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STIMULATED BACKSCATTERING FROM 

RELATIVISTIC UNMAGNETIZED ELECTRON BEAMS 

Section I.  Introduction 

Stimulated emission of backscattered radiation from intense relativistic electron beams 

has received considerable interest in the past few years. The primary reason for this interest 

lies in the fact that radiation backscattered from relativistic electron beams can undergo a 

dramatic frequency increase and is readily tunable over a wide frequency range. Hence, these 

scattering mechanisms, which rely on relativistic electron beams, may soon lead to a new class 

of submillimeter and infrared generating devices which could find application in such areas as 

radar, plasma heating, diagnostics, isotope separation and laser pellet fusion. 

Analyses of the scattering phenomena have been carried out using both, a quantum 

mechanical formalism1 ~4 as well as a classical approach.5-9 In these theories, the incident 

pump field has taken various forms such as periodic static fields and traveling electromagnetic 

waves. Numerical simulations of the scattering processes have shown that the efficiency of 

converting electron kinetic energy into electromagnetic energy can be as high as 30% under 

certain conditions.10,11 The frequency enhancement can be viewed as a double doppler upshift 

of the incident pump wave. An incident electromagnetic pump field at frequency w0, propagat- 

ing antiparallel to a relativistic electron beam with speed v0 will backscatter into a frequency 

~ (1  + v0/c)27oW0 where y0  = (1   - (v0/c)2) ~1/2.  In the case of a periodic static pump 

Manuscript submitted August 11, 1977. 
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field of period /, the frequency of the backscattered wave will be approximately given by 

(1 + v0/c)y%v0(2ir/l). The upshifted frequency can be easily varied by changing the energy 

of the electron beam. Experiments at Stanford University have demonstrated laser action at 

wavelengths of 10.6 ^m as well as 3.4 /u.m using a static periodic pump. The gain in these ex- 

periments was relatively low: 7% increase in power was achieved in a 5.2 m interaction length 

at 10.6 /Lim and in an oscillator experiment only 0.01% of the electron beam energy was con- 

verted into radation. Recent experiments at the Naval Research Laboratory using a traveling 

electromagnetic pump field have produced power levels of 1.5 MWs at 0.5 mm with an overall 

efficiency of 0.01%. At Columbia University experiments 12,13 employing a static periodic mag- 

netic pump have resulted in megawatts of scattered radiation at wavelengths in the neighbor- 

hood of 1 mm. Scattering experiments using relativistic electron beams are also in progress at 

the Ecole Polytechnique in France.14 

The two principal types of scattering processes in which an incident pump field is back- 

scattered off an electron distribution into a transverse wave are wave-wave (Raman) and 

wave-particle (Compton) scattering.15 ~19 In general, these two scattering modes are present 

simultaneously; however, the wave-wave process dominates if the incident pump wavelength 

in the electron beam frame is much greater than the Debye wavelength. Scattering then takes 

place off collective plasma oscillations. On the other hand, wave-particle scattering dominates 

when the pump wavelength is comparable to or smaller than the Debye wavelength. In this 

situation, scattering takes place off shielded or "dressed" particles . This paper will address both, 

wave-wave and wave-particle scattering. 

The physical mechanism responsible for the instability of the backscattered electromag- 

netic wave, i.e., stimulated emission, can readily be described classically in the beam frame. In 

what follows, quantities in the beam frame will be written with primes. In the beam frame we 

stipulate that the existing electron equilibrium is perturbed by a low frequency density wave in 
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the absence of an external magnetic field. Only waves propagating along the z axis, i.e., direc- 

tion of beam velocity in the laboratory frame, will be considered. The electrostatic perturbation 

at frequency and wavenumber (CD\\ , k\\ ) need not be an eigenmode of the electron distribu- 

tion. The introduction of a large amplitude high frequency incident pump, £0, at (a»0, k0) 

forces the electrons to oscillate at a frequency w0 in the direction along E0 with a maximum 

velocity given by vov = | e\ EJ (moa>0). This transverse oscillation velocity, vos perpendicular 

to k0, couples to the density wave, thus inducing transverse currents at frequency 

w+ = w|| ± w0 and wave numbers k± = k\\ ± k0. These currents now generate new 

electromagnetic waves at (to±, A± ). The generated or scattered electromagnetic field consists 

of backscattered waves propagating antiparallel to the incident pump wave. Forward scattered 

waves are also induced, but will not be considered because they are down shifted in frequency 

and also have a much smaller growth rate than the backscattered radiation. The pump and 

backscattered wave couple through the v' x B' term in the Lorentz force equation resulting in 

a longitudinal force at  (o»n , An ).  This induced longitudinal force, also called the ponderomo- 

tive or radiation pressure force, if properly phased will reinforce the originial density wave. The 

backscattered electromagnetic wave is, therefore, unstable resulting in stimulated emission of 

radiation. It should be noted that in the beam frame, the pump frequency is usually much 

greater than the frequency of the longitudinal wave, |w0|   »  |WJ||. 

For a cold electron beam the electrostatic wave is an eigenmode of the system, |wn | is 

roughly equal to the electron plasma frequency, w = (4TT-| e\ 2n0m0) 
l'2 and the scattering 

process is referred to as Raman scattering. However, if the pump strengh is sufficiently strong, 

the frequency of the electrostatic wave is modified by the pump field and is greater than the 

plasma frequency. In this regime the scattering process is called modified Raman scattering. In 

either case, the phase velocity of the electrostatic wave is far removed from the electron 

velocity, |to||/A|| |   >>   vth, where vth is the electron thermal velocity; therefore, they are 
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referred to as nonresonant, wave-wave or collective scattering modes. If the electron beam is 

sufficiently thermal so that the phase velocity of the electrostatic wave is comparable to the 

electron velocity, a resonance between the wave and particles results. This regime is called 

Compton scattering, resonant wave-particle scattering or inverse nonlinear Landau damping. 

Here the nonlinear coupling between the pump wave and scattered electromagnetic wave in- 

duces a longitudinal wave with a phase velocity comparable to the electron thermal velocity, 

\<*>\\lk\\ | - vlh. 

Section II.  Dispersion Relation 

In this section equations describing the coupling of the incident pump wave and the scat- 

tered electromagnetic and scattered electrostatic waves are derived. The large amplitude in- 

cident pump field is assumed to be linearly polarized in the x direction with frequency QJ0, and 

wavenumber k0 = k0e.. Only spatial variations along the z axis will be considered. The pump 

field is incident upon a system of electrons which are electrostatically as well as magnetically 

neutral. The model is depicted in Fig. (1) and the analysis is fully relativistic and is performed 

in the laboratory frame of reference. The electromagnetic field of the incident pump wave is 

chosen to be of the form 

E0 (z, t)   = E0 cos (k0z  — (»0t)ex, 

ck0 
B0 (z, /)   = E0 cos (k ,z - (o0t)e , 

(la) 

where E0 is the electric field amplitude and the direction of the axial Poynting flux along the z 

axis is given by the sign of <o0/k0. The form of the scattered electrostatic wave is 

En    = E\\ cos (k\\ z - co11 t + 0|| )e., 
(2) 

where 4>\\   is the phase of the longitudinal field with respect to the pump field. The scattered 

electromagnetic field is chosen to be of the form 

4 
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Es  =   £ E± cos (k±z — w±t + <j)±)ex, 
+, - 

B, 

where k±   = k\\   ± k0, w. 

the sum is taken over +,  ■ 

ck. 
E+ cos (k+z — o) + t + (f>+ )ev, 

(3a) 

WH  ± (D0, 0± is the phase with respect to the pump wave and 

Figure 1. Schematic of Backscatter- 
ing Off a Relativistic Electron Beam. 
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The evolution of the electron distribution is described by the relativistic Vlasov equation 

9    , 9        , f(z, v, t)   = 0, 
(4) 

where vn =v • e. is the component of velocity along the z axis, L = |e|/w0(E + 

v x B/c) • d/du, E = E0 + En + Ev, B = B0 + Bs, u = y v is the normalized momentum, 

y = (1 — ß2) ~''2 and ß = v/c. In order to obtain the currents which drive the scattered 

fields we use a perturbation expansion to find the distribution function /(z, v, t) in terms of 

the scattered fields. Since the operator L consists of the perturbing fields, which include the 

pump, we may expand / in powers of the perturbating field amplitudes, that is 

= /(0)    ,    /•(!) /' =fW'   +fU'   +fu>   + (2) 

(5) 
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where 

BJ (0) 

Bt 

B    , B 

o, 

(/;)   = ffUi-l) fw>   = Lf 

(6) 

(7) 

and n = 1, 2, .... In what follows the equilibrium distribution function described in (6) is 

chosen to have the form 

f(0)(u)   =/io8G/v)8 0/v)so(i/|| ), 
(8) 

where n0 is the ambient electron density, 8 (w,) is a delta function and f g0(u\\ )du\\ = 1. 

That is, the equilibrium distribution function is chosen to be cold in momentum space 

transverse to the direction of wave propagation while having a velocity spread parallel to the 

direction of wave propagation. It proves convenient to write the operator, L as the sum of two 

terms, one involving the pump field and the other scattered fields, that is, L = L0 + Ls where 

= i£L 
m. 

L«=n    lE»cos (V -<V)0J. 

£|l  cos (A-|| z  - ton / + 0|| ) +   £  E± cos (k±z  -w±t + 0± )#H 

and 

*o = 

<K = 

*o       B Vxko 

°>o  Bux    '     wn    du\\ 

</'± 9 
9wA. 

,    v.v^± 9 
w± co± 9w|| 

"/'o = wo   _vll^0-     </■'+= w +   — V|| A-_ 

•/'II   = wll    - V|| A-|| 

(9a-g) 
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The perturbing density and currents which drive the backscattered waves are given by 

"e  =  I n/fl)(z,/), 
n =1 

and, 

J = £ J("}(z, r), 

where «e
(/,) = J*/^ (z, u, t)d3u and J (/,) = - \e\ f (u/y )fM (z, u, t)d3u. The response 

current J drives the fields in Eqs. (1), (2) and (3) through the wave equation: 

V2E  - c _292E/3/2  =4nc ~2dJ/dt + V (V • E). 

Solving Eq. (7) for/^'Cz, u, /), the first order particle and current density take the form 

II       «0/C|| 

" ° ) ^11 • *ll )   =  _ y~ X Hi , *n )£||  sin  (/C|| z  - a>|| r + <£|| ), 

/||(1) (con , A.',, )   =-T^r x^ll ' *H ^H sin  ^11 z  ~~ WH ' + *M *' 

y"'t-t')--4.<"i„>   ^"-  <V  —.»■ 

n.                                          o)2            £± 
./+    (co + , £ + )   =  - -— sin  (k+z  - o+t + <j>+ ), 

477<r||    >       01 ± " - " (10ad) 

where mp = (4ir\e\ 2n0/m0) 
1/2, \ (c>\\ • k\\ ^ = ^j/k\\ ) / du{l (Bg0(uu )/du{l )/4>ll is the 

electron susceptibility, <yM > -1 = J duu g0 (wM )/yn and yM =(1 +W|2/c2)1/2. For a 

cold electron beam, g0(w|| ) = 8(//|| — w0), the electron susceptibility is then given by 

Xcoid = ~ ^olyl y (wll — V0AT|| ) 2. The arguments of the quantities on the left hand side 

of Eqs. (10) denote the frequency and wavenumber of the quantities. Using (lOb-d) in the 

wave equation the linear dispersion relations for the pump, scattered electrostatic and elec- 

tromagnetic waves are respectively: 
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2    _ „2a 
<   -ClK   -W,7/<T||   >    =0, 

1   +x(u>||,*|, )   =0, 

2     - Aa     -,.,2 toi    ~ CLk vjKyw >   =0. 

Evaluating the second order particle and current density gives: 

E. *ll      En 
«(2)(a»„,*,i )   =  -^-    ~° cos (A|| z  - öj|| / + <£ + ) 

cos (An z  — ton / + <f) _ ) x(toH,/c|, ), 

■'ll(2)^l|.*||) 
ton A: 11*11    \e\E„ 

cos (A'n z  — co 11 / + t/> + ) 

COS   (All Z   — ton /   + c/> _) X(to|| , An   ) 

■(2) Jr(*>o.K) =T- I 
Hf, 

877   H—L w()w. 

42)(to + ,A+) 

£|l cos (k0z -to0/±  (0±   -0M ))x(toN , AM ), 

*ll    \e\En 

877    w0co„ 

(lla-c) 

(12a-d) 

£|l cos (A±z  - w±/ + </>n )x(w|| , A,, ), 

where x(cou , A,, ) = (co^/A,, ) / </tf|| (dg0(ul{ )/3W|| )/(y„ ,,,„ ). Note the difference in 

the definitions of x and *. It is necessary to find the third order transverse current density at 

(to±, k± ) in order to recover the wave-particle scattering. The third order current density at 

(co + , A . ) is 
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j£H<o±,k±)  = 
\e\\ \\e\E0] 2 H<»o E + 
4m0 >V0 

2         A± 
<"VW± w + 

E_ 
sin (k±z — <o±t + # _) 

O) — (13) 

where 

a>; 
*±  = 

+ <h 

Sduw 
So (»II) 

rii*i^± 

2-».,. 2 

(/C||W0 +to\\k0) 
"II 6>± 

A:±  -1' 
7|| C2 

(Ar,2|   -a>,2Jc2)^±^0 + (k0k±  - w0w±/c2)>p 

(k0kn + w0(oN/c2)(a>± +M||*±/y||) 

(14) 

Now substituting the currents Jl{ (a»,, , kn ) = 7||(1)  + J\\2),J± (w±, k± ) = 7|n  + y_ji2)  + 

7|3) and 70(w0, /t0) = 70
(1) +/0

(2) into the wave equation for EM , E* and E0 we obtain 

(1  + x(w|| , fc|| ))£|| e      e 
$|l   ;(k|| z -&i|| i) \e\En 

k\\ X(w|| ,*|| ) 

(l) 4_ Ct) _ 

/(A:||  Z   — <U||  /) 

D±(co±, k±)E±eJ±e 
\e\En 

X(0)|| , AT,i   )   ±   X. 

(1   + x(w|| , A:,| ))    w 

x(w|| , A:,, ) 

„      '*ll    i(k±z -w±l) En e      e    ± , 

D.iu.JcjEie1**''-"»  =  -f-lf *„^,|X(»||.*„) 2   m0 

£+    /(«+ -*|| )       E _     -/(<£_ -*|| ) /(^„Z   -O)0t) 

(15a-c) 

Combining Eqs. (15), the following dispersion relation for the scattered waves is obtained 
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(1 + x)  = 
\e\E0 

2m0a>0 
kU 

(X   ~ (X+/x)(l   + X )*»<,/<» + ) (X  +  (X_/x)(l   +x)a>0/ft»-) 
Z>. D_ •   (16) 

The dispersion relation in Eq. (16) describes the relationship between wN and JtM in the 

laboratory frame. It is convenient, however, to transform Eq. (16) to the beam frame where the 

average electron momentum is zero; < «,, > =0. Beam frame quantities will be denoted by 

primes. In order to simplify the dispersion relation in the beam frame we assume that the fre- 

quency of the electrostatic wave is much smaller than either the pump or scattered electromag- 

netic wave, |w|| |   «    |w0|, and hence u'0 = ± w±. It is easy to see that this is an excellent 

approximation in the beam frame. The expression for \ ± and x in the prime frame can be ap- 

proximated by 

*; -x' 

x'-x' 
(17a,b) 

By using Eqs. (17a, b) and assuming the electron thermal velocity is nonrelativistic in the 

beam frame, Eq. (16) reduces to the rather simple form 

(1  +x')   =  - (vM/2)2C*n)22x' 
1     +     l 

D. D. (18) 

where 

:'= =*-/*, 
dg0 (vN )/9v| 

£>; = (cO2 -c2(k'): 

vll*ll 

JP • 

■ _ u\< 

«}p =  (4ir|e| 2n0/m0)
1/2. 

Note that m0 is the electron rest mass and hence is the same in all frames. Equation (18) is 

the dispersion relation for waves scattered parallel or antiparallel to the incident pump wave off 

a cold (Raman Scattering) or thermal (Compton Scattering) distribution of particles in the 

10 
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beam frame. Before examining the different scattering modes given by Eq. (18), the electron 

susceptibility   is  written   in   terms  of  the   standard   plasma  dispersion   function,   Z(f') = 

77- ~1/2 J* dxexpi -x2)/(x -£') for Imf > 0. In terms of Z(£'), the suceptibility is 

X   = 
kD 

*ll 
a +rz(r» = -j kD 

h 

2 

(19) 

where kD = oip/vrt is the Debye wavenumber, £' = (o>n //cN )/(V2 v,/;), and v,/( is the ther- 

mal electron velocity defined by g0 (vM )   = (J2n v'lh) 
_1 exp ( - vN

2/ (2v,,2 )). 

The temporal linear growth rates for Raman and Compton scattering can now be ob- 

tained for the backscattered electromagnetic wave in the beam frame. The energy flux of the 

incident pump will be assumed to propagate towards the right, i.e., w„ > 0 and k0 > 0, as 

shown in Fig. (1). 

Raman Scattering (Wave-Wave Scattering) 

We first consider scattering off a cold electron distribution such that | co(, /k^ \ » vth 

or £ » 1. In the case of a small amplitude pump field the electrostatic mode is very close 

to being an eigenmode of the pump-free system. That is, for a small amplitude pump a>n and 

Jt|'| approximately satisfy the dispersion relation 1 + x (u>^ , k^ ) = 0. If the pump amplitude 

is large enough, the eigenmodes of the electrostatic wave are modified and no longer satisfy the 

relationship given by 1 + \ '(tü|j , k\\ ) — 0. This strong pump regime will be discussed later. 

The dispersion relation in Eq. (18) leads to unstable roots if D'_ or D+ vanish simultaneously 

along with the left hand side of the equation. Figure (2) shows the general form of the disper- 

sion relation in Eq. (18) for a cold electron system and small amplitude pump field. The situa- 

tion where both £>'_ or D+ vanish simultaneously will not be considered here since this case 

does not correspond to stimulated backscattering; and hence, will not lead to the proper fre- 

11 
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quency enhancement in the laboratory frame. Furthermore, the linear growth rate is substan- 

tially smaller for this instability. Because the frequency of the longitudinal wave is much less 

than the frequency of the pump wave, the quantity D± (OJ±,A± ) can be approximated. With 

this assumption we find that 

D± ((D±,k± ) = ± 2wj 
Mil c" cV 

+ 
(20) 

UNSTABLE ROOT 

' D'+iu>\, k' 

tu'   , k'..l = 0 

UNSTABLE ROOT 

Figure 2. Dispersion Relation in the 
Beam Frame, for a Cold Electron Beam, 
Showing Stimulated Growth of the Scat- 
tered Radiation. 

In obtaining (20) the fact that the pump wave satisfies the dispersion relation, D() (o>0,k0) 

= 0, was also used. Since we are considering scattered waves such that |&i||/A|j | » vlh, 

the susceptibility can be expanded to give x — ~^p
2/^\\2 ~ 3üJ,i2vih k\\'lu,\\^ + Hm(x') 

where Im(x') = n 1/2 i exp ( —£ 2) is the imaginary part of the electron susceptibility. From 

here on we will take the wave at (w _, k _) to be resonant, i.e. D'_ (w '_, k'_) = 0, and the 

(w +, k + ) wave to be nonresonant, i.e. D+ (w +, k + ) ^ 0. Therefore, we consider the case 

where o)0/ko > 0 and w _/k _ < 0. Our choice for the resonant backscattered wave, 

D _ = 0, is completely arbitrary, since it is easy to see that choosing D+ = 0 and D _ ^0 

leads to the same results. The dispersion relation in (18) now becomes 

"\ I-* ii i ULI n 

(a;,,2   -W/
2(l   -/7m(x ))(w||    -«)=--£ 

o 

12 

2 v(;2A,i2 

(21) 
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where 

n '= A:>H c2/(o0  - c2/cn
2/(2o)0) and w/2 = a>p

2  + 3vth
2^j2 = wp

2. 

Equation (21) is the approximate form of the dispersion relation when 1 + x — 0, D_— 0, 

D'+ T£ 0, £ ' » 1 and w. « w^. From Fig. (2) we note that the unstable roots occur for 

/C|j  = 2 Ar0, which corresponds to stimulated backscattering. 

To obtain the growth rate from Eq. (21) we set wn = w, + 8o> where to, is set equal to 

a'and 18w'| as well as |&J//m(x ')I are assumed much less than |w/|. Substituting 

ct)|j   = w/ + Söj  in Eq. (21) gives the following expression for 8w 

'2   '2; '2 ) ^2 

(mjlm^x'))2  + 
w/ ' i 

8w    =  — /— //w (x )  + y 
to ,&) lwo (22) 

There are two cases to consider in Eq. (22), depending on the strength of the incident pump 

wave. If the incident pump amplitude is sufficiently weak to satisfy the inequality 

1/2 

ßos   « 
(»;3«oi/2 

lm(x ) 
VNI 

Im(x ) 
(23) 

where ßos  = vos/c, then the temporal growth rate is given by 

Im (8co )   = — 
>pvosk\\ 

>/lm(x ) 
//w(x')   _ £ 

/w(x ) (24) 

and the real part of the frequency is /?e(w|j )   = w/ — oy  In the moderately strong pump re- 

gime where ßos    »   (w/3w0)
1/2 /m(x ')/(apck\\ ), but small enough so as not to greatly 

modify the pump-free eigenmodes, the growth rate is 

1/2 

w//m(x ) r' = lm(6(o')   =v 
4 

V<«"ll 

V^/^o 
£« 

2 (25) 

13 
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the real part of the frequency is 

'2 

w '2 
(26) 

We now consider the situation where the pump amplitude is so large that it modifies the 

eigenmodes of the electrostatic waves. That is, if ßos > /3c'rit where /3c'rit = (2 u',l<a'0) 
m - 

(2(op/wg)
1/2. The frequency and wavenumber of the longitudinal wave, (w|J , k\\ ), no longer 

satisfies the relationship 1 + \ '(<»\\ . k\\) — 0. In this case W|j >> cu/,0 'and the disper- 

sion relation in (21) takes the form wM
3   = - {ßos<x)p)

2o)'0l2 which gives the growth rate 

r'=/m(W|j)  =^((0^)2^/2)1/3. 
(27) 

The real part of the frequency in this case is 

Re(o,u)   =| ((/S^)2^)173. 
(28) 

Equations (24), (25) and (27) are the expressions for the temporal growth rates for stimu- 

lated Raman backscattering in the beam frame. These expressions all have a different 

parametric dependence on the pump amplitude. Since lm{\ ) « 1, for a cold electron distri- 

bution, we set lm(x ) =0 and discuss only the moderately strong and strong pump regimes 

whose growth rates are given in Eqs. (25) and (27) respectively. The results of the linear 

theory for these two cases can easily be transformed back to the laboratory frame. The value 

of ßos, in the laboratory frame, which distinguishes the moderately strong and strong pump re- 

gime is /3crit, and is given by 

1/2 

'cnt 
= ,, -3/2 r<T3/2Ü +ß0)-

l/2 

y-"H\  +/?0)-
1/2 -phln 

<ti, 

1/2 

(29) 

14 
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where ß = v0/c, y0 = (1 - (v0/c)2) ~1/2 and v0 is the axial speed of the beam in the 

laboratory frame. From Eq. (25) and (27) we find that the linear growth rate in the laboratory 

frame, for the moderately strong and strong pump regime, is given respectively by 

when ßos < ßcrit and 

r -^ (d +ß0)ßl<o0»t/2)U^^f- (d +ß0)ß2o^0-
2

Pho/2)m.       (3i) 

when ß     > ß   •,.   The frequency of the backscattered electromagnetic wave in both the 
*   os ^ r 11 

|w_| = (1 + ß0)
2y0

2«v 

'os   ^   ^cnf 

above cases is 
\„>    I = (1 + ßJ2y2<o„. 

(32) 

In the beam frame of reference the phase velocity of the electrostatic wave is 

«o,'| /A:,',  -ü>//2/c0) (33) 

when ßos < ßc'rit and 

«ii/*ii -| ((ßos«;)2^0/2)1/3//c0 > C0//2C 

for ß '   > ß ' •,. The growth rates in Eqs. (30) and (31) are valid as long as | w,j //c,j | is much 
•   os c-ni 

greater than the thermal velocity vth. The opposite limit is the Compton regime and will be 

discussed in detail later. The thermal velocity in the beam frame is related to the thermal velo- 

city in the laboratory frame by the relation vth = y0
2vth. The total spread in the beam energy 

in the laboratory frame due to the thermal velocity spread vth is A€th = 2ß0y0 (vth/c)mc. 

Therefore, for thermal effects to be negligible and Eq. (30) and (31) applicable, the following 

conditions on Aeth must be satisfied in the moderately strong pump case 

«Phl12 
A / ß° 
Aeth/e° <<   (1 +ß0)(y0 -1) (35) 

15 
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and in the strong pump case 

Aeth/e0  « 
y0ßtA 

(1   +ß0)(y0   -1) ßi 
w/./v<» 

1/2 
(1   +ßo) 

1/3 

(36) 

where e(1 = (y(, — l)m0c2 is the electron kinetic energy. These results are summarized in 

Table I for a highly relativistic electron beam. Estimates for the efficiency of converting elec- 

tron beam energy into electromagnetic energy are also given in Table I and will be discussed 

shortly. 

Compton Scattering (Wave-Particle Scattering) 

We now consider the kinetic regime where the phase velocity of the longitudinal wave is 

of the order of the electron thermal velocity, i.e., wi| /A,, =#(vlh ). In this regime the elec- 

trostatic waves are heavily Landau damped in the absence of the pump wave. This scattering 

mode is called stimulated Compton or inverse nonlinear Landau scattering because the elec- 

trostatic wave, resulting from the beating of the two electromagnetic waves, is resonant with 

the electrons. Since the longitudinal wave is not an eigenmode of the system, i.e., 1 + \ 5^0, 

the dispersion relation of the electrostatic wave for Compton backscattering takes the form 

- n    = (j3ft2/2)w,;*/(!   + v), 
(37) 

where Eq. (20) for D_ together with k^  — 2k0 = 2co0/c were used in obtaining Eq. (37). 

Taking the imaginary part of both sides of Eq. (37) and noting that 

Im 
1   + X 

- Im 
1 

1   + X 

the growth rate for Compton scattering, in the beam frame, is found to be 

r    =   - (ß0
2/2)ojnlm 

1 

1 + X '(n \2k0) (38) 
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where 

/»/[(l  + x (n ,2k0)) ~[]  = -h =. 

lm(Ze) 

'-T 

2 

e{Zc) + j_ *Z> 
2 k 

Im(Zc) 

Ze = dZ/B£ , and £ = w / (\/2vlhA: ). The term /w((l + \ ) _1) can be readily approxi- 

mated in the limit that <u Ik « vlh,i.e., £ « 1. In this domain the wavelength of the 

electrostatic disturbance, |2<r/A- |, is much less than the shielding length, 2-/kD. Therefore, 

in the limit that kD/k     <<   1 and 

2 

OR. /W(7.)== -,i:^ 
2 

/,„ [(1  +x ) -']|       - j 
An   A      << 1 

£ exp( -£ 2). 
(39) 

Substituting Eq. (39) into (38). the Compton growth rate becomes 

1 2 

-A.:«"« £ exp( -£ -). 

The term £  exp ( —£ -) has a maximum when £    = \ \2.  i.e.. &   ,k 

imum value of T  in Eq. (40) is approximately given by 

rmax    = A '"A-  {kD'k     )2   "JQ 

(40) 

= vlh,  so the max- 

' ih (41) 

In ref. (8) it was shown that the temporal Compton growth rate has the following transforma- 

tion properties from the beam frame to the laboratory frame. 

r r 
(1  + v„. c) (42) 
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Substituting Eq. (41) into (42) and writing the beam frame quantities in terms of laboratory 

frame quantities we obtain 

r      --i ^ max 10   -.5 y0
s(l  +ß0)

2cn 'th 

2    ßho^l 
5 o +ß0) 

0« eo 

2-f)   (y„ -i)2 Ae
th 

l  ^2 0,» eo 
2 

10 w
0  r„ Aelh 

(43) 

where the last expression is valid for a highly relativistic electron beam. 

Section III. Saturation Levels and Efficiencies 

This section will deal primarily with the saturation and efficiency levels of Raman back- 

scattering off a cold, i.e., vth =0, electron beam. Saturation of the backscattered electromagnetic 

wave may be due to either pump depletion or nonlinearities associated with the electrostatic 

wave (density wave). Pump depletion ocurrs when the amplitude of the pump is depleted by 

the scattering process. Nonlinearities result when the electrostatic wave, given in Eq. (2), 

grows to a level sufficient to trap electrons. Roughly speaking, for a small amplitude pump 

field, pump depletion occurs before the electron dynamics become nonlinear. However, for a 

large amplitude pump field electron trapping takes place before all the incident photons are 

scattered. Therefore, the magnitude of ßos determines the nature of the saturation mechanism. 

In the beam frame the magnitude of the backscattered electromagnetic wave, when sa- 

turation is due to pump depletion, is given by 

E'-\ = (a/_/o'%,; o'       ^o- 

(44) 
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Equation (44) is just a statement of conservation of wave action. When the frequency of the 

scattered wave, u> _, is approximately equal to the pump frequency, w(), in the beam frame, we 

find that |£_| = £„ and virtually all the incident pump photons are backscattered. However, 

before this happens the level of the density wave may become comparable to the ambient den- 

sity of the electrons. When this happens the electron dynamics become nonlinear and electron 

trapping occurs in the potential well associated with the total electrostatic field. The total longi- 

tudinal electrostatic field consists of the sum of the self consistent field given by Eq. (15a) and 

the ponderomotive field associated with the v x B/c axial force. The magnitude of the sum of 

these two fields is 

Emnil\   ~ 
1       A"ll   X 

2"   (1   +X) 

\e\ E E 

(45) 

Associated with | E. . ,\ is a density wave, the magnitude of which is 

8/; 
*ll  X E„E_ 

87r    (1   + X )   '"„<%&> (46) 

Equating |8/? | to the ambient electron density n0, we find that electron trapping limits |£_| 

to the value 

£-   = 8T«„'»„ 
(1   + x ')   w»w 

k,/E.. (47) 

For the moderately strong pump regime we find that 

1   +X 

X 
|2I'/o 

ßos 

1/2 

(48) 

where Eq. (25) was used for I' .  In the case of a strong pump the magnitude of the susceptibil- 

ity is much less than unity and therefore 
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i + x' = 1 

X 
= 

W|| 
2 

=: ßos "o 

X «V 2u>n 

2/3 

(49) 

where Eqs (27) and (28) were used for wN . Substituting these expressions for \ '/0 + X ) 

into Eq. (47) we find that the amplitude of the backscattered electromagnetic wave, when sa- 

turation is due to electron trapping, for the moderate and strong pump case is respectively 

given by 

3/2 
E<> 
  ßos   <   Pcri. 
ß, (50a) 

and 

1 
2 5/3 

<»o 

4/3 

(ßos) 
2/3 '        ßos   >   ßcril 

(50b) 

where we have used the fact that A,, = 2ka = 2a>0/c and w '_ = oV Comparing Eq. (50a) 

with (44) we find that if ßm < 0,', where j8,' = (1/2) (w/wj 3/2, then pump depletion sa- 

turates the backscattering process before electron trapping takes place. Since 0, is always less 

than ßcril it is clear that for ßm > 0, electron trapping is the saturation mechanism and it oc- 

curs before the pump is depleted. The level of the fields at saturation in the beam frame can 

then be summarized as follows 

\E_\ = 

1 

for ßm  < ß], pump depletion 

for0l'   < ßi,s  <  j8cri,. trapping 

-jf <ß\/ßer\i) (ßcr-Jß,J2,'3E,,-        for jÖm.  > j8cril. trapping. 
(51a-c) 

In order to obtain the efficiency it is necessary to transform the magnitudes of the backscat- 

tered fields in Eqs. (51) to the laboratory frame. Since the electric fields have the following 

transformation properties, | £_ | =|£_|/(r„(l +0„))and£„ = (1 + ß0 )y<)E0, the ampli- 

tudes in Eqs. (51) when written in the laboratory frame become 

20 



NRL MEMORANDUM REPORT 3587 

,E-\ = (1   +/3())
27o 

E„. 

Pi 

ßas 
£„• 

1 01 
72   0cril 

Jcnl 
2/3 

for/8m.  < /3, 

for/8,   < /BttV  < 0cril 

for0m.  > 0cril 

(52a-c) 

where 

01   =p»"5/2(1  +/3"} 
-3/2 '>,,hn 

1/2 
3/2 

Peri,    =21/2r,r3/2(l   +ßo) 
-1/2 y/y» 

1/2 

and 

1/2 

are the expressions for jo,' and /3cril transformed to the laboratory frame. 

The efficiency of stimulated backscattering can be defined as the ratio of the average elec- 

tromagnetic energy density in the laboratory frame to the kinetic energy density of the elec- 

trons. Efficiency is then defined as T, = < WE + WM >/(n„(y„ - l)mt,c
2) where 

< WE> — < WM> = |£2_|/167r is the average electric field energy density. The electric 

energy density is very nearly equal to the magnetic energy density, since ck _ = u _. Using 

the expressions in Eqs. (52) for |£_|, the efficiencies in the three regimes determined by the 

magnitude of ßos are given by 

2 

1  y0
50 + 0„>4 

2 (y„   -1) 
'pi > o 

1/2 ßos- 

1     (1   + 0O) o>Jy}/2 

16    (y„   -1) 

up/y„ 
ßl 

«2 

1/3 

forj3m.  < ßx 

for/3,   < 0<M  < ßcra 

forj8,v  > /3cril. (53a-c) 
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Table I contains a summary of the results obtained for the Raman backscattering instability off 

a highly relativistic electron beam.   It contains the pump amplitude regimes in terms of ß 

temporal growth rates, saturation mechanisms, efficiencies at saturation and energy spread re- 

quirements. 

Table I. Summary of Collective Wave-Wave Scattering Results in the Laboratory Frame 
for a Highly Relativistic Electron Beam. The parameters are defined as 

ß0 = l.ßm   =\e\E0/(yomi)c0c),ßl   =(32r1/V5'V/2,/3crit   =y-"Hm, 
£   = (o>„h !/2) Zealand \e Je ()   = 2y3„ (wjc)/(y0   -1). 

Regime Growth Rate 
Saturation 
Mechanism 

Saturation 
Efficiency 

Energy Spread 
Requirements 

0<ßos<ß! r = _^7i/2    a/2 
V2    °      ° 

pump 
depletion 

8?0 „                                  (17       /f\2 
Aeth                 t 

«        ? 

e0            2(7o - 1) 1      „       -1   (Pos/S) 
• o      x 

ßl<ßos<ßcnt 
ßoi 

trapping n-        S 
Aeth                t  «  5  

e0           2(7o -1) "      4(To - 1) 

ßent <ßos r=^«„(ftji)2'3 trapping "4J°-i««»2's 
A^th ^ T0(ßosf)

2/3 

e0      ^   4(7o-l) 
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