
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
19980527 061

SINGLE-FREQUENCY MEASUREMENTS USING
UNDERSAMPLING METHODS

by

Eng S. Chia

March 1998

Thesis Advisor: Phillip E. Pace

Approved for public release; distribution is unlimited.

KlmG^ALvrYms?ECTEDi

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1998

3. REPORT TYPE AND DATES
COVERED
Master's Thesis

4. TITLE AND SUBTITLE
SINGLE-FREQUENCY MEASUREMENTS USING UNDERSAMPLING METHODS

6. AUTHOR(S)
Chia, Eng S.

5. FUNDING
NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Research and Development Office, Washington DC

10. SPONSORING /
MONITORING
AGENCY REPORT
NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

MATLAB is a registered trademark of the MathWorks, Inc.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b.
DISTRIBUTION
CODE

13. ABSTRACT (maximum 200 words)
The objective of this study is to verify the Symmetrical Number System (SNS)

undersampling receiver architecture using software and to investigate implementation
issues using digital signal processing (DSP) hardware. In the software design, a
MATLAB program is written to determine a single sinusoidal input frequency using this
receiver architecture. Each channel of the SNS undersampling receiver consists of a low
speed ADC, a discrete Fourier transform followed by a constant threshold device to
detect the signal's frequency bin. The detected frequency bins are then recombined in a
SNS-to-decimal algorithm to recover the frequency of the signal. Error rate performance
in a Gaussian noise environment at the input stage is evaluated. In the hardware design,
a sinusoidal waveform is digitized, discrete Fourier transformed and converted from the
SNS format to a decimal value using a single channel digital signal processor.
Implementation difficulties and design issues are discussed.
14. SUBJECT TERMS
Symmetrical Number System, Symmetrical folding, Undersampling, Discrete Fourier
Transform.

15. NUMBER
OF PAGES

96
16. PRICE
CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20.
LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

SINGLE-FREQUENCY MEASUREMENTS USING UNDERSAMPLING METHODS

Eng S. Chia
Major, Republic of Singapore Airforce

B.S., National University of Singapore, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1998

Author: *f*>»i-V

Eng Seng Chia

Approved by:
I o-

Phillip E. Pace, Thesis Advisor

Herschel H. Loomis, Jr., Chairman
Electrical & Computer Engineering Department

m

IV

ABSTRACT

The objective of this study is to verify the Symmetrical

Number System (SNS) undersampling receiver architecture using

software and investigate implementation issues using Digital

Signal Processing (DSP) hardware. In the software design, a

MATLAB program is written to determine a single sinusoidal

input frequency using this receiver architecture. Each

channel of the SNS undersampling receiver consists of a low

speed ADC, a discrete Fourier transform followed by a

constant threshold device to detect the signal's frequency

bin. The detected frequency bins are then recombined in a

SNS-to-decimal algorithm to recover the frequency of the

signal. Error rate performance in a Gaussian noise

environment at the input stage is evaluated. In the hardware

design, a sinusoidal waveform is digitized, discrete Fourier

transformed and converted from the SNS format to a decimal

value using a single channel digital signal processor.

Implementation difficulties and design issues are discussed.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. UNDERSAMPLING 1
B. PRINCIPAL CONTRIBUTIONS 2
C THESIS ORGANIZATION 3

II. BACKGROUND INFORMATION 5
A. INTRODUCTION 5
B. DISCRETE FOURIER TRANSFORM (DFT) 5
C. THE SYMMETRICAL NUMBERING SYSTEM (SNS) 10
D. RELATIONSHIP BETWEEN DFT AND SNS 11
E. DYNAMIC RANGE OF THE SNS 13
F. THE TWO-CHANNEL CASE 15
G THE THREE-CHANNEL CASE 17
H NOISE CONSIDERATIONS 19

El. SOFTWARE DESIGN AND RESULTS 21
A TWO-CHANNEL ALGORITHM 21
B. TESTING OF TWO-CHANNEL ALGORITHM 24
C SIMULATION PARAMETERS FOR TWO-CHANNEL CASE 30
D. RESULTS FOR TWO-CHANNEL CASE 30
E. THREE-CHANNEL ALGORITHM 33
F. TESTING OF THREE-CHANNEL ALGORITHM 35
G SIMULATION PARAMETERS FOR THREE-CHANNEL CASE ..35
H. RESULTS FOR THREE-CHANNEL CASE 36

TV. HARDWARE DESIGN AND FINDINGS 39
A. INTRODUCTION 39
B. TITMS320C54X DSP DEVELOPMENT KIT 40
C SOFTWARE 41
D. TESTING AND RESULTS 42
E. PROBLEMS 42

V. CONCLUDING REMARKS 45

LIST OF REFERENCES 47

APPENDIX A. MATLAB CODE FOR SOFTWARE ALGORITHM 49
APPENDLXB.TMS320C54XDSKPLUS 59
APPENDIX C.C AND ASSEMBLY CODE FOR DSP HARDWARE 69

INITIAL DISTRIBUTION LIST 87

Vll

VUl

I. INTRODUCTION

A. DNDERSAMPLING

The digitization of a signal is usually governed by the

Nyguist theorem where the sampling frequency is at least

twice the signal bandwidth. The Nyquist theorem however,

places a limitation only on the information that can be

derived from a single set of digitized data [Ref. 1]. If the

sampling frequency is less than twice the bandwidth of the

signal being digitized, aliasing and consequently ambiguities

occur. With additional information however, ambiguous

frequency components due to undersampling may be resolved.

Such information may come from, for example, trial sampling

periods. Rader [Ref. 2] described how trial sampling periods

can be used to recover periodic signals. The trial sampling

period which yields the waveform of smallest variation is

considered to be the correct period and the resulting

waveform the correct waveform.

Pace, Leino and Styer [Ref. 3] examined the relationship

between the Discrete Fourier Transform (DFT) and the

Symmetrical Number System (SNS) as a means of resolving

Single frequency undersampling aliases. They showed that the

DFT encodes the frequency information of a signal in a format

that is in the same form as the SNS. In addition, they

proved analytically that aliases resulting from undersampling

a single-frequency signal could be resolved using 2 or more

channels. Each channel in a SNS undersampling receiver

contains a low speed ADC, a DFT and a threshold device to

detect the input signal bin number in the frequency domain.

The bin numbers from each channel are then recombined to

resolve the signal's frequency.

B. PRINCIPAL CONTRIBUTIONS

First, this thesis verifies the SNS undersampling theory

advanced by Pace, Leino and Styer [Ref. 3]. An algorithm is

written and coded in MATLAB to prove the methodology and to

show that the frequency of an undersampled signal can be

accurately measured. The algorithm is also simulated in a

Gaussian noise environment. Error rates for the different

noise levels are obtained as a function of the signal to

noise ratio. Since the Fast Fourier Transform (FFT) is not

suitable for computing DFTs in this application, alternative

methods are suggested for real-time applications.

Second, possible hardware implementation problems are

investigated based on a Digital Signal Processing (DSP)

platform. Several problems were encountered: the need for

stable sampling frequencies, large memories and alternative

methods for computing DFT for fast response time.

Integration into future EW receivers must take these factors

into consideration.

Undersampling offers several advantages [Ref. 4] . It

allows the resolution of very high frequencies in EW

receivers using low speed ADCs. This is especially so if

several SNS channels are used. In particular, the use of

undersampling in the design of receivers will reduce their

cost and complexity.

C. THESIS ORGANIZATION

In Chapter II, the relationship between the SNS and the

digital frequency domain as mapped by the DFT is examined as

a means of resolving single-frequency undersampling

ambiguities. It shows how the frequency of a signal that is

undersampled at two different sampling frequencies (two-

channel) can be determined. In order to use lower sampling

frequencies, the two-channel case can be extended to three or

more channels. In particular the three-channel case is

discussed.

In Chapter III, algorithms for the two-channel and

three-channel receivers are developed and coded in MATLAB to

measure the frequency of an incoming signal. Each section of

the software is explained in detail. Results are obtained

based on different Gaussian noise levels.

A feasibility study/design for the two-channel case is

carried out in Chapter IV using a DSP development kit. The

suitability of using a DSP platform and its associated

problems are discussed.

Chapter V states some conclusions and recommendations

for future research.

4

II. BACKGROUND INFORMATION

A. INTRODUCTION

Digitization of a signal is usually governed by the

Nyquist criterion when the input signal is bandlimited to 0 <

f < fs/2 where fE is the sampling frequency. For higher

frequencies (i.e. f > fB/2), the process of undersampling

gives rise to ambiguities. However, with additional

information (or channels), the frequency components f > f6/2

can be resolved.

Pace, Ramamoorthy and Styer [Ref. 5] showed that the

discrete Fourier transform (DFT) naturally encodes the

frequency information of a signal in the same format as the

symmetrical number system (SNS). Consequently, aliases from

undersampling can be resolved using this method. The theory

set forth is elaborated in [Ref. 3].

B. DISCRETE FOURIER TRANSFORM (DFT)

Since all signals consist of sinusoids, for simplicity,

a single frequency sinusoidal waveform is used for analysis.

Assume the sinusoidal signal is

x(t) = 2 cos co t

(1)

and after sampling

x(n) = 2 cos © n.

(2)

The DFT of x(n) is given by [Ref. 6]

N-l

X(k) = 2>(n)e- ■j(2jmk/N)
k = 0,l,...,N-l.

n=0

(3)

Applying the DFT to x(n) results in a discrete spectrum where

|X(k)|2 is the energy contained in the signal at each digital

frequency ©=27ik/N. The spectrum X(k) has N indices with the

digital frequency of each index given by:

0,24,...,2Ä^(N^,..^eiz2),2Itet!)
N N N N N

for N even

(4)

and

N N N N N
for N odd.

(5)

The analog frequency corresponding to each index is obtained

by multiplying each value by f„. Since signals with digital

frequencies in the range % < co < 2% are indistinguishable

from signals with digital frequencies 0 < © < %, the digital

frequency of each index can also be written as:

0^1,.,.^(^J)^(N/2-l) ^2^1
N N N N N

for N even

and

n„ 1 „ |N/2_L |N/2| „ 2 „ 1

N N N N N
for N odd.

(6)

(7)

where LxJ is the floor function and represents the greatest

integer less than or equal to x. Thus the spectrum X(k)

resolves into N integer indices and incoming signals will map

into unique bins:

m N N , 0,l,...,-,y-l,...,2,l for N even,

(8)

0,1,...,
N

.2.'
N

2
,-,2,1 for N odd.

(9)

For example, for N = 5 (f. = 5 Hz and the sampling duration

T1 is 1 second) , the output bins after the DFT are [0122

1] for input frequencies of [01234] Hz. These DFT bins

are repeated for higher frequencies as illustrated in Figure

1. In this figure the abscissa corresponds to the incoming

frequency and the ordinate corresponds to the bin into which

the signal is resolved.

3 II i I I I I I I I

2.5 - -

2 C) c) c) c) -

a 1-5 - -

1 () c > c) c) -

0.5 -.

OC 3 6 6
01 23456789 10

Input Frequency

Figure 1: DFT bin mapping for input frequencies f=
0 to 10 for N = 5 (f = 5 Hz sampling for 1 second)

C. THE SYMMETRICAL NUMBER SYSTEM (SNS)

The SNS is composed of a number of pairwise relatively

prime (PRP) moduli. The integers within each SNS modulus

however, are derived from a symmetrically folded waveform.

The symmetrically folded waveform corresponding to each SNS

PRP moduli (mi), has a folding period equal to the modulus.

The integer values within each SNS modulus are derived from a

mid-level quantization of the symmetrical folding waveform.

The formal definition of a symmetrical residue is given

below:

Definition: For an integer h such that 0 < h < m

xh = min {h, m - h}

(10)

If this function is extended periodically with period m,

that is,

Xh + nm = Xh

(ID

where n e {0,±1,±2,...} then xh is called a symmetrical

residue of (h+nm) modulo m. For m even, let x be the row

vector

10

X 0,l,...,y,y-l,...,2,l

(12)

For m odd, let x be the row vector

0,1,...,
m

.2?
m

,-.,2,1 x =
L ' ' " L 21L 2 J " ' J

(13)

where LxJ again represents the floor function resulting

in the greatest integer less than or equal to x. These

two vectors consist of the symmetrical remainder

elements xh, 0 < h < m.

D. RELATIONSHIP BETWEEN DFT AND SNS

From the above, it is obvious that the DFT maps real

signals naturally into the SNS. That is, in Section C, if we

let the modulus m represent the sampling frequency multiplied

by the sampling time (i.e., f8Tx) , then equations (12) and

(13) are in the same form as equations (8) and (9) where N=

feTx. Thus the SNS provides a convenient framework for

undersamping signal analysis.

Table 1 displays the input frequencies and the resulting

DFT bins for sampling frequencies 5 Hz and 6 Hz respectively.

11

Input Frequency j DFT Bins <

! f ! f.= 5 Hz ! f.= 6 Hz j

o ! 0 0 I
i j 1 I 1 >

2 i 2 2 t

3 i 2 3 i

4 ! 1 2

5 j 0 1 I

6 ! 1 0
7 r 2 1 |

~8 " | 2 2

Table 1: Input Frequency and Resulting DFT Bins for 2
Channel Example.

The frequencies are resolved as described in equations (12)

and (13) . By considering two or more channels, it is

possible to unambiguously resolve the signal frequencies in

the dynamic range determined by the SNS. One method is to

devise a look-up table similar to that shown in Table 1.

However this method is inefficient for high frequencies;

large memories are required. An alternative method is

described below:

Suppose there are r channels and the incoming frequency

is within the dynamic range of the system. To carry out the

SNS-to-decimal conversion, we need to solve f = a^mod m*)

12

for i = l,2,...r, where a± is the corresponding detected DFT

bin for each mt. The Chinese Remainder Theorem states that

there is a unique solution modulo Mrrtn^m, . ,.*mr. A standard

method of solution is to find integers b± such that M*bi/mi =

1 (mod mi) where i = 1,2,....r in which case the solution is f

= M*b1*a1/m1 + IV^b^aj/mj + . . . + M*br*ar/mr (mod M) . In Sections

F and G below, examples are given to illustrate this

calculation.

E. DYNAMIC RANGE OF THE SNS

Let m1# . . ., m,. be r pairwise relatively prime moduli,

then the dynamic range, D (0:D-1) of a SNS system is given as

follows:

• If all the moduli are odd, then the dynamic range of

the system is

1 j 1 r
D=miH ^n mi,+ö n mi,

(14)

2J. A >i ill 'i
1=1 ^ i=j-

where j ranges from 1 to r-1 and mi2,mi3 ...mit range over

all permutations of {l, 2,3,...,r}. For example, for a

two-channel case with m1 = 5, 1112= 7,

13

D^minH+i^
I 2 2.

or D = 6.

For a three-channel case with m2 = 3, n^ = 5, 1113= 7,

D = -min{mj +m2m3,m2 +m1m3,m3 +111,1112}

or D=22.

• If one of the moduli (mj is even, then the dynamic

range of the system is

D=minr?Lrim
I,+rim., <"> A X MAX M

I. *" 1=2 1=3-1-1 J

(15)

where j ranges from 1 to r-l and mi2,mi3 ...mir range over

all permutations of {2,3,...fr}. For example, for a

two-channel case with mx = 6 n^ = 5,

D = nW—L+m2

or D = 8.

14

For a three-channel case with 1% = 8, tr^ = 5, 1%= 7,

. (m, nij nij |

[2 2 3 2 2 3 2 3 2J

or D=27.

Clearly, the dynamic range of an SNS system with one

even modulus is superior to that using all odd moduli.

Moreover, the greater the number of channels, the greater the

dynamic range.

F. THE TWO-CHANNEL CASE

Figure 2 shows the block diagram of a two-channel

receiver architecture to determine a single frequency f. In

this architecture the ADC sampling frequencies fsl and fs2 are

relatively prime and Tx = 1. The DFT outputs are thresholded

to detect the frequency bins of the signal. The detected

frequency bins ax and a2 are then used by the SNS-to-decimal

algorithm to determine the frequency of the input signal.

15

frequency bins ax and a2 are then used by the SNS-to-decimal

algorithm to determine the frequency of the input signal.

ADC

fsl
Window

Funct ion
DFT

Bin

Detector

al

SNS

to

Decimal

tLgorithi

a2

'

toti-Aliasin

Filter
J \

/

l

ADC

fs2

Window

Function
DFT

Bin

Detector

Figure 2: Block Diagram of a Two Channel Receiver
Architecture.

Let mx = fsl and n^ = fB2 and suppose that the incoming

frequency is within the dynamic range of the system. From

Section D, we need to solve f = a^mod mx) and f = a2 (mod m.) .

The two congruence equations, f = ax(mod mx) and f = a2 (mod

m2> are solvable only if the greatest common divisor of m1

and m, divides (a2 - ax) , a generalization of the Chinese

Remainder Theorem [Ref. 7]. To solve for f, the diophantine

equation

p*m1+q*m2 = (a2 - ax) (16)

16

must be solved for p and f is then calculated from the

equation

f = a1+p*m1. (17)

The code for this algorithm is shown in Appendix A.

For example, for sampling frequencies 5 and 6, mx and m^

have values of 5 and 6 respectively (Tx = 1) . If the signal

is resolved into bins ax (=2) and a2 (=1) after the DFT, p

is found to have a value of 1 and q is found have a value of

-1. Thus, the input frequency from (17) is 2+1*5 = 7. This

can also be verified as shown in Table 1.

G. THE THREE-CHANNEL CASE

Figure 3 shows the block diagram of a three-channel

receiver architecture to determine a single frequency f.

Similar to the two-channel case, the ADC sampling frequencies

fal, fB2, and fs3 are pairwise relatively prime and Tx = 1. The

DFT outputs are thresholded to detect the frequency bins of

the signal. The frequency bins alf a2 and a3 are then used by

the SNS-to-decimal algorithm to determine the frequency of

the input signal.

17

N^

ADC

fsl

Window

Function
DFT —

Bin

Detector

al

SNS

to

Decimal

!U.gorithi

a2 toti-Aliasin

Filter
J ADC

fs2

Window

Funct ion
DFT

Bin

Detector
 ^

a3

/

l

ADC

fs3

Window

Function
DFT

Bin

Detector

Figure 3: Block Diagram of a Three Channel
Receiver Architecture.

In the three-channel solution, let mx = fBl, to, = fs2 and

m, = fB3 and suppose that the incoming frequency is within the

dynamic range of the system. We need to solve f = a^mod mj

and f = a2(mod mj and f = a3 (mod 1113). Using the Chinese

Remainder Theorem and the Euclidean algorithm, the method of

solution is to find integers bi such that m^Jrt^ = 1 (mod ir^)

where i = 1,2, and 3 and M = mx * vc^ * m,. The solution is

then f = ± M*b1*a1/m1 ± M+b^/m, ± M*b3*a3/m3 (mod M) where f

is the frequency which falls within the dynamic range D of

the system.

18

For example, let tr^ = 5, m, = 6 and 1113 = 7, so that M =

210 and D = 22. Suppose that the signal is resolved into

bins ax (= 1) , a2 (= 2) and a3 (=2) after the DFT. For the

three-channel case the b± values must be found. Here, b1# b2

and b3 are found to be -2, -1, and -3 respectively. Thus f =

+ 210(-2)(l)/5 ± 210(-l)(2)/6 + 210(-3)(2)/7 mod(210) and we

must choose the solution that falls within the SNS dynamic

range D = 22 [0:21] . The correct combination f = 84 -70 +

180 mod(210) = 194 mod(210) . Although 194 is out of the

dynamic range, 210 - 194 = 16 is in the dynamic range so that

f = 16 is the correct frequency.

H. NOISE CONSIDERATIONS

For a sinusoidal waveform, the Signal to Noise Ratio

(SNR) is defined as

SNR
2a2.

(18)

where P is the power of the signal and a2 is the noise power.

Assuming a signal power of one, the noise power and amplitude

are given by

19

o* = '
2SNR

(19)

o =
V2SNR.

(20)

This o is multiplied by a normally distributed random number

sequence of zero mean and unit variance and added to the

input signal as noise. The simulation results are given in

Chapter III.

20

III. SOFTWARE DESIGN AND RESULTS

A. TWO-CHANNEL ALGORITHM

The two-channel case was described in Chapter II. An

algorithm was constructed based on Figure 2. The software

given in Appendix A can be divided into the following

sections:

• Initialization. This section obtains all the

parameters (number of iterations, input frequency,

sampling frequencies, quantization levels) required.

• Iteration loop. This section consists of a loop

(with an initial count of zero) to count the number

of errors.

• Creation of Waveform. Based on the input frequency,

a sinusoidal waveform is created with noise added.

• Sampling and Quantization. The waveform is then

sampled at two different frequencies and quantized

using a 14-bit ADC.

• Windowing. A rectangular window operation of width N

= fB * Ti = fB (the total sampling/integration time is

taken to be one)is carried out.

21

• DFT Operation. A DFT is then carried out on each

sample, taking only the first half of the DFT output.

The formula used for the DFT process is a simple pair

of nested loops.

• Bin Detection. A non-adaptive (constant) threshold

bin detector is then used to find the bin with the

maximum value for each DFT output.

• SNS-to-Decimal Algorithm. The SNS-to-decimal

algorithm as described in Chapter II is then used to

calculate the incoming frequency.

A flow diagram of this algorithm is illustrated in

Figure 4. The MATLAB code can be found in Appendix A.

22

Enter num,

f, fsl and fs2

Error

Count=0

/
<

Create

sinewave

Add

Gaussian Noise

fsl fs2

Sample and add

Quant i zat i on

Noise

Sample and add

Quantization

Noise

Windowing

and DFT

Windowing

and DFT

Find Largest

Bin

Find Largest

Bin

SNS-to-Decimal

Algorithm

^s. Frequency ^S

| No

Yes

Increment

Error Count

Figure 4: Two Channel Algorithm

23

B. TESTING OF TWO-CHANNEL SYSTEM

To test the two-channel case (sinusoidal signal without

noise) , the program is run with the following input and

sampling frequencies shown in Table 2.

100

1040

12125

97

547

12671

98

1200

12919

Dynamic Range
0:8

0:145

0:1146

0:12794

Remarks
Low input frequency-
Consecutive sampling
frequencies
Sampling frequencies
far apart

High input frequency-

Table 2: Tested Input and Sampling Frequencies.

For example, with input signal frequency at 7 Hz as

shown in Figure 5, the sampled signals at 5 Hz and at 8 Hz

are shown in Figures 6 and 7 respectively. The DFT output

for the two samples are shown in Figures 8 and 9. The

resultant bins of the first halves of Figure 8 and 9 are then

supplied to the SNS-to-decimal algorithm to be converted to

the input frequency of 7 Hz.

24

Figure 5: Input signal with frequency of 7 Hz

25

-, ! ! . r

0.8

0.6

0.4

0.2
o

I o^

Q

i
Q

-, r

-0.2

-0.4

-0.6

-0.8

-1 J i_
ö

i J u J L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time

Figure 6: Sampled signal at frequency 5 Hz.

26

1 1 r I i i I i <5 i I

0.8 - -

? ?
0.6 - -

0.4 - -

0.2 -
CD

xs

t 0c
E
<

-0.2 "

-0.4 -

-0.6

C) ()

-

-0.8

-1 1 1 (■j i i i i i i i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

Figure 7: Sampled signal at frequency 8 Hz

27

0.5 1 1.5 2 2.5
frequency bins

3.5

Figure 8: DFT output with fsl=5 Hz

28

3 4 5
frequency bins

Figure 9: DFT output with fs2=8 Hz

29

It is found that if one of the sampling frequencies was

the same as the input frequency, the algorithm failed. This

is because the resulting samples due to the same sampling

frequency will consist of zeros. This problem can be solved

by using at least two sets of sampling frequencies. Apart

from this, the algorithm works well in this noise-free (high

signal-to-noise ratio) environment.

C. SIMULATION PARAMETERS FOR TWO-CHANNEL CASE

To obtain the error rates in a noisy environment, the

two-channel software is run with the following parameters:

• Number of iterations, num = 10000

• Signal to Noise Ratio, SNRDB = -30 to 30 dB

• ADC resolution, bit = 14

• Input and sampling frequencies as shown in Table 3.

f f.x fs2
9 10 11
90 91 92
900 901 902
9000 9001 9002

Table 3: Input and Sampling Frequencies.

RESULTS FOR TWO-CHANNEL CASE

The results obtained are shown in Figure 10.

30

0
SNR(dB)

Figure 10: Error Rates vs. SNR for two-channel system

31

The following observations are made:

• As expected, the error rates improve as the SNR

increases. A tradeoff between SNR and error rate is

required.

• Improvements in error rates were obtained when higher

frequencies were used. This is because at higher

frequencies, higher sampling frequencies are

required. This leads to a higher N-point DFT (higher

gain) which is less affected by noise.

• However, at higher frequencies, the time taken to

compute the DFT was much longer. To reduce the time

taken, the following methods can be implemented:

• If N is highly composite (factorable into powers of

many small prime factors, preferably primes < 10) ,

use a "mixed-radix" FFT implementation.

• If N is prime, or contains very large prime

factors, use the "chirp-z" transform.

• Use three or more channels in the receiver. A

three-channel receiver has a higher dynamic range

for the same magnitude of sampling frequencies.

For example, a two-channel receiver with sampling

32

frequencies 6 and 7 has a dynamic range of [0:9]

while a three-channel receiver with sampling

frequencies of 5, 6 and 7 has a dynamic range of

[0:2-1] .

E. THREE-CHANNEL ALGORITHM

The three-channel algorithm is similar to the two-

channel algorithm as shown in Figure 11. The MATLAB code

can be found in Appendix A.

33

/ Enter num, f

kel, fs2 and fs3 /

Error

Count=0

/ \ ' -

Create

sinewave

Add

Gaussian Noise

fsl fs3

1 fs2

Sample and add

Quantization

Noise

Sample and add

Quantization

Noise

Sample and add

Quantization

Noise

Windowing

and DFT

Windowing

and DFT
Windowing

and DFT

Find Largest

Bin

Find Largest

Bin
Find Largest

Bin

SNS-to-Decimal

Algorithm

Yes

Figure 11: Three Channel Algorithm

34

F. TESTING OF THREE CHANNEL ALGORITHM

To test the three-channel case, the program is run with

some of the following input and sampling frequencies in Table

4.

f f.i f.2 f.3 Dynamic
Range

Remarks

13 5 6 7 0:21 Low input frequency

100 17 18 19 0:171 Consecutive
sampling
frequencies

1040 17 91 919 0:1232 Sampling
frequencies far
apart

12125 90 929 937 0:42741 High input
frequency

Table 4: Tested Input and Sampling Frequencies.

Apart from the anomaly discussed in the two-channel

case, the algorithm works well in this noise-free (high

signal-to-noise ratio) environment.

G. SIMULATION PARAMETERS FOR THREE-CHANNEL CASE

To obtain the error rates in a noisy environment, the

three-channel software is run with the following parameters:

• Number of iterations, num = 10000

35

• Signal to Noise Ratio, SNRDB = -30 to 30 dB

• ADC resolution, bit = 14

• Input and sampling frequencies as shown in Table 5

f f.x f« fs3
9 5 7 11
90 13 14 17
900 41 42 43
9000 141 142 143

Table 5: Input and Sampling frequencies

RESULTS FOR THREE-CHANNEL CASE

The results obtained are shown in Figure 12.

36

1005 1 i 1

90 + f=9 Hz _

o f=90 Hz

80
x f=900 Hz
* f=9000 Hz

-

70 -

^ 60 l -

CD

co
cr 50 .
1_

o

* 40 -

30 -

20 -

10

n i *"* Xs) K x a»- g 3 «5 SftgiigigigifeiggiBlBlllS
-30 -20 -10 0

SNR(dB)
10 20 30

Figure 12: Error Rates vs. SNR for three-channel system

37

Comparing the two-channel and three-channel cases, the

following observations can be made:

• The three-channel system is much faster than the two-

channel system since the DFTs required are smaller

due to the smaller sampling frequencies.

• However the results for the two-channel system with

noise are better. For example to achieve a

relatively error-free system for a frequency of 9000

Hz, the two-channel case requires only -22 dB.

However, the three-channel case requires at least -4

dB.

38

IV. HARDWARE DESIGN AND FINDINGS

A. INTRODUCTION

In the last chapter, the instantaneous measurement of

frequency using the SNS-to-decimal algorithm was verified.

There is a need to investigate the implementation of the

algorithm in hardware. Digital Signal Processing (DSP)

hardware was selected for the following reasons:

• A major part of the algorithm is the processing of

DFTs which is a digital signal processing task well

suited to be carried out by DSP hardware.

• DSP hardware provides a fast way to implement the

algorithm. The DSP development kit is easy to learn,

program and simulate. It is ideal for this

application to investigate hardware problems and

limitations.

• Cost consideration: the development kit plus tools

cost $1500;

• EW receivers are likely to incorporate DSP hardware.

39

B. TI TMS320C54X DSP DEVELOPMENT KIT

The TMS32054C54X DSKplus [Ref. 8-12] is a low cost DSP

starter kit that gives a designer a working knowledge of DSP

code to build DSP based systems. The development kit

contains a stand-alone application board that can be

connected to the PC. It executes code in real time at 40

MIPS while the Windows-based debugger analyzes it line-by-

line, displaying internal DSP register information in

multiple windows and in real time. It has an Analog

Interface Circuit for the input of signals. The board's

communication interface enables the creation of C54x DSP code

and host PC code. Moreover, the hardware enables the use of

expansion slots for adding memory, peripherals such as

interface logic, other DSPs etc. The developed code can

eventually be loaded into a resident DSP processor, which may

be part of a EW receiver architecture. Figure 13 shows a

block diagram of the development kit. A more detailed

description of the kit can be found in Appendix B.

40

Parallel Port to PC To Other Interface Ports

Figure 13: Block Diagram of DSP Hardware.

C. SOFTWARE

The software for the two-channel case described in

Chapter II (Figure 2) is written using the DSP development

kit. The software (found in Appendix C) is coded in VC

language/assembly language and converted to the C54x assembly-

language (if required) prior to execution:

• Firstappl.c/Firstapp2.c. These two programs poll the

input channel and sample the input signal at the two

sampling frequencies respectively.

• Hostappl.cpp/Hostapp2.cpp. These two programs

display the samples of the signals based on the two

sampling frequencies and save the data in text files.

41

• Main.c. This program reads the data, executes the

DFT, obtains the largest values for the two channels

and then carries out a SNS-to-decimal conversion.

These programs were run individually and consecutively.

D. TESTING AND RESULTS

Using data generated by MATLAB, the main program was

tested successfully in the development kit. The programs

were then run with an input frequency of 126 Hz and sampling

frequencies, 125 Hz and 128 Hz. Results obtained were

intermittent i.e., correct results were not always obtained.

A frequency counter and an oscilloscope were set up and it

was found that the sampling frequencies were not stable.

Testing with different frequencies did not improve the

results.

E. PROBLEMS

Several problems were encountered during the

investigation:

• Stability of Sampling Frequencies. The development

kit carries out frequency division of the master

oscillator to obtain the sampling frequencies.

Unfortunately, the crystal oscillator has a

42

resolution of 5-10 Hz. This is unacceptable as a

shift of 1 Hz in the sampling frequency will cause

erroneous results. Moreover, the fact that the

sampling frequencies are factors of the oscillator

frequency and that they need to be pairwise

relatively prime severely limits the choice of

frequencies. A possible solution is to obtain the

sampling frequencies directly from stable signal

sources.

• DFT. For higher frequencies, the execution of the

DFT takes a long time. Several solutions were

suggested and discussed in the previous chapter.

• Memories. Insufficient memory error messages were

encountered when high frequencies were used. The

same messages occurred when attempts were made to run

the routines together. More memories and/or more

efficient DFT algorithms are required.

43

44

V. CONCLUDING REMARKS

The main contribution of this thesis is the verification

of the relationship of the DFT to the SNS to resolve

undersampling ambiguities and the investigation of hardware

implementation issues using a DSP platform. Error rates for

different SNR are also obtained.

The use of undersampling technique using the SNS to

measure frequency is a viable method to implement in a EW

receiver architecture. However, the need for faster DFT

computation and stable sampling frequencies must be taken

into account before they can be considered for incorporation

into EW receivers. There is also a trade-off between the

number of channels and SNR. For faster response, a multi-

channel case is recommended; but a higher SNR is required.

45

46

LIST OF REFERENCES

1. J.L. Brown Jr., " On the Uniform Sampling of a
Sinusoidal Signal," IEEE Trans. Aerospace and
Electronic Systems, Vol. 24, no. 1, pp. 103-106, Jan
1988.

2. C. M. Rader, tt Recovery of Undersampled Periodic
Waveforms," IEEE Trans. Acoustic, Speech and Signal
Proceedings, Vol. ASSP-25, no. 3, pp. 242-249, Jun 1977.

3. P. E. Pace, R. Leino and D. Styer, "Use of the
Symmetrical Number System in Resolving Single Frequency
Undersampling Aliases," IEEE Trans. on Signal
Processing, Vol. 45, No. 5, May 1997.

4. G. Hill, w The Benefits of Under sampling," Electronic
Design, pp. 69-79, July 1994.

5. P. E. Pace, P. A. Ramamoorthy, and D. Styer, w A
Preprocessing Architecture for Resolution Enhancement in
High Speed Analog to Digital Converter," IEEE Trans.
Circuits and Systems II: Analog and Digital Signal
Processing, Vol. 41, pp. 373-379, Jun 1994.

6. J. G. Proakis and D. G. Manolakis, " Digital Signal
Processing: Principles, Algorithms and Applications,"
Prentice Hall, New Jersey, 1996.

7. A. M. Kirch, * Elementary Number Theory - A Computer
Approach," Intext Educational Publishers, New York,
1974.

8. Texas Instruments, * TMS320C54x DSKplus: DSP Starter
Kit," Literature Number: SPRU191, 1996.

9. Texas Instruments, " TMS32054x DSP Reference Set" ,
Literature Number: SPRU210, 1996.

10. Texas Instruments, w TMS32054x Fixed Point Digital
Signal Processor," Literature Number: SLAS057, 1996.

47

11. Texas Instruments, w TMS32054x Optimizing C Compiler
User's Guide," Literature Number: SPRU103, 1995.

12. Texas Instruments, w TMS32054x Assembly Language Tools
User's Guide," Literature Number: SPRU102, 1996.

48

APPENDIX A

MATLAB CODE FOR SOFTWARE ALGORITHM

%
% Thesis Project
%
% Two Channel Receiver
%
% Note: The sampling frequencies should be relatively prime
%

clear all;

% Initialization

num=input('Enter Number of iterations:'); % Number of iterations
f=input('Enter Input Frequency:1); % Frequency of signal
fsl=input('Enter Sampling Frequency 1:'); % Sampling frequency 1
fs2=input('Enter Sampling Frequency 2:'); % Sampling frequency 2
fpl=fopen('c:\matlab\bin\thesis\result.dat','at'); % Store results

% Quantization levels

bit=14;
qnlevel=2*bit-l; % No. of quantization levels
q=2/qnlevel; % quantization size

for SNRDB=-30:2:30 % Set Signal to Noise Ratio
% from -30 dB to 30 dB

count=0; % Error Count

for i=l:num
SNR=10A(SNRDB/10); % Convert to non-dB units
sigmasq=l/2/SNR; % Noise normalization assuming

% signal power of 1
t=(0:.001:1);
sig=sin(2*pi*f*t); % signal
tl=l/fsl:l/fsl:l; % first ADC
noisel=sqrt(sigmasq)*randn(l,length(tl)); % noise
ADCsigl=sin(2*pi*f*tl)+noisel; % digitized signal
ADCsigl=fix(ADCsigl/q)*q; % quantized signal
t2=l/fs2:l/fs2:l; % second ADC
noise2=sqrt(sigmasq)*randn(l,length(t2)); % noise
ADCsig2=sin(2*pi*f*t2)+noise2; % digitized signal
ADCsig2=fix(ADCsig2/q)*q; % quantized signal

%figure(l)
%subplot(3,l,l), plot(t,sig)

49

%title(%Figure 1. Plot of signal')
%xlabeirTime')
%ylabel(*Amplitude')
%subplot(3,l,2),plot(tl,ADCsigl)
%title('Figure 2. Plot of sampled signal (sampling frequency 1)
plus noise')
%xlabel('time')
%ylabel('magnitude')

%subplot(3,l,3),plot(t2,ADCsig2)
%title('Figure 3. Plot of sampled signal (sampling frequency 2)
plus noise')
%xlabel('time')
%ylabel('magnitude')

% Window operation
% Assume rectangular window

winsizel=fsl; % size of window is fsl
winsize2=fs2; % size of window is fs2
winsigl=ADCsigl(l:winsizel) ,- % windowed sampled signal 1
winsig2=ADCsig2(l:winsize2); % windowed sampled signal 2

% DFT Operation

DFTsigl=abs(fft(winsigl,winsizel));
DFTsig2=abs(fft(winsig2,winsize2));
DFTsigla=DFTsigl(l:length(DFTsigl)/2 +1); % Taking half of image
DFTsig2a=DFTsig2(l:length(DFTsig2)/2 +1); % Taking half of image

%figure(2)
% Plot to locate position of maximum value
% Note that due to MATLAB (which cannot have a zero index, the
actual location is one less
%subplot(2,l,l), stem(DFTsigla)
%titleCFigure 1. DFT plot of signal with sampling frequency 1')
%xlabel(* frequency bins')
%ylabel('magnitude')
%subplot(2,1,2),stem(DFTsig2a)
%title('Figure 2. DFT plot of signal with sampling frequency 2')
%xlabel('frequency bins')
%ylabel('magnitude')

% bin detector

[i,yl]=max(DFTsigla); % yl, y2 are locations of max values
Cj,y2]=max(DFTsig2a); % Note that due to MATLAB, the

% actual location is one less.
al=yl-l;
a2=y2-l;
% SNS to Decimal Algorithm

50

% To solve for f==ai(mod mi) (where "==" indicates congruence and
% mi are pairwise relatively prime), the Chinese Remainder Theorem
% states that there is a unique solution modulo M=ml*m2....mr.

% A standard method of solution is to find integers bi such that
% M*bi/mi==l (mod mi) where i=l,2, r in which the solution is
% f==M*bl*al/ml + M*b2*a2/m2 + ... + M*br*ar/mr (mod M)

% For a 2 channel case, i.e. i=l,2,
% m2*bl == Kmod ml)
% ml*b2 == Krnod m2)
% f == al(mod ml)
% f == a2(mod m2)
% f == m2*bl*al + ml*b2*a2 (mod ml*m2)

% Given ml(sampling frequency 1) and m2 (sampling frequency 2), to
% find bl and b2, the congruence equation is transformed to a
% diphantine equation and solved using the Euclidean algorithm:
% m2*bl - ml*yl = 1
% ml*b2 - m2*y2 = 1
% The above two equations can be combined into
% m2*bl - ml*b2 = 1
% bl and b2 are solved by the function "lde.m" which is called by \
"glde.m".
%
% f == al(mod ml) and f == a2(mod m2) is solvable only if the
% greatest common divisor of ml and m2 divides (a2 - al).
% To solve for f, r from the diophantine equation
% r*ml+s*m2 = a2 - al must be solved.
% r is obtained from "glde.m" and f is calculated by the
% equation f = al+r*ml

idiff=a2-al;
r = glde(fsl,fs2,idiff);
freq=abs(al+r*fsl),-

% Count the number of correct results.

if freq==f
count=count+l;

end
end
error = 1-count/num;

% Write results to file

xl=fprintf(fpl,'%d %d %d %d %d %d\n", f, fsl, fs2, SNRDB, num, error);

plot(SNRDB,error,'y+')
title('Error Rate vs. Signal to Noise Ratio')

51

xlabeK'SNR(dB) ')
ylabel('Error Rate %')
hold on
end
fclose (fpi) ,-

% To calculate the dynamic range

if rem(fsl,2)==0
DR=fsl/2 + fs2;

elseif rem(fs2,2)==0
DR=fs2/2 + fsl;

else
DR=.5*(fsl+fs2);

end
%
% Thesis Project
"S

% Three Channel Receiver

% To check whether fsl is even

% To check whether fs2 is even

% fsl and fs2 are odd numbers

clear all;
close

% Initialization

num=input('Enter Number of iterations:');

f=input('Enter Input Frequency:');

fsl=input('Enter Sampling Frequency 1:');

fs2=input ('Enter Sampling Frequency 2 : •) ,-

fs3=input('Enter Sampling Frequency 3:');

% Number of iterations

% Frequency of signal

% Sampling frequency 1

% Sampling frequency 2

% Sampling frequency 3

fpl=fopen('c:\tnatlab\bin\thesis\result.dat','at');
% Store results in file for later processing if required

% Quantization levels

% bit=input('Enter ADC resolution:');
bit=14;
qnlevel=2Abit-l;
q=2/qnlevel;

for SNRDB=-30:2:30

count=0;

% No. of quantization levels
% quantization size

% Set Signal to Noise Ratio from -30
% dB to 30 dB

52

for i=l:num
SNR=10A(SNRDB/10) ;
sigmasq=l/2/SNR;

Convert to non-dB units
Noise normalization assuming
signal power of 1

tl=l/fsl:l/fsl:l; % first ADC
noisel=sqrt(sigmasq)*randn(l,length(tl)); % noise
ADCsigl=1000*(sin(2*pi*f*tl)+noisel); % digitized signal
ADCsigl=fix(ADCsigl/q)*q; % quantized signal

t2=l/fs2:l/fs2:l; % second ADC
noise2=sqrt (sigmasq) *randn(l, length(t2)) ,- % noise
ADCsig2=1000*(sin(2*pi*f*t2)+noise2); % digitized signal
ADCsig2=fix(ADCsig2/q)*q; % quantized signal

third ADC
noise
digitized signal

t3=l/fs3:l/fs3:l;
noise3=sqrt(sigmasq)*randn(l,length(t3));
ADCsig3=1000*(sin(2*pi*f*t3)+noise3),-
ADCsig3=fix(ADCsig3/q)*q;

%figure(l)

%subplot(3,l,l),plot(tl,ADCsigl(l:fsl))
%title('Figure 1. Plot of sampled signal (sampling frequency

1) plus noise')
%xlabel('time')
%ylabel('magnitude')
%subplot(3,1,2),plot(t2,ADCsig2(l:fs2))
%title('Figure 2. Plot of sampled signal (sampling frequency 2)
plus noise')
%xlabel('time')
%ylabel('magnitude')
%subplot(3,l,3),plot(t3,ADCsig3(l:fs3))
%title('Figure 3. Plot of sampled signal (sampling frequency 3)
plus noise')
%xlabel('time')
%ylabel('magnitude')

% Window operation
% Assume rectangular window

winsizel=fsl;
winsize2=fs2;
winsize3=fs3;
winsigl=ADCsigl (lrwinsizel) ,-
winsig2=ADCsig2(l:winsize2);
winsig3=ADCsig3(l:winsize3);

% DFT Operation
DFTsigl=abs(fft(winsigl,winsizel));

size of window is fsl
size of window is fs2
size of window is fs3
windowed sampled signal
windowed sampled signal
windowed sampled signal

53

DFTsig2=abs(fft(winsig2,winsize2)) ,-
DFTsig3=abs(fft(winsig3,winsize3)),-

DFTsigla=DFTsigl(l:length(DFTsigl)/2 +1)
DFTsig2a=DFTsig2(1:length(DFTsig2)/2 +1)
DFTsig3a=DFTsig3(1:length(DFTsig3)/2 +1)

Taking half the image
Taking half the image
Taking half the image

%figure(2)
%Plot to locate position of maximum value
%Note that due to MATLAB (which cannot have a zero index, the
%actual location is one less

%subplot(3,l,l), stem(DFTsigla)
%title('Figure 1. DFT plot of signal with sampling frequency 1')
%xlabel('frequency bins')
%ylabel('magnitude *)

%subplot(3,l,2),stem(DFTsig2a)
%title('Figure 2. DFT plot of signal with sampling frequency 2')
%xlabel('frequency bins')
%ylabel('magnitude')

%subplot(3,1,3),stem(DFTsig3a)
%title('Figure 3. DFT plot of signal with sampling frequency 3')
%xlabel('frequency bins')
%ylabel('magnitude *)

% bin detector

[i,yl]=max(DFTsigla); % yl, y2 and y3 are the locations of
% maximum values

[j,y2]=max(DFTsig2a); % Note that due to MATLAB, the actual
% location is one less.

[k,y3]=max(DFTsig3a);

al=yl-l
a2=y2-l
a3=y3-l

% SNS to Decimal Algorithm

bl=lde(fs2*fs3,fsl) ,-
b2=lde(fsl*fs3,fs2);
b3=lde(fsl*fs2,fs3);

cl=bl*fs2*fs3
c2=b2*fsl*fs3
C3=b3*fsl*fs2

freqmat=[al*cl+a2*c2+a3*c3;al*cl+a2*c2-a3*c3; al*cl-a2*c2+a3*c3;
al*cl-a2*c2-a3*c3,--al*cl+a2*c2+a3*c3;-al*cl+a2*c2-a3*c3i

54

-al*cl-a2*c2+a3*c3;-al*cl-a2*c2-a3*c3] ;

freqmat=rem(freqmat,fsl*fs2*fs3);

for i=l:8
if (freqmat(i)<0)

freqmat(i)=freqmat(i)+fsl*fs2*fs3;
end

end
freq=min(abs(freqmat)),-

% Count the number of correct results.

if freq==f
count=count+l;

end
end
error = 1-count/hum;

% Write results to file

xl=fprintf(fpl,'%d %d %d %d %d %d %d\n', f, fsl, fs2, fs3, SNRDB, num,
error);

plot(SNRDB,error,'y+')
hold on
end

fclose(fpl);

% To calculate the dynamic range

if rem(fsl,2)==0 % To check whether fsl is even
x=[fsl/2 + fs2*fs3; fsl*fs2/2 + fs3; fsl*fs3 + fs2];

elseif rem(fs2,2)==0 % To check whether fs2 is even
x=[fs2/2 + fsl*fs3; fsl*fs2/2 + fs3; fs2*fs3 + fsl];

elseif rem(fs3,2)==0 % To check whether fs3 is even
x=[fs3/2 + fs2*fsl; fs3*fs2/2 + fsl; fsl*fs3 + fs2];

else % fsl,fs2 and fs3 are odd
x=l/2*[fsl + fs2*fs3; fs2 + fsl*fs3; fs3 + fs2*fsl];

end
DR=min(x) ;

55

% This function solves the general linear diophantine equation
% m2*bl - ml*b2 = k and returns the value bl

function a=glde(ml,m2,k)

% Calls function "lde" to calculate bl, b2 and na

[bl,b2,na]=lde(ml,m2);

% To check whether the equation is solvable.
% na must be a factor of k for the equation to be solvable.

mult=k/na;

if (k-mult*na)==0 % Equation is solvable

bl=bl*mult; % These new values solve the diophantine equation
b2=b2*mult;

mtest=bl; % To check whether bl and b2 are the least values
mdl=ml/na,- % that satisfies the diophantine equation
md2=m2/na;
mx=bl ,-
mx=mx+md2;

while (abs(mx)-abs(bl))<0
bl=mx;
b2=b2-mdl;
mx=mx+md2 ,-

end

if (mtest-bl)==0
mx=bl;
mx=mx-md2;
while (abs(mx)-abs(bl))<0

bl=mx;
b2=b2+mdl;
mx=mx-md2;

end
end

end

a=bl ;

56

% This function solves the linear diophantine equation
% ml*bl + m2*b2 = na where ml and m2 are the sampling frequencies
% and na is the greatest common divisor
% and returns the value bl, b2 and na
%
% ml and m2 are assumed positive

function [bl,b2,na]=lde(ml,m2)

% Initialize bol, bo2, bl and b2

bol=l;
bo2=0;
bl=0;
b2=l;

% Place ml and m2 in ma(dividend) and na (divisor) respectively

ma=ml;
na=m2;

% Calculate quotient and remainder

iquot=fix(ma/na);
irem=ma-na*iquot;

% If remainder is not zero, reset dividend and divisor

while irem>0
bo3=bol-iquot*bl;
bo4=bo2-iquot*b2;
bol=bl
bo2=b2
bl=bo3
b2=bo4
ma=na;
na=irem;
iquot=fix(ma/na); % reapply Euclidean algorithm
irem=ma-na*iquot;

end

% calculate new coefficients of ml and m2

% redefine bol, bo2, bl and b2

% redefine dividend and divisor

57

58

APPENDIX B

59

■rwi^Ulu^

mtp7/wv,-w.n.com/sc/docs/dsps/tools/cMx/cMxdskp.htni

ty TEXAS INSTRUMENTS

p'5äiacanffi*ciois?

- DSP froducl Infonsuticn :

&S&tiMäMS33BGXkWsi

Kev Features

Algebraic Assembler

Code Explorer Debugger

System Requirements

How to Install

Bevond the DSKDIUS

*C54x Software Support Files

Lihxlte:Üe«n'j

::pS?:Sofutiöna;i

DSPTMlt

.._-■.'■ July-1997

■Jl Map«tardi /j ; | Fectfiudt j Q

ID5**

Digital Signal Processing Solutions Products - TMS320CS4x

TMS320C54x DSKpIus
The 'C54x DSKplus is a low-cost design tool that gives designers a
working knowledge of DSP code. From this foundation, designers can
begin building complete 'C54x DSP-based systems. Priced at US $149,
the 'C54x DSKplus (part no. TMDS32000L0) is available from TI
authorized distributors.

The 'C54x DSKplus builds on TI's industry-leading line of low cost,
easy-to-use DSP Starter Kit (DSK) development boards. The
high-performance board features the TMS320C542 16-bit fixed-point
DSP. Capable of rjerforming 40 million instructions per second
(MIPS), the 'C542 makes th& 'C54x DSKplus the most powerful DSK
development board on the market.

Other TMS320 DSKs include the 'C2xDSK. the 'CSxDSK. and the
floating-point 'C3x DSK.

Key Features
The 'C54x DSKplus includes:

• 40 MTPS TMS320C542-based board
• TLC320AC01 Analog Interface Circuit (AIC)
• *C54x DSKplus assembler, loader, Code Explorer debugger, and sample programs (3.5" disks)
• TMS320C54X CPU and Peripherals Reference Guide
• TMS320C54X Algebraic Assembler Instruction Set
• TMS320C54X Datasheet
• TMS320C54x DSKplus User's Guide
• TLC320AC01 Datasheet
• PC connector cable and universal power supply included
• US"5N9 discount coupon toward the purchase of the 'C54x EVM

7/8/97 5:10 PM

.iUUMX USK-plUS httpV/www.tJ.coni/sc/docs/dsps/tools/c54x/c54xdskp.hun

DSKplus Key
Features

J i

Benefits j

1 TMS320C542DSP(40
1 MIPS, 16-bit) \

High-performance, very efficient architecture requires fewer {
MIPS than competing DSPs to implement most algorithms. \

I Code Explorer debugger }
interface

An easy-to-use, true Windows-based interface. Supports '
symbolic debugging, breakpoints, graphical animation, variable 1
watch windows, file I/O, algebraic/mnemonic disassembly, \
on-line help. 1

Symbolic debugging (Code 1
Explorer)

i
Enables easy programmability by using labels for referencing 1
constants, variables, matrices by name. \

Algebraic assembler
Bypasses learning new DSP mnemonic instruction set specifics. ;
Makes coding easier and more straight-forward. Easy one-step 1
assembly and linking process. 1

Demo programs /
Application code

Helps users get up-to-speed quickly ;

{ TLC320AC01 Analog
Interface Chip

Low power dissipation, 14-bit linear resolution, programmable 1
sampling rates, anti-aliasing filter, and input gain; selectable
auxiliary input; data read-back ;

Socketed Programmable
Array Logic (PAL)

Allows experienced designers to reprogram the PAL and change 1
the way the host port interface works on the C54x DSKplus. j

Universal power supply &
cable included !

Allows for immediate use out of the box; ideal for powering 1
daughter cards; filtered and regulated - thus no need for \
on-board voltage regulation. j

TC54x Algebraic Assembler
The C54x DSKplus includes the algebraic assembler that speeds the initial code development process. The
algebraic assembler does not require new users to leam a new DSP mnemonic instruction set, making
coding easier and more direct The assembler also utilizes a one-step assembly and linking process to
simplify code debugging. The software accomplishes this by using special directives to assemble code at an
absolute address.

Some extremely useful features include:

7/8/97 5:10 PM

)J^U^>*X JJSKplus
ünp^/wvv-w.ü.corasc/aocs/asps/tools/c>+x,cJ4xaii>.p.uuii

In-line Assembly expression analysis allows the assembler to work when defining complex variables
or bit locations.
Symbolic Debugging allows the user to reference variables by name instead of the physical address.
Assembling conditional blocks of assembly code using .if/.else if/.end if directives. This is especially
helpful when you want to conditionally assemble code via a command-line argument of internal
assembly variable.
Support of .sect, .bss, .usect, .text, and .data sections.

Code Explorer Debugger

The 'C54x DSKplus debugger was developed by GO DSP Corporation in an effort to provide the first true
Windows-based debugger for a DSK. The Code Explorer debugger supports debugging, a new feature
available only on the DSKplus that allows the user to specify labels for referencing constants, variables,
and marticies by name. Also, the debugger desktop environment is fully configurable and loaded upon'
entry into the debugger. This means that optional colors, fonts, and window sizes can be changed within
the debugger and saved upon exiting.

Some additional features of the debugger include capability of connecting files as I/O, graphical animation,
and data memory viewing. The file I/O capability enables users to connect files as inputs or outputs to any
location within your application code. Therefore you can simulate different input sequences and data
streams without having to physically generate them.

Graphical animation allows you to view data in a graphical format, either with time domain or frequency
domain and in a variety of variable sizes (i.e. 8-bit signed char, 8-bit unsigned char, 16-bit, 32-bit, etc).

Disassembly Window

The disassembly window displays the DSP code in
algebraic instructions. The variable names and
subroutines (symbols) are shown in blue. The
physical DSP address is the first column and the
machine code for the instructions are in column 2.
The yellow bar indicates the location where the
DSP program counter (PC) points.

The disassembly window properties can be
accessed by placing the cursor in the disassembly
window and right-clicking and then choosing
properties. The disassembly window can display
code in algebraic or mnemonic formats with direct
and immediate addressing values shown in hex,
decimal and even binary.

Data Memory Window

'. Dis-A«cci6'j
J04FD
J04FE
204FF
10500
JQS00
10502
mo*
»0506.
50508
'050A

10SQD
s050D
jOSOE
50510
SOS 10
-0S11
10513
JOS 15
losie
&S10
?0S1A
;0S1B

0071
0071
0073

F074
771D
7718
7712
7092
7700
F6B8

F495
F073

4930
F330
7092
8931
6012
F830
F4E8

??12

3 tort

A +- e?ih
A +- e?ih
A +- S?lh

gJES

»«it

call ÄC013KJT
B»r(P«ST) • *l«0h
»ar(SP) - *t)E£a}>
nw(JW?2) - *1200h
«>B2.» .«fflJMf»JJil*ruüAM-M

XIHT

nop
goto vaij

B = amrf«;
B'Blf
«AR24 * *«ispSpife^vSlilpli

■re - i^ummi^m^-ii^^mM
it (TC) goto rc3trt
let untenable

rcstrt
jwrf AR2> - *1200h

m

7/8/97 5:10 PM

http://W"Ä"vv.ü.com.sc/docs/dsps/tool&'c54x/c34x<lsKp.ßtm

The data memory window can be modified or
replicated as needed. By placing the cursor inside
the data memory window and right-clicking and
then choosing properties, the user can change the
title of the window, starting address and even data
organization in the window. Valid display formats
include 8-bit signed/unsigned char,
signed/unsigned long, floats, and others. The page
field can specify either Data or Program memory
spaces.

'C54x CPU and Peripheral
Registers

| Memory Window Options

i ■'» Data Memory (ff
0x0800: oxo«;

: 0x0604: OxOC:
= 0x0808: OaOd
■: 0x0 8 0C: OxOC
0x0810: OxOC:

: 0x0814: OsOO
0x0818: oxod

; 0s081C: OxOC
; 0x0820: OsOC
0x0824: OaOi;

. jtwng^a-_ *JQzte:

Q-ValueT' Jo

FdrBUt

The two register windows in the 'C54x Code
Explorer debugger are the CPU and Peripheral
Registers. The 'C54x CPU Registers is the
collection of registers which control the operation
of the DSP CPU. The program counter, status
register, and configuration registers are contained
within this window. Notice that bit values within
the register are brought out separately to make
modification and monitoring easier.

The second window is the Peripherals window.
This window includes the registers for configuring
the DSP peripherals like the serial ports and
timers. Modifications to this register can be done
by clicking on the register in the Peripheral
Registers window.

: C54X Registers
>rc - OSOO s? -
: A. = OOD0DO100G ÄRO =
: B - FFFFFFFFFD AE1 -

:j T = FFFD ÄR2 =
AR3 -
&R4 =
APS '
ABS =
AB? -
BK =
AP? »

isrrs =
nra =
IFS

HHS

; T3H = FFFF
■■■ ST0 * 1800
r ST1 = 3B00
IPKST - 00A0
i DP = 0000
\ ASH = 000C

iBBAF = 0
1 BSC = FFFF

ESA = FFFF

0171 TC - 1
10FA C = 1
1002 OVA - O
1006 OT3 = D
FFFF OVM - 1
FFFF S3QI = 1
0000 cie> " 0
FFFF FHCT = O
FFFF CHPT - O
FFFF CPU = O
ARO XF » 1

ES = 1
O MP/'KC » O
0200 071V = 1
020C AVIS » 0

Peripheral Registers ess
i^ TIS = 3210 DBS = O000 STCSE = ?FFFgl
! PRO - FFFF DXR - 0000 BSCR - FSOO^J
i TCP = 0000 SPC = OBO0 «
TKCV - 0000 TDKR - 0000 TSFC -,n*nn«l
*i'l ■■•■.::---s

Setup lot Graphic«

STftfcc'.ft^JSiaphtc Display
BSS =3-.=-W»»W!j:

F80

Buttet.Sce: -

fit*™*™*"*

|D<Ao ~m
\ June Swph jj|p

L|lB-BaSig»cdU»teaei Psü

064

064
. il flJneai Scale

.;^j.i

HP
l^^^SÖ^^tSK

Graphical Windows

Graphical windows are extremely useful
when trying to view a value of a register,
variable, or buffer. The graphic window
allows the user to animinate any value in
either data or program DSP memory.
This is accomplished by placing a
breakpoint anywhere in the application
code and pressing the Animation button.
Each time the DSP reaches the
breakpoint the graphical windows are
updated and refreshed.

The options window contains the
graphics setup for the window. For
example, the title can be changed to
reflect the data being animated, the
display buffer length can be changed, or
the data read from the DSP can either be
a single value from a list (buffer) of values in either data or program memory. Also, the sampling rate can
be modified for correct displaying of the frequency data (FFT). The display can be viewed using 8-bit
signed/unsigned chars, ints, long, floats, and even a log can be performed on the displayed data.

Setting Breakpoints

7/8/97 5:10 PM

>J^mj>}X DSKplus
httpyAvw-w.ti.com/sc/docs/dspa/tools/c54x/c54xdskp.htm

A breakpoint can be selected by either
double clicking on a line in the
Disassembly window or by Selecting the
DEBUG-BREAKPOINTS in the Pull
Down Menu. The Pull Down Menu will
prompt you with a menu listing all the
available symbols in the Symbols box.
You can either select a breakpoint from
the list of Symbols or by entering an
address in the Address field

The Breakpoint dialog box contains the
following fields: Address, Symbols and
Breakpoints. If the address of the desired
breakpoint is known, simply enter the
value in the Address field The Symbol
field contains the list of all the symbols in the program. If the location address of the breakpoint is labeled,
simpry type the label name and press add

Setting Probe Points

Probe points allow the update of a
particular window or the reading/writing
of samples from a file to occur at a
specific point in an algorithm. This
effectively "connects a signal probe" to
that point in the algorithm.

When a graph window object is created,
it assumes that it is to be updated at every
breakpoint. However, this attribute can be
changed and the window can be updated
only when the program reaches the
connected probe point. After the probe
point is hit, and the window is updated,
execution of the program is continued
This optimizes the display of the graph
window and also allows you to keep a history of the signal even when the data on the DSP is not valid

With the combination of Code Explorer's File I/O capabilities, probe points can also used to connect
streams of data to a particular point in the DSP Code. When the probe point is reached in the algorithm,
data is streamed from a specific memory area to file, or from the file to memory.

Using File I/O

7/8/97 5:10 PM

20C54x DSKplus http7/www.ti.com/sc/docs/dsps/tools/c54x/c54xdskp.htm

Code Explorer allows the user to stream
data onto (or from) the target from a PC
file. This allows the user to simulate code
using known sample values. Note that
this file I/O feature is not intended to
satisfy real-time constraints. The File
Input/Output feature uses probe points.
When the execution of the program
reaches a probe point, the connected
object, whether it is a file, graph or
memory window, is updated. Once the
connected object is updated, execution
continues. Using this concept, if a probe
point is set at a specific point in the code
and then connected to a file, file I/O functionalities can be implemented.

System Requirements
A 386,486, or Pentium PC with a 3.5" disk drive
4-bit parallel and/or 8-bit bidirectional parallel ports.
A minimum of 4Mbytes of memory
Color VGA monitor
Windows 3.1 or Windows 95
ASCII editor

How to Install
When connecting the DSKplus to your PC, it is highly recommended you turn
off your PC's power to make the connections below:

1. Connect the DB25 cable (female) to the PC's Parallel port (male).
2. Connect the DB25 cable (male) to the DSKplus board (female).
3. Connect the power cord (NEMA cable) to the 5 volt power supply.
4. Connect the 5-pin DIN-to-5.5mm adapter to the power supply's 5-pin

DIN connector.
5. Plug the power supply power cord to the wall outlet
6. Plug the 5.5mm connector into the power jack of the DSKplus board

At this point the green power LED is illuminated and power is supplied to the 'C54x DSKplus board If the
Green LED is not illuminated, check the connections on the power supply and power cord

Installing the software

7/8/97 5:10 PM

J20C54xDSKpius httpy/www.ti.com/sc/dcxa/dsp&tods/c54x/c54xdskp.htjn

The DSKplus kit includes two 3.5" floppies labeled Disk #1 and Disk #2. To QSfflSSÜSJSBEB^^
install the software correctly, please follow the steps below: hLzt^^^S^M^'

CStxtfcfo
Insert Disk #1 into the 3.5" drive.
From the start menu (Windows95) or the Files menu (Windows 3.1)
select the Run., option. Type a:\setup.exe
The installation script will appear. You will be asked to select a
destination directory. By default it will select the DSKplus directory.
Enter the directory name if you would like to specify a different
directory.
When prompted, insert Disk #2 into the 3.5" floppy drive.
When installation has completed, the installation will inform you that the installation was
successful. At this point a Code Explorer Group will appear.

Starting the Debugger

To start the debugger, click on the fcon located in the Code Explorer Group or desktop. The Code Explorer
background and windows will appear with the Setup Box shown active.

Select the port which is connected to the DSKplus board. If for some reason
the port is not listed, the port address can be modified by typing in the address
intthe text box.

As a result of selecting the correct port and proper hardware connections, the
debugger will fill its windows with data and the DSKplus is now functioning.
If for some reason the debugger responds with the error "Can't initialize
Target DSP", follow the directions in the error box.

S*fu(j F-itaM Par!

tymzzi^m

Troubleshooting

1. Is the power on? Be sure green LED is illuminated. If not, a loose power cable is hampering your
setup.

2. Is the parallel port cable connection secure? In many new DSKplus boards and parallel port cables,
substantial pressure many be needed to connect the cables. Connect the cable to the DSKplus board
by placing the thumb behind the DB-25 connector. Take the cable connector chassis and place
between the index and middle fingers. Align the connectors and press the fingers together.

3. The port selected is not being "Captured" by Windows 95. Capturing is used by Windows 95 to
allow DOS programs access to printers. The port can be released by going into the control panel
and selecting the printers icon. Highlight any printer and go to the File pulldown on the command
bar. Select properties and then the Details tab. The Details tab includes a button named End
Capture... Click on this button and select the LPT port where the DSKplus board is connected. If
the LPT is not listed, then the port is not captured (select cancel) and proceed to number 4.

4. The port selected is configured as an EPP or ECP port. The DSKplus board supports 4-bit
unidirectional and 8-bit bidirectional parallel ports. The DSKplus does not support EPP and ECP
ports. To check the port configuration, exit out and reboot your system. At the point where the
BIOS Setup routine can be selected, press the keyboard sequence to enter the BIOS (usually
CTRL+ALT+ESC). Confirm that the parallel port is setup as '8-bit', ■bidirectional' or ■standard.'
Specifically, not an EPP or ECP port. If problems persist, run the included seiftest program

Beyond the TC54x DSKplus
With higher performance than any other DSK available today, the 'C54x DSKplus offers a rich
development environment for benchmarking and evaluating code in real-time. The 'C54x DSKplus is
designed as an easy-to-use entry into the world of high-performance fixed-point DSPs.

7/8/97 5:10 PM

:0C54xDSKplus http^Avww.ti.com/3c/docs/dsps/tools/c54»'c54xd3kp.htin

However, as your design experience grows, you may require additional functionality and expanded
capabilities. To meet these needs, TI offers a comprehensive line of evelopment tools for the TMS320 DSPs
that support the design process from system concept to production.

Other 'C54x Development Tools

;.'£emiKwiauciszs Z\. : ?! Map/Searth | Feedback

© Copyright 1997 Texas Instruments Incorporated. All rights reserved.
Trademarks. Important Notice!

7/8/97 5:10 PM

68

APPENDIX C

C AND ASSEMBLY LANGUAGE CODE FOR DSP HARDWARE

**
File: FirstApl.ASM
When sampling frequency is changed, need to change

a. buffer size here
b. A and B registers in ACOlinil.asm
c. sampling frequency in dftsort.c
d. buffer size in hostappl.cpp

.width 80
.length 55
.title "FirstApp program"

.mmregs
.setsect ".text", 0x500,0
.setsect "vectors", 0x180,0

VECTORS

.sect "vectors"

.copy "c:\dskplus\inits\vectors.asm"

.text
start:

call AC01INIT
pmst = #01a0h ; set up iptr
sp = #0ffah ,- init stack pointer.
ar2 = #1200h ,- pointer to receive buffer at 1200h.
*ar2+ = data(#0bh) ,- store to rev buffer
imr = #280h
intm = 0 ; ready to rev int' s

wait nop
goto wait

 Receive Interrupt Routine
XINT:

b = trcv ,- load ace b with input
b = #0FFFCh & b
*ar2+ = data(#0bh) ; store to rev buffer
tdxr = b ,- transmit the data.
TC = (@ar2 == #1471h) ,- change here if fs changes
if (TC) goto restrt ,- stop if rev buffer is at 1471h

return_enable
restrt

69

ar2 = #1200h
hpic = #Oah

return enable

; set intm bit ...no int's
; flag host task completed

end ISR

.copy "c:\dskplus\firstapp\ac01inil.asm"

.end

File: FirstApp.ASM -> First Application program for the 'C54x DSKplus

a. buffer size here
b. A and B registers in AC01ini2.asm
c. sampling frequency in dftsort.c
d. buffer size in hostapp2.cpp

**iCiCiricicicicicicicicicicieic:kic

.width 80

.length 55

.title "FirstApp program"

.mmregs

.setsect ".text", 0x500,0

.setsect "vectors", 0x180,0

.sect "vectors"

.copy "c:\dskplus\inits\vectors.asm"

.text
start:

call AC01INIT
pmst = #01a0h
sp = #0ffah
ar2 = #120Oh
*ar2+ = data(#0bh)
imr = #280h
intm = 0

wait nop
goto wait .

; set up iptr
; init stack pointer.
; pointer to receive buffer at 120Oh.
,- store to rev buffer

; ready to rev int's

XINT:
Receive Interrupt Routine

b = trcv
b = #0FFFCh & b
*ar2+ = data(#0bh)
tdxr = b
TC = (@ar2 == #01400h)
if (TC) goto restrt
return enable

; load ace b with input

; store to rev buffer
; transmit the data.
; change here if fs change
; stop if rev buffer is at 1400h

70

restrt
ar2 = #120Oh
hpic = #0ah
return enable

set intm bit ...no int's
flag host task completed

end ISR

.copy "c:\dskplus\firstapp\ac0lini2.asm"

.end

71

******************************* ******************

File: ACOIINII.ASM -> ACOl Initialization Routine

.width 80
.length 55
.title "ACOl Initialization Program"
.mmregs

**
Certain ACOl registers can be initialized using a conditional assembly
constant. By setting the constant REGISTER to the appropriate value,
the assembler will either include initialization for certain registers
or ignore register initialization.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The constant REGISTER should be set to include the following ACOl

register:

REGISTER (binary)

0000 0000 0000 0001
0000 0000 0000 0010
0000 0000 0000 0100
0000 0000 0000 1000

0000 0000 0001 0000

0000 0000 0010 0000

0000 0000 0100 0000
0000 0000 1000 0000

-> initialize Register 1
-> initialize Register 2
-> initialize Register 3
-> initialize Register 4

-> initialize Register 5

-> initialize Register 6

-> initialize Register 7
-> initialize Register 8

(A Register)
(B Register)
(A1 Register)
(Amplifier Gain-
Select)
(Analog
Configuration)
(Digital
Configuration)
(Frame-Sync Delay)
(Fram-Sync number)

Any combination of registers can be initialized by adding the binary
number to the REGISTER constant. For example to initalize Registers 4
and 5, REGISTER = 18h. Upon assembly, only code for register 4 & 5
initialization is included in the AC01INIT module. When called the
module will load REG4 and REG5 values into internal ACOl registers.

* Register 4 is always loaded to get a 6db input gain. This setsfull-
* scale to 3v(p-p input) due to the single-ended ACOl configuration.

REGISTER .set Obh

REG1 .set If eh

REG2 .set 21fh

REG3 .set 300h

REG4 .set 40dh

REG5 .set 501h

REG6 .set 600h

Powerup default values:
H2h

t 212h
300h

t 405h
501h
600h

72

REG7 set 700h
REG8 # set 801h

ACOIINIT:
xf = 0
intm = 1
tcr = = #10h
imr = = #280h
tspc = #0008h
tdxr = #0h
tspc = #00c8h
xf = 1

700h
801h

reset acOl
disable all int service routines
stop timer
wakeup from idle when TDM Xmt int
stop TDM serial port
send 0 as first xmit word
reset and start TDM serial port
release acOl from reset

Register init's

.eval REGISTER & lh, SELECT

.if SELECT = lh
a = #REG1
call REQ2
.endif

if REG1 then include this source

load Ace A with REG1 value
Call REQ2 subroutine

.eval REGISTER & 2h, SELECT ; if REG2 then include this source

.if SELECT = 2h
a = #REG2
call REQ2

.endif

.eval REGISTER & 4h, SELECT ; if REG3 then include this source

.if SELECT = 4h
a = #REG3
call REQ2
.endif

.eval REGISTER & 8h, SELECT ; if REG4 then include this source

.if SELECT = 8h
a = #REG4
call REQ2
.endif

.eval REGISTER & 10h, SELECT ; if REG5 then include this source

.if SELECT = 10h
a = #REG5
call REQ2
.endif

.eval REGISTER & 2Oh, SELECT ; if REG6 then include this source

.if SELECT = 2Oh
a = #REG6
call REQ2
.endif

73

.eval REGISTER & 4Oh,

.if SELECT = 4Oh
a = #REG7
call REQ2
.endif

SELECT ; if REG7 then include this source

.eval REGISTER & 8Oh, SELECT

.if SELECT = 8Oh
a = #REG8
call REQ2
.endif
return

if REG8 then include this source

REQ2
ifr = #080h
tdxr = #03h

clear flag from IFR
request secondary when AC01 starts

idle(l)
tdxr = a
ifr = #080h

wait for primary to xmit
send register value to serial port
clear flag from IFR

idled)
tdxr = #0h
ifr = #080h
idle(l)
return
.end

wait for secondary to xmit
send neutral state in case last init
clear flag from IFR
wait for neutral state to xmit
return from subroutine

74

File: AC01INI2.ASM -> AC01 Initialization Routine

.width 80

.length 55

.title "AC01 Initialization Program"

. mmregs

**

* Certain AC01 registers can be initialized using a conditional assembly
* constant. By setting the constant REGISTER to the appropriate value,
* the assembler will either include initialization for certain registers
* or ignore register initialization.
*

* The constant REGISTER should be set to include the following AC01
* register:
*

* REGISTER (binary) =
*

* 0000 0000 0000 0001 -> initialize Register 1 (A Register)
* 0000 0000 0000 0010 -> initialize Register 2 (B Register)
* 0000 0000 0000 0100 -> initialize Register 3 (A' Register)
* 0000 0000 0000 1000 -> initialize Register 4 (Amplifier Gain-
* Select)
* 0000 0000 0001 0000 -> initialize Register 5 (Analog
* Configuration)
* 0000 0000 0010 0000 -> initialize Register 6 (Digital
* Configuration)
* 0000 0000 0100 0000 -> initialize Register 7 (Frame-Sync Delay)
* 0000 0000 1000 0000 -> initialize Register 8 (Fram-Sync number)
*

* Any combination of registers can be initialized by adding the binary
* number to the REGISTER constant. For example to initalize Registers 4
* and 5, REGISTER = 18h. Upon assembly, only code for register 4 & 5
* initialization is included in the AC01INIT module. When called the
* module will load REG4 and REG5 values into internal AC01 registers.

* Register 4 is always loaded to get a 6db input gain. This sets full-
* scale to 3v(p-p input) due to the single-ended AC01 configuration.

REGISTER .set Obh
REG1 .set Ifeh
REG2 .set 23ch
REG3 .set 30Oh
REG4 .set 40dh
REG5 .set 501h
REG6 .set 60 Oh

Powerup default values:
* 112h
* 212h

300h
* 405h

501h
600h

75

REG7
REG8

.set 700h

.set 801h
700h
801h

AC01INIT:
xf = 0
intm = 1
tcr = #10h
imr = #28Oh
tspc = #0008h
tdxr = #0h
tspc = #00c8h
xf = 1

reset acOl
disable all int service routines
stop timer
wakeup from idle when TDM Xmt int
stop TDM serial port
send 0 as first xmit word
reset and start TDM serial port
release acOl from reset

Register init's

.eval REGISTER & lh, SELECT

.if SELECT = lh
a = #REG1
call REQ2
.endif

if REG1 then include this source

load Ace A with REG1 value
Call REQ2 subroutine

.eval REGISTER & 2h, SELECT

.if SELECT = 2h
a = #REG2
call REQ2

if REG2 then include this source

.endif

.eval REGISTER & 4h, SELECT

.if SELECT = 4h
a = #REG3
call REQ2
.endif

if REG3 then include this source

.eval REGISTER & 8h, SELECT

.if SELECT = 8h
a = #REG4
call REQ2
.endif

if REG4 then include this source

.eval REGISTER & 10h, SELECT

.if SELECT = 10h
a = #REG5
call REQ2
.endif

if REG5 then include this source

.eval REGISTER & 2Oh, SELECT

.if SELECT = 20h
a = #REG6

if REG6 then include this source

76

call REQ2
.endif

.eval REGISTER & 40h,

.if SELECT = 4Oh
a = #REG7
call REQ2
.endif

SELECT if REG7 then include this source

.eval REGISTER & 8Oh,

.if SELECT = 8Oh
a = #REG8
call REQ2
.endif
return

SELECT if REG8 then include this source

REQ2
ifr = #080h
tdxr = #03h

idle(l)
tdxr = a
ifr = #080h

idle(l)
tdxr = #0h
ifr = #080h
idle(l)
return
.end

; clear flag from IFR
; request secondary when AC01 starts

; wait for primary to xmit
; send register value to serial port
; clear flag from IFR

wait for secondary to xmit
send neutral state in case last init
clear flag from IFR
wait for neutral state to xmit
return from subroutine

77

/*
I* File: H0STAPP1.CPP Source code for host application
/*
/***/
#include <HI54X.H>
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
extern int datareg[] , statregE] ,ctrlreg [] ;
extern int pport, portmode,Readdelay,-

void main(void)
{

FILE *fp;
if ((fp=fopen("datal.dat","w"))==NULL) /* Open file */
{

clrscr();
printf("Cannot open file .\n");
exit(0);

}
portmode=0; /* 4-bit mode */
Readdelay = 20; /* m case host slow*/
clrscr(); /* Clear the screen */
if((pport=locate_port()) >= 5){ /* Find the port. */

printf("No connection\n"); /* If no connection */
backoutO; /* then leave board */
exit(O),-} /* in known state */

else{}
_setcursortype (JSTOCURSOR) ; /* Hide text cursor */
set_latch(l,l); /* Keep DSP running */
int word =0, col=0; /* and bring PAL out*/

/* out of Tri-state */
col=0;
gotoxy(l,l); /* go to home */
send_word(0x0808, C_SEND) ,- /* Clear the HINT */
HINT(IOOOO); /* Wait for nxt HINT*/
send_word(0x12 00, A_SEND); /* Goto 0x46 entries*/

/* before buffer */
for (int buf=0 ,- buf < 0x271; buf++)

/* change here if fs change*/
{
word = read_word(D_READ); /* Read word from pp*/
printf("%4.4x ", word); /* Print it to scr */
fprintf(fp, "%d\n", word); /* Output to file */
if(col >= 13){ /* in 14 columns */

COl=0;
printf("\n");}

else{col++;}
}

_setcursortype(_NORMALCURSOR); /* Ret normal cursor*/

78

fclose(fp);
backout();

exit(0);

/* Close file

/* Leave board in
/* known state

*/

79

/** /

/*
/* File: H0STAPP2.CPP Source code for host application
/*
/**/
#include <HI54X.H>
#include <stdio.h>
tinclude <conio.h>
#include <stdlib.h>

extern int datareg [] , statreg [] ,ctrlreg[] ,-
extern int pport, portmode,Readdelay;

void main(void)
{

FILE *fp;
if ((fp=fopen("data2.dat","w"))==NULL) /* Open file */

clrscr () ,-
printf("Cannot open file .\n");
exit (0) ;

}
portmode=0; /* 4-bit mode */
Readdelay =20; /* In case host slow*/
clrscr(); /* clear the screen */
if((pport=locate_port()) >= 5){/* Find the port. */

printf("No connection\n"); /* If no connection */
backoutO; /* then leave board */
exit(0),-} /* in known state */

else{}
_setcursortype(_NOCURSOR); /* Hide text cursor */
set_latch(l,l); /* Keep DSP running */
int word =0, col=0; /* and bring PAL out*/

/* out of Tri-state */
col=0;
gotoxy(l,l); /* go to home */
send_word(0x0808, C_SEND); /* Clear the HINT */
HINT(IOOOO); /* Wait for nxt HINT*/
send_word(0xl200, A_SEND); /* Goto 0x46 entries*/

/* before buffer */
for(int buf=0 ; buf < 0x200; buf++)

/* Change here if fs is changed*/

word = read_word(D_READ); /* Read word from pp*/
printf C%4.4x ", word); /* Print it to scr */
fprintf(fp, "%d\n", word); /* Output to file */
if(col >= 13){ /* in 14 columns */

col=0;
printf("\n");}

else{col++;}
}

80

_setcursortype(_NORMALCURSOR); /* Ret normal cursor*/
fclose(fp); /* Close file */
backout(); /* Leave board in */

exit(O); /* known state */

81

/*
/* File: MAIN.C Source code for main program
/*

#include "math.h"
#include "stddef.h"
#include "stdlib.h"
#include "stdio.h"
#include "conio.h"

tdefine fsl 625
#define fs2 324

main(;
{

FILE *fpl, *fp2;
int dl, d2, xl[fsl], x2[fs2] ;
int k, out, freq;
int glde(int k);

double xrol[fsl], xiol[fsl], xol[fsl];
float pi = 3.1415926, tpi;
int n, u;
int i, dftl, nl;
double maxl, max2;

double xro2[fs2], xio2[fs2], xo2[fs2] ;
int j , df t2, n2 ,-

if ((fpl=fopen("data5.dat","rt"))==NULL) /* Open file */

clrscr();
printf("Cannot open file .\n");
exit(0);

}

if ((fp2=fopen("data6.dat","rf))==NULL) /* Open file */

clrscr();
printf("Cannot open file -\n");
exit (0) ,-

}
for(n=0;n<fs1;n++)

{
fscanf(fpi, "%e ", &dl);

xl[n]=dl;
}
for (n=0 ;n<f s2 ,-n++)
{

fscanf(fp2, "%e ", &d2);

82

x2[n]=d2;

fclose(fpl);
fclose(fp2);

tpi=2*pi;
for(u=0;u<fsl;u++)

{
xrol[u]=0.0;
xiol[u]=0.0;
for(n=0;n<fsl;n++)

{

/*-- Xr[u] = (1/fsl) sum {xr[n].cos(2PI.u.n/fsl)} --*/
xrol[u] = xrol[u] + xl[n] *cos(tpi*u*n/fsl);

/*-- Xi[u] = - (1/fsl) sum xr[n].sin(2PI.u.n/fsl) --*/
xiol [u] = xiol[u] - xl[n]*sin(tpi*u*n/fsl);

}
xrol[u]=xrol[u]/fsl;
xiol[u]=xiol[u]/fsl;
xol[u]=sqrt(xrol[u]*xrol[u]+xiol[u]*xiol[u]);

}
dftl=0;
nl=fsl/2+l;
maxl=xol [0];
for (i=l;i<nl;i++)
{

if(xol[i] > maxl)
{

dftl=i;
maxl=xol[i];

}
}

for(u=0;u<fs2;u++)
{

xro2[u]=0.0;
xio2[u]=0.0;
for(n=0;n<fs2;n++)
{

xro2[u] = xro2[u] + x2[n]*cos(tpi*u*n/fs2);
xio2[u] = xio2[u] - x2[n]*sin(tpi*u*n/fs2);

}
xro2 [u] =xro2 [u] /f s2 ,-
xio2[u]=xio2[u]/fs2;
xo2[u]=sqrt(xro2[u]*xro2[u]+xio2[u]*xio2[u]);

}

dft2=0;
n2=fs2/2;

83

}

max2=xo2 [0] ;
for(j=l;j<n2;j++)
{

if(xo2[j] > max2)
{

dft2=j;
max2=xo2[j];

}
}

k=dft2-dftl;
out=glde(k),-
freq=abs (dftl+out*fsl) ,-
printf("The frequency is %d", freq);
for(;;);

glde(k)
{

float mult,bl,b2,mtest,mdl,md2, mx;

/* This section solves the linear diophantine equation fsl*bl + fs2*b2
na where fsl and fs2 are the sampling frequencies
and na is the greatest common divisor and returns the value bl, b2 and
na. fsl and fs2 are assumed positive */

float bol,bo2,ma,na,irem,bo3,bo4,-
int iquot;

bol=l;
bo2=0;
bl = 0;
b2 = l;

/* Place fsl and fs2 in ma(dividend) and na (divisor) respectively */

ma=fsl;
na=fs2;

/* Calculate quotient and remainder */

iquot=ma/na;
irem=ma-na*iquot;

/* If remainder is not zero, reset dividend and divisor */

while (irem>0)

{
bo3=bol-iquot*bl; /* calculate new coefficients */
bo4 =bo2 - iquot *b2 ,-

bol=bl; /* redefine bol, bo2, bl and b2 */

84

bo2=b2;
bl=bo3;
b2=bo4;
ma=na;
na=irem;
iquot=ma/na;
irem=ma-na* iquot;

/* redefine dividend and divisor */

/* reapply Euclidean algorithm */

/* To check whether the equation is solvable, na must be a factor of k
for the equation to be solvable. */

mult=k/na;
if ((k-mult*na)==0)
{

bl=bl*mult;

b2=b2*mult;
mtest=bl;

mdl=fsl/na;
md2=fs2/na;
mx=bl;
mx=mx+md2;

/* Equation is solvable */

/* These new values solve the
/* diophantine equation

/* To check whether bl and b2
/* are the least values that
/* satisfies the diophantine equation */

*/
*/

*/
*/

while ((abs(mx)-abs(bl)) < 0)
{

bl=mx;
b2=b2-mdl;
mx=mx+md2;

}

if ((mtest-bl)==0)
{

mx=bl;
mx=mx-md2;
while ((abs(mx)-abs(bl))<0)
{

bl=mx;
b2=b2+mdl;
mx=mx-md2;

}
}

return ((int)bl);
}

85

86

INITIAL DISTRIBUTION LIST

No of copies
1. Defense Technical Information Center 2

8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Phillip E. Pace, Code EC/PC 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Professor Curtis Schleher, Code IW/SC l
Department of Information Warfare
Naval Postgraduate School
Monterey, CA 93943-5121

6. Head, Department of Strategic Studies l
SAFTI Military Institute
Ministry of Defense
500 Upper Jurong Road
S638364
Singapore

7. Maj Chia Eng Seng 2
Ministry of Defense
303 Gombak Drive
S669645
Singapore

87

