
NASA/CR-1998-207636
ICASE Interim Report No. 31

Parallel PAB3D: Experiences with a Prototype
in MPI

Fabio Guerinoni, Khaled S. Abdol-Hamid, and S. Paul Pao

19980602 142

April 1998

DTXC QUALITY INSPECTED *

DISTRIBUTION STATEMENT A

Approved for public release;
Digtributioa Unlimited

The NASA STI Program Office ...in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA's institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part or peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATIONS.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA's mission.

Specialized services that help round out the
STI Program Office's diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results ... even providing videos.

For more information about the NASA STI
Program Office, you can:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov/STI-
homepage.html

• Email your question via the Internet to
help @ sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at
(301)621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CR-1998-207636
ICASE Interim Report No. 31

Parallel PAB3D: Experiences with a Prototype
inMPI

Fabio Guerinoni
Virginia State University

Khaled S. Abdol-Hamid
Analytical Services & Materials, Inc.

S. Paul Pao
NASA Langley Research Center

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA
Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS1-19480

April 1998

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301)621-0390 (703)487-4650

PARALLEL PAB3D :

EXPERIENCES WITH A PROTOTYPE IN MPI

FABIO GUERINONI *, KHALED S. ABDOL-HAMID t, AND S. PAUL PAO *

Abstract. PAB3D is a three-dimensional Navier Stokes solver that has gained acceptance in the

research and industrial communities. It takes as computational domain, a set disjoint blocks covering the

physical domain. This is the first report on the implementation of PAB3D using the Message Passing

Interface (MPI), a standard for parallel processing. We discuss briefly the characteristics of the code

and define a prototype for testing. The principal data structure used for communication is derived from

preprocessing "patching". We describe a simple interface (COMMSYS) for MPI communication, and

some general techniques likely to be enconuntered when working on problems of this nature. Last, we

identify levels of improvement from the current version and outline future work.

Key words. Message Passing Interface (MPI), Navier-Stokes solver, structured meshes, broadcasting,

point-to-point communication

Subject classification. Computer Science

1. Introduction . Parallel processing has been a trend in the aerospace industry for more than a

decade. A number of systems have emerged which run in a number of processors. Significant examples are

the ENS3D, recently ported to the Intel Paragon and Pratt & Whitney's NASTAR [6]. Other examples

can readily be found in conference proceedings, for example [5].

Many of this codes were designed in the late 80's when there was a trend for large shared-memory

systems, like the Cray Y-MP or the NEC SX-4. In consequence, many of these codes were designed to

run as a number of more or less independent tasks, implicitly communicating by using shared memory.

As the limitations in term of scalability and costs starts showing up in shared memory systems, the use

of distributed memory in the form of massively parallel processing systems or clusters of workstation

became an standard trend. The widespread and free availability of systems like PARMACS, PVM, and

more recently, MPI and MPI-2 contributed to the process.

In the transition, the fact that the codes were written for shared memory multiprocessors simplified the

task of switching to distributed memory system. The original systems takes care of parallel I/O and

computation; the programmer task becomes implementing the communication.

Parallelizing an application from a sequential code is more complicated, since one has to take into account

other issues besides communication. In the first of the outcomes of our project, we show that the

* Department of Mathematics, Virginia State University, P.O. Box 9068, Petersburg, VA 23806. This research was

supported by the National Aeronautics and Space Administration under Contract No. NAS1-19480 while the author was in

residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,

Hampton, VA 23681-0001.
t Analytical Services & Materials, Inc. Hampton, VA 23666
* Configuration Aerodynamics Branch NASA Langley Research Center, MS 499, Hampton, VA 23681-0001

tranformations are feasible provided a limited amount of the resources. The key to success, in our

opinion, was to have a well-defined prototype with the key characteristics:

• The problem must be of realistic size

• Standard options

• Limited, but essential functionality

This is the first report on the parallelization of a protype for PAB3D. Lessons learnt here will be used

to provide a better version of PAB3D for parallel processing. We will restrict ourselves to describe some

techniques used and suggesting directions for continuing improvements. Our prototype is necessarilly

rough-hewn. Some elementary concepts in parallel processing such as "load balancing" or "speed-up"

have been purposedly left out, as there is still significant amount of work to be done. The important

achievement is that the prototype runs for a relative large number of heterogeneous processors, and

produces correct residuals for a single, but realistic problem.

The report is organized as follows. Following a summary description of PAB3D, we go on to the describe

the principal parallel implementations decision, chosen primarily because the simplicity of its develop-

ment. A brief description of the MPI implementation follows.

Section 5 is the core of the report. On it we describe some adhoc techniques that has proven very useful in

our particular case of PAB3D and certainly extends to other applications. As it turns out, the key issue

here is the use of a data structure designed for the sequential block-cell connectivity and the use of an

interface to MPI which we call COMMSYS (for COMMnication SYStem). We conclude with suggestions

for future work.

2. PAB3D Characteristics.

2.1. Brief description of Code . The PAB3D code (currently in its version 13) is a three dimen-

sional Reynolds-averaged Navier-Stokes (RANS) solver. It was initially developed in 1986 by Khaled S.

Abdol-Hamid for supersonic jet exhaust flow analysis. After enhancements to the code since that time

by the use of multi-block/multi-zone techniques, it has become a general purpose Navier-Stokes code for

complex aerodynamic and propulsion integrated configurations [1]. This code has several schemes for the

RANS including turbulence models, and multi-block capability. Here are some of them:

1. Treatment of Convection terms: upwinding is used, among which is possible to choose the

following variants.

• Roe numerical flux

• van Leer flux splitting

• van Leer implicit

2. Limiters, required to to prevent oscillations in high order methods near shocks. A number of

strategies are incorporated in the code

• Van Albada

• Sweby's min-mod

• S-V (Spekreijse-Venkat)

• Modified S-V

CONNECTIVITY

FILE PATCHER
REGRID TOOLS GRID GENERATION

BOUNDARY AND

INITIAL CONDITIONS

CONNECTIVITY

DATABASE

GRID/SOLUTION MNGMNT.

GRID REDUCTION

GRID SEQUENCING

SOLUTION EXPANSION

RESTART FILE

GRID FILE

CONNECTIVITY RLE

INITIAL CONDITION RLE

CONTROL FILE

VISUALIZATION

SOLUTION

VALIDATION

AND

ANALYSIS

FIG. 2.1. Use of PABSD, Version 13, and related programs and files

3. Treatement of Viscosity terms: is as usual centrally approximated. There is a wide choice for the

cross terms

• j-thin layers, k-thin layers

• jk-uncoupled

• jk-coupled

4. Turbulence model: is completely independent of the solver part. A wide variety of models have

been implemented into the code, including a number of algebraic Reynolds-stress models.

• Two-equation k-epsilon model

• Shih-Zhu-Lumley

• Gatski-Speziale

• Grimaji

Other important features include the ability to deal with real gas equations of state and several com-

pressibility turbulence correction methods. The code accepts flows involving non-reacting multi-species

from which "effective" viscosity and other pararameters are computed. It is also possible to specify other

boundary conditions.

A schematic view of PAB3D and its relation with other programs and files is shown in Figure 2.1. A

detailed description of this code with emphasis on the turbulence models can be found in [3, 2].

2.2. The Patching. The most significant improvement ot to the PAB3D code occurred in 1990

when "conservative patching" was introduced to the code [4]. This allowed the multi-block/multi-zone

structure of the code by the creation of new cells at the interaces. A group of such cells is a patch ,

called a piece in this report. The amount of overlapping of the cells ratios are stored in arrays so that

space-integrated fluxes are computed conservatively.

Later, the patches databases were expanded and improved. Version 13 of the code (current) contains

three significant data bases:

• IPCB(piece,pieceinfo) : A global patch database, Depending on the value of pieceinfo,

the corresponding information for the piece is provided. Four our purposes wet set

pieceinfo so as to get:

* the number of cells in the piece

the face/block where the piece belongs

adjacent face/block

• IPTF(block,blockinfo) : The block database which provides, dimensions for the struc-

tured block, and after the patching is done, the pathces involved in the exchange of

information

number of pieces

list of local pieces

list of adjacent local pieces

• IPCBL(block,face,localpiece) : The piece local-to-global mapping. A face in a block

may contain several pieces, identified by a local number. This array provides the corre-

sponding global piece number to access the database if required.

These are the only arrays in volved in the commmunication part of the parallel system, as explainge in

Section 5.

2.3. The Prototype Problem . The computational grid for the parallel process test case has

nine blocks and a total of 1.29 million grid points. The physical model is a convergent-divergent Mach

2 nozzle which was designed for the Jet Noise Laboratory at NASA Langley. The computational grid

characteristics are given in the following table:

nb idm jdm kdm nbt Description

1 61 33 53 106689 interior of nozzle

2 61 33 61 122793 exterior of nozzle

3 65 33 113 242385 downstream of nozzle

4 97 33 113 361713 downstream of Block 3

5 97 33 113 361713 downstream of Block 4

6 61 17 17 17629 cartesian core 1

7 65 17 17 18785 cartesian core 2

8 97 17 17 28033 cartesian core 3

9 97 17 17 28033 cartesian core 4

The computational grid describes one quarter of the physical nozzle and its ambient environment. The

high pressure plenum chamber and nozzle flow acceleration path to Mach 2 at the nozzle exit is contained

FIG. 2.2. Blocks near nozzle. Block 1 is the interior of the nozzle

in block 1. The ambient flow which provides a laboratory-type nozzle exit environment is described

in blocks 2 through 5. The grid topology for these five block are cylindrical. In order to eliminate

the polar singularity at the axis of the nozzle interior and the jet exhaust plume flow path, the flow

domain surrounding the axis of symmetry is covered by cartesian grids of blocks 6 through 9. The

connectivity between block faces are described by one or more patched interface data tables for each pair

of block interfaces. The tables are generated automatically (patching) by a block interface connectivity

preprocessor, known simply as the "Patcher" utility. This example is chosen both for the simplicity of the

physical flow configuration, and the moderate complexity of a multiblock grid with general connectivity

requirements. The block sizes come in two groups: five blocks with an average of 250,000 grid points

and four blocks with an average of 25,000 grid points. These can be used to test workstation clusters

with different speed and memory capacities. Some of these blocks are small enough such that multiple

processes can be initiated on a single workstation under the MPI system.

As required by the prototype conditions listed above, the numerical techniques are fairly standard:

• Ideal gas simulation

• Standard k-e models

• Roe's flux differencing upwind scheme

• Third order interpolation

• Coupled viscous terms in the j-k plane

3. Parallel Implementation Decisions.

3.1. Model of Computation. Prom the beginning, it was clear the parallelism would be at the

block (spatial) level. That is, the each process would be in charge of a block. For this type of computations,

i—r -f-~i— i r'p/,n / / / ^-.y JJTl r/-/J ///><„//

-y /W'
m££6&s><

>v--'
'' V''

>•

mate
FIG. 2.3. >4 cross section of the prototype problem

one finds in the literature two types of well-establisehd approaches.

In the master-slave approach a processsor designated to coordinate the spawning of tasks on the other

available process and possibly required to handle all the asynchronous communication between the slave

processor in a point-to-point fashion. When a slave needs to send/receive data, it docs through the master

process, which receives, the message buffers it and resends appropriate. Thus the master synchronizes

the operation of the slaves, but it does not participate in the computations.

One of the main differences between the original MPI (MPI-1) and one of its predecessor PVM, is the

inability of the former to spawn a task. Tasks are started at user interface. In a master-slave approach

this requires having two executables. Since some of the goals of the project was to mantain the simplicity

of the sequential code, we decided that the master-slave approach was not appropriate. Thus, we incline

in favor of the graph model, in which each processor does the same type of task as any other node. All

nodes are in charge of communication and computation.

3.2. Data Distribution. In an optimal parallel implementation of a code, not only the computa-

tional work must be distributed evenly among processors, but data must be distributed as well. This is

called a shrunken block model. On the other hand keeping in each process a full adressing space, is called

the full block model.

However, size of code was not of premium concern. Most of the data is devoted to storing the unknown

variables, and the global grid coordinates. As we were confindent that we would get at least as many

processors as there are blocks, we opted for the full block model. Such approach, easier to implement, is

often used for preliminary versions of parallel code, as is now the case. Figure 3.2 shows a schematic of

the alternatives.

4. The MPI implementation: LAM. There are several implementations of MPI, all available

from free. Among the most widely developed and more robust are the Argonne MPICH and the Ohio

GLOBAL ADDRESSING SPACE

FULL BLOCK METHOD

P1 P2 P3 P4

SHRUNKEN BLOCK METHOD

□ H
P4

FIG. 3.1. Data distribution among processors. Starting from a sequential code the full block is easier to implement

Supercomputer Center Local Area Multicomputer (LAM) [7]. For the parallelization of PAB3D we have

used the former in its current version 6.1.

The LAM version of MPI has some extensions. For example, the original MPI [9] does not allow for

dynamic process spawning. LAM includes extensions to do this. These should not be confused with

the added functionality of MP1-2, still in the making. In addition, LAM comes with utility commands

that allow process/processor control through a file called application schema and configuration control a

process schema.

Some commands allow probing of the status of the remote hosts, described by the process schema. For

example, the command mpitask shows the following output

TASK (G/L) FUNCTION PEER I ROOT TAG C0MM COUNT DATATYPE

0/0 pab3d Beast 0/0 WORLD* 6438865 REAL

8/8 pab3d WaitAll 0/0 WORLD* 256 REAL

3 pab3d <mnning>

1/1 pab3d Beast 0/0 WORLD* 6438865 REAL

2/2 pab3d Beast 0/0 WORLD* 6438865 REAL

The display information shows, the processor and name of process, its MPI function at the moment.

The status jrunningä indicates non-MPI activity. The PEER and TAG fields involves point-to-point

communication.COMM is the communicator involved (an MPI notion to delimit the group of process

with which exchange messages). COUNT indicates the size of message and DATATYPE its type.

MPI is complex enough, but most applications require only a dozen commands or so. Besides the

control, initialization termination and identification, the most important commands are for point-to-

point communication and collective operations. [8]. A short sampler of typical operations in each category

follows.

Point-to-point communication

* MPIJIECV

* MPIJRECV

* MPLSEND

The MPLSEND in four flavours.They are "blocking" in the sense that the call will not return until some

"event" has happened. Similarly, MPIJIECV is blocking, but MPIJRECV is not.

Collective communication

* MPIJBCAST

* MPLGATHER

* MPIJIEDUCE

MPIJ3CAST is used to distribute information among all process in the communicator. MPLGATHER

collects information from other processes. MPIJIEDUCE might be used in conjuction with arithmetic

operations to obtain a result in a single process but which involves all process, as when doing a scalar

product.

5. An approach to message passing computations. After the defining the data orgainization,

the actual implementation and incorporation the MPI calls was carried out in four distinct phases, Ml

through M4. Source code with the MPI calls corresponding to a phase was identified by providing an

appropriate suffix. In each step we tried to include only the routines necessary for their complete and

independent testing.

An important technique that proved very useful, was to develop a communication subsystem, which we

call COMMSYS, which was tested independently of the main code. In the part of the commmunication

step, as described below, the implementation reduced to write an interface to COMMSYS. The original

code remain virtually unchanged.

5.1. Phase Ml: Start-up. It is widely acknowledged that the single characteristic of the sequential

codes that do most to prevent parallelizaition is the issue of I/O. In large engineering software projects,

developed over a number of years, it is natural that modifications and improvements are done essentially

in the computation part of the code. Developers tend to add I/O statements to the code generously,

without any consideration for parallel processing. This is either done for genuine reasons or, in many

cases, for simple debugging purposes.

The resulting code is extremely difficult or expensive to parallelize. The reason being is that each I/O

cannot be executed by more than a single processor. Furthermore, if code is modified so as to ensure

execution by a single processor, input staments must be followed by expensive broadcasts. An exception

to this is when the code written from the start with distributed I/O. This is an active area of research

these days. Eventually, all parallel codes must be able to deal with distributed I/O for efficiency.

The principal goal of phase Ml was to ensure that all computing processors have the proper data at the

beginning of the main computational routine. In the prototype PAB3D, this was identified as routine

solver. Unfortunately, there is still some I/O within this routine, fact that complicated things further.

Some of these are avoidable, some others are not. We will discuss more on this on the final step.

In short, the goals of Ml were two:

• At the starting of the computational part, each process must have exactly the same

information in its arguments, local variables and commons as the single process do.

• Run with enough processors, so as to accomodate each main computational routine.

The first goal was achieved by broadcasting after input operation. Dummy arrays (whose size is determine

at run-time) were dealt in full scale rather than limiting it to actual size. Thus, the constants of the

arrays dimensions were used in the broadcast calls, rather than the actual size.

By doing limited (actual size) broadcasting, turnaround times would have been less and thus would have

speed development. But as our project was completely full-scale, application-oriented, we could not afford

to take risk by testing a reduced-scale prototype, only to find out later that it will not scale properly.

As it turn out, and in spite that we developed ad-hoc utilities for the purpose, this task was by far the

most delicate and time consuming of the overall project. The straighforward technique of restricting the

I/O statement to one processor and then broacast in the input case, was ruled out from the beginning.

As the PAB3D system contains about 1600 I/O FORTRAN statements, this approach was clearly out of

the question. A new technique was needed.

At higher level routines, where subroutines tend to be called within the same context and functionality,

a very useful approach was to partition the I/O intensive or I/O subroutine intensive, in in two type of

segments: G and B segments.

B-segments were constructed according to the following characteristics

1. There is no branching into the segment. The idea is that the segment will execute in a single

process (to avoid I/O conflicts), and thus code branching into the segment risks being improperly

executed.

2. The segment must maximize the number of input operations, while at the same time must contain

a minimal of computation in between.

3. The number of derived variables must be kept to a minimum

4. Due to potential side-effects, whenever possible avoid subroutines within.

The B-segments coincide with the notion of "critical code" established since the early days of parallel

processing. The concept of derived variable is introduced here to mean any variable that is modified in

the segment. In particular, any variable involved in a READ is a derived variable. All derived variables

must be broadcast.

read (77,*) it, (igf (i, ib) , i=l, nblock) ß-j

do 40 , j=l,kix

p(j,ib) = a(j,ib)**2.0 * rho(j,ib) / gammar(nsp)

e(j,ib) = P(j,ib)/ (gairanar(nsp --1.0) +0.5*rho(j,ib)*u(j,ib)

40 continue

Derived variables: it, igf, p, e

read(77,*) it, (igf (üb) , i=l,nblock) B2

call energy(e, p, a, rho, gairanar)

Derived variables: it, igf, e (?), p (?), a(?), rho(?), gammar(?)

FIG. 5.1. In Bl it is possible by the syntax analyzer to detect the derived variables while in the second case, B2, it all
depends on the called subroutines

Figure 5.1 shows two B-segments showing the derived variables. Detecting derived variables can very

tricky. Consider for example the case when there are routines within the B-segment. In some cases, it is

very difficult to determine the output of a routine. Some routines in PAB3D prototype have more than

200 arguments. Proper documentation (rarely available in practice), might provide useful information.

This can be complemented with the use of good compilers that provide cross-references which facilitates
the detection of derived variables.

If the subroutine within contains side-effects, i.e. in the case it modifies non-local variables, the situation

becomes extremely complicated. A possibility is to make the routine in-line, and let the compiler do the

work, but even in this situation other difficulties may arise.

Fortunately, PAB3D it is well designed in this respect: variables in commons are explicitly passed as

arguments, avoiding altogether the possibility of side-effects. However, this lead to another problem: the
existence of dummy arrays.

Often the dimension of an array is provided only for checking the syntax of code. The real dimension,

might be adjustable (passed as argument), or determined at some higher level common. Thus if a local

variable is declared as real a(l), the declaration might not represent its actual dimension, and thus one
has to be careful at broadcast time.

Following a B-segment, as an source include file, the Ml source provides a '*.bct' file which contains

the actual broadcast MPI commands. In many cases, these arc generated automatically from syntax

analyzers outputs with a fixed format as shown in Figure 5.2. Segment characteristics for a higher lever

routine is show in Figure 5.3. Message lengths for arrays are determined from static data and thus the

10

XX = nblk*nsec*6*20*nprt*nzon

call MPI_BCAST(ibcf,XX,MPI_INTEGER, MASTER,MPI_COMM_WORLD,

+ ierr)

XX = nblk*nzon*ngt

call MPI_BCAST(ibf,XX,MPI.INTEGER, MASTER,MPI_COMM_WORLD,

+ ierr)

XX = nblk* (21+2*npcmx+l)

call MPI_BCAST(iptf,XX,MPI_INTEGER, MASTER,MPI_COMM_WORLD,

+ ierr)

XX = jkmx*(ncsp)+l

call MPI_BCAST(qOs,XX,MPI_REAL, MASTER,MPI_CDMM_WORLD,

+ ierr)

FIG. 5.2. Automatically generated '*.bct'file

Segmt. Length Der. Var Subrtn. I/O units BCT file

Bl 192 49 5 Sol3-M2Bl

Gl 244

B2 32 30 98,99 Sol3-MlB2

G2 10 rinput

B3 45 36 7 Sol3-MlB3

B4 24 19 97 Sol3-MlB4

G3 145 zonm

inidct

init

jkbar

solver

B5 3 outfl

FIG. 5.3. Segment characteristics for high level routine

ordering of the broadcasts calls is not important. In Section 6, we are going to retake this topic again.

The executable staments that form the complement of the B-segments, are the G-segments. These run

in all process. Figure 5.4 shows the actual division of the most significant parts of the code in phase Ml.

5.2. Phase M2: Communication. It is necessry to understand a little more about the global

structure of the code, in order to describe the communication and computation subsystems. The phase

Ml, described above has carried the parallelization up to solver. Solver does a few global iterations. This

a convenience in PAB3D to define breaking points in the compututation, after which partial solutions

are output, and partial residuals are computed.

Figure 5.7 illustrates the buffer for exchanging data, qbuf, and processors PI and P6 involved in the

11

k3d

G1 /-~\ ©
(G2

/

V^
(| Mainl3.f |

D3fl3.f

rinput

B1

is)
V

init rdp3d

| Inputl3.f |

FIG. 5.4. Segmentation for Ml. Single processor calls are shown as dashed lines

activity. The buffer consists of the cells of the pieces, create off-line using the patcher. Each block

(process) is responsible for sending and receiving the pieces which connects it with another block or

boundary. Referring to the figure, PI sends pieces 10 and 25 while P6 receives them.

For each global iteration, solver^ is called once; it it here where the core computations take place. The

routine solver4 consists of nested loops as follows: time loop, zone loop, and (a sequence of) block loops.

It is at the lower level (block loop) where the process must work independently. However, before this

can happen we must make sure tbat they have received all the pertinent information from other process.

And this is done through the COMMSYS.

COMMSYS consist of two parts which interact exclusively with the arrays of the patching system. It is

designed as a system of include files which contain its own databases. The include files named with lower

cases contain only declarations/definition while the upper case ones contain executable statements. They

are:

• commsyspar.h contains three parameters, for the commsys.h arrays: maximum num-

ber of blocks, maximun pieces per block, and maximun total pieces. While this informa-

ction can be obtained directly from the PAB3D commons, leaving these as independent

parameters provide more flexibility. The dependencies might be stated in the makefile.

• commsys.h declares the arrays. The global arrays correspond to the global piece

numbers:

12

P1
10 25

recv
»

send

send

recv

P6

FIG. 5.5. Two copies o/qbuf in processes PI and P6

add-piece: (scalar) piece addres in qbuf.

from-piece: sending block of piece

recv-piece: receiving block of piece,

and the local arrays to the local block information:

njpiece: number of pieces of the block

send-piece: global piece that the block send

recv-piece: global piece the the block receives.

• COMlVLGLOBAL.h : the global arrays are set according to runtime information. No

actual MPI calls are issued here.

• COMM-LOCAL.h: Non-blocking receives and blocking sends are issued here.

In addition, the file commsys.h contain arrays declarations pertaining to communications request and

status. Since the number of communication sending receiving messages depends on the number of pieces

per block (a parameter in commsyspar.h), it was natural to include this type of declarations here.

Figure 5.6 shows the matching of the executables COMM-GLOBAL and COMMJLOCAL to the Version

13 patching subsystem.

5.3. Phase M3: Computation. As we mention the innermost loop in solver4 consists of block

loops. In each of the cases, the index variable of the loop is called 'ib'; for simpicity we will to these as

ib-loops.

Early in solver4, the ib-loop that invokes the communnication system has been executed as differenc

instances. Subsequent ib-loop do the computations on the blocks (which we can assure that they con-

tain the proper informacion since it has been exchanged through qbuf). Similarly, we execute separate

13

IPCBL{block,face,localpiecei

Q

m
<
Q.

IPCB (piece, pieceinfo 1
IPTF(block, blockinfo}!

♦number of cells ; * number of pieces ;

* face/block belonging ; * local piece ;

* face/block adjacency * adjacent local pieces ;

patch database

I
block database

1
0)
>-
0)

add_piece(2, npie) n_piec(nblk)

E
S frora_piece(npie) send_piece(nlpi, nblk)

O u to_piece{npie) rccv_piece{nlpi, nblk)

COMM_GLOBAL.h COMM LOCAL.h

FIG. 5.6. Relation between the databases of PAB3D and those of COMMSYS

instances of this. The computational routines, which work with the patching information, will find the

required data in qbuf.

Using the newly provided information, the instance i of loop ib, will run in processor i-1. All commu-

nication has been taken care in step M2, so there no communication commands added to the system at

this stage. The only interphase with MPI is for self-identification, but this is already done in an earlier

phase. Self-identification is simply using a parameter.

5.4. Phase M4: Updating. The final phase is the updating of the solution, at the end of the

global iterations for output. This the reverse of an broadcast operation, a gather operation, in which

block data is passed to the processor in charge of the output.

6. Status, Further Work and Conclusions. As we have been able to compute correct residuals

in 9 different processors and bring them to a designated root processor, we are very optimistic about the

successful completion of the project.

There are, however, a few things that need to be perfected. Here is a partial list which involve a different

degrees of effort. The experiences learned here should provide clues on the design of future versions of

PAB3D.

6.1. Timely Messaging. In an environment where computational loads from blocks vary widely,

as in the case of our prototype problem as discussed in Section 2, it is fundamental that messages arrive

in the order in which they are posted.

LAM/MPI and MPI provide a number of options, such as tagging and specific implementation of point-

to-point communication commands. In order to use the optimal method for our purposes, a test-problem

14

OPTIMAL ?

JL

G segment

B segment

bet file

* •

^5

FIG. 6.1. Optimal segmentation

must be properly designed. A prototype, such as the one we worked on, answered the question whether

the code, with realistic data, can run in parallel or not. A test-problem is needed to guide further

implementation decisions.

6.2. Broadcast optimization. The conditions of on the construction of a segment partition de-

scribed in Section 5 may seem a little restrictive. However, they define a whole hierarchy of partitions:

from the trivial partitions like making the whole code either G or B or its opposite, that is making each

I/O operation B and the complement G. Clearly, this properly defines an optimization problem, with a

parameter being the size of the broadcast (number of process). This idea is illustrated in Figure 6.2.

Certainly, the above can be a quite elaborated problem. However, the code in its present state admits,

in principle, a straightforward improvement, which only involve the broadcast files.

Due to provisions for future robustness, as we explain in Section 5, the message lengths of most derived

broadcast variables, especially dummy arrays, involve the declared dimension. These lengths can be

changed to actual lengths.

The organization of the bet files, Figure 5.1 has been purposedly left in a uniform format to allow easily a

transition for this provision. Finding the correct value for the size of the message might involve significant

work, but should be relatively easy for someone who knows the code well. Nonetheless, a word of caution

is necessary: some of the actual lenghts are broadcast as derived variables themselves. Thus, it might be

required to rearrange the bet so as to let them be broadcast before they are used.

15

6.3. Memory Distribution. In Section we explain the reasons why we decided to start with the

full block approach. For efficiency, it is imperative that total memory requirements must be reduced by

using the shrunken block model.

This is a major change of the code, as it modifies the core data structures. This improvement should

leave the way open for distributed I/O.

7. Acknowledgements. The first author would like to thank David Keyes of ICASE and Old

Dominion University for his support and for making the project possible.

REFERENCES

[1] K. ABDOL-HAMID, A multiblock/multizone code (PAB3D-v2) for the three-dimensional Navier-Stokes

equations: Preliminary applications, Tech. Report CR-182032, NASA, October 1990.

[2] , Implementation of algebraic stress model in a general 3-d navier-stokes method (pabSd), Tech.

Report CR-4702, NASA, 1995.

[3] K. ABDOL-HAMID, J. CARLSON, AND B. LAKSHMANNAN, Application of Navier-Stokes code PAB3D

to attached and separated flows for use with k-e turbulence model, Tech. Report TP-3489, NASA,

1994.

[4] K. ABDOL-HAMID, J. CARLSON, AND S. PAO, Calculation of turbulent flows using mesh sequencing

and conservatie patch algorithm, Tech. Report 95-2336, AIAA, 1995.

[5] A. ECER, J. PERIAUX, N. SATOFUKA, AND S. TAYLOR, eds., Parallel Comptuational Fluid Dynam-

ics, North Holland, January 1996. Proceedings of Parallel CFD conference, June 26-28, 1995,

Pasadena, California.

[6] C. FISCHBERG, C. RHIE, R. ZACHARIAS, P. BRADLEY, AND T. DESSUREAUAULT, Using hundreds

of workstations for production running of parallel cfd applications, in Parallel Computational Fluid

Dynamics, A. Ecer, J. Periaux, N. Satofuka, and S. Taylor, eds., Stony Brook, North Holland,

1996, pp. 9-22.

[7] GDB/RBD, MPI primer/ developing with LAM, tech. report, Ohio Supercomputer Center, 1224

Kinnear Road, Columbus, OH 43212, November 1996.

[8] W. GROPP, E. LUSK, AND A. SKJELLUM, Using MPI, The MIT Press, 1994.

[9] OAK RIDGE NATIONAL LAB, MPI: A message passing interface standard, tech. report, University of

Tenessee, 1995.

16

17

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(leave blank) 2. REPORT DATE

April 1998
3. REPORT TYPE AND DATES COVERED

Contractor Report
4. TITLE AND SUBTITLE

Parallel PAB3D: Experiences with a prototype in MPI

AUTHOR(S)

Fabio Guerinoni
Khaled S. Abdol-Hamid
S. Paul Pao

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 403, NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Interim Report No. 31

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-2199

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1998-207636
ICASE Interim Report No. 31

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushneil
Final Report

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 60
Distribution: Nonstandard
Availability: NASA-CASI (301)621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
PAB3D is a three-dimensional Navier Stokes solver that has gained acceptance in the research and industrial
communities. It takes as computational domain, a set disjoint blocks covering the physical domain. This is the
first report on the implementation of PAB3D using the Message Passing Interface (MPI), a standard for parallel
processing. We discuss briefly the characteristics of the code and define a prototype for testing. The principal
data structure used for communication is derived from preprocessing "patching". We describe a simple interface
(COMMSYS) for MPI communication, and some general techniques likely to be enconuntered when working on
problems of this nature. Last, we identify levels of improvement from the current version and outline future work.

14. SUBJECT TERMS
Message Passing Interface (MPI), Navier-Stokes solver, structured meshes, broadcasting,
point-to-point communication

15. NUMBER OF PAGES

21
16. PRICE CODE

 A03
17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

18

