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ABSTRACT 

Robotic manipulators are widely used in industry where the environment may be too 

hostile for workers. However, their application has been limited to an industrial setting 

where the robot is mounted on a stationary base. It is of great interest to expand the 

application of the robot manipulator to where it is mounted on an autonomous delivery 

vehicle. This application would enable the delivery vehicle not only to locate objects in a 

hostile environment, but also to perform tasks that would entirely remove the human being 

from the hostile environment. This thesis explores the feasibility of implementing a 

manipulator on an autonomous vehicle. A Zebra-ZERO Force Control Robot is mounted 

on a moving platform for feasibility simulations of an autonomous delivery vehicle. The 

Zebra-ZERO system consists primarily of a robotic arm with six degrees of freedom, a six- 

axis force sensor mounted at the end of the manipulator, and supporting computer hardware 

and software. In this thesis, the capability of the Zebra-ZERO system is expanded by 

integrating it with an external sonar ranging system. The sonar ranging system provides 

range feedback that is critical for positioning the manipulator while it is mounted on a 

moving platform. Test results demonstrate that the manipulator mounted on a moving 

platform is able to compensate for random platform motions and successfully perform 

various manipulation tasks. 
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I. INTRODUCTION 

A.   PROBLEM STATEMENT 

Remote manipulation of objects with little or no human intervention is an important 

issue in modern robotics. It is especially critical in the areas of mine clearance, space 

exploration and construction and operation of the multinational space station [Ref. 21]. The 

Zebra-ZERO Force Control Robot [Ref. 1] supports the study of manipulating an object 

under the condition that the control system has prior knowledge of the approximate location 

of the object. The end-effector is first directed to a location that is in close proximity with 

the object. It then executes a hunting algorithm to put the end-effector in contact with the 

object. As contact is made, the force sensor is utilized to perform the desired task(s). The 

Zebra-ZERO system is not able to utilize a closed-loop control algorithm until the end- 

effector is in contact with the object. This poses an obvious constraint when operating on a 

moving platform. 

Given that the Zebra-ZERO is mounted on a mobile platform, it is desirable to 

investigate the application and limitations of the manipulator. To aid in this study, the 

Zebra-ZERO must be equipped with a medium-range (1 to 4 feet) sensor system that 

provides positioning data for the manipulator control system while it performs tasks on a 

moving platform. Furthermore, the medium-range sensor system must provide real-time 

control information to the Zebra-ZERO system in a data format that is easily accessed by 

the control algorithm. In order to utilize an additional sensor, it is necessary to implement 

the following steps: 

• Design and build an intermediate-range sensor system. 

• Interface a medium-range sensor system to the Zebra-ZERO system. 



•    Develop algorithms that integrate the medium-range sensor into the Zebra- 

ZERO control software. 

There are many types of medium-range sensors that may be used to facilitate this 

study, including lasers, and IR/Radio beacons. However, the sensor of choice in this study 

is the sonar transducer. A sonar transducer system is chosen because relatively fewer parts 

are required to provide real-time data to the Zebra-ZERO system resulting in lower cost. 

Furthermore, since the sonar sensor has the slowest range acquisition rate (10 updates per 

second) [Ref. 4] of the above mentioned sensors, use of faster sensors such as the Sensus 

500 laser system (30 updates per second) [Ref. 13] can only enhance the performance of the 

Zebra-ZERO. Therefore, the test results utilizing a sonar transducer are the most portable to 

the other sensor systems. 

Successful employment of the manipulator on a moving platform requires that sonar 

information is continually available to the Zebra-ZERO control software for real-time 

implementation. Therefore, the CyberResearch CYDIO 24 digital I/O board is used to input 

sonar ranging data. Installed in one of the Zebra-ZERO motherboard slots, the sonar 

ranging system sends continually updated ranging information to the I/O board where it is 

made available to the control software. Once the ranging information is retrieved, it is 

integrated into the control algorithm. Efficient and accurate control of the Zebra-ZERO on 

a moving platform is achieved through task-specific code developed to handle integrated 

control of both the medium-range sonar system and the force sensing system. 

B.       THESIS ORGANIZATION 

This thesis reports on the feasibility of implementing the Zebra-ZERO force control 

robot while it is mounted on an autonomous vehicle. The Zebra-ZERO is a relatively 

inexpensive robot platform with a vast software library of control functions. This makes it 



an ideal choice for studying robotic manipulation while the robot is on a static base. 

However, it is of great interest to study how well the Zebra-ZERO system operates in an 

environment where the manipulator is mounted on a moving platform. To conduct this 

study, a sonar ranging system is integrated into the Zebra-ZERO system to provide range 

information that positions the manipulator in a dynamic operating environment. 

Chapters II through VII document the development of variations of pick-and-place 

algorithms that utilize the combination of the Zebra-ZERO Robot and a sonar ranging 

system on a moving platform. Technical aspects of each component system are described in 

Chapter II to provide the reader with an understanding of the Zebra-ZERO, CYDIO 24 

Digital I/O board, and Ultrasonic Ranging System. Applicable concepts of controller 

design are presented in Chapter m. In Chapter IV, the reader is introduced to Zebra-ZERO 

programming concepts that include writing, compiling, linking, and running programs from 

within a Borland Turbo C++ 3.0 programming shell. Also, a segment of the chapter 

introduces basic and more advanced programs which are explained in detail to clarify the 

applications of the Zebra-ZERO software library. Chapter V contains a description of the 

hardware simulations that employ the Zebra-ZERO on a moving platform and documents 

the results of the simulations. Concluding remarks and proposed recommendations for 

future work are presented in Chapter VI. 





II. BACKGROUND AND SYSTEM DESCRIPTION 

A.        THE ZEBRA-ZERO SYSTEM 

The Zebra-ZERO Force Control Robot, built by Integrated Motions, Incorporated, is 

designed for robotics research and development. Recent research projects include the 

development of fine-motion planning systems that utilize the force sensing [Ref. 14], the 

development of general motion planning systems for assembly tasks [Ref. 15], and contact 

space analysis [Ref. 16]. 

The robot arm is composed of six revolute joints that allow the manipulator to 

position objects/tools with arbitrary orientations within a characteristic workspace. The last 

link of the manipulator is attached to a six-axis force sensor which in turn is attached to the 

gripper. The Zebra-ZERO system is controlled from a DOS-based personal computer (PC) 

utilizing C programs and libraries. 

The entire Zebra-ZERO system consists of the manipulator, gripper, force sensor, 

power amplifiers/power supply, motor control board, PC, and robot control software. The 

individual elements work together to produce coordinated user defined motions and 

positioning solutions. 

1.        PC and Robot Control Software 

The Zebra-ZERO utilizes a PC as the user-hardware interface. It contains a 133 

MHz Pentium processor and implements the DOS operating system. Control, monitoring, 

and code execution are implemented through C coded software that includes a library of 

functions provided by Integrated Motions, Inc. [Ref. 1] 



The system delivered with a Borland Turbo C++ compiler and a compiled library of 

robot control functions called robot.lib. The library contains functions that execute a wide 

variety of tasks such as kinematic routines, path planners, servo code, motion parameter 

setting, and high-level motion/manipulation commands. The programmer is able to utilize 

C code and the vast library of functions to create a broad spectrum of task-specific 

programs and functions [Ref. 1]. For instance, the programmer can design code that 

controls the manipulator so that it approaches a surface while it polls the force sensor output 

to detect contact. After the end-effector contacts the surface, it can perform programmer- 

defined tasks such as removing a peg or moving along a surface. Examples of these type of 

programs are presented in chapters IV and V. 

2.        Arm Assembly 

The Zebra-ZERO manipulator is a six-link, six-joint, revolute, rigid mechanical 

manipulator with six degrees of freedom. Its purpose is to impose the system control law 

on the environment. Additionally, the manipulator houses all six drive motors with their 

associated linkages and optical position encoders. The force sensor with attached gripper is 

mounted at the end of the wrist joint. Figure 1 is a kinematic representation of the Zebra- 

ZERO manipulator. The links and joints are referred to as LI through L6, and Jl through 

J6 respectively. The fixed base plate is assumed to be LO and is not shown in Figure 1. LO 

is connected to LI which is the rotating base carriage. LI through L6 are connected in 

order through their respective joints, Jl through J6 [Ref. 1]. 

The plane in which the base carriage (Jl axis) lies and to which the upper arm (J2 

axis) is normal is defined as the plane of the arm. This plane contains both the upper arm 

and forearm links. The J3 axis intersects and is orthogonal to the J4 axis. The J4, J5, and 

J6 axes all intersect at the same point. This intersection point is defined as the wrist center 

[Ref. 1]. 



The three primary Cartesian frames are also shown in Figure 1. They are the base 

frame, wrist frame, and the tool frame. The base frame is fixed and is imbedded in the 

intersection of the Jl and J2 axes such that the x-axis points forward and away from the 

manipulator cables and is located eleven inches above the mounting surface. The origin of 

the wrist frame is in the intersection of the wrist axes and is rigidly attached to the force 

sensor and gripper. The tool frame, in this case, is depicted as being located at the fingertips 

of the gripper which is the default location [Ref. 1]. 

J2Axis 

Too] Frame 

Yc 

Figure 1. Kinematic Configuration. Ref. [1] 



3. Drive System 

The Zebra-ZERO drive system consists of six DC brush-commutated motors and 

their associated combinations of shaft and gear linkages. The motors are energized by the 

Power Amplifier Board described in a subsequent section. Each motor drives an individual 

joint through the drive linkages that run throughout the manipulator's hollow links. Each 

motor has a two-stage planetary gear head with gear reductions of 24:1, and an optical 

encoder. Motors that drive Jl and J2 are mounted in the rotating base carriage and transmit 

power directly through a set of gears to their respective joints. The motors that drive J3 

through J6 are mounted in the upper arm. Power for the wrist joints is transmitted via 

shafts that run through the arm and bevel gears located at the elbow joint. The wrist uses a 

concentric shaft differential to drive its three intersection joints. The optical encoders are 

mounted directly to each motor shaft and provide position feedback to the motor controller 

board [Ref. 1]. 

4. Motor Control Board 

The motor control board is the arbitrator between the PC and the manipulator. Its 

primary task is to execute motor control by measuring shaft angles from each motor encoder 

and outputting motor commands to the power amplifiers [Ref. 1]. 

The HCTL-1 motor control board was designed and built by Hewlett Packard for 

general purpose motion control. It utilizes eight HCTL-1100 general purpose motion 

control integrated circuits (ICs). The purpose of the ICs is to free the PC for other tasks by 

performing the time-intensive functions of digital motion control [Ref. 2]. Seven of the 

eight channels are used by the Zebra-ZERO with the eighth channel left as a spare. Six 

HCTL-1100's are used to control each of the six degrees of freedom, and one is used to 

control the gripper [Ref. 1]. 



The motor control board interfaces with the computer through a full-length slot in 

the PC's motherboard. Since the HCTL-1 is a memory mapped device, the registers for 

each chip are mapped directly into the PC's memory starting at the HCTL-1 segment 

address. Control modes are programmed by writing directly to the respective 64-bit 

register. The segment address is set on the board itself through eight dip switches which 

correspond to address bits A10 through A17. Address bits A18 and A19 are hardwired to 

logical 1. The segment address of the board in the Zebra-ZERO is set to OxDOOO [Ref. 1]. 

The memory address for successive HCTL-1100s are located sequentially in 

memory and are referenced as axes 0 through 7 [Ref. 1]. In order to write to a particular 

HCTL 1100 address, the memory call must be made to the sum of the segment address, chip 

offset, and chip register offset. A typical function call in C code that writes a logical 1 to 

the tenth register of controller axis 2 with the segment address set to OxDOOO is as follows: 

pokeb(0xD000,0xSA,l). 

The HCTL-1 motor controller outputs seven power amplifier control channels and 

inputs seven position encoder feedback signals. Each output is extracted from a single 

HCTL-1100IC and consists of a pulse-width modulated (PWM) speed and direction signal. 

The PWM speed signal is a 20 KHz square wave whose duty cycle controls how much 

current is to be applied to the respective motor. A duty cycle of 0% commands maximum 

current and a duty cycle of 100% commands minimum current. Each IC also has a TTL 

level optical encoder input that provides angular joint position feedback to the control 

algorithm. The physical connection between the motor controller board and the power 

amplifier board consists of two 40-pin and one 10-pin flat ribbon cables. These cables 

provide the speed and direction commands for each motor, speed and direction commands 

for the gripper, the position feedback from each position encoder, and the output data from 

the force sensor. [Ref. 1] 



5. Power Amplifiers and Power Supply 

The Zebra-ZERO power supply provides power to all of the joint motors through 

the power amplifier board. The power supply is located in its own enclosure and provides 

24 volt DC, 23 amp unregulated power. It has a power-off, and a power-on switch mounted 

on its enclosure as well as a jack for a remote power off switch. Power on is indicated by 

illumination of a green power on light. The power supply output goes directly to the base of 

the arm assembly where it connects to the power amplifier board [Ref. 1]. 

The power amplifier board has a power amplifier for each joint motor as well as the 

gripper and one extra unused amplifier. The board is housed in the stationary portion of the 

arm base assembly. Each PWM power amplifier receives 24 volts at 3 amps which is 

provided by the power supply. Their respective power transistors are attached to a heat sink 

that is bolted to the top of the power amplifier housing. The power amplifier logic is 

designed to drive the joint motors in accordance with the PWM input signals. The 

amplifiers shut down when a control signal is absent. The power amplifier board also 

accepts encoder and force sensor signals that it passes on to the motor controller board 

[Ref. 1]. 

6. Gripper 

The Zebra-ZERO utilizes an electric gripper as an end-effector. The gripper allows 

the manipulator to grasp and manipulate objects within the working environment. The 

gripper actuator consists of a screw-type mechanism that opens and closes the fingers within 

a range of 0.0 to 85.0 millimeters [Ref. 1]. 
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7.        Force Sensor 

The force sensor is a cylindrical device mounted between the wrist flange and the 

gripper. The sensor is instrumented with strain gauges that measure the forces and torques 

acting on the end-effector. The Zebra-ZERO force sensor provides six strain 

measurements. They represent forces and moments acting in the directions shown in Figure 

2. 

The data acquisition system within the sensor receives strain signals from three pairs 

of strain gauges each mounted on three individual bending beams within the sensor. The 

beams flex as forces and moments are applied to the end-effector. Strain measurements are 

extracted and used to construct a 6x1 strain measurement vector whose element values are 

proportional to those of the applied forces and moments [Ref. 1]. The maximum force 

reading is 15 grams. However, forces over 100 Kgf, or moments grater than 4000 Kgf-mm 

will damage the sensor [Ref. 1]. 

The six strain measurement signals are fed into a data acquisition system within the 

sensor where they are digitized and sent serially to the power amplifier board. From the 

power amplifier board, the signal is sent to the motor controller card were the data is 

reassembled into parallel words and made available to the PC as a 6x1 force/moment vector 

in the tool frame [Ref. 1]. 
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Wrist Face Plate 

Gripper Face Plate 

M, 

r* 
w 

Figure 2. Force Sensor 

Power for the force sensor is provided by the PC power supply. This feature allows 

the user to access force sensor information even when power is not applied to the arm 

assembly. 

B.       ULTRASONIC RANGING SYSTEM 

The Ultrasonic Ranging System provides the Zebra-ZERO control algorithm with 

range data from entities in the control environment. Sonar ranging data is the control input 

that safely guides the arm assembly toward the target object. Accurate and frequent range 

feedback facilitates timely control of the manipulator so as to reduce the possibility of 

12 



damaging the manipulator assembly or the prime mover while minimizing the closing time 

to the target object. 

Figure 3 is the block diagram of the Ultrasonic Ranging System. It consists of the 

Polaroid Ranging Unit, Ultrasonic Transducer, and Ranging Controller Circuit (RCC). The 

ranging system works autonomously to acquire sonar ranging data and to continuously pass 

the data to the Digital I/O board. 

RANGING 

CONTROLLER 

CIRCUIT 

INIT        ^ 
POLAROID 

ULTRASONIC 

RANGING 

UNIT 

TRANSMIT/ 
OUTPUT 

-rn        ^ 

^    ECHO 

RETURN 

10 BOARD *( 

ULTRASONIC 
TRANSDUCER 

Figure 3. Ultrasonic Ranging System Block Diagram 

1.        Polaroid Ultrasonic Ranging Unit 

The Polaroid Ultrasonic Ranging Unit is designed and built by the Polaroid 

Corporation for the sole purpose of controlling the operating mode (transmit/receive) of the 

13 



sonar transducer [Ref. 4]. The ranging unit consists of the power interface, digital, analog, 

and coupling circuits. They all work together to implement the sonar transducer as shown 

in Figure 4. 

RANGING 

CONTROLLER 
& INTERFACE 

CIRCUIT 

POWER TRANSMIT 

CIRCUIT 

T[ 

< 
tANSMIT 
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DOT 

DIGITAL 

CIRCUIT 

CIRCUIT 

.. 
TRANSMIT/ECHO   1 

ECHO 1 
\ 

GAIN« 
BANDWIC 

CONTRC 
TH 
L > 

> k 

PROC 
E 

:ESSED 
310 

ANALOG ECHO 

CIRC •urr 

TRANSMITTED 
PULSE 

) 

SONAR RETURN, 

Figure 4. Ranging Circuit Board Block Diagram. Ref. [4] 

The digital section of the ranging circuit board receives the Input Transmit 

Command (INTT) from the RCC. Upon receipt of INTT, the digital circuit creates a low- 

power modulated electrical pulse that is sent to the power interface circuit. The power 

interface circuit then generates a high-energy electrical pulse which is sent to the transducer. 

While transmitting, the transducer appears to be a loudspeaker to the Ranging Unit. The 

transducer converts the high energy electrical signal into an ultrasonic "Chirp." After the 
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pulse is sent and a short blanking period is invoked, the analog circuit is enabled so that it 

can receive the sonar return from the target. The transducer now appears to be a 

microphone to the Ranging Unit. Once the return is received by the transducer and 

processed by the analog circuit, the raw unprocessed Echo (ECHO) signal is sent to the 

digital section. The digital section then converts ECHO into a square wave which is sent to 

the ranging controller circuit. [Ref. 4] 

The circuit board utilizes a nine-pin plug with which to interface to the control 

circuit. However, only seven of the nine pins are utilized. The signals available at the pins 

are described in Table 1. 
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Pin Number Signal Description 
1 GND Ground (GND): Module ground line. 
2 BLINK Blanking (BLINK): Utilized in multiple-echo 

mode. After the first echo is received and 
ECHO is set high, BLINK must be taken high 
then low to reset the ECHO output for the next 
echo to be detected. BLINK is set low for this 
application. 

3 Not Used N/A 
4 INIT Transmit Initiate (INIT): Transition from low to 

high triggers the Transmit pulse. 
5 Not Used N/A 
6 osc Oscillator (OSC): The oscillator onboard the 

module generates a 420 KHz signal as a time 
base for the modulated pulse. OSC is an output 
based on the oscillator output and is provided 
for external use. OSC is not used in this 
application. 

7 ECHO Echo (ECHO): transitioning from high to low 
indicates the time a reflected signal is received 
by the transducer. The time between INIT going 
high and the ECHO output going high is 
proportional to the distance between the target 
and the transducer. 

8 BINH Blanking Inhibit (BINH): BINH High ends the 
blanking of the receive input prior to internal 
blanking. BINH is set low for the mode of 
operation (Single Echo) used in this application. 

9 VCC VCC: 6 VDC, 2.5 amp power supply. 

Table 1. 6500 Series Sonar Ranging Module Inputs and Outputs 
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2.        Ranging Controller Circuit 

The Ranging Controller Circuit (RCC) generates INIT, processes ECHO, provides 

power to the Polaroid Ultrasonic Ranging Unit, and outputs an eight-bit digital range 

measurement. The RCC requires a 6 VDC, 2.5 amp power supply to drive both the 

controller circuitry and the Ranging Unit. INIT is sent to the Ranging Unit to trigger the 

sonar transmission signal. The Ranging Unit sends ECHO to the RCC to signal the end of 

the ranging cycle. The RCC computes the time difference between the generation of INIT 

and the reception of ECHO, from which it calculates an eight-bit word containing the 

measured time it takes the sonar transmission to travel from the transducer to the target and 

back to the transducer. The eight-bit binary range output is displayed by a bank of LEDs on 

the RCC and is sent to the I/O board for processing by the PC. 

The RCC design has six major sections. The sections work together to generate 

control signals which support both operating the Polaroid Ultrasonic Ranging Unit in 

single-echo mode and outputting accurate ranging data to the PC. Relevant technical 

information is presented in Figures 5 through 7. Figure 5 is the RCC block diagram, Figure 

6 is the RCC timing diagram, and Figure 7 is the RCC schematic diagram. 

The drive circuit generates INIT, a 5 Hz square wave that signals the beginning of 

each ranging cycle and triggers the transmission of each sonar pulse. INLT is sent to the 

Ranging Unit to initiate a sonar transmission and to the reference latch to clear the binary 

counter. After applying power (Vcc) to the Ranging Unit, a minimum of 5 milliseconds 

must elapse before the Ultrasonic Ranging Unit receives INIT [Ref. 4, p. 19]. The RCC is 

equipped with a DIP switch that the operator closes after power is applied that allows INIT 

to be applied to the Ranging Unit. 

17 



RANGING CONTROLLER BOARD 
"I 

DRIVE CIRCUIT 
(5 Hz) 

INIT RANGING 
CIRCUIT BOARD 

CLK 

' ' 
ECHO 

MC COUPLING 

l_ 
' ' ' ' 

REFERENCE 
LATCH 

DIFFERENTIATOR 8-BIT LED DISPLAY 

LE . 

i k 

OF                     CRST 1         I/O BOARD 

12S KHZ 
CLOCK CIRCUIT 

8-BIT 
BINARY COUNTER 

"p-^7 
ECHO LATCH LED 

DRIVER 

Figure 5. Ranging Controller Block Diagram 

_L 
75m» 

_L 
lODm 

_l 

Figure 6. Ranging Controller Timing Diagram. After Ref. [4] 
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The 125 KHz timer generates an accurate timing signal which is used for running 

the binary counter. The timer circuit consists of a crystal oscillator and binary counter. The 

crystal oscillator generates an 8 MHz square wave that ensures accurate and consistent time- 

to-distance conversions. The crystal oscillator output is sent to a divide-by 64 counter that 

provides the 125 KHz square wave clock (CLK) to the 8-bit binary counter. 

The reference latch controls the operation of the binary counter. It generates 

Counter Rest (CRST) when either IN1T or Counter Overflow (OF) is generated. The eight- 

bit binary counter utilizes eight stages of a twelve-stage binary counter IC. It counts the 

number of clock pulses that are sent from the clock circuit during the time between 

generation of INTT and OF, and outputs the eight-bit binary count to the echo latch. Also, 

by utilizing Q3 (the third flip-flop output) as the least significant digit in the count, a divide- 

by-eight function is executed. OF is generated after Qll is set high indicating the 

maximum eight-bit count (28) has been reached. OF commands the reference latch to 

generate Counter Reset (CRST). CRST causes all output bits to go low pending the start of 

the next ranging cycle. 

The echo latch reads the output of the binary counter and latches the counter output 

at the time ECHO is generated. When Latch Enable (LE), which is the differentiated 

ECHO signal, is received, the latch passes the values that appear at its inputs to their 

respective outputs. They are then sent to the LED driver. 

The LED driver conditions the eight-bit latched counter output so that it is able to 

drive both the LED display and the I/O board input port. The driver reads the output from 

the echo latch then inverts and outputs the data to the eight-bit LED display and to the I/O 

board. The driver is powered by the PC and provides the current required to drive the 

inputs of both devices while isolating the RCC from the I/O board. 

The eight-bit LED display is made up of eight individual LEDs that display the 

output of the ECHO latch. The LEDs are located on the RCC. They facilitate quick 

verification of proper board operation and serve as a valuable trouble shooting tool. The 

user should note that since the RCC is connected to the I/O board, if the PC is powered 

down then the LEDs will all go high.  Therefore, the 37-pin connector that interfaces the 
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RCC to the computer must be disconnected if the ranger is operated independently while 

the PC is off. 
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Figure 7. Ranging Controller Schematic 
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C.       DIGITAL INPUT/OUTPUT BOARD 

The use of a sonar transducer as a second sensor requires that the Zebra-ZERO PC 

have on-demand, real-time access to the Ultrasonic Ranging System's ranging data. The 

device used to provide this link is the CyberResearch CYDIO 24 Digital I/O Board [Ref. 5]. 

1. CYDIO 24 I/O Board Description 

The I/O board supports the input and output of three eight-bit words via three digital 

I/O ports, as well as limited interrupt generating capability all through a single 37-pin 

connector [Ref. 5]. The board has three eight-bit ports that can be utilized as either inputs 

or outputs. They are designated ports A, B and C. Although not used for this thesis, 2 

connector pins are designated for providing limited interrupt servicing capability. The I/O 

board is installed in a vacant slot on the PC's motherboard. The physical installation 

provides the board with power, communication, and a data transfer link. 

2. CYDIO 24 Implementation 

In order for the PC and the I/O board to communicate, a base address is designated 

and assigned to the I/O board. The base address is the location to which the control 

software writes and from which it reads when communicating with the I/O board. The base 

address is set by manipulating an eight-pin dip switch on the I/O board [Ref. 5, p. 3]. 

The I/O board has two additional functions that may be set on the board but are not 

utilized in the applications described in this thesis. They are the wait state jumper block and 

the interrupt jumper block. The wait state jumper block allows the designer to slow the PC 

down when accessing the board, and the interrupt jumper allows the designer to map the 

interrupt directly into the PC bus. Their use and implementation may be reviewed in the 

CYDIO technical manual [Ref. 5, p. 4]. 
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The CYDIO I/O board has many software-generated capabilities that require the 

utilization of a library of C based CYDIO functions, and task specific C code. The I/O 

board comes with a comprehensive library of functions that allow the designer to set up the 

ports for input or output and to perform I/O functions [Ref. 6]. The code is designed to be 

integrated into standard C programs. 

The CYDIO 24 is installed in the Zebra-ZERO PC motherboard slot with the base 

address set to 300H. A 37-pin cable is plugged into the board and gives it access to the 

eight-bit ranging data provided by the sonar ranging system via the I/O board's port A. 

The systems described in this chapter are utilized to implement the control laws that 

allow manipulation of objects while the manipulator is on a moving base. It is necessary to 

combine the control algorithms that are used with the force sensor and the sonar ranger into 

one integrated control algorithm that works to seamlessly impose a control goal on its 

environment. The design concept that address this complex problem is the Hybrid Control 

Approach, discussed in the next chapter. 
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III.      HYBRID CONTROL 

The Hybrid Control Approach [Ref. 7] is used to address the design problem of 

utilizing both a sonar ranging system and a force sensor to execute pick-and-place 

algorithms while the manipulator is mounted on a moving platform. By adding the 

additional sensor to the Zebra-ZERO system, the robot arm is endowed with a greater 

degree of intelligence in dealing with its environment [Ref. 8]. The greater degree of 

intelligence is needed to allow the manipulator to perform tasks associated with being 

mounted on a moving platform. Therefore, a more complex controller must be utilized. 

A hybrid dynamic system consists of a reasoner interfacing with a continuous-time 

system. The discrete event system is a decision maker or controller that operates at a 

strategic level. The continuous-time system is the plant and its continuous-time controller 

executing the will of the reasoner. 

Hybrid dynamic systems are used in a wide range of applications. For example, 

hierarchical analysis of manufacturing systems [Ref. 7], and developing optimal dispatching 

policies for elevator control systems [Ref. 18]. Research on hybrid systems include 

development of flight control systems [Ref. 19], constrained robotics systems [Ref. 19], and 

a general basis for the modeling of a wide range of motion control systems [Ref. 20]. 

Hybrid dynamic modeling uses rule-based process monitoring and discrete event 

control to move the control state closer to the completion state [Ref. 7]. The programmer 

designs a reasoner that strategically moves the controller from an initial state to completion. 

However, the responsibility of controlling the manipulator is not placed on the reasoner. 

The reasoner calls discrete control processes that are responsible for implementing the 

continuous-time controller based on the rules imposed by the reasoner algorithm. For 

example, while the manipulator is moving toward an object in free space using the sonar for 

range information, the controller uses position control commands to execute the current 

control law. However, once the end-effector contacts a surface, the sonar feedback is no 

longer useful. The control law must change to one that uses the force sensor to detect the 
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forces imposed on the end-effector. This requires a different set of Zebra-ZERO movement 

commands. The algorithm that controls the manipulator's approach to the surface is one 

task-level controller, and the algorithm that controls the manipulator while it is in contact 

with the surface is another task-level controller. The reasoner commands the approach 

controller to begin its task. Once the approach controller detects contact it relinquishes 

control of the manipulator and passes the state of the control event to the reasoner. The 

reasoner then decides which discrete event controller is to be used next. In this case, it calls 

the discrete controller that maneuvers the manipulator while it is in contact with the surface. 

The controller also utilizes commands that position the manipulator relative to its 

current position. The installed software provides a function (kin.c) that solves for the 

current position of the manipulator relative to the base frame. It also provides a function 

{ikiri) that solves for the joint angles that would place the manipulator at a desired position. 

These functions utilize sets of equations that are specific to the Zebra-ZERO. The 

equations are defined as kinematic equations. The solution of the kinematic equations are 

used to position the manipulator in various modes of operation. 

This chapter covers the concepts used to implement hybrid controllers to solve the 

problem of controlling the manipulator while it is mounted on a moving base. The topics 

covered are control system overview, plant kinematics, and controller architecture. 

A.       HYBRID CONTROL SYSTEM DESCRIPTION 

A block diagram of the hybrid control system is shown in Figure 8. It consists of a 

task reasoner, controller, D/A converter, A/D converters, external sensors, internal sensors, 

power amplifiers, and plant. All elements of the control system work to produce an effect 

on the environment. 

The task reasoner is the decision maker for the control system. The reasoner 

monitors the state of the controller to decide if the current control law (force, torque, pure 

position) or control state is valid, and to command the controller to switch to another 

control law or control state as necessary. The reasoner is a software implemented switching 
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routine that is interwoven into the controller software acting as the strategic part of the 

controller process. 

The controller implements the control law and/or control state selected by the 

reasoner. The controller consists of both hardware and software working together to 

perform according to the current control law. Elements that make up the controller include 

the control functions, PC, A/D converters, power amplifiers, actuators, and both internal 

and external sensors. 

The software side of the controller schedules the control system's actions by 

observing the process state and making the appropriate control commands to the actuators. 

The software-driven controller gives flexibility to the robotic system. It allows the designer 

to customize the controller algorithm according to a particular task. 

The controller hardware executes the control process and provides feedback to the 

controller software. The hardware directly interacts with the environment through the 

actuators and the plant to produce the desired results. 
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Figure 8. Control System Diagram. After Ref. [7] 

The sensors are utilized to report the state of the plant and the environment. The 

sensors in the hybrid control system are classified as internal state sensors and external state 

sensors [Ref. 7]. The internal state sensors provide feedback information that relates to the 

state of the plant in the form of joint angles. The optical position encoders make up the 

internal sensor system. The external state sensors provide feedback on the state of the 

environment in the form of a force vector and ranging data. The force sensor and the sonar 

ranger are the two external sensors used in this study. 

The force sensor interfaces to the control software via the A/D converter. The A/D 

converter, located in the force sensor body, digitizes the analog force and torque signals and 

outputs them to the PC. 
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The power amplifiers condition and amplify the control signals sent from the motor 

controller board in the PC to the motors in the plant. The amplifiers provides commanded 

current (between 0 and 3 amps) that drive the prime movers in the plant. The plant consists 

of the joint motors and their associated linkages. The components of the plant work 

together to exert the control law on the environment. 

The environment, as shown in Figure 8, denotes the entity with which the plant 

interacts. The environment is operated upon by the plant and observed by the external 

sensors. The end objective of the robot control system is to manipulate the environment to 

produce a desired final state. 

B.        PLANT KINEMATICS 

Hybrid control movements performed by the Zebra-ZERO control software depend 

on the solution of the manipulator kinematics. The kinematic equations describe the tool 

frame relative to the base frame and the base frame relative to the tool frame as a function of 

a particular robot's joint angles and link lengths [Ref. 3]. In the case of the Zebra-ZERO, 

the variables consist of six joint angles and six link lengths represented by fy and 1; 

respectively. The mechanics and control of the Zebra-ZERO rely on the solution of two 

types of kinematic problems. They are the forward and inverse kinematic solutions. 

1.        Forward Kinematic Solution 

Forward kinematics involves solving the static, geometrical problem of computing 

the position and orientation of the end-effector relative to a particular reference frame [Ref. 

3]. In the context of the Zebra-ZERO, it is desired to compute the position and orientation 

of the tool frame relative to the base frame, given the six joint angles. 
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The manipulator is equipped with optical position encoders that provide joint 

position information to the PC . The PC utilizes this information to generate the forward 

kinematics solution. During manipulator operations, the servo control software is 

constantly running to generate smooth paths, operate the force sensor, monitor the current 

position of the arm, and to continuously update the commanded position for each of the 

joint motors [Ref. 1, p. 7]. Through all of the intensive calculations the control system must 

always know the location of the tool frame with respect to the base frame. The relationship 

of the tool frame relative to the base frame is described as a transformation matrix that is a 

combination of a position vector and a rotation matrix. 

The position vector represents the tool frame, {B}, relative to the base frame, {A}, 

and is annotated as AP. The position vector is simply a vector that describes a point in 

space. The base of the vector is at the origin of the base frame and its tip is at the origin of 

the tool frame. The position vector is written as 

P = 
Px 

Py 

Pz 

(1) 

where the individual elements describe the location of the tool frame in x, y, z coordinates. 

The orientation of the tool frame relative to the base frame is described by three unit 

vectors that give the principal directions of the tool coordinate system relative to the base 

frame. For convenience, the three vectors are written as one 3x3 matrix called the rotation 

matrix. The rotation matrix may be described in short-hand, unit vector, or matrix notation 

forms as follows: 

)R = [AXB %t 
AZB} = 

'12 

r21       r22 

'13 

'23 

'31 r32      r33. 

(2) 

Given the position vector and the rotation matrix described by Equation (1) and 

Equation (2), an object described in an arbitrary coordinate frame, BP, may be described or 
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mapped in the base coordinate frame. This mapping is achieved by describing the position 

of the origin of the arbitrary frame relative to the base frame described by AP, and by 

describing the orientation of the arbitrary frame relative to the base frame described by £ R. 

The translational mapping is described by the equation 

AP=aP+A0B, (3) 

where A0B is the location of the origin in the tool frame relative to the origin of the base 

frame. The rotational mapping is described by the equation 

AP=*RBP. (4) 

Equations (3), and (4) may be combined into one equation that describes both translational 

and rotational mappings as follows: 

AP=AR BP+A0B. (5) 

Figure 9 provides a visual representation of the transformation between coordinate systems. 
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Figure 9. Translation and Rotation Translation. After Ref. [3] 

To make the mapping a matrix operation, Equation (5) may be written in compact form as 

p A»K 
Ao Bp 

1 0 0     0 1 1 (6) 

where a 1 is added as the last element of the 4x1 vectors and the row vector [0 0 0 1] is 

added as the last row of the 4x4 matrix for conceptual convenience. This form is that of a 

homogeneous transformation matrix [Ref. 3]. 
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Now that the transformation from one coordinate system to another has been made, 

the same concepts will be used to specify one frame relative to another. The notation used 

for describing frame {B} relative to frame {A} is ^T, where T is a transformation operator 

that rotates and translates a vector BP to compute the new vector AP [Ref. 3]. The 

transformation operator is described as 

T = 
;R or 

0     0     0       1 (7) 

Therefore, equation (6) may be written as 

T=AT   Bp 
(8) 

Transformation operators may be combined to translate vectors across multiple 

frames. For example, if the transformation matrices are known across frames {A}, {B}, 

{C}, and {D}; the transformation of a vector, DP, defined in frame {D} to frame {A} is 

accomplished utilizing the following: 

'P=*T *T C
DT 

DP= A
DT

DP, (9) 

where the combined transformation matrix is defined as 

D1   ~   Bl     Cl    D1" (10) 

This same concept is used to transform the location of the tool frame of the Zebra- 

ZERO into base frame coordinates. For a six-link robot arm the combined transformation 

matrix is described as 

°6T=°1T \T 2
3T 

3
4T 

4
5T 

5
6T (11) 
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Since the link distances and the angles made between the extensions are known 

constants imbedded in the Zebra-ZERO software, and the optical encoders provide the joint 

angles, all of the transformation matrices contain known values. Therefore, the elements of 

the combined transformation matrix may be computed by multiplying the individual link 

transforms. The end result of the multiplication i& defined as the kinematics of the 

manipulator. 

The kinematic solution used in the Zebra-ZERO is found by utilizing the forward or 

direct kinematic method described above in [Ref. 3]. The Zebra-ZERO kinematic solution 

provided by the Integrated Motions, Inc. [Ref. 1, p. 65] is as follows: 

where 

T = 

Ml       x12 

'21 r22       r23       Pv 

*31       *32       '33       Vz 

0     0     0     1 

rn =c1c23(c4c5c6 — s4s6) — c,s23s5c6 —Sj(s4c5c6 +c4s6), 

r21 = s,c23(c4c5c6 — s4s6) — s1s23s5c6 +c,(s4c5c6 + c4s6), 

r31 = S23*.C4C5C6 ~~ S4S6) "*" C23S5C6' 

r12 = -c,c23(c4c5s6 + s4c6) + c,s23s5s6 + s,(s4c5s6 - c4c6), 

r22 =—S1C23VC4C5S6 + S4C6/ + S1S23S5S6 — Cl(S4C5S6 — C4Cö)' 

r32 = ~S23 (C4C5S6 "*" S4C6 ) — C23S5S6 ' 

r13 — —CjC23C4s5 — c^^Cj + S[S4s5, 

r23 = —SjC23c4s5 — s,s23c5 — CjS4s5, 

r33 = — s23c4s5 + c23c5, 

PX=
C

I(MC2-12
S

23)» 

(12) 
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Py =S,(1]C2 -12S23), 

Pz = LXS2 +/2C23 , 

and 

*,=sin(6,.), 

c,=cos(e,), 

c,.;=cos(6,. +e;), 

.y,.,=sin(e,.+e,). 

The Zebra-ZERO servo control software is actively running while the manipulator is 

energized either to position the manipulator in response to a call to a positioning function or 

to maintain the manipulator in its current position [Ref. 1]. The forward kinematic solution 

is utilized to provide the position and orientation feedback required to accurately place the 

tool frame. The forward kinematic solution (kinx) is also available as a utility function to 

be utilized in general manipulator control algorithms. 

2.        Inverse Kinematic Solution 

Manipulator control not only relies on the ability to compute the current position 

and orientation of the tool frame relative to the base frame, but it also requires the ability to 

move the tool frame to a desired configuration and coordinate position relative to the base 

frame according to the control law. This problem involves solving the inverse kinematics 

of the manipulator. The problem is posed as the following: Given a desired position and 

orientation of a tool frame {B} relative to the base frame {A}, calculate a set of joint angles 

which will attain this position within the work space of the manipulator [Ref. 3]. 

The solution to the inverse kinematic problem is more involved than the forward 

kinematic solution. The forward kinematic solution has a unique solution for the given 

joint angles. However, the inverse kinematic solution has multiple solutions if the desired 
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configuration is within the manipulator's dexterous workspace, and has no solution if it is 

not [Ref. 3]. For example, a manipulator with six joints may have as many as sixteen 

possible solutions [Ref. 10]. There are no general algorithms that can produce a solution to 

this nonlinear problem. However, a special case is engineered into the Zebra-ZERO that 

produces a closed-form solution. 

Piper's solution reduces the number of solutions to the inverse kinematics problem 

by requiring that the last three axes intersect [Ref. 11]. Piper's solution reduces the number 

of possible solutions to the last three joint angles to two. Therefore, the number of solutions 

for the manipulator is twice the number of solutions found for the first three joints [Ref. 3]. 

The Zebra-ZERO solves the inverse kinematics problem by utilizing an algebraic 

solution to solve the first three angles then utilizing a geometric solution to solve the last 

three angles. 

The following is the algebraic, closed-form solution to the inverse kinematics. 

Given P is the position vector that describes the desired location of the tool frame origin in 

the base frame coordinate frame, where 

P = 
Px 

Py 

Px. 

(13) 

we may compute the distance from the origin of the base frame to the origin of the wrist 

frame as 

r = VFP. (14) 

For a solution to exist the inequalities 
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r + 0.1<l, +12 (15) 

and 

r-0.1>/,-/2 (16) 

must be true. If Equations (15) and (16) are true, the solution is within the dexterous 

workspace of the manipulator. Next, the distance rxy projected into the x-y plane is 

computed as 

Let 

*xy 
:VPX+P (17) 

a = Tan' 

ß = Cos~l 

J = Cos'1 

(pA 
[pj 

j 

(l? + r2-l2
2) 

I      2r/,      J 

(ll+ll-r2^ 
I     2 M^2         j 

(18) 

(19) 

(20) 

Using P and Equation (18) through Equation (20), the first three joint angles are solved as 

follows: 

6, = Tan -i 

KPXJ 

92 =a + ß, 

(21) 

(22) 
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83=Y-1.5TC. (23) 

Next, the last three joint angles are determined geometrically. The unit vector normal to the 

plane of the arm is calculated as 

n = 
sin(8,) 

-cos(9,) 
0.0 

(24) 

Then, the projected vector along the J4 axis is solved as 

q = 

cos(e2+e3+f)cos(e1) 
cos(02+e3+f)sin(e,) 

0 

then normalized to 

q = - 
qq 

(25) 

(26) 

the unit vector along the J4 axis. The unit vector normal to n and q is then calculated as 

s = ii®q. (27) 

* * 
Next, x and y , the wrist z-axis projections on s and n respectively are computed utilizing 

the equations 

and 

x*='z; s, 

y*=z;n 

(28) 

(29) 
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Where ' ZA is the unit vector in the direction of the z-axis in the base frame. Angles 04 and 

6s are calculated as 

0. = Tan'1 
i 

\x J 

and 

e5 = Cos"I(,z;q). 

Finally, the unit vector pointing along the J5-axis is calculated as 

(30) 

(31) 

n = 

cos(04)n,-sin(04)s, 

cos(04)n2-sin(04)s2 

cos(04)n3-sin(04)s3 

(32) 

The angle 06 is calculated using Equation (32) and the two unit vectors pointing in the 

direction of the x and y-axes, 'XA and'YA respectively, in the base frame coordinate 

system as follows: 

06 = Tan" (33) 

The Zebra-ZERO servo control software utilizes the inverse kinematic solution to 

position the manipulator in response to calls to positioning functions or to maintain the 

manipulator in its current position [Ref. 1]. The inverse kinematic solutions are utilized to 

provide the joint angles required to place the tool frame in a desired position and orientation 

based on the control solutions calculated by the control software.  The inverse kinematic 
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solution (ikinx) is also available as a utility function to be utilized in general manipulator 

control algorithms. 

C.       CONTROLLER ARCHITECTURE 

Because the control environment utilizes a force sensor and a sonar ranger, the 

controller cannot employ a single generic control law to finish a process. Therefore, the 

manipulator control model is built according to the process properties described by each 

discrete controller. The hybrid controller architecture illustrates how the software is used to 

implement multiple control laws. The controller architecture models the control law in 

phases as a state diagram [Ref. 7]. 

Figure 10 displays an example of a typical software controller model. The elements 

of the controller are the reasoner, phase controllers (PCI - PC3), and subphase controllers 

(SPC1 - SPC2). Each element of the controller model is a software implemented task. The 

control objective is accomplished by programming the reasoner to plan and schedule the 

order of events that will accomplish the control goal. Individual events are represented by a 

phase controller. The phase controller (PC) is responsible for executing a complex portion 

of the control process. For example, a phase may consist of picking up an object while 

another might be moving the object from one location to another. Each phase controller 

may be composed of subphase controllers (SPCs). The SPCs are the more rudimentary 

functions that aid in accomplishing the task assigned to a particular PC. SPCs may perform 

tasks such as acquiring sonar ranging information or executing pure position control 

functions such as open-loop manipulator positioning. 
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Figure 10. Software Controller Model 

Transitions between processes are governed by the state or condition of the plant 

and environment. These conditions are defined as maintaining, enabling, and disabling 

conditions [Ref. 9]. Maintaining conditions are observed states that maintain the controller 

in the current process. Enabling conditions are observed states that cause the controller to 

transition to another state. Disabling conditions impose a constraint on the controller such 

that if a particular plant state is encountered the process or control event is terminated. 

Design of a software controller utilizing the architecture described above is a top- 

down process that enables the programmer to concentrate on one process at a time. The 

steps of the design process are as follows: 
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• Establish an overall control goal and define the sequence of events to be 

coordinated by the reasoner. 

• Develop events that bring the current state closer to the desired state and define 

them as processes, subprocesses, and process transitions. 

• Implement the reasoner, processes, subprocesses, and process transitions in a 

complex hybrid controller code as programs and functions. 

The hybrid control approach described in this chapter is the design concept used to 

implement the control algorithms that enable the Zebra-ZERO system to execute various 

control objectives while it is mounted on a moving platform. The control algorithms utilize 

functions contained in the Zebra-ZERO software library, integrated in task-specific code, to 

control the manipulator. Chapter IV introduces the concepts used to develop and execute 

manipulator control algorithms. 
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IV.      ZEBRA-ZERO SOFTWARE OVERVIEW 

The Zebra-ZERO software package includes a library of compiled robot control 

functions, demonstration programs, and a Borland Turbo C++ compiler. The source code 

for the demonstration programs are provided to give some insight into writing the C code 

for the Zebra-ZERO. For the novice Borland C++ user, a first attempt at developing a 

running program may be quite challenging. However, once the basic methodology of 

developing a project file is understood, the user may utilize the Zebra-ZERO function 

library to develop clever programs and original functions. 

A.  TURBO BORLAND C++ OVERVIEW 

The Zebra-ZERO code is written using Turbo Borland C++, version 3.0. The intent 

of this section is to provide the programmer with enough basic information to start 

programming in the Borland environment with the least amount of initial time investment. 

It is expected that the programmer has some background in C programming. It should be 

noted that, although Turbo Borland C++ has C++ programming capability, robot.lib may 

only be accessed utilizing the C compiler. Kernigham and Ritchie [Ref. 12] and the Turbo 

C++ User's Guide [Ref. 13] are excellent technical references for programming in C and 

utilizing the Borland software respectively. 

The Borland C++ software is launched by typing TC at the DOS prompt within the 

ROBOT directory. The Borland programming window, is defined as the Integrated 

Development Environment (IDE). It contains menus at the top and bottom of the screen 

with a gray working field. The IDE contains all that is needed to write, edit, compile, and 

debug a program [Ref. 13]. 
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1.        Opening an Existing Project 

To appreciate the project format utilized by the Borland software, the programmer 

must first understand the purpose of the project file. The IDE places all information 

required to build and run a program into a binary project file whose extension is .PRJ. The 

project file contains the settings for the compiler, linker, make, and librarian options as well 

as the directory paths, lists of all files that make up a project, and the Turbo Assembler 

translator [Ref. 13, p. 34]. The Borland compiler automatically takes all the programs and 

files in the project window and compiles, links, and creates the executable file. Therefore, 

constructing a project file in the DDE frees the programmer from the administrative tasks of 

constructing and modifying the configuration file used to build the programs defined in a 

project file [Ref. 13]. 

Opening a project file allows the programmer to view and edit existing files, and to 

create new files. To open an existing project, select the following menu items from the top 

of the IDE: 

Project I Open Project. 

For instructional purposes, select ARMTEST.PRJ from the Open Project dialog box. 

After opening the project file, additional windows may or may not be displayed. 

The most important window for the moment is the Project window. It may appear at the 

bottom fourth of the IDE. If the Project window does not appear at the bottom of the IDE, 

select 

Window I Project. 

The ARMTEST.PRJ project window is then displayed at the bottom of the IDE.   The 

window should list the files armtest.c and robot.lib. 
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Double-clicking on armtest.c will display the executable source code. The source 

code may be edited and modified from this screen. However, double clicking on robot.lib 

will display a compiled code that is useless to the programmer. All Zebra-ZERO functions 

are compiled in robot.lib with no source code provided. 

As an introduction to the capabilities of the Borland window, the programmer is 

invited to execute this code from within the Borland environment. To execute this program 

select 

Run I Run. 

The program should run as if it were executed from the DOS prompt and upon completion 

return to the IDE. 

2.        Creating a Project file 

In the following example, ARMTEST.PRJ is used as the model for creating a 

project file. First, create a new project file name by selecting 

Project I Open Project. 

Type a project name of choice in the Open Project field. For example, the following would 

be acceptable: 

MYTEST.PRJ. 

After typing a project name press enter.  A project screen with the project name will be 

displayed at the bottom of the IDE. Next, from the bottom of the IDE, select 
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Add. 

A list of all the C coded programs are displayed in the window. If not type 

*.C 

in the Name line and press Enter. From the list of C source codes select armtest.c and 

select OK. The program name armtest.c should appear in the project window. Using the 

same procedure add robot.lib to the project menu. 

Next, critical default settings must be set to ensure that the files are properly 

compiled and linked. This is done by opening the Code Generation window and setting the 

parameters as follows: 

Selecting the following menu items in the IDE: 

Options I Compiler I Code Generation. 

Ensure Large is selected from the Memory Model dialog box, Default for memory model 

is selected form the Assume SS Equals DS dialog box, and Treat enums as ints is selected 

from the Options dialog box. Then, select OK .[Ref. 13] 

Next, Turbo C++ must compile and link all the files in the project. This is done by 

selecting 

Options I Build All. 

With the project compiled and linked the programmer now has an executable program. To 

test the project select 

Run I Run. 
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The project may also be executed at the DOS prompt within the ROBOT directory. For 

example, for the project file MYTEST.PRJ, the programmer types MYTEST then presses 

Enter at the DOS prompt. The program mytest.c should perform the identical function as 

armtest.c. 

B.   EXECUTING FACTORY-PROVIDED PROGRAMS 

The Zebra-ZERO has several ready-to-run programs that are included in the 

ROBOT directory of the PC hard drive. There are programs that execute system tests, 

program demonstrations, and function familiarization. The computer automatically enters 

the ROBOT directory at startup. The programs are run by typing the executable and 

pressing Enter. 

1.        Testing the Zebra-ZERO System 

The program armtest.c is utilized to test the operation of the Zebra-ZERO system. 

However, it is recommended that the first-time user execute ARMTEST to obtain a basic 

working understanding of the Zebra-ZERO. The program walks the user through some 

basic operational characteristics of the system. Furthermore, the source code is an excellent 

example of a typical Zebra-ZERO interactive algorithm. 

The program starts out by allowing the user to test the operation of the force sensor. 

The user is prompted to apply forces and moments to the gripper. A bar-graph presentation 

displays the magnitude of the applied forces/moments. 

After the force sensor is tested, the user is prompted to proceed to the next display 

where the individual joint encoders are tested.   All six joint angles as well as a matrix 
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containing the kinematic solution for the location of the tool frame relative to the base 

frame are displayed. 

Finally, the arm is tested through various dynamic movements. The user is 

prompted to prepare the arm for maneuvering out of its nest (support bracket) and for the 

power switch to be depressed. The arm then moves to the ready position where it awaits the 

user's acknowledgment to demonstrate movements of all axis motors and the gripper. After 

that, it returns to the nest. 

2. Maneuvering In and Out of the Nest 

There are two programs provided that maneuver the arm in and out of the nest. 

They are homerobot.c and backhome.c. Both may be executed at the DOS prompt within 

the robot directory. The source codes are short and execute one specific task. 

The program homerobot.c maneuvers the manipulator from the nest to the ready 

position exclusively. The arm must be in the nest before the program is executed or the arm 

will shut itself down after attempting to find the nest. 

Executing backhome.c returns the arm to the nest from any position within the 

robot's workspace. This command is best utilized during program development and 

debugging. It gives the user the ability to leave the arm in a position for analysis at the end 

of a program. The user may then use backhome.c to return the arm to the nest for the next 

run. 

3. Utilizing the Command Shell 

Executing the command INTERACT at the DOS prompt in the Robot directory 

initiates the Interact command shell. The shell allows the user to execute a number of the 

Zebra-ZERO library commands, available in robot.lib, using single line commands.  The 
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user may use the shell as a learning tool to gain understanding of some of the more cryptic 

control functions. It may also be used as a program development and planning tool. 

4.        Reading Arm Status 

The program status.c is a valuable programming and motion planning tool. It 

displays the manipulator's current status and control settings. This information may be used 

for determining approximate joint angles or for establishing the tool frame that places the 

manipulator at a desired location or orientation for use within a program. It can only be 

called when the arm is in a static condition. However, the manipulator does not have to be 

energized for the program to return data. Executing status.c displays the position and 

orientation of the tool frame relative to the base frame, the joint angles, the status of the 

computer generated flags, and the status of the user generated flags. All information is 

displayed on a single screen display. 

C.       IMPLEMENTING POSITION CONTROL MODE OF OPERATION 

1.        Description 

Position control mode is the traditional mode of operation for commercial robots. In 

this mode the controller positions the manipulator in a specific coordinate position 

according to the control law in affect. The trajectory of the arm is specified by a series of 

via points through which the arm passes, and a final goal point where the arm will come to 

rest. Although position control assumes that the manipulator is not constrained, it can be 

used to position the manipulator in a partially constrained environment where only slight 

forces are imparted on a rigid surface. The following examples demonstrate these concepts. 
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2.        Demonstration of Position Control Mode of Operation 

The program ajest demonstrates the operation of the Zebra-ZERO in pure position 

control mode of operation. It utilizes commands that position the manipulator according to 

a specified 6x1 joint vector, or as a Cartesian frame locating the tool frame relative to the 

base frame. The program moves the manipulator through its workspace utilizing the 

following position control commands: 

cmove 

hjog 

jjog 

jmove 

jog 

sjmove 

Details of the operation of these function may be found in the Zebra-ZERO operation 

manual [Ref. 1]. The source code for ajest is listed in Appendix A. 

3.        Example Program Utilizing Force Threshold Sensing 

The program contour.c utilizes force threshold sensing and position control to guide 

a tool, such as a pencil, along a contoured surface. The program demonstrates the Zebra- 

ZERO's ability to implement the force sensor to detect changes in the environment and 

adjust the tool frame according to the detected changes using position control. The source 

code is listed in Appendix A. 

The program contour.c starts out by placing the manipulator in the ready position 

and then opening the gripper. The user is then prompted to place the tool in the open 

fingers of the gripper and press Return.   The gripper fingers then close on the tool and 
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pauses for the user to indicate that the tool was properly placed. Next, the routine positions 

the manipulator so that the base plane (Jl axis) is at -90° and the gripper is positioned 15 

cm from the mounting base and 15 cm above the plane containing the mounting base. The 

tool is then slowly lowered to contact the surface. It is recommended that the surface be 

slightly compliant to reduce the risk of damaging the manipulator. The tool is incrementally 

lowered toward the surface at a rate of approximately .1 cm/sec. After each movement, the 

force sensor is polled to determine if the surface has been detected. When the surface is 

detected, the manipulator's descent is terminated. The controller then moves the tool frame 

forward relative to the base frame. After each incremental move the controller polls the 

force sensor to detect if the force applied to the tool is within a predetermined threshold. If 

the force is too small the tool is lowered. If the force is too large the tool is elevated. If the 

measurement is within the threshold, the tool is moved forward. This process is repeated 

throughout the execution of the program allowing the tool frame to comply to the contour of 

the surface as it is moving forward. The task terminates after the manipulator has traveled 

approximately 15 cm. The manipulator returns to the ready position, relinquishes the tool 

when prompted, then returns to the nest. 

D.       IMPLEMENTING FORCE CONTROL MODE OF OPERATION 

1.        Description 

Force control mode of operation allows the programmer to utilize the Zebra- 

ZERO's force control sensor to execute a task. It is implemented using a specific set of 

commands available in robot.lib. 

Force control mode utilizes the force sensor combined with the end-effector to exert 

a specified force on the environment. The exerted force is independent of the position of 

the end-effector and relies on the programmer-specific force/torque vector.  This mode is 
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intended to be used when the end-effector is constrained so that in cannot move freely in 

space [Ref. 1]. It should also be noted that the manipulator will only comply to forces 

exerted on the tool side of the force sensor. 

The following Zebra-ZERO library commands are utilized in force control mode of 

operation: 

zero_force 

set_bias_force 

set_damping 

set_force_threshold 

set_stiffness 

stiffness_off 

push_with_bias 

2.        Example Program Utilizing the Command push_with_bias 

In order to command the manipulator to apply a user-defined force, a standard 

sequence of commands must be issued. Their order of execution is irrelevant with the 

exception that push_with_bias must be executed last. When push_with_bias is executed the 

robot is placed in pure force control mode of operation. 

The function push_with_bias has only one argument. It is the duration that the 

specified force is to be applied in seconds. However, push_with_bias utilizes other 

functions that are designed to govern the push_with_bias force control behavior. 

The function set_damping designates a damping constant for all force controlled 

motions [Ref. 1, p. 38]. The input argument, damping, is a floating-point number between 

0.0 and 1.0. The maximum damping occurs when the damping value is set to 0.0. Unstable 
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motions warrant lowering the damping value while sluggish motions warrant increasing the 

value. 

The function set_stiffness is used when the Zebra-ZERO is in stiffness control mode 

of operation, a subset of force control mode. Stiffness control is used to control both 

position and force at the same time while the arm is unconstrained in the force control mode 

[Ref. 1]. The programmer is able to specify the desired behavior of the end-effector in the 

tool coordinate axes. A 6x1 force vector is used to assign stiffness along the tool coordinate 

axes as well as about their rotational axes. For example, if it is desired to move the end- 

effector along a surface of which the contour is unknown, the stiffness may be set so that the 

end-effector is compliant along the Z-axis and stiff to applied forces along all other axes and 

along all rotational axes. Therefore, set_stiffness will control the deflection of the end- 

effector while it is moving through space while in stiffness control mode which is used 

when executing push_with_bias. 

The function setjorcejhreshold is utilized to set the parameters that protect the 

arm in the event of unexpected collisions, or as a safety feature to protect object(s) being 

operated upon by the end-effector [Ref. 1, p. 38]. If the magnitude of any force/torque 

exceeds the corresponding value in the threshold vector, the current motion is aborted. The 

function's input is a six element force vector that describes the maximum forces and 

moments that may be applied to the end-effector. The values implemented by calling 

setjorcejhreshold are utilized in every Zebra-ZERO function. The system is constantly 

checking for forces/torques that exceed the designated envelope. Although the programmer 

may explicitly assign the values contained in the threshold vector, the Zebra-ZERO 

software will not let the force vector exceed the default values that are factory installed in 

robot.lib. The default values are defined as MIN_THRESHOLD within the library. 

The function set_biasJorce is used to set the value of the force and the moments 

that are applied at the end-effector. The input is a six-element vector that describes the 

magnitude of the forces and moments that will be applied in force control mode of 

operation. 
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The force sensor detects the sum of all forces and torques that are applied to it. 

Therefore, it will superimpose the forces that are applied by a tool or object that is handled 

by the end-effector as well as the force due to the mass of the end-effector. Furthermore, 

these forces/torques, which are gravity and mass dependent, change with the orientation of 

the end-effector. In most cases it is not desirable to include the superposition of the 

torques/forces in the measurement of the applied forces. The function zerojbrce reads the 

force sensor to establish an offset from which all subsequent forces are relatively measured 

[Ref. 1, p. 33]. The offset value is set in the current tool coordinates. Good engineering 

practice demands that as the tool coordinates change, subsequent calls to zerojbrce are 

made. 

Finally, after all the previously mentioned functions have been implemented, the 

call to push_with_bias can be made. Execution of push_with_bias results in the application 

of the force vector defined in setjbiasjorce with the parameters set by calls to zerojbrce, 

set_damping,    setjorcejhreshold,    and    setjstiffness. Implemented    correctly, 

push_withj>ias can apply a desired force in a vector-defined direction or in the direction of 

the moments about the coordinate axes in the tool coordinate frame. An understanding of 

these functions are critical to utilize the force control mode of the Zebra-ZERO. 

The program force.c, contained in Appendix A, implements the key force control 

functions and allows the user to experiment with various force control parameters. The 

algorithm first moves the arm to the ready position. Next, it sets the initial force threshold, 

stiffness, bias, damping and push time. It then gives the user an opportunity to change the 

stiffness and damping vectors as well as the bias force and the amount of time the force is 

applied. After all parameters have been entered, push_withjbias is executed. The 

interactive portion of the program is iterative and allows the user to keep or change 

parameters each time it is run. When the user is finished, the program may be exited when 

prompted. 
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E.        SONAR RANGING SYSTEM IMPLEMENTATION 

The sonar ranging system is necessary to position the manipulator in close proximity 

of the object to be manipulated. The sonar ranging data is read by the control algorithm and 

is used to position the manipulator utilizing position control commands. 

The program ranger.c, listed in Appendix A, is a simple program that extracts the 8- 

bit ranging information from the digital I/O board and displays the computed range on the 

monitor. First the program configures the I/O board to input data from port A. Then it 

reads the information available at port A and logically inverts it. The inversion is executed 

because the ranging data is sent to the I/O board as negative logic. Next, the information is 

converted to centimeters and is displayed on the monitor. The binary representation of the 

range data is also displayed. The readings are taken continuously until the user presses a 

key to end the program. 

The Zebra-ZERO programming software may be utilized to structure a broad range 

of control algorithms. The following chapter describes the algorithms that implement these 

control concepts in hardware simulations of the Zebra-ZERO system mounted on an 

autonomous vehicle. 
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V.       HARDWARE SIMULATIONS ON A MOBILE BASE 

The integration of the Sonar Ranging System with the Zebra-ZERO Force Control 

Robot facilitates hardware simulations of a manipulator that must interact with its 

environment while it is mounted on an autonomous vehicle. The mobile vehicle is 

simulated by utilizing a cart as the mobile base. The integrated manipulator system 

mounted on the cart is referred to as the manipulator platform. The sonar provides the 

range data that allows the manipulator control algorithm to detect the target and then 

approach it without damaging the manipulator platform or the target. Once the sonar sensor 

has guided the manipulator to where it contacts the target object, the controller utilizes the 

force sensor to operate on the target. 

Controlling the manipulator while it is mounted on a moving base requires the use 

of software that is able to switch between force and position control laws to accomplish the 

ultimate control goal. Two project files are presented that test the feasibility of 

implementing the Zebra-ZERO system on a moving platform. CONTROL1.PRJ utilizes 

algorithms that test the ability of the manipulator platform to interact with a target object 

assuming that the target object is stationary. HYBRID2.PRJ utilizes algorithms that test the 

ability of the manipulator platform to interact with a target object assuming that the target 

object is in motion. 

A.       STATIONARY TARGET HARDWARE SIMULATION 

1.        Controller Description 

CONTROL1.PRJ tests the ability of the Zebra-ZERO to perform a complex pick- 

and-place task where the manipulator is on a mobile delivery platform and the target object 
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is stationary. This type of control algorithm may be adapted to perform tasks in a land- 

based environment. Variations of this algorithm could be used for ordinance disarmament, 

chemical spill evaluation and cleanup, and other related tasks. 

The project file CONTROL1.PRJ executes a control task that entails grasping a peg 

located in a hole and placing it on a flat surface in front of the hole. The physical 

configuration of the peg and the hole is known by the control algorithm, but their exact 

location is not. The following constraints and assumptions are in effect: 

• The manipulator is mounted on a cart, referred to as the delivery vehicle. 

• The delivery vehicle may be moved during runtime to place the peg and hole 

assembly within the manipulator's work space. However, the delivery vehicle 

must be stationary before the peg extraction sequence begins through program 

termination. 

• The sonar transducer is mounted on the manipulator's rotating base carriage and 

is centered 24 cm above the mounting surface, 7 cm forward of center and 7 cm 

right of center. 

• The hole assembly is a square cylinder that is 3 inches high, with 2 inch sides. 

The hole is centered at the top of the cylinder. 

• The peg is initially located in the hole assembly with its exposed portion 

consisting of a 1 inch cube, and its hidden portion consisting of a round cylinder 

1 inch in diameter extending 1.5 inches into the hole. 

• The approximate bearing of the hole assembly is known. Practically, the 

bearing could be fed to the control algorithm from a video camera. 

The Control algorithms used in CONTROL1.PRJ are control!.c which is the 

reasoner, and phasel.c which contains the phase and subphase controllers. The source 

codes are listed in Appendix B. 
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The reasoner is responsible for managing the phase controllers listed in phasel.c 

and the control flow is modeled in Figure 11. Execution of controll.c proceeds as follows: 

First, the manipulator is placed in the ready position by executing PCI. After 

which, PC2 is immediately executed placing the manipulator at a pre-programmed bearing 

and configuration to facilitate a safe approach to the target. PC2 then repeatedly calls SPC1 

to acquire the range to the peg. PC2 commands the manipulator to close the distance to the 

peg and hover 10 cm above it. The platform must be static before the peg may be removed. 

Therefore, PC2 checks that the distance between the platform and the peg has been steady 

for 8 seconds before attempting to remove the peg. If the platform does not stabilize after a 

programmed number of attempts, PC2 terminates and the reasoner executes PC4 which 

places the arm back in the nest. If the manipulator is able to successfully place the gripper 

and the platform is steady, PC2 terminates and the reasoner calls PC3 which positions the 

gripper 1 cm in front of the peg. PC3 then calls SPC2 which slowly moves the gripper 

forward to contact the peg. If contact is not detected, SPC2 and PC3 terminate. The 

reasoner will then call PC4. If contact is made, SPC2 saves the exact location of the peg 

and terminates. PC3 then executes SPC3. SPC3 controls the task of extracting the peg 

from the hole. If the force sensor does not detect that the peg was extracted, SPC3 and PC3 

terminate, then the reasoner calls PC4. If the peg is extracted from the hole, SPC3 

terminates and PC3 calls SPC4 which places the peg in front of the hole assembly. SPC4 

terminates when the force sensor detects that the peg has been placed in front of the peg 

assembly. After which, PC3 terminates and the reasoner calls PC4. 
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Figure 11. Program controll.c Control Model 

2.        Results 

After making several adjustments to the controller, it was able to consistently 

command the manipulator to retrieve the peg. As the manipulator platform was pushed 

toward the peg the controller was able to effectively position the gripper so that it 

maintained its position 10 cm above the peg. Perturbations imposed on the manipulator 

platform revealed that the controller was able to reposition the gripper so that it remained 

above the peg. 

During early testing, the manipulator displayed sporadic gyrations while making its 

approach to the peg. The magnitude of these gyrations were on the order of 10 cm and 

occurred approximately every 10 to 15 sonar readings. Since three range measurements are 
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taken per second, the gyrations were frequent enough to cause the program to abort 50% of 

the time. The gyrations were caused by sporadic noise experienced by the sonar ranging 

system. Since the noise was infrequent, the problem was solved by first requiring SPC1 to 

provide a new sonar reading after a 3 ms if a large change in range was detected. Second, 

the average of the five most recent measurements was used as the error signal. The second 

reading reduced the occurrence of the gyrations to approximately every 200 to 300 

measurements. Averaging the five most recent measurements smoothed the magnitude of 

the gyrations to less than 1 cm. 

During testing, the sonar ranging data began to experience serious noise. 

Investigation of the problem revealed that the noise was caused by the system that drives the 

turret (Jl axis). The transducer experienced severe interference when placed within a foot 

of the manipulator. Additionally, the noise only occurred if the turret motor was enabled. 

After consulting with Integrated Motors Inc. technical support, it is suspected that the turret 

motor power amplifier was thermally stressed and was slowly degrading. During the 

degradation period before catastrophic failure, it is possible that the power amplifier emits 

components of the PWM control signal. The problem is expected to be solved by replacing 

the power amplifier card. 

It was also noted that the performance of the gripper was slowly degrading. 

Symptoms of this problem included intermittent gripper failure and weakened motor torque. 

However, replacing the gripper power amplifier should solve this problem. 

B.        MOVING TARGET HARDWARE SIMULATION 

1.        Controller Description 

CONTORL2.PRJ tests the ability of the Zebra-ZERO to perform a complex pick- 

and-place task where the target on which the device is being placed is in motion. This type 
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of control algorithm may be adapted to perform tasks in an underwater environment where a 

hermetically sealed version of the Zebra-ZERO is mounted to a delivery vehicle. The 

manipulator may be tasked with neutralizing mines, cleaning or inspecting the hull of ships, 

and many other similar applications. 

The project file CONTROL2.PRJ executes a control algorithm that grasps a device 

whose location and configuration is known by the control algorithm and places it on a 

vertical surface where the distance between the manipulator and the surface may be 

constantly varying. The following constraints and assumption are in effect: 

• The manipulator is mounted on a cart, referred to as the delivery vehicle. 

• The delivery vehicle is considered to be part of the manipulator structure for this 

discussion. The manipulator/mobile cart platform is referred to as the 

manipulator platform. 

• The sonar transducer is located on the delivery vehicle 60 cm below the base of 

the manipulator and is stationary relative to the manipulator. 

• The initial location of the object to be placed, referred to as the device, is on the 

platform making it stationary relative to the manipulator, and it is within the 

manipulator's workspace. 

• The surface on which the device is to be placed must be vertical and is referred 

to as the target. 

• The device utilizes a magnet-and-spring mechanism that requires a force to be 

applied to the device while it is placed on the target in order to affix it to the 

target. 

• The target must be ferrous. 

• The sonar transducer only provides range information for axial movement. 

Lateral and vertical movements are not detected. 
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The Control algorithms used in HYBRID.PRJ are hybridl.c which is the reasoner 

and phasel.c which contains the phase and subphase controllers. The control algorithm is 

modeled in Figure 12 and the source code is listed in Appendix C. 

The reasoner is responsible for managing the phase controllers contained in 

phasel.c and is executed as follows: 

First, the manipulator is placed in the ready position by executing PCI. After 

which, PC2 is immediately executed placing the manipulator at a pre-programmed bearing 

and configuration to facilitate a safe approach to the target. PC2 then repeatedly calls SPC1 

to obtain ranging data to the target. PC2 utilizes the range information to determine if the 

vehicle is in range of the target, and if the environment is conducive to executing the control 

task. It does this by determining if the target is within the manipulator's workspace and if 

the delivery vehicle can maintain a safe operating distance to the target. For experimental 

purposes, PC2 prompts the user to manually move the cart to the proper range. Practically, 

the prompts would be control signals to the vehicle's prime mover. If the delivery vehicle is 

able to keep the target within the designated range of 65 to 75 cm for 8 seconds, PC2 

terminates, and the reasoner calls PC3. If the vehicle is not able to maintain a safe working 

distance, after a designated number of attempts, PC2 will terminate and the reasoner will 

call PC8 which returns the manipulator to the nest. PC3 executes a control algorithm that 

commands the manipulator to grasp the device and move it clear of the platform. If the 

device is not retrieved, the reasoner will call PC3 for a second attempt. If it fails the second 

time, PC8 is called to return the manipulator to the nest. Once the device is successfully 

retrieved, the reasoner calls PC4 to check if the environment is stable enough to place the 

device. If the environment is not stable, PC7 is called to return the device to its staging 

area on the platform. After which PC8 is called to return the manipulator to the nest. If the 

environment is stable enough, PC5 is called to control the manipulators approach to the 

target. PC5 positions the device 20 cm from the target of interest and closes the distance at 

approximately 1 cm/sec. While the approach is being made, PC5 maintains the device at 

the commanded range even if the distance between the platform and the target is varying. If 
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the error between the command distance and the device is greater than 2 cm the approach is 

abated, otherwise the approach is continued. After a designated number of attempts to 

approach the target are made, PC5 will terminate and the reasoner will execute PC7 and 

PC8 respectively. When contact is made, PC5 is terminated and the reasoner calls PC6. 

PC6 utilizes the Zebra-ZERO's force control mode to apply a force to the device for 2.5 

seconds. PC6 terminates after the gripper releases and clears the device. The reasoner then 

executes PC8. 

Figure 12. Program controU.c Controller Model 
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2.        Results 

The algorithm contained in controU.c performed extremely well. The controller 

was able to consistently place the device on the target with reasonable random perturbations 

where the target was kept within the manipulator's workspace. However, this simulation 

revealed limitations in the Zebra-ZERO's ability to respond to changes in range. 

The manipulator's response varied with the distance the tool frame had to travel 

between movements. While the Zebra-ZERO is executing a manipulator movement 

function it freezes all other software functions until the movement has been completed. 

During this time, a relatively large range error may develop. 

This limitation was analyzed to determine how much the response of the 

manipulator could be affected. The movement commands used to position the manipulator 

in controU.c were run at full speed using the program mvjime.c which is listed in 

Appendix A. The average time over 20 positioning commands at the same travel distance 

were tabulated for ranges between 0.0 and 20 cm. Figure 13 displays a graph of the 

experimental average time it takes to position the tool frame versus the distance to be 

traveled. The graph reveals that the control system could be blind to changes in position 

from 0.8 to 1.4 seconds for variations in range between 0.0 and 20 cm. Therefore, for the 

extreme case where the manipulator is advancing toward a target that is 25 cm away, a 

change in relative range greater than 5 cm in less than 1.4 seconds could cause damage to 

the manipulator or to the target. 
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Figure 13. Zebra-ZERO Manipulator Positioning Time vs Distance. 
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VI.     CONCLUSION AND RECOMMENDATIONS 

A.       THESIS SUMMARY 

The capabilities of the Zebra-ZERO Force control robot were successfully expanded 

to include a sonar ranging system as an additional external sensor. The added sensor 

allowed feasibility tests to be conducted where the manipulator was mounted on a cart that 

simulated an autonomous vehicle. The tests showed that the Zebra-ZERO is an adequate 

hardware test platform on which to develop algorithms and supporting hardware that 

facilitate system employment in an environment where the manipulator is mounted on a 

moving platform. 

Hardware simulations were conducted where the movements of the cart and the 

target object were restricted to the axial direction. The simulations showed that the Zebra- 

ZERO mounted on a cart that experienced random movement could operate in an 

environment where the target object is either stationary or in motion. The control 

algorithms successfully utilized the sonar system to guide the manipulator to the target 

utilizing position control mode of operation. After the manipulator contacted the target, the 

control algorithm was able to execute a seamless transition to force control mode of 

operation in order to manipulate the target object utilizing the force sensor. 

B.        FUTURE WORK 

Initial hardware tests revealed that the sonar transducer may experience noise while 

the manipulator is in operation. During early testing some noise was experienced. 

However, it was so minute that it did not detrimentally affect the operation of the sonar 
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ranging system. However, after rigorous use, the performance of the power amplifiers 

slowly degrades due to heat stress. It is suspected that as the power amplifiers degrade, they 

emit components of the PWM control signal in the form of electromagnetic energy (EMI). 

These emissions show up as noise imposed on the sonar transducer and its associated 

wiring. It is recommended that further studies include developing a solution that would 

attenuate not only the noise introduced by the degrading power amplifiers but also noise that 

may be introduced in the control environment by external sources. 

Testing also revealed that although the manipulator system responded well to slow 

perturbations in range to the target, the system could not handle large and frequent changes 

in range. The manipulator responded quickly to changes that were less than 3 cm where the 

manipulator response time was less that one second. However, as the distance error 

increased it took up to 1.5 seconds for the manipulator to respond to a command. It is 

recommended that a new set of control commands be developed that will minimize the time 

overhead inherent in the commands available in the existing Zebra-ZERO software library. 

The most obvious limitation of the simulations was that they only addressed 

movement in the axial direction. In a real-world situation movement may occur in three 

dimensions. It is recommended that future work include implementing sensors to resolve 

errors that occur in three dimensions. Additional sonar sensors may be utilized or other 

types of sensors such as lasers and cameras may be introduced. 

In conclusion, the Zebra-ZERO proved to be a satisfactory test bed for the concepts 

considered in this thesis. Critical developmental issues leading to the employment of an 

autonomous vehicle that utilizes a manipulator to execute its mission may clearly be 

addressed utilizing the Zebra-ZERO Force Control Robot. 
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APPENDIX A. ZEBRA-ZERO DEMONSTRATION PROGRAMS 

/*******************************************************************, 
/*************************** A_TEST•C ******************************/ 
/******************************************************************** 
* 

* A_TEST.C:  a_test.c utilizes common Zebra-ZERO positioning 
* commands to demonstrate the capabilities of the manipulator. 
* 

* R.A. Raphael jan 98 
**********************************************************************, 

include files ************************/ ******************************* 

#include <stdio.h> 
#include <stdlib.h> 
#include <graphics.h> 
#include <math.h> 
#include <conio.h> 
#include <bios.h> 
#include "robot.h" 

/************************************************************************ 

* main program 
************************************************************************* 

/ 

void main(void) 
{ 
int   delay = 10000; 
vect v3; 
vect6 joint_vector; 
frame tool_frame, desired_frame; 
vect6 ready; 
vect6 v; 

/* define a joint vector 'ready' corresponding to the ready position */ 
mkv6(ready, 0, 90*DTOR, -180*DTOR, 180*DTOR, 0, 0); 

clrscr(); 
homerobot() ; 

printf ("CLEAR THE AREA 2 FEET AROUND THE MANIPULATOR \n"); 
printf("Then press any key\n"); 
getch(); 
clrscr(); 
set_seg_time (5) ; 
jog(mkv3(v3, 250, 0, -150)); 
sjmove(0,  170*DTOR) 
sjmove(0, -170*DTOR) 
sjmove(0,    0*DTOR) 
clrscr(); 
set_seg_time(0) ; 
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/* extract the current joint angles and tool frame and save as variables 
*/ 
where(joint_vector, &tool_frame); 
where(joint_vector, &desired_frame) ,- 

/* redesignate x, y, z manipulator locations */ 
desired_frame.p[0] = 260; 
desired_frame.p[l] = 380; 
desired_frame.p[2] = -125; 

printf("Use cmove to position the tool frame at base frame location [26, 
38, -12.5]\n\n"); 
usec_timer_init(); 
usec_timer(delay); 
/* move tool frame */ 
cmove(&desired_frame); 

printf("Use jmove to move the manipulator through its workspace\n\n"); 
usec_timer_init(); 
usec_timer(delay); 

jmove(ready); 
jmove(mkv6(v,0*DTOR, 30*DTOR, -125*DTOR, 178*DTOR, 16*DTOR, 116*DTOR)); 
jmove(mkv6(v,-65*DTOR, -3*DTOR,  -126*DTOR, 200*DTOR, -45*DTOR, 
85*DTOR)); 
jmove(mkv6(v,-115*DTOR,  -4*DTOR,  -90*DTOR,  230*DTOR, -45*DTOR, 
115*DTOR)); 
jmove(mkv6(v,-153*DTOR, -10*DTOR, -118*DTOR, 184*DTOR,  -65*DTOR, 
123*DTOR)); 
jmove(mkv6(v, 0*DTOR, 90*DTOR, -180*DTOR, 180*DTOR,  0*DTOR,   0*DTOR)); 
jmove(mkv6(v,60*DTOR, 17*DT0R, -170*DTOR, 154*DTOR, -31*DTOR, 95*DTOR)); 
jmove(mkv6(v,175*DTOR, 5*DTOR, -160*DTOR, 145*DTOR,  -60*DTOR, 
85*DTOR)); 
jmove (ready) ; 

printf("slightly move the joints of the manipulator using the command 
jjog\n\n"); 
usec_timer_init(); 
usec_timer(delay); 

set_seg_time(5); 
jjog(mkv6(v,10*DTOR, 15*DTOR, -15*DTOR, 15*DT0R,  10*DTOR,   10*DTOR)); 
jmove (ready) ; 
set_seg_time (0); 

printf("Use hjog to move the manipulator by the displacement vector ( 5, 
5, 10)\n\n "); 
usec_timer_init(); 
usec_timer(delay); 
hjog(mkv3(v3, 50.0, 50.0, 100.0)); 
jmove(ready) ; 

printf("Use jog to move the tool frame relative to the base frame \n\n"); 
usec_timer_init(); 
usec_timer(delay); 
jog(mkv3(v3, 40, 100, 50)); 
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printf("reposition the manipulator using sjmove\n\n"); 
usec_timer_init(); 
usec_timer(delay); 
set_seg_time(4) ; 
sjmove(4, 40*DTOR); 
sjmove(0, 40*DTOR); 
sjmove(l, 100*DTOR); 
set_seg_time(0); 

gobackhome(); 
clrscr(); 
}  // end main 

/*******************************************************************/ 
/*************************** CONTOUR.C ******************************/ 
/******************************************************************** 

* CONTOUR.C:  The program contour.c utilizes force threshold sensing and 
* position control to guide a tool, such as-a pencil , along a 
* contoured surface.  The program demonstrates the Zebra-ZERO's ability 
* to implement the force sensor to detect changes in the environment 
* and to adjust the tool frame according to the detected changes 
* using position control. 
* 

*R.A. Raphael Mar 98 
*******    ************************************************************/ 

/************************** inciucie files *****************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <graphics.h> 
#include <math.h> 
#include <conio.h> 
♦include <bios.h> 
#include "robot.h" 

void main(void) 
{ 
int i,force_flag; 
float surface_detect, force_Z, scale_factor, push_time, tolerance; 
vect v3; 
vect6 ready, pointl, forces, v; 

/* define a joint vector 'ready' corresponding to the ready position */ 
mkv6(ready, 0, 90*DTOR, -180*DTOR, 180*DTOR, 0, 0); 
mkv6(pointl, -87*DTOR, 41.3*DTOR, -192*DTOR, 180.5*DTOR, 30 4*DT0R 
12*DTOR); 
scale_factor=100 ; 

homerobot(); 
clrscr(); 
jmove(ready);        // move to ready position 
gripper(40,10, 500);  // open gripper to grasp tool 
printf("Place tool in gripper and press any key \n"); 
getch(); 
gripper(2,2,500) ;    // close gripper on tool 
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printf("Press any key to begin \n"); 
getch(); 
jmove(pointl);       // move to point directly in front of surface 
set_seg_time(5) ;     // slow the time required to reach point 
jog(mkv3(v3, 0, 0,-50));   // close distance to surface 
set_seg_time(0);     // restore segment time to max value 
zero_force();        // set force sensor offset 
read_user_force(forces); // read forces w/ offset 
force_Z =abs(scale_factor*forces[2]) ; // extract Z axis value 
printvect(forces); 

surface_detect = 10; 
tolerance = 7; 
force_flag=0; 
printf("Normal   force: %6.4f\n",force_Z); 
printf("Surface detct  force: %6.4f\n",surface_detect); 

for   (   i  =  1;   i <  200;   i++) 
{ 
read_user_force(forces); 
force_Z = scale_factor*forces[2] ; 

if (-force_Z < (surface_detect-tolerance) ) 
{ 
hjog(mkv3(v3, 1, 0, 1) ) ; 
force_flag = 1; 

} 
if (-force_Z > (surface_detect + tolerance) ) 

{ 
hjog(mkv3(v3, 1, 0, -1)); 
force_flag = 1; 

} 
if(!force_flag) 
{ 
jog(mkv3(v3, 1, 0, 0)); 

} 
force_flag=0; 
printf("exerted force = %6.0f\n",force_Z) ; 

} 

jog(mkv3(v3, 0, 0, 100));   // open distance to surface 
jmove (ready) ; 
printf("Press any key when ready to release tool\n"); 
getch(); 
gripper(40,10,   500); 
printf("Press  any key to have the manipulator return to the nest\n"); 
getch(); 
gobackhome(); 
}     /*  end contour  */ 

72 



/*************************** FORCE.C ******************************/ 

* FORCE.C:  The program force.c implements the key force 
* control functions and allows the user to experiment with the 
* various force 
* control parameters.  The algorithm first moves the arm to the 
* ready position.  Next, it sets the initial force threshold, 
* stiffness, bias, damping and push time.  It then gives the 
* user an opportunity to change the stiffness and damping vectors 
* as well as the bias force, and the amount of time the force is 
* applied.  After all parameters have been entered, push_with_bias 
* is executed.  The interactive portion of the program is 
* iterative and allows the user to keep or change parameters each 
* time it is run.  When the user is finished, the program may be 
* exited when prompted. 
* 

* R.A. Raphael Mar98 

/***************************** incxucje files *************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <graphics.h> 
#include <math.h> 
#include <conio.h> 
♦include <bios.h> 
♦include "robot.h" 

/******************************* functions *****************************/ 
int near_pos(vect6 v, vect6 jv) 
{ 
int i ; 

for (i=0; i<6; i++) if ( fabs(v[i]-jv[i]) > 5.0*DTOR ) return(0); 
return(1); 
} 

void printvect_deg(vect6 v) 
{ 
int i ; 

for (i=0; i<6; i++) printf("%12.3f",v[i]*RT0D) ; 
printf("\n"); 
} 

int read_vect6(char *param, vect6 v, int convert) 
{ 
int i ; 

if (sscanf(param,"%f%f%f%f%f%f",&v[0],&v[l],&v[2] ,&v[3],&v[4],&v[5])1=6) 

printf("Missing or invalid vect6\n"); 
return(-1); 
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} 
if (convert)      /* convert to radians */ 

for (i=0; i<6; i++) v[i] *= DTOR; 
return(0); 
} 

int read_vect3(char *param, vect6 v) 
{ 
if (sscanf(param,"%f%f%f",&v[0],&v[l],&v[2]) !=3) 

{ 
printf("Missing or invalid vect3\n"); 
return(-1); 
} 

return(0); 
} 

int read_char(char *param, vect6 v) 
{ 
if (sscanf(param,"%f",&v[0]) != 1) 

{ 
printf("Missing or invalid vect3\n"); 
return(-1); 
} 

return(0); 
} 

char cfilename[40] = ""; 
char hfilename[40] = 
FILE *cfile, *hfile; 

int teach(char *varname, char mode) 
{ 
vect6 v; 
frame f; 
static char spaces[] = " "; 

if (!stricmp(cfilename,"")) 
{ 
printf("File name (w/out extension):"); 
scanf("%s",cfilename); 
printf("\n"); 
strcpy(hfilename,cfilename); 
strcat(cfilename,".c"); 
strcat(hfilename,".h"); 
} 

if ( !(cfile=fopen(cfilename,"at")) ) 
{ 
printf("Could not open '%s'\n",cfilename); 
return(-1); 
} 

if ( !(hfile=fopen(hfilename,"at")) ) 
{ 
fclose(cfile); 
printf("Could not open '%s'\n",hfilename) ,• 
return(-1); 
} 
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where(v,&f) ; 

if (mode == ' j ') 
{ 
fprintf(hfile,"extern vect6 %s;\n",varname); 
fclose(hfile); 

fprintf(cfile,"vect6 %s = { %8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f };\n", 
varname,v[0],v[l],v[2],v[3],v[4],v[5]); 

fclose(cfile); 
} 

else 
{ 
fprintf(hfile,"extern frame %s;\n",varname); 
fclose(hfile); 

fprintf(cfile,"frame %s = { 
%9.4f,%9.4f,%9.4f,\n",varname,f.r[0][0],f.r[0][l],f.r[0][2]); 

spaces[strlen(varname)] = '\0'; 
fprintf(cfile, "%s 

%9.4f,%9.4f,%9.4f,\n",spaces,f.r[l][0],f.r[l][l],f.r[l][2]); 
fprintf(cfile, "%s 

%9.4f,%9.4f,%9.4f,\n",spaces,f.r[2][0],£.r[2J[l],f.r[2][2]); 
fprintf(cfile,"%s %9.2f,%9.2f,%9.2f 

};\n",spaces,f.p[0],f.p[l],f.p[2]); 
spaces[strlen(varname)] = ' '; 

fclose(cfile); 
} 

while (_bios_keybrd(l)) getch(); 
return(0); 
} 

void plot_figl(void) 
{ 

printf("\n\n ); 
printf( I <-y) \n") 
printf( I A. \n") 
printf( I \n") 
printf( I \n") 
printf( 

1 
(x)<-  X— ->(-x)\n") 

printf( t \n") 
printf( l \n") 
printf( I V \n") 
printf( ' (Y) \n") 
printf("\n\n " ); 

} // end i Dlot_ _figi 

/**************************************************** ***************, 
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/* Function:  force_test 

Inputs:  none 

Outputs: none 

Return value: none 

FORCE_TEST is a tool used to expose the user with the Zebra-zero's 
force control mode of operation.  The program does the following: 

Places arm in the ready position 
Rotates gripper 90 degrees 
Prompts user for specified force control parameters 
exerts specified forces 
returns to ready position 
Prompts user to run test again 

R.A. Raphae1 Jan9 8 
  */ 

void force_test(void) 
{ 
int i, flag; 
float  surface_detect,   force_Z,   push_time,   damping_value; 
vect v3; 
vect6 ready, pointl, forces,v, v_stiff, v_bias; 
char *param, command[80], inputs[80]; 
/* define a joint vector 'ready' corresponding to the ready position */ 
mkv6(ready, 0, 90*DTOR, -180*DTOR, 180*DTOR, 0, 100*DTOR); 
mkv6(pointl, -70*DTOR, 20*DTOR, -180*DTOR, 181*DT0R, 21*DT0R, 30*DTOR); 

clrscr(); 
printf("\n\n This program is used to study the functions \n\n"); 
printf(" set_stiffness, set_bias_force, and push_with_bias.\n"); 
printf("\n  Hit any key to proceed \n") ; 
getch(); 

jmove(ready);        // move to ready position 

// remove comment to enable the set force call 
//set_force_threshold(mkv6(v, .0, .1, .1 , 500, 500, 500)); 

push_time =15; // designate the number of seconds to apply force 

//set default values 
mkv6(v_stiff, .15, 0.15, .0, .l,.l, 0.1); 
mkv6(v_bias, 0.0, 0.0, 0.2, 0, 0, 0); 
damping_value = 0.35; 

while (flag != 0) // Start interactive portion of function 
{ 
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//************** specify stiffness vector ************************ 

clrscr(); 
printf("\n\n Enter the 6 element vector that specifies stiffness. 

\n\n"); 
printf("  The maximum value for each element is.\n"); 
printvect(MAX_STIFF); 
printf("  The current stiffness values are:.\n"); 
printvect(v_stiff); 
printf("\n"); 
plot_figl(); 

printf ("FORCE CONTROL» "); 

gets(inputs); 
clrscr(); 

if (read_vect6(inputs,v,0)== 0 ) 
{ 
for (i=0; i<6; i++) v_stiff[i] = v[i] ; 
} 

else 
{ 
clrscr(); 
printf("\n No modifications received. \n"); 
printf("  Using previous stiffness values \n"); 
delay(lOOOO); 

} 
set_stiffness(v_stiff); 

//************** specify bias force vector ************************ 

clrscr(); 
printf("\n\n Enter the 6 element vector that specifies bias force. 

\n\n"); 
printf("  The maximum value for each element is \n"); 
printvect(MAX_BIAS); 
printf("  The current stiffness values are: \n"); 
printvect(v_bias); 
printf("\n"); 
plot_figl(); 
printf ("FORCE CONTROL» ") ; 

gets(inputs); 
clrscr(); 

if (read_vect6(inputs,v,0)== 0 ) 
{ 
for (i=0; i<6; i++) v_bias[i] = v[i]; 
} 

else 
{ 
clrscr(); 
printf("\n No modifications received.  \n"); 
printf("  Using previous bias values \n"); 
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delay(10000); 
} 

set_bias_force(v_bias); 

//************** specify damping value ************************ 
clrscr(); 
printf("\n\n Enter a value between 0.0 and 0.35 to specify damping 

constant. \n\n"); 
printf(" set_damping sets a damping constant for all force controlled 

motions \n"); 
printf(" Lower values correspond to more damping.  If motions appear 

unstable, \n"); 
printf(" the damping value should be lowered; if the force response is 

too \n"); 
printf(" sluggish, the damping value should be increased."); 
printf("  The current damping value is: %1.2f\n",damping_value); 
printf("\n"); 
printf ("FORCE CONTROL» "); 

gets(inputs); 
clrscr(); 

if (read_char(inputs,v)== 0 ) 
{ 
damping_value = v[0] ; 

} 
else 

{ 
clrscr(); 
printf("\n No modification received.\n"); 
printf("  Using previous damping value\n"); 
delay(10000); 

} 

set_damping(damping_value); 

/************************ specify Push time ***********************/ 

clrscr(); 
printf("\nEnter the duration in seconds the force is to be applied. 

\n\n"); 
printf ("FORCE CONTROL» ") ; 
gets(inputs); 
clrscr(); 

if (read_char(inputs,v)== 0 ) 
{ 
push_time = v[0]; 

} 
else 

{ 
clrscr(); 
printf("\n No modification received.\n") ; 
printf("  Using previous duration value\n"); 
delay(lOOOO); 
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} 

set_damping(damping_value); 

// ************** execute PUSH WITH BIAS ******************* 
clrscr(); 
printf("\nThe stiffness vector is \n"); 
printvect(v_stiff); 
printf("\nThe bias vector is \n") ; 
printvect(v_bias); 
printf("\nThe damping constant is: %1.2f\n",damping_value); 
printf("\nThe duration that push_with_bias is to be applied is 

%2.2f\n",push_time); 
plot_figl(); 
printf("\n Press any key to execute push_with_bias"); 
gets(inputs); 

zero_force(); 

push_with_bias(push_time); 
stiffness_off(); 

jmove(ready); 

printf("  would you like to continue?"); 

printf("  Press any key if yes, enter n if no \n\n"); 
printf ("FORCE CONTROL» ") ; 
gets(command); 
if (!stricmp(command,"n")) flag = 0; 
else flag = 1; 

} 

stiffness_off(); 

}  /* end test_force */ 

/*********************************************AiA + ^^^4^AAAi^iti.:ll.4.^Jt:Ji.vtit^vti^ 

*/ 
/* main program 
*/ 
/******************************************i****4 + ^A:Jt:t.i.^^ + i.vtvtVfc:]t4i.Vk.A4.iVtit:4.A 
*/ 

void main(void) 
{ 
clrscr(); 
homerobot(); 
f orce_test () ,- 
gobackhome(); 

} 
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/*************************** RANGER.C ******************************/ 

/*ULDI01.C********************************************************** 

File: RANGER.C 

Library Call Demonstrated:   ranger() 

Purpose: Reads a digital input port. 

Demonstration: Configures FIRSTPORTA for input and 
reads the value on the port, 
then displays the sonar ranging 
information in cm. 

Other Library Calls: cbDConfigPort() 
cbErrHandling() 

Special Requirements:        Board 0 must have a digital input port. 

Moodified 12/2/98 by R.A. Raphael for use with the Polaroid sonar ranger 
This program is derived form ULDIOl.C 

ULDIOl.C has the following Copyright: 
(c) Copyright 1995, ComputerBoards, Inc. 
All rights reserved. 

modified 12/2/98 

*/ 

/*  Include files */ 
#include <stdio.h> 
#include <conio.h> 
#include <dos.h> 
#include <math.h> 
#include "cb.h" 

/* Prototypes */ 
void ClearScreen (void); 
void GetCursor (int *x, int *y) ; 
void MoveCursor (int x, int y); 

void main () 
{ 
/* Variable Declarations */ 
int Row, Col, I; 
int BoardNum = 0; 
int ULStat = 0; 
int PortNum, Direction; 
int PowerVal, BitValue; 
int Zero = 0; 
int One = 1; 
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unsigned DataValue; 
float   range, RevLevel = (float)CURRENTREVNUM,• 

/* Declare UL Revision Level */ 
ULStat = cbDeclareRevision(&RevLevel); 

/* Initiate error handling 
Parameters: 

PRINTALL :all warnings and errors encountered will be printed 
STOPALL  :if any error is encountered, the program will stop */ 

ULStat = cbErrHandling (PRINTALL, STOPALL); 

/* set up the display screen */ 
ClearScreen(); 
printf ("Demonstration of ranger()\n\n"); 
printf ("Press any key to quit.\n\n"); 
printf ("The first 7 bits are: ") ,- 
printf ("01234567 \n"); 
GetCursor (&Col, &Row); 

/* configure FIRSTPORTA for digital input 
Parameters: 

BoardNum   :the number used by CB.CFG to describe this board. 
PortNum    :the input port 
Direction  :sets the port for input or output */ 

PortNum = FIRSTPORTA; 
Direction = DIGITALIN; 
ULStat = cbDConfigPort (BoardNum, PortNum, Direction); 

while (!kbhit()) 
{ 
/* Read the 7 bits digital input and display 

Parameters: 
BoardNum   :the number used by CB.CFG to describe this board 
PortNum    :the input port 
DataValue  :the value read from the port  */ 

ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 
if (DataValue < 91) 
range = 00.0; 

else 
range = DataValue*0.472; 

/* display the value collected from the port */ 
MoveCursor (Col, Row); 
printf ("Range: %2.1f cm ", range); 

/* parse DataValue into bit values to indicate on/off status */ 
MoveCursor (Col + 21, Row); 
for (I = 0; I < 8; I++) 

{ 
BitValue = One; 
PowerVal = (int)pow(2, I); 
if (DataValue & PowerVal) 

{ 
BitValue = Zero; 
} 
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printf (" %u ", BitValue) ; 
} 

} 

MoveCursor (1, 20) ; 
printf ("\n"); 

} 

/************************************************************************ 
*** 
* 
* Name:     ClearScreen 
* Arguments:   
* Returns:     
* 
* Clears the screen. 
* 
************************************************************************* 
** I 

#define BIOS_VIDEO  0x10 

void 
ClearScreen (void) 
{ 

union REGS InRegs,OutRegs; 

InRegs.h.ah = 0; 
InRegs.h.al = 2; 
int86 (BIOS_VTDEO, &InRegs, &OutRegs); 
return; 

} 

/************************************************************************ 
* 
* 
* Name: MoveCursor 
* Arguments: x,y - screen coordinates of new cursor position 
* Returns:   
* 
* Positions the cursor on screen. 
* 
************************************************************************* 
*/ 

void 
MoveCursor (int x, int y) 
{ 

union REGS InRegs,OutRegs; 
InRegs.h.ah = 2; 
InRegs.h.dl = (char) x; 
InRegs.h.dh = (char) y; 
InRegs.h.bh = 0; 
int86 (BIOS_VIDEO, &InRegs, &OutRegs); 
return; 

} 
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/************************************************************************ 
* 
* 

* Name:     GetCursor 
* Arguments: x,y - screen coordinates of new cursor position 
* Returns:   *x and *y 
* 

* Returns the current (text) cursor position. 
* 
************************************************************************* 
** / 

void 
GetCursor (int *x, int *y) 
{ 

union REGS InRegs,OutRegs; 

InRegs.h.ah = 3; 
InRegs.h.bh = 0; 
int86 (BIOS_VTDEO, &InRegs, &OutRegs); 
*x = OutRegs.h.dl; 
*y = OutRegs. h. dh ; 
return; 

} 

/*ULDI01.C************************************************************ 

File: RANGER.C 

Library Call Demonstrated:   ranger() 

Purpose: Reads a digital input port. 

Demonstration: Configures FIRSTPORTA for input and 
reads the value on the port, 
then displays the sonar ranging 
information in cm. 

Other Library Calls: cbDConfigPort() 
cbErrHandling() 

Special Requirements:        Board 0 must have a digital input port. 

Moodified 12/2/98 by R.A. Raphael for use with the Polaroid sonar ranger 
This program is derived form ULDI01.C 

ULDIOl.C has the following Copyright: 
(c) Copyright 1995, ComputerBoards, Inc. 
All rights reserved. 

modified 12/2/98 
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************************************************************************* 
/ 

/* Include files */ 
#include <stdio.h> 
#include <conio.h> 
#include <dos.h> 
#include <math.h> 
#include "cb.h" 

/* Prototypes */ 
void ClearScreen (void); 
void GetCursor (int *x, int *y); 
void MoveCursor (int x, int y); 

void main () 
{ 
/* Variable Declarations */ 
int Row, Col, I; 
int BoardNum = 0; 
int ULStat = 0; 
int PortNum, Direction; 
int PowerVal, BitValue; 
int Zero = 0; 
int One = 1; 
unsigned DataValue; 
float   range, RevLevel = (float)CURRENTREVNUM; 

/* Declare UL Revision Level */ 
ULStat = cbDeclareRevision(&RevLevel); 

/* Initiate error handling 
Parameters: 

PRINTALL :all warnings and errors encountered will be printed 
STOPALL  :if any error is encountered, the program will stop */ 

ULStat = cbErrHandling (PRINTALL, STOPALL); 

/* set up the display screen */ 
ClearScreen(); 
printf ("Demonstration of ranger()\n\n"); 
printf ("Press any key to quit.\n\n"); 
printf ("The first 7 bits are: "); 
printf ("01234567 \n"); 
GetCursor (&Col, &Row); 

/* configure FIRSTPORTA  for digital input 
Parameters: 

BoardNum   :the number used by CB.CFG to describe this board. 
PortNum    :the input port 
Direction  :sets the port for input or output */ 

PortNum = FIRSTPORTA; 
Direction = DIGITALIN; 
ULStat = cbDConfigPort (BoardNum, PortNum, Direction); 

while (!kbhit()) 
{ 
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/* Read the 7 bits digital input and display- 
Parameters : 

BoardNum   .-the number used by CB.CFG to describe this board 
PortNum    :the input port 
DataValue   :the value read from the port  */ 

ULStat = cbDIn(BoardNum, PortNum, &DataValue) ; 
DataValue = -DataValue & 0377; 
if (DataValue < 91) 

range = 00.0; 
else 
range = DataValue*0.472; 

/* display the value collected from the port */ 
MoveCursor (Col, Row); 
printf ("Range: %2.1f cm ", range); 

/* parse DataValue into bit values to indicate on/off status */ 
MoveCursor (Col + 21, Row); 
for (I = 0; I < 8; I++) 

{ 
BitValue = One; 
PowerVal = (int)pow(2,1); 
if (DataValue & PowerVal) 

{ 
BitValue = Zero; 
} 

printf (" %u ", BitValue); 
} 

} 

MoveCursor (1, 20); 
printf ("\n"); 

} 

/************************************************************************ 
** 

* Name:     ClearScreen 
* Arguments:   
* Returns:     
* 

* Clears the screen. 
* 
************************************************************************* 
*/ 

#define BIOS_VIDEO  0x10 

void 
ClearScreen (void) 
{ 

union REGS InRegs,OutRegs; 

InRegs.h.ah = 0; 
InRegs.h.al = 2; 
int86 (BIOS_VIDEO, &InRegs, &OutRegs); 
return; 
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/************************************************************************ 
* 
* Name: MoveCursor 
* Arguments: x,y - screen coordinates of new cursor position 
* Returns:   
* 
* Positions the cursor on screen. 
* 
************************************************************************, 

void 
MoveCursor (int x, int y) 
{ 

union REGS InRegs,OutRegs; 

InRegs.h.ah = 2; 
InRegs.h.dl = (char) x; 
InRegs.h.dh = (char) y; 
InRegs.h.bh = 0; 
int86 (BIOS_VIDEO, &InRegs, &OutRegs) ; 
return; 

} 

Z************************************************************************ 
* 
* 
* Name:      GetCursor 
* Arguments: x,y - screen coordinates of new cursor position 
* Returns:   *x and *y 
* 
* Returns the current (text) cursor position. 
* 
************************************************************************* 
*/ 

void 
GetCursor (int *x, int *y) 
{ 

union REGS InRegs,OutRegs; 

InRegs.h.ah = 3; 
InRegs.h.bh = 0; 
int86 (BIOS_VIDEO, &InRegs, &OutRegs) ; 
*x = OutRegs.h.dl; 
*y = OutRegs.h.dh;; 
return; 

} 
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/*************************** MV_TIME.C ******************************/ 

* 

* MV_TIME: The program mv_time is used to calculate the 
* average amount of time it takes to move the manipulator a 
* given distance. The program utilizes the Zebra-ZERO 
* movement function hjog. However, the movement function is 
* interchangeable.  The function moves the tool frame 
* back and forth for a designated number of cycles. 
* The user is prompted to start the movement cycle. 
* at the same time, a stop watch is used to time the events. 
* The total time divided over the number of movements is 
* the average movement time. 
* 

* R.A. Raphael Mar 98 

/* Include files */ 
#include <stdio.h> 
#include <conio.h> 
tinclude <dos.h> 
#include <math.h> 
#include <stdlib.h> 
#include <graphics.h> 
tinclude <bios.h> 
#include "robot.h" 
#include "cb.h" 
#include <time.h> 

void main(void) 
{ 
int   i = 0; 
float move_distance=200; 
vect v3 ,- 
vect6  joint_vector; 
frame start_frame; 
get_ini t_data("DEFAULT.INI") ; 

homerobot(); 

clrscr(); 
hjog(mkv3(v3, 0, 0, -200)); 
where(joint_vector, &start_frame); 
printf("Prepare the stopwatch for timing the movements \n"); 
printf ("Press any key to begin the movements \n"); 
getch () ,- 

while ( i++ < 10) 
{ 
hjog(mkv3(v3, 0, 0, move_distance)) ; 
hjog(mkv3(v3, 0, 0, -move_distance)); 
printf(" %d ",i) ; 

} 
printf("press any key to continue"); 
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getch(); 
gobackhome(); 
} // end main 
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APPENDIX B. ZEBRA-ZERO HARDWARE TEST PROGRAMS FOR A 

STATIONARY TARGET 

/*************************** C0NTR0L1.C ******************************/ 

* 
* 

* CONTROLl.c tests the ability of the Zebra-ZERO to perform a complex 
* pick-and-place task where the manipulator is on a mobile delivery 
* platform and the target object is stationary. 
* 

* R.A. Raphael Mar 98 

/* Include files */ 
#include <stdio.h> 
#include <conio.h> 
♦include <dos.h> 
#include <math.h> 
#include <stdlib.h> 
#include <graphics.h> 
* inelüde <bios.h> 
#include "robot.h" 
#include "cb.h" 

void main(void) 
{ 

vect6 ready,search_config, contact_config; 
int bearing=90; 
int status; 
int grasp_count; 
int acquire_obj; 
ge t_ini t_data("DEFAULT.INI"); 

homerobot(); 

status = 1; 
acquire_obj =0; // 
while(status != 0) 

{ 
switch(status) 

{ 
case 1: //ensures delivery platform is properly placed 

status=acquire_object(bearing) ; 
if (status) 
status = 2; 
else 
status = 1; 
acquire_obj++; 
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if(acquire_obj > 2) 
status = 0; 
break; 

case 2: 
status = grasp_object() ;; 
if (status==2) 
status = status = 1; 
else 
status = 0; 
printf("peg was not retrieved."); 
break; 

default: 
clrscr(); 
printf(" An unexpected error has occured. \n"); 
printf(" Placing manipulator in nest."); 
getch(); 
break; 

} // end switch 

}   // end while 

gobackhome(); 

} 
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/*******************************************************************, 
/*************************** pHASEl.C ******************************/ 

/************************************************************************ 
* 

* PHASEl.C:  Used with controll.c to control the Zebra-ZERO Manipulator 
on 
* a moving platform 
* 

* R.A. Raphael 
Mar 98 
************************************************************************* 

/ 

/* Include files */ 
#include <stdio.h> 
#include <conio.h> 
#include <dos.h> 
#include <math.h> 
♦include <stdlib.h> 
♦include <graphics.h> 
♦include <bios.h> 
♦include "robot.h" 
♦include "cb.h" 

//       functions for I/O board 

/•A********************************************************************** 

* 
* 

* Name:     ClearScreen 
* Arguments:  
* Returns:     
* 

* Clears the screen. 
* 
************************************************************************, 

♦define BIOS_VIDEO  0x10 

void ClearScreen (void) 
{ 

union REGS InRegs,OutRegs; 
InRegs.h.ah = 0; 
InRegs.h.al = 2; 
int86 (BIOS_VIDEO, fclnRegs, &OutRegs); 
return; 

} 

/A*********************************************************** 

* 

* Name:      MoveCursor 
* Arguments: x,y - screen coordinates of new cursor position 
* Returns:     
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* 

* Positions the cursor on screen. 
* 
************************************************************** ********, 

void MoveCursor (int x, int y) 
{ 

union REGS InRegs,OutRegs; 

InRegs.h.ah = 2 ; 
InRegs.h.dl = (char) x; 
InRegs.h.dh = (char) y; 
InRegs.h.bh = 0; 
int86 (BIOS_VIDEO, &InRegs, fcOutRegs); 
return; 

} 

/************************************************************************ 
* 

* Name: GetCursor 
* Arguments: x,y - screen coordinates of new cursor position 
* Returns: *x and *y 
* 

* Returns the current (text) cursor position. 
* 
************************************************************************, 

void GetCursor (int *x, int *y) 
{ 

union REGS InRegs,OutRegs; 
InRegs.h.ah = 3; 
InRegs.h.bh = 0 ; 
int86 (BIOS_VIDEO, &InRegs, &0utRegs); 
*x = OutRegs.h.dl; 
*y = OutRegs.h.dh; 
return; 

} 

int near_pos(vect6 v, vect6 jv) 
{ 
int i; 

for (i=0; i<6; i++) if ( fabs(v[i]-jv[i]) > 5.0*DTOR ) return(O); 
return(1); 
} 

void printvect_deg(vect6 v) 
{ 
int i; 

for (i=0; i<6; i++) printf("%12.3f",v[i]*RTOD); 
printf("Nn"); 
} 

92 



* 

* Name:     acquire_object 
* Arguments: bearing - bearing of closest object to manipulator 
* Returns:   1 if object is found 
* 0 if no objcect is found 
* 
* 

int acquire_object(int bearing) 
{ 
vect  f_new, v3; 
vect6 home_jv; 
vect6 ready,search_config, contact_config; 
vect6 v; 
frame f; 
char c; 
int Row, Col, I, i, n; 
int BoardNum = 0; 
int ULStat = 0; 
int PortNum, Direction; 
int PowerVal, BitValue; 
int False = 0; 
int True = 1; 
int aquire_peg, accuracy_count = 0; 
int error_int; 
vect6 joint_vector, grasp_config; 
frame tool_frame; 
frame desired_frame; 
frame grasp_frame ; 
unsigned DataValue, DataValue_temp; 
float  range,range_in, error, RevLevel = {float)CURRENTREVNUM; 
float  sum_value, last_sum_value=42; 
float x_posit, y_posit,z_posit; //location of tool frame 
float  Tool_Location, Tool_Location_x, Tool_Location_y; // range of tool 
from base frame origion 
float desired_frame_vector; 

/* Declare UL Revision Level. This is required for CYDIO I/O board. */ 
ULStat = cbDeclareRevision(&RevLevel) ; 

mkv6(ready, 0.0, 90.0*DTOR, -180.0*DTOR, 180.0*DTOR, 0.0, 0.0); 
aguire_peg = False; 

printf ("In LOOP bearing is %d \n  ".bearing); 
mkv6(search_config, bearing*DTOR, 90.0*DTOR, -132.0*DTOR, 183.0*DTOR, 
48.0*DTOR, 100.0*DTOR); 
mkv6(contact_config, bearing*DTOR, 50.0*DTOR, -160.0*DTOR, 175.0*DTOR, - 
17.3*DTOR, 10.2*DTOR); 
jmove(search_config); 
where (j oint_vector, &tool_frame) ; 

/* Initiate error handling 
Parameters: 
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PRINTALL :all warnings and errors encountered will be printed 
STOPALL  :if any error is encountered, the program will stop */ 

ULStat = cbErrHandling (PRINTALL, STOPALL); 

GetCursor (&Col, &Row); 

/* configure FIRSTPORTA for digital input 
Parameters: 

BoardNum   :the number used by CB.CFG to describe this board. 
PortNum    :the input port 
Direction  :sets the port for input or output */ 

PortNum = FIRSTPORTA; 
Direction = DIGITALIN; 
ULStat = cbDConfigPort (BoardNum, PortNum, Direction) ; 
ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 
DataValue_temp = DataValue * 0.5; 
z_posit = 300; 
where(joint_vector, &desired_frame) ; 
last_sum_value=40; 
where(joint_vector, &desired_frame); 
accuracy_count = 0; 
aquire_peg = False; 
n = 120; 
while (—n > 1) 

{ 
/* Read the 7 bits digital input and display 

Parameters: 
BoardNum 
PortNum 
DataValue 

the number used by CB.CFG to describe this board 
the input port 
the value read from the port  */ 

ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 
if(DataValue < 91) 

{ 
usec_timer_init () ; 
usec_timer(1000); 
ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 
if (DataValue< 91) 

{ 
range_in = 91* 0.472; 
} 

else 
{ 
range_in = DataValue*0.472 ; 
} 

} 

else 
{ 
range_in = DataValue*0.472; 

} 

// Impliment filter 
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sum_value = range_in + 0.8 * last_sum_value; 
range =0.2 * sum_value; 
last_sum_value = sum_value; 
where(j oint_vector, &tool_frame); 
Tool_Location_x = tool_frame.p[0]; 
Tool_Location_y = tool_frame.p[l]; 
Tool_Location =0.1* sqrt( Tool_Location_x *Tool_Location_x + 

Tool_Location_y * Tool_Location_y)-6; 

error = range - Tool_Location; 
desired_frame_vector = 10.0 * (error + Tool_Location + 6.0); 
desired_frame.p[0] = desired_frame_vector * cos(bearing*DTOR); 
desired_frame.p[l] = desired_frame_vector * sin(bearing*DTOR) ; 
desired_frame.p[2] = z_posit; 

/* display the value collected from the port */ 
MoveCursor (Col, Row); 

printf ("range %2.1f \n tool location %4.1f \n error %4.1f ", 
range, Tool_Location, error); 

cmove(&desired_frame); 
if (aquire_peg == False) 

{ 
if ( abs((int)error) < 4) 

{ 
z_posit = 150; 
} 

} 
error_int = 10 * error; 

if ( abs(error_int) < 3) 
{ 
accuracy_count = accuracy_count + 1; 
printf("a count %d",accuracy_count); 

} 
else 

{ 
accuracy_count = 0; 

} 

if (accuracy_count > 40) 
{ 

mkv6(grasp_config, bearing*DTOR, 50.0*DTOR, -160.0*DTOR, 
175.0*DTOR, -20.0*DTOR, 10.0*DTOR); 

jmove(grasp_config) ; 
where(joint_vector, &grasp_frame); 

grasp_frame.p[0] = desired_frame.p[0]; 
grasp_frame.p[l] = desired_frame.p[l]; 
grasp_frame.p[2] = 0.0; 
cmove(&grasp_frame) ; 
return(1); 

} 
} 

return(0); 
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* 
* Name:     contact_object 
* Arguments: None 
* Returns:   1 if surface is contacted 
* 0 if the surface is not detected 
* 
* Places the gripper so that it is contacting the peg. 
* 
* R.A. Raphael Mar 98 
**********************************************************************/ 

int contact_object() 
{ 
int n; 
vect6 force_vector; 
vect v3; 
float force_z, displacement; 

zero_force(); 
n = 40; 
while (—n > 0) 

{ 
read_user_force(force_vector) ; 
force_z = abs(100*force_vector[2]);// extract z force 
if (force_z > 10) 

{ 
printf("\n surface detected\n \n"); 
return(1); 

} 
hjog(mkv3(v3, 0, 0, 1)); 

} // end while 
hjog(mkv3(v3,0,0,-20)); 
return(0); 
} // end function 

* 
* 
* Name:      extract_peg 
* Arguments: None 
* Returns:   None 
* 
* extracts peg. 
* 
************************************************************************* 
I 

int extract_peg(void) 
{ 
vect v3; 
vect6 force_vector; 
float force_x; 
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set_seg_time(5); 
hjog(mkv3(v3, 0, 0,-5)); 
gripper(80, 5, 0); 
hjog(mkv3(v3, 0, 0, 25)); 
//getch(); 
zero_force() ; 
gripper(0, 10, 1000); 
jog(mkv3(v3, 0, 0, 30)); 
jog(mkv3(v3, 0, 0, 30)); 

read_user_force(force_vector) ; 
force_x = abs(100*force_vector[0]);// extract z force 
if (force_x > 5) 

{ 
printf("\n peg retreaved detected\n \n"); 
return(1); 

} 
return(0); 
} // end function 

* 
* 

* Name:     place_peg 
* Arguments: None 
* Returns:  None 
* 

* places peg in front of hole. 
* 

/ 

int place_peg(void) 
{ 
vect v3; 
vect6 force_vector; 
int n; 
float force_x; 
set_seg_time(5); 
hjog(mkv3(v3, 0, 0, -80)); 
jog(mkv3(v3, 0, 0, -100)); 
zero_force() ; 
set_seg_time(1); 
n = 100; 
while(—n > 0) 

{ 
read_user_force(force_vector) ; 
force_x = abs(100*force_vector[0]) ;// extract y force 
if (force_x > 10) 

{ 
printf("\n peg placed\n \n"); 
gripper(80, 5, 0); 
set_seg_time(0); 
return(1); 

} 
jog(mkv3(v3, 0, 0, -1)); 

} 
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printf(" peg not placed"); 
set_seg_time(0) ; 
return(0); 
} // end function 

* 

* Name:     grasp_object 
* Arguments: bearing - bearing of closest object to manipulator 
* Returns:   1 if object is found 
* 0 if no objcect is found 

*******************************************±*i!****it**ili,*i,iri!i.i,i,i,i.ici,i,icir:k. 

int grasp_object(int bearing) 
{ 
vect  f_new, v3; 
vect6 home_jv; 
vect6 ready,search_config, contact_config; 
vect6 v; 
frame f; 
char c; 
int   status; 
vect6 joint_vector, grasp_config; 
frame tool_frame; 
frame desired_frame; 
frame grasp_frame; 

set_seg_time(5); // slow manipulator response 
hjog(mkv3(v3,-119, 0, 0));   // postion gripper infront of peg 
printf("\n grasp object"); 
set_seg_time(0); 
status = contact_object(); 
if (status < 1) 

return(2); 

extract_peg(); 
if (status < 1) 
return(0) 

place__peg () 
if (status < 1) 

return(0) 

jog(mkv3(v3, 0, 0, 200)); 
set_seg_time(0); 
return(1); 
} 
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APPENDIX C. ZEBRA-ZERO HARDWARE TEST PROGRAMS FOR A MOVING 

TARGET 

/*************************** CONTROL2.C ******************************/ 

* 

* CONTROL2.C:  executes a control algorithm that grasps a 
* device whose location and configuration is *known by the control 
* algorithm, and places it on a vertical surface where the *distance 
* between the Manipulator and the surface may be constantly varying. 
* Must be compiled with force.c, robot.lib and cbcl.lib. 
* 

* R.A. Raphael Mar 98 

/* Include files */ 
#include <stdio.h> 
#include <conio.h> 
♦include <dos.h> 
#include <math.h> 
♦include <stdlib.h> 
♦include <graphics.h> 
♦include <bios.h> 
♦include "robot.h" 
♦include "cb.h" 
♦include <time.h> 

void main(void) 
{ 

vect6 ready,search_config, contact_config; 
int bearing=90; 
int status; 
int grasp_count; 

get_init_data("DEFAULT. INI") ; 

homerobot () ; 

status = 1; 
grasp_count =0; // 
while(status != 0) 

{ 
switch(status) 

{ 
case 1: //ensures delivery platform is properly placed 

status=detect_object(bearing); 
if (status) 
status = 2; 
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break; 
case 2: 

status = grasp_device(); 
if (status) 
status = 3; 
else 
status = 2; 
grasp_count++; 

if(grasp_count>2) 
status = 0; 
break; 

case 3: 
status = acquire_target(bearing); 
if(status) 
status = 4; 
else 
status = 6; 
break; 

case 4: 
status = make_contact(bearing); 
if (status) 

status = 5; 
else 

status = 6; 
break; 

case 5: 
apply_device(); 
status = 0; 
break; 

case 6: 
return_device(); 
status = 0; 
break; 

default: 
clrscr(); 
printf(" An unexpected error has occured. \n"); 
printf(" Placing manipulator in nest."); 
getch(); 
break; 

} // end switch 

}   // end while 

gobackhome(); 

clrscr(); 

} // end main 
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/A******************************************************************/ 

/*************************** PHASE2.C ******************************/ 
/******************************************************************** 

/A******************************************************************** 

* PHASE2.C:  Used with control2.c to control the Zebra-ZERO 
* Manipulator on a moving platform. 
* 

* R.A. Raphael Mar 98 
it***********************************************************************/ 

/* Include files */ 
#include <stdio.h> 
#include <conio.h> 
#include <dos.h> 
#include <math.h> 
♦include <stdlib.h> 
♦include <graphics.h> 
♦include <bios.h> 
♦include "robot.h" 
♦include "cb.h" 
♦define number_of_scans  60 
♦include <time.h> 

//       functions for I/O board 

* 
* 
* Name:     ClearScreen 
* Arguments:   
* Returns:     
* 
* Clears the screen. 

♦define BIOS_VIDEO   0x10 

void ClearScreen (void) 
{ 

union REGS InRegs,OutRegs; 
InRegs.h.ah = 0; 
InRegs.h.al = 2; 
int86 (BIOS_VIDEO, &InRegs, &OutRegs) ; 
return; 

} 

* Name: MoveCursor 
* Arguments: x,y - screen coordinates of new cursor position 
* Returns:   
* 

* Positions the cursor on screen. 
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************************************************************************* 

/ 

void MoveCursor (int x, int y) 
{ 

union REGS InRegs,OutRegs; 

InRegs . h. ah = 2 ; 
InRegs.h.dl = (char) x; 
InRegs.h.dh = (char) y; 
InRegs.h.bh = 0; 
int86 (BIOS_VIDEO, fclnRegs, &OutRegs); 
return; 

/************************************************************************ 
*** 
* 

* Name:     GetCursor 
* Arguments: x,y - screen coordinates of new cursor position 
* Returns:   *x and *y 
* 

* Returns the current (text) cursor position. 
* 
************************************************************************* 
** / 

void GetCursor (int *x, int *y) 
{ 

union REGS InRegs,OutRegs; 

InRegs.h.ah = 3; 
InRegs.h.bh = 0; 
int86 (BIOS_VIDEO, fclnRegs, &OutRegs); 
*x = OutRegs.h.dl; 
*y = OutRegs.h.dh; 
return; 

} 

int near_pos(vect6 v, vect6 jv) 
{ 
int i; 

for (i=0; i<6; i++) if ( fabs(v[i]-jv[i]) > 5.0*DTOR ) return(0); 
return(1); 
} 

void printvect_deg(vect6 v) 
{ 
int i ; 

for (i=0; i<6; i++) printf("%12.3f",v[i]*RTOD); 
printf("\n"); 
} 
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/**************************************************************ir* + iritirit** 
* 
* Name:      get_range 
* Arguments: None 
* Returns:   Range in cm 
* 

* get_range polls the I/O board input port to acquire the average sonar 
* ranging data over 5 readings taken over a time designated as "delay." 
* It then determines if the reading is within range.  Max range reading 
* is 123, min range reading is 42 cm. The highest value this function 
* will return is 123 and the lowest is 41.  Numbers that are detected as 

.* being less than 41 are returned as 200. 

* R.A. Raphael Mar 1998 
it***********************************************************************, 

int get_range(void) 
{ 

/* Variable Declarations */ 
int Row, Col, I, i; 
int BoardNum = 0; 
int ULStat = 0; 
int PortNum, Direction; 
int PowerVal, BitValue; 
int acquire, contact; 
int delay = 1500; 

unsigned DataValue; // DataValue_temp; 
float range; 
float range_in, error, RevLevel = (float)CURRENTREVNUM; 
float sum_value, last_sum_value=42; 
float bearing; // bearing to object 
float x_posit, y_posit; //location of tool frame 
float Tool_Location; // range of tool from base frame origin 

/* Declare UL Revision Level. This is required for CYDIO I/O board. */ 
ULStat = cbDeclareRevision(&RevLevel); 

/* Initiate error handling 
Parameters: 

PRINTALL :all warnings and errors encountered will be printed 
STOPALL  :if any error is encountered, the program will stop */ 

ULStat = cbErrHandling (PRINTALL, STOPALL); 

/* configure FIRSTPORTA for digital input 
Parameters: 

BoardNum    :the number used by CB.CFG to describe this board, 
the input port 
sets the port for input or output */ 

PortNum 
Direction 

PortNum = FIRSTPORTA; 
Direction = DIGITALIN; 
ULStat = cbDConfigPort (BoardNum, PortNum, Direction); 
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ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 

// obtain the average value of 5 consecutive sonar readings 
for ( i = 0; i < 5; ++i) 
{ 
/* Read the 7 bits digital input and display 

Parameters: 
BoardNum 
PortNum 
DataValue 

the number used by CB.CFG to describe this board 
the input port 
the value read from the port  */ 

ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 

if (DataValue < 91)   // screen for minimum reading 
range_in = 90*0.472;// scale sonar reading to cm 

else 
range_in = DataValue*0.472;// scale sonar reading to cm 

// execute averaging over 5 samples 
sum_value = range_in + last_sum_value; 
range =0.2 * sum_value; 
last_sum_value = sum_value; 

usec_timer_init(); // initialize timer 
usec_timer(delay); // start timer 
} 

if ( range < 40)   // set min range flag of 200 
range = 200; 

return(range); 
} 

/************************************************************************ 
* 
* Name:     detect_objec 
* Arguments: bearing 
* Returns:   1 if object is found 
* 0 if no object is found 
* 

* detect_object places the manipulator in "detect configuration." This 
* configuration moves the manipulator limbs out of the way of the 
* transducer.  The function "get_range" is called to obtain the range to 
* the target. Target must be between min_range and max_range for a min of 
* n_scans calls to "get_range" for a 1 to be returned,  n scans are 
* designated to get 8 consecutive valid ranges.  After which, a 0 is 
* returned. 
* 

* R.A. Raphael Mar 1998 
********************************************************************* 

int detect_object(int bearing) 
{ 
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int range; 
int n = 100; 
int detect_valid = 0; 
int min_range = 65; 
int max_range = 75; 
int n_scans=8; 
int Col, Row; 
vect6 detect_config; 

// place manipulator sonar sensor at bearing to detect object 
mkv6(detect_config, bearing*DTOR, 100.0*DTOR, -175.0*DTOR, 185.0*DTOR, 
18.0*DTOR, 0.0*DTOR); 
jmove(detect_config); 

// track approach to object of interest 

clrscr(); 
MoveCursor (1, 10); 
GetCursor (&Col, &Row); // memorize cursor location 

while ( --n > 0 ) 
{ 
range=get_range();    // fetch range 
MoveCursor (Col, Row);// place cursor 

/*********** prompt user to position manipulator *****.************/ 

if (range > 150 || range < 60 ) 
{ 
printf("Target is too close. Move manipulator away form target \n"); 
printf(" \n"); 
printf(" \n"); 

} 

else if (range < 100) 
{ 
printf("Target is in range and must remain between 65 & 75cm \n"); 
printf("away form manipulator for 8 seconds. \n"); 
printf("Range to detected object is %d \n", 

range); 
} 

else 
{ 
printf("Target out of range approach Target. \n") 
printf(" \n") 
printf(" \n«) 

} 

// if range is within min and max range for n_scans return 1 
if(range < max_range && range > min_range) 
detect_valid = detect_valid + 1; 

else 
detect_valid = 0; 

if(detect_valid > n_scans) 
return(1); 
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} // end while in_range loop 

return(O); // return 0 if could not detect object 

} // end function detect_objec 

* 
* Name:    grasp_device 
* Arguments: none 
* Returns:   1 if device is retrieved 
* 0 if object is not retrieved 
* 

* grasp_device retrieves a known device from a known locaion a 
positions 
* the manipulator with device in hand for the next task. 
* 

* R.A. Raphael Mar 1998 
************************************************************************/ 

int grasp_device(void) 
{ 
vect v3; 
vect6 force_vector; 
float force_z; 
vect6 grasp_vector, contact_config; 

clrscr(); 
MoveCursor (1, 10); 
mkv6(grasp_vector, 15.0*DTOR, 48.6*DTOR, -174.3*DTOR, 182.2*DTOR, 
59.0*DTOR, 20.0*DTOR); 
mkv6(contact_config, 0.0*DTOR, 90.0*DTOR, -132.0*DTOR, 183.0*DTOR, 
48.0*DTOR, 100.0*DTOR); 

jmove(grasp_vector); // Maneuver manipulator over device to be 
placed 
gripper(80.0, 10, 0); // open gripper 
set_seg_time(4); // slow manipulator movements 
jog(mkv3(v3, 0, 0, -106)); // position gripper to grasp device 
zero_force(); // init force sensor 
gripper(0.0, 10, 1000); // close gripper 
jog(mkv3(v3, 0, 0, 127)),- // move device clear of nest 

/**************** check if object was retrieved ***********/ 
read_user_force(force_vector); 
force_z = abs(100*force_vector[2]);// extract z force and scale results 

if (force_z < 5) 
{ 
printf("\n Device was not retrieved. Press any key \n \n"); 
getch(); 
return(0); 

} 
printf("\n Device was retrieved \n \n"); 

jmove(contact_config);    // position manipulator for next task 
set_seg_time(0); // restore default movement speed 
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return(1); 

} // end function grasp_device 

* 
* 

* Name:     acquire_target 
* Arguments: bearing - bearing of closest object to manipulator 
* Returns:   1 if object is found 
* 0 if no object is found 
* 

* acguire_target checks if the environment is stable enough to attempt 
* to place the device. At the same time the check is being made, the 
device 
* is held at a safe distance from the target.  If the environment is 
* stable( 20 reading w/ +/- 1 cm readings)for n sonar readings the 
* function returns a 1.  If after n readings the environment is not 
* stable it returns a 0. 
* 

* R.A. Raphael  Mar 1998 
************************************************************************/ 

int acquire_target(int bearing) 
{ 
vect  f_new, v3; 
vect6 home_jv; 
vect6 search_config; 
vect6 v; 
frame f; 
char c; 
int Row, Col, I, i, n; 
int BoardNum = 0; 
int ULStat = 0; 
int PortNum, Direction; 
int PowerVal, BitValue; 
int accuracy_count = 0; 
int delay=100; 
int tool_offset = 20; // allows for stand-off distance to object(20 cm) 
vect6 joint_vector, grasp_config; 
frame tool_frame; 
frame desired_frame; 
frame grasp_frame; 
unsigned DataValue, DataValue_temp; 
float range,range_in, error, RevLevel = (float)CURRENTREVNUM; 
float  sum_value; 
float x_posit, y_posit,z_posit; //location of tool frame 
float Tool_Location, Tool_Location_x, Tool_Location_y; // range of tool 
from base frame origin 
float desired_frame_vector; 

/* Declare UL Revision Level. This is required for CYDIO I/O board. */ 
ULStat = cbDeclareRevision(&RevLevel); 
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// set flags 
//acquire_target = False; 

clrscr(); 
MoveCursor (1, 10); 

printf ("The bearing to target is %d \n \n"»bearing); 
GetCursor (&Col, &Row); // memorize cursor locaion //38 
mkv6(search_config, bearing*DTOR, 90.0*DTOR, -132.0*DTOR, 183.0*DTOR, 
45.0*DTOR, 100.0*DTOR); 

set_seg_time(4); // slow manipulator 
jmove(search_config) ;    // move manipulator limbs out of the way 
set_seg_time(0); // restore fastest segment time 
where(joint_vector, &tool_frame) ; // remember current tool frame matrix 

/* Initiate error handling 
Parameters: 
PRINTALL .-all warnings and errors encountered will be printed 
STOPALL  :if any error is encountered, the program will stop */ 

ULStat = cbErrHandling (PRINTALL, STOPALL); 

/* configure FIRSTPORTA for digital input 
Parameters: 
BoardNum   :the number used by CB.CFG to describe this board. 
PortNum     :the input port 
Direction   :sets the port for input or output */ 

PortNum = FIRSTPORTA; 
Direction = DIGITALIN; 
ULStat = cbDConfigPort (BoardNum, PortNum, Direction); 
ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 

z_posit = 300;   // z location of the manipulator after error is reduced 
where(joint_vector, &desired_frame); // memorize current frame for 
rotation matrix 
accuracy_count = 0; 

n = 50; 
while ( —n > 1)  // n attempts will be made to stabilize platform to +/- 
2 cm 

{ 
/* Read the 7 bits digital input and display 
Parameters: 
BoardNum   :the number used by CB.CFG to describe this board 
PortNum    :the input port 
DataValue   .-the value read from the port  */ 

ULStat = cbDIn(BoardNum, PortNum, &DataValue) ; 
DataValue = -DataValue & 0377; 

if(DataValue < 91)   // if reading is too low read again 

usec_timer_init(); // init timer 
usec_timer(delay); // invoke timer 
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ULStat = cbDIn(BoardNum, PortNum, &DataValue); // call range 
information 

DataValue = -DataValue & 0377; 
if (DataValue< 91) // if still low set lowest value 

range_in = 91* 0.472;     // convert ranging information 
else // if not low convert read value 

range_in = DataValue*0.472; // convert ranging information cm 
} 

else //if not low set convert read value 
range_in = DataValue*0.472;  //convert ranging information to cm 

/******************** compute range to target ***********************/ 
range = range_in; 
where(joint_vector, &tool_frame); 
Tool_Location_x =  tool_frame.p[0]; 
Tool_Location_y =  tool_frame.p[1]; 
Tool_Location = 0.1 * sqrt( Tool_Location_x *Tool_Location_x + 

Tool_Location_y * Tool_Location_y); 

/******************** create desired position vector *****************/ 
error = range - Tool_Location; 
desired_frame_vector = 10.0 * (error + Tool_Location - tool_offset); 
desired_frame.p[0] = desired_frame_vector'* cos(bearing*DTOR); 
desired_frame.p[l] = desired_frame_vector * sin(bearing*DTOR); 
desired_frame.p[2] = z_posit; 

/* display the value collected from the port */ 
MoveCursor (Col, Row); 
printf ("range to target: %2.1f cm\n", range); 
printf ("Tool frame location: %4.1f cm\n", Tool_Location); 
printf ("Error: %4.1f cm\n\n",(error - 

tool_offset)) ; 
printf ("Range measurements to termination: %d\n",n); 

cmove(&desired_frame); 

if ( (int)Tool_Location > 20) // lower tool frame after tool frame is 
at safe dist 

z_posit = 0.0; 

/**************** determine if environment is stable 

if ( (abs((int)error)-20) < 2 ) 
{ 
accuracy_count = accuracy_count + 1; 
printf("a count %d",accuracy_count); 

} 
else 

{ 
accuracy_count = 0; 

} 
if (accuracy_count > 20) 

{ 
printf("environment is stable \n \n"); 
return(1); 

} 
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} // end while 
return(0); 

} // end function acquire_target 

* 
* 
* Name:     make_contact 
* Arguments: bearing - bearing of closest object to manipulator 
* Returns:   1 if device contacts target 
* 0 if device does not make contact- 
* 

* make_contact assumes the manipulator has been placed in a 
* configuration for approaching the target. The tool frame is advanced 
* toward the target until contact is made. 
* 
* R.A. Raphael Mar 1998 

/ 

int make_contact(int bearing) 
{ 
vect  f_new, v3; 
vect6 home_jv; 
vect6 v; 
frame f; 
char c; 
float get_data[3]; 
int Row, Col, I, i; 
int BoardNum = 0; 
int ULStat = 0; 
int PortNum, Direction; 
int PowerVal, BitValue; 
int n, accuracy_count = 0; 
int delay=100; 
int tool_offset =20; // allows for object being placed 
vect6 joint_vector, grasp_config; 
vect6 force_vector; 
frame tool_frame; 
frame desired_frame; 
frame grasp_frame; 
unsigned DataValue, DataValue_temp; 
float range,range_in, error, RevLevel = (float)CURRENTREVNUM; 
float sum_value; 
float x_posit, y_posit,z_posit; //location of tool frame 
float Tool_Location, Tool_Location_x, Tool_Location_y; // range of tool 
from base frame origin 
float desired_frame_vector; 
float  force_z; 

/* Declare UL Revision Level. This is required for CYDIO I/O board. */ 
ULStat = cbDeclareRevision(&RevLevel); 

/* Initiate error handling 
ULStat = cbErrHandling (PRINTALL, STOPALL); 
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/* set up the display screen */ 
ClearScreen(); 
MoveCursor (1, 10); 
printf("The device is being deployed \n\n"); 
GetCursor (&Col, &Row); 

/* configure FIRSTPORTA for digital input 
Parameters: 
BoardNum   :the number used by CB.CFG to describe this board. 
PortNum    :the input port 
Direction   :sets the port for input or output */ 

PortNum = FIRSTPORTA; 
Direction = DIGITALIN; 
ULStat = cbDConfigPort (BoardNum, PortNum, Direction); 
ULStat = cbDIn(BoardNum, PortNum, &DataValue) ; 
DataValue = -DataValue & 0377; 

where(joint_vector, &desired_frame) ; 
accuracy_count = 0; 
zero_force{); 
n = 60; 
while (n-- > 1) 

{ 
ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 

if(DataValue < 91) 
{ 
usec_timer_init(); 
usec_timer(delay); 
ULStat = cbDIn(BoardNum, PortNum, &DataValue); 
DataValue = -DataValue & 0377; 
if (DataValue< 91) 
range_in = 91* 0.472; 

else 
range_in = DataValue*0.472; 

} 
else 
range_in = DataValue*0.472; 

/****************** compute range to target ********************/ 
range = range_in; 
where(joint_vector, &tool_frame); 
Tool_Location_x =  tool_frame. p [0 ] ; 
Tool_Location_y = tool_frame.p[l]; 
Tool_Location = 0.1 * sqrt( Tool_Location_x *Tool_Location_x + 

Tool_Location_y * Tool_Location_y); 

/****************** compute new position vector *****************/ 
error = range - Tool_Location; 
desired_frame_vector = 10.0 * (error + Tool_Location - tool_offset) ; 
desired_frame.p[0] = desired_frame_vector'* cos(bearing*DTOR); 
desired_frame.p[l] = desired_frame_vector * sin(bearing*DTOR); 
desired_frame.p[2] =  z_posit; 
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/* display the value collected from the port */ 
MoveCursor (Col, Row); 
printf ("range to target: %2.1f cm\n", range); 
printf ("Tool frame location: %4.1f cm\n", Tool_Location) ; 
printf ("Error: %4.1f cm\n",(error - 

tool_offset)); 
printf ("Tool offset: %2d\n\n", tool_offset); 
printf ("Range measurements to termination: %2d\n",n); 

cmove(&desired_frame); // move manipulator to desired position 

if ( (abs((int)error)-tool_offset) < 1 ) 
accuracy_count = accuracy_count + 1; 

else 
accuracy_count = 0; 

if (accuracy_count > 3) 
tool_offset = (tool_offset-2); 

read_user_force(force_vector) ; 
force_z = abs(100*force_vector[2]);// extract z force 

if (force_z > 20) 
{ 
printf("surface detected \n \n"); 
return(1); 

} 

} // end while 

return(0); // device was not placed 

} // end function make_contact 

* 
* 

* Name:     apply_device 
* Arguments: None 
* Returns:   None 
* 

* apply_device applies a force to the tool frame in the z direction 
* for the period of time specified by the variable push_time and then, 
* moves the tool frame away from the surface to which the force was 
* applied. 
* 

* R.A. Raphael  Mar 1998 
************************************************************************* 
/ 

void apply_device(void) 
{ 
vect v3; 
vect6 v6; 
float push_time = 2.5; 
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set_stiffness(nikv6(v6/   0.1,   0.1,   0.0,   0.1,   0.1,   0.1)); 
set_bias_force(mkv6(v6,   0.0,   0.0,   1.0,   0.0,   0.0,   0.0)); 
push_with_bias(push_time); 
gripper(80.0,   10,   0); 
hjog(mkv3(v3,   0,   0,   -125)); 

} 

* 
* 
* Name:    return_device 
* Arguments: none 
* Returns:   1 if device is retrieved 
* 0 if object is not retrieved 
* 

* return_device returns a known device to a known locaion and positions 
* the manipulator for the next task. 
* 

* R.A. Raphael Mar 1998 

/ 

int retum_device (void) 
{ 
vect v3; 
vect6 force_vector; 
float force_z; 
vect6 grasp_vector, contact_config; 

clrscr(); 
MoveCursor (1, 10) ; 
mkv6(grasp_vector, 15.0*DTOR, 48.6*DTOR, -174.3*DTOR, 182.2*DTOR, 
59.0*DTOR, 20.0*DTOR); 
mkv6(contact_config, 0.0*DTOR, 90.0*DTOR, -132.0*DTOR, 183.0*DTOR, 
48.0*DTOR, 100.0*DTOR); 

jmove(grasp_vector);      // Maneuver manipulator over device to be 
placed 
set_seg_time(4) ; // slow manipulator movements 
jog(mkv3(v3, 0, 0, -80)); // position gripper to grasp device 
zero_force(); // init force sensor 
set_seg_time(l); 

force_z = 0; 
/******************* place device ***********************/ 
while ( force_z < 10) 

{ 
jog(mkv3(v3, 0, 0, -3));  // move device clear of nest 

/**************** check -[f object is placed ***********/ 
read_user_force(force_vector); 
force_z = abs(100*force_vector[2]) ,-// extract z force 

} 
gripper(80.0, 10, 1000);   // open gripper 
printf("\n Device is replaced \n \n"); 
jog(mkv3(v3, 0, 0, 100)); 
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jmove(contact_config);    // position manipulator for next task 
set_seg_time(0); // restore default movement speed 

return(1); 

} // end function return_device 
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