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ABSTRACT 

This report provides a prelude to the work developed by Smirnov et al [1-4] considering the 

damage model of laminated composite materials. An overview of the thermodynamic definitions, 

concepts, and principles will be presented. This overview of the thermodynamics is necessary to 

provided the background needed to understand the damage model, which is based on thermody- 

namic principles. The essentials will be presented as follows: concepts and definitions, balancing 

laws, thermodynamic equilibrium or thermostatic, and the thermodynamic process. Furthermore, 

the essentials of the thermodynamics will be used to illustrate the development of the model of 

failure given by Kiselev and Yumashev [5]. The Kiselev and Yumashev model will be discussed prior 

to Smirnov's damage model since both are similar in their postulation of damage for structures un- 

dergoing impacts, and are based on thermodynamic principles. However, they are different in that 

the former is developed for elastoplastic isotropic homogenous material, and the latter is developed 

for laminated composite materials based on viscoelastic constitutive laws. That is, the constitutive 

equations for an elastoplastic material will be discussed to illustrate the use of a thermodynamic 

model of failure first, then the constitutive relations that incorporate a time dependent viscoelastic 

laminated composite materials will eventually be added in a subsequent report. 
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1    INTRODUCTION 

The writers are using this report as a overview to prepare the reader for the full work development 

of Smirnov el al [1-4] damage model for laminated composite materials. These references attempt 

to postulate a consistent damage model for laminated composite materials relating the deformation 

and failure under impact loading. In order to accomplish this, it becomes necessary to first consider 

a similar environment for isotropic materials [5]. In addition the failure, specifically the failure of a 

continuum under impact loading considered in references [1-5], is postulated as an energy dissipation 

criteria of a thermodynamic system in a time domain. Thus, the presentation of thermodynamic 

principles and related expressions used to postulate the thermodynamic model of failure become nec- 

essary to convey a clear picture of the model's development. In this way it is possible to appreciate 

all of the ramifications of various conditions which become relevant to an associated environment 

that actually present themselves in a thermodynamic model of failure, i.e. the flow of heat (heat 

flux), the continuum deformation, and finally the damage accumulation. Certain fundamental terms 

and relationships that will be encountered in the thermodynamic field must be examined thoroughly, 

e.g. specific free energy, internal energy, entropy, thermal flow, damage function, and stress-strain 

relationships. The writers, therefore, attempt to present a review of each of the fundamental topics 

required to understand the damage expressions published by Smirnov et al [1-4] for an impact type 

of problem. This overview, as an initial effort, will emphasize the expressions published by Kiselev 

and Yumashev [5] dealing with the deformation and failure of isotropic materials under impact. Note 

that in Kiselev and Yumashev [5], the constitutive equation models elastoplastic material under im- 

pact loading, however, in Smirnov et al [1-4] the constitutive equations model viscoelastic material 

under impact loading. As a first step, the Kiselev and Yumashev [5] constitutive equations for an 



elastoplastic material will be discussed to illustrate the use of a thermodynamic model of failure. 

Further constitutive relations that incorporate a time dependent viscoelastic material will eventually 

be added. 

The flow of ideas will be presented in the following form since the writers feel that an overall 

understanding of the failure model is only achieved by appreciating how the basic laws enter the 

global picture. A great deal of the actual mathematics for the relations can be found in Malvern [6], 

Maugin [7], and Mase and Mase [8], and relationships in these references will be used freely. The 

reader should consult these references for more details. It is our objective to show how the laws fit 

together, and how they are in general applied to a failure model. Thus, the following outline will be 

pursued: 

1. The essentials of thermodynamics; a review of definitions, concepts, and principles of thermo- 

dynamics are presented. For clarity, this part is presented in four subsections as follows; 

I. concepts and definitions; the writers will first review the essential concepts and definition 

of a thermodynamic system. These are important, since they establish the foundation 

used to formulate the principles of thermodynamics. 

II. Balancing laws; they are the relationships that characterize the fundamental laws of a 

continuum. These laws are applicable to all material of a continuum and result in the 

governing equations that must be satisfied. They are presented in three parts, but they 

are intricately tied together: 

A. the conservation laws dealing with mass, linear momentum, and angular momentum 



for a purely mechanical system. 

B. the heat conduction-convection for a system purely under heat transfer. 

C. the first law and second laws of thermodynamics which are an energy balance of a 

system exchanging heat and work with it's surroundings. 

III. Thermodynamic equilibrium or thermostatic; a system under thermodynamic equilibrium 

or thermostatic state is defined, the governing laws are established, and the appropriate 

concepts for a thermostatic system are presented. 

IV. Thermodynamic process; the concepts of a thermodynamic process is presented with two 

main presentations of the process; the axiomatic representation and the thermodynamics 

with internal variables representation. 

2. The Thermodynamic model of failure; the thermodynamic model of failure presented by Kiselev 

and Yumashev [5] will be discussed in detail. This model uses thermodynamic concepts and 

principles, discussed in the section entitled "The Essential of Thermodynamics" to characterize 

failure of a continuum under impact loading. 

2    THEORY 

This theory section will be presented in two parts. The first part will review the essential elements 

of thermodynamics of a continuous homogenous media. The definition of the main concepts in ther- 

modynamics and the principles governing a thermodynamic system will be presented. In this part, 

for example, thermodynamics quantities such as entropy, free energy, and enthalpy are defined, the 

first and second law that govern a thermodynamics system are presented, and the physical meaning 

of a thermodynamic process is interpreted.   Once the concepts and principles of thermodynamics 



are establish, they will be used to characterize a thermodynamic model of failure since it is based 

on a thermodynamic approach that postulates failure as an energy dissipation mechanism in a time 

domain. The second part will establish the governing equations of a thermodynamic model of failure 

for a thermoelastoplastic medium. The model will be based on the thermodynamic principles that 

will be presented in the first section. The development of this model and the assumptions associate 

with it will be shown in detail using those established in the first section. The reader should consult 

Malvern [6], Maugin [7], and Mase and Mase [8], for more in-depth discussions of the postulations 

of thermodynamics. 

Furthermore, it should be noted that continuum mechanic principles assume a continuous media 

which disregards gaps and empty spaces that might exist in the molecular structure of a matter. 

That is, it assumes that functions are well defined (i.e. continuously smooth and differentiable as 

many times as needed), and transformations are one-to-one (i.e. mappings are invertible and the 

Jacobian exist). In other words, the continuum mechanic principles are postulated under certain 

conditions or assumptions on the operators, functionals, and smoothness of domain and its bound- 

ary (i.e. nonsingular). This continuum mechanic theory does not consider special cases, such as 

sharp discontinuity of flow field variables, pressure, displacement, density, temperature due to shock 

wave and singularity of stress at the crack tip and discontinuity of displacement at the crack lips 

in fracture mechanics. In such special cases a theory is developed especially to model the physics 

of the problem, and the governing equations are derived specifically to incorporate the physics of 

that phenomena. For example, one way to model shock waves is the Rankine-Hugoniot relations for 



changes across a shock. It is used to relate the flow immediately ahead of and behind the shock (i.e. 

shock boundary condition), and the governing flow equations are used to calculate the remainder 

of the flow field between the shock and some other boundary condition, such as the surface of a 

body [9,10]. Another way is to introduce artificial viscosity as a dissipating mechanism that would 

result in the shock wave being spread smoothly over a finite distance (i.e. several mesh grids in a 

computational discritization) [10]. Also, for a crack problem, i.e. macroscopic crack, the equilibrium 

equations, where the displacement at the crack is written in an asymptotic expansion form and the 

crack's boundary conditions are imposed, can be formulated leading to a stress' solution as a function 

of the distance (r) from the crack tip [7]. This stress solution is proportional to the inverse of the 

square root of the distance from the crack tip (i.e. stress singularity at the crack tip is proportional 

to r"). 

This crack problem examines the damage mechanics of the continuum based on a macroscopic 

level where the crack more or less grows violently due to fatigue. Also, the damage mechanics in a 

continuum occurs on a microscopic level where a microcracks and microcavities caused by a damage 

process lead to a decrease in the material stiffness and strength (i.e. its ability to carry load is 

reduced). This microscopic damage process is of interest in this report since the thermodynamic 

model of failure discussed by Kiselev and Yumashev [5] is postulated based on the microscopic 

damage of the continuum. That is the microscopic damage process, which is initiated by impact 

loading, will cause an elastoplastic response in the material. This elastoplastic material response in a 

thermodynamic system is characterized as an irreversible thermodynamic process which is computed 
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qualitatively as an energy dissipation mechanism function of time (i.e.  cumulative damage) that 

resulted from a high strain load. 

2.1    Essential Elements of Thermodynamics 

In this section, the essential elements of thermodynamics are reviewed. To better present this 

section, it is divided into four subsection. The first will discuss concepts and definitions of terms 

that are used in the thermodynamic field. The second will show the principles of thermodynamic 

for both reversible and irreversible processes. The third, will discuss the laws of thermodynamic 

equilibrium or thermostatics associated with reversible thermodynamic processes. These laws are 

well established in the literature, and they will be used to represent the state of a thermodynamic 

system at a moment in time. Fourth, the concept of a thermodynamic process evolving from one 

state of thermodynamic equilibrium or thermostatic to another will be discussed. 

I. Concepts and Definitions 

What is thermodynamics ? Thermodynamics is the science of studying energy and its relation to 

matter in a natural phenomena that is surrounding us, such as the motion of a pendulum, heating 

water, paddling a bicycle, and riding a roller coaster (these are simple examples). In other words, 

thermodynamics is the study of energy exchange of a well-defined geometrical volume as it evolves 

in time, i.e. change from one state to another. For example, and in simple terms, heating is adding 

energy to the water and paddling a bicycle is converting body energy into mechanical work. Note 

that, energy is a conceptual property, that is, a defined quantity used in postulating the laws of 

physics which exist in nature, and it is censored through its effects, i.e. to move an object from a 

point to another takes energy. A thermodynamic system is a system whose energy exchange with 
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the exterior is nothing but an exchange of heat and of work done. Such energy exchange could be 

recoverable or irrecoverable depending on the nature of the system being examined. For example, 

the amount of energy manifested in a bar that is loaded unaxially could be recovered upon unloading 

for linear elastic material, that is the energy is conservative for a cyclic loading. However, if the load 

is increased such that the material reaches a nonlinear material response, then not all the energy is 

recoverable upon unloading or cyclic loading, and part of the energy is dissipated due to plasticity, 

viscoplasticity,...etc. Hence, to model these phenomena that exist in nature, there are two types of 

thermodynamics processes; reversible thermodynamics processes and irreversible thermodynamics 

processes. 

A reversible thermodynamics process, such as a pendulum under gravitational force and friction 

free, the oscillation of mass connected to an elastic spring, (i.e. undamped vibration), compression 

of an ideal gas, and an elastic collisions of two balls, are processes where the kinetic and poten- 

tial energy may be fully transformed from one state to the other in the absence of a dissipation 

mechanism (i.e. energy proceed from kinetic to potential energy and visa versa in a cycle). The 

state of a reversible thermodynamics process is referred to as a state of equilibrium, thermostatic or 

thermodynamic equilibrium interchangeably, and its governing principles are well established in the 

literature and will be summarized later. 

An irreversible process is a nonconservative process due to some sort of energy dissipation, which 

is not recoverable, such as viscous force, friction, and nonlinear response of material. An irreversible 
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phenomena often occurs in conditions removed far from equilibrium (i.e. a process does not exhibit 

equilibrium in a thermostatic sense as in a reversible process) where linear constitutive equations 

are no longer applicable for thermodynamic inputs. Even though an irreversible thermodynamic 

process, in its main sense, is the study of a phenomena outside a state of equilibrium, an irreversible 

thermodynamic process is conceived as a transition from one state of equilibrium to another. Thus, 

it is the study of phenomena outside a state of equilibrium, but in the vicinity of an equilibrium 

state, so that some of the concepts and principles developed for a state of equilibrium of a reversible 

process can be assumed to be applicable during the evolving of an irreversible thermodynamic pro- 

cess in time. Numerically, this concept allows for an incremental approach. This concept will be 

revisited later. 

Before proceeding with the discussion of the principle that govern the physics of a thermodynamic 

process, first some important concepts which will allow us to better understand the physical meaning 

of these principles are presented, such as energy, heat, and work. What is energy ? Energy is a 

conceptual property defined to explain interactions between systems. For example, a molecule 

possess energy by virtue of their translation through space, which is called microscopic kinetic energy. 

This kinetic energy, which molecules possess, could be due to transitional, rotational, vibrational, 

or spinning motion of the molecules. Also, molecules are held together by molecular binding forces, 

and the concept of potential energy is associated with these intermolecular forces. The macroscopic 

internal energy is the total energy possessed by the molecules. For example, applying an external 

unaxial load to a bar of a linear elastic material causes intermolecular forces inside the bar which 
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are proportional to the potential energy per unit mass ü (i.e. the so-called specific strain energy) 

defined as 

raj 

Jo 
u 

/o 

where a{j is a stress tensor and e8J- is a strain tensor. For a continuum in motion, the macroscopic 

kinetic energy K of a system is the energy associated with the macroscopically observable velocity 

v of the continuum, and it is defined as 

K l\pv-vdV, (2) 

where p is density (i.e. mass per unit volume), v is a velocity vector. In this report, the convention 

adopted is that a bold symbols indicate tensors of first order and higher (i.e. vectors and tensors). 

Note that an isolated system is one where the energy for the system is constant and no change of 

energy occurs. 

It was mentioned earlier that a thermodynamic system is a system whose energy exchange with 

the exterior is nothing but an exchange of heat and work. What is heat and work ? Heat is the 

amount of energy being transferred between two systems having two different temperatures. That 

is, considering two adjacent systems A and B at two different temperatures that are capable of 

exchanging energy, the heat will flow between the two systems carrying energy from the hotter to 

the colder systems until their temperature are balanced. The time rate of the heat flow is called flux 

or heat flux. Note that an isothermal system is one where its temperature is constant and does not 

change, and a system that is under going an adiabatic deformation is one where no heat transfer is 
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allowed. Note that heat flux can not be measured directly, but its effects can be indirectly observed, 

such as melting of ice, and the warming and vaporization of water. The concept of work which could 

be mechanically moving an object a distance 8 by applying a force F, compressing gas's volume dV 

by applying a pressure p, or changing the state of an electrical charge dQ by applying a voltage V, 

...etc., can be expressed in a general equation as 

W =        fidati ,        where i = l....n , (3) 
Jo 

where W is the work, a* represents the quantitative change of an ith degree of freedom, and f,- is 

the conjugate of the ith quantitative change a,. The word conjugate means a pair, and it is used 

in general to relate quantities that act in pairs to produce some sort of energy, such as force and 

displacement, volume and pressure in gases, voltage and electrical charge,...etc. Power is defined as 

the time rate of work. Note that work and heat are unlike energies, which are stored within matter. 

Heat and work are not stored within matter, but they are two ways to transfer energy across the 

boundary. That is, doing work (supplying power) and transferring heat (supplying heat flux) to a 

system increases the amount of energy stored within matter for that system. 

Furthermore, how is the state of a system characterized ? In general, a state of a system is 

characterized by a real finite set of quantities that are determined by the physics of the system 

(i.e. experimentally proper to that system), whether of geometric, mechanical, thermal, electrical, 

physicochemical,....etc. in nature. Note that one draws from experiment that only a limited number 

of these quantities, which are properties of the physical state of the continuum, are mutually inde- 

pendent.  Also, mutually independent quantities are sufficient to characterize the physical state of 
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the system. Mutually independent quantities are also required to impose a well-defined mathemati- 

cal system where the physical state of the system is invariant, i.e. the physical state is independent 

of the choice of these mutually independent quantities. For example, in solid mechanics to describes 

the deformation of a body under mechanical loading, either loads or displacements are chosen to 

characterize the physical state of the system since they are related by the constitutive equations. In 

either case, the solution is independent of the quantities chosen to characterize the system, and the 

choice is influenced by the approach being used to model and solve the problem. Also, to describe 

the physical state of a given quantity of an ideal gas, its pressure, specific volume, and temperature 

could be used to characterize the physical state of the system, however, only two are mutually inde- 

pendent (i.e. independent variables) since there exist gas law equations that relate pressure, specific 

volume, and temperature. 

In a thermodynamic system, the continuum is characterized by macroscopic quantities, which 

are mutually independent, and they are called state variables. These state variables can be scalar, 

vectorial, or tensorial such as temperature, an anisotropic damage parameter, strain tensor,...etc., 

and in a general formulation, they are left arbitrary, i.e. a for a scalar quantity, a2- for a vector 

quantity, and a^ for a tensor quantity. Within a homogenous system (a homogenous system is one 

that has properties at all points that are the same), the state variables are said to be extensive if 

they are proportional to the mass of the system; in general the total amount of an extensive variable 

in the system is proportional to the total mass. Otherwise, they are an intensive state variable 

which means they do not depend on the mass of the system in equilibrium; in general the point 
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value of an intensive variable does not depend on the size of the system. For example, entropy is 

an extensive variable conjugate to the intensive variable temperature. However, a specific intensive 

state variable is an extensive state variable per unit mass. For example, the specific internal energy 

is an intensive quantity equal to the internal energy per unit mass. A subset of the state variables 

is called substate variables. The choice of the state variables is determined by the physical nature 

of the system, its transformation, and the scheme adopted to characterize the material response, so 

that the state variables my change from one system and theory to another. 

The next question is how is the material modeling of the thermodynamic continuum established ? 

The material modeling for a thermodynamic continuum can be divided into three areas; constitutive 

model, state equation, and failure model. First, the constitutive model characterizes the material 

and its reaction to load, such as elastic, elastic-plastic, and viscoplastic for stress-strain response in 

solid mechanics and Newtonian and Non-Newtonian for stress versus rate of deformation response 

in fluid mechanics. Second, the equation of state is an experimental or derived relationship which 

express a macroscopic quantity that is characteristic of the a thermodynamic system in terms of the 

state variables. For example, the internal energy for a thermodynamic solid continuum can be ex- 

pressed in term of the state variables; entropy and strain tensor. Also, for Newtonian fluid, internal 

energy can be expressed in term of the state variables, which are temperature and density. Third, a 

failure model provides a criterion predicting its initiation and describing its growth in a continuum. 

For example, the microscopic damage that occurs in a continuum due to high strain load reduces 

the ability of the material to carry load, and could be characterized parametrically in terms of the 
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dissipating energy as being postulated by Kiselev and Yumashev [5],  Their failure model will be 

presented later in detail with the type of material modeling being used in their model. 

Finally, the different representations used to describe the evolution process of a system (i.e. the 

process through time) is presented. There are two possible types of descriptions for the governing 

equations independent of the coordinate system; Lagrangian and Eulerian descriptions. That is 

the independent variables, which describe a state equation of a particle, are either with respect to 

a fixed coordinate system, i.e. Lagrangian, or a moving coordinate system with the particle, i.e. 

Eulerian (see Figure 1). In a Cartesian coordinate system for example, the change in a particle's 

Cartesian position vector in a Lagrangian formulation dX is described with respect to the original 

configuration which is fixed in time (i.e. the Cartesian coordinate system at time t = 0), and the 

change in a particle's Cartesian position vector in an Eulerian formulation dx is described with 

respect to the present configuration which is moving with the particle (i.e. the Cartesian coordinate 

system at time t) (see Figure 1). Note that, the position vector x is used with Eulerian description 

and the position vector X is used with Lagrangian description. Also, note that the coordinate sys- 

tem that will be used in the formulation is the Cartesian coordinate system in this report. 

The Lagrangian and Eulerian representations have the following differences in the equation 

formulation. First, Lagrangian and Eulerian representations lead to a different time derivative that 

will depend on whether a Lagrangian description or an Eulerian description is used (see Malvern [6], 
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chapter 4). That is the time derivative of a function / in a Lagrangian description is 

^=%< " Jr£-        • w 
and the time derivative of a function / in an Eulerian description is 

where v is the velocity vector of the particle at time t, and -^ is another conventional form that 

is used in the literature. That is the time derivative §-t defined in Equation (4) for a Lagrangian 

formulation is equal to the time derivative -§-t, and the time derivative for an Eulerian formulation 

defined in Equation (5) consist of two derivatives, the time derivative of a fixed point -§-t and the 

rate of change due to the movements of coordinate system (i.e. attached with the moving particle) 

v • ^. Note that, a time derivative j^ for an Eulerian description reduces to 

v-— , (6) 

for steady state, and reduces to 

Dt ox ' 

Dt     &t' w 

for a uniform state, (i.e. no change or variation). In the remainder of this report, the time derivative 

■^ of a variable (a), for example, will be replaced by ä = jfi, that is 

ä = -^T = ^r? + v • —— , ( for Eulerian formulation ) , (8) 
Dt      dt Ox 

Da _ da 
~Dt ~~~di 

( for Lagrangian formulation ) , (9) 
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Second, the type of stress and strain tensors used in each formulation are different. For a La- 

grangian formulation, the stress tensor is the second Piola-Kirchhoff stress tensor PI3 and Green 

strain tensor LtJ (see Figure 2). The Green strain tensor LI3 is applicable for problems with large 

displacements and rotations. But, in an Eulerian formulation, the stress tensor is the Eulerian stress 

tensor T{j and Almansi's strain tensor E^ (see Figure 2). The Almansi's strain tensor Eij is also 

applicable for problems with large displacements and rotations. Note that the indices / and J are 

used to indicate Lagrangian description and the indices i and j are used to indicate Eulerian de- 

scription. Furthermore, if an incremental approach is used where large displacement might exist, an 

infinitesimal response for the stress-strain due to infinitesimal strain-displacement relations can be 

used. Thus, the stress and strain tensors, for both the Eulerian and Lagrangian formulation, reduce 

to the Cauchy stress tensor <T,J and the Cauchy strain tensor e,-j-, respectively. These are referred 

to as the incremental Cauchy stress tensor da^ and Cauchy strain tensor de^ (i.e. an up-dated 

Lagrangian approach is incorporated numerically). In addition, in a rate dependent problem such 

as the elastic-plastic problem, where the rigid body rotations of a material point undergoing defor- 

mation is assumed that it does not affect deformations, an incremental approach must be used, and 

infinitesimal stress-strain response also can be used (i.e. the incremental Cauchy stress and strain 

tensors). However, to eliminate the rigid body rotations from the material point deformation, the 

Jaumann stress rate is used. The details of the Jaumann stress rate will be discussed later in the 

thermodynamic model of failure section. 

Finally, note that, the use of Lagrangian description or Eulerian description is dominated by 
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the physics of the problem. For example, the former is widely used in solid mechanics since the history 

of a material under going deformations is important, and it is measured with respect to the original 

configuration. While the latter is widely used in fluid mechanics since the flow of the material at an 

instant is important. Hence, it is measured with respect to a coordinate system moving with the flow. 

A detail comparison between the Eulerian and Lagrangian formulation can be found in Anderson [10] 

which outline the difference between the two mathematical descriptions (e.g. the mass, momentum, 

and energy flow into and out of the cell where the volume is invariant in the Eulerian formulation 

compared to the fixed mass of a grid moving relative to a fixed coordinate system in the Lagrangian 

formulation) and their numerical solution (e.g. for Lagrangian mesh boundary conditions, free 

surfaces and contact surfaces are straightforward compared with the Eulerian approximate material 

interfaces and exterior boundaries, however the distortion of the Lagrangian mesh as the grid moves 

is no longer an issue in the fixed Eulerian grid). 

II. Balancing Laws 

A continuum, which is undergoing mechanical, thermal, or thermomechanical process is governed 

by balancing equations. For, example, considering an elastic structure which is statically loaded, 

the forces for any segment of the structure or the entire structure are balanced by the equilibrium 

equation. In the case of dynamic loading, the balancing laws for the structure are the equations of 

motion. The general forms of the balancing laws for a mechanical process are the conservation laws, 

which are the conservation of mass, conservation of linear momentum and conservation of angular 

momentum. For a thermal process, they are the heat conduction-convection equations. For a ther- 

modynamic system where mechanical energies are being exchanged within the system, the balancing 
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equations are the energy balance equations or the so-called two principles of thermodynamics; the 

first law and second law of thermodynamics. These laws postulate the energy balance for a system 

which are the energies carried in or out of the system by means of work and heat, or the energy 

generated by the system as it evolves from one state to another. Since, mechanical work and heat 

transfer relationships are the bases of thermodynamic system, and they are commonly used in many 

practical applications in the field of engineering, these relationships will be summarized first leading 

to the thermodynamic principles. Hence, the three systems are presented in the following order: a 

purely mechanical system followed by a purely thermal system and finally a thermodynamic system. 

Also, both Eulerian and Lagrangian representations will be shown in the formulations of the bal- 

ancing laws for the sake of completeness. 

First, for a purely mechanical system (i.e. adiabatic and isothermal system) the governing 

equations are the conservation laws of a continuum of a volume V bounded by a surface S. These 

conservation laws are the governing equations of a mechanical system that insure mechanical balance 

for the continuum (i.e. equivalent to equilibrium equations for a continuum under static state and 

equations of motion for a continuum under dynamic state, respectively). These governing equations, 

combined with other equations such as constitutive equations and boundary conditions, are used 

to compute quantities related to the deformation of a continuum under mechanical load, such as a 

displacement field, stress field, strain field, etc. in a continuum. The Eulerian formulation will be 

presented first then the Lagrangian formulation, and these conservation laws can be summarized as: 

• The conservation of mass, also called the Continuity equation, states that no mass is created 
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or destroyed inside a volume V. That is, the inflow of mass through element dS is equal to the 

rate of increase of the total mass. This can be expressed in an integral form (see Figure 3) as 

- / pvndS = [ p,tdV , (10) 
Js Jv 

where p(x,t) is the density as function of position (space) and time /, Qt = ^f is the partial 

derivative with respect to time, vn is the outward normal component of the velocity vector 

v(x,/) ( i.e. vn = v • n), n is the outward normal, and the negative sign is present since the 

inflow of mass is used (i.e. the normal component of the velocity vector is negative in the 

inflow case, v • n = —vn). Using the Divergence theorem, (Gauss's theorem), which states 

that the integral of the outer normal component of a vector (a) over a closed surface is equal 

to the integral of the divergence of the vector over the volume bounded by the closed surface, 

i.e. in vector notation, 

f a-ndS = f V -a.dV , (11) 
Js Jv 

where the gradient V of a scalar function at a point is defined as the normal vector to the 

function at that point, and its expression is given as 

and i, j, and k are the Cartesian's basis vectors. Or in indicial notation, the divergence theorem 

is 

/ diUidS = / dijdV , (13) 
Js Jv 

where ati = -§£- is the partial derivative of the vector a with respect to «th component of 
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Cartesian position vector x. Then the continuity equation, Equation (10), reduces to 

- / V • (pv)dV = [ PttdV , (14) 
Jv Jv 

- I (PiiVi + pviti)dV = [ p,tdV , (15) 
Jv Jv 

f(p,t + P,iVi+pviii)dV = 0. (16) 
Jv 

Hence, the conservation of mass equation per unit volume is equal to 

P,t + P.iVi + pviti = 0 , ( Eulerian ) , (17) 

or presented differently, 

p + pviti = 0 , ( Eulerian ) , (18) 

where p is the time derivative of the density ^ defined in Equation (8) and it is 

P = -j£ = P,t + P,iVi , (19) 

Note that, for an incompressible material, the density of the material remain constant, and 

Equation(18) becomes 

Vi,{ = 0 . (20) 

Equation (20) is the compressibility conditions where the divergence of the velocity is zero and 

it is representative of fluid particle with a velocity v. For a solid representation, Equation (20) 

can be written (see Malvern [6], chapter 4) as 

viti = in = — = 0 . (21) 

In some materials the elastic response is essentially incompressible (e.g. rubber), but this is 

not usually the case. However, for inelastic material, it is often assumed to be approximately 
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incompressible, such as metals undergoing plastic flow. The plasticity theory assumes plastic 

incompressibility which indicates that plasticity does not cause volume change (i.e. no di- 

latational change since deviatoric stresses, which are the stress tensor minus the hydrostatic 

pressure, are used in the plasticity theory), but it causes plastic deformation due to a dislo- 

cation of the crystallographic planes in metals. Thus, plastic incompressibility is assumed in 

this report and for the thermodynamic model of failure where a plastic constitutive model for 

metals is used. 

Similarly, the Lagrangian formulation for the conservation of mass is 

p = 0 , ( Lagrangian) , (22) 

This Lagrangian formulation of the conservation of mass state that the density of an original 

volume (i.e. at time t = 0) remain constant as the system evolves in time. 

Note that the continuity equation is a valid assumption for continuous and discontinuous media 

(e.g. shock waves and fracture mechanics) which assumes mass is neither created nor destroyed 

in the system. However for the latter, i.e. discontinuous media, a state equation or failure 

model describing the discontinuity in the continuum is necessary. For example, considering the 

spalling phenomena which occurs in high velocity impact, a failure criteria modeling spalling 

is necessary where the debris and the laws governing its behavior are accounted for in the 
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modeling and the conservation of total mass of the total system (i.e.   the remains of the 

continuum and the debris) is satisfied. 

• The conservation of linear momentum states that the time rate of the change of the total linear 

momentum of a given system is equal to the vector sum of all the external forces acting on the 

system provided that Newton's third law of action and reaction governs the internal forces. 

For an incompressible material, the conservation of linear momentum expressed in an integral 

form (see Figure 4) is 

/ tdS + [ pbdV = / piidV , (23) 
Js Jv Jv 

where t(x,/) is the traction vector, and b(x,tf) is the body force per unit mass.   Also, the 

traction vector can be written in terms of the stress tensor 2y and normal vector n (Cauchy's 

law) as 

t = T • n , (24) 

or in indicial notation, 

U = Tijrij , (25) 

and using the divergence theorem, the conservation of linear momentum reduces to 

/ (Tijtj + pbi)dV = [ p^dV , (26) 
Jv Jv 

that is 

Tijj + pbt = pii , ( Eulerian ) . (27) 
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This is also called Cauchy's equations of motion and they are the governing equations of a me- 

chanical system (i.e. the system is mechanically balanced). In Equation (27), the equilibrium 

is for a displaced point where stresses are acting on the undeformed area along the orthogonal 

coordinate axis that translate with the material point, i.e. the Eulerian stress tensor Ttj. 

Similarly, the Lagrangian formulation for the conservation of linear momentum can be written 

as 

P,J,J + Pbi = pVi » ( Lagrangian ) , (28) 

where () = g|r-, i.e. the partial derivative with respect to the position in the Lagrangian 

description and the dV and dS are in the original coordinate system. In Equation (28), the 

equlibrium is for a displaced point where stresses are acting on the deformed area, i.e. second 

Piola-Kirchhoff stress tensor PZJ. 

The conservation of angular momentum states that time rate of the change of the total angular 

momentum of a given system is equal to the vector sum of the moments of all the external 

forces acting on the system. Expressed in an integral form (see Figure 5), the conservation of 

angular momentum equation is 

/ r x tdS + f pr x bdV =  f p{v x v)dV , (29) 
Js Jv Jv 

where r is the moment arm with respect to the center of coordinate system center (i.e. the 

position vector).   Using indicial notation, the conservation of angular momentum equation 
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becomes 

/ ekijXitjdS + / ekijXfbjdV - \ pekij(xivj)dV , (30) 
Js Jv Jv 

where ekij is the permutation symbol. Expressing the traction in term of Eulerian's stress 

tensor ly, Equation (25), and the divergence theorem, the integral form of the conservation 

of angular momentum, Equation (29), becomes 

/ ekij(xiTjI:i + XijTjfidV + / e^x^dV =  / pekij(xiVj + x^dV . (31) 

But, xiyi is equal to the Kronecker delta Si{ (i.e. xiti = 8U), xt is equal to the velocity x{ = Vi, 

and ekijViVj = 0 by definition since it is symmetric in term of the indices i and j. Hence, the 

above equation reduces to 

Ttj = Tj{ . (32) 

That is the Eulerian's stress tensor is symmetric. 

Similarly, the Lagrangian formulation for the conservation of angular momentum can be written 

as 

P„ = PJt , ( Lagrangian ) , (33) 

which indicates that the second Piola-Kirchhoff stress tensor PtJ is symmetric. Again note 

that the dV and dS shown in Figure 5 is in the original coordinate system even though the 

quantities of stress are on the deformed body. 
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The second set of balancing laws relates to heat transfer which is the theory that refers to heat 

flux and the temperature in continuum with respect to time and no mechanical deformation. The 

governing equations for a homogeneous isotropic body based on heat balance for a given differential 

volume is formulated as follows. For a given differential volume, the heat balance must be conserva- 

tive such that the difference between the heat flow in minus the heat flow out through the surface 

of the differential volume is balanced by the heat within the differential volume (i.e. generated or 

lost) which is equal to the heat change of the differential volume (c#), where c is the specific heat 

defined as the quantity of heat required to raise the temperature of a unit mass one degree and 0 is 

the temperature (see Figure 6). That is 

(Qx ~qx- qx,x)dAx + (qy -qy- qy,y)dAy + 

(?* -Qz- qz,z)dAz + prh(x, y, z, t) = pcOdV , (34) 

where dAx, dAy, and dAz are the area of the x, y, and z faces in the Eulerian formulation, respectively, 

of the differential volume, qx, qy, and q2 are the heat flux vector through the x, y, and z faces, 

respectively, rh(x,t) is the heat source or sink per unit mass function of position and time, and it 

is the heat generated inside the continuum, such as electrical resistance heating inside the body, 

chemical reaction (for example epoxy and concrete generate heat when curing), or radiation due 

to nuclear, microwave, electromagnetic, or others. Similarly, for a given differential volume in the 

Lagrangian formulation, the heat balance is 

(Qx -fix- qx,x)dAx + (qY -qY- qY,Y)dAY + 

(?z - Q, ~ qz,z)dAz + Prh(X,Y, Z,t) = pcOdV , (35) 

where dAx, dAY, and dAz are the undeformed area of the X, Y, and Z faces in the Lagrangian 
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formulation, respectively, of the differential volume, qx, qY, and qz are the heat flux vector through 

the X, Y, and Z faces, respectively after deformation based on the undeformed area and volume, 

rh(X,t) is the heat source or sink per unit mass function of position and time. Dividing Equations 

(34) and (35) by the differential volume dV and taking the limit (dV -*• 0), the above conduction- 

convection equations can be written as 

qi,i + Pn = pcÖ , ( Eulerian ) , (36) 

QI.I + Prh = pc6 , ( Lagrangian ) . (37) 

Furthermore, assuming that the heat flux obeys Fourier's law of heat conduction for a homogeneous 

and isotropic material, which assumes that the heat flux is proportional linearly to the temperature 

gradient, that is 

q{ = -k6ti , ( Eulerian ) , (38) 

q, = -k6tI , ( Lagrangian ) , (39) 

where k and k are the thermal conductivity of the body, the heat flux in the Eulerian and Lagrangian 

representation are related through 

«, = JaFqi , (40) 

6X = J±T0X , (41) 
k 

where F is the deformation gradient matrix, Ja is the determinant of the deformation gradient 

matrix or the so-called the Jacobian, and if the thermal conductivity is for isotropic material and 

assumes that it is independent of position and temperature, one can set (k = k) since the thermal 

conductivity of a body is scalar for isotropic material. For Eulerian or Lagrangian representation, 
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either the governing equations (36) or (37), respectively, combined with Fourier's law equation gives 

a partial differential equations for the temperate field. Imposing the boundary conditions of the 

system, the solution of the temperature field is obtained from these governing partial differential 

equations. 

Third, now that the two cases where either work or heat are exchanged with a system (i.e. the 

analysis of mechanical work and heat transfer are decoupled) has been discussed, the thermodynamic 

case where the system's exchange of work and heat are coupled will be presented next. Thermo- 

dynamics analyzes a system where both work and heat are exchanged with a system. That is, 

thermodynamics analyzes a system where mechanical work and heat transfer are coupled. Thus, the 

thermodynamic principles that govern a system postulate the energy balance of a system undergoing 

both mechanical work and heat exchange with its surrounding as the system evolves in time from 

one state to another. These principles are the first law and second law of thermodynamics, and they 

will be presented as follows: 

The first law of thermodynamics is an energy balance law between the stored energy in the 

continuum and the energies being exchanged with the system through its surrounding (i.e. the work 

done on the system and the heat transfer into the system). That is, the first law of thermodynamic 

is the relation in which the total time rate of change in energy (kinetic and internal is balanced by 

the total energy exchanged by work and heat through the surrounding.  The energy balance of a 
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thermodynamic system expressed in mathematical form is 

K + E = P + Q , (42) 

where E is the internal energy and E is the time rate of change in the internal energy, K is the 

kinetic energy and K is the time rate of change in the kinetic energy, P is the mechanical work 

input generated by the traction t acting on the surface of the continuum and the body forces b 

acting on the continuum and P is the time rate of change in the work which is also called the power 

input, and Q is the heat input and Q is time rate of change in the heat input which consists of the 

heat supplied to the continuum by the heat flux vector q through the surface, and the internal heat 

source (or sink) distributed per unit mass rh inside the continuum. These time rate quantities E, 

K, P, and Q are defined as 

P = / t • vdS + f pb- vdV , Q = / q • ndS + f prhdV , (43) 
Js Jv Js Jv 

respectively, where u is the internal energy per unit mass (i.e.  specific internal energy), and n is 

a normal unit vector which is positive in the outward direction.   Substitute Equations (43) into 

equation (42) produces 

— f -pv- vdV + ^r I pudV =  [ t • vdS + [ pb ■ \dV + f q • ndS + / prhdV .     (44) 
Dt Jv 2 Dt Jv Js Jv Js Jv 

Then, writing the traction in term of the Eulerian's stress tensor Ttj, i.e. Cauchy's law in Equation 

(25), and using divergence theorem, the above equation reduces to 

/ pMV = / [-(vij + Vj^Tij + prh - qitj]dV , (45) 
Jv Jv £ 
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or in a tensor field form (per unit volume), 

pii = TijDij + prh - qitj , ( Eulerian ) , (46) 

where the tensor D is the so-called rate of deformation tensor or the stretching tensor, which is a 

symmetric tensor and defined as 

Dij = ^(viJ + vi,i) > ( Eulerian ) . (47) 

Note that, the stretching tensor in Equation (47) is used in fluid mechanics, but in solid mechanics 

the partial derivative of the velocity with respect to space coordinates, i.e. Vij is expressed as a 

strain rate (i.e. viyj — Etj for Eulerian representation), and the stretching tensor D reduces to 

Da = Eij , ( Eulerian) . (48) 

The stretching tensor in Equation (48) will be used in the development of the thermodynamic model 

of failure which is applicable to homogenous isotropic metal. Also, the quantity (T^Dy) is a tensor 

product defined as 

T : D = TijDij , (49) 

where the symbol : represent a tensor product and (T : D) is the so-called stress power which is the 

rate of work generated by the traction. Equation (46) provides the sufficient relation to insure the 

energy balance required by the first law of thermodynamic (i.e. an energy balance between work, 

heat, kinetic energy, and internal energy) for the continuum at all times. 
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Similarly, the Lagrangian formulation for the first law of thermodynamic is 

pii = PtJD„ + prh - qtiJ , ( Lagrangian ) , (50) 

where the tensor D:J is the Lagrangian formulation of the rate of deformation tensor or the stretching 

tensor, which is a symmetric tensor and defined as 

D,j = ^K, + V
J,I) . ( Lagrangian ) , (51) 

and the tensor product (P^D^) is the stress power, 

P : D = P^D,, , ( Lagrangian ) , (52) 

Furthermore, in solid mechanics the partial derivative of the velocity with respect to the coordinates 

is expressed as a strain rate (e.g. vltJ = X^), and the stretching tensor D reduces to 

DtJ = £„ , ( Lagrangian ) . (53) 

It was mentioned earlier that if an incremental approach is used to solve the problem, then infinitesi- 

mal strain-displacement assumption can be used even if large displacements exist in the problem. In 

this case, incremental Cauchy's stress and strain tensors (doij and de,-^) are used. That is, both the 

Green and Eulerian strain tensors reduce to the incremental Cauchy's strain tensor. Also, the sec- 

ond Piola-Kirchhoff stress tensor and the Eulerian stress tensors reduce to the incremental Cauchy's 

stress tensor. Furthermore, the Eulerian and Lagrangian form of the stretching tensors become equal 

(Dij — DI3) also the stress power in Eulerian and Lagrangian formulations become equal to (a^e^). 
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The first law of thermodynamic can be regarded as an expression of the interconvertibility (i.e. 

the internal process that a continuum manifest as a reaction to the energy being exchanged through 

its surrounding in order to balance the system's total energy by converting different forms of energy 

that are exchanged and stored internally) of heat and work maintaining an energy balance, and it 

places no restriction on the thermodynamic process, i.e. reversible and irreversible. The second law 

of thermodynamics postulate the existence of entropy 7? per unit mass and further places restriction 

on an irreversible thermodynamic process. What is entropy ? Entropy, like internal energy, is a 

conceptual property, and it is extensive in the sense that the entropy of a system is the sum of all 

its parts. The entropy property is involved in the energy flow term unlike the internal energy which 

is involved in the energy storage term. That is entropy is the change of heat energy exchanged with 

the system and hypothetically, a system going for a full cycle, a reversible process does not generate 

entropy as it return to its initial state. However, for an irreversible process as the system is going 

through a full cycle, an internal entropy is created by the system which is always positive and can 

not be destroyed. That is, entropy is the heat energy added or subtracted to the continuum for a 

reversible processes, and it is the heat energy added, subtracted, and generated by the continuum for 

irreversible processes. Thus, for a system going for a full cycle, a reversible process does not generate 

entropy, but an irreversible process does, and this energy generated by irreversible process can not 

be destroyed. A significant increase in entropy is viewed as a reduction in the system's ability to 

do efficient work and a change of entropy becomes a parametric way to characterize the efficiency 

of a process. For a scientists and engineers, a reversible process is more efficient in doing work than 

irreversible one , however, in nature most thermodynamic processes are irreversible, and it is the 

engineers job to provide the most efficient process possible. For example, Carbon has lower entropy 
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in the form of a diamond, which is a hard crystal with atoms closely bound in a highly ordered 

form, than it has as graphite (see Kubaschewski and Evans [11]). In other words, entropy provides 

a means to characterize the efficiency of a thermodynamic system's interconvertibility of heat and 

work maintaining an energy balance. A system that is undergoing an isentropic deformation is a 

one where the change of entropy is zero, i.e. the entropy of the system is constant. The entropy for 

a reversible and irreversible thermodynamic process will be presented separately. 

In a reversible process, entropy as a state variable is defined by the state function, 

*/=(%)      , (54) 
U       rev 

where dQm is the change in heat input per unit mass, and 9 is the absolute temperature. Note 

that, absolute temperature is a temperature measured on an absolute scale, which is chosen in 

this case as Kelvin scale to avoid division by zero. In this case, entropy is a perfect differential 

{§dr) = / (^O = 0). That is, the kinetic and potential energy may be fully transformed from 

one to the other in the absence of a dissipation mechanism (i.e. can equally proceed in either di- 

rection, that is potential energy to kinetic energy or kinetic energy to potential energy, such as the 

case of freely swinging pendulum in the absence of friction, where the energy proceeds from kinetic 

to potential energy as the pendulum swings upwards and from potential to kinetic energy as the 

pendulum swings downwards in a cycle). 

For an irreversible process, entropy is not a perfect differential § (^j^)     ^ 0) and the Clausius- 

36 



Duhem inequality postulate these irreversible processes (see Malvern [6], chapter 5). Clausius- 

Duhem inequality states that for an irreversible process, changing from state 1 to state 2 due to 

heat transfer input dQm, the entropy increase is greater than the entropy input by heat transfer, 

dr)>[\^r)        ■ (55) 

That is, for an irreversible thermodynamic process, the system's entropy for a cycle due to heat input 

is (j drj = 0), which mean that for a cycle the total entropy resulting from the heat transfer input dQm 

and the entropy produced by the continuum due to an irreversible process (e.g. plastic deformation) 

are characterized as conservative. However, the change in heat flow dQm for a continuum in a 

cycle is not (/C^22-). # 0) since it does not account for the heat generated by the irreversible 

process, i.e. the heat dissipation mechanism of a system undergoing the irreversible process. For 

example, contact friction and plastic flow in solid mechanic dissipate heat in addition to the heat 

transfer being exchange through the system boundary. This is modeled by the Clausius-Duhem 

inequality which states that the total time rate of change in entropy per unit mass is never less than 

the supplied entropy through heat. In other words modeling the nonconservative process of heat 

transfer by imposing a restriction on the irreversible of a thermodynamic process). Thus, dividing 

Equation (55) by dt, mathematically reduces it to a rate form, 

1) > (%) • (56) 
u      irrev 

Multiply Equation (56) by the density and integrate over the volume, Equation (56) becomes 

/ pr,dV >  f p(%)       dV . (57) 
Jy JV "      irrev 

But, the inequality's right hand side integral is the rate of the heat input (i.e. Q = fv p(^f-)irrevdV). 

Substitute the values of the rate of the heat input given in Equation (43), and using the divergence 
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theorem, lead to the following 

J p¥V >j±q-ndS + J -eprhdV , (58) 

JvPf,dV>Jv[^)i + ^prh}dV, (59) 

where 

and the state equation of the second law of thermodynamic (for a unit volume) reduces to 

V-J + ye<li,i ~ -jphti > 0 , ( Eulerian ) (60) 

The first term in Equation (60) is the rate of change of the total entropy, the second term is the 

rate of change of entropy due to heat source or sink, and the third and fourth terms are the rate of 

change of entropy due to heat flux. The left hand of the inequality is called the dissipation function 

d and it represents the energy dissipation of an irreversible process which is always positive (e.g. 

plasticity). Thus, Equation (60) can be expressed as 

d=f)-^- + ^zqiii--^r9iiqi>0,    or    d>0 (Eulerian). (61) 
v      pv py-1 

Similarly, the Lagrangian formulation for the second law of thermodynamic is 

V ~ j + -0«,,i - -jfiO,,?, > 0 , ( Lagrangian ) , (62) 

d, = V-j + -0?i., - -^e,I
(li > 0 ,    or    rf > 0 ( Lagrangian ) , (63) 
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where dt is the Lagrangian counterpart of the Eulerian's dissipation function d. The terms in 

Equation (62) are in the Lagrangian form where the first term is the rate of change of the total 

entropy, the second term is the rate of change of entropy due to heat source or sink, and the third 

and fourth terms are the rate of change of entropy due to heat flux. 

III. Thermodynamic Equilibrium or Thermostatic 

The concepts and terminologies of a thermodynamic equilibrium or thermostatic state will be dis- 

cussed in this section. The words thermodynamic equilibrium and thermostatic refer to a reversible 

thermodynamic process and they are used interchangeably. This is different from a non-equilibrium 

thermodynamic process, which is postulated as a process transiting from one state of thermody- 

namic equilibrium or thermostatic to another. Hence, it is necessary to present the thermodynamic 

equilibrium or thermostatic state first leading to a thermodynamic process, and thus the relation 

between the thermostatic and thermodynamic processes will be discussed in detail in the next sec- 

tion. 

The thermodynamic equilibrium or thermostatic is associated with the principle that govern 

a reversible thermodynamic process. The reversible thermodynamic process occurs in conditions 

where linear constitutive equations are applicable and where equilibrium (i.e. the physical state of 

a system is balanced between the internal and external elements using an equality) is satisfied. For 

example, the entropy defined in equation (54) satisfy equilibrium where the change of entropy equals 

the change of heat input divided by the absolute temperature. Also, in this section, the concept of 
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thermodynamic potential which will be used in developing the thermodynamic model of failure later 

will be defined for a thermostatic system. These thermodynamic potentials are the internal energy, 

free energy and enthalpy of a thermostatic system, and they will be presented as follows: 

First, the internal energy defined for a thermostatic state assumes that the thermodynamic 

equilibrium system is based on the caloric equation of state (see Malvern [6], chapter 5). The 

caloric equation of state assumes that the local internal energy u per unit mass is determined by 

the thermodynamic state specified by the entropy r) and the nth substate variable (a,-, i = l..n), 

by definition. In the general formulation, these substate variables are arbitrary, and they have 

mechanical or electromagnetic dimensions. Their choice depend on the physical nature of the system 

and the scheme adopted to describe the system, and will be specified later. Thus, in mathematical 

form, the caloric equation of state is stated as 

u = u(r], a,x) , ( Eulerian ) , (64) 

u = u(r),a,X.) , ( Lagrangian ) , (65) 

where the internal energy is a state function, i.e. depending on position vector which is either x 

in an Eulerian formulation or X in a Lagrangian formulation, and it is characterized by the state 

variables r\ and a. From the definition of the internal energy in the caloric equation of state for 

a thermostatic (see Malvern [6], chapter 5), the thermodynamics absolute temperature 0 and the 

thermodynamic tensions r, which are the conjugate of the substate variables a,-, are given as 

0 = &   , Ti = (ir)   '     <=1.2,....,n (66) 
or] a doti „ 

40 



where the subscripts outside the parentheses indicate variable held constant. In other words, Equa- 

tion (66) gives a mathematical definition for thermodynamics absolute temperature 6 and the ther- 

modynamic tensions r,- in term of the internal energy that is defined based on the caloric equation 

of state. Note that, the thermodynamic tensions r,- is the conjugate of the substate variables «;, and 

they will be used in the definitions of thermodynamic potential. For example, considering an ideal 

gas, a substate variable is the volume and its conjugate is the pressure where a change in volume 

causes pressure change and visa versa a change in pressure causes change in volume. 

Further, for a reversible thermodynamic process, combining the first law and second law of 

thermodynamic leads to the so-called Gibbs relation (see Malvern [6], chapter 5), 

du = 8dr) + Tida{ . (67) 

Using the corollary of Carnot's theorem (see Maugin [7], appendix 1) which state that a thermo- 

dynamic system can always be described by the state variables ({77,01, ....a* a„};   i = 1, ...n), in 

such a way that 

K = Odr), u> = Tidcti , (68) 

where K is the so-called elementary heat received by the continuum for a reversible process, and it 

is the heat energy exchanged by the system, and to is the so-called elementary work in a reversible 

process and, it is the energy transferred through the work performed by the thermodynamic tensions 

T{ due to substate variables' change da,-, one can rewrite the Gibbs relation Equation (67) as 

du = K + u , (69) 
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which shows the Gibbs relation as an energy balance equation of heat and work that govern a ther- 

mostatic state. 

The thermodynamic tension could be related to the stress tension as follow. Considering a 

special case of a recoverable adiabatic and isentropic deformation, the Gibbs relation, Equation 

(67), reduces to 

du = Tidat , (70) 

and divide both sides by (dt), the rate form equation is obtained as 

u = Tiddi . (71) 

Also, the Eulerian and Lagrangian representations of the first law of thermodynamic, Equations (46) 

and (50), respectively, reduce to 

Ü = -TijDij , ( Eulerian ) , (72) 
r 

ü = -PtJDtJ , ( Lagrangian ) . (73) 

Also, the rate of deformation can be expressed in term of the rate of strain, which is compatible 

to the solid mechanics representation. That is, in the case where the substate variables (i.e. the 

tensor form of the state variables a,-,-) are equal to Eulerian's strain tensor Etj for an Eulerian 

representation and Green's strain tensor Ltj for a Lagrangian representation, and their conjugates 

(i.e. the tensor form of the thermodynamic tension r,j), the Eulerian's stress tensor Ty and the 

second Piola- Kirchhoff stress tensor Prj, respectively, the rate of deformation tensor is equal to the 
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rate of the strain tensor as, 

Dij = Eij , ( Eulerian ) , (74) 

DJJ = LtJ , ( Lagrangian ) , (75) 

respectively. Equating Equations (71) and Equation (72) for Eulerian formulation and equating 

Equations (71) and Equation (73) for Lagrangian formulation show that the work of the thermody- 

namic tensions is recoverable and equal to the external stress power defined in Equations (49) and 

(52), 

TijDij = pTijäij , ( Eulerian ) , (76) 

PuDu = prtJatJ , ( Lagrangian ) , (77) 

Replacing the state variables ay by the proper strain tensor (i.e. Eulerian or Green strain) and using 

the rate of deformation given in Equations (74) and (75), the thermodynamic tensions ry reduce to 

Tij = — ,    where    a,j = £y , ( Eulerian ) . (78) 

p.. 
Tij = — ,    where    ay = £y , ( Lagrangian ) . (79) 

Note that there is a difference between the two stresses in Equations (78) and (79), where in the 

former the stress is acting on an undeformed area at the present displaced points while the latter 

stress is acting on a deformed area with respect to the original coordinates. 

Furthermore, for isotropic and homogenous thermoelasticity continuum the stress and strain 

tensors are linear elastic stress (i.e. the thermoelasticity is consistent with the infinitesimal assump- 

tion), and they are equal to the incremental Cauchy's stress tensor doy and incremental Cauchy's 

43 



strain de^ (i.e. consistent with up-dated Lagrangian assumption). Setting the substate variables 

equal to Cauchy's strain tensor (a,j = e^) and replacing the second Piola-Kirchhoff stress tensor 

PZJ and the Eulerian stress tensor Ttj by Cauchy's stress tensor ^f- in Equations (78) and (79)), the 

substate conjugate r^- reduces to (r^- = ^f-). Choosing entropy and Cauchy's strain tensor as state 

variables, the internal energy u(rj,€fj) can be expressed as, 

^   e   2   . e    e Ko>v00   e ,   n        ,     ^0     2 
2e«   + K'4 —hkV + 6oV + ^r" <V,4) = a€»   + K4- - -T^6"7? + ^ + ^7^ '       (Thermoelasticity) (80) 

and its incremental form is 

du = Xee
kkdee

kk + 2fie
e

ijdee
ij —(€***/ + »?***) + ö°rf?? + "7^ >       (Incremental)     (81) 

where A and p, are the Lame's constant, K the bulk modulus or volumetric modulus, av the coefficient 

of linear volume expansion, ce the specific heat at a constant strain, and 0O is the temperature at 

the natural state or the initial absolute temperature. Note that, Equation (80) is obtained by 

expanding the internal energy into the Taylor series in the vicinity of the natural state of strain and 

entropy retaining only up to second order terms (see Nowacki [12] for full details). Substituting the 

internal energy for a thermoelastic medium (Equation (80)) into Equation (66), the temperature 

and Cauchy's stress can be expressed as 

6 = A   =-^^€lk + 90 + \,       (Thermoelasticity) (82) 
UTj   a Ce Ce 

^i = A   =XSijelk + 2ßee
ij-^^6ijV,       (Thermoelasticity). (83) 

P öeij n 
Ce 

and their incremental forms are 

de = -^^dee
kk + 60 + —drj ,       (Incremental) (84) 

-doij = Xbijdee
kk + 2fj,dee

i:j —b^dr] ,       (Incremental) . (85) 
p ce 
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Note that, the internal energy and the relations that follow from it for a thermoelastic system 

characterize the thermostatic state, and they will be used as a part of the development of the 

thermodynamic model of failure which assumes that an irreversible thermodynamic process is a 

transition from one thermostatic state to the other (i.e. one can view a non-equilibrium thermody- 

namic processes as one that consist of a thermostatic state as it evolves in time). This will become 

evident as the thermodynamic model of failure is discussed in detail later. 

Second, based on the assumed caloric equation of state being used, the internal energy u per unit 

mass is a thermodynamic potential. Another form of thermodynamic potential is the free energy 

or the so-called Helmholtz free energy ij> (see Malvern [6], chapter 5). It is defined as the portion of 

the internal energy available for doing work at a constant temperature, that is 

i){0,a) = 11-7)6 . (86) 

Note that the first term in Equation (86) is the total internal energy, and the second term is an 

energy term representing the internal energy due to heat exchange. For example, consider isentropic 

deformation (i.e. rj = 0), then the free energy is equal to the internal energy and for an elastic 

continuum the free energy is equal to the potential energy which is given in Equation (1). Based on 

the free energy as a thermodynamic potential, the entropy and the thermodynamic tension, that is 

similar to Equation (66), can be written as 

■>=-<£>.•    ' T'SO,'  ,=M- -•        (87) 

In other words, Equation (87) gives a mathematical definition for entropy r) and the thermodynamic 
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tensions r,- in terms of the free energy (see Malvern [6], chapter 5). 

Using the free energy definition in Equation (86), the Gibbs relation (Equation (67)) becomes 

dxj) = -ride + Tidoti . (88) 

Note that the independent variables used in the internal energy u(r], a) are the entropy rj and the 

substate variables a,-, but in the free energy rp(9, a) the independent variables used are the absolute 

temperature 6 and the substate a*. Hence, the choice of using the thermodynamic potentials de- 

pends on which state variable are chosen to characterize a thermodynamic system. 

Considering a special case of an isothermal deformation with reversible heat transfer, that is 

d0 = --0, 

fj = - \im - 

f) = - Vrh - i    , 

( Eulerian ) , 

( Lagrangian ) , (89) 

where rh is the internal heat source (or sink) distributed per unit mass inside the continuum, then 

the Gibbs relation (Equation (88)) reduces to 

dtp = Tidoti , (90) 
* 

and divide both sides by dt, the rate form of the equation is 

■tp = Tiddi . (91) 
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Also, eliminating the internal energy in the first law of thermodynamic Equations (46) and (50), 

i.e. the Eulerian and Lagrangian representations, respectively, in term of the free energy defined in 

Equation (86), and substituting the value of r] defined in Equation (89) for a reversible heat transfer, 

the following relation are deduced 

V> = -TijDij , ( Eulerian ) , (92) 
r 

i> = -puDu , ( Lagrangian ) . (93) 
P 

Expressing the rate of deformation in terms of the strain rate tensor where the choice of a substate 

variables (i.e. the tensor form of the state variables a^) are equal to Eulerian's strain tensor Ey for 

an Eulerian representation and Green's strain tensor Ltj for a Lagrangian representation, it become 

equal to 

Dij = Eij , ( Eulerian ) , (94) 

D„ = X„ , ( Lagrangian ) , (95) 

respectively. Equating Equations (91) and Equation (92) for Eulerian representation and (93) for 

Lagrangian representation shows that the work of the thermodynamic tensions is recoverable and 

equal to the external stress power defined in Equations (49) and (52), respectively, 

TijD^ = pTijäij , ( Eulerian ) , (96) 

PuDu = PTiAu > ( Lagrangian) , (97) 

Replacing the substate variables a{j by the strain tensor and use the rate of deformation tensor 

given in Equations (94) and (95), the thermodynamic tensions r^ reduce to the stress tensors as, 

T,- 
Tij = — ,    where    a^ = Eij , ( Eulerian ) . (98) 
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p 
T    = —— ,    where    atJ = LI3 , ( Lagrangian ) . (99) 

P 

Note that there is a difference between the two stresses in Equations (98) and (99), where in the 

former the stress is acting on an undeformed area at the present displaced points while the latter, 

the stress is acting on a deformed area with respect to the original coordinates. 

It was mentioned earlier that the stress and strain tensors for an isotropic and homogenous 

thermoelasticity continuum are linear elastic stress and strain tensors. If an incremental approach 

is used to solve the problem, then infinitesimal strain-displacement assumption can be used even if 

large displacements exist in the problem. That is, both the Green and Eulerian strain tensors reduce 

into Cauchy's strain tensor. Also, the second Piola-Kirchhoff stress tensor and the Eulerian stress 

tensors reduce to Cauchy's stress tensor. Thus, in the up-dated Lagrangian approach the stress and 

strain tensors are the incremental Cauchy's stress tensor da{j and the incremental Cauchy's strain 

tensor de^. Setting the substate variables equal to Cauchy's strain tensor (a^ — c^) and replacing 

the second Piola-Kirchhoff stress tensor Ptj and the Eulerian stress tensor T{j by Cauchy's stress 

tensor ^- in Equations (98) and (99), the substate's conjugate r8J- reduces to (r,j = ^f-). Choosing 

temperature and Cauchy's strain tensor as state variables, the free energy ij)(rj,€fj) can be expressed 

V>(0,4) = öe»2 + K-4 - 3#«A4*0 - d-02 ,       (Thermoelasticity) (100) 20, 

and its incremental form is 

di/> = X4kdee
kk + 2KÄ- - 3KaM4kd0 + ^t) " TM '       (Incremental) (101) 
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Note that, Equation (100) is obtained by expanding the free energy into the Taylor series in the 

vicinity of the natural state of strain and temperature retaining only up to second order terms (see 

Nowacki [12] for full details). Further, substituting the free energy for thermoelastic medium in 

Equation (100) into Equation (87), then Equation (87) becomes equal to 

tl=-&)   = 3Kav90e
e

kk + %-6 ,       (Thermoelasticity) (102) 
Off   a VQ 

£« = (|^)   = Afycjj + 2/1% - ZKaMjO ,       (Thermoelasticity) . (103) 

and their incremental forms are 

drj = 3Kav0odee
kk + ^-d9 ,       (Incremental) (104) 

-doij = XSijdelf. + 2fidefj - 3Kav6oSijd0 ,       (Incremental) . (105) 
r 

Note that, the free energy and the relations that follow from it for a thermoelastic system character- 

ize the thermostatic state which is a necessary state that a non-equilibrium thermodynamic process 

is built on and the basis of the development of the thermodynamic model of failure. A clearer picture 

on how they play a role in the thermodynamic model of failure will be shown later as the failure 

model is discussed in detail. 

Third, the enthalpy h is also a thermodynamic potential which is defined as the portion of the 

internal energy that can be released as heat when the thermodynamic tensions are held constant, 

that is 

h(r),T) = u-TiOLi . (106) 
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Based on the definition of the enthalpy (see Malvern [6], chapter 5), temperature and substate 

variables are given as 

'=0/      ^O,-  ,=1-2 •"•       (107) 

That is, Equation (107) gives a mathematical definition for the entropy 7? and the thermodynamic 

tensions r,- in term of the enthalpy. Using the enthalpy definition in Equation (106), the Gibbs 

relation (Equation (67)) (see Malvern [6], chapter 5) reduces to 

dh = 9drj + a^n . (108) 

Note that in the definition of enthalpy, the independent variables used are the entropy 77 and the 

thermodynamic tensions r,-. The enthalpy defined in Equation (106), is different from Gibbs defini- 

tion which is the so-called free enthalpy g or Gibbs function (see Malvern [6], chapter 5). The free 

enthalpy g is defined as 

g(0,T) = h-T]0 = u- rfa( - rfi , (109) 

and it is the enthalpy energy h without the internal energy due to heat transfe (i.e. r)0). Also, the 

entropy and substate variables can be written as 

"=<&•        o,=(^V   <=1-2'••■-»• <110> 

based on the free enthalpy definition. Further, using the free enthalpy definition in Equation (109), 

the Gibbs relation (Equation (67)) reduces to 

dg = — r)d0 — aidTi . (HI) 

Note that in the definition of free enthalpy, the state variables used are temperature 6 and the 

thermodynamic tensions r,-. 
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The stress and strain tensors for an isotropic and homogenous thermoelasticity continuum are 

linear elastic stress and strain tensors. If an incremental approach is used to solve the problem, 

then infinitesimal strain-displacement assumption can be used even if large displacements exist in 

the problem. That is, both the Green and Eulerian strain tensors reduce into Cauchy's strain 

tensor. Also, the second Piola-Kirchhoff stress tensor and the Eulerian stress tensors reduce to 

Cauchy's stress tensor. Thus, in the up-dated Lagrangian approach the stress and strain tensors 

are the incremental Cauchy's stress tensor da{j and the incremental Cauchy's strain tensor de^. 

Considering the thermoelasticity for an isotropic homogenous medium where the state variables are 

the absolute temperature 0, and the thermodynamic tension Ty equal to the stress tensor ^-, where 

its conjugate a,-;- becomes equal to Cauchy's strain tensor €?■, based on Equation (110), then, the 

free enthalpy g can be expressed as, 

g(0,Oij) = (  *ic   v   )°kk  + -r^ii^ij + ~(xvakk0 + -f0 ,       (Thermoelasticity)        (112) 

and its incremental form is 

d9 = (   ,0   rs   ^kkdcTkk + —Oijdoij + -av(akkd0 + 0dakk) + -£-d0 ,       (Incremental)  (113) 
iofili Zfi o UQ 

where ca is the specific heat at a constant stress. The thermoelastic free enthalpy g formulated similar 

to the thermoelastic internal energy and free energy (see Nowacki [12] for details). Substituting the 

free enthalpy for thermoelastic medium in Equation (112) into Equation (110), then Equation (110) 

equals 

r) = (|f )r = j-pakk + Cf0 ,       (Thermoelasticity) (114) 
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4. = P(Q^-)   = ( ^8 K   )6ij<Tkk + — <ty + jja„M .      (Thermoelasticity) (115) 

and their incremental forms are 

dr) = — do** + x-dö ,       (Incremental) (116) 
3/9 #o 

e?4- = (   18   K   )siidakk + -r-düij + -aJijdO ,       (Incremental) . (117) 

Note that, the enthalpy and the relations that follow from it for a thermoelastic system characterize 

the thermostatic state which the thermodynamic process is consists of (i.e. a non-equilibrium ther- 

modynamic process is assumed as a transition from one thermostatic state to the other). This will 

become evident as the thermodynamic model of failure is discussed. 

IV. Thermodynamic Process 

A thermodynamic system is one in which the system's energy both internal energy and energy 

exchanged through the exterior by means of heat and work evolves in time from one state to an- 

other state. This process of thermodynamics could be for a reversible or irreversible process. In 

a reversible process, the thermodynamic system is characterized by state variables at a moment 

where thermodynamic equilibrium exists and energy balance is satisfied (i.e. equilibrium is the state 

where the system does balance the internal and external elements acting on it through an equality 

relation) and the principles governing reversible thermodynamic processes are established through 

the thermostatic or thermodynamic equilibrium laws. These laws have been discussed in the pre- 

vious sections, and they are referred to as laws in the state of equilibrium where the notions of 
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temperature, entropy,... etc. are well denned. However, for an irreversible thermodynamic process, 

the process does not have an equilibrium state as in the thermostatic system as it evolve in time. 

In other words, an irreversible thermodynamic process is the study of a phenomena outside a state 

of equilibrium, but in the vicinity of an equilibrium state and not far from it. But the principles 

governing non-equilibrium or an irreversible thermodynamic process are associated with the ther- 

mostatic laws of a reversible thermodynamic process, and the thermostatic laws are the bases of the 

non-equilibrium laws. The notion of thermodynamic quantities such as temperature and entropy 

are well-defined in thermodynamic equilibrium and will be extended to model non-equilibrium as 

it evolve in time. This is of importance, because the failure in a continuum is characterized by 

non-equilibrium or an irreversible thermodynamic process, and it is the core of our study. 

Hence, the theory development of an irreversible thermodynamic system depends, in part, on 

the thermostatic theory, where an irreversible thermodynamic system is conceived as a transition 

from one state of equilibrium, in thermostatic sense, to another. The concept of transition from one 

state of equilibrium to another in the analysis of irreversible thermodynamic system allows for the 

analyses of irreversible thermodynamic processes to be carried out in an incremental fashion. That 

is, for a thermodynamic process the governing equations representing a thermostatic state, where 

the thermodynamic quantities such as temperature, entropy, strain, stress, thermodynamic poten- 

tials...etc. are well defined, are solved by incrementing the state variables through time. Although, 

both the state variables and time are incremented, the time rate is the main driver of the incre- 

mental process. That is, as the time is being incremented, the state variables are also incremented 
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to satisfy the thermostatic state (i.e. thermodynamic equilibrium) through the rate relations. Note 

that, even though for a reversible thermodynamic process the governing equation are computed by 

an incremental technique. For example, the Hamiltonian principle (i.e. the variational form of the 

equation of motion) is used to solve the problem in an incremental approach for a structural dynamic 

problem. The Hamiltonian principle states 

[ \ST + SJl)dt = 0 , (118) 

where the time integration is between an initial time tt and final time t2, ST is the variation of the 

kinetic energy and £11 is the variation of the potential energy. Manipulating Equation (118) and 

using the finite element as a numerical solution (see Bath [13]) leads to a finite element governing 

equation which is 

[M]{q}+[C]{q} + {K]{q} = {F}, (119) 

where [M] is the mass materix, [C] is the dampaing matrix, [K] is the stiffness matrix, {F} is the 

force vector, {q} is the degree of freedom, and {q} and {q} are the velocity and acceleration, respec- 

tively. Equation (119) is time dependent finite element governing equation which can be solved in 

an incremental approach in time using finite difference technique. But, for an irreversible thermo- 

dynamic process, the governing equation does not represents quantities that are perfect differential 

compared to the perfect differential quantities for a reversible thermodynamic process. Hence, the 

irreversible thermodynamic process is conceived as a transition from one state of equilibrium to an- 

other, and the thermostatic equations in its time rate form is used to solve the governing equations. 

For example, the time rate of Equation (114) is 

v = £*» + j-e, (120) 
3p 0O 
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which is used in combination with the incremental governing equation to solve the problem. 

The idea of basing the development of non-equilibrium or irreversible thermodynamic process on 

thermostatic principles has two representations which mainly differ by their inclusion of the thermo- 

static process in the formulation of non-equilibrium process. The two main representations are the 

Axiomatic representation, and the thermodynamics with internal variables representations. 

Both representations will be discussed for comparison, but the second will be used in developing the 

thermodynamic model of failure. Since, the latter has the advantage of representing materials that 

exhibit time or rate dependent phenomena, such as viscoplastic. 

The Axiomatic or axiom of local state representation (see Maugin [7], appendix 1) is based 

on the hypothesis that a material particle in motion should be in equilibrium at practically any 

moment. The response times which allow the thermostatic system to recover a new state of thermo- 

static equilibrium must be short, compared with the characteristic duration of the kinematics and 

dynamic evolution of the medium. In other words, as the thermodynamic process evolves in time, 

the thermostatic principles must also be satisfied based on the fact that the thermodynamic process 

transits from one state of thermostatic to another. 

On the other hand, the thermodynamics with internal variables representation (see Maugin 
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[7], appendix 1) provides a new characterization of the continuous media in order to define the 

thermodynamic state of a system. It introduces, in addition to the usual observable state variables, 

a certain number of internal variables 7 to describe the internal structure. These internal variables 

represent hidden (i.e. implicitly measurable and not controllable internal variables) phenomena, such 

as plastic deformation due to dislocation movement, i.e. slip of the crystallographic planes in a metal, 

to the twinning or coupling of crystals, to the slip of the grain boundaries, to a phase transition 

induced by strain,... etc. In this case, the internal variables 7 is characteristic of a local structure 

rearrangement. Depending on the nature of the problem, these internal variables can represent the 

material dependent on the rate of loading such as strain or stress rate, such as viscoelastic and 

elastoplastic material, or characterize failure and its growth in a continuum. Hence, the dependent 

variables become functions of the state variables and the internal variables. For illustration purposes, 

consider the dependent variables to be the stress tensor <7,j, then each component of the stress tensor 

become functions of the state variables a,j and the internal variables 7,-, and can be expressed as 

äij = äij(aij,ji)    Constitutive equations or State Laws , (121) 

7,- = Pi(aij,'Yi) + 5si(aij,'yi)aij Evolution Laws . (122) 

The evolution laws stated in Equation (122) is the time rate equation that govern the internal 

variables, and it is shown in a general form in Equation (122) where the rate of change of the 

internal variables are linearly related to the rate of change of the state variables. For the case where 

p might be identically zero (p = 0), then the instantaneous variations in the state variables a,, does 

not cause instantaneous variations in the internal variables 7*. To illustrate the evolution laws, the 

continuous model of slip in viscoplasticity for metal (see Maugin [7], appendix 1) is considered as 

an example. For the continuous model of slip in viscoplastic metal, the internal variables 7, are the 
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slip in the ith simple slip system of the crystal, and it is defined in term of the flow potential D* 

which exists for the system of the crystal and used to define the plastic strain rate ep to be normal 

to the constant flow potential D* in the space of stresses as 

3D* ? = -w • (123) 

where ep is the rate of plastic strain and a is the stress tensor. The evolution laws for the continuous 

model of slip in viscoplasticity for metal is 

dD* 
ii=H0,ri,li) = — , (124) 

where the internal variable 7,- is the slip in the zth simple slip system of the crystal, and d are 

the internal variables conjugates (i.e. the shear stresses related to the ith simple slip system of the 

crystal), and it is equal to 

du* „„,,, 
6 = äV,• (125) 

where u* is the complementary internal energy. Furthermore, the thermostatic is formulated includ- 

ing the internal variables. For example, the Gibbs relation (Equation (88)) with internal variables 

becomes 

dip = --qdO + Tidoti - Qdji . (126) 

where 

are relations that govern a thermostatic state. 
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But, how does the thermostatic laws enter into the picture. The argument is as follows: Consider 

the dependent variable, stress &ij in this case, and suppose in theory, if not in practice, that the in- 

ternal variables may well keep a prescribed value by the imposition of the appropriate stress o^-, the 

system then will tend towards a state of thermostatic (thermodynamic equilibrium), characterized 

by the stress and the state variables which are in this case the strain and temperature. Then suppose 

that different states of equilibrium are possible for the same values of internal variables, specified 

above. Then, the neighboring states are connected by the laws of ordinary thermoelasticity, which 

are established earlier. 

These thermostatic principles, i.e. thermoelasticity, that non-equilibrium or irreversible ther- 

modynamic processes are based on, are summarized for an isotropic homogenous medium. The 

substate variable atj is taken equal to Cauchy's strain tensor ef- and its conjugate r8j become the 

stress tensor ^-, where Ttj is the Cauchy's stress tensor. The ordinary thermoelasticity equations 

are summarized, and they are: 

• The internal energy, Equation (80), free energy, Equation (100), and free enthalpy, Equation 

(112), are 

«(*<,) = ^«<„ + K-4 - ^r^ + M + ^f , (so) 

m 4) = ^»e- + K4- - M<*vfaU0 - ^0O2   , (100) 
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g(0,<Jij) = (    36   K    )Okk°nn + 'ZfijViJ + g«««7**0 ' (112) 

• The absolute temperature, Equation (82), is 

<9u Kav60 e 0o ,0Os 

The entropy, in term of the free energy, Equation (102), and in term of the free enthalpy, 

Equation (114), are 

<7=-(^)or = 3Jro,«.V»i + ^'>> (102) 

*=(&=!<*-«•>+7** • (114) 

The strain tensor (i.e. Cauchy's strain tensor), Equation (115), is 

4 £ *s£>, = (Ti^«'" + k" +1^'' (115) 

The stress tensor (i.e. Cauchy's stress tensor), in term of the internal energy, Equation (83), 

and in term of the free energy, Equation (103), are 

-r = fe-) = AV** + 2K* :—*nv , (83) 

^ = A   = AfyeJU + 2K,. - ZKaMjO , (103) 
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Note that, it was mentioned earlier that non-equilibrium thermodynamic process translate from a 

thermoelastic state to another which allow for solving the process in an incremental approach. In 

this case the thermoelastic equations becomes part of an incremental process and they are written 

in a time rate form. For example, consider a linear elastic continuum for illustration, the Hooke's 

laws are 

an = Xekk + 2/i6n , (128) 

022 = Ac** + 2ß€22 , (129) 

033 = Xekk + 2/ie33 , (130) 

au = 2//c12 , (131) 

cr13 = 2//e13 , (132) 

023 = 2//e23 , (133) 

and taking the time derivative, their time rate are 

ö-ii = Ac,;* + 2fien , (134) 

Ö22 = Xekk + 2/ie22 , (135) 

033 = Xtkk + 2jue33 , (136) 

012 = 2^12 , (137) 

013 = 2/i£i3 , (138) 

023 = 2/i€23 , (139) 
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where A and /i are Lame' constants, and their incremental form reduces to 

dan - ^dekk + 2/j,den , (140) 

da22 = ^dekk + 2/j,de22 , (141) 

d(T33 = Xdekk + 2fide33 , (142) 

dai2 = 2fide12 , (143) 

da13 = 2fide13 , (144) 

da23 = 2fide23 , (145) 

where the stress tensor, for example, at increment (n + 1) is 

ff(n+l) = a{n) + da(n) ? (146) 

where the superscribe values between the parenthesis indicate the increment number. 

Note that, by eliminating the internal variables ji from the constitutive or state laws (Equa- 

tions (121)) using the evolution laws (Equation (122)) leads to a time-functional law for the stress 

aij. This shows that the problem is placed in a time-domain. Hence, this representation becomes 

advantages for modeling materials that exhibit time or rate dependent phenomena, such as vis- 

coplastic, elastoplastic, and viscoplastic, compared with the axiomatic representation. Furthermore, 

the thermodynamics with internal variables representations provides a new characterization 

of a continuous media, which in order to define the thermodynamic state of a system, introduces, in 

addition to the usual observable state variables, a certain number of internal variables to describe 
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the internal structure. These internal variables represent hidden mechanisms, such as micromechan- 

ics damage which is not explicitly measurable but implicitly and not controllable.  These reasons 

are behind the use of the thermodynamics with internal variables representation in developing a 

thermodynamic model of failure. 

2.2    Thermodynamic Model of Failure 

Nonlinear response and failure initiation in a medium within a thermodynamic system are associ- 

ated with an irreversible process. That is, part of the energy supplied through external forces and 

heat dissipation can not be recovered, which causes a change in the atomic-structure and its bond 

strength. Thus, for a continuum, as the work and heat input act on the system raising its internal 

energy, the atomic-structure of the material experiences frictional dissipation in addition to certain 

complex phenomena that happen at the microscopic level (e.g. such as plastic deformation, cavity 

initiation, and damage growth). The thermodynamic model of failure presented by Kiselev and Yu- 

mashev [5] is based on energy dissipation and it models an elastoplastic material. The mathematical 

derivation of the state equations for this thermodynamic model will be presented and discussed next. 

For this model, the substate variables used to characterize the thermodynamic failure model 

are the elastic strain c*-, plastic strain e?-, and an internal variable 7 associated with the damage 

dissipation in the continuum. Note that, the internal variable 7 describes the initiation and growth 

of damage for the material during deformation. The internal variable 7 is called structural damage 

parameter which is assumed that it vary from zero for undamaged structure, and become equal to 

one for totally damaged structure. 
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It is important to note that certain assumptions are made by Kiselev and Yumashev [5] which 

are the following. First, the strain tensor is written in two parts the elastic strain e\- and the plastic 

strain e?-, that is 

€<,■=<?,• + $■ (147) 

Forming the time rate of Equation (148) by taking its derivative with respect to time, the incremental 

form of the total strain etj reduces to 

detj = dttj + di% . (148) 

Second, the elastic strain e?. is a linear elastic strain, i.e. infinitesimal strain where the strain used 

is the Cauchy strain tensor e?-, and the corresponding stress is the Cauchy's stress tensor o^. In 

other words, since the incremental approach is chosen to solve the problem, then the assumption 

of infinitesimal stress-strain response due to infinitesimal strain-displacement relations can be used 

even though large displacements exist (i.e. effects of large displacements on the behavior of the 

problem can be captures using an incremental approach even though an infinitesimal stress-strain 

response). Also, the incremental approach is a necessary one to solve the inelastic behavior such 

as the plasticity with is a nonconservative rate dependent process. Third, the model's governing 

equations are formulated using Lagrangian representation where the up-dated Lagrangian approach 

is chosen to solve them numerically. 
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The mathematical derivation of the thermodynamic model of failure consist of the conservation's 

laws, the first and second law of thermodynamics, and the state laws or the constitutive laws of the 

continuum, and they will be presented in the same order. The conservation laws where Cauchy 

stress tensor is used instead of the second Piola-Kirchhoff stress tensor Pu under the assumption of 

infinitesimal strain are the following. The conservation of mass given in Equation (22) reduces to 

p = 0 . (149) 

The conservation of linear momentum given in Equation (28) becomes 

(Tijj + ph = phi . (150) 

The conservation of angular momentum Equation (33) is given as 

(151) 

which indicate that the Cauchy stress tensor cr^ is symmetric. 

The first law and second law of thermodynamics are as follows. Assuming no heat source r^ in the 

continuum and no body forces b, the state equations of the first and second law of thermodynamics, 

Equations (46) and (60), becomes 

ü=^I^ii^%i^ (152) 
P P 

^~T + -^' (153) 

respectively.   Using the temperature 9, the elastic strain e?-, the plastic strain e?-, and the struc- 

tural damage parameter 7, as the independent variables for the free energy ip(9, e^,ef;-,7) shown in 
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Equation (86), then its time derivative is 

*=& + %*> + %'+&■ ™ 
The second law of thermodynamic can also be rewritten in terms of the free energy. That is, using 

the definition of the free energy in Equation (86) to eliminate entropy from the second law Equation 

(153), it reduces to 

d   M-V> Qi,i  ,qiO,i .      v 

Then perform the time derivative on the left-hand side of Equation (155) leads to 

i(W + & - u9 - B$) > -?f + *&■ , (156) 

and rearranging Equation (156) one obtains 

l(ü-i>) + ^-u)>-qf + ^i. (157) 

Then , using the first law (Equation (152)) to replace ü in the first term of the left hand side 

of Equation (157), substituting the free energy definition, Equation (86), in the second term, and 

rearranging, Equation (157) reduces to 

?M± _ ^ _ rje _ «L^i > o . (158) 
P pv 

In addition, using the time derivative of the free energy (Equation (154)) and rearrange, Equation 

(158)reduces to 

(°JL _ ^±Ve _ (^ + „\e + -a-e" - ^i - ^<y - ^770 - ^ > 0 (159) ( p      dq)€ij     (89 + VW + /*' €ij     8e% ^     8-i1      pO^      p0   ~ ° " (159j 

That is the dissipation function d becomes equal to 

aij      dtp dip •       ffjj       dtp dip.      qi9}i d = (y - w^ ~{™ + v)9+(7 ~ W^" *T " ~r' (160) 
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and Equation (159) can be written as, 

d>0 (161) 

This dissipation function d will be discussed subsequently. From Equations (102) and (103), the 

first and second parenthesis terms in the dissipation function d (Equation (160)) vanish, and the 

dissipation function d (Equation (160)) becomes 

, = (21-»*)$-£+-aii, (162) 

The three terms in the dissipation function d are called the mechanical dissipation dm, the dissipation 

of continual failure df, and the thermal dissipation de, respectively, and they are defined as 

dm = U& ={J- ||)$ , dt = -^7 , * = ^ , (163) 

where iy is the active stress tensor and defined as 

tl] ~  p      Qe% ' {      } 

where j£- is the plastic stress threshold which depends upon the plastic strain €?• and t is the 

portion of the stress beyond the plastic stress threshold where the material plastically deformed. 

Note that, the mechanical dissipation dm represents the dissipation due to the plastic flow, the 

dissipation of continual failure dj represents the dissipation due to the damage mechanism the 

continuum suffers, and the thermal dissipation de represents the heat energy dissipation occurring 

from the hotter temperature to the colder temperature. In this failure model, more restriction on 

the thermodynamic process will be imposed than that imposed by the Clausius-Duhem inequality 

by introducing the following inequalities, 

dm > 0 , df>0, d$ > 0 . (165) 
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That is, the mechanical dissipation dm, the dissipation of continual failure dj, and the thermal dis- 

sipation de, must be always positive or zero which mean that these dissipation quantities can be 

created but can not be destroyed, and they are irreversible similar to the entropy concepts. This 

assumption insures that all three dissipations, i.e. the mechanical dissipation dm, the dissipation of 

continual failure dj, and the thermal dissipation d9, always causes damage in the structure accumal- 

itively and they do not cancel each other effect (i.e. if any of the three dissipation is negative then 

the dissipation function d is reduced). 

Further, to eliminate the internal energy in term of the free energy, the free energy (Equation 

(86)) and its time derivative (Equation (154)) are substituted into the first law of thermodynamic 

(Equation (152)), also substitute the thermoelastic Equations (102) and (83) to simplify terms, the 

first law of thermodynamic (Equation (152)) can be rewritten as 

.Oij      dip            dip.      qiti ,      s 
(— - ^rVij ~ -fl-7  - 017 = 0 , (166) 

Next, the dissipation of the continual failure dj is discussed. The assumption of continual failure 

dj is the rate of energy dissipation and expresses in term of a rate 7 and thermodynamic tension 

|^. For such quantity, it is quite natural to assume, at least close to equilibrium (i.e. thermostatic 

state), a relation between the rates and the thermodynamic tension (see Prigogine [14], Chapter 4). 

Such an assumption automatically includes empirical laws such as the Fourier's law for heat transfer 

in Equations (38) and (39).   These linear laws are called phenomenological relations.   It is clear 
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that the existence of such relations is an extra-thermodynamic hypothesis and it is quite conceivable 

that is some particular cases the relationships between the rate and thermodynamic tension is 

not linear. However, assuming this linear relation yield an important information concerning the 

phenomenological coefficients without invoking more complicated (i.e. nonlinear) assumption [14]. 

Thus, assume that the partial derivative of the free energy tp with respect to the structural damage 

parameter 7 is linearly proportional to the time rate of change of the structural damage parameter 

7, that is 

-^ = T7 , (167) 

where T is the phenomenological coefficient of damage and it is a material constant parameter. 

Thus, substitute Equation (168) into the dissipation of the continual failure df given in Equation 

(163) produces 

df = -^7 = T72 , (168) 

which show that the dissipation of the continual failure df becomes quadratic in term of the time rate 

of change of the structural damage parameter 7. Furthermore, the linear assumption in Equation 

(167) is in time rate form which can be solved using an incremental approach. Thus, the dissipation 

of continual failure df can be written in a quadratic form of the structural damage parameter, 

d} = -|^7 > 0 , (169) 

and since (df > 0) then (T > 0). 
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Furthermore, take the time derivatives of the entropy in the thermoelastic Equation (114) pro- 

duces 

$=£*+-*», (170) 

and substituting it into Equation (166) after using the definition for the dissipation of continual 

failure df in Equation (168), the first law of thermodynamics, Equation (166), can be written as 

pcj + -^9crkk = tij^j + T72 - qiti . (171) 

Note that Equation (171) is an energy balance coupling the mechanical and thermal energy. It is 

also nothing more than the governing equation of a heat transfer in term of the time rate of change of 

temperature. Using the Fourier's law defined in Equation (39) and using an incremental approach, 

the temperature is computed based on Equation (171). 

Next, the free enthalpy g for this model is presented as follow. First, since the temperature 6, the 

elastic strain e?., the plastic strain e?-, and the structural damage parameter 7, are the independent 

variables for the free enthalpy, i.e. g(9,Cy, «<_,•,7), then its time derivative is 

Based on Equation (172) and the time derivative of the free energy (Equation (154)) the time 

derivative of Equation (109), that is the definition of enthalpy g, becomes 

dib .„       dib dib-     dip.      2      .. ,.,„„% 
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Next, substitute the thermoelasticity Equations (102) and (103) into Equations (173) and multiplying 

the results by the density p, produces 

pg = -e'ij&u - pr}6 + p-^ßj + P~^i ■ (174) 

Substituting the time derivative of the enthalpy, which is given in Equation (172), into the left hand 

side of Equation (174), and collect the terms according to the independent variables, Equation (174) 

reduces to 

Since <r^, 0, e?-, and 7 are independent variables and Equation (175) must be satisfied for all of their 

values at all times, then the terms inside the parenthesis in Equation (175) must vanish leading to 

the following relations, 

e_     dg_ _ _&i dj>__dg_ dj)__dg_ 
€ii ~ Pda{j '       V ~    86 '       de?- " de?,- '       ö7 ~ «7 ' K      ' 

The free enthalpy g is obtain by integrating Equation (174) with respect to time which produces 

pg = Jpgdt = J[-<Ti:§ - pvö + P^rZi + p^i]dt, (m) 

using the definition of the dissipation of continual failure dj in Equation (168) reduces Equation 

(177)to 

pg = j pgdt = Jl-aufy - pr)& + /> J^e?- - pT^]dt , (178) 

and eliminating elastic strain e?- and entropy rj in term of the stress tensor a^ and temperature 9 

using the thermoelasticity Equations (115) and (114), respectively, the free enthalpy can be written 

as 

-P9 = (2g6  ]fVkh + ^-°ijVij + l<*v°kk(Ö - 00) - Jp-jjjfdfij + T [ idl + 9o(0) ,  (179) 
36/iK   '  KK     4/i „ -     —y 
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where g0(6) is the free enthalpy as a function of temperature in the natural state. 

Next, the constitutive laws that has been used by Kiselev and Yumashev [5] is discussed. First, 

the damage mechanics assumes that material properties such as the elastic modulus, shear modulus, 

...etc. are less than their undamaged value based on a damage criterion. Thus, Kiselev and Yumashev 

[5] assumed that as the damage in the material progresses, the bulk modulus, the shear modulus, 

and Lame's constants are functions of the damage (i.e. 7). That is, material constants for an elastic 

medium are assumed to change linearly with damage, and it is assumed to degrade in the following 

linear form 

K(7) = K0(l-<y), (180) 

A*(7) = A«o(l-7), (181) 

A(7) = A0(l-7), (182) 

where K0 is the bulk modulus and /J,0 and A0 are Lame's constants for an undamaged structure 

which may depend on temperature, pressure and other parameters, Wilkins [15]. This assumption 

shows that the strength of the linear elastic part of the material is affected by the damage and as 

the damage grows in the continuum, its elastic strength is softened or reduced based on the above 

relation. 

For the elastoplastic behavior of the material the following constitutive laws are adopted. First, 
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assuming that the damage affect the mechanical material properties directly as in Equations (180)- 

(182), then the damage also affect the mechanical stresses which are referred to as the effective stress 

tensor a- and it is defined as l3 

To illustrate this, for example, consider the Hooke's laws along the 11-directions, that is 

On = Ac**. + 2juen , (184) 

and using the damaged Lame' constants in equations (181) and (182) produce 

on = A0(l - l)ekk + 2/x0(l - 7)en , (185) 

divide by (1 — 7) gives the effective stress tensor an which is 

o-n = ,-,   n v = AoCjfefc + 2fi0€n , (186) 
(I-7) 

Hence, using this definition of the effective stress tensor a^, the deviatoric stress tensor Sy is defined 

as 

&ij — &ij ty^kk^ij   ? 

13      (1-7) 
Sil- (187) 

The deviatoric strain tensor e,-j is defined as 

e»j = eij — -zekköij ■ (1^8) 

Also, the plastic flow is assumed incompressible, i.e., 

4k = 0 • (189) 
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Based on the stresses being functions of the damage 7, Kiselev and Yumashev [5] used the 

elastoplastic flow model of Prandtl-Reuss [15,16]. Prandtl-Reuss elastoplastic flow model states 

vv 
(Sy)   +\Sij=2fi0eij , (190) 

where the symbol ( )v signifies Jaumann derivative of a tensor which is the time rate of change of 

stress in the deformed coordinate system after eliminating the rigid body rotation, and it will be 

discussed subsequently, X is the plasticity proportionality factor which is equal to 

X = 0, (191) 

for an elastic region, i.e. the Mises plastic criteria S'^S'^ < | is satisfied where Y is the yield stress, 

and for the plastic region it equal to 

* = 3f!44#(4<%). (192) 

where H(x) is the Heavyside unit step function which is defined as 

H(x) = 0, if a: < 0 , 

H(x) = 1.0, ifa:>0. (193) 

(194) 

Thus, the Heavyside unit step function H in Equation (192) is to insure that the plasticity propor- 

tionality factor Ä defined in Equations (192) is incorporated only in the plastic region, otherwise it 

is zero as given in Equation (191). The Prandtl-Reuss elastoplastic flow rule defined in Equations 

(190)-(192) states that the rate of stress and strain are related in the plastic region. Note that the 
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Prandtl-Reuss elastoplastic flow rule is a realistic description of the plastic behavior of metals when 

anisotropy (e.g. composite) and Bauschinger effects (i.e. the yield stress for tension and compression 

are different for material in non-virgin state) are of secondary importance. 

Furthermore, the constitutive relations (i.e. the flow rules) are formulated as rate (i.e. incremen- 

tal) laws where the rates of stresses and strain are related rather than the stress being related to the 

strain as in the Hooke's law. Since the deformation rate is unaffected by the rigid body rotation of 

the material, the stress rate must also be independent of the rigid body rotation. This is the reason 

for using the Jaumann stress rate symbol {oij)    and it is defined as 

v = Um  &«(« + *')-*«(*)] (195) 
V     3J A<-0L At 

where ä{j are the stress components referred to a coordinate system that translate and rotate (i.e. 

deformed coordinate system) with material point as time evolve from t to t + At which is consistence 

with solving the problem in an incremental approach (see Figure 7). Thus, first the stresses at the 

deformed coordinate system are transformed into the undeformed coordinate system at time t using 

the cosine of the angles between unit vectors in the deformed and undeformed coordinate system 

(see Malvern [6], chapter 3 or any strength of material book), that is 

alk(t + At) = eH6,-oii(< + At) (196) 

where £K is the cosine angles between the unit vector of the deformed and undeformed coordinate 

system and assuming the deformed and undeformed system rotate u12 about the normal unit vector, 
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the cosine angles £K become 

61 = 62 = cos(u12At) ~ 1 , 

fpi 
61 = £12 = cos(y - u12At) = sm(u12At) ~ w12Ai , (197) 

where the rotation u12 assumed small which is consistant with the infinitesimal assumptions. The 

cosine angles relations between the unit vector of the deformed and undeformed coordinate system 

defined in Equation (197) can be summarized as 

k^Sij+uyAt, (198) 

where Uu (no sum on i) are zero (w,-,- = 0) that is the unit vectors are free to spin. Substitute 

Equation (198) into Equation (195) produce 

K-)V = Mm[^ + ^-g^)] - „«a, - w„a„ , (199) 

where the term in the bracket is the derivative -^ and Equation (199) reduce to 

i?ijf = -j£ ~ wu<rij - UkjPik , (200) 

In Equation (200), the first term is the rate of change of the stress with respect to coordinate system 

moving with the particle (i.e. including rigid body rotation) and the second and third terms results 

from the formulation to eliminate the rigid body rotation of the material. Note that the stresses in 

Equation (200) are the time rate of the Cauchy stresses (i.e. the incremental Cauchy stresses), and 

the problem is solved in an incremental process. 
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Taking account of the strain anisotropy which is associated with the active stress tensor ttj, then 

the flow rule and the Mises criteria become 

.v 
(r0.)   + \r{j = 2fi0e{j , (201) 

vi<f. (202) 
where ri4 is the deviatoric active stress defined as 

Tij = Si, - p-^Y = Sij + Te^ , (203) 

T[. =     Tii (204) 
11      (1 - 7) ' y      ' 

where T is plasticity proportionality factor. Also, Kiselev and Yumashev [5] defined the rate of the 

damage dissipation parameter 7 based on the kinetic equation of the Tuler-Butcher type [17] as 

i = B(a-o»)mH(j-a'), (205) 

where H is the Heavyside unit step function defined in Equation (193), B and m are material 

parameters, a* is the threshold of the hydrostatic stress ^ after damage initiation, and a is the 

effective hydrostatic stresses (i.e. a = cr'kk = ?frH) which is obtain by taking the partial derivative 

of Equation (179) with respect to the stress which gives 

dg d     2/1 —3K    2        1 1 . . 

J p^de% + r£ 7^7 + 9o(0)] , (206) 

also the partial derivative of the free enthalpy g is related to the elastic strain e^- based on Equation 

(176) (i.e. €?■ = Pjf-.), thus taking the trace (e.g. tr<7;j = akk) of Equation (206) produces 

a = K0[ekk - av(0 - 0O) - - J   ^7] , (207) 

76 



Note that the Heavyside unit step function H in Equation (205) shows that damage initiations only 

occurs if the hydrostatic stress y is greater than a threshold of the hydrostatic stress a*. 

Furthermore, for isotropic homogenous material the yield function is computed based on the 

second invariant J2 of the stress deviator (i.e. J2 = ^S^Sij) such as the Mises yield function which 

state that the yield function is equal to the second invariant J2 of the stress deviator 

1 
2 

J2-Y2 = -SijSij-Yi = 0, (208) 

That is the Mises yield function depend on the stress deviators SV,- only. However, in an impact 

problem, there are parameter other than the stress deviators that the yield function depend on. Thus, 

Kiselev and Yumashev [5] assume that the yield strength Y, the undamaged shear modulus fi0, and 

the undamaged bulk modulus K0 depends on temperature, pressure, and material parameters, based 

on Steinberg-Guinan relation [18] for the yield strength. That is the yield strength Y is nonlinearly 

dependent on the temperature, pressure, and material parameters as well as the relative volume Vr 

and the equivalent plastic strain and it is defined as 

< = i~/iA)   • (209) 

The yield strength function Y for an impact problem is a nonlinear function [18] which is given as 

Y = Y„(l + 6ie£)n[l - b2oVr* - b3(0 - 0O)] , (210) 

with the conditions 

Y0(l + b^S < Ymax , (211) 

y0 = 0      for    6 > 6m ,      where      9m = 0moVr
rV*><1-v'> , (212) 
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where 6m is the melting temperature which is material dependent and exponentially function of the 

relative volume, 0O is the temperature at the reference state which is undamage state, Y0 is the 

undamaged yield strength of the material and it is a lower bound (i.e. 0 = 80 and ep
u = a = 0 then 

Y = Y0), and n, 61? b2, 63, 0mo, and (0 are material constants. In this constitutive model it provides 

power law strain hardening, a linear increase of flow stress with pressure and linear decrease with 

temperature. Also, note that the flow stress is zero for a temperature greater than the melting 

temperature. Also, the shear modulus fi is nonlinear, Wilkins [15], and it depends on temperature, 

pressure, and material parameters as well as the relative volume Vr, and it is given as 

/i = /x0[l - b2ffVri - b3(0 - 00)] , (213) 

where ß0 is the undamaged shear modulus fj,0 (i-e- 0 = 60 and ep
u = 0 then \i = /J,0). The shear 

modulus /j, in Equation (213) is linearly increase with the pressure and linearly decrease with the 

temperature. Finally, the stress threshold for damage initiation is linearly proportional to the yield 

strength Y normalized by the lower bound of the yield strength Y0 through the material parameter 

<7Q which is given. 

a* = al^ , (214) 

where (TQ is a material constant. That is the stress threshold for damage initiation (i.e. the stress 

limiting point before and after damage) is assumed to have similar behavior characteristics as the 

yield strength before and after damage (i.e. Y0 and Y), and they are set to be proportional. 
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Kiselev and Yumashev [5] assumed that the dissipation damage D is 

D = Jl kn& + T72 - qj^)dt , (215) 

where the time integral represent the accumulative process of damage. Note that, the dissipation 

damage parameter D is the dissipation function d defined in Equation (162) where the active stress 

t{j is replaced by the deviatoric active stress r8J- defined in Equation (203). That is the dissipation 

damage D consist of the mechanical dissipation dm representing the dissipation due to the plastic 

flow, the dissipation of continual failure dj representing the dissipation due to the damage mechanism 

the continuum suffers, and the thermal dissipation d9 representing the heat energy dissipation which 

occurs from the hotter temperature to the colder temperature where 

dm > 0 , dj > 0 , dB > 0 . (216) 

That is, the mechanical dissipation dm, the dissipation of continual failure dj, and the thermal dis- 

sipation dg, must always be positive or zero which mean that these dissipation quantities can be 

created but can not be destroyed, and they are irreversible similar to the entropy concepts. Note 

that, the dissipation damage D is an accumulative damage parameter in time, and it is represented 

in Equation (215) by the time integral. 

Since an incremental approach is chosen to solve the governing equations with elastoplastic 

constitutive model numerically, the dissipation damage D computed also numerically. That is, 

the governing equations, which are the conservation of linear momentum Equation (150) and the 

heat transfer (i.e. energy balance) Equation (171), are solved using up-dated Lagrangian approach. 
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These governing equations are coupled thermal-mechanical system where the constitutive models 

are the linear Fourier's law defined in Equation (39) for the heat flux, thermoelasticity for the linear 

material responce, and the Prandtl-Reuss elastoplastic flow rule for the elastoplastic material. Note 

that since the model is developed for a structure under impact, the yield criterion is function of 

pressure, temperature, and material constants. Thus, using the up-dated Lagrangian approach, the 

solution of the governing equations provide all the quantities needed to compute the dissipation 

damage D from Equation (215). Using the computed structural damage parameter 7 to update the 

variables which are damage dependent, the next increment is carried on using the updated variables 

in a similar fashion and so on. 

3    Conclusion 

An overview of the thermodynamic definitions, concepts, and principles were presented. This 

overview of thermodynamics provided the necessary background needed to understand the model of 

failure. A summary of the essentials were presented as follow: concepts and definitions, balancing 

laws, thermodynamic equilibrium or thermostatic, and the thermodynamic process. These essentials 

are used to illustrate the development of the model of failure given by Kiselev and Yumashev [5], 

which is developed to analyze failure in a structural under impact loading. 

For this thermodynamic model of failure, the substate variables used to characterize the failure 

model are the elastic strain e?-, plastic strain e?-, and an internal variable 7 associated with the 
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damage dissipation in the continuum. Kiselev and Yumashev [5] assumes in their model of failure 

that the strain tensor can be written in two parts the elastic strain e^ and the plastic strain e?-. The 

elastic strain e?. is a linear elastic strain, i.e. infinitesimal strain where the strain used is Cauchy 

strain tensor e*-, and the corresponding stress is the Cauchy stress tensor 0^. Also, an incremen- 

tal approach is used to solve the problem. Thus, an infinitesimal response for the stress-strain 

due to infinitesimal strain-displacement relations can be used even though the structure undergoing 

large displacement. That is the stress and strain tensors, for both the Eulerian and Lagrangian 

formulation, reduce to the Cauchy stress tensor a^ and the Cauchy strain tensor £y, respectively, 

which are referred to as the incremental Cauchy stress and strain tensors (d<Tij and de,j). Further- 

more, the formulation of the model's governing equations use the Lagrangian representation where 

the up-dated Lagrangian is chosen to solve the problem numerically. The conservation laws and 

the first and second law of thermodynamics are formulated. The dissipation function d is defined 

using the second law of thermodynamic which consist of three terms. These three terms are the 

mechanical dissipation dm, the dissipation of continual failure dj, and the thermal dissipation dg. 

This model imposed more restriction than the Clausius-Duhem inequality by forcing the mechanical 

dissipation, the dissipation of continual failure, and the thermal dissipation to be greater or equal 

zero. That is, dissipation quantities can be created but can not be destroyed. The free energy and 

free enthalpy is formulated based on thermoelasticity as the thermostatic state used to model the 

non-equilibrium thermodynamic process (i.e. non-equilibrium thermodynamic process is transiting 

from one thermostatic state to another). The constitutive model used is the Prandtl-Reuss which 

models elastoplastic isotropic homogenous material. The Jaummann stress rate is used in the for- 

mulation of the constitutive model since large deformation is considered, the plastic deformation is 
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not affected by the rigid body rotation and in the Jaummann stress rate model. Also, this model 

is formulated for elastoplastic isotropic homogenous material under impact loading where the yield 

becomes function of temperature, pressure, and material parameters. Hence, the yield criterion 

is based on the Steinberg-Gurson model which formulates the yield as a function of temperature, 

pressure, and material parameters. Finally, the dissipation damage parameter D which characterize 

the damage process is based on the dissipation function formulated in the second law of thermody- 

namic, i.e. similar to Clausius-Duhem principle. This dissipation damage parameter D is computed 

as a cumulative process in time in an incremental fashion. Finally, the solution of the governing 

equations including the constitutive models which are the linear Fourier's law for the heat flux, 

thermoelasticity for the linear material responce, and the Prandtl-Reuss elastoplastic flow rule for 

the elastoplastic material obtain using up-dated Lagrangian approach. 
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Current Configuration 
Time=t 

Original Configuration 

Time=0 

Figure 1: dX is the deformation vector in the original configuration where X is the position vector 
in Lagrangian description and dx is the deformation vector in the current configuration where x is 
the position vector in the Eulerian description. 
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(lb) 

Figure 2: Stress tensor in Lagrangian and Eulerian systems: Figure la) second Piola-Kirchhof! stress 
tensor Pu and Figure lb) Eulerian stress tensor Ty. 
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D dt 
n 

Figure 3: The flow of mass through element dS for a period of time dt where n is the normal vector 
to the element dS, v and v„ is the velocity vector and the normal component of the velocity, and 
t>dt is the distance the element dS travels. 



tdS 

(4a) 

tdS 

(4b) 

Figure 4: The conservation of angular momentum: Figure 4a) is the conservation of angular mo- 
mentum in the Lagrangian representation and Figure 4b) is the conservation of angular momentum 
in the Eulerian representation 

89 



t dS 

(5a) 

tdS 

(5b) 

Figure 5: The conservation of linear momentum: Figure 5a) is the conservation of linear momentum 
in the Lagrangian representation and Figure 5b) is the conservation of linear momentum in the 
Eulerian representation 
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qz+dqs 

X,x 
(6b) 

Figure 6: The heat flow through the surface of the differential volume: Figure 6a) is the heat flow 
through the surface of the differential volume in the Lagrangian representation and Figure 4b) is 
the heat flow through the surface of the differential volume in the Eulerian representation 
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X 
Figure 7:   The stress components in the local coordinate system that translate and rotate with 
material point as it deformed during a time period from t to t + At. 
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