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COMPUTER-AIDED DIAGNOSIS AND AUTOMATED SCREENING 
OF DIGITAL MAMMOGRAMS 

Kevin Woods 

Dept. of Computer Science & Engineering 
University of South Florida, Tampa, FL 33620-5399 

FINAL REPORT - 10/29/97 

1    Introduction 

Breast cancer is by far the most common cancer among women. Although lung cancer has 
a lower incidence (fewer diagnosed cases) than breast cancer, more women die each year 
of lung cancer. However, the majority of deaths from lung cancer can be attributed to 
smoking, and so breast cancer continues to be the leading cause of nonpreventable cancer 
death. Current statistics indicate that 1 in 9 women will develop breast cancer at some 
time in their life [1]. Additionally, the etiologies of malignant breast cancer are unclear, 
and no single dominant cause has emerged. Although there is currently no known way of 
preventing breast cancer, the earlier a cancer is detected and treated, the better the prognosis 
[2]. Currently, X-ray mammography is the single most important factor in early detection, 
and screening mammography could result in at least a 30 percent reduction in breast cancer 
deaths [2]. 

Due to a variety of factors, accurate interpretation of mammograms is considered quite 
difficult. Studies have shown that screening suffers from large variability in detection rates 
[3, 2]. There is a psychovisual phenomenon that applies to mammographic interpretation 
that guarantees a radiologist will occasionally fail to perceive significant abnormalities [4]. 
This is supported by studies showing that radiologists do not identify all breast cancers 
that are visible on retrospective review, and that many malignant abnormalities are not 
recommended for biopsy [5, 6, 7, 8, 9]. In one study, as many as 10% of true malignancies were 
missed because they were overlooked [7]. Another study demonstrated that approximately 
30 percent of lesions will be visible in a mammogram but missed for some reason, and 
another 30 percent of lesions will have subtle signs of malignancy that are difficult to detect 
[2]. Therefore, steps taken towards increasing the reliability and consistency of mammogram 
interpretation will have a significant and direct positive impact on early detection of breast 
cancer. 



The purpose of this research is to develop computer software for the task of interpreting 
digital mammogram images. Computer-aided diagnosis (CAD) is recognized to hold great 
promise for improving the sensitivity, specificity, and cost-effectiveness of mammography. 
Image analysis techniques can potentially be used to help the radiologist to interpret mam- 
mograms with greater accuracy, reliability, repeatability, and efficiency than would otherwise 
be possible. We envision a "second reader scenario," in which all mammograms are still read 
by the radiologist in a manner similar to current practice. In addition, computerized image 
analysis is used to suggest possible suspicious regions in the image so that the radiologist 
can then examine these regions more carefully. In effect, the computerized image analysis 
provides benefits similar to an independent reading of the mammogram by a second radiol- 
ogist. 

As several recent studies have indicated the use of CAD in mammography screening is 
feasible and beneficial [10, 11, 12, 13, 14]. It will result in some increase in sensitivity for a 
given level of specificity; that is, fewer missed cancers with the same biopsy rate. The cancers 
detected as a result of the increased sensitivity would then be treated earlier and thus less 
expensively and with a higher cure rate. As a specific example, the study by Kegelmeyer et 
al. [10] demonstrated that use of a CAD tool increased the average true positive detection 
rate of participating radiologists from 80.6% to 90.3% without any increase in their average 
false positive detection rate. 

2    Body 

This section describes in detail the approach we have developed for mammogram image anal- 
ysis. We begin with an overview of the feature extraction, classification, and image processing 
algorithms. Next, we discuss the the experimental methods, data, and any assumptions, in- 
cluding the train/test protocol and performance evaluation criteria utilized, and the results 
are presented. Finally, we draw some conclusions and make several recommendations for 
other researchers. 

2.1    Algorithm Overview 

The basic algorithm framework involves two phases, a sophisticated pixel-level segmentation, 
and a simple region-level classification. Segmentation at the pixel level encompasses several 
elementary steps. First, a set of seven features is computed at every pixel in the breast 
region of the mammogram image. These features include some general purpose measures 
of local image texture, and more complex features specifically engineered to respond to 
characteristics associated with mammographic abnormalities. Next, statistical classification 
is used to assign each pixel with a probability of suspiciousness. This process is depicted 
in Figure 1. The result is called a probability image which is smoothed and thresholded to 
produce a binary template which denotes which pixels are considered suspicious and which 
are thought to be normal. Finally, suspicious pixels are organized into regions by grouping 
connected pixels. At the end of this stage of processing, we have blobs denoting the locations 
of suspicious regions in the mammogram image. 

The region-level classification step is simply one of removing very small regions in the 



1) Input Image 

2) Feature Extraction 

3) Classification 

4) Probability Image 

Figure 1: An overview of the algorithm used for mammogram image analysis. This example 
shows a mammogram image and the results of six feature extraction routines displayed as 
feature images. The feature images are input to a classifier, and the result is a probability 
image. 

binary template which are the result of the previous segmentation stage. Since our goal is to 
prompt a radiologist to more closely examine any suspicious locations in the mammogram, 
cross-hairs are overlaid on the original mammogram image at locations which correspond 
to the centroids of any regions remaining in the binary template. Figure 2 shows the final 
output of our algorithm along with the ground truth for an example mammogram image. 

2.1.1    Pixel-Level Features 

In some of our previous work [15], we discussed the benefits of concentrating development 
efforts and algorithm sophistication on the pixel-level analysis. Indeed, the features extracted 
at the pixel level are a major factor in overall system performance. Therefore, a large 
portion of the development effort was directed towards development and refinement of feature 
extraction routines. 



a) Input Image b) Computer Generated 
Prompts 

UHU 
c) Ground Truth 

Figure 2: (a) An example mammogram image, and (b) the output of our detection algorithm 
compared with (c) the ground truth as marked by an expert mammopgrapher. 

After examining and evaluating over a hundred different types of features and feature 
variations, we eventually settled on seven features for mass detection, which are described 
in the following paragraphs. 

^ 

Mass region: template value = 1 

^ "Don't care region": template value = 0 

Background region: template value = -1 

Figure 3: The circle template used to detect circular masses. 

Multi-scale circle template matching. Masses are more dense than surrounding 
breast tissue, and many are roughly circular in shape. Therefore, a feature that responds 
to circular densities is useful. Lai et al [16] describe a normalized cross-correlation measure 
for matching a circle template to a mammogram image. The 11 pixel by 11 pixel template 
we use is shown in Figure 3. All pixels within a seven pixel radius of the center pixel set to 
one (1). A "don't care" region is defined by setting the template to zero (0) for a ring of 
pixels with Euclidean distances from 8 to 9 from the center. The "don't care" region in the 



template permits accurate matches for masses that are not perfectly circular. Pixels outside 
the "don't care" region are set to minus one (-1). The normalized cross-correlation measure 
returns a value in the range [-1,1], and a bright circle on a dark background would have 
a value in the range (0,1]. To account for different size masses, the template matching is 
performed on images scaled to various spatial resolutions. Images are scaled such that the 
7 pixel radius of the circle template corresponds to masses which range in size from 6 mm 
to 46 mm in diameter (in increments of 2 mm). For each pixel, we keep the value of the 
strongest match (highest normalized cross-correlation measure), and note the metric radius 
of the template corresponding to the strongest match. A post-processing step assigns all 
pixels within the best matching circle regions the same value as the pixel located at the 
centroid of the template. These circle regions are not permitted to overlap. So we start 
with the pixel with the strongest template matching measure in the image, and 'fill in" the 
circular region around it with the value of the center pixel. As noted previously, the size 
of the circular region is known as a result of the multi-scale template matching. We then 
find the next strongest matching pixel, and repeat the fill-in procedure until no more circles 
can be found which do not overlap any previously filled circle regions. Any pixels that are 
not part of a nlled-in circle simply retain the value returned from the multi-scale template 
matching. Example results for the multi-scale circle template matching algorithm are shown 
in Figure 4. 
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Figure 4: Example results for the multi-scale circle template matching algorithm. 

Multi-scale oval template matching. Since many masses are more oval-shaped, we 



applied the multi-scale template matching algorithm using an oval template rotated to four 
different orientations (see Figure 5). The oval templates were created by scaling a circle 
template with an inner radius of 5 pixels by a factor of 1.5 in four directions (0, 45, 90, -45 
degrees). Template matching was performed at resolutions corresponding to ovals with semi- 
minor axis lengths of 3 mm to 17 mm in increments of 2 mm. Again, the semi-major axis is 
1.5 times the semi-minor axis. As before, the results of the template matching procedure are 
post-processed by assigning all pixels within the best matching oval regions the same value 
as the pixel located at the centroid of the template. 

H Mass region: template value = 1 

|§s|y "Don't care region": template value = 0 

Background region: template value =-1 

Figure 5: An oval template rotated to 0, 45, 90, and -45 degrees is used to detect oval-shaped 
masses. 

Multi-scale orientation analysis. The Analysis of Local Edge Orientation (ALOE) 
measurement was originally used by Kegelmeyer [17, 18, 10] for the detection of spiculated 
lesions. His original ALOE measurement is computed for each pixel by centering a 4cm by 
4cm window on each pixel, and extracting a histogram of the edge orientations across the 
window. The histogram is normalized by dividing each bin height by the total number of 
pixels in the histogram. Finally, the ALOE feature is computed as the standard deviation of 
the histogram bin heights. The idea here is that a pixel in the area of a spiculated lesion will 
have a low ALOE value since there will be edges (i.e. the spicules) radiating in all directions 
causing a relatively flat histogram. The edge orientations for our ALOE measurements are 
derived from the output of a steerable filter algorithm which utilizes second derivative of 
Gaussian filters [19]. To detect different size lesions, the ALOE histogram is computed for 
several window sizes. Only the minimum value over all window sizes is retained. 

Relative contrast. A measure of how bright a pixel is compared to surrounding pixels 
is the relative contrast. This measure is computed for a pixel by subtracting the mean of a 
4cm by 4cm window (centered on the pixel) from the pixel value, and dividing the result by 
the pixel value. 

Fractal-based texture measure. A texture feature based on fractal dimension is 
computed using the techniques described in [20, 21]. Basically, a surface area measurement 
for each pixel is computed at several different scales, or resolutions. Linear regression is 
performed on a set of points, where the x value is the logarithm of the scale value, and the y 
value is the logarithm of the area measurement. At each pixel, a regression derived feature 
is computed as the slope of the fitted line. 
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Laws L7*E7 texture energy measure. Laws' texture energy measures [22] involve 
the application of a set of convolution kernels to an image. Each kernel is designed to respond 
to a different local property (i.e. texture). A texture energy measure for a pixel is computed 
by taking the average absolute value of pixel values in a square window of a convolution 
image. Laws provides sets of five element (L5, E5, S5, W5, and R5) and seven element (L7, 
E7, S7, W7, and R7) one-dimensional convolution kernels [22]. The names of the kernels are 
mnemonics for Level, Edge, Spot, Wave, and Ripple. Two-dimensional kernels are created 
by taking the outer product of any two of the one-dimensional kernels. After evaluating all 
30 possible 5 by 5 and 7 by 7 two-dimensional kernels, we utilized a single Laws' texture 
energy measure derived from the L7 and E7 one-dimensional kernels. We use a 5 millimeter 
square window for the averaging step. This particular feature seems to respond well to region 
(i.e. mass) boundaries. 

Roughness texture measure. This texture measurement computes the number of 
extrema per unit area [23], or the relative extrema density. Our definition of an extrema 
is slightly modified from that described in [23]. An extrema point is the location of a 
local minimum or maximum intensity value along a row or column. Thus, local extrema 
are computed separately for each row and column of the image. A run of pixels with the 
same intensity value at a local extrema is counted only as a single extrema point located 
at the midpoint of the run. To reduce the effects of noise, a local extrema is only counted 
if its relative difference from the previous extrema (in the row or column) exceeds a small 
threshold. The roughness texture measure at a pixel is computed for a 5 millimeter square 
window as the ratio of the total number of pixels in the window to the total number of 
relative extrema (computed in both directions) in the window. A rougher region will have 
more extrema and a higher feature value than a smooth region. 

2.1.2    Classification 

After examining many methods of statistical classification, including well-known Bayesian, 
nearest-neighbor, and neural network implementations, we settled on a decision tree classi- 
fier to perform the pixel-level classification. As we discuss shortly, we use well over 300,000 
samples to train a classifier. With this much training data, the excessive training time 
required of typical neural network classifiers was prohibitive. Similarly, the test mode for 
nearest-neighbor classifiers is computationally too expensive since an unknown sample must 
be compared to every training sample in order to make a classification. The Bayesian classi- 
fiers utilize probability density functions which assume the data has a Gaussian distribution. 
Since we are attempting to detect several different types of masses, the wide range of visual 
characteristics they exhibit are not well modeled by a single Gaussian distribution. 

Binary decision tree [24] (BDT) classification methods provide a means of approximating 
the optimal Bayes classification rule for a given situation. A BDT is simply an ordered list 
of binary threshold operations on the feature vectors, organized as a tree. At each node, 
one of the features in a vector is compared to a threshold, which moves the vector down 
the appropriate branch of the tree. This continues until it arrives at a terminal node which 
assigns a classification. The decision trees are grown automatically from the training data by 
recursive reduction of impurity. The control parameters at each node are chosen by simply 
determining the feature and threshold which best separate the current data.   This process 



is repeated, recursively partitioning the remaining training samples, until some stopping 
criteria is met. In our BDT implementation, quality of separation for a given feature and 
threshold is determined by a class separation measure, ORT, proposed in [25]. We use an 
iterative growing and pruning algorithm [26] for decision tree construction. 

As noted above, we have defined the detection process as a 2-class problem. Pixels are 
classified as either normal or abnormal. That is, we made no attempt to assign different types 
of abnormalities to separate classes. This helps explain why the simple Gaussian assumption 
for a Bayesian classifier was not adequate. In decision trees, the leaf nodes may be seen as 
associating a probability with each class. The probability is computed from the training 
samples that fall into the leaf after the tree has been grown and pruned. For example, a 
leaf node may contain 80 training samples from class 1, and 20 training samples from class 
2. During classification, we can say an unknown sample that falls into this leaf has an 80% 
probability of belonging to class 1, or a 20% probability of belonging to class 2. Thus, the 
probability of suspiciousness for a breast tissue pixel is computed in this manner. 

2.2 Experimental Data 

To evaluate performance of the software, a database of 117 digitized mammogram cases was 
utilized. Most are standard 4-view cases, 2 images of each breast, although a few cases had 
only 2 images as they were from mastectomy patients. In all, there are 465 images, 129 of 
which had at least 1 biopsy-proven abnormal mass. For some cases, the abnormality was 
not visible in one of the views, and so the database contains 137 visible lesions. There are 
three different types of lesions in the database: circumscribed masses, ill-defined masses, and 
spiculated masses. Ground truth in the form of an outline of the lesion boundary and an 
indication of benign or malignant pathology is provided for each mass. Ground truth was 
established by an expert mammographer. Approximately half of the lesions are malignant, 
and the other half are benign. 

This set of images is publicly available as volume speciaLOl of the Digital Database 
for Screening Mammography [27, 28] at the University of South Florida (WWW address 
marathon.csee.usf.edu). The mammograms were digitized at a spatial resolution of 100 
microns per pixel, and a grey level resolution of 12 bits per pixel. More information is 
available at the website. 

A couple of standard preprocessing operations are applied to every image. First, the 
breast tissue was segmented from the background. This reduces processing time since feature 
extraction is only performed at pixels corresponding to breast tissue, and it also prevents 
background pixels from affecting feature values for breast tissue pixels. Second, the images 
were scaled to a spatial resolution of 300 microns per pixel. This also reduces processing 
time yet still permits reliable detection of the smaller masses in the database. 

2.3 Train and Test Protocol 

In order to make efficient use of all available mammogram data, a v-fold cross-validation 
method was employed for training and testing. Basically, the 117 cases were divided into 
6 sets of data. Five of the sets contained 20 cases each, and the last test set contained 17 
cases (for a total of 117 cases).  The data sets are mutually exclusive with regards to case 
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selection. So, each case belongs to one and only one data set. Results for any one data set 
are obtained by using the remaining five data sets for training purposes. Thus, at no time 
is any data used for training and testing in the same set of experiments. The advantage of 
the cross-validation method is that all available data can be used independently for training 
and testing without biasing the results. 

To train the decision tree classifier, pixel locations are randomly sampled from within 
the normal and abnormal regions of each training image. Since we have more normal images 
than abnormal images, 500 normal samples are obtained from every image, and 1700 abnor- 
mal samples are obtained from those images containing an abnormality. If an abnormality 
contains less then 1700 pixel, then all pixels belonging to the abnormality are sampled. Con- 
sidering that each time we train the classifier we use samples taken from about 97 cases (117 
total cases minus 20 cases held out for testing), or around 388 images (4 images per case), 
there is an abundance of training data at this stage of processing. In general, we have almost 
200,000 samples from normal tissue and around 130,000 samples from abnormal tissue each 
time the decision tree classifier is trained. 

For a given set of training images, the seven features described above are extracted from 
the randomly sampled pixel locations, and a decision tree is grown. A parameter in the 
decision tree algorithm ensures that leaf nodes in the tree will contain at least 50 samples. 
With the abundance of training data, this prevents the decision tree algorithm from over- 
fitting, and leads to better generalization. For a given test image, feature measurements are 
extracted, and each pixel is assigned a probability of suspiciousness in the manner described 
above. The resulting probability image is smoothed with a 5 mm uniform kernel to obtain 
a consensus among neighboring pixels, and thresholded to eliminate pixels with a low prob- 
ability of suspiciousness. Next, pixels are grouped into 4-connected regions, and very small 
regions (less than 10 pixels) are eliminated. Finally, cross-hairs are overlaid on the original 
mammogram image at the centroid of any remaining regions. 

2.4    Performance Evaluation 

A couple of basic assumptions concerning the intended use of mammogram image analysis 
software dictate what constitutes acceptable performance. First, since the system is meant 
to prompt radiologists by directing their attention to suspicious regions on a mammogram, 
accurate segmentation of potential lesions is not required. We only need to place a prompt, 
such as the cross-hairs, somewhere within the boundary of a lesion. Therefore, any prompt 
lying within the boundary of a lesion is considered a true positive detection, while all other 
prompts are considered false positives. Second, most lesions are visible in two views since 
there are two views of each breast in a screening case. Therefore, it is acceptable to detect 
a mass only in one of the two views. 

The sensitivity of the detection routine can be adjusted by varying the threshold applied 
to the probability image (see Figure 6). A lower threshold, results in a more sensitive the 
algorithm, and the detection rate increases. However, this higher sensitivity comes at a cost 
of more false positive prompts per image. To examine the effect of this threshold, probability 
images were thresholded over the range 0.5 to 1.0 in increments of 0.005, and the results 
were collected. 



w    •. 

Probability Image Increasing Threshold- 

Figure 6: Example of various threshold levels applied to the probability image shown in 
Figure 1. 

2.5    Results 

For an average of about 2 false positive detections per image, our algorithm detected 70% 
(or 96) of the 137 lesions. In a CAD second reader scenario it is only necessary to detect 
a lesion in at least one of the two views. Using this criteria, our algorithm detected 90% 
of the masses in at least one view, and perhaps more importantly 97% of the malignant 
lesions were found in at least one view. Approximately 20% of the images had no detections, 
meaning the radiologist would not have to re-examine those images. Another set of results 
obtained by varying the threshold on the probability images shows that a lesion sensitivity 
(in at least on view) of 70% can be achieved with an average of one false positive prompt 
per image. 

3    Conclusions and Recommendations 

In conclusion, we have developed image analysis software which is capable of detecting 
mammographic abnormalities which would be used in a second reader scenario to prompt a 
radiologist to more carefully analyze suspicious regions in the mammogram. The automated 
prompting and the additional information provided by computerized image analysis should 
result in greater repeatability and uniformity in the standard of care. As several recent 
studies have indicated, it should also result in some increase in sensitivity for a given level of 
specificity; that is, fewer missed cancers with the same biopsy rate. The cancers detected as 
a result of the increased sensitivity would then be treated earlier and thus less expensively 
and with a higher cure rate. 

Based on our experiences associated with this project, we can make several recommen- 
dations for other researchers in this field. 

From a high-level view, our approach to detecting abnormalities in mammograms consists 
of two steps: pixel-level feature extraction, and statistical classification. A good portion of 
our early research efforts concentrated on developing better methods of statistical classifi- 
cation [29, 30, 31].  While these efforts did lead to improved classification accuracy at the 
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pixel level, the computational complexity of the algorithms make them not especially well- 
suited for a problem of this magnitude (hundreds of thousands of training samples). Later 
work stressed the importance of engineering problem-specific feature extraction algorithms 
[15]. It was here that the most significant improvements were realized. Therefore, we would 
recommend other researchers concentrate on designing features that are highly sensitive and 
specific. 

Other areas of research which may lead to significant improvements in performance are 
preprocessing routines. One example is noise equalization [32] which can lead to more 
reliable and robust feature extraction routines. A visual examination of our feature images 
shows there can be undesirable responses near the breast roll-off region in the mammograms. 
This roll-off region is near the breast boundary where the thickness of the breast gradually 
decreases because of the way the breast is compressed during imaging. A preprocessing 
method to correct the breast thickness roll-off [33] should lead to improved feature extraction, 
and ultimately better overall performance. A number of false positive detections can be 
attributed to an undesirable response from the feature extraction routines caused by the 
pectoral muscle in the MLO views. While it may not be desirable to segment this region out 
of the image since masses behind the pectoral muscle can be visible, some form of thickness 
equalization may lead to improved performance. 

In this work, the region-level analysis is quite simple. We simply remove very small 
regions. This is, in part, due to the results produced by our detection algorithm. The goal 
was not an accurate segmentation, but rather accurate localization of suspicious regions. As a 
result, the regions segmented from the image generally correspond to the central region of the 
mass, and not much of the lesion boundary is captured. More sophisticated post-processing 
and region-level analysis should result in a reduction of false positives. One possibility is 
to perform region growing on the segmented blobs, followed by region classification based 
on size, shape, and other properties more appropriate for describing regions (i.e. connected 
groups of pixels). 

4    Other Work Related to This Project 

The following publications are the result of this project. 

1. Woods, K.S., Kegelmeyer Jr, W.P., and Bowyer, K.W. Combination of multiple classi- 
fiers using local accuracy estimates, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 19 (4), 405-410, (April 1997). 

2. Woods, K.S., and Bowyer, K.W. Generating ROC curves for artificial neural networks, 
IEEE Transactions on Medical Imaging, 16 (3), June 1997. 

3. Woods, K.S., Kegelmeyer Jr, W.P., and Bowyer, K.W. Combination of multiple classifiers 
using local accuracy estimates, Proceedings of the 1996 IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition (CVPR '96), San Francisco, California, (June 
1996). 

4. Woods, K.S., and Bowyer, K.W. A General View of Detection Algorithms, in Digital 
Mammography '96, (Proceedings of the Third International Conference on Digital Mammog- 
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