not the analog errors. Thus they mainly focus on decoherence effects 

due to environment in a particular quantum state and on how to minimize 

these affects in storing the state and transmitting it. The analog errors 

in computation as a dynamical process, though, cannot be corrected this 
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way. To illustrate, consider this quote [9] from the article entitled Quan- 

tum Error Correction for Communication: "To achieve this the sender 

can add two qubits, initially both in state |0), to the original qubit and 

then perform an encoding unitary transformation...". The problem here 

is that the states actually encountered in the system during error cor- 

rection are not available as basis qubit states (such as |0)) with infinite 

precision. 

Typically, by qubits we mean a set of two orthogonal quantum states 

selected from the energy eigenstates of an ideal atomic system. Even as- 

suming that the thermal noise can be reduced at low temperatures to 

make the ground state sufficiently long-lived, the excited states of any 

system, especially if it is a part of a macroscopic computer, will not be 

defined sharply enough to provide ideal stationary states |1) and |0). Ex- 

ternal interactions, spontaneous emissions, etc., will generate both noise- 

and analog-errors in the basis states (as well as in their superposition that 

is our wavefunction), i.e., the actual state (disregarding decoherence) will 

be a|l) + ß\0) + £\ Q\j), with a ~ 1 and ß, Q ~ 0, instead of |1> which 

is an eigenstate of an ideal, isolated-system Hamiltonian, etc. 

Furthermore, analog errors will be magnified when separate simple- 

gate operations are combined to yield a complex logical function. Thus, 

the conventional picture [3] of a quantum computer is unrealistic:   it 
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assumes a multitude of simple-gate units each being externally controlled 

by laser beams in an exactly coordinated manner. Such computers will 

magnify analog errors which cannot be corrected in principle because the 

error state is as legal as the original state. 

In this work we therefore adopt a view typical of the "classical" 

analog-computer approach, of designing the computer as a single unit 

performing in one shot a complex logical task instead of a chain of simple 

gate tasks. This approach will not repair all the ailments outlined earlier. 

For instance, the computer as a whole will still be subject to analog errors. 

However, these will not be magnified by proliferation of sub-steps each of 

which must be exactly controlled. 

In fact, we consider it likely that technological advances might first 

allow design and manufacturing of limited-size units, based on several 

tens of atomic two-level systems, operating in a quantum-coherent fash- 

ion over a sufficiently large time span to function as parts of a larger clas- 

sical (dissipative) computer which will not maintain a quantum-coherent 

operation over its macroscopic dimensions. We would like these to func- 

tion as single analog units rather then being composed of many gates. In 

the rest of this work, we first offer some design considerations for such 

multispin quantum units and then present a simple illustrative example 

of a three-spin unit that performs the quantum XOR function. 
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In order to make connections with the classical computer-circuitry 

design and identify, at least initially, which multi-qubit systems are of 

interest, we propose to consider spatially extended multispin quantum 

gates with input and output qubits possibly different.   The reason for 

emphasizing this property is that multispin devices will have spatial ex- 

tent. The interactions that feed the input need not be identical to those 

interactions/measurements that read off the output.   Furthermore, for 

systems with short-range interactions one can only access the boundary 

spins in a large cluster. Thus we may use only part of the spins to specify 

the input and another subset to contain the output. The two sets may be 

identical, partially overlapping, or nonoverlapping.  Reversibility of co- 

herent quantum evolution makes the distinction between the input and 

output less important than in irreversible computer components.  How- 

ever, we consider the notion of separate (or at least not necessarily fully 

identical) input and output useful within our general goals: to learn what 

kind of interactions are involved and to consider also units that might be 

connected to/as in classical (dissipative) computer devices. 

Our goal is to be able to design interaction parameters, presumably 

by numerical simulations, to have such gates perform useful Boolean op- 

erations. This is not an easy task. Actually, it must be broken into 

several steps. First, we must identify those interactions which can be 

realized in solid state or other experimental arrangements. As the XOR 
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example below illustrates [10], the form of the interaction Hamiltonians 

may be quite unusual by the solid-state standards. Secondly, we expect 

interactions to be short-range and two-particle (two-spin) when several 

two-state systems (termed here qubits or spins) are involved. 

Thirdly, incorporating designed coherent computational units in a 

larger classical computer will require a whole new branch of computer 

engineering because the built-in Boolean functions will be complicated 

as compared to the conventional NOT, AND, OR, NAND, etc., to which 

computer designers are accustomed. Furthermore, the rules of their in- 

terconnection with each other and with the rest of the classical computer 

will be different from today's devices. 

Our initial studies have been analytical [10]. In the future we foresee 

numerical studies of systems of order 20 to 25 two-state (spin) atomic 

components with variable general-parameter interactions. Consideration 

of multispin quantum gates requires a large number of basis states. How- 

ever, it is also useful to study few-spin exactly solvable systems [10]. 

These provide explicit examples of what the actual interaction Hamilto- 

nians should look like. 

An accepted approach has been to consider interactions switched on 

only for the duration of the gate operation At. If the gate is actually the 

whole computer then one can regard the interaction as time-independent. 
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However, for specific tasks in components with a limited number of basis 

states, it may be appropriate to view the interaction as controlled exter- 

nally to be switched on and off. While general ideas of externally timed 

computation are not new [2], actual realizations in quantum computation 

with many sub-unit gates will encounter difficulties outlined earlier. 

With regards to the requirement to control the interactions exter- 

nally, with the time dependence given by the on/off protocol, we have 

shown [10] that a smoother time-dependence is possible, with the origi- 

nal Hamiltonian if, which is constant over the time interval At, replaced 

by f(t)H> where the protocol function f(t) averages to 1 over the time 

interval At. 

Let us now turn to the XOR-gate example. We will use the term 

"spin" to describe a two-state system, and we will represent spin™ 

particle spin-components (measured in units of Ti/2) by the standard 

Pauli matrices (rx,y,z. In Figure 1, we denote by A, B, C the three two- 

state systems, i.e., three spins, involved. We assume that at time * the 

input spins A and B are in one of the basis states \AB) = |11), |10), 

|01), or 100), where 1 and 0 denote the eigenstates of the ^-component of 

the spin operator, with 1 referring to the "up" state and 0 referring to 

the "down" state. We use this notation for consistency with the classical 

"bit" notion. The initial state of C is not specified (it is arbitrary). 
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We would like to have a quantum evolution which, provided A and 

B are initially in those basis states, mimics the truth table of XOR: 

A   B output 
1     1 0 
10 1 (1) 
0     1 1 
0    0 0 

were the output is at time t + A*. One way to accomplish this is to 

produce the output in A or £, i.e., work with a two-spin system where 

the input and output are the same. The Hamiltonian for such a system 

is not unique. Explicit examples are known [3,5,11] where XOR was 

obtained as a sub-result of the controlled-NOT gate operation. In this 

case of two spins involved, the interactions can be single- and two-spin 

only. 

However, here we want a multispin example, with emphasis on whether 

one Can design interactions to be two-spin only and still accomplish "in 

one shot" the desired logical function. Thus, we require that the XOR 

result will be generated in C at time t + At. The final states of A and B, 

as well as the phase of C are arbitrary. In fact, there are many different 

unitary transformations, U, that correspond to the desired evolution in 

the eight-state space with the basis \ABC) = |111), |110>, |101),.|100), 

|011), |010), J001), 1000), which we will use in this order. The choice of 

the transformation determines what happens when the initial state is a 
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superposition of the reference states, what are the phases in the output, 

etc. The transformation is definitely not unique. 

Consider the following Hamiltonian [10], 

H= *h 

4At 
[V2azAayB + V2azBayC - oyBoxc\ (2) 

It is written here in terms of the spin components. In the eight-state 

basis specified earlier, its matrix can be obtained by direct product of 

the Pauli matrices and unit 2x2 matrices 2. Here the subscripts A, B, C 

denote the spins. For instance, the first interaction term is proportional 

to ozA ® (TyB ® lc, etc. 

This Hamiltonian involves only two-spin-component interactions. In 

fact, A and C only interact with B, see Figure 1, so diagrammatically 

there is no loop (it is not known if the latter property is significant 

since we are dealing here with "nonequilibrium," i.e., non-ground-state, 

calculations). 

One can show [10] that the Hamiltonian (2) corresponds to the XOR 

result in C at t + At provided A and B where in one of the allowed 

superpositions of the appropriate "binary" states at t (we refer to super- 

position here because C is arbitrary at t). The actual "design" of the 

three-spin XOR gate with only two-spin interactions is quite complicated 
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110]. 

The unitary matrix U that corresponds to the evolution over the 

time interval At, given by 

U = exp (-iHAt/h) = 

f° 0 -1 0 0 0 0 °\ 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 0 -1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 -1 0 0 0 

\0 0 0 0 0 0 -1 .0/ 

(3) 

and it corresponds to XOR in that any liner combination of the states 

|111) and 1110) evolves into a linear combination of |110), |100), |010), 

and |000), compare the underlined quantum numbers with the first en- 

try in (1), with similar rules for the other three entries in (1). It is 

straightforward to check that, with phase factors —1 in some cases, the 

unitary matrix U indeed places the XOR(A, B) in C. Note that (2) is 

not symmetric in A and J5, so that another Hamiltonian can be obtained 

by relabeling. 

We comment that both the XOR Hamiltonian (2) and other XOR 

and NOT gate Hamiltonians [10] studied in the present framework, are 

quite unusual as far as solid-state interactions go. They involve products 

of spin components.   However, there is no obvious symmetry such as 
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uniaxial (Ising), planar (XY), isotropic (Heisenberg), familiar from the 

usual magnetic interactions in the solid state. Thus, while our example 

demonstrates that two-spin interaction Hamiltonians can be useful in 

generating standard logical operations in systems with more than two 

spins [10], general analytical results and more conventional solid-state 

interactions are difficult to come by in the framework of exactly solvable 

few-spin systems. It is likely that future quantum logic gate "design" 

will involve heavy numerical simulations of systems of several spins with 

trial, more conventional two-spin interactions, to determine interaction 

parameter values for which they perform useful logical operations. 
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A 

C 

B 

Figure 1: Three two-state systems (spins) A, B, C, with the pairwise 

spin-component interactions in (2) marked schematically by the connect- 

ing lines. The XOR operation accomplished by (2) in time A* assumes 

that A and B are the input qubits and C is the output qubit. 
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1.3 The Three-Spin Exclusive -OR (XOR) Gate Hamiltonian 

This section was published as a paper in the International Journal of Modern Physics B in 

1997, and hence, the present section is a preprint of that paper. 
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ABSTRACT 

We propose to design multispin quantum gates in which the input 

and output two-state systems (spins) are not necessarily identical. We 

describe the motivations for such studies and then derive an explicit gen- 

eral two-spin interaction Hamiltonian which accomplishes the quantum 

XOR gate function for a system of three spins: two input and one output. 
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1. Introduction 

Dimensions of semiconductor computer components will soon reach 

[1] about 0.25yLrni = 2500 Ä, still well above the sizes at which quantum- 

mechanical effects are important. However, it is generally expected that 

as the miniaturization continues, atomic dimensions will be reached, per- 

haps, with technology different from today's semiconductors. Lead by 

this expectation, some early studies [2-4] considered how quantum me- 

chanics affects the foundations of computer science; issues such as limita- 

tions on "classical" computation due to quantum fluctuations, etc., have 

been raised. 

A more recent approach [4-30] has been to utilize the quantum na- 

ture of components of atomic dimensions for more efficient computa- 

tion and design; this involves many interesting scientific concepts new to 

both computer science and physics. Several issues must be addressed. 

Is quantum computation faster than classical computation? Can quan- 

tum computational elements be built and combined with other quantum 

and/or classical components? What will be the "design" rules for quan- 

tum computer components in Order to perform Boolean logic operations 

on quantum bits (qubits) such as the up and down spin states of a spin-| 

particle?   What are the error correction requirements and methods in 
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quantum computation? 

Answers to most of these questions are still not known. However, 

some definitive results have already been obtained. New fast quan- 

tum algorithms have been proposed [31-35]. Error correction techniques 

[10,27,31,36,37], unitary operations corresponding to the simplest logic 

gates [5-30], and some Hamiltonians for gate operation [10,14,24,28-30] 

have been explored. Ideas on how to combine the simplest quantum gates 

have been put forth, e.g., [7,15,38]. Experimentally, there are several 

atomic-scale systems where the simplest quantum-gate functions have 

been recently realized [26,39,40] or contemplated [19]. 

There remain, however, many conceptual difficulties with "macro- 

scopic" quantum computing [4,18]. For instance, the reversibility of co- 

herent quantum evolution implies that the time scale A* of the operation 

of quantum logic gates must be built into the Hamiltonian. As a result, 

virtually all proposals available to date assume that computation will be 

externally timed, i.e., interactions will be switched "on" and "off," for 

instance, by laser radiation. Thus, while we recognize that eventually 

quantum behavior on the atomic scale will have to be considered in com- 

puter component design, we also accept that it is still a long way to go, 

with modern technology, to a really macroscopically coherent quantum 

computational unit. 
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In this work we therefore adopt a more realistic view that technolog- 

ical advances might first allow design and manufacturing of limited-size 

units, based on several tens of atomic two-level systems, operating in a 

quantum-coherent fashion over a sufficiently large time interval to func- 

tion as parts of a larger "classical" computer which will not maintain a 

quantum-coherent operation over its macroscopic dimensions. 

We have initiated study of the simplest quantum logic gates in order 

to identify which interaction terms are typical in Hamiltonians required 

for their operation. Results presently available are limited; they include 

Hamiltonians for certain NOT [14,28] and controlled-NOT gates [10,30], 

and for some copying processes [29,30], as well as general analyses of 

possibility of construction of quantum operations [8,22]. 

In order to make connections with the present "classical" computer- 

circuitry design and have a natural way of identifying, at least initially, 

which multi-qubit systems are of interest, we propose to consider spa- 

tially extended quantum gates, i.e., gates with input and output qubits 

different. Our goal is to be able to "design" interaction parameters, 

presumably by numerical simulations, to have such gates perform useful 

Boolean operations. In this work we carry out such a "design" analyti- 

cally for the three-spin XOR gate; one special-case result of this work was 

reported in a short publication [41]. Incorporating "designed" coherent 
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computational units in a larger classical computer will require a whole 

new branch of computer engineering because the "built-in" Boolean func- 

tions will be complicated as compared to the conventional NOT, AND, 

OR, NAND, etc., to which computer designers are accustomed. Further- 

more, the rules of their interconnection with each other and with the rest 

of the classical computer will be different from today's devices. 

Reversibility of coherent quantum evolution makes the distinction 

between the input and output less important than in irreversible com- 

puter components. However, we consider the notion of separate (or at 

least not necessarily fully identical) input and output useful within our 

general goals: to learn what kind of interactions are involved and to con- 

sider also units that might be connected to/as in "classical" computer de- 

vices. While our present study is analytical, we foresee numerical studies 

of systems of order 20 to 25 two-state (qubit) atomic "components" with 

variable general-parameter interactions. 

The outline of this work is as follows. In Section 2, we define the 

problem and introduce some notation. In Section 3, we analyze the matrix 

forms of the unitary evolution operator and Hamiltonian operator. The 

latter is explicitly calculated in Section 4 and then further refined in 

Sections 4 and 5 to yield a two-spin-interaction result. 
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2. The Three-Spin XOR Gate 

We will use the term "spin" to describe a two-state system, and we 

will represent spin-|-particle spin-components (measured in units of h/2) 

by the standard Pauli matrices"ax^z. In Figure 1, we denote by A, B, 

C the three two-state systems, i.e., three spins, involved. We assume 

that at time t the input spins A and B are in one of the basis states 

\AB) = 111), 110), |01), or |00), where 1 and 0 denote the eigenstates of 

the ^-component of the spin operator, with 1 referring to the "up" state 

and 0 referring to the "down" state. We use this notation for consistency 

with the classical "bit" notion. The initial state of C is not specified (it 

is arbitrary). 

We would like to have a quantum evolution which, provided A and 

B are initially in those basis states, mimics the XOR function: 

A   B    output 
11 0 
1     0 1 (2.1) 
Oil 
0    0 0 

were the output is at time t + At. One way to accomplish this is to 

produce the output in A or B, i.e., work with a two-spin system where 

the input and output are the same. The Hamiltonian for such a system 
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is not unique. Explicit examples can be found in [10,30] where XOR was 

obtained as a sub-result of the controlled-NOT gate operation. In this 

case of two spins involved, the interactions can be single- and two-spin 

only. 

An important question is whether multispin systems can produce 

useful logical operations with only two-spin and, for larger systems, short- 

range interactions. Indeed, short-range two-particle interactions are much 

better studied and accessible to experimental probe than multiparticle 

interactions. Here we require that the XOR result be put in C at time t + 

A*; see Figure 1. The final states of A and B, as well as the phase of C are 

arbitrary. In fact, there are many different unitary transformations, U, 

that correspond to the desired evolution in the eight-state space with the 

basis \ABC) = |111), |110>, |101), |100), |011), |010), |001), |000), which 

we will use in this order. The choice of the transformation determines 

what happens when the initial state is a superposition of the reference 

states, what are the phases in the output, etc. 

Let us consider first, for illustration, the following Hamiltonian [41] 

H = 4At y*azA(JyB + ^VzBVyC - oyBoxC} (2.2) 

It is written here in terms of the spin components; the subscripts A, B, C 

denote the spins.   In the eight-state basis specified earlier, its matrix 

34 



can be obtained by direct product of the Pauli matrices and unit 2x2 

matrices X. For instance, the first interaction term is proportional to 

OzA ® °yB ® ±>c (2.3) 

etc. This Hamiltonian involves only two-spin-component interactions. In 

fact, in this particular example A and C only interact with B. 

One can show that the Hamiltonian (2.2) corresponds to the XOR 

result in C at t + At provided A and B where in one of the allowed super- 

positions of the appropriate "binary" states at t (we refer to superposition 

here because C is arbitrary at t). There are two ways to verify this [41]. 

Firstly, one can diagonalize H and then calculate the unitary evolution 

operator (matrix) U in the diagonal representation by using the general 

relation (valid for Hamiltonians which are constant during the time in- 

terval At; see [28] for a formulation that introduces a multiplicative time 

dependence in H), 

U = exp(-iHAt/h) (2.4) 

and then reverse the diagonalizing transformation.   The calculation is 

quite cumbersome. 

The second, more general approach adopted here is to "design" a 
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whole family of two-spin-interaction Hamiltonians of which the form (2.2) 

is but a special case, by analyzing generally a family of 8 x 8 unitary 

matrices corresponding to the XOR evolution. This "design" program is 

carried out in the following sections. 

3. The Structure of the Unitary Matrix and Hamiltonian 

We require any linear combination of the states |111) and |110) to 

evolve into a linear combination of 1110), |100), |010), and |000), compare 

the underlined quantum numbers with the first entry in (2.1), with similar 

rules for the other three entries in (2.1). 

In the matrix notation, and in the standard basis introduced earlier, 

namely, \ABC) = |111), |110>, |101), |100), |011), |010), |001), |000), 

the most general XOR evolution operator corresponding to the Boolean 

function (2.1), with the output in C, is, therefore, 

U = 

(° 0 u13 U14 u15 u16 0 
U21 U22 0 0 0 0 U27 

0 0 ^33 U34 u35 U36 0 
U41 u42 0 .0 0 0 u47 

0 0 u53 t/54 u55 U56 0 
U61 u62 0 0 0 0 u67 

0 0     U73    U74    U7,    U- 
\U8i    Ut 82 

;73 

0 0 
'75 
0 

'76 

0   \ 
U28 

0 
u48 

0 
Ues 

0        0 
0      U87    U88/ 

(3.1) 
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The condition of unitarity, UU* = 1, reduces the number of independent 

parameters. Still they are too numerous for the problem to be manage- 

able analytically; recall that each nonzero element Ukn is complex and 

therefore involves two real parameters. Thus, we are going to consider a 

subset of operators of the form (3.1). 

From our earlier work [28] we know that one convenient way to re- 

duce the number of parameters and at the same time ensure automatic 

unitarity is to have a single phase factor in each column and row of the 

matrix. Furthermore, we choose a form which is diagonal in the states of 

the A-sp'm, 

u={lz: wi) (3-2) 

Thus, A and B are not treated symmetrically. Here 04X4 denotes the 

4x4 matrix of zeros. The 4x4 matrices V and W are parametrized as 

follows: 

V=     e;     "      "     1\ (3.3) 

0 0 ei8 0 
eia 0 0 0 
0 0 0 eiß 

0 eZ7 0 0 

' .0 eip 0 0 
0 0 0 ezw 

e* 0 0 0 
, 0 ■ 0 etr> 0 

W=      "      "      "       „ (3.4) 
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The reasons for this choice of an 8-parameter unitary matrix U will 

become apparent in the course of the calculation. Some of the features 

can be explained at this stage as follows. We note that, omitting the 

direct-product symbols and replacing unit matrices by 1, etc., the matrix 

U in (3.2) has the structure 

2U=(l + azA)V+{l-<jzA)W = V + W + <jzA{V-W)        (3.5) 

where V and W are operators in the space of B and C. Since U was 

chosen diagonal in the space of A, the Hamiltonian, iJ, will have a similar 

structure, 

2H = P + Q.+ ozA{P - Q) (3.6) 

with the appropriate (B <g>C) -space Hamiltonians P and Q. Now in order 

to avoid three-spin interactions, P -Q must be linear in Pauli matrices. 

On the other hand, we also prefer to avoid single-spin (external-field) 

interactions. Thus, P + Q must contain only terms of the second order in 

the spin components while P-Q must contain only terms of the first order 

in the spin components. This suggests avoiding putting phase factors on 

the diagonal, which would lead to matrices similar to those encountered in 

extended-NOT-gate calculations [28] that are known to be of a structure 

undesirable here: they contain a mixture of first-order and second-order 
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terms. The off-diagonal choices remaining are considerably limited; the 

forms (3.3) and (3.4) are thus nearly unique. 

In summary, while the arguments are admittedly vague and they do 

involve a certain level of guess, trial and error, the presented parametriza- 

tion offers a good chance that with further restrictions on the parameters 

a two-spin interaction Hamiltonian can be obtained. As will be seen later, 

five conditions are imposed so that the resulting Hamiltonian depends on 

three (real) parameters. 

4. The Hamiltonian Matrix 

Let us define 

a+ß+1+ö 
fi=  (4.1) 

p + u + £ + T] 
V —  ;  

and also introduce the reduced operators p and q according to 

(4.2) 
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p = ~Äip and Q = ~xtq (4-3) 

Then (2.4) reduces to 

V = exp(ip)    and    W = exp(iq) (4.4) 

The following calculations are rather cumbersome. Only the results 

will be presented. The algebraic steps omitted are straightforward. First, 

we diagonalize V and W: we calculate their eigenvalues and also the 

matrices of their normalized eigenvectors. The latter can be used to 

transform to the diagonal representations. 

Specifically, the eigenvalues of V are ez/x, ieiß, -eiß, —ieiß. The 

appropriate eigenvalues of p then follow form (4.4) as /u, /i + |7r, \i + 

7T, [i + |TT. Arbitrary multiples of 2n can be added to these choices. 

However, there are certain nonrigorous arguments in the literature [28] 

for generally keeping the spread of eigenvalues of the Hamiltonian as small 

as possible. Thus, we choose the simplest expressions. The eigenvalues 

of q are determined identically, with fi replaced by v throughout. 

The next step is to apply the inverse of the diagonalizing transfor- 

mations for V and W to the diagonal 4x4 matrices for, respectively, 
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p and q. The latter contain the eigenvalues of p and q as the diagonal 

elements. The results are the matrix forms of the operators p and q in 

the original representation: 

4 
-P 
7T 

-(l-z)ei(a_M) 

\      _ei(<*+7-2/i) 

^ + 3 
_ei(/9+7-2M) 

_e*(2/i-j9-7) 

(l + Oe^-^ 

_ei(2^-a-7)     \ 

_(l_i)ei(/3"M) 

:/i + 3 / 4 
7T' 

(4.5) 

4 
7T 

/       J^ + 3 -(1 - ^e«'^-") ~(l + i)e^u-^ _ei(p+u;-2i/)     \ 

-(l + z')e^-^ J" + 3 
_ei(u+r)-2v) -(1 - ije^-") 

-(1-Oe^-^) _e*(2i/-w-T7) Ji/,+ 3 -(l + z)ez>-^ 
^     _ei(2i/-p-w) -(l + i)e^-w) -(l-i)e,'to-I/> i" + 3    ■/ 

(4.6) 

As expected, the resulting matrices are Hermitean. 
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5. The Two-Spin-Interaction XOR Hamiltonian 

Thus far we decreased the number of independent parameters in the 

general unitary transformation and chose it to be diagonal in the A-space. 

We now "refine" our design of the Hamiltonian to favor interaction of the 

second order in the Pauli matrices. First, we note that both P and Q are 

constant-diagonal matrices. In terms of the Pauli matrices, then, both 

their sum and difference in (3.6) will involve constant terms. These are 

undesirable because in azA(P-Q) they lead to terms of order one (instead 

of the desired two), in H, while in P+Q they lead to an additive constant 

in H which only affects the overall phase of the unitary transformation 

and is of no interest otherwise. Therefore, we put 

l* = v = --n (5.1) 

in order to nullify these diagonal elements in both P and Q. 

Let us now focus our attention on P - Q which, by (5.1), is now a 

matrix with zero diagonal. We must impose conditions on the parameters 

to make P - Q of order exactly one in the Pauli matrices. We note, 

however, that due to zero-diagonal, it cannot contain oz terms. The 

general form liner in ax, ay is 
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/' 0      X     Y     0 
/ 0     X\      ( 0    Y\      ^ r     0      0     Y 

P-Q = 1B®(X*   OL
+
U*   o    ®Xc=   y*   o    o   x 

X C \ 0     Y* -X*    0 

(5.2) 

where the stars denote complex conjugation, X and Y are arbitrary (com- 

plex) numbers, and I stands for the unit matrix as before. Thus we 

require that P - Q be of the form suggested by (5.2). This imposes 

several rather cumbersome algebraic conditions: two above-diagonal el- 

ements of the difference must be equal to zero while the remaining four 

elements must be equal pairwise. After a lengthy but straightforward 

algebra not reproduced here, we conclude that these conditions can be 

satisfied if a, /?, 7 are kept as three independent (real) parameters while 

the remaining angles are given by 

5=-3n-a-ß-i (5.3) 

p=-ir + ß (5.4) 

w = -27T - a - ß - 7 (5.5) 

£ = -7T + 7    . . . (5.6) 

77 = 7T + a (5-7) 
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These conditions take care of the form of P - Q. Interestingly, our 

results below also show that P + Q contains only two-spin interactions 

with this choice of parameters. We have no simple explanation of this 

property (of the absence of first-order terms in P + Q). It is probably 

related to the fact that the structure pattern of the original matrices V 

and W is quite similar even though the precise positioning of nonzero 

elements in them is different. Note that (5.1) is built into (5.3)-(5.7). 

The explicit expressions are obtained by a lengthy calculation, 

P + Q =         v2nhi 
4At X 

0 ,—ia + e iß 

-,ta 
e-i(a+0+7) _ e-»7 _,/2e-*(cH-7) 

-e'" - e~iß 0 -^/2e-i{ß+-r) e-ij _ e-;(a+/3+7) 

ei-r _ ei(a+ß+j)        ^2ei(ß+-r) o -e~ia - eiß 

y/2e^a+^ ei("+ß+i) _ ei~r eia _|_ e-iß 0 

(5.8) 

P — O —       Vlntii v 
^ ~ 4At    * 

0 
-eia + e~i/3 

_ei(a+ß+y) _ ßiy 

0 

e-ia _ eiß 

0 
0 

:ei(oc+ß+-y) _ eiy 

e-i(a+ß+y) _j_ e-iy Q 

0 e-*'(cH-/H7) _j_ e-»7 

0 
-eia + e~iß 

e-i<* _ e«7? 

0 

(5.9) 

Finally, we expand these matrices in terms of products of the Pauli 

matrices and collect terms according to (3.6) to get 
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H = 
irh 

{ V2 (sin a + sin ß) OZAOXC - V% (cos a - cos ß) GzAayc 

+V2[ sin 7 + sin(a + /3 + 7)] ozAoxB-^\COS 7 + cos(a + /3 + 7)] azAayB 

+V2 (sin a - sin ß) ozBoxC - V% (cos a + cos /3) azBayC 

->/2[sin7 - sin(a: + ß + 7)] oxBOzC + V^[cos7 - cos(a + ß + 7)] cryß^c 

- [ sin(a + 7) + sin(/3 + 7)] oxBoxC + [ cos(a + 7) - cos(/3 + 7)] <rxBayC 

+ [cos(a + 7) + cos(/5 + 7)](TyBaxC + [sin(a + 7) - sin(/3 + 7)]<TyB<ryc} 

(5.10) 

Note that (2.2) corresponds to the parameter choice a = ß = 7 = 

0. The Hamiltonian (5.10) describes the three-spin XOR for arbitrary 

parameter values. All the interactions involved are two-spin as desired. 

The result, however, is not symmetric in any obvious way. It seems to 

correspond to complicated tensor interactions involving expressions of 

order two in the components of the three spins involved. No rotational or 

other symmetry in the three-component spin space, or planar symmetry, 

or uniaxial coupling, are apparent. All these would correspond to the 

familiar Heisenberg, XY, and Ising couplings in condensed matter physics. 

Thus, in order to realize interaction (5.10) in materials, a rather 

anisotropic medium with highly nonsymmetric tensorial magnetic interac- 

tions will be required. In this respect our analytical attempt to "design" a 
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multi-spin quantum gate in this work may indicate that different roots to 

the derivation of Hamiltonians should be also explored. One should start 

with the more conventional magnetic interactions, isotropic (Heisenberg), 

planar (XY), uniaxial (Ising), write down general-parameter Hamiltoni- 

ans, and then adjust the coupling parameters numerically in search of 

those values for which useful Boolean gate operations are carried out. 

There is no guarantee that such a program will succeed. We intend to 

pursue both approaches in our future work. 

In summary, we derived a three-parameter family of Hamiltonians 

that correspond to the three-spin XOR gate. While our calculation 

demonstrates that multi-spin gates can accomplish quantum-logic op- 

erations with two-particle, short-range interactions, our results seem also 

to call for further work seeking improvement in two ways. Firstly, our 

derivation is not general and it has involved a good deal of guesswork. 

Secondly, the terms in the resulting Hamiltonians have no obvious group- 

ing by symmetries. 
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B 

C 

Figure 1: Three two-state systems (spins) A, B, C, with the pair- 

wise spin-component interactions marked schematically by the connecting 

thick lines. The XOR operation accomplished in time At assumes that 

A and B are the input qubits and C is the output qubit. The goal is to 

avoid multi-spin interactions; here these are the three-spin interactions 

marked schematically by the thin lines. 
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Chapter 2 

Quantum Computing Using 

Electron-Nuclear Double Resonances 

This section was published as a paper in: Photonic Quantum Computing, S.P. Hotaling and 

A.R. Pirich, editors, SPIE Press vol. 3076, 1997. Hence, the present section is a preprint of 

that paper. This paper summarizes earlier experimental work by Hotaling (cf. 1995). 
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ABSTRACT 

We consider the use of Electron-Nuclear Double Resonance (ENDOR) techniques in quantum computing. ENDOR 
resolution as a possible limiting factor is discussed. It is found that ENDOR and doubie-ENDOR techniques have sufficient 
resolution for quantum computing applications. 

Key Words: Quantum Computing, Nuclear Magnetic Resonance, Electron Nuclear Double Resonance 

1. INTRODUCTION 

Recently, one of the authors presented arguments that the Electron Nuclear Double Resonance (ENDOR) process may be 
exploited for the storage and processing of discrete data on a quantum scale1-6. The implication is that a solid state 
realization of a quantum mechanical computer could be engineered. Among the advantages are that such a solid state quantum 
computer would be stable, programmable, and inputfoutput (I/O) controllable by current state-of-the-art technology. It could 
be envisioned, in principle, to be engineerable for considerably lower per unit cost than quantum computers operating on the 
principle of induced quantum superposition and entangled states of trapped ions7, or photon states using microcavities8. 
Furthermore, solid state ENDOR is a well established procedure (established by Feher9 in 1959), and laboratory components 
are commercially available at reasonable costs. The present paper is a proposed novel quantum computing paradigm based 
upon the use of multipulse resonance techniques to manipulate nuclear spins of a mostly relatively low dimensional ensemble 
deviation from thermal equilibrium10. The new paradigm builds upon a previously proposed paradigm which utilizes well 
established techniques from nuclear magnetic resonance (NMR) spectroscopy11. An obvious advantage to using 
superposition of nuclear spins for quantum logic gates, and nuclear spin flips to conduct quantum computing, is the 
possibility of extraordinary long decoherence times due to the relative isolation of nuclear spins within a molecule. A 
disadvantage is related to this, and that is the length of time required to couple information in and out of a system and 
manipulation during computation. Another disadvantage is that nuclear spin flips are induced at radio frequency (rf) 
wavelengths, and so quantum computation is restricted to temporal unitary evolution and is entirely non-locaL 

In the present paper, we propose a scheme based upon Electron Nuclear Double Resonance (ENDOR) as a means to 
practical quantum computation. The proposed scheme builds from the previous proposals which use NMR spectrographic 
techniques10«11, but trades reduction in decoherence time by electron spin, nuclear spin coupling, but gains in high I/O bit 
rates and stronger coupling to manipulate computation. Also, we shall point out that sequential spatially dependent 
architecture is possible using laser electronic excitation to manipulate electron spin coupling to nuclear spins. 

A brief discussion of Electron Spin Resonance (ESR) and ENDOR will be presented in the next section. Our novel 
paradigm for quantum computing using laser-induced electronic excitation and ENDOR will be discussed in Section 3 and 
Section 4 will be used for summary and conclusion. 
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2. ESR AND ENDOR BACKGROUND 

The theory of ESR is derivable from the Dirac theory and will not be treated here, but may be found in the litera- 
ture1-6- 9> 12~13- Here, we simply state the essential spin Hamiltonian and discuss its interaction terms, 

cÄ= ßH •   e • S - ßNH   •   gN   •  I +  XL • S + S • A • I. (1) 

The first and second terms correspond to the Zeeman energy contributions due to the electron sin, S, and nuclear spin, I, 
coupling to the magnetic field H. Here, g is the coupling tensor in units of the Bohr magneton ß and gN is the nuclear spin 
coupling tensor in units of the nuclear magneton, p^. The third term in the Hamiltonian is the Zeeman interaction associated 
with the coupling between the magnetic moment due to the electrons intrinsic spin and that due to the electrons orbital 
momentum in a bound state. This term contains information about electronic defect states with different microscopic 
properties through measurement of shifts in g-value of a paramagnetic site. The last term is the hyperfine term which 
expresses the magnetic interaction between the nuclear and electronic spins due to overlap of the electronic wave functions 
with nuclear spins. This term, governed by the interaction tensor A, depends upon nuclear spin contact interaction with 
electronic wave functions and can be nearly isotropic, as with nearly s-type electronic orbitals, or anisotropic as for p- or d- 
like orbitals. By analyzing the energy contributions in the hyperfine term, the nature of the spin center (type of electronic 
state) can be determined. 

Electron Nuclear Double Resonance (ENDOR) provides the capability to more closely examine the anisotropic hyperfine 
interaction in terms of the atomic and electronic interactions at the paramagnetic centers. Ions or free radicals trapped in a 
solid lattice experience perturbations in their energy levels as expressed by this matrix. These perturbations can affect the 
spin transition dynamics of the paramagnetic species, and be detectable by Electron Spin Resonance (ESR). ENDOR allows 
the hyperfine and spin lattice relaxation phenomena to be measured by detecting the Nuclear Magnetic Resonance (NMR) 
signal as a change in the ESR spectrum. 

In ENDOR, the nuclear spins are modulated by addition of a transverse rf field, while the electron spins are driven by a 
transverse microwave (MW) field. The main aspects of the ENDOR process can be illustrated by the simplified version of 
Eq.(l). 

dk  =  gßH0Sz  +  aSI- gNßNH0Ii( (2) 

where we have neglected spin-orbit coupling, which in many cases is quenched12. The eigenenergjes associated with ch, Eq. 
(2), in terms of the appropriate quantum numbers are given by 

Efmg.rrij) «   gßH0mg +  amgirij, (3) 

where we assume that the electronic Zeeman energy, given by the first term, and the hyperfine energy, the second term in Eq. 
(3), are much larger than the nuclear Zeeman energy. The corresponding energy level structure, together with the ordering of 
the energy levels and transitions in terms of the quantum numbers is illustrated in Fig. 1. Provided 5*0, transitions W) -» 
|2) and 13) -» II) cause simultaneous electron-nuclear double spin flips at the transition energy hco = 2A. Whereas, transitions 
14) -» II) and 13) -> 12) correspond to electron spin flips only, but at the transition energy hco = 2A + 25. The usual ENDOR 
procedure requires that the electronic transition be saturated using a microwave field at frequency 0) = 2A/h; then nuclear spin 
flips are induced with an rf field at frequency fl = 25/h and appear as modifications in the electron spin-resonance spectrum. 

To date, the most prevalent application of the ESR process in solid state materials is the determination and characterization 
of defect structures. As discussed above, the hyperfine interaction between the magnetic moments of an unpaired electron and 
neighboring nuclei can yield this information. The hyperfine interaction is sometimes not well resolved due to lattice phonon 
modes. This is especially true of the super-hyperfine interaction or ligand hyperfine interaction which appears in the ESR 
spectrum as an interaction between the magnetic moment of an unpaired electron spin and its nearest neighbor nuclei. To the 
untrained eye, this broadening effect appears as a fundamental resolution limitation of magnetic resonance techniques. 
However, in the ENDOR process, the NMR transitions of neighboring nuclei interacting with the unpaired electron spin are 
measured by detecting their influence on the unpaired spins polarization under favorable signal-to-noise experimental 
conditions (partially saturated spin-resonance condition). These ENDOR-detected NMR transitions are detected as quantum 
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H = g ß Ho Sz + a S • I - gn ßn Ho lz 

E( ms, m|) = g ß Ho ms + a ms m| 

mi = +1/2 

ms = +1/2 

< 
m| = -1/2 

[1] 

[2] 

m| = -1/2 

ms = -1/2 

 [3] E3 = -, 

 [4]    T E4 = - 

E1 = A + 8 

E2 = A - 6 
A = g ß Ho 

E3 = -A + 8 8 = a 

A-8 
mi = +1/2 

h co = E2 - E4 a 2 A 

Fig.1 Energy level structure and transitions from Equ. (1). 

mechanical transitions of much higher energy than would be observed in conventional NMR or ESR techniques. This 
implies that there are far fewer lines in the ENDOR spectrum to resolve than in the conventional ESR or NMR spectra. This 
is shown schematically in Figure 2 for the spin 1/2 system where we note that the ENDOR transition (cross transition) is 
larger than, and fewer in number than, either the ESR or NMR transitions. The effect is more noticeable for higher order spin 
systems (I = 3/2,.... etc.). This enhancement has been reported experimentally in SrFCl and BaFCl systems14-16. 

A strong advantage associated with the paradigm presented here is the possibility to control the transferred hyperfine 
interaction, the tensor A in Eq. (1), used as a generic example and illustrated in Fig. 3a. Here, an unpaired electron orbital 
associated with atom, A is represented as an s-state in the electronic ground state, without any overlap of the wave function 
at the nucleus of atom, B. Laser excitation of atom, A on the other hand, induces an electronic transition to a p-orbital or d- 
orbital, with consequent overlap of the electron wave function at the nucleus, B, inducing SA, IB electron spin, nuclear spin 
interaction, as shown in Fig. 3b. If a microwave field is tuned to the transition shown in Fig. 1, a simultaneous electron 
spin SA, nuclear spin, IB, transition, double spin flip is induced Thus, nuclear spin flips can be controlled in atom, B, by 
electron spin flips controlled by laser-induced transferred hyperfine interaction17. 

This scheme constitutes a significant modification of the NMR quantum computation of Refs. 10-11. Here, we use that 
paradigm to build a controlled NOT-gate conditional on a reference nuclear spin, but introduce laser field-induced electron spin, 
nuclear spin coupling by laser-induced transferred Fermi contact interaction. Thus, input/output and control can be executed 
locally under unitary time evolution, U = exp [-i ck At/fr], and the laser field can be used to induce n-pulse excitation/de- 
excitation of duration At in subpicosecond time scale. Thus, decoherence can be minimized and control can be executed on 
the ultrafast time scale. In essence, we trade off some decoherence for fast local control. 

It is also possible to utilize Double-ENDOR (D-ENDOR) effects to increase the spectral resolution. In D-ENDOR, two 
NMR transitions aie stimulated while the ESR transition is measured. In this case, typical improvements of a factor of 10:1 
in resolution are obtained18. In addition, Optical Detected Magnetic Resonance (ODMR) has the potential for increased 
output resolution. 
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3. QUANTUM LOGIC CIRCUITS 

Recently, quantum mechanical Hamiltonians for logic gate elements have been derived for NOT18, exclusive OR19-20, 
and controlled-NOT (C-NOT)10 operations. The former papers concerned theoretical derivations while in the latter paper by 
Gershenfeld and Chuang, NMR transitions were experimentally demonstrated to realize a C-NOT operation in hardware. This 
experiment, when taken along with earlier work1-6,18-20, leads us to propose an ENDOR-based process paradigm for 
realization of higher complexity quantum logic gates. 

Consider a spin system consisting of a free spin (electron or hole) in some photoactive crystal or polymer, its nearest 
neighbor nucleus B and its second nearest neighbor nucleus C, as illustrated in Figure 4. The magnetic moments of B and C 
are assumed distinct. Spin-spin interaction between SA and IB and SA and IQ is defined by the anisotropic hyperfine tensor A 
[Eq. (1)]. Stimulating nuclei B and C by separate rf wavelengths Vg and v^ corresponding to NMR transition frequencies 
while simultaneously stimulating SA by microwave radiation sets up a D-ENDOR system. Stimulation of SA by external 
laser radiation, VL, serves as a control to flip the spin states of the D-ENDOR system. Alternately, Iß or IQ could be 
perturbed by IR lasers, but for simplicity, we assume only SA laser stimulation. This controlled stimulation thus realizes a 
controlled NOT gate. Consider the spin interaction to be coupled to a chain of atoms (D,E,...,N). Repeated pulsing of SA 

would cause the quantum chain to respond as the quantum mechanical analog of a chain of emitters as shown in Figure S. If 
N is even, then there is no net change in spin state at output, or lup) -> lup). If N is odd, lup) -» Idown). 

Fig. 2 a) Endor spectra of F(CI") and F(F") centers in BaFCI for 
Bo 15° off c in the c-a plane, b) Double ENDOR spectrum for setting 
fl to an ENDOR line of F(CI) centers (see mark on Fig. 2a). 

c) Double Endor spectrum for setting f 1 to an ENDOR line of F(F-) 
centers (see mark in Fig.2a). 

From Reference 15, J. R. Niklas, R. U. Bauer, and J. M. Spaeth, 
Phys. Stat. Sol. (b) 119,171 (1983). 
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Fig. 3a Electronic S - state; A=0, 
ground state, no overlap. 

B 

*^lÖffJPl 

Fig. 3b Electronic p - state; A nonzero, 
excited state, overlap. 
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VL 

Vc 

Fig. 4 Double ENDOR system; see text. 

4. CONCLUSION 

We have proposed a new paradigm for quantum computing which begins with the construction of a quantum controlled- 
NOT gate as prescribed in Reference 10, which uses a nonequilibrium ensemble of nuclear spins. The experiments of 
Gershenfeld, et al. have demonstrated exceptionally long decoherence times due to the relative isolation of nuclear magnetic 
moments to externally induced transitions. Our scheme introduces a higher-order process by coupling electron, nuclear double 
resonant superhyperfine transitions, controlled by laser-induced electronic transitions. The advantages of this scheme are mat 
each complex molecule becomes, in and of itself, a quantum computer and the entire system represents massive parallelism. 
In addition we have shown that laser-induced electronic excitation renders local control of gate preparation, spin flips, and 
input/output which can take place on the subpicosecond time scale. Here, we trade long ^re*^s- inrinsK^th 
nuclear spin flips, for controlled coupling with electron spin flips by transferred <*^yP^* ™te^*: J1*™" 
regulated! i.e., on or off, by laser field n-pulse electron excitation/de-excitation. We hope that tins will lead to near-term 
experimental investigations. 
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/—£>—1> (^ <READ 
OUT 
ODMR 

Fig. 5 Spin coupled to a chain of atoms; N even, 
no change at output, N odd, spin flip at output. 
Constitutes a controlled NOT gate. 
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Chapter 3 

Higher Radix Computation 

Quantum mechanical systems are not limited to binary representation systems. Depend- 

ing upon the atomic species under consideration, there may be many possible distinctly 

measurable excited states in addition to the ground state. This fact yields the possibility of 

designing a computational architecture with a radix exceeding 2. The possibility of having 

more than two distinct states also indicates the possibility of creating a logic machine with 

more than two truth values. Such a multivalued logic machine would have the potential 

for working in varied modal logics. Of course, we must recall the Rüssel-Whitehead thesis 

which proved that logic is distinct from arithmetic, but the possibility of nature providing 

the computer designer with such versatility is indeed intriguing at the least. The present 

chapter is a preprint of the author's paper on the subject of Radix R>2 quantum computing. 

The paper was published by the SPIE in 1997. 
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Radix-R > 2 Quantum 
Computation 

S.P. Hotaling 
Air Force Materiel Command 

Rome Laboratory/Photonics Division 
25 Electronic PKY Rome, NY 13441-4515, USA 

1    Abstract 

A quantum mechanical system is presented for which a multiple-valued quantum 
algebra and logic are derivable. The system is distinguished from previous quan- 
tum computational proposals by the definition of higher order quantum algebras 
and logics derived fromlhulti-level quantum spin systems. 

2    Introduction 

The potential impact and applications of quantum computing have recently been 
investigated by the community[l]. Most of the current literature considers quan- 
tum coherency to be of critical importance. This strict coherence constraint 
implies the necessity of isolated quantum systems which do not communicate 
with each other or the environment except at measurement (at which time the 
information content of the states is corrupted vis. the quantum measurement 
problem). The present work does hot admit this constraint, allowing for mixed 
quantum states to encode and process information. The appeal of this relaxed 
constraint is that it may be possible to engineer a material system to perform 
quantum algebraic and logical operations in condensed matter systems at high 
temperatures, thus obviating the need to contain hundreds of ions in an ion trap 
at near-absolute zero temperatures. 

3     A Simple Quantum Mechanical Finite State Machine 

Consider a solid system rich in nuclear and electronic spin states (e.g. transition 
metal doped- BiijSiOjo as used in Ref. [2]). A Spin Hamiltonian can be de- 
rived which allows for photonic perturbation of those electronic and nuclear spin 
states. [3] 
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Conjecture 1 A finite state machine may be realized from spin states (corre- 
sponding to logic levels) in a condensed matter media and photonic perturbation 
(logical connectives) of those states. 

As a simple example of a multiple-valued quantum spin system, consider a 
system of two particles at fixed positions in space (separated by a distance r), 
endowed with 6pin |, and joined with unit vector n. The state of the system is 
given by the state vector: 

m=\s,i) a) 
where: S and / correspond to the 6pins, of the particles. The set {Js.t >} is 

the basis of eigenvectors common to S, and Ix (in the spin Hilbert space of spin 
states). 

The magnetic moments of 5" and I are given by: 

M.=-r,S (2) 

and 
Af, =-»I (3) 

Assuming S and / have differing magnetic moments, they will have different 
Larmor frequencies when placed in an external B-field: 

wi = -7lBo (4) 

OJ2 = -T2B0 (5) 

The unperturbed Hamiltonian for the system HQ, is given by: 

Ho = CJ1SX+ u-J.x (6) 

The interaction Hamiltonian H, for this simplified quantum system is given 

W = g^[5-/-3(5.n)(/.n)] (7) 

The state space in which H acts is spanned by the set {|y>rUm) ® Is»«)},where 
IVrUm) is & standard basis in the state space of one of the relative particle, and 
\s,i) is the basis of eigenvectors common to Sx and Ix. 

Remark 1 The interaction Hamiltonian (dipole-dipole) of Eq. 7 neglects several 
terms, but for the purpose herein, i.e. the description of a quantum logic and 
algebra, Eq. 7 is sufficient. The reader is referred to Ref. [3] for a more com- 
plete spin Hamiltonian. As in Refs. [2]and [Sj, we are interested in magnetic 
resonance transitions of the system, since this technique allows straightforward 
measurement. 
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The total Hamiltonian is: 

B=H0 + H (8) 

In Eq. 8 the interaction Hamiltonian term is treated as a perturbation on HQ. 

Remark 2 The transitions allowed for the spin resonance condition[2] for mag- 
netic field parallel to the lab x-axis are: 

IT.T>H1,T>;& ^o (9) 

IU)HU);&*o (10) 

Forming a four-state quantum system with four distinct levels, depending 
upon which selection rule is chosen. Assume that as experimentally observed 
in ref. [2], that incident laser radiation can induce these spin state transitions. 
Then, various orientations of applied B-field and photon energy, observable spin 
states are forced to change in response to incident radiation (switched). Thus, we 
have a finite state system with four levels. The Hilbert space of possible states 
containing combinations of electronic and nuclear spin state vectors is finite. 
Additionally, undefined states are discouraged due to strict quantum mechanical 
selection rules and the experimental form of the perturbation (laser radiation). 
At some finite energy, the atom may be ionized, which would lead to loss of 
data. For construction of a computational machine, the energy input to the 
system is strictly lower than that required to ionize the atoms of the system. 
This energy constraint is physically realized through use of laser radiation as 
spin state perturbation. 

Formally, if we assign to each of the four quantum levels above numeric values: 

IT,T>«*o (11) 

IU>*1 (12) 

11,1) «»2 (13) 

IU><*3 (14) 

we have the basis for a four-state (finite-state) machine logic. We must now 
consider a transformation from physical (measurement) space to the finite group 
representation thereof, the elements of which, comprise the logical states of our 
finite state computer: the set «S = {ß 3 ß G {0,1,2,3}}. Given this ordered set 
of elements, we write the following axioms: 
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Axiom 1 All system states are subsets of S - Zorn's Lemma applies. 

Axiom 2 Equality relation: We may write the symbol ' = ' as meaning that log- 
ical state ß of the system physically corresponds to state |$). Quantum mechani- 
cally, this implies that |*)j = \V)j, or two distinct atomic systems are physically 
in the same quantum state |#). Further, if we assign the numeric value ß to both 
states, we may say that an element is equal to itself. 

ß = ß (15) 

Axiom 3 If two elements ofS; # and ßj are equal, then: 

ßi=ßjthenßj=ßi (16) 

Axiom 4 There exists a transitive law: 

If ßi = ßj and ßj = ßk, then fr = ßk (17) 

Axiom 5 Closure. Binary operations performed upon elements of S yield ele- 
ments of S. 

Remark 3 

If Eqns. 11-14 are replaced by those of Eqns. 18- 21, we have a three state 
logic which redefines the axioms above. This tri-state logic is interesting since 
it can be used in the context of the radix-4 quantum computer of the present 
work to perform Boolean Logic, while the mappings of Eqns. 11-14 are used for 
arithmetical operations. 

IT,T) «M (18) 

■ IT.i) «*o+ (19) 

|U><*0- (20) 

II,l> *-l (21) 

Axiom 6 All system states are subsets ofS- Zorn's Lemma applies. 

Axiom 7 Equality relation: We could only write the symbol ' = ' as meaning 
that logical state ß of the system, which physically corresponds to \9), is physically 
equal to itself IFF ß G {—1,1}. Quantum mechanically, this implies that |^) = 
|\I>), or is physically the same quantum state in two distinct atomic systems. 
However, for the zero states, 0+ is a physically different state than 0~. Thus we 
write the symbol f=' for the tri-state logical equality. 

ßi\=ßi (22) 
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Axiom 8 Inequality ft=): If ßi is not equal to ßjt then we write: 

ßdßj (23) 

We have the choice of making the logical decision that 0+ is logically equivalent 
to 0~. or: z 

0" f= 0+ (24) 

or i 
oVo+ (25) 

If we leave this to the choosing or the programmer, then the present logic 
has the potential for formulation of NP complete problems. Choosing Eqn. 24 
yields the tri-state logic, while choosing Eq. 25 yields a four state logic. Several 
tri-state logics have been discussed in the literature. [4] 

4      Conclusion 

The present work has presented a proposal for a simple radix-4 finite state quan- 
tum logic using quantum spin states as logic levels and photon induced spin 
transitions as connectives of that four state logic. A tri-state logic is seen as a 
special case of this four-state system. The 4-state logic is easily expandable to 
yet higher radix algebras and higher order quantum logics. This would be per- 
formed by exploiting material systems with larger numbers of measurable spin 
states. For example, doped Bi^SiOM sillenite crystals of ref. [2] showed a rich 
ENDOR spin structure, including hyperfine and quadrupole lines. It is apparent 
that quantum mechanical spin systems offer the ability to perform calculations in 
higher radix than 2, and logic operations with more than two logical truth states. 
The present work thus proposes that the mathematics community consider mul- 
tiple valued algebras and quantum logics (e.g. Quantales), while concurrently, 
the physics community seek to exploit the vast ESR, ENDOR, and NMR spec- 
troscopy literature for systems capable of encoding and manipulating higher radix 
data. 
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Chapter 4 

Summary 

The present report summarized the efforts of the Rome Laboratory study in Quantum Com- 

putation. The program has produced new research areas for the field as represented by 

two international SPIE conferences (1997,1998) chaired by Hotaling and Pirich (of Rome 

Laboratory) as well as providing stimulation to the community in the areas of quantum de- 

coherence bounds in quantum computation, and representation theory for quantum groups 

and quantum algebras. As discussed, it is the recommendation of this study that further 

work be performed in quantum computation, specifically aimed at development of quantum 

structures and algebras to exploit the quantum gate Hamiltonians and experimental quan- 

tum computers presently in laboratories today (e.g. the ion trap and magnetic resonance 

systems). 

«U.S. GOVERNMENT PRINTING OFFICE:      1998-610-130-61198 
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ATTN: AMSMI-RO-CS-P, DOCS 
REDSTONE ARSENAL AL 35899-5241 

ADVISORY GROUP ON ELECTRON DEVICES 
SUITE 500 
1745 JEFFERSON DAVIS HIGHWAY 
ARLINGTON VA 22202 
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REPORT   COLLECTION,   CIC-14 
MS   P3t>4 
LOS ALAMOS NATIONAL LABORATORY 
LOS ALAMOS Hn   87545 

AEDC LIBRARY 
TECHNICAL REPORTS FILE 
100 KINDfEL DRIVE, SUITE C211 
ARNOLD AF3 TN 37339-3211 

COMMANDER 
USAISC 
ASHC-IMD-L, 
FT HUACHUCA 

3L06 61801 
AZ 85613-5000 

US OEPT OF TRANSPORTATION 
F810A, M-457, RH 930 
800 INDEPENDENCE AV£, SW 
WASH OC 2259! 

LIBRARY 

AWS TECHNICAL LIBRARY 
859 BUCHANAN STREET, RM. 427 
SCOTT AF3 XL. 62225-5118  ' 

AFXWC/MSY 
102 HALL BLVD. 
SAN ANTONIO TX 

STc 315 
76 243-7016 

SOFTWARE ENGINEERING INSTITUT; 
CARNEGIE M5LLÜN UNIVERSITY 
4500 FIFTH AVENUE 
PITTSBURGH PA 15213 

NSA/CSS 
XI 
FT MEADE m   20755-6C00 

ATTN: OM CHAUHAN 
OCMC WICHITA 
271 WtST THIRD STREET ! 
SUITE 600 0 
WICHITA KS  67202-1212 



PHILLIPS LABORATORY 
PL/TL CLlßRARY) 
5 WRIGHT STREET 
H.ANSCO« AFS HA 01731-3004 

fiTTN:  EILEEN LADUKE/Q460 
MITRE CORPORATION 
202 BURLINGTON Rü 
BEDFORD MA 01730 

OUSDCPVOTSA/DUTD 
ATTN:  PATPICK G. SÜLLIVAN, JR, 
400 AR^f NAVY DRIVE 
SUITE 300 
ARLINGTON VA 22202 

RICHARD PAYNE 
AIR PQRCE RESEARCH LAÄ/SNH 
HANSCOM AFS, MA  01731-5000 

JOSEPH P. LORENZO, JR. 
AIR FORCE RESEARCH LA8/SNHC 
HANSCöM AF3, MA  01731-5000 

JOSEPH L. HORNER 
AIR PORCE RESEARCH LAS/SMHC 
HANSCO« AFB, MA  01731-5000 

RICHARD A. SOREF 
AIR FORCE RESEARCH LAB/SNHC 
HANSCOM AFS, MA  01731-50 00 

JOHN J. LA»KIN 
AIR FORCE RESEARCH LA3/SNHX 
HANSCOM ÄF3t MA ' 01731-5000 

ALBERT A. JAM8EROINQ 
AIR FORCE RESEARCH LAB/IFSD 
32 HANSAR RO 
ROHE NY  13441-4114 
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PAUL F. .SIcRAK 
AIR FORCE RESEARCH LAS/IFGA 
525 BROOKS RO 
ROME NT  13441-4505 

AIR FORCE RESEARCH LA3/SND 
25 ELECTRONIC PKY 
ROME NY  13441-4515 

JOANNE L* ROSSI 
AIR FORCE RESEARCH LAS/SN-1 
25 ELECTRONIC PKY 
ROHE NY .13441-4515 

MY PHOTONIC DEVELOPMENT CORP 
«VCC ROME CAMPUS 
UPPER FLOYD AVE 
ROHE, Nf  13440 
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