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ABSTRACT 

The objective of this study is to verify the Symmetrical 

Number System (SNS) undersampling receiver architecture using 

software and investigate implementation issues using Digital 

Signal Processing (DSP) hardware. In the software design, a 

MATLAB program is written to determine a single sinusoidal 

input frequency using this receiver architecture. Each 

channel of the SNS undersampling receiver consists of a low 

speed ADC, a discrete Fourier transform followed by a 

constant threshold device to detect the signal's frequency 

bin. The detected frequency bins are then recombined in a 

SNS-to-decimal algorithm to recover the frequency of the 

signal. Error rate performance in a Gaussian noise 

environment at the input stage is evaluated. In the hardware 

design, a sinusoidal waveform is digitized, discrete Fourier 

transformed and converted from the SNS format to a decimal 

value using a single channel digital signal processor. 

Implementation difficulties and design issues are discussed. 
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I.  INTRODUCTION 

A.   DNDERSAMPLING 

The digitization of a signal is usually governed by the 

Nyguist theorem where the sampling frequency is at least 

twice the signal bandwidth. The Nyquist theorem however, 

places a limitation only on the information that can be 

derived from a single set of digitized data [Ref. 1]. If the 

sampling frequency is less than twice the bandwidth of the 

signal being digitized, aliasing and consequently ambiguities 

occur. With additional information however, ambiguous 

frequency components due to undersampling may be resolved. 

Such information may come from, for example, trial sampling 

periods. Rader [Ref. 2] described how trial sampling periods 

can be used to recover periodic signals. The trial sampling 

period which yields the waveform of smallest variation is 

considered to be the correct period and the resulting 

waveform the correct waveform. 

Pace, Leino and Styer [Ref. 3] examined the relationship 

between the Discrete Fourier Transform (DFT) and the 

Symmetrical Number System (SNS) as a means of resolving 



Single frequency undersampling aliases. They showed that the 

DFT encodes the frequency information of a signal in a format 

that is in the same form as the SNS. In addition, they 

proved analytically that aliases resulting from undersampling 

a single-frequency signal could be resolved using 2 or more 

channels. Each channel in a SNS undersampling receiver 

contains a low speed ADC, a DFT and a threshold device to 

detect the input signal bin number in the frequency domain. 

The bin numbers from each channel are then recombined to 

resolve the signal's frequency. 

B.   PRINCIPAL CONTRIBUTIONS 

First, this thesis verifies the SNS undersampling theory 

advanced by Pace, Leino and Styer [Ref. 3]. An algorithm is 

written and coded in MATLAB to prove the methodology and to 

show that the frequency of an undersampled signal can be 

accurately measured. The algorithm is also simulated in a 

Gaussian noise environment. Error rates for the different 

noise levels are obtained as a function of the signal to 

noise ratio. Since the Fast Fourier Transform (FFT) is not 

suitable for computing DFTs in this application, alternative 

methods are suggested for real-time applications. 



Second, possible hardware implementation problems are 

investigated based on a Digital Signal Processing (DSP) 

platform. Several problems were encountered: the need for 

stable sampling frequencies, large memories and alternative 

methods for computing DFT for fast response time. 

Integration into future EW receivers must take these factors 

into consideration. 

Undersampling offers several advantages [Ref. 4] . It 

allows the resolution of very high frequencies in EW 

receivers using low speed ADCs. This is especially so if 

several SNS channels are used. In particular, the use of 

undersampling in the design of receivers will reduce their 

cost and complexity. 

C.   THESIS ORGANIZATION 

In Chapter II, the relationship between the SNS and the 

digital frequency domain as mapped by the DFT is examined as 

a means of resolving single-frequency undersampling 

ambiguities. It shows how the frequency of a signal that is 

undersampled at two different sampling frequencies (two- 

channel) can be determined. In order to use lower sampling 

frequencies, the two-channel case can be extended to three or 



more channels.   In particular the three-channel case is 

discussed. 

In Chapter III, algorithms for the two-channel and 

three-channel receivers are developed and coded in MATLAB to 

measure the frequency of an incoming signal. Each section of 

the software is explained in detail. Results are obtained 

based on different Gaussian noise levels. 

A feasibility study/design for the two-channel case is 

carried out in Chapter IV using a DSP development kit. The 

suitability of using a DSP platform and its associated 

problems are discussed. 

Chapter V states some conclusions and recommendations 

for future research. 
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II.  BACKGROUND INFORMATION 

A. INTRODUCTION 

Digitization of a signal is usually governed by the 

Nyquist criterion when the input signal is bandlimited to 0 < 

f < fs/2 where fE is the sampling frequency. For higher 

frequencies (i.e. f > fB/2), the process of undersampling 

gives rise to ambiguities. However, with additional 

information (or channels), the frequency components f > f6/2 

can be resolved. 

Pace, Ramamoorthy and Styer [Ref. 5] showed that the 

discrete Fourier transform (DFT) naturally encodes the 

frequency information of a signal in the same format as the 

symmetrical number system (SNS). Consequently, aliases from 

undersampling can be resolved using this method. The theory 

set forth is elaborated in [Ref. 3]. 

B. DISCRETE FOURIER TRANSFORM (DFT) 

Since all signals consist of sinusoids, for simplicity, 

a single frequency sinusoidal waveform is used for analysis. 

Assume the sinusoidal signal is 

x(t) = 2 cos co t 



(1) 

and after sampling 

x(n) = 2 cos © n. 

(2) 

The DFT of x(n)   is given by   [Ref.   6] 

N-l 

X(k) = 2>(n)e- ■j(2jmk/N) 
k = 0,l,...,N-l. 

n=0 

(3) 

Applying the DFT to x(n) results in a discrete spectrum where 

|X(k)|2 is the energy contained in the signal at each digital 

frequency ©=27ik/N.  The spectrum X(k) has N indices with the 

digital frequency of each index given by: 

0,24,...,2Ä^(N^,..^eiz2),2Itet!) 
N N N N N 

for N even 

(4) 

and 

N N N N N 
for N odd. 

(5) 



The analog frequency corresponding to each index is obtained 

by multiplying each value by f„. Since signals with digital 

frequencies in the range % < co < 2% are indistinguishable 

from signals with digital frequencies 0 < © < %, the digital 

frequency of each index can also be written as: 

0^1,.,.^(^J)^(N/2-l) ^2^1 
N     N      N      N  N 

for N even 

and 

n„    1  „ |N/2_L |N/2|  „ 2 „ 1 

N     N     N     N  N 
for N odd. 

(6) 

(7) 

where LxJ is the floor function and represents the greatest 

integer less than or equal to x. Thus the spectrum X(k) 

resolves into N integer indices and incoming signals will map 

into unique bins: 

m      N N , 0,l,...,-,y-l,...,2,l for N even, 

(8) 

0,1,..., 
N 

.2.' 
N 

_2_ 
,-,2,1 for N odd. 

(9) 



For example, for N = 5 (f. = 5 Hz and the sampling duration 

T1 is 1 second) , the output bins after the DFT are [0122 

1] for input frequencies of [01234] Hz. These DFT bins 

are repeated for higher frequencies as illustrated in Figure 

1. In this figure the abscissa corresponds to the incoming 

frequency and the ordinate corresponds to the bin into which 

the signal is resolved. 



3 II                i I                 I I             I             I I             I 

2.5 - - 

2 C )           c ) c )           c ) - 

a 1-5 - - 

1 ( ) c >                     c ) c ) - 

0.5 -. 

OC 3   6   6  
01 23456789 10 

Input Frequency 

Figure 1: DFT bin mapping for input frequencies f= 
0 to 10 for N = 5 (f = 5 Hz sampling for 1 second) 



C.   THE SYMMETRICAL NUMBER SYSTEM (SNS) 

The SNS is composed of a number of pairwise relatively 

prime (PRP) moduli. The integers within each SNS modulus 

however, are derived from a symmetrically folded waveform. 

The symmetrically folded waveform corresponding to each SNS 

PRP moduli (mi), has a folding period equal to the modulus. 

The integer values within each SNS modulus are derived from a 

mid-level quantization of the symmetrical folding waveform. 

The formal definition of a symmetrical residue is given 

below: 

Definition: For an integer h such that 0 < h < m 

xh = min {h, m - h} 

(10) 

If this function is extended periodically with period m, 

that is, 

Xh + nm = Xh 

(ID 

where n e {0,±1,±2,...} then xh is called a symmetrical 

residue of (h+nm) modulo m. For m even, let x be the row 

vector 

10 



X 0,l,...,y,y-l,...,2,l 

(12) 

For m odd, let x be the row vector 

0,1,..., 
m 

.2? 
m 

,-.,2,1 x = 
L ' ' " L 21L 2 J " ' J 

(13) 

where LxJ again represents the floor function resulting 

in the greatest integer less than or equal to x. These 

two  vectors  consist  of  the  symmetrical  remainder 

elements xh, 0 < h < m. 

D.   RELATIONSHIP BETWEEN DFT AND SNS 

From the above, it is obvious that the DFT maps real 

signals naturally into the SNS. That is, in Section C, if we 

let the modulus m represent the sampling frequency multiplied 

by the sampling time (i.e., f8Tx) , then equations (12) and 

(13) are in the same form as equations (8) and (9) where N= 

feTx. Thus the SNS provides a convenient framework for 

undersamping signal analysis. 

Table 1 displays the input frequencies and the resulting 

DFT bins for sampling frequencies 5 Hz and 6 Hz respectively. 

11 



Input Frequency j DFT Bins < 

!       f       ! f.= 5 Hz ! f.= 6 Hz j 

o     ! 0 0 I 
i     j 1 I 1 > 

2           i 2 2 t 

3        i 2 3 i 

4       ! 1 2 

5        j 0 1 I 

6      ! 1 0 
7          r 2 1 | 

~8    "  | 2 2 

Table 1: Input Frequency and Resulting DFT Bins for 2 
Channel Example. 

The frequencies are resolved as described in equations (12) 

and (13) . By considering two or more channels, it is 

possible to unambiguously resolve the signal frequencies in 

the dynamic range determined by the SNS. One method is to 

devise a look-up table similar to that shown in Table 1. 

However this method is inefficient for high frequencies; 

large memories are required. An alternative method is 

described below: 

Suppose there are r channels and the incoming frequency 

is within the dynamic range of the system. To carry out the 

SNS-to-decimal conversion, we need to solve f = a^mod m*) 

12 



for i = l,2,...r, where a± is the corresponding detected DFT 

bin for each mt. The Chinese Remainder Theorem states that 

there is a unique solution modulo Mrrtn^m, . ,.*mr. A standard 

method of solution is to find integers b± such that M*bi/mi = 

1 (mod mi) where i = 1,2,....r in which case the solution is f 

= M*b1*a1/m1 + IV^b^aj/mj + . . . + M*br*ar/mr (mod M) . In Sections 

F and G below, examples are given to illustrate this 

calculation. 

E.   DYNAMIC RANGE OF THE SNS 

Let m1# . . ., m,. be r pairwise relatively prime moduli, 

then the dynamic range, D (0:D-1) of a SNS system is given as 

follows: 

• If all the moduli are odd, then the dynamic range of 

the system is 

1  j       1  r 
D=miH ^n mi,+ö n mi, 

(14) 

2J. A  >i ill  'i 
1=1     ^ i=j- 

where j ranges from 1 to r-1 and mi2,mi3 ...mit range over 

all permutations of {l, 2,3,...,r}. For example, for a 

two-channel case with m1 = 5, 1112= 7, 

13 



D^minH+i^ 
I 2     2. 

or    D = 6. 

For a three-channel  case with m2 =  3,   n^ =  5,   1113=  7, 

D = -min{mj +m2m3,m2 +m1m3,m3 +111,1112} 

or   D=22. 

•    If   one   of   the  moduli    (mj    is   even,    then   the   dynamic 

range of  the system is 

D=minr?Lrim
I,+rim., <">   A X      MAX      M 

I.   *"    1=2 1=3-1-1 J 

(15) 

where j ranges from 1 to r-l and mi2,mi3 ...mir range over 

all permutations of {2,3,...fr}.  For example, for a 

two-channel case with mx = 6 n^ = 5, 

D = nW—L+m2 

or D = 8. 

14 



For a three-channel  case with 1% =  8,   tr^ = 5,   1%= 7, 

.  (m, nij nij | 

[2        2   3   2     2       3   2     3        2J 

or    D=27. 

Clearly, the dynamic range of an SNS system with one 

even modulus is superior to that using all odd moduli. 

Moreover, the greater the number of channels, the greater the 

dynamic range. 

F.   THE TWO-CHANNEL CASE 

Figure 2 shows the block diagram of a two-channel 

receiver architecture to determine a single frequency f. In 

this architecture the ADC sampling frequencies fsl and fs2 are 

relatively prime and Tx = 1. The DFT outputs are thresholded 

to detect the frequency bins of the signal. The detected 

frequency bins ax and a2 are then used by the SNS-to-decimal 

algorithm to determine the frequency of the input signal. 

15 



frequency bins ax and a2 are then used by the SNS-to-decimal 

algorithm to determine the frequency of the input signal. 

ADC 

fsl 
Window 

Funct ion 
DFT 

Bin 

Detector 

al 

SNS 

to 

Decimal 

tLgorithi 

a2 

' 

toti-Aliasin 

Filter 
J \ 

/ 

l 

ADC 

fs2 

Window 

Function 
DFT 

Bin 

Detector 

Figure 2: Block Diagram of a Two Channel Receiver 
Architecture. 

Let mx = fsl and n^ = fB2 and suppose that the incoming 

frequency is within the dynamic range of the system. From 

Section D, we need to solve f = a^mod mx) and f = a2 (mod m.) . 

The two congruence equations, f = ax(mod mx) and f = a2 (mod 

m2> are solvable only if the greatest common divisor of m1 

and m, divides (a2 - ax) , a generalization of the Chinese 

Remainder Theorem [Ref. 7]. To solve for f, the diophantine 

equation 

p*m1+q*m2 = (a2 - ax) (16) 

16 



must be solved for p and f is then calculated from the 

equation 

f = a1+p*m1. (17) 

The code for this algorithm is shown in Appendix A. 

For example, for sampling frequencies 5 and 6, mx and m^ 

have values of 5 and 6 respectively (Tx = 1) . If the signal 

is resolved into bins ax (=2) and a2 (=1) after the DFT, p 

is found to have a value of 1 and q is found have a value of 

-1. Thus, the input frequency from (17) is 2+1*5 = 7. This 

can also be verified as shown in Table 1. 

G.   THE THREE-CHANNEL CASE 

Figure 3 shows the block diagram of a three-channel 

receiver architecture to determine a single frequency f. 

Similar to the two-channel case, the ADC sampling frequencies 

fal, fB2, and fs3 are pairwise relatively prime and Tx = 1. The 

DFT outputs are thresholded to detect the frequency bins of 

the signal. The frequency bins alf a2 and a3 are then used by 

the SNS-to-decimal algorithm to determine the frequency of 

the input signal. 

17 
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Bin 
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Decimal 
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DFT 

Bin 

Detector 
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ADC 
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Window 

Function 
DFT 

Bin 

Detector 

Figure 3: Block Diagram of a Three Channel 
Receiver Architecture. 

In the three-channel solution, let mx = fBl, to, = fs2 and 

m, = fB3 and suppose that the incoming frequency is within the 

dynamic range of the system. We need to solve f = a^mod mj 

and f = a2(mod mj and f = a3 (mod 1113). Using the Chinese 

Remainder Theorem and the Euclidean algorithm, the method of 

solution is to find integers bi such that m^Jrt^ = 1 (mod ir^) 

where i = 1,2, and 3 and M = mx * vc^ * m,. The solution is 

then f = ± M*b1*a1/m1 ± M+b^/m, ± M*b3*a3/m3 (mod M) where f 

is the frequency which falls within the dynamic range D of 

the system. 

18 



For example, let tr^ = 5, m, = 6 and 1113 = 7, so that M = 

210 and D = 22. Suppose that the signal is resolved into 

bins ax (= 1) , a2 (= 2) and a3 (=2) after the DFT. For the 

three-channel case the b± values must be found. Here, b1# b2 

and b3 are found to be -2, -1, and -3 respectively. Thus f = 

+ 210(-2)(l)/5 ± 210(-l)(2)/6 + 210(-3)(2)/7 mod(210) and we 

must choose the solution that falls within the SNS dynamic 

range D = 22 [0:21] . The correct combination f = 84 -70 + 

180 mod(210) = 194 mod(210) . Although 194 is out of the 

dynamic range, 210 - 194 = 16 is in the dynamic range so that 

f = 16 is the correct frequency. 

H.   NOISE CONSIDERATIONS 

For a sinusoidal waveform, the Signal to Noise Ratio 

(SNR) is defined as 

SNR 
2a2. 

(18) 

where P is the power of the signal and a2 is the noise power. 

Assuming a signal power of one, the noise power and amplitude 

are given by 

19 



o* =   ' 
2SNR 

(19) 

o = 
V2SNR. 

(20) 

This o is multiplied by a normally distributed random number 

sequence of zero mean and unit variance and added to the 

input signal as noise. The simulation results are given in 

Chapter III. 

20 



III. SOFTWARE DESIGN AND RESULTS 

A.   TWO-CHANNEL ALGORITHM 

The two-channel case was described in Chapter II. An 

algorithm was constructed based on Figure 2. The software 

given in Appendix A can be divided into the following 

sections: 

• Initialization.    This  section  obtains  all  the 

parameters (number of iterations, input frequency, 

sampling frequencies, quantization levels) required. 

• Iteration loop. This section consists of a loop 

(with an initial count of zero) to count the number 

of errors. 

• Creation of Waveform.  Based on the input frequency, 

a sinusoidal waveform is created with noise added. 

• Sampling and Quantization. The waveform is then 

sampled at two different frequencies and quantized 

using a 14-bit ADC. 

• Windowing. A rectangular window operation of width N 

= fB * Ti = fB (the total sampling/integration time is 

taken to be one)is carried out. 

21 



• DFT Operation. A DFT is then carried out on each 

sample, taking only the first half of the DFT output. 

The formula used for the DFT process is a simple pair 

of nested loops. 

• Bin Detection. A non-adaptive (constant) threshold 

bin detector is then used to find the bin with the 

maximum value for each DFT output. 

• SNS-to-Decimal Algorithm. The SNS-to-decimal 

algorithm as described in Chapter II is then used to 

calculate the incoming frequency. 

A flow diagram of this algorithm is illustrated in 

Figure 4.  The MATLAB code can be found in Appendix A. 

22 
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Figure 4:   Two Channel Algorithm 
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B.   TESTING OF TWO-CHANNEL SYSTEM 

To test the two-channel case (sinusoidal signal without 

noise) , the program is run with the following input and 

sampling frequencies shown in Table 2. 

100 

1040 

12125 

97 

547 

12671 

98 

1200 

12919 

Dynamic Range 
0:8 

0:145 

0:1146 

0:12794 

Remarks 
Low input frequency- 
Consecutive sampling 
frequencies 
Sampling frequencies 
far apart 

High input frequency- 

Table 2: Tested Input and Sampling Frequencies. 

For example, with input signal frequency at 7 Hz as 

shown in Figure 5, the sampled signals at 5 Hz and at 8 Hz 

are shown in Figures 6 and 7 respectively. The DFT output 

for the two samples are shown in Figures 8 and 9. The 

resultant bins of the first halves of Figure 8 and 9 are then 

supplied to the SNS-to-decimal algorithm to be converted to 

the input frequency of 7 Hz. 
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Figure 5: Input signal with frequency of 7 Hz 
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Figure 6: Sampled signal at frequency 5 Hz. 
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Figure 7: Sampled signal at frequency 8 Hz 
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Figure 8: DFT output with fsl=5 Hz 
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3 4 5 
frequency bins 

Figure 9: DFT output with fs2=8 Hz 
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It is found that if one of the sampling frequencies was 

the same as the input frequency, the algorithm failed. This 

is because the resulting samples due to the same sampling 

frequency will consist of zeros. This problem can be solved 

by using at least two sets of sampling frequencies. Apart 

from this, the algorithm works well in this noise-free (high 

signal-to-noise ratio) environment. 

C.   SIMULATION PARAMETERS FOR TWO-CHANNEL CASE 

To obtain the error rates in a noisy environment, the 

two-channel software is run with the following parameters: 

• Number of iterations, num = 10000 

• Signal to Noise Ratio, SNRDB = -30 to 30 dB 

• ADC resolution, bit = 14 

• Input and sampling frequencies as shown in Table 3. 

f f.x fs2 
9 10 11 
90 91 92 
900 901 902 
9000 9001 9002 

Table 3: Input and Sampling Frequencies. 

RESULTS FOR TWO-CHANNEL CASE 

The results obtained are shown in Figure 10. 
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Figure 10: Error Rates vs. SNR for two-channel system 
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The following observations are made: 

• As expected, the error rates improve as the SNR 

increases. A tradeoff between SNR and error rate is 

required. 

• Improvements in error rates were obtained when higher 

frequencies were used. This is because at higher 

frequencies, higher sampling frequencies are 

required. This leads to a higher N-point DFT (higher 

gain) which is less affected by noise. 

• However, at higher frequencies, the time taken to 

compute the DFT was much longer. To reduce the time 

taken, the following methods can be implemented: 

• If N is highly composite (factorable into powers of 

many small prime factors, preferably primes < 10) , 

use a "mixed-radix" FFT implementation. 

• If N is prime,  or contains very large prime 

factors, use the "chirp-z" transform. 

• Use three or more channels in the receiver.   A 

three-channel receiver has a higher dynamic range 

for the same magnitude of sampling frequencies. 

For example, a two-channel receiver with sampling 
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frequencies 6 and 7 has a dynamic range of [0:9] 

while  a  three-channel receiver with sampling 

frequencies of 5, 6 and 7 has a dynamic range of 

[0:2-1] . 

E.   THREE-CHANNEL ALGORITHM 

The three-channel algorithm is similar to the two- 

channel algorithm as shown in Figure 11. The MATLAB code 

can be found in Appendix A. 
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Figure 11:   Three Channel Algorithm 
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F.   TESTING OF THREE CHANNEL ALGORITHM 

To test the three-channel case, the program is run with 

some of the following input and sampling frequencies in Table 

4. 

f f.i f.2 f.3 Dynamic 
Range 

Remarks 

13 5 6 7 0:21 Low input frequency 

100 17 18 19 0:171 Consecutive 
sampling 
frequencies 

1040 17 91 919 0:1232 Sampling 
frequencies far 
apart 

12125 90 929 937 0:42741 High input 
frequency 

Table 4: Tested Input and Sampling Frequencies. 

Apart from the anomaly discussed in the two-channel 

case, the algorithm works well in this noise-free (high 

signal-to-noise ratio) environment. 

G.   SIMULATION PARAMETERS FOR THREE-CHANNEL CASE 

To obtain the error rates in a noisy environment, the 

three-channel software is run with the following parameters: 

• Number of iterations, num = 10000 
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• Signal to Noise Ratio, SNRDB = -30 to 30 dB 

• ADC resolution, bit = 14 

• Input and sampling frequencies as shown in Table 5 

f f.x f« fs3 
9 5 7 11 
90 13 14 17 
900 41 42 43 
9000 141 142 143 

Table 5: Input and Sampling frequencies 

RESULTS FOR THREE-CHANNEL CASE 

The results obtained are shown in Figure 12. 
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Figure 12: Error Rates vs. SNR for three-channel system 
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Comparing the two-channel and three-channel cases, the 

following observations can be made: 

• The three-channel system is much faster than the two- 

channel system since the DFTs required are smaller 

due to the smaller sampling frequencies. 

• However the results for the two-channel system with 

noise are better. For example to achieve a 

relatively error-free system for a frequency of 9000 

Hz, the two-channel case requires only -22 dB. 

However, the three-channel case requires at least -4 

dB. 
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IV. HARDWARE DESIGN AND FINDINGS 

A.   INTRODUCTION 

In the last chapter, the instantaneous measurement of 

frequency using the SNS-to-decimal algorithm was verified. 

There is a need to investigate the implementation of the 

algorithm in hardware.   Digital Signal Processing (DSP) 

hardware was selected for the following reasons: 

• A major part of the algorithm is the processing of 

DFTs which is a digital signal processing task well 

suited to be carried out by DSP hardware. 

• DSP hardware provides a fast way to implement the 

algorithm. The DSP development kit is easy to learn, 

program and simulate. It is ideal for this 

application to investigate hardware problems and 

limitations. 

• Cost consideration: the development kit plus tools 

cost $1500; 

• EW receivers are likely to incorporate DSP hardware. 
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B.   TI TMS320C54X DSP DEVELOPMENT KIT 

The TMS32054C54X DSKplus [Ref. 8-12] is a low cost DSP 

starter kit that gives a designer a working knowledge of DSP 

code to build DSP based systems. The development kit 

contains a stand-alone application board that can be 

connected to the PC. It executes code in real time at 40 

MIPS while the Windows-based debugger analyzes it line-by- 

line, displaying internal DSP register information in 

multiple windows and in real time. It has an Analog 

Interface Circuit for the input of signals. The board's 

communication interface enables the creation of C54x DSP code 

and host PC code. Moreover, the hardware enables the use of 

expansion slots for adding memory, peripherals such as 

interface logic, other DSPs etc. The developed code can 

eventually be loaded into a resident DSP processor, which may 

be part of a EW receiver architecture. Figure 13 shows a 

block diagram of the development kit. A more detailed 

description of the kit can be found in Appendix B. 
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Parallel Port to PC    To Other Interface Ports 

Figure 13: Block Diagram of DSP Hardware. 

C.   SOFTWARE 

The software for the two-channel case described in 

Chapter II (Figure 2) is written using the DSP development 

kit. The software (found in Appendix C) is coded in VC 

language/assembly language and converted to the C54x assembly- 

language (if required) prior to execution: 

• Firstappl.c/Firstapp2.c. These two programs poll the 

input channel and sample the input signal at the two 

sampling frequencies respectively. 

• Hostappl.cpp/Hostapp2.cpp. These  two  programs 

display the samples of the signals based on the two 

sampling frequencies and save the data in text files. 

41 



• Main.c. This program reads the data, executes the 

DFT, obtains the largest values for the two channels 

and then carries out a SNS-to-decimal conversion. 

These programs were run individually and consecutively. 

D. TESTING AND RESULTS 

Using data generated by MATLAB, the main program was 

tested successfully in the development kit. The programs 

were then run with an input frequency of 126 Hz and sampling 

frequencies, 125 Hz and 128 Hz. Results obtained were 

intermittent i.e., correct results were not always obtained. 

A frequency counter and an oscilloscope were set up and it 

was found that the sampling frequencies were not stable. 

Testing with different frequencies did not improve the 

results. 

E. PROBLEMS 

Several   problems   were   encountered  during   the 

investigation: 

• Stability of Sampling Frequencies. The development 

kit carries out frequency division of the master 

oscillator to obtain the sampling frequencies. 

Unfortunately,   the  crystal  oscillator  has  a 
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resolution of 5-10 Hz. This is unacceptable as a 

shift of 1 Hz in the sampling frequency will cause 

erroneous results. Moreover, the fact that the 

sampling frequencies are factors of the oscillator 

frequency and that they need to be pairwise 

relatively prime severely limits the choice of 

frequencies. A possible solution is to obtain the 

sampling frequencies directly from stable signal 

sources. 

• DFT. For higher frequencies, the execution of the 

DFT takes a long time. Several solutions were 

suggested and discussed in the previous chapter. 

• Memories. Insufficient memory error messages were 

encountered when high frequencies were used. The 

same messages occurred when attempts were made to run 

the routines together. More memories and/or more 

efficient DFT algorithms are required. 
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V.  CONCLUDING REMARKS 

The main contribution of this thesis is the verification 

of the relationship of the DFT to the SNS to resolve 

undersampling ambiguities and the investigation of hardware 

implementation issues using a DSP platform. Error rates for 

different SNR are also obtained. 

The use of undersampling technique using the SNS to 

measure frequency is a viable method to implement in a EW 

receiver architecture. However, the need for faster DFT 

computation and stable sampling frequencies must be taken 

into account before they can be considered for incorporation 

into EW receivers. There is also a trade-off between the 

number of channels and SNR. For faster response, a multi- 

channel case is recommended; but a higher SNR is required. 
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APPENDIX A 

MATLAB CODE FOR SOFTWARE ALGORITHM 

% 
% Thesis Project 
% 
% Two Channel Receiver 
% 
% Note: The sampling frequencies should be relatively prime 
% 

clear all; 

% Initialization 

num=input('Enter Number of iterations:'); % Number of iterations 
f=input('Enter Input Frequency:1); % Frequency of signal 
fsl=input('Enter Sampling Frequency 1:'); % Sampling frequency 1 
fs2=input('Enter Sampling Frequency 2:'); % Sampling frequency 2 
fpl=fopen('c:\matlab\bin\thesis\result.dat','at'); % Store results 

% Quantization levels 

bit=14; 
qnlevel=2*bit-l; % No. of quantization levels 
q=2/qnlevel; % quantization size 

for SNRDB=-30:2:30 % Set Signal to Noise Ratio 
% from -30 dB to 30 dB 

count=0; % Error Count 

for i=l:num 
SNR=10A(SNRDB/10); % Convert to non-dB units 
sigmasq=l/2/SNR; % Noise normalization assuming 

% signal power of 1 
t=(0:.001:1); 
sig=sin(2*pi*f*t); % signal 
tl=l/fsl:l/fsl:l; % first ADC 
noisel=sqrt(sigmasq)*randn(l,length(tl)); % noise 
ADCsigl=sin(2*pi*f*tl)+noisel;     % digitized signal 
ADCsigl=fix(ADCsigl/q)*q; % quantized signal 
t2=l/fs2:l/fs2:l; % second ADC 
noise2=sqrt(sigmasq)*randn(l,length(t2)); % noise 
ADCsig2=sin(2*pi*f*t2)+noise2;     % digitized signal 
ADCsig2=fix(ADCsig2/q)*q; % quantized signal 

%figure(l) 
%subplot(3,l,l), plot(t,sig) 
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%title(%Figure 1. Plot of signal') 
%xlabeirTime') 
%ylabel(*Amplitude') 
%subplot(3,l,2),plot(tl,ADCsigl) 
%title('Figure 2. Plot of sampled signal (sampling frequency 1) 
plus noise') 
%xlabel('time') 
%ylabel('magnitude') 

%subplot(3,l,3),plot(t2,ADCsig2) 
%title('Figure 3. Plot of sampled signal (sampling frequency 2) 
plus noise') 
%xlabel('time') 
%ylabel('magnitude') 

% Window operation 
% Assume rectangular window 

winsizel=fsl; % size of window is fsl 
winsize2=fs2; % size of window is fs2 
winsigl=ADCsigl(l:winsizel) ,- % windowed sampled signal 1 
winsig2=ADCsig2(l:winsize2); % windowed sampled signal 2 

% DFT Operation 

DFTsigl=abs(fft(winsigl,winsizel)); 
DFTsig2=abs(fft(winsig2,winsize2)); 
DFTsigla=DFTsigl(l:length(DFTsigl)/2 +1); % Taking half of image 
DFTsig2a=DFTsig2(l:length(DFTsig2)/2 +1); % Taking half of image 

%figure(2) 
% Plot to locate position of maximum value 
% Note that due to MATLAB (which cannot have a zero index, the 
actual location is one less 
%subplot(2,l,l), stem(DFTsigla) 
%titleCFigure 1. DFT plot of signal with sampling frequency 1') 
%xlabel(* frequency bins') 
%ylabel('magnitude') 
%subplot(2,1,2),stem(DFTsig2a) 
%title('Figure 2. DFT plot of signal with sampling frequency 2') 
%xlabel('frequency bins') 
%ylabel('magnitude') 

% bin detector 

[i,yl]=max(DFTsigla);        % yl, y2 are locations of max values 
Cj,y2]=max(DFTsig2a);        % Note that due to MATLAB, the 

% actual location is one less. 
al=yl-l; 
a2=y2-l; 
% SNS to Decimal Algorithm 
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% To solve for f==ai(mod mi) (where "==" indicates congruence and 
% mi are pairwise relatively prime), the Chinese Remainder Theorem 
% states that there is a unique solution modulo M=ml*m2....mr. 

% A standard method of solution is to find integers bi such that 
% M*bi/mi==l (mod mi) where i=l,2, r in which the solution is 
% f==M*bl*al/ml + M*b2*a2/m2 + ... + M*br*ar/mr (mod M) 

% For a 2 channel case, i.e. i=l,2, 
% m2*bl == Kmod ml) 
% ml*b2 == Krnod m2) 
% f == al(mod ml) 
% f == a2(mod m2) 
% f == m2*bl*al + ml*b2*a2 (mod ml*m2) 

% Given ml(sampling frequency 1) and m2 (sampling frequency 2), to 
% find bl and b2, the congruence equation is transformed to a 
% diphantine equation and solved using the Euclidean algorithm: 
% m2*bl - ml*yl = 1 
% ml*b2 - m2*y2 = 1 
% The above two equations can be combined into 
% m2*bl - ml*b2 = 1 
% bl and b2 are solved by the function "lde.m" which is called by \ 
"glde.m". 
% 
% f == al(mod ml) and f == a2(mod m2) is solvable only if the 
% greatest common divisor of ml and m2 divides (a2 - al). 
% To solve for f, r from the diophantine equation 
% r*ml+s*m2 = a2 - al must be solved. 
% r is obtained from "glde.m" and f is calculated by the 
% equation f = al+r*ml 

idiff=a2-al; 
r = glde(fsl,fs2,idiff); 
freq=abs(al+r*fsl),- 

% Count the number of correct results. 

if freq==f 
count=count+l; 

end 
end 
error = 1-count/num; 

% Write results to file 

xl=fprintf(fpl,'%d %d %d %d %d %d\n", f, fsl, fs2, SNRDB, num, error); 

plot(SNRDB,error,'y+') 
title('Error Rate vs. Signal to Noise Ratio') 
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xlabeK'SNR(dB) ') 
ylabel('Error Rate %') 
hold on 
end 
fclose (fpi) ,- 

% To calculate the dynamic range 

if rem(fsl,2)==0 
DR=fsl/2 + fs2; 

elseif rem(fs2,2)==0 
DR=fs2/2 + fsl; 

else 
DR=.5*(fsl+fs2); 

end 
% 
% Thesis Project 
"S 

% Three Channel Receiver 

% To check whether fsl is even 

% To check whether fs2 is even 

% fsl and fs2 are odd numbers 

clear all; 
close 

% Initialization 

num=input('Enter Number of iterations:'); 

f=input('Enter Input Frequency:'); 

fsl=input('Enter Sampling Frequency 1:'); 

fs2=input ('Enter Sampling Frequency 2 : •) ,- 

fs3=input('Enter Sampling Frequency 3:'); 

% Number of iterations 

% Frequency of signal 

% Sampling frequency 1 

% Sampling frequency 2 

% Sampling frequency 3 

fpl=fopen('c:\tnatlab\bin\thesis\result.dat','at'); 
% Store results in file for later processing if required 

% Quantization levels 

% bit=input('Enter ADC resolution:'); 
bit=14; 
qnlevel=2Abit-l; 
q=2/qnlevel; 

for SNRDB=-30:2:30 

count=0; 

% No. of quantization levels 
% quantization size 

% Set Signal to Noise Ratio from -30 
% dB to 30 dB 
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for i=l:num 
SNR=10A(SNRDB/10) ; 
sigmasq=l/2/SNR; 

Convert to non-dB units 
Noise normalization assuming 
signal power of 1 

tl=l/fsl:l/fsl:l; % first ADC 
noisel=sqrt(sigmasq)*randn(l,length(tl)); % noise 
ADCsigl=1000*(sin(2*pi*f*tl)+noisel); % digitized signal 
ADCsigl=fix(ADCsigl/q)*q; % quantized signal 

t2=l/fs2:l/fs2:l; % second ADC 
noise2=sqrt (sigmasq) *randn(l, length(t2)) ,- % noise 
ADCsig2=1000*(sin(2*pi*f*t2)+noise2); % digitized signal 
ADCsig2=fix(ADCsig2/q)*q; % quantized signal 

third ADC 
noise 
digitized signal 

t3=l/fs3:l/fs3:l; 
noise3=sqrt(sigmasq)*randn(l,length(t3)); 
ADCsig3=1000*(sin(2*pi*f*t3)+noise3),- 
ADCsig3=fix(ADCsig3/q)*q; 

%figure(l) 

%subplot(3,l,l),plot(tl,ADCsigl(l:fsl)) 
%title('Figure 1. Plot of sampled signal (sampling frequency 

1) plus noise') 
%xlabel('time') 
%ylabel('magnitude') 
%subplot(3,1,2),plot(t2,ADCsig2(l:fs2)) 
%title('Figure 2. Plot of sampled signal (sampling frequency 2) 
plus noise') 
%xlabel('time') 
%ylabel('magnitude') 
%subplot(3,l,3),plot(t3,ADCsig3(l:fs3)) 
%title('Figure 3. Plot of sampled signal (sampling frequency 3) 
plus noise') 
%xlabel('time') 
%ylabel('magnitude') 

% Window operation 
% Assume rectangular window 

winsizel=fsl; 
winsize2=fs2; 
winsize3=fs3; 
winsigl=ADCsigl (lrwinsizel) ,- 
winsig2=ADCsig2(l:winsize2); 
winsig3=ADCsig3(l:winsize3); 

% DFT Operation 
DFTsigl=abs(fft(winsigl,winsizel)); 

size of window is fsl 
size of window is fs2 
size of window is fs3 
windowed sampled signal 
windowed sampled signal 
windowed sampled signal 
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DFTsig2=abs(fft(winsig2,winsize2) ) ,- 
DFTsig3=abs(fft(winsig3,winsize3)),- 

DFTsigla=DFTsigl(l:length(DFTsigl)/2 +1) 
DFTsig2a=DFTsig2(1:length(DFTsig2)/2 +1) 
DFTsig3a=DFTsig3(1:length(DFTsig3)/2 +1) 

Taking half the image 
Taking half the image 
Taking half the image 

%figure(2) 
%Plot to locate position of maximum value 
%Note that due to MATLAB (which cannot have a zero index, the 
%actual location is one less 

%subplot(3,l,l), stem(DFTsigla) 
%title('Figure 1. DFT plot of signal with sampling frequency 1') 
%xlabel('frequency bins') 
%ylabel('magnitude *) 

%subplot(3,l,2),stem(DFTsig2a) 
%title('Figure 2. DFT plot of signal with sampling frequency 2') 
%xlabel('frequency bins') 
%ylabel('magnitude') 

%subplot(3,1,3),stem(DFTsig3a) 
%title('Figure 3. DFT plot of signal with sampling frequency 3') 
%xlabel('frequency bins') 
%ylabel('magnitude *) 

% bin detector 

[i,yl]=max(DFTsigla);   % yl, y2 and y3 are the locations of 
% maximum values 

[j,y2]=max(DFTsig2a);   % Note that due to MATLAB, the actual 
% location is one less. 

[k,y3]=max(DFTsig3a); 

al=yl-l 
a2=y2-l 
a3=y3-l 

% SNS to Decimal Algorithm 

bl=lde(fs2*fs3,fsl) ,- 
b2=lde(fsl*fs3,fs2); 
b3=lde(fsl*fs2,fs3); 

cl=bl*fs2*fs3 
c2=b2*fsl*fs3 
C3=b3*fsl*fs2 

freqmat=[al*cl+a2*c2+a3*c3;al*cl+a2*c2-a3*c3; al*cl-a2*c2+a3*c3; 
al*cl-a2*c2-a3*c3,--al*cl+a2*c2+a3*c3;-al*cl+a2*c2-a3*c3i 
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-al*cl-a2*c2+a3*c3;-al*cl-a2*c2-a3*c3] ; 

freqmat=rem(freqmat,fsl*fs2*fs3); 

for i=l:8 
if (freqmat(i)<0) 

freqmat(i)=freqmat(i)+fsl*fs2*fs3; 
end 

end 
freq=min(abs(freqmat)),- 

% Count the number of correct results. 

if freq==f 
count=count+l; 

end 
end 
error = 1-count/hum; 

% Write results to file 

xl=fprintf(fpl,'%d %d %d %d %d %d %d\n', f, fsl, fs2, fs3, SNRDB, num, 
error); 

plot(SNRDB,error,'y+') 
hold on 
end 

fclose(fpl); 

% To calculate the dynamic range 

if rem(fsl,2)==0 % To check whether fsl is even 
x=[fsl/2 + fs2*fs3; fsl*fs2/2 + fs3; fsl*fs3 + fs2]; 

elseif rem(fs2,2)==0 % To check whether fs2 is even 
x=[fs2/2 + fsl*fs3; fsl*fs2/2 + fs3; fs2*fs3 + fsl]; 

elseif rem(fs3,2)==0 % To check whether fs3 is even 
x=[fs3/2 + fs2*fsl; fs3*fs2/2 + fsl; fsl*fs3 + fs2]; 

else % fsl,fs2 and fs3 are odd 
x=l/2*[fsl + fs2*fs3; fs2 + fsl*fs3; fs3 + fs2*fsl]; 

end 
DR=min(x) ; 
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% This function solves the general linear diophantine equation 
% m2*bl - ml*b2 = k and returns the value bl 

function a=glde(ml,m2,k) 

% Calls function "lde" to calculate bl, b2 and na 

[bl,b2,na]=lde(ml,m2); 

% To check whether the equation is solvable. 
% na must be a factor of k for the equation to be solvable. 

mult=k/na; 

if (k-mult*na)==0 % Equation is solvable 

bl=bl*mult; % These new values solve the diophantine equation 
b2=b2*mult; 

mtest=bl;  % To check whether bl and b2 are the least values 
mdl=ml/na,-  % that satisfies the diophantine equation 
md2=m2/na; 
mx=bl ,- 
mx=mx+md2; 

while (abs(mx)-abs(bl))<0 
bl=mx; 
b2=b2-mdl; 
mx=mx+md2 ,- 

end 

if (mtest-bl)==0 
mx=bl; 
mx=mx-md2; 
while (abs(mx)-abs(bl))<0 

bl=mx; 
b2=b2+mdl; 
mx=mx-md2; 

end 
end 

end 

a=bl ; 
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% This function solves the linear diophantine equation 
% ml*bl + m2*b2 = na where ml and m2 are the sampling frequencies 
% and na is the greatest common divisor 
% and returns the value bl, b2 and na 
% 
% ml and m2 are assumed positive 

function [bl,b2,na]=lde(ml,m2) 

% Initialize bol, bo2, bl and b2 

bol=l; 
bo2=0; 
bl=0; 
b2=l; 

% Place ml and m2 in ma(dividend) and na (divisor) respectively 

ma=ml; 
na=m2; 

% Calculate quotient and remainder 

iquot=fix(ma/na); 
irem=ma-na*iquot; 

% If remainder is not zero, reset dividend and divisor 

while irem>0 
bo3=bol-iquot*bl; 
bo4=bo2-iquot*b2; 
bol=bl 
bo2=b2 
bl=bo3 
b2=bo4 
ma=na; 
na=irem; 
iquot=fix(ma/na); % reapply Euclidean algorithm 
irem=ma-na*iquot; 

end 

% calculate new coefficients of ml and m2 

% redefine bol, bo2, bl and b2 

% redefine dividend and divisor 
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Digital Signal Processing Solutions Products - TMS320CS4x 

TMS320C54x DSKpIus 
The 'C54x DSKplus is a low-cost design tool that gives designers a 
working knowledge of DSP code. From this foundation, designers can 
begin building complete 'C54x DSP-based systems. Priced at US $149, 
the 'C54x DSKplus (part no. TMDS32000L0) is available from TI 
authorized distributors. 

The 'C54x DSKplus builds on TI's industry-leading line of low cost, 
easy-to-use DSP Starter Kit (DSK) development boards. The 
high-performance board features the TMS320C542 16-bit fixed-point 
DSP. Capable of rjerforming 40 million instructions per second 
(MIPS), the 'C542 makes th& 'C54x DSKplus the most powerful DSK 
development board on the market. 

Other TMS320 DSKs include the 'C2xDSK. the 'CSxDSK. and the 
floating-point 'C3x DSK. 

Key Features 
The 'C54x DSKplus includes: 

• 40 MTPS TMS320C542-based board 
• TLC320AC01 Analog Interface Circuit (AIC) 
• *C54x DSKplus assembler, loader, Code Explorer debugger, and sample programs (3.5" disks) 
• TMS320C54X CPU and Peripherals Reference Guide 
• TMS320C54X Algebraic Assembler Instruction Set 
• TMS320C54X Datasheet 
• TMS320C54x DSKplus User's Guide 
• TLC320AC01 Datasheet 
• PC connector cable and universal power supply included 
• US"5N9 discount coupon toward the purchase of the 'C54x EVM 
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DSKplus Key 
Features 

J                                                                                   i 

Benefits                                      j 

1    TMS320C542DSP(40 
1    MIPS, 16-bit)                       \ 

High-performance, very efficient architecture requires fewer          { 
MIPS than competing DSPs to implement most algorithms.            \ 

I    Code Explorer debugger      } 
interface 

An easy-to-use, true Windows-based interface. Supports                ' 
symbolic debugging, breakpoints, graphical animation, variable      1 
watch windows, file I/O, algebraic/mnemonic disassembly,             \ 
on-line help.                                                                             1 

Symbolic debugging (Code    1 
Explorer) 

i 
Enables easy programmability by using labels for referencing         1 
constants, variables, matrices by name.                                        \ 

Algebraic assembler 
Bypasses learning new DSP mnemonic instruction set specifics.      ; 
Makes coding easier and more straight-forward. Easy one-step       1 
assembly and linking process.                                                     1 

Demo programs / 
Application code 

Helps users get up-to-speed quickly                                             ; 

{    TLC320AC01 Analog 
Interface Chip 

Low power dissipation, 14-bit linear resolution, programmable       1 
sampling rates, anti-aliasing filter, and input gain; selectable 
auxiliary input; data read-back                                                     ; 

Socketed Programmable 
Array Logic (PAL) 

Allows experienced designers to reprogram the PAL and change     1 
the way the host port interface works on the C54x DSKplus.           j 

Universal power supply & 
cable included                      ! 

Allows for immediate use out of the box; ideal for powering           1 
daughter cards; filtered and regulated - thus no need for                 \ 
on-board voltage regulation.                                                       j 

TC54x Algebraic Assembler 
The C54x DSKplus includes the algebraic assembler that speeds the initial code development process. The 
algebraic assembler does not require new users to leam a new DSP mnemonic instruction set, making 
coding easier and more direct The assembler also utilizes a one-step assembly and linking process to 
simplify code debugging. The software accomplishes this by using special directives to assemble code at an 
absolute address. 

Some extremely useful features include: 
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In-line Assembly expression analysis allows the assembler to work when defining complex variables 
or bit locations. 
Symbolic Debugging allows the user to reference variables by name instead of the physical address. 
Assembling conditional blocks of assembly code using .if/.else if/.end if directives. This is especially 
helpful when you want to conditionally assemble code via a command-line argument of internal 
assembly variable. 
Support of .sect, .bss, .usect, .text, and .data sections. 

Code Explorer Debugger 

The 'C54x DSKplus debugger was developed by GO DSP Corporation in an effort to provide the first true 
Windows-based debugger for a DSK. The Code Explorer debugger supports debugging, a new feature 
available only on the DSKplus that allows the user to specify labels for referencing constants, variables, 
and marticies by name. Also, the debugger desktop environment is fully configurable and loaded upon' 
entry into the debugger. This means that optional colors, fonts, and window sizes can be changed within 
the debugger and saved upon exiting. 

Some additional features of the debugger include capability of connecting files as I/O, graphical animation, 
and data memory viewing. The file I/O capability enables users to connect files as inputs or outputs to any 
location within your application code. Therefore you can simulate different input sequences and data 
streams without having to physically generate them. 

Graphical animation allows you to view data in a graphical format, either with time domain or frequency 
domain and in a variety of variable sizes (i.e. 8-bit signed char, 8-bit unsigned char, 16-bit, 32-bit, etc). 

Disassembly Window 

The disassembly window displays the DSP code in 
algebraic instructions. The variable names and 
subroutines (symbols) are shown in blue. The 
physical DSP address is the first column and the 
machine code for the instructions are in column 2. 
The yellow bar indicates the location where the 
DSP program counter (PC) points. 

The disassembly window properties can be 
accessed by placing the cursor in the disassembly 
window and right-clicking and then choosing 
properties. The disassembly window can display 
code in algebraic or mnemonic formats with direct 
and immediate addressing values shown in hex, 
decimal and even binary. 

Data Memory Window 

'. Dis-A«cci6'j 
J04FD 
J04FE 
204FF 
10500 
JQS00 
10502 
mo* 
»0506. 
50508 
'050A 

10SQD 
s050D 
jOSOE 
50510 
SOS 10 
-0S11 
10513 
JOS 15 
losie 
&S10 
?0S1A 
;0S1B 

0071 
0071 
0073 

F074 
771D 
7718 
7712 
7092 
7700 
F6B8 

F495 
F073 

4930 
F330 
7092 
8931 
6012 
F830 
F4E8 

??12 

3 tort 

A +- e?ih 
A +- e?ih 
A +- S?lh 

gJES 

»«it 

call ÄC013KJT 
B»r(P«ST)  • *l«0h 
»ar(SP)  - *t)E£a}> 
nw(JW?2) - *1200h 
«>B2.» .«fflJMf»JJil*ruüAM-M 

XIHT 

nop 
goto vaij 

B = amrf«; 
B'Blf 
«AR24 * *«ispSpife^vSlilpli 

■re - i^ummi^m^-ii^^mM 
it  (TC) goto rc3trt 
let untenable 

rcstrt 
jwrf AR2> - *1200h 

m 
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The data memory window can be modified or 
replicated as needed. By placing the cursor inside 
the data memory window and right-clicking and 
then choosing properties, the user can change the 
title of the window, starting address and even data 
organization in the window. Valid display formats 
include 8-bit signed/unsigned char, 
signed/unsigned long, floats, and others. The page 
field can specify either Data or Program memory 
spaces. 

'C54x CPU and Peripheral 
Registers 

| Memory Window Options 

i ■'» Data Memory (ff 
0x0800: oxo«; 

: 0x0604: OxOC: 
= 0x0808: OaOd 
■:  0x0 8 0C: OxOC 
0x0810: OxOC: 

: 0x0814: OsOO 
0x0818: oxod 

; 0s081C: OxOC 
; 0x0820: OsOC 
0x0824: OaOi; 

. jtwng^a-_ *JQzte: 

Q-ValueT' Jo 

FdrBUt 

The two register windows in the 'C54x Code 
Explorer debugger are the CPU and Peripheral 
Registers. The 'C54x CPU Registers is the 
collection of registers which control the operation 
of the DSP CPU. The program counter, status 
register, and configuration registers are contained 
within this window. Notice that bit values within 
the register are brought out separately to make 
modification and monitoring easier. 

The second window is the Peripherals window. 
This window includes the registers for configuring 
the DSP peripherals like the serial ports and 
timers. Modifications to this register can be done 
by clicking on the register in the Peripheral 
Registers window. 

: C54X Registers 
>rc - OSOO     s? - 
: A. = OOD0DO100G ÄRO = 
: B - FFFFFFFFFD AE1 - 

:j T = FFFD       ÄR2 = 
AR3 - 
&R4 = 
APS ' 
ABS = 
AB? - 
BK = 
AP? » 

isrrs = 
nra = 
IFS 

HHS 

; T3H = FFFF 
■■■ ST0 * 1800 
r ST1 = 3B00 
IPKST -  00A0 
i    DP =  0000 
\ ASH = 000C 

iBBAF =  0 
1 BSC = FFFF 

ESA = FFFF 

0171 TC - 1 
10FA C =  1 
1002 OVA - O 
1006 OT3 = D 
FFFF OVM - 1 
FFFF S3QI = 1 
0000 cie> " 0 
FFFF FHCT = O 
FFFF CHPT - O 
FFFF CPU = O 
ARO XF » 1 

ES = 1 
O MP/'KC » O 
0200 071V = 1 
020C AVIS » 0 

Peripheral Registers ess 
i^ TIS = 3210 DBS = O000 STCSE = ?FFFgl 
! PRO - FFFF DXR - 0000 BSCR - FSOO^J 
i TCP = 0000 SPC = OBO0 « 
TKCV - 0000 TDKR - 0000 TSFC -,n*nn«l 
*i'l ■■•■.::---s 

Setup lot Graphic« 

STftfcc'.ft^JSiaphtc Display 
BSS =3-.=-W»»W!j: 

F80 

Buttet.Sce:  - 

fit*™*™*"* 

|D<Ao ~m 
\ June Swph  jj|p 

L|lB-BaSig»cdU»teaei  Psü 

064 

064 
. il flJneai Scale 

.;^j.i  

HP 
l^^^SÖ^^tSK 

Graphical Windows 

Graphical windows are extremely useful 
when trying to view a value of a register, 
variable, or buffer. The graphic window 
allows the user to animinate any value in 
either data or program DSP memory. 
This is accomplished by placing a 
breakpoint anywhere in the application 
code and pressing the Animation button. 
Each time the DSP reaches the 
breakpoint the graphical windows are 
updated and refreshed. 

The options window contains the 
graphics setup for the window. For 
example, the title can be changed to 
reflect the data being animated, the 
display buffer length can be changed, or 
the data read from the DSP can either be 
a single value from a list (buffer) of values in either data or program memory. Also, the sampling rate can 
be modified for correct displaying of the frequency data (FFT). The display can be viewed using 8-bit 
signed/unsigned chars, ints, long, floats, and even a log can be performed on the displayed data. 

Setting Breakpoints 
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A breakpoint can be selected by either 
double clicking on a line in the 
Disassembly window or by Selecting the 
DEBUG-BREAKPOINTS in the Pull 
Down Menu. The Pull Down Menu will 
prompt you with a menu listing all the 
available symbols in the Symbols box. 
You can either select a breakpoint from 
the list of Symbols or by entering an 
address in the Address field 

The Breakpoint dialog box contains the 
following fields: Address, Symbols and 
Breakpoints. If the address of the desired 
breakpoint is known, simply enter the 
value in the Address field The Symbol 
field contains the list of all the symbols in the program. If the location address of the breakpoint is labeled, 
simpry type the label name and press add 

Setting Probe Points 

Probe points allow the update of a 
particular window or the reading/writing 
of samples from a file to occur at a 
specific point in an algorithm. This 
effectively "connects a signal probe" to 
that point in the algorithm. 

When a graph window object is created, 
it assumes that it is to be updated at every 
breakpoint. However, this attribute can be 
changed and the window can be updated 
only when the program reaches the 
connected probe point. After the probe 
point is hit, and the window is updated, 
execution of the program is continued 
This optimizes the display of the graph 
window and also allows you to keep a history of the signal even when the data on the DSP is not valid 

With the combination of Code Explorer's File I/O capabilities, probe points can also used to connect 
streams of data to a particular point in the DSP Code. When the probe point is reached in the algorithm, 
data is streamed from a specific memory area to file, or from the file to memory. 

Using File I/O 
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Code Explorer allows the user to stream 
data onto (or from) the target from a PC 
file. This allows the user to simulate code 
using known sample values. Note that 
this file I/O feature is not intended to 
satisfy real-time constraints. The File 
Input/Output feature uses probe points. 
When the execution of the program 
reaches a probe point, the connected 
object, whether it is a file, graph or 
memory window, is updated. Once the 
connected object is updated, execution 
continues. Using this concept, if a probe 
point is set at a specific point in the code 
and then connected to a file, file I/O functionalities can be implemented. 

System Requirements 
A 386,486, or Pentium PC with a 3.5" disk drive 
4-bit parallel and/or 8-bit bidirectional parallel ports. 
A minimum of 4Mbytes of memory 
Color VGA monitor 
Windows 3.1 or Windows 95 
ASCII editor 

How to Install 
When connecting the DSKplus to your PC, it is highly recommended you turn 
off your PC's power to make the connections below: 

1. Connect the DB25 cable (female) to the PC's Parallel port (male). 
2. Connect the DB25 cable (male) to the DSKplus board (female). 
3. Connect the power cord (NEMA cable) to the 5 volt power supply. 
4. Connect the 5-pin DIN-to-5.5mm adapter to the power supply's 5-pin 

DIN connector. 
5. Plug the power supply power cord to the wall outlet 
6. Plug the 5.5mm connector into the power jack of the DSKplus board 

At this point the green power LED is illuminated and power is supplied to the 'C54x DSKplus board If the 
Green LED is not illuminated, check the connections on the power supply and power cord 

Installing the software 
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The DSKplus kit includes two 3.5" floppies labeled Disk #1 and Disk #2. To    QSfflSSÜSJSBEB^^ 
install the software correctly, please follow the steps below: hLzt^^^S^M^' 

CStxtfcfo 
Insert Disk #1 into the 3.5" drive. 
From the start menu (Windows95) or the Files menu (Windows 3.1) 
select the Run., option. Type a:\setup.exe 
The installation script will appear. You will be asked to select a 
destination directory. By default it will select the DSKplus directory. 
Enter the directory name if you would like to specify a different 
directory. 
When prompted, insert Disk #2 into the 3.5" floppy drive. 
When installation has completed, the installation will inform you that the installation was 
successful. At this point a Code Explorer Group will appear. 

Starting the Debugger 

To start the debugger, click on the fcon located in the Code Explorer Group or desktop. The Code Explorer 
background and windows will appear with the Setup Box shown active. 

Select the port which is connected to the DSKplus board. If for some reason 
the port is not listed, the port address can be modified by typing in the address 
intthe text box. 

As a result of selecting the correct port and proper hardware connections, the 
debugger will fill its windows with data and the DSKplus is now functioning. 
If for some reason the debugger responds with the error "Can't initialize 
Target DSP", follow the directions in the error box. 

S*fu(j F-itaM Par! 

tymzzi^m 

Troubleshooting 

1. Is the power on? Be sure green LED is illuminated. If not, a loose power cable is hampering your 
setup. 

2. Is the parallel port cable connection secure? In many new DSKplus boards and parallel port cables, 
substantial pressure many be needed to connect the cables. Connect the cable to the DSKplus board 
by placing the thumb behind the DB-25 connector. Take the cable connector chassis and place 
between the index and middle fingers. Align the connectors and press the fingers together. 

3. The port selected is not being "Captured" by Windows 95. Capturing is used by Windows 95 to 
allow DOS programs access to printers. The port can be released by going into the control panel 
and selecting the printers icon. Highlight any printer and go to the File pulldown on the command 
bar. Select properties and then the Details tab. The Details tab includes a button named End 
Capture... Click on this button and select the LPT port where the DSKplus board is connected. If 
the LPT is not listed, then the port is not captured (select cancel) and proceed to number 4. 

4. The port selected is configured as an EPP or ECP port. The DSKplus board supports 4-bit 
unidirectional and 8-bit bidirectional parallel ports. The DSKplus does not support EPP and ECP 
ports. To check the port configuration, exit out and reboot your system. At the point where the 
BIOS Setup routine can be selected, press the keyboard sequence to enter the BIOS (usually 
CTRL+ALT+ESC). Confirm that the parallel port is setup as '8-bit', ■bidirectional' or ■standard.' 
Specifically, not an EPP or ECP port. If problems persist, run the included seiftest program 

Beyond the TC54x DSKplus 
With higher performance than any other DSK available today, the 'C54x DSKplus offers a rich 
development environment for benchmarking and evaluating code in real-time. The 'C54x DSKplus is 
designed as an easy-to-use entry into the world of high-performance fixed-point DSPs. 
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However, as your design experience grows, you may require additional functionality and expanded 
capabilities. To meet these needs, TI offers a comprehensive line of evelopment tools for the TMS320 DSPs 
that support the design process from system concept to production. 

Other 'C54x Development Tools 

;.'£emiKwiauciszs Z\. : ?! Map/Searth | Feedback 

© Copyright 1997 Texas Instruments Incorporated. All rights reserved. 
Trademarks. Important Notice! 
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APPENDIX C 

C AND ASSEMBLY LANGUAGE CODE FOR DSP HARDWARE 

************************************************************ 
File: FirstApl.ASM 
When sampling frequency is changed, need to change 

a. buffer size here 
b. A and B registers in ACOlinil.asm 
c. sampling frequency in dftsort.c 
d. buffer size in hostappl.cpp 

*********************************************************************** 
.width  80 
.length 55 
.title "FirstApp program" 

.mmregs 
.setsect ".text",   0x500,0 
.setsect "vectors", 0x180,0 

VECTORS 

.sect "vectors" 

.copy "c:\dskplus\inits\vectors.asm" 

.text 
start: 

call AC01INIT 
pmst = #01a0h ; set up iptr 
sp = #0ffah ,- init stack pointer. 
ar2 = #1200h ,- pointer to receive buffer at 1200h. 
*ar2+ = data(#0bh)     ,- store to rev buffer 
imr = #280h 
intm = 0 ; ready to rev int' s 

wait nop 
goto  wait 

  Receive Interrupt Routine   
XINT: 

b = trcv ,- load ace b with input 
b = #0FFFCh & b 
*ar2+ = data(#0bh)     ; store to rev buffer 
tdxr = b ,- transmit the data. 
TC = (@ar2 == #1471h) ,- change here if fs changes 
if (TC) goto restrt  ,- stop if rev buffer is at 1471h 

return_enable 
restrt 
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ar2 = #1200h 
hpic = #Oah 

return enable 

; set intm bit  ...no int's 
; flag host task completed 

end ISR 

.copy "c:\dskplus\firstapp\ac01inil.asm" 

.end 
*********************************************************************** 
File: FirstApp.ASM -> First Application program for the 'C54x DSKplus 

a. buffer size here 
b. A and B registers in AC01ini2.asm 
c. sampling frequency in dftsort.c 
d. buffer size in hostapp2.cpp 

******************************************************iCiCiricicicicicicicicicicieic:kic 

.width  80 

.length 55 

.title "FirstApp program" 

.mmregs 

.setsect ".text",   0x500,0 

.setsect "vectors", 0x180,0 

.sect "vectors" 

.copy "c:\dskplus\inits\vectors.asm" 

.text 
start: 

call AC01INIT 
pmst = #01a0h 
sp = #0ffah 
ar2 = #120Oh 
*ar2+ = data(#0bh) 
imr = #280h 
intm = 0 

wait nop 
goto  wait . 

; set up iptr 
; init stack pointer. 
; pointer to receive buffer at 120Oh. 
,- store to rev buffer 

; ready to rev int's 

XINT: 
Receive Interrupt Routine 

b = trcv 
b = #0FFFCh & b 
*ar2+ = data(#0bh) 
tdxr = b 
TC = (@ar2 == #01400h) 
if (TC) goto restrt 
return enable 

; load ace b with input 

; store to rev buffer 
; transmit the data. 
; change here if fs change 
; stop if rev buffer is at 1400h 
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restrt 
ar2 = #120Oh 
hpic = #0ah 
return enable 

set intm bit  ...no int's 
flag host task completed 

end ISR 

.copy "c:\dskplus\firstapp\ac0lini2.asm" 

.end 
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******************************* ****************** 
********************** 

File: ACOIINII.ASM -> ACOl Initialization Routine 

*********************************************************************** 
.width  80 
.length 55 
.title "ACOl Initialization Program" 
.mmregs 

************************************************************************ 
Certain ACOl registers can be initialized using a conditional assembly 
constant. By setting the constant REGISTER to the appropriate value, 
the assembler will either include initialization for certain registers 
or ignore register initialization. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

The constant REGISTER should be set to include the following ACOl 

register: 

REGISTER (binary) 

0000 0000 0000 0001 
0000 0000 0000 0010 
0000 0000 0000 0100 
0000 0000 0000 1000 

0000 0000 0001 0000 

0000 0000 0010 0000 

0000 0000 0100 0000 
0000 0000 1000 0000 

-> initialize Register 1 
-> initialize Register 2 
-> initialize Register 3 
-> initialize Register 4 

-> initialize Register 5 

-> initialize Register 6 

-> initialize Register 7 
-> initialize Register 8 

(A Register) 
(B Register) 
(A1 Register) 
(Amplifier Gain- 
Select) 
(Analog 
Configuration) 
(Digital 
Configuration) 
(Frame-Sync Delay) 
(Fram-Sync number) 

Any combination of registers can be initialized by adding the binary 
number to the REGISTER constant. For example to initalize Registers 4 
and 5, REGISTER = 18h. Upon assembly, only code for register 4 & 5 
initialization is included in the AC01INIT module. When called the 
module will load REG4 and REG5 values into internal ACOl registers. 

* Register 4 is always loaded to get a 6db input gain. This setsfull- 
* scale to 3v(p-p input) due to the single-ended ACOl configuration. 

REGISTER .set Obh 

REG1 .set If eh 

REG2 .set 21fh 

REG3 .set 300h 

REG4 .set 40dh 

REG5 .set 501h 

REG6 .set 600h 

Powerup default values: 
H2h 

t 212h 
300h 

t 405h 
501h 
600h 
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REG7 set  700h 
REG8 # set  801h 

ACOIINIT: 
xf = 0 
intm = 1 
tcr = = #10h 
imr = = #280h 
tspc = #0008h 
tdxr = #0h 
tspc = #00c8h 
xf = 1 

700h 
801h 

reset acOl 
disable all int service routines 
stop timer 
wakeup from idle when TDM Xmt int 
stop TDM serial port 
send 0 as first xmit word 
reset and start TDM serial port 
release acOl from reset 

Register init's 

.eval REGISTER & lh, SELECT 

.if SELECT = lh 
a = #REG1 
call REQ2 
.endif 

if REG1 then include this source 

load Ace A with REG1 value 
Call REQ2 subroutine 

.eval REGISTER & 2h, SELECT   ; if REG2 then include this source 

.if SELECT = 2h 
a = #REG2 
call REQ2 

.endif 

.eval REGISTER & 4h, SELECT  ; if REG3 then include this source 

.if SELECT = 4h 
a = #REG3 
call REQ2 
.endif 

.eval REGISTER & 8h, SELECT  ; if REG4 then include this source 

.if SELECT = 8h 
a = #REG4 
call REQ2 
.endif 

.eval REGISTER & 10h, SELECT  ; if REG5 then include this source 

.if SELECT = 10h 
a = #REG5 
call REQ2 
.endif 

.eval REGISTER & 2Oh, SELECT  ; if REG6 then include this source 

.if SELECT = 2Oh 
a = #REG6 
call REQ2 
.endif 
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.eval REGISTER & 4Oh, 

.if SELECT = 4Oh 
a = #REG7 
call REQ2 
.endif 

SELECT  ; if REG7 then include this source 

.eval REGISTER & 8Oh, SELECT 

.if SELECT = 8Oh 
a = #REG8 
call REQ2 
.endif 
return 

if REG8 then include this source 

REQ2 
ifr = #080h 
tdxr = #03h 

clear flag from IFR 
request secondary when AC01 starts 

idle(l) 
tdxr = a 
ifr = #080h 

wait for primary to xmit 
send register value to serial port 
clear flag from IFR 

idled) 
tdxr = #0h 
ifr = #080h 
idle(l) 
return 
.end 

wait for secondary to xmit 
send neutral state in case last init 
clear flag from IFR 
wait for neutral state to xmit 
return from subroutine 
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*********************************************************************** 

File: AC01INI2.ASM -> AC01 Initialization Routine 

*********************************************************************** 

.width  80 

.length 55 

.title "AC01 Initialization Program" 

. mmregs 

************************************************************************ 

* Certain AC01 registers can be initialized using a conditional assembly 
* constant. By setting the constant REGISTER to the appropriate value, 
* the assembler will either include initialization for certain registers 
* or ignore register initialization. 
* 

* The constant REGISTER should be set to include the following AC01 
* register: 
* 

* REGISTER (binary) = 
* 

* 0000 0000 0000 0001 -> initialize Register 1 (A Register) 
* 0000 0000 0000 0010 -> initialize Register 2 (B Register) 
* 0000 0000 0000 0100 -> initialize Register 3 (A' Register) 
* 0000 0000 0000 1000 -> initialize Register 4 (Amplifier Gain- 
* Select) 
* 0000 0000 0001 0000  -> initialize Register 5  (Analog 
* Configuration) 
* 0000 0000 0010 0000  -> initialize Register 6  (Digital 
* Configuration) 
* 0000 0000 0100 0000  -> initialize Register 7  (Frame-Sync Delay) 
* 0000 0000 1000 0000  -> initialize Register 8  (Fram-Sync number) 
* 

* Any combination of registers can be initialized by adding the binary 
* number to the REGISTER constant. For example to initalize Registers 4 
* and 5, REGISTER = 18h. Upon assembly, only code for register 4 & 5 
* initialization is included in the AC01INIT module. When called the 
* module will load REG4 and REG5 values into internal AC01 registers. 

* Register 4 is always loaded to get a 6db input gain. This sets full- 
* scale to 3v(p-p input) due to the single-ended AC01 configuration. 

REGISTER .set Obh 
REG1 .set Ifeh 
REG2 .set 23ch 
REG3 .set 30Oh 
REG4 .set 40dh 
REG5 .set 501h 
REG6 .set 60 Oh 

Powerup default values: 
* 112h 
* 212h 

300h 
* 405h 

501h 
600h 
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REG7 
REG8 

.set   700h 

.set  801h 
700h 
801h 

AC01INIT: 
xf = 0 
intm = 1 
tcr = #10h 
imr = #28Oh 
tspc = #0008h 
tdxr = #0h 
tspc = #00c8h 
xf = 1 

reset acOl 
disable all int service routines 
stop timer 
wakeup from idle when TDM Xmt int 
stop TDM serial port 
send 0 as first xmit word 
reset and start TDM serial port 
release acOl from reset 

Register init's 

.eval REGISTER & lh, SELECT 

.if SELECT = lh 
a = #REG1 
call REQ2 
.endif 

if REG1 then include this source 

load Ace A with REG1 value 
Call REQ2 subroutine 

.eval REGISTER & 2h, SELECT 

.if SELECT = 2h 
a = #REG2 
call REQ2 

if REG2 then include this source 

.endif 

.eval REGISTER & 4h, SELECT 

.if SELECT = 4h 
a = #REG3 
call REQ2 
.endif 

if REG3 then include this source 

.eval REGISTER & 8h, SELECT 

.if SELECT = 8h 
a = #REG4 
call REQ2 
.endif 

if REG4 then include this source 

.eval REGISTER & 10h, SELECT 

.if SELECT = 10h 
a = #REG5 
call REQ2 
.endif 

if REG5 then include this source 

.eval REGISTER & 2Oh, SELECT 

.if SELECT = 20h 
a = #REG6 

if REG6 then include this source 
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call REQ2 
.endif 

.eval REGISTER & 40h, 

.if SELECT = 4Oh 
a = #REG7 
call REQ2 
.endif 

SELECT if REG7 then include this source 

.eval REGISTER & 8Oh, 

.if SELECT = 8Oh 
a = #REG8 
call REQ2 
.endif 
return 

SELECT if REG8 then include this source 

REQ2 
ifr = #080h 
tdxr = #03h 

idle(l) 
tdxr = a 
ifr = #080h 

idle(l) 
tdxr = #0h 
ifr = #080h 
idle(l) 
return 
.end 

; clear flag from IFR 
; request secondary when AC01 starts 

; wait for primary to xmit 
; send register value to serial port 
; clear flag from IFR 

wait for secondary to xmit 
send neutral state in case last init 
clear flag from IFR 
wait for neutral state to xmit 
return from subroutine 
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/* 
I*  File: H0STAPP1.CPP Source code for host application 
/* 
/*********************************************************************/ 
#include <HI54X.H> 
#include <stdio.h> 
#include <conio.h> 
#include <stdlib.h> 
extern int datareg[] , statregE] ,ctrlreg [] ; 
extern int pport, portmode,Readdelay,- 

void main(void) 
{ 

FILE *fp; 
if ((fp=fopen("datal.dat","w"))==NULL)      /* Open file */ 
{ 

clrscr(); 
printf("Cannot open file .\n"); 
exit(0); 

} 
portmode=0; /* 4-bit mode */ 
Readdelay = 20; /* m case host slow*/ 
clrscr(); /* Clear the screen */ 
if((pport=locate_port()) >= 5){  /* Find the port.   */ 

printf("No connection\n"); /* If no connection */ 
backoutO; /* then leave board */ 
exit(O),-} /* in known state  */ 

else{} 
_setcursortype (JSTOCURSOR) ; /* Hide text cursor */ 
set_latch(l,l); /* Keep DSP running */ 
int word =0, col=0; /* and bring PAL out*/ 

/* out of Tri-state */ 
col=0; 
gotoxy(l,l); /* go to home      */ 
send_word(0x0808, C_SEND) ,-   /* Clear the HINT  */ 
HINT(IOOOO); /* Wait for nxt HINT*/ 
send_word(0x12 00, A_SEND);   /* Goto 0x46 entries*/ 

/* before buffer   */ 
for (int buf=0 ,- buf < 0x271; buf++) 

/* change here if fs change*/ 
{ 
word = read_word(D_READ); /* Read word from pp*/ 
printf("%4.4x ", word); /* Print it to scr */ 
fprintf(fp, "%d\n", word); /* Output to file */ 
if(col >= 13){ /* in 14 columns   */ 

COl=0; 
printf("\n");} 

else{col++;} 
} 

_setcursortype(_NORMALCURSOR); /* Ret normal cursor*/ 
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fclose(fp); 
backout(); 

exit(0); 

/* Close file 

/* Leave board in 
/* known state 

*/ 
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/********************************************************************** / 

/* 
/* File: H0STAPP2.CPP Source code for host application 
/* 
/**********************************************************************/ 
#include <HI54X.H> 
#include <stdio.h> 
tinclude <conio.h> 
#include <stdlib.h> 

extern int datareg [] , statreg [] ,ctrlreg[] ,- 
extern int pport, portmode,Readdelay; 

void main(void) 
{ 

FILE *fp; 
if ((fp=fopen("data2.dat","w"))==NULL)      /* Open file */ 

clrscr () ,- 
printf("Cannot open file .\n"); 
exit (0) ; 

} 
portmode=0; /* 4-bit mode */ 
Readdelay =20; /* In case host slow*/ 
clrscr(); /* clear the screen */ 
if((pport=locate_port()) >= 5){/* Find the port.  */ 

printf("No connection\n"); /* If no connection */ 
backoutO; /* then leave board */ 
exit(0),-} /* in known state  */ 

else{} 
_setcursortype(_NOCURSOR); /* Hide text cursor */ 
set_latch(l,l); /* Keep DSP running */ 
int word =0, col=0; /* and bring PAL out*/ 

/* out of Tri-state */ 
col=0; 
gotoxy(l,l); /* go to home      */ 
send_word(0x0808, C_SEND);   /* Clear the HINT  */ 
HINT(IOOOO); /* Wait for nxt HINT*/ 
send_word(0xl200, A_SEND);   /* Goto 0x46 entries*/ 

/* before buffer   */ 
for(int buf=0 ; buf < 0x200; buf++) 

/* Change here if fs is changed*/ 

word = read_word(D_READ); /* Read word from pp*/ 
printf C%4.4x ", word); /* Print it to scr */ 
fprintf(fp, "%d\n", word); /* Output to file */ 
if(col >= 13){ /* in 14 columns   */ 

col=0; 
printf("\n");} 

else{col++;} 
} 
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_setcursortype(_NORMALCURSOR); /* Ret normal cursor*/ 
fclose(fp); /* Close file      */ 
backout(); /* Leave board in  */ 

exit(O); /* known state     */ 
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/* 
/* File: MAIN.C Source code for main program 
/* 

#include "math.h" 
#include "stddef.h" 
#include "stdlib.h" 
#include "stdio.h" 
#include "conio.h" 

tdefine fsl 625 
#define fs2 324 

main(; 
{ 

FILE   *fpl,   *fp2; 
int  dl,   d2,   xl[fsl],   x2[fs2] ; 
int k,   out,   freq; 
int  glde(int k); 

double xrol[fsl],   xiol[fsl],   xol[fsl]; 
float pi  =  3.1415926,   tpi; 
int n,   u; 
int  i,   dftl,   nl; 
double maxl, max2; 

double xro2[fs2], xio2[fs2], xo2[fs2] ; 
int j , df t2, n2 ,- 

if ((fpl=fopen("data5.dat","rt"))==NULL)      /* Open file  */ 

clrscr(); 
printf("Cannot open file .\n"); 
exit(0); 

} 

if ( (fp2=fopen("data6.dat","rf))==NULL)      /* Open file */ 

clrscr(); 
printf("Cannot open file -\n"); 
exit (0) ,- 

} 
for(n=0;n<fs1;n++) 

{ 
fscanf(fpi,   "%e  ",   &dl); 

xl[n]=dl; 
} 
for (n=0 ;n<f s2 ,-n++) 
{ 

fscanf(fp2,   "%e   ",   &d2); 
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x2[n]=d2; 

fclose(fpl); 
fclose(fp2); 

tpi=2*pi; 
for(u=0;u<fsl;u++) 

{ 
xrol[u]=0.0; 
xiol[u]=0.0; 
for(n=0;n<fsl;n++) 

{ 

/*-- Xr[u] = (1/fsl) sum {xr[n].cos(2PI.u.n/fsl)} --*/ 
xrol[u]   = xrol[u]   + xl[n] *cos(tpi*u*n/fsl); 

/*-- Xi[u] = - (1/fsl) sum xr[n].sin(2PI.u.n/fsl) --*/ 
xiol [u]   = xiol[u]   - xl[n]*sin(tpi*u*n/fsl); 

} 
xrol[u]=xrol[u]/fsl; 
xiol[u]=xiol[u]/fsl; 
xol[u]=sqrt(xrol[u]*xrol[u]+xiol[u]*xiol[u]); 

} 
dftl=0; 
nl=fsl/2+l; 
maxl=xol [0]; 
for   (i=l;i<nl;i++) 
{ 

if(xol[i]   > maxl) 
{ 

dftl=i; 
maxl=xol[i]; 

} 
} 

for(u=0;u<fs2;u++) 
{ 

xro2[u]=0.0; 
xio2[u]=0.0; 
for(n=0;n<fs2;n++) 
{ 

xro2[u]   = xro2[u]   + x2[n]*cos(tpi*u*n/fs2); 
xio2[u]   = xio2[u]   -  x2[n]*sin(tpi*u*n/fs2); 

} 
xro2 [u] =xro2 [u] /f s2 ,- 
xio2[u]=xio2[u]/fs2; 
xo2[u]=sqrt(xro2[u]*xro2[u]+xio2[u]*xio2[u]); 

} 

dft2=0; 
n2=fs2/2; 
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} 

max2=xo2 [0] ; 
for(j=l;j<n2;j++) 
{ 

if(xo2[j]   > max2) 
{ 

dft2=j; 
max2=xo2[j]; 

} 
} 

k=dft2-dftl; 
out=glde(k),- 
freq=abs (dftl+out*fsl) ,- 
printf("The  frequency is  %d",   freq); 
for(;;); 

glde(k) 
{ 

float mult,bl,b2,mtest,mdl,md2, mx; 

/* This section solves the linear diophantine equation fsl*bl + fs2*b2 
na where fsl and fs2 are the sampling frequencies 
and na is the greatest common divisor and returns the value bl, b2 and 
na. fsl and fs2 are assumed positive */ 

float bol,bo2,ma,na,irem,bo3,bo4,- 
int iquot; 

bol=l; 
bo2=0; 
bl = 0; 
b2 = l; 

/* Place fsl and fs2 in ma(dividend) and na (divisor) respectively */ 

ma=fsl; 
na=fs2; 

/* Calculate quotient and remainder */ 

iquot=ma/na; 
irem=ma-na*iquot; 

/* If remainder is not zero, reset dividend and divisor */ 

while (irem>0) 

{ 
bo3=bol-iquot*bl;   /* calculate new coefficients */ 
bo4 =bo2 - iquot *b2 ,- 

bol=bl; /* redefine bol, bo2, bl and b2 */ 
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bo2=b2; 
bl=bo3; 
b2=bo4; 
ma=na; 
na=irem; 
iquot=ma/na; 
irem=ma-na* iquot; 

/* redefine dividend and divisor */ 

/* reapply Euclidean algorithm */ 

/* To check whether the equation is solvable, na must be a factor of k 
for the equation to be solvable. */ 

mult=k/na; 
if ((k-mult*na)==0) 
{ 

bl=bl*mult; 

b2=b2*mult; 
mtest=bl; 

mdl=fsl/na; 
md2=fs2/na; 
mx=bl; 
mx=mx+md2; 

/* Equation is solvable */ 

/* These new values solve the 
/* diophantine equation 

/* To check whether bl and b2 
/* are the least values that 
/* satisfies the diophantine equation */ 

*/ 
*/ 

*/ 
*/ 

while ((abs(mx)-abs(bl)) < 0) 
{ 

bl=mx; 
b2=b2-mdl; 
mx=mx+md2; 

} 

if ((mtest-bl)==0) 
{ 

mx=bl; 
mx=mx-md2; 
while ((abs(mx)-abs(bl))<0) 
{ 

bl=mx; 
b2=b2+mdl; 
mx=mx-md2; 

} 
} 

return ((int)bl); 
} 
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