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1    Introduction and Motivation 

One of the problems which motivated this paper is how do we deal with in- 
consistent information. For example, suppose that we want to develop an expert 
system using logic programming with negation as failure. It may be the case that 
the knowledge engineer gathers facts, i.e. clauses of the form p <-, rules without 
exceptions, i.e. clauses of the form p <- qi,...qn, and rules with exception or 
rules of thumb, i.e. clauses of the form p <- q1,,.. qn, -,ri,..., ->rm, from several 
experts. One problem is that the resulting program may be inconsistent in the 
sense that the program has no stable model. That is, the experts may not be 
consistent. The question then becomes how can we eliminate some of the clauses 
so that we can get a consistent program. That is, at a minimum, we would like 
to select a subprogram of the original program which has a stable model. Vari- 
ous schemes have been proposed in the literature to do this [GS92, KL89]. For 
example, we may throw away the rules which came from what we feel are the 
most unreliable experts until we get a consistent program. However even in the 
case when the knowledge engineer consults only a single expert, the rules that 
the knowledge engineer produces may be inconsistent because the rules that he 
or she abstracted are not specific enough or simply because the expert did not 
give us a consistent set of rules. 

The above scenario is one practical reason that we would desire some proce- 
dure to construct, for a given program which has no stable model, a maximal 
subprogram that does have a stable model. Another practical reason occurs 
when we are using a logic program to control a plant in real time, see [KN93a] 
for examples. In this case, the program may have a stable model but that stable 
model may be very complicated and we do not have enough time to compute the 
full stable model. It has been shown [MT91] that the problem of determining 
whether a finite propositional logic program has a stable model is NP-complete. 
Moreover, the authors have shown [MNR92a] that there are finite predicate logic 
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programs which have stable models but which have no stable models which are 
hyperarithmetic so that there is no possible hope that one could compute the a 
stable model of the program no matter how much time one has. Thus if there 
are time problems, one may be satisfied by a procedure which would construct 
a subprogram of the original program and a stable model of the subprogram 
as long as both the subprogram and stable model of the subprogram can be 
computed rapidly, at the very least in polynomial time. 

Indeed some see as a general problem with the stable model semantics the 
fact that there are many programs which have no stable models. For example, if 
we have any program P and p is new statement letter, the program P plus the 
clause p <- -ip has no stable model even if the original program P has a stable 
model. Thus a single superfluous clause which may have nothing to do with 
the rest of the program may completely destroy the possibility of the program 
possessing a stable model. This is one of the reasons that researchers have looked 
for alternatives to the stable model semantics such as the well-founded semantics 
[VGRS91]. 

In this paper, we shall present a basic Forward Chaining type construction 
which can be applied to any general logic program. The input of the construction 
will be any well-ordering of the non-Horn clauses of the program. The construc- 
tion will then output a subprogram of the original program and a stable model 
of the subprogram. It will be the case that for any stable model M of the original 
program P, there will be a suitable ordering of the non-Horn clauses of the pro- 
gram so that the subprogram produced by our construction is just P itself and 
the stable model of subprogram produced by our construction will be M. Thus 
all stable models of the original program will be constructed by our Forward 
Chaining construction for suitable orderings. Moreover, we shall show that for 
finite prepositional logic programs, our construction will run in polynomial time. 
That is, we shall prove that our Forward Chaining construction runs in order of 
the square of the length of the program. 

We shall see that any stable model M of P can be produced via our Forward 
Chaining construction for some well-ordering -(, i.e. every stable model of P is a 
stable submodel of P. In the case where our original program P is inconsistent 
in the sense that P has no stable models, we can view our Forward Chaining 
construction as a way of extracting a maximal consistent subset of clauses C^ C 
P such that the system C* has stable model. 

2    General logic programs 

A definite logic program consists of clauses of the form 

a«- ai,...,am 

where a, ai,..., am are atoms of some underlying language. We call such clauses 
Horn program clauses or simply Horn clauses. The set of atoms occurring in 
some clause of P is called the Herbrand base of P, and is denoted by HP. We 
will be dealing here with the prepositional case only. 



A general logic program consists of clauses of the form 

C = a i- ai,...,am,-i&i,...,-i&„. (1) 

where a\,...,am, bi,...,bn are atoms.. Here a\,. ..,an are called the premises 
of clause C, &i,..., bm are called the constraints of clause C, and a is called the 
conclusion of clause C. 

Each Horn program can be identified with the a general program in which 
every clause has an empty set of constraints. 

Definition 1. A subset M C Hp is called a model of P if for all C = a «- 
oi,.. .,am-i&i,... ,->bn € P, whenever all the premises ai,...,an of C are in M 
and all the constraints bi,..., bm of C are not in M, then the conclusion a of C 
belongs to M. 

Given sets M CHP and / C HP, an M-deduction of c from J in P is a finite 
sequence (ci,..., Cfc) such that cjt = c and for all i < k, each c* either 
(1) belongs to I, or (2) is the conclusion of an axiom, or 
(3) is the conclusion of a clause C 6 P such that all the premises of C are 
included in {ci,..., Q_I} and all constraints of C are in HP \ M (see [MT93], 
also [RDB89]). 
An M-consequence of / is an element of Hp occurring in some M-deduction 
from I. Let CM(I) be the set of all M-consequences of I in P. Clearly / is a 
subset of CM (I)- However note that M enters solely as a restraint on the use 
of the clauses which may be used in an M-deduction from I. M contributes no 
members directly to CM (I), although members of M may turn up in CM {I) by 
an application of a clause which happens to have its conclusion in M. For a fixed 
M, the operator CM{-) is monotonic. That is, if / C J, then Cs{M) C CM{J)- 

Also, CM {CM (I)) = CM(I)- However, for fixed /, the operator CM{I) is anti- 
monotonic in the argument M. That is if M' C M, then CM (I) C CM'(I)- 

We say that M C HP is grounded in I if M C CM{I)- We say that M C HP 

is a stable model of P over I of / if CM (I) = M. 
With each clause C of form (1), we associate a Horn clause of form (2) 

C" = o<-oi,...,am (2) 

obtained from C by dropping all the constraints. The clause C" is called the 
projection of clause C. Let M be any subset of HP and let G(M, P) be the 
collection of all M-applicable clauses. That is, a clause C belongs to G(M, P) if 
all the premises of C belong to M and all constraints of C are outside of M. We 
write P\M for the collection of all projections of all clauses from G(M, P). The 
projection P\M is a Horn program. Our definition of stable model was different 
from but equivalent to that given by Gelfond and Lifschitz in [GL88]. 

3    The Forward Chaining Construction and Stable 
Submodels 

Given a general program P, we then let mon(P) denote the set of all Horn 
clauses of P and nmon{P) = P \ mon(P). The elements of nmon(P) will be 



called nonmonotonic clauses. 
Our Forward Chaining construction will take as an input a program P and 

a well-ordering -< of nmon{P). The principal output of the Forward Chaining 
construction will be a subset Dx of Hp. Although such subset is not, necessarily, 
a stable model of P, it will be a stable model of A* for a subset A* C P. 
This subset, Ax, will also be computed out of our construction and will be the 
maximal set of clauses of P for which DA is a stable model. We thus call D* a 
stable submodel of P. 
The first feature of our construction is that in every stage of our construction 
we will close the sets we construct under mon(P). The point is that stable 
models are always closed under the operator associated with the Horn part of 
the program, and the applicability of a clause from mon(P) is not restricted. 
We shall denote by clmon the monotone operator of closure under the clauses in 
mon(P). Thus clmon(I) = Tmon(p) f w(J) is the least set Z of atoms from Hp 
such that I C Z and Z is closed under every clause r of mon(P). That is, if 
premises of such a clause are all in Z, then its conclusion also belongs to Z. The 
second important aspect of our construction is that when we inspect the clauses 
of nmon(P) for a possible application, we look at the possible effect of their 
application on the applicability of those clauses which were previously applied. 
Rules that may invalidate applicability of previously used clauses are not used. 
The execution of this idea requires some book-keeping. Our Forward Chain- 
ing construction will define two sequences of subsets of Hp: (D^)i<iP\+ and 
(R^)i<\p\+- Dz will he the set of elements derived by stage £. R* will be the 
set of elements restrained by stage f. Here and below a+ is the least cardinal 
greater than a. Thus, if P is countable, then \P\+ is either finite or the first un- 
countable ordinal. We shall prove, however, that if \P\ is countably infinite, then 
the construction actually stops below the first uncountable ordinal and therefore, 
for denumerable P, the use of nondenumerable cardinals can be eliminated. 
In addition, we shall define two sets of clauses, I~< (for "inconsistent clauses") and 
A* (for "acceptable" clauses). These sets of clauses will depend on previously 
defined hierarchies. 

3.1    Forward Chaining Construction 

Definition 2. Let P be a general program and let -< be a well-ordering of 
nmon(P). We define two sequences of sets of atoms from Hp, (£>?) as well 
as (Rz). The set D? is the set of atoms derived by stage £ and R$ is the set of 
atoms rejected by the stage f. 

1. D$ = dmon(0), Rf = 0; 

2. If 7 = ß + 1 and there is a clause C € nmon{P) such that 

prem(C) C Dj,    ({c(C)} U ams{C)) n D$ = 0 

and 
dmon(D$ U {c(C)}) n (cansiC) UR^)=<D 



(we call such clause applicable clause), then let Cy be the -<-first applicable 
clause and set 

D* = clmon(D£ U {c(Cy)})    Rj=R£\J coi»«(C7). 

If there is no C such that 

prem(C) C D$,    ({c(C)} U cons(C)) n ££ = 0 

and 
dm0n(D^ U {c(C)}) n (cons(C) U J$) = 0, 

then set 
D* = D*    and   Ä« = /£ 

3. If 7 is a limit ordinal, then 

€<7 ?<7 

4. Finally let 

ZT< = Z?j<,|+ =    U   D?    and   iT< = i^|+ =    (J   j£. 
WI+ ?<|P|+ 

Sets D* and i?x are sets of atoms derived and rejected during the forward 
chaining construction along the well-ordering -<. 

We define the set of inconsistent clauses, Jx, and the set of consistent clauses, 
A*, relative to ordering -< as follows: 

5. C is inconsistent with -< (or simply inconsistent if -< is fixed) if prem(C) 
6 £>-«, ({c(C)} U ams{C)) n^=0, but dm0n(£^ U {c(C)}) n (cons(C) U 
flx) 7^ 0. J-5 = {C € P : C is inconsistent with -<}; 

6. A< = P \ /-< 

We then say that a subset Ö C iff is a sioftfe submodel of P, if there is a 
well-ordering -< of nmon(P) such that D = £>"<. 

The following observations should be clear: First, the clause that is used for 
construction of D*+1 from Df is different from any clause used before in the 
construction. Therefore, by cardinality argument, the construction, eventually, 
stabilizes. 
Next, both hierarchies (D£) and (R£) are increasing. Moreover, it is easy to 
prove by induction on f that D* D R* = 0. Therefore D* D R* = 0. 
The sets R£ accumulate the restraints of all clauses applied during the con- 
struction. Since D* n R* = 0, the applicability of clauses applied during the 
construction is preserved at the end. This immediately implies the following re- 
sult. First, let PQ = {C? : f < a},P* = {Ca : a < \P\+ and Ca is defined}. 
We have 



Propositions. D£ is a stable model of Pf, and Dprec is a stable model of P*. 

We now have a result showing that the set D* we produced in the Forward 
Chaining construction behaves as promised: 

Theorem 4. Let P be a general program. Let -< be a well-ordering ofnmon(P). 
Then D* is a stable model of A*. Hence if I* = 0, then D* is a stable model 
of P. 

We define the set of nonmonotonic generating clauses for a set M C Hp 
NG(M,P). 

Definition5. Let P be a general program. Let M C Hp. 

NG(M, P) = {C e nmon(P) : prem(C) C M, cons(C) n M = 0} 

Theorem 6. If P is a general program, then every stable model of P is a stable 
submodel of P. That is, if M is a stable model of P, then there exists a well- 
ordering ■< of nmon(P) such that D* = M. In fact, for every well-ordering •< 
such that NG(M,P) forms an initial segment of -<, D* = M. 

While we stated Theorem 4 and Theorem 6 in full generality, we are most 
interested in the case when program P is finite or countable. In this case we can 
show that to construct stable models via forward chaining, one need consider 
orderings of type smaller or equal of order type w. 

Proposition 7. Let P be a program such that \HP\ < w and let M be a stable 
model of P. There exists a well-ordering -<' of nmon{P) in type < u such that 
D* = M. Moreover the forward Chaining construction stabilizes in at most w 
steps. 

We note that Proposition 7 does not hold for all stable submodels. That is, the 
sets Dx which are not stable models may have the property that they can only 
be obtained by means of orderings of the length > u. 

Our construction of the set D< persists with respect to prolongation of the 
well-ordering (providing the Horn part is the same). 

Propositions. LetPc P' be two sets of clauses such that mon(P) = mon{P'). 
Let -<' be a well-ordering of nmon(P') and let nmon{P) be an initial segment in 
-<'. Finally, let ■<=■<' \P. Then D< C iK and R* C R<'. 

4    Complexity of Stable Submodels 

4.1    Preliminaries 

Let u denote the set of natural numbers. The canonical index, can(X), of finite 
set X = {xi < ... < xn} C u is defined as 2s» + ... + 2X" and the canonical 
index of 0 is defined as 0. Let Dk be the finite set whose canonical index is k, 
i.e., can(Dk) = k. 



We shall identify a clause r with a triple (k,l,(p) where Dk = prem(r), and 
Di = cons(r), (p = c(r). In this way, when Hp C w we can think about P as a 
subset of u) as well. This given, we then say that a program P is recursive if Hp 
and P are recursive subsets of w. 

Next we shall define various types of recursive trees and 77° classes. Let 
[,]:wxu-4wbea fixed one-to-one and onto recursive pairing function such that 
the projection functions iri and 7r2 defined by ici([x,y]) = x and 7r2([x,y]) = y 
are also recursive. Extend our pairing function to code n-tuples for n > 2 by the 
usual inductive definition, that is, let [xi,...,xn] = [xi, [x2,... ,x„]] for n > 3. 
Let w<w be the set of all finite sequences from w and let 2<c" be the set of all 
finite sequences of O's and l's. Given a = (an,... ,an) and ß = (ßi,...,ßk) in 
u<u, write a C ß if a is initial segment of ß, i.e. , if n < fe and at = /% for 
i < n. In this paper, we identify each finite sequence a = (oti,...,an) with 
its code c(a) = [n, [a\,... ,a„]] in w. Let 0 be the code of the empty sequence 
0. When we say that a set 5 C u<u is recursive, recursively enumerable, etc., 
what we mean is that the set {c(a): a £ S} is recursive, recursively enumerable, 
etc. Define a tree T to be a nonempty subset of u<u> such that T is closed 
under initial segments. Call a function /:w -> u an infinite patA through T 
provided that for all n, </(0),.. .,/(«)> £ T. Let [T] be the set of all infinite 
paths through T. Call a set A of functions a 77?-class if there exists a recursive 
predicate R such that A = {f:w -+ u :Vn(A(n,[/(0),...,/(n)])}. Call a 77?- 
class A recursively bounded if there exists a recursive function g: w ->• w such 
that V/ G i4Vn(/(n) < ff(n)). It is not difficult to see that if A is a 771°-class, 
then A = [T] for some recursive tree T C w<u. Say that a tree T C w<w is highly 
recursive if T is a recursive finitely branching tree and also there is a recursive 
procedure which, applied to a = (cti,..., an) in T, produces a canonical index 
of the set of immediate successors of a in T. Then if A is a recursively bounded 
TZf-class, it is easy to show that A = [T] for some highly recursive tree T C u><", 
see [JS72b]. For any set iCu, let A' = {e: {e}A(e) is defined} be the jump of 
A, let 0' denote the jump of the empty set 0. We write A <T B if A is Turing 
reducible to B and A =T B if A <T B and B <T A. 

We say that there is an effective, one-to-one degree preserving correspondence 
between the set of stable models Stab(P) of a recursive program P and the set 
of infinite paths [T] through a recursive tree T if there are indices ei and e2 of 
oracle Turing machines such that 
(i) V/e[T]{ei}9r^ = MfE Stab(P), 

W VM65ta6(P){e2}M = fM e [T], and 

(iii) VmT]VMeStab(P)({ei}gr(f) = M if and only if {e2}
M = /). 

where {e}B denotes the function computed by the eth oracle machine with oracle 
B. Also, write {e}B = A for a set A if {e}B is a characteristic function of A. For 
any function f:u -> w, gr(f) = {[x,f(x)]:x 6 w}. Condition (i) says that the 
infinite paths of the tree T uniformly produce stable models via an algorithm 
with index e\. Condition (ii) says that stable models of P uniformly produce 
infinite paths through T via an algorithm with index e2. Condition (iii) asserts 
that if {ei}»rO = Mf, then / is Turing equivalent to M/. In the sequel we 



shall not explicitly construct the indices ei and e2, but it will be clear that such 
indices can be constructed in each case. 

4.2    Complexity of the Forward Chaining Construction. 

In this section we discuss complexity issues for sets of the form D*, where P 
is a recursive program and -< is either some ordering of type CJ or some finite 
ordering. First of all, recall that every stable model of P can be obtained as D^ 
for a suitably chosen ordering -<. This means that, since the stable models can 
be very complex, even if there is only one stable model, we cannot obtain results 
on complexity of D* without restricting the class of orderings. Our restriction 
is related to the fact that in any attempt to implement even a partial construc- 
tion of D*, we cannot go beyond w. Moreover, w (and finite ordinals) have the 
following property: 

Lemma 9. Let P be a program and let -< be a well-ordering of nmon(P) of order 
type < LJ. Then the closure ordinal of the construction of the family (D?) is at 
mostw. 

It is easy to see that the property indicated in Lemma 9 does not hold for ordinals 
greater than w. 
We shall restrict our attention now to the case when P is recursive and -c is a 
recursive well-ordering of type u. 

Proposition 10. Let P be a recursive general program. Let -< be a recursive 
well-ordering of nmon(P) of order type < w. Finally, let D*,R*,I*, and A* 
be sets of atoms and of clauses defined in Definition 2. Then: D* is r.e. in 0', 
R~* is r.e. in 0', I* is recursive in 0", and A* is recursive in 0". 

Corollary 11. If P is a recursive program such that nmon(P) is finite, then for 
any ordering -< of nmon(P), D* is r.e., R~< is finite, and I* is finite and A* 
is recursive. □ 

Now let us look at the case of finite P. In our complexity considerations, every 
atom a will have the cost \\a\\. Next, for a clause r = c <r- Oi,..., an, ->bi,..., ->bm 

we define ||r|| = (£,•<„ |M|)+ (£,<„, ||&j ||) +1 |c||. Finally, for a set Q of clauses 
we define 

IMI = £lHI- 

Theorem 12. Suppose P is a finite general program and -< is some well-ordering 
ofnmon(P). Then-D*, R*, A*, and I* can be computed in time 

0(\\mon(P)\\ \\nmon(P)\\ + \\nmon(P)\\2). 



5    FC-Normal Programs 

In this section we shall define FC-normal programs and state the basic results 
about such programs proved in [MNR93b]. We shall see that FC-normal pro- 
grams have the property that the Forward Chaining construction always pro- 
duces a stable model. In fact for FC-normal programs, one can drop the consis- 
tency check in the Forward Chaining construction and it will still always produce 
a stable model. 

Definition 13. Let P be a program. We say that a subset Con C V(HP) (where 
V(Hp) is the power set of HP) is a consistency property over P if: 
(1)0 6 Con, (2) VA,BCHP(ACB   &   Con(B) => Con(A)), 
(3) VAcHP(Con{A) =» Con(clmon(A))), and 
(4) whenever A C Con has the property that A, B 6 A -* 3CCA(A CCABC 
C), then Con(LM). 

We note that conditions (1),(2), and (4) are Scott's conditions for information 
systems. Condition (3) connects "consistent" sets to the Horn part of the pro- 
gram; if A is consistent then adding elements derivable from A via Horn clauses 
preserves "consistency". 

Definition 14. Let P be a program and let Con be a consistency property over 
P. 

1. A clause C = c <- ai,... ,a„, -i&i,... ,-ibk 6 nmon(P) is FC-normal (with 
respect to Con) if Con(V U {c}) and not Con(V U {c,&J) for all i < k 
whenever V C HP is such that Con(V), clmon(V) = V, au..., an G V, and 
c,h,...,bk g V. 

2. P is a FC-normal (with respect to Con) program if all r 6 nmon(P) are 
FC-normal with respect to Con. 

3. P is FC-normal program if for some consistency property Con C T(HP), P 
is FC-normal with respect to Con. 

FC-normal programs have all the desirable properties that are possessed by 
normal default theories as defined by Reiter in [Rei80]. In fact, it is shown in 
[MNR93b] that when one translates FC-normal programs back into the language 
of default logics than one obtains a class of default theories called extended FC- 
normal default theories which properly contains all normal default theories. We 
next shall state the basic results about FC-normal programs from [MNR93b]. 

Theorem 15. Let P be a FC-normal program then there exists a stable model 
of P. 

Theorem 16. Let P be a FC-normal program with respect to consistency prop- 
erty Con and let I be a subset of HP such that I 6 Con. Then there exists a 
stable model M of P such that I CM. 



In fact all stable models of FC-normal programs can be constructed via a 
slightly simplified version of the Forward Chaining construction which we shall 
call the Normal Forward Chaining construction. To this end, fix some well- 
ordering ■< of nmon(P). That is, the well-ordering -< determines some listing of 
the clauses of nmon{P),{ra : a 6 7} where 7 is some ordinal. Let 6»7 be the least 
cardinal such that 7 < <97. In what follows, we shall assume that the ordering 
among ordinals is given by G. Our normal Forward Chaining construction will 
define an increasing sequence of sets {M£}a€e^. We will then define M"< = 
Uae©7^a ■ In [MNR93b] it is shown that M* is always an stable model of P. 

The Normal Forward Chaining construction of Mx. 

CaseO. Let M£ = dmon(0). 

Case 1. a = rj + 1 is a successor ordinal. 
Given Mf, let £(a) be the least A 6 7 such that 

rA = s «- ai,...,ap,-i&i,...,-i&fc 

where ai,..., ap G Mf and h ,...,bk, s $ M<. If there is no such l{d), then let 
Mf+1 = M£ = Mf. Otherwise, let 

Mf+1 =MJ= dmon(Mf U {cln(rl{a))}). 

Case 2. a is a limit ordinal. Then let M£ = \Jßea M£. 
This given, we have the following. 

Corollary 17. // P is a FC-normal program and -< is any well-ordering of 
nmon(p), then 

1. M~< is a stable model of P. 

2. (Completeness of the construction). Every stable model of P is of the form 
M* for a suitably chosen ordering -< of nmon(P). 

It is quite straightforward to prove by induction that if P is FC-normal 
with respect to consistency property Con, then M£ E Con for all a and hence 
M* 6 Con. Thus the following is an immediate consequence of Theorem 17(2). 

Corollary 18. Let P be a FC-normal program with respect to consistency prop- 
erty Con, then every stable model of P is in Con. 

We should also point out that if we restrict ourselves to countable programs 
P, i.e. if HP is countable, then we can restrict ourselves to orderings of order 
type a; where w is the order type of the natural numbers. That is, suppose we 
fix some well-ordering -< of nmon(P) of order type u. Thus, the well-ordering 
■< determines some listing of the clauses of nmon(P),{rn : n G w}. Our normal 
Forward Chaining construction can be presented in an even more straightforward 
manner in this case. Our construction again will define an increasing sequence 
of sets {M£}n€u> in stages. This given, we will then define M* = ön€wM£. By 
the Countable Normal Forward Chaining construction of Mx we mean Normal 
Forward Chaining Construction restricted to orderings of type u. 



Theorem 19. If P is a countable FC-normal program, then: 
1. M~* is a stable model of P if Mx is constructed via the Countable Normal 
Forward Chaining algorithm with respect to <, where -< is any well-ordering of 
nmon(P) of order type u. 
2. Every stable model of P is of the form M~< for a suitably chosen well-ordering 
-< ofnmon{P) of order type u) where Px is constructed via the Countable Normal 
Forward Chaining algorithm. 

FC-normal programs also possess what Reiter terms the "semi-monotonicity" 
property. 

Theorem 20. Let Px and P2 be two FC-normal program such that Px C P2 

but mon(Pi) = mon{P2) (that is, Pi,P2 have the same Horn part). Assume, in 
addition, that both are FC-normal with respect to the same consistency property. 
Then for every stable model Mi of Pi, there is a stable model M2 of P2 such 
that 

1. Mi C M2 and 

2. NG{MuPi) C NG(M2,P2). 

FC-normal programs also satisfy the orthogonality of stable models property 
with respect to their consistency property. 

Theorem 21. Let P be a FC-normal program with respect to a consistency prop- 
erty Con. Then if Mi and M2 are two distinct stable models of P, Mi U M2 £ 
Con. 

We end this section with three more theorems which are analogues of results 
that hold for normal default theories. 

Theorem 22. Let P be a FC-normal program with respect to a consistency prop- 
erty Con. Suppose that clmon{cln(r) : r € nmon(P)} is in Con. Then P has a 
unique stable model. 

Theorem 23. Suppose P is a FC-normal program and that D C nmon(P). 
Suppose further that M[ andM'2 are distinct stable models of DlSmon(P)). Then 
P has distinct stable models Mi and M2 such that M[ C Mi and M2 CM2. 
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