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1    Foreward 

This report covers the period September 1, 1995 to December 31, 1997. This was the duration of 
grant DAAH04-95-1-0586. During this time, major advancements were made in the development 
of self-assembled nanostructures. We developed two electrochemical techniques for self-assembling 
periodic arrays of quantum dots. These arrrays are (at the time of writing this report) the most 
ordered self-assembled arrays reported. They have been applied to fabricate non-linear optical 
elements with vastly enhanced second-order susceptibility. Additonally, we have developed quantum 
neuromorphic network paradigms for collective computation that are based on charge inetractions 
in such arrays. 

Two graduate students were supported under this program at the University of Notre Dame. 
One received a Ph.D. degree in Electrical Engineering in December 1996 and is currently a post- 
doctoral research associate at the University of California-Los Angeles. The other is still awaiting 
completion of his dissertation. 

This research resulted in about fifteen publications and numerous talks and colloquia. 
A Table of Contents is not included since the main body of the report is less than 10 pages. 



2    Technical Report 

2.1 Statement of problem 

The research sponsored by this grant addressed the electrochemical self-assembly of quantum wires 
and dots. The motivation was to develop a process that leads to ordered and periodic arrays as op- 
posed to random arrays with large size dispersion. Periodic arrays can have interesting applications 
in transport, computing networks, non-linear optical devices and photonic crystals. 

2.2 Summary of most important results 

The following findings were the most remarkable: 

1. We found that electropolishing an aluminum foil in a solution of ethanol (70.0 vol. %), 
distilled water (13.8 vol. %), butyl cellusolve (10 vol. %) and perchloric acid (6.2 vol %) can 
produce a regimented array of crests and troughs on the surgace of the aluminum foil. If the 
electropolishing is carried out at 60 volts for 30 seconds, then an array of crests and troughs 
form that can be used to produce quantum dots. If the electropolishing is carried out at 50 
volts for 10 seconds, an array of stripes form that can be used to produce quantum wires. 
Raw atomic force microgrpahs of these arrays are shown in the next section. 

2. When an electropolished aluminum surface is anodized in sulfuric acid under a current density 
of 40 mA/cm2, a nanoporous alumina film forms on the surface with a quasi-periodic array 
of pores with an average diameter of 100 Ä. These pores can be filled up with the material 
of interest by ac electrolysis, thereby forming a quantum dot array dispersed in alumina. 
These dots have been directly imaged by TEM, SEM, cross-section TEM. field-emission SEM, 
and characterized by Auger, ESCA, energy-dispersive analysis of x-ray, Raman spectroscopy, 
photoluminescence, magnetotransport measurements, susceptometry, ellipsometry and non- 
linear pump-and-probe spectroscopy. These measurements have revealed strong signatures of 
quantum confinement. 

3. We have observed novel giant magnetoresistance in nickel quantum dot arrays caused by 
remote spin-flip scattering 

4. We have observed a five-fold increase in the second-order non-linear suscpetibiltiy of CdS 
quantum dots over bulk CdS 

5. We have observed photoluminecence from CdS quantum dots with an efefctive optical diam- 
eter of 35 Ä. These are some of the smallest semiconductor dots to show optical activity. 

6. We have designed computing architectures based on these structures. 

Much of this research was carried out in collaboration with Dr. R. E. Ricker of the National 
Institute of Standards and Technology, Gaithersburg, Dr. Jeffrey A. Eastman of Argonne National 
Laboratory, Professor Meera Chandrasekhar of the University of Missouri-Columbia, Dr. David 
Janes of Purdue University, Prof. Vwani Roychowdhury of the University of California Los Angeles, 
Prof. Paul Snyder of the University of Nebraska and Prof. H-C Chang of the University of Notre 
Dame. 



2.3    Personnel 

1. Prof. Supriyo Bandyopadhyay, principal investigator 

2. Prof. Albert E. Miller, co-principal investigator 

3. Dr.    Alexander Balandin, currently post-doctoral research associate at the University of 
California-Los Angeles 

4. Mr. Vadim Yuzhakov, Ph.D. student in the Department of Chemical Engineering, University 
of Notre Dame, IN 

Dr. Balandin was a graduate student working on this grant who received his Ph.D. in December 
1996. 
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Magnetostatic modulation of nonlinear refractive index and 
absorption in quantum wires 

A. BALANDIN, S. BANDYOPADHYAYf 
Department of Electrical Engineering, University of Nebraska, Lincoln, NE 68588, U.S.A. 

(Received 15 July 1996) 

The magnetic-field dependence of the nonlinear differential refractive index An and absorp- 
tion Aa in quantum wires—measured by non-degenerate pump and probe spectroscopy—is 
investigated theoretically. The nonlinearities arise from population saturation of the exci- 
tonic state under optical pumping and the formation of biexcitons (excitonic molecules). 
Both An and Aa exhibit positive and negative peaks at certain pump and probe detuning fre- 
quencies associated with the formation of biexcitons and bleaching of excitons, respectively. 
The amplitude, lineshape and the frequency at which these peaks occur can be modulated by 
a magnetic field which opens up the possibility of realizing novel magneto-optical devices. 
Additionally, the magnetic field may allow us to realize a relatively large variation in the 
differential refractive index over a range of frequencies without significant accompanying 
absorption, thereby allowing the observation of optical bistability. 

© 1998 Academic Press Limited 

Key words: 

1. Introduction 

It is well known that quantum-confined structures exhibit pronounced optical nonlinearities of excitonic 
origin [1]. The enhanced nonlinearities arise from one-dimensional quantum confinement which increases the 
binding energy of all excitonic complexes and the oscillator strengths for excitonic transitions. In this paper, 
we report how a magnetic field influences the nonlinear differential refractive index A« and absorption Aa in 
a quantum wire. This study is motivated by the realization that any significant modulation of these quantities 
by a magnetic field can lead to novel device applications, as well as provide a tool for probing the origin of 
optical nonlinearity in a quantum structure. 

The physical processes associated with non-linear refraction and absorption in quantum confined systems 
is a well-researched topic. In reference [2,3], the authors reported room-temperature measurements of An in 
GaAs multiquantum well structures and found it to be 0.01 at low levels of excitation and 0.05 at high levels. 
They attributed the non-linearity to band filling. In quantum wires (as opposed to wells), we can expect An 
and Aa to be much larger because of the additional degree of confinement and the much higher density of 
states at the subband edges. Indeed, our theoretical calculations indicate that An can be an order of magnitude 
larger in quantum wires than that found in quantum wells. 

t The authors are on leave from the University of Notre Dame, Notre Dame, IN 46556, U.S.A. 

0749-6036/97/030001 + 07 $25.00/0   sm960258 © 1998 Academic Press Limited 



Superlattices and Microstructures, Vol. 23, No. 3,1998 

^x\ 
I y 

Im(X<3))(esu) 

0.2 

20 

Magnetic flux density (T) 

Fig. 1. The imaginary part of the third-order nonlinear susceptibility x(3> as a function of pump and probe detuning energy and 
magnetic-flux density. The pump is tuned slightly below the exciton resonance of each value of the magnetic field and the longitudinal 
broadening parameter is assumed to be one-tenth that of the transverse broadening parameter. The wire dimension is Lz = 200 A and 

L v = 500 A. The inset shows the wire geometry. 

2. Theory 
We wishto calculate the differential refractive index and absorption associated with the third-ordernonlinear 

susceptibility x(3) in quantum wires. For this, we consider a rectangular quantum wire of the geometry shown 
in the inset of Fig. 1. An external magnetic field is applied perpendicular to the wire axis. We assume near- 
resonant pumping of the excitonic state in a non-degenerate pump and probe spectroscopy experiment and 
calculate the changes in refractive index A« and absorption Aa relevant to this situation. The actual measurable 
quantities in such an experiment are usually the transmission in the absence (7b) and in the presence (T) of 
the pump. The differential transmission spectra can be found from these quantities as D = (J — To)/ To. For 
small values of the differential transmission (well below unity), D is proportional to the differential absorption 
Aa. In fact, D « - Accd, where d is the wire thickness along the direction of the optical beam. 

The non-linear differential refractive index and absorption can be evaluated theoretically as in [4]. These 
quantities are given by 

(1) A« = -^=Rex(3), 

and 
4jr&>      m 

Aa = —plmx(3), (2) 
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Table 1: Values of the various param- 
eters for GaAs used to calculate the non- 
linear susceptibility x(3)- 

Eg, = 1.519 eV 
Ar = 3 meV 
Ep = 23 eV 
Nc = 7.89 x 1014 cm"2 

where c is the speed of light, er is a relative dielectric constant of the material, <o is a near-resonant frequency of 
the pump beam, and Imx(3), Re*(3) are the imaginary and real parts of the non-linear third-order susceptibility 
X(3) which need to be calculated. 

The general derivation of x(3) for low density of excitonic complexes can be found in [5]. This derivation is 
based on summation over 16 double Feynman diagrams. In the frequency range of interest, the lowest-lying 
states are the major contributors to x(3) and this allows us to reduced the expression for x(3) to a simplified 
form given by 

^-^x yo>ss-^-L*£.]p\ I  =^1 

v *°   J ^r      ~       r       i il 

(3) 

s.    

te ?Ok 

i r    1     i     1    1, 
+ (o>i +ö)2 -2ü>go +WÄ + ITJ,) Lfai -Og* +»Tgo)     («^ -»» +'!»)] ' 

where 0)2 and wi are the pump and probe frequencies, fia>& is the exciton ground-state energy, ho>b is the 
biexciton binding energy, m 0 is the rest mass of a free electron, and N0 is the average areal density of unit cells. 
The quantities Iy and y are the transverse and longitudinal broadening parameters (or damping constants), 
and Ep is the Kane matrix element. The indices i orj indicates system ground state (0), exciton ground state U -—. 
(g), and biexciton ground state (b). Numerical values of the various quantities usedm our calculations are V——' 
given in Table 1. Parameters JJ and T physically correspond to the exciton and biexciton correlation lengths 
(electron-hole and hole-hole mean separations in the two cases) and have to be determined variationally for 
each magnetic field strength and for each set of wire dimensions following the prescription given in [6,7]. 

The exciton ground-state energy hcogl> is defined as follows 

EJ[-iui)gt = Ee + Etl + Ekhi-S§, (4) 

where EG is a bulk band gap of the material, Eei, Ehhl are the lowest electron and the highest heavy-hole 
magnetoelectricsubband bottom energies in a quantum wire (measured from the bottom of the bulk conduction 
band and the top of the bulk valence band) respectively, and £f is the ground-state exciton binding energy 
which is also determined variationally [6,7]. 

It should be noted from eqn (3) that x(3) is a strong function of the transverse and longitudinal broadening 
parameters Ty and y. Physically, y is related to the population decay rate of the excitonic states. The smaller 
the value of y, the larger the lifetime of excitons and the higher the probability of forming a biexciton in a two- 
step photon absorption. The transverse broadening parameters Ty represent, for i^j, the phenomenological 
coherence decay rate of the f - j transition, while for i = j, they describe the population decay of the state 
i. The population decay rate, in its turn, is determined by the dominant scattering mechanism in the sample. 
In most cases, the values of Ty and y are difficult to obtain experimentally and fairly difficult to estimate 
theoretically. Moreover, these parameters could be strong functions of the confinement, population density of 
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excitons, magnetic field and temperature. In view of little experimental data available, and in order to simplify 
the calculations, we assume that Ty = T for all /, j. 

Since in this worl$ we are interested in the modulation of the differential refractive index and absorption 
of quantum wires with a magnetic field, the influence of the field on all parameters in eqn (3) is especially 
important. The value of T in quantum wires is primarily determined by carrier-phonon interactions [8]. As 
shown in [8], the scattering rates associated with these interactions can be affected by a magnetic field at any 
given kinetic energy of an electron or hole. However, when the rates are averaged over energy, the magnetic- 
field dependence turns out to be quite weak. As a-first approximation, we can therefore consider the rates to 
be independent of the magnetic field. We also neglect thermal broadening of the damping parameters since it 
is less important in quantum-confined systems than in bulk [9]. An important property of equation (3) is the 
following: if all the transverse relaxation parameters are assumed to be equal (as in our case) and the biexciton 
binding energy (hcob) approaches zero, then x(3) vanishes. This is a manifestation of the well-known fact that 
non-interacting ideal independent bosons do not show any non-linearity [9]. Consequently, exciton-exciton 
interaction, leading to biexciton formation, is necessary for the existence of this type of the non-linearity. 

A calculation of the excitonic contribution to x(3) requires that the exciton and biexciton binding energies 
be obtained first. Additionally, all the parameters T] and x need to be found. For details of computing these 
energies and these parameters in the case of a quantum wire subjected to a magnetic field, we refer the reader 
to our past work [6, 7]. Once these quantities are evaluated, we can calculate x(3) from equation (3) as a 
function of a magnetic field, wire width and pump and probe detuning frequencies. The differential refractive 
index and absorption are then computed from the real and imaginary parts of x(3) as given by eqns (1) and 
(2). 

3. Results and discussion 

All results in this paper are pertinent to GaAs quantum wires. In Fig. 1, we present a three-dimensional 
plot of Imx(3) for a two-beam experiment in which the frequency of one beam, the pump, is fixed and that of 
the other, the probe, is allowed to vary over a frequency range oftiAa> = 40 meV centered around the pump 
frequency. The pump frequency is chosen to be slightly detuned from the exciton resonance by a frequency 
_2^T/ft. The quantum-wire dimensions which have been used to plotthis figure aieLy = 500A,Ir = 200 A. 
The longitudinal broadening parameter y is chosen to be one-tenth that of the transverse broadening parameter 
T which is a physically reasonable ratio. 

A pronounced negative peak is present in the spectrum for all values of a magnetic field. It represents 
strong transmission which is due to a saturation (qr bleaching) of the excitonic state. Physically, the initial 
exciton population created by the pump beam tends to amplify the probe beam when its energy is tuned at 
or near the exciton ground state (this corresponds to the linear gain peak). A magnetic field makes the peak 
deeper, without significant broadening, thus enhancing transmission further. Another feature of interest is in 
the region of positive Imx(3) that corresponds to optical absorption. This absorption may be attributed to the 
formation of an excitonic molecule (biexciton). The initial exciton population enables the probe to be moire 
strongly absorbed when its energy matches the exciton-biexciton transition energy fi(fi>ga — <»b)- 

The same basic features are repeated in the absorption spectrum presented in Fig. 2. Here we plot the 
differential absorption Aa as a function of the pump and probe detuning frequencies when the longitudinal 
broadening parameter y is one-tenth of the transverse broadening parameter Y. As we can see, when the 
pump frequency is nearly resonant with the excitonic absorption, the swing in the differential absorption Aor 
is very large (0.5 x 105 cm-I-105 cm-1). Another feature to note is that the frequency separation between 
the positive and negative peaks (associated with biexciton formation and exciton bleaching) is quite sensitive 
to the magnetic field. This separation is not sensitive to damping (values of y and T) or slight detuning of the 
pump. Therefore, we can use a magnetic field to tune this separation, thus realizing magneto-optical devices. 

In Fig. 3, we show the differential refractive index A« as a function of the pump and probe detuning 
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Fig. 2. The differential absorption Aa as a function of pump and probe detuning energies for different values of a magnetic field. 
The pump is set at exciton resonance for each value of a magnetic field. The longitudinal broadening parameter is one-tenth that of the 
transverse broadening parameter. 

frequency and the magnetic field. More complicated behaviour is exhibited by An, with a strong negative 
peak occurring at the energy between the positive and negative resonances in the absorption change. The 
negative peak is related to the fact that Ac* has a positive dispersive peak on its low-energy side. 

Although not shown in this paper, we also found that damping has a deleterious effect on the nonlinearity. 
As the damping parameter y increases from O.ir to T, the swing in An drops from 0.4 to 0.05 when no 
magnetic field is present, resulting in a 20-fold reduction in the nonlinearity. However, when a magnetic flux 
density of 10 T is present, AH drops by only a factor of 6. Therefore, a magnetic field makes the non-linearity 
less sensitive to damping. 

The strong dependence of An and Aa on an external magnetic field has an important consequence for 
device applications. One possible application of band-gap resonant optical nonlinearities in quantum-confined 
systems is optical bistability and switching devices associated with it. Miller et al. [2] pointed out that in 
order to achieve optical bistability, one should provide a large refractive index swing at a relatively low 
absorption level. For bistable etalons using quantum wells, the relationship between minimum index change 
and absorption in the material for bistability to be observable can be written as An/ay > */3/6TT, where 
A. is the wavelength of the pump beam. Using this criterion, Miller et al. [2] concluded that bistability is 
not achievable in quantum-well etalons from excitonic mechanisms alone since in the region of large A«, 
excitonic absorption is also very high. However, in quantum wires, the criterion for bistability can be met, 
especially in the presence of a magnetic field. This is a significant advantage. 

4. Conclusion 

In conclusion, we have investigated the dependence of An and Aa in a quantum wire on an external 
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Fig. 3. The differential refractive index A« as a function of pump and probe detuning energies for different values of a magnetic field. 
All parameters and conditions are the same as in Fig. 2. 

magnetic field. We found that the field makes these differential parameters less sensitive to damping and may 
make it possible to observe optical bistability. Additionally, the field can modulate the spectral characteristics 
of An and Aa which may have device applications. 
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We have theoretically studied giant dipoles associated with transitions between magneto-electric 
subbands in a quantum wire subjected to a transverse magnetic field. The strengths of these dipoles 
and their resonant frequencieSjCan be varied with the magnetic field which then allows one to tune 
the emission wavelength of these transitions. The large magnitude of the dipole moments also leads 
to a strong second-harmonic component of the dielectric susceptibility that can be utilized for 
nonlinear optical applications such as second-harmonic generation, limiting, mixing, optical 
switching, etc. © 1997 American Institute of Physics. [S0021-8979(97)02612-l] 

I. INTRODUCTION 

Direct intraband transitions between the quantized states 
(subbands) of the conduction band in a quantum well is a 
well-researched topic.1 It has been shown both experimen- 
tally and theoretically that such transitions have very large 
dipole moments and narrow bandwidths. Strong infrared ab- 
sorption, associated with transitions between the lowest two 
electronic subbands in a GaAs quantum well, was observed 
long ago by a number of experimental groups.2 Recently, 
population inversion between the second and third subbands 
of a quantum well has been established unambiguously and 
has led to demonstration of the celebrated quantum cascade 
laser.3 The energy separation between the subbands in a 
quantum well or wire can be varied by an external magnetic 
field which then allows one to realize a continuously tunable 
laser or light-emitting-device. Moreover, the field can induce 
forbidden transitions that make additional frequency ranges 
accessible, thus permitting flexible device design. 

Another potential use of magnetic field biasing of quan- 
tum wells or wires is in nonlinear optics. Nonlinear optical 
properties stem from higher order dielectric susceptibilties. 
Specifically, the second-order susceptibility xm is respon- 
sible for such phenomena as mixing and second-harmonic 
generation. It is well known that even-order susceptibilities 
vanish in structures with inversion symmetry. Consequently, 
finite second-order susceptibilities can be obtained in such 
structures only if the inversion symmetry of the conduction- 
band potential is broken either by an external electric field or 
by the intentional growth of an asymmetric well. Obviously, 
the former is the preferred method since an electric field can 
be continuously varied which allows one to tune the degree 
of symmetry breaking and the magnitude of x(2)- This 
method, however, has a practical shortcoming. An electric 
field tilts the potential barriers of the well thereby allowing 
carriers to escape by tunneling or thermionic emission. This 
is especially serious in GaAs/AlGaAs systems where the bar- 

a)On leave from the University of Notre Dame. 
b)Electronic mail: bandy@engrssl.unl.edu 

rier height is relatively small. It has been pointed out that the 
electronic states in a quantum confined system biased by a 
transverse electric field are never true bound states since the 
particles can always lower their energy by escaping from the 
well.4 Therefore, these states have a finite lifetime, which 
broadens the transitions. 

To overcome this shortcoming, one can adopt magneto- 
static biasing. A magnetic field can break inversion symme- 
try without tilting potential barriers and promoting carrier 
escape. A transverse magnetic field applied to a quantum 
wire exerts a Lorentz force on an electron moving along the 
wire. As a result, its wave function (in any subband) will be 
skewed towards one edge of the wire. This skewing does not 
tilt potential barriers to first order (the barriers may tilt 
slightly because of a second-order effect associated with 
space charges and the self-consistent (Hall) electric field). 
However, it effectively breaks inversion symmetry since it 
causes a net charge to accumulate at either edge of the wire 
(the charges at the two edges have opposite signs as in the 
classical Hall effect). This leads to a nonvanishing even- 
order susceptibility in a symmetric structure. The skewing 
has another subtle effect. The degree to which the wave 
function is skewed is different in different subbands since an 
electron has different kinetic energies and hence experiences 
different Lorentz forces in different subbands. As a result, 
transitions between subbands whose wave functions have the 
same parity — which are forbidden without a magnetic field 
— are now allowed since the parities are altered by different 
amounts in different subbands by the different degrees of 
skewing.5 

This article is organized as follows. In Section n, we 
describe the theoretical formulation, followed by results. Fi- 
nally, in Section IV, we present the conclusions. 

II. THEORY 

We consider a quantum wire as shown in Fig. 1 with a 
magnetic field applied along the z direction. The thickness 
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FIG. 1. An electron waveguide (quantum wire) subjected to a magnetic field 
along the z axis. The width of the wire is much larger than the thickness. 

along the z direction is so small (and consequently the sub- 
band separation in energy is so large) that, for the range of 
photon energies considered, an electron cannot be excited 
(by real transition) into a subband which has more than two 
nodes along the z direction. Such a transition will not be 
accessible in energy. This restriction, coupled with the fact 
that a magnetic field does not affect the z component of the 
electron wave function, allows us to drop the z component 
from further consideration. The width of the wire along the 
y direction is however large enough that subbands with more 
than two nodes along the y direction are accessible in 
energy. 

In the framework of the envelope function approxima- 
tion (EFA), an electron wave function can be written as the 
product of a Bloch wave function, periodic with the atomic 
lattice spacing, and an envelope wave function, describing 
the nonperiodic behavior. Consequently, the wave function 
of an electron for a given wave vector k along the x direc- 
tion, in the «th magnetoelectric subband, at a magnetic field 
B can be written as 

<t>n(x,y,k,B,t) = yn(x,y,k,B)un(x,y,z,k)e-Mk-B)'/h, 
(1) 

where Wn(x,y,k,B) is an envelope function, un(x,y,z,k) is 
a Bloch function of a conduction band and En(k,B) is the 
dispersion relation of the nth magnetoelectric subband at a 
flux density B. The Bloch wave functions are assumed to be 
s states which is the usual case for semiconductors where 
J= 111 for the conduction band. 

The envelope function can be further decomposed into a 
plane wave along the unconfined x direction and a confined 
component along the y direction. Thus, 

Vn(x,y,k,B)=Xn(yXB)eJk\ (2) 

Using the electric dipole approximation, we can write 
the matrix element of photoinduced intersubband transitions 
within the conduction band as6 

dfJ{k,B) = e j X/iyXB) v- rXi(y,k,B)dr 

Xj uf(x,y,z,k)ui(x,y,z,k)dÜ„ (3) 

where dd is a volume element, rj is the unit vector along the 
direction of the incident photon polarization, r=xax+yay is 
the two-dimensional radius vector, and subscripts i,f stand 

for initial and final states respectively. The exponential term 
of Eq. (2) is not present in Eq. (3) since, for photoinduced 
transitions (&y=&,), the product of the exponential function 
and its complex conjugate are exactly unity. The volume 
overlap of the Bloch functions is also unity for s states with 
the same wave vector. Now, if we assume that the incident 
light is polarized along the y direction so that T]=ay, the 
above equation simplifies to 

rw/2 
dfJ(k,B) = e(xf\y\Xi) = e yXf{y,k,B)Xi{y,k,B)dy, 

J-wa 
(4) 

where W is the width of the quantum wire along the y direc- 
tion. 

One should note here that if there is no magnetic (or 
electric) field applied, the envelope functions Xi a*® just 
particle-in-box states and the dipole moment in Eq. (4) is 
nonzero only for the transitions between subband states of 
opposite parity. For a symmetric square potential well, these 
dipole elements (between any two states n and m) are inde- 
pendent of the wave vector k and can be found analytically1 

by evaluating the integral in Eq. (4). 

8 mn 
df,i=e{xf\y\xö = eW-^ imi_ni)2, 

if   n and m have opposite parity 

= 0, otherwise. (5) 

However, when a magnetic field is applied, the skewing of 
the wave functions changes the integral in Eq. (4) and alters 
the selection rules. Generally, the skewing causes three ef- 
fects. First, it makes the dipole moment depend on the wave 
vector k (since the degree of skewing depends on k). Sec- 
ond, it reduces the dipole moment for transitions between 
states of opposite parity [since the integral in Eq. (4) de- 
creases], and third, it allows forbidden transitions between 
states of the same parity [since the integral in Eq. (4) no 
longer vanishes for states of the same parity]. 

It is clear from Eq. (4) that, to calculate the dipole mo- 
ments in the presence of a magnetic field, all we need to 
compute are the wave functions X/,i(y,fc,2?) at a given mag- 
netic field B, for given magnetoelectric subbands / and i, 
and for a given wave vector k. This is achieved via a nu- 
merical (finite difference) solution of the Schrödinger equa- 
tion following the prescription of Ref. 7. Once this is done, 
we can calculate the dipole moment in Eq. (4) for any chosen 
intersubband transition at any chosen magnetic field and for 
any chosen wave vector. 

In the limit of high magnetic fields, when the magnetic 
length l( = \Jh/eB)<W, one can again obtain an analytical 
expression for the dipole moment dfti. In this case, the mag- 
netostatic confinement predominates over electrostatic con- 
finement and the envelope functions xn(y,fc,£) can be ap- 
proximated by harmonic-oscillator wave functions: 

Xn(yXB)=x{y-yk,B) 

=NnHn{a,y-yk)e-1"^-y^ , (6) 
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where Nn=(alwm22n\)m is a normalization constant, 
H„(a,y) is the nth Hermite polynomial, yk=hk/eB, and 

feB    1 
*=VlT7- (7) 

In order to evaluate the integral in Eq. (4) analytically, 
we extend the limits of integration to infinity assuming that 
the wave function tail is negligible at the boundaries of the 
wire (i.e. at y = ±W/2). This is a very reasonable assump- 
tion in a high confining magnetic field. The resulting analyti- 
cal expression for the dipole moment is 

df,i(B) = e(Xf\y\Xi) = el\^ 
112 

if m=n + l      (8) 

-I 
1/2 

if m=n-l 

= 0, otherwise. 

The physical significance of the two analytical limits," 
B—»0 and B-+o°, is obvious. At zero field, the dipole is 
determined by the width of the wire dfj~eW, and at the 
high field limit it is determined by the magnetic length 
df<i~el. This is what one would expect intuitively. At zero 
field, the dipole is confined electrostatically with the wire 
width being a measure of this confinement while at high 
magnetic field, the dipole is confined magnetostatically and 
the magnetic length is the corresponding measure of this 
confinement. 

III. RESULTS 

A. Intraband dipoles 

We now present results of our calculations. The physical 
parameters used for the numerical calculations correspond to 
a GaAs quantum wire with relative dielectric constant er 

= 12.9, and effective mass me=0.067m0 where m0 is the 
free electron mass. 

In Fig. 2, we show the dependence of the dipole moment 
dfj(k,B) for three transitions (el-e2, e2-e3, and el-e3) on 
the wave vector k when a magnetic field of 1 T is applied 
(following usual practice, the transitions are numbered by the 
subband indices). The dipoles corresponding to transitions 
between states of opposite parity (el-e2 and el-eZ) have 
maxima at fc=0 and then decrease with increasing wave vec- 
tor. This can be easily understood as follows. At zero wave 
vector (no translational velocity) these states do not experi- 
ence any Lorentz force and hence the wave functions are not 
skewed. As the wave vector k increases, the translational 
velocity and the Lorentz force experienced increase. Conse- 
quently, the envelope wave functions are skewed more and 
more and the dipole moment decreases. Real transitions be- 
tween states of the same parity are forbidden at zero mag- 
netic field, but at a finite magnetic field, they are forbidden 
only at jfc=0 when there is no translational velocity and no 
Lorentz force to skew the wave functions. With increasing 
it, the wave functions are increasingly skewed and the dipole 
moment of forbidden transitions increases. In our chosen 

< 
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FIG. 2. Dipole moments for various intersubband transitions as functions of 
the propagating wave vector it for a magnetic flux density of 1 T. At zero 
translational velocity (*=0) the dipole of transition el-e3 vanishes. The 
GaAs quantum wire is 1000 A wide. 

prototype wire, del-*3 reaches a maximum of 28 e-k at k 
= 0.0051 Ä and then decreases gradually ultimately reaching 
zero. This intriguing nonmonotonic dependence on k is ex- 
plained later on. However, at this point, it is interesting to 
note that a fairly large forbidden dipole moment of ~30 
e-k can be achieved in realistic structures at a moderate 
magnetic field of 1 T. 

Fig. 3 presents the dipole moments for the same transi- 
tions as a function of magnetic flux density. The propagation 
wave vector k is chosen to be 0.01/Ä. At zero magnetic field, 
a nonvanishing dipole matrix element occurs only for transi- 
tions between states of opposite parity (el-e2, e*2-e3) as 
expected from Eq. (5). This equation also allows us to esti- 
mate the strengths of these zero-field dipoles to be 180 e-k 
for el-e2 and 195 e-k for c2-e3 transitions. As we can see 
from Fig. 3, these values are in excellent agreement with our 

2.0 
magnetic field (T) 

FIG. 3. The dipoles of three intersubband transitions as functions of the 
applied magnetic field. The dipole del.e3 peaks at a magnetic flux density 
of 0.3 T. The wire width is the same as that in Fig. 2. 
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numerical results. From the analytical expression in Eq. (8), 
we can estimate the strength of the e\-e2 dipole to be 66 
e-k at a magnetic flux density of 15 T. This number also 
agrees with our numerical result. The el-e3 dipole vanishes 
at both zero field (because of the spatial symmetry of the 
particle-in-a-box states) and at high fields because of the 
symmetry of the Landau states or Hermite polynomials. This 
behavior is consistent with Eqs. (5) and (8). Only at interme- 
diate fields, when the wave functions of the subbands are a 
hybrid between particle-in-a-box states and Hermite polyno- 
mials (and thus "nonsymmetric" in space), is this transition 
allowed. This immediately tells us that <fe3_eI must have a 
nonmonotonic dependence on the magnetic flux density B 
and indeed it does. 

Let us now examine the nonmonotonic behavior of 
rfe3_sl more closely. This transition is forbidden at zero field 
since the wave functions of the first and third subbands have 
the same parity. At low magnetic fields, the parities are al- 
tered by the skewing of the wave functions and consequently 
de3-eX is no longer zero but increases with the magnetic 
field. It reaches a maximum of about 30 e-A and then de- 
creases. This latter decrease is related to the following effect. 
For a fixed wave vector k, a sufficient increase in the flux 
density B forces the traversing states ("skipping orbits" or 
"edge states") to condense into closed cyclotron orbits 
(Landau levels) that are no longer skewed by the magnetic 
field to the wire edge since they have no translational veloc- 
ity and hence no Lorentz force. While edge states have a 
skewed wave function that is not symmetric in space, cyclo- 
tron orbits have a wave function that is symmetric about the 
orbit center yk. Note that yk depends only on it and B. 
Therefore, at a fixed k, the wave functions of the first and 
third Landau levels are symmetric about a common center. 
Whenever this kind of symmetry holds, de3_el vanishes. 
Therefore, the dipole moment de-$-ex decreases gradually to 
zero at high magnetic field with the onset of Landau conden- 
sation. 

The same physics can be elucidated in a different way by 
considering the energy versus wave vector relation in Figs. 
4(a) and 4(b) which show the dispersion of the first and third 
magneto-electric subbands respectively. 

At B=0, velocity (slope of the curves) at ifc=0.01/A are 
nonzero for both the el and e3 subbands. However, the 
Lorentz force is zero because 5 = 0 and hence </el_e3=0. At 
B = 5 T, the group velocities for the two subbands are still 
nonzero and the Lorentz force is finite resulting in skewing 
of wave functions and a nonvanishing value of del_e3. At 
2?= 10 T, the group velocities at Jt=0.01/Ä are zero in both 
subbands indicating that the corresponding states have un- 
dergone Landau condensation. In this case, the Lorentz force 
(for skewing) is again zero and the dipole moment </,i_e3 

vanishes once more. The crucial point to note is that the 
Lorentz force evXB can vanish in two different ways: (i) 

B=0, and (ii) v=0. These two conditions are met at zero 
and very high magnetic fields. As a result, the dipole mo- 
ment d«i_e3 exhibits a nonmonotonic behavior in magnetic 
field. One can ask why the same physics does not cause 
nonmonotonicity in the el-e2 and e2-e3 curves. It is not 
clear a priori that nonmonotonicity cannot occur (indeed 

> 

Ul 

0.03 

i              ■               i                             i ■ '   r 

0T 

, 

0.02 

A        \              / 
5T /   . 

0.01 \                  \                      /     10T / 

V^  \     /   ^y 
\y 

■0.05 -0.03 4.01 0.01 0.03 0.05 

(a) k (1/A) 

LU 

(b) k (1/A) 

FIG. 4. Energy vs wave vector relation of electrons in (a) the first subband 
and (b) in the third subband of a 1000 A wide quantum wire. The wave 
vector is along the free propagation direction. The results are shown for 
three values of a magnetic field. The energy is calculated from the bulk 
conduction band edge and the confinement energy for the z-direction is 
assumed to be zero. 

there are regions of inflexion in the two curves). However, 
the point to note is that Landau condensation causes recovery 
of the wave function symmetry (or antisymmetry), but does 
not restore the original zero-field wave functions. This is 
shown in Fig. 5 where we show the wave functions in the 
el subband at 0 and 10 T. Both wave functions are "sym- 
metric" in space, but they are otherwise vastly different 
since the magnetostatic confinement squeezes the wave func- 
tions binding them in cyclotron orbits. 

The nonmonotonicity in the wave vector dependence of 
dei-e3 in Fig. 2 has a similar origin. As k is increased, the 
relative skewing between the wave functions in el and e3 
subbands change nonmonotonically causing the nonmonoto- 
nicity seen. 

The process described above is illustrated in Figs. 6(a)- 
6(c), where we present wave functions of two electronic 
states (el and e3) for three values of magnetic flux density. 
At zero magnetic field the wave functions are symmetric 
about the center of the wire and dipole transition de3-el is 
forbidden [Fig. 6(a)]. At low magnetic field the wave func- 
tions are skewed to the edge of the wire ["edge states" Fig. 
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FIG. 5. The y component of the electron envelope function for the first 
subband at a magnetic flux densities of 0 and 10 T. 

6(b)] and the spatial symmetry is broken for both states. 
Dipole transition de3_eI is now allowed. It is important to 
note here that the symmetry breaking skewing of the wave 
functions is caused by the simultaneous presence of a mag- 
netic field and the electrostatic potential barriers at the edges 
of the quantum wire. At higher magnetic fields, when the 
magnetic length is smaller than the wire width, the electrons 
do not "feel" the potential barriers at the edges of the wire 
as they undergo complete Landau condensation and execute 
cyclotron motion with a radius much smaller than the width 
of the wire. In this case, the wave function symmetry is 
essentially restored [Fig. 6(c)] although the wave functions 
are now symmetric about a point that is not at the center of 
the wire. Nonetheless, what is important is that both wave 
functions are symmetric about the same point. Consequently, 
the de3-el transition vanishes. The simultaneous presence of 
both electrostatic confinement and magnetostatic confine- 
ment is therefore necessary for wave function skewing, 
formation of edge states and the observation of forbidden 
transitions. 

B. Second-harmonic generation 

It is well known that in systems with inversion symme- 
try there can be no second order nonlinearity.8 However, in 
systems without inversion symmetry, the lowest order opti- 
cal nonlinearity is of the second order and is expressed by 

P{2\io>)=x{2\(o;col,co2)E[(}ruCoOE2(ir2,co2),     (9) 

where P is the polarization caused by two electric fields E\ 

and E2 that are associated with the electromagnetic fields of 
either two frequency components of the same light beam or 
two different coherent beams with frequencies o)( and wave 
vectors kt. The frequencies and wave vectors obey the en- 
ergy and momentum conservation laws 
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FIG. 6. The y component of the electron envelope functions for the first and 
third electronic subbands. The results are shown for cases when (a) no 
magnetic field is present, (b) when a weak magnetic field is present and, 
finally, (c) when a strong magnetic field is present. 

Ao)=2 ±ho)t, 
i 

M=2 ±hk,. 

(10) 

It is obvious that the third-ranked tensor #(2) will vanish 
in any structure with inversion symmtery. A quantum con- 
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fined structure may lack inversion symmetry for two main 
reasons, (i) The semiconductor material by its intrinsic 
chemical and crystalline structure may lack inversion 
symmetry,9 and this is the case in most III-V, II-VI, and 
I-VII compounds along certain crystallographic directions, 
(ii) The quantum confining potential well may be asymmet- 
ric (e.g. triangular potential well, asymmetric double square 
well potential, etc.). In the first case, the asymmetry is related 
to the intracell charge asymmetry and is not affected by the 
confinement since the latter extends over several unit cells. 
In the second case, the asymmetry is artificially imposed and 
therefore can be engineered. It clearly depends on the con- 
fining potential and hence an applied electric field can alter 
the potential and change the degree of symmetry breaking. 

In the present work we restrict ourselves to the second 
case and do not consider intrinsic second-order nonlinearities 
of GaAs which are actually quite large (the nonlinear suscep- 
tibility of bulk GaAs is ^^^XIO-10 m/V10). As men- 
tioned before, we avoid an electric field since it promotes 
carrier escape and we consider a magnetic field instead. Al- 
though a magnetic field does not affect the potential to first 
order, the simultaneous action of symmetric electrostatic po- 
tential and an external magnetic field may lead to the uneven 
charge distribution along the width (y axis) of the wire 
caused by different degrees of skewing of the wave func- 
tions. Because of this reason, it is possible to break the in- 
version symmetry in a symmetric quantum well or wire with 
a magnetic field alone. This approach is superior to applying 
a transverse electric field since the latter will tilt the confin- 
ing potential wells thereby promoting carrier escape from the 
well by either tunneling or thermionic emission. 

The large magnitude of the dipole moments associated 
with otherwise forbidden transitions between subbands of the 
same parity and their sensitivity to the biasing magnetic field 
opens up the possibility of second-harmonic generation 
(SHG) that can be controlled by the magnetic field. In order 
to evaluate the magnitude and dependences of SHG on the 
biasing field and wire geometry, we calculate the second- 
order susceptibility using the formula11 

Ne 
X%lß(-<D<r;(ol;<02) = —^TI&Z P0{a) 

£Q£-n       abc 

X 
d&Ui 

,{0,ba- ü){- o)2)(Q.ca- (ü2) 
,(11) 

where N is the concentration (number density) of conduction 
electrons, hClaß=hClaß(B,W) is the energy spacing be- 
tween a,ß subbands that depends on the applied magnetic 
field and wire width, dmn=dmn(B,W) is a dipole element 
calculated using Eq. (4), and ma is defined to be 

wa=(o1 + (o2- The total symmetrization operation $^ indi- 
cates that the expression that follows it is to be summed over 
all six permutations of the pairs (/z.-cog.), («,&),), 
(ß,<o2). Since ^ involves a summation over all possible 
permutations, it is clear that x^lßi ~ fc>a; w,; a>2) is invariant 
under any of them. For simplicity, the Fermi distribution 
p0(a) was assumed to be unity. 
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FIG. 7. Second-order susceptibility as a function of the biasing magnetic 
field. The peak values of the susceptibility are 13.2X10"7 m/V, 1.5 
X10"7 m/V and 3X 10~8 m/V for wire widths of 1000 Ä, 500 A, and 300 
A, respectively. The results are shown for the wave vector it=0.01/A (fixed 
excitation frequency). 

Eq. (11) is an approximation that applies only under the 
condition that all of the optical frequencies involved (opera- 
tional frequencies (o^.coy ,w2) are removed far enough from 
the subband transition frequencies. It means that the medium 
is assumed to be transparent and loss free at all the relevant 
optical frequencies. This assumption can be relaxed by the 
introduction of transition damping factors into the expression 
in Eq. (11). In our study we are mainly interested in the 
effects of an applied magnetic field on the second-order sus- 
ceptibility. Since these effects manifest themselves in Eq. 
(11) primarily via the magnetic field dependence of the di- 
pole elements dmn=dmn(B), we did not include any damp- 
ing constants and associated finite linewidths of the elec- 
tronic states. One should also note here that Eq. (11) is 
strictly correct only for dilute media. In this case, one can 
write x(2)=A/a(2) with a(2) being the second-order nonlin- 
ear polarization. The above expression is valid only under 
moderate excitation. 

In Fig. 7, we present normalized values of #(2) as a 
function of magnetic field for three different wire widths and 
a fixed value of the wave vector k (fixed excitation fre- 
quency). The operational frequencies <o1 = <o2 are chosen for 
a C02 laser. For wide ranges of magnetic flux densities 
(B<20 T) and wire widths (100 Ä <W<1000 Ä), these 
frequencies are removed far enough from the subband tran- 
sition frequencies £laß(B,W). As long as the latter is true, 
the x(2) dependence on magnetic field is governed mainly by 
dipole elements dmn. Consequently, the ^(2) curve for 
W= 1000 Ä peaks at the same value of a magnetic flux den- 
sity (ß=0.3 T) as the el-e3 dipole curve of Fig. 3. The 
magnetic flux density at which *(2) reaches its maximum 
increases with decreasing wire width. This happens because 
it takes a higher magnetic field to condense electronic states 
into cyclotron orbits (Landau condensation) when the elec- 
trostatic confinement is stronger (narrower wires). 

Fig. 8 shows the dependence of the normalized values of 
X™ on wire width for three different values of a magnetic 
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FIG. .6. Second-order susceptibility as a function of the wire width for three 
values of the biasing magnetic field. The maximum values of the xa) curves 
are the same as in Fig. 7. Tne narrow peaks at a wire width of —200 A are 
due to resonances occurring when either ilba= <D[ + &>2 or Clca = <o2. 

field and a fixed value of the wave vector. For weak mag- 
netic field of 0.3 T, the ^(2) curve increases monotonically 
with increasing wire width. This happens because dm „ is 
proportional to the wire width W (see Eq. (5) which is valid 
at zero field). The magnetic field is obviously not strong 
enough for the onset of Landau condensation. At a moderate 
magnetic flux density of 1 T, we can observe some saturation 
features, and for a strong magnetic field of 5 T, the curve is 
nonmonotonic, rolling down to almost zero for the wire 
width of 1000 Ä. The physics underlying the difference in 
the behaviors of the three curves is essentially the same as 
that responsible for the features in Fig. 7. At small values of 
wire width (W==170 Ä), there is an additional peak in the 
X(2) curve. This peak is a manifestation of the fact that 
ilba has become comparable to the operational frequencies, 
i.e. £lba**a>1 + (02. 

In our numerical calculations we have used N=1017 

cm-3. For this dilute concentration, high density effects such 
as screening and bandgap renormalization are not important 
and Eq. (11) is strictly valid. In fact, Ref. 1 demonstrated 
excellent agreement between theory and experiment without 
accounting for any high density effect even though the car- 
rier concentration in that study was N- 5 X 1017/cm3. There- 
fore, we believe that high density effects are not significant 
in this regime. 

The peak value of the second-order susceptibility for a 
wire width of 500 A is *(2)= 1.5X 10"7 m/V (the absolute 
magnitudes of the peak values for various wire widths are 
given in the caption of Fig. 7). For comparison, the nonlinear 
susceptibility of electric field biased GaAs quantum wells 
(W=92 Ä), calculated theoretically and measured experi- 
mentally in Ref. 1, was *(2)=2.4X10"8 m/V for an electric 
field of 36 kV/cm. This shows that relatively weak magnetic 
fields in quantum wires can produce similar magnitudes of 

Xm as rather strong electric fields in quantum wells. Unfor- 
tunately, to our knowledge, there is no theoretical or experi- 
mental result available for either electric field biased quan- 
tum wires or magnetic field biased quantum wells so a direct 
comparison is not possible. Nonetheless, it is obvious that 
magnetic field biased quantum wires provide a very attrac- 
tive alternative to other means of producing large x(T> val- 
ues. In fact, the largest value of \(2) (obtained at a magnetic 
flux density of 2 T) in a magnetic-field-biased quantum wire 
is found to be three orders of magnitude higher than what 
can be achieved in bulk GaAs. 

IV. CONCLUSION 

We have theoretically studied the giant dipole effect in 
magnetic-field-biased semiconductor quantum wires. The di- 
poles are associated with transitions between magneto- 
electric subbands within the conduction band, some of which 
are forbidden in the absence of the magnetic field. The reso- 
nant frequencies of these transitions can be tuned by the 
magnetic field which allows the realization of externally tun- 
able intersubband lasers. We have also studied the possibility 
of second-harmonic generation in a quantum wire biased 
with a magnetic field and find a strong second-harmonic 
component of the susceptibility. This may have important 
applications in nonlinear optics. 
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Self-Assembled Arrays of Quantum Dots: A Novel 
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Abstract—We describe a new class of nanoelectronic circuits 
which exploits the charging behavior in resistively/capacitively 
linked arrays of nanometer-sized metallic islands (quantum dots), 
self-assembled on a resonant tunneling diode, to perform neuro- 
morphic computation. These circuits produce associative memory 
effects and realize the additive short-term memory (STM) or 
content addressable memory (CAM) models of neural networks 
without requiring either large-area/high-power operational am- 
plifiers, or massive interConnectivity between devices. Both these 
requirements had seriously hindered the application of neural 
networks in the past Additionally, the circuits can solve NP- 
complete optimization problems (such as the traveling sales- 
man problem) using single electron charge dynamics, exhibit 
rudimentary image-processing capability, and operate at room 
temperature unlike most quantum devices. Two-dimensional (2D) 
processors, with a 100 x 100 pixel capacity, can be fabricated 
in an area of 10~8 cm2 leading to unprecedented functional 
density. Possible routes to synthesizing these circuits, employing 
self-assembly, are also discussed. 

I. INTRODUCTION 

IT is widely believed in the solid state device community 
that conventional strategies for integrating devices on a 

chip will be impractical for nanoelectronic" devices because 
of their small size (~100 nm), low power handling capacity 
and low gain. Accordingly, many new proposals have been 
advanced, articulating primarily, visions of future architectures 
for nanoelectronic circuits [1]—[10]. Some of these propos- 
als, which contemplate building Boolean logic circuits using 
Coulomb interaction between bistable charge polarizations in 
quantum dots are flawed [5]. They have overlooked the fact 
that bistability is a necessary, but not a sufficient condition for 
implementing Boolean logic circuits. Individual logic devices 
must also have isolation between the input and output (as in a 
conventional transistor) so that the input drives the output and 
not the reverse. Coulomb interaction between two identical 
charge polarizations is reciprocal so that it is impossible to 
distinguish the "input" polarization from the "output" po- 
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larization (i.e., there is no isolation between the input and 
output). In other words, the output influences the input just 
as much as the input influences the output! Consequently, 
logic signal cannot propagate unidirectionally from the input 
to the output, or from one stage to the next, leading to total 
failure [6], [7], [11]. The failure occurs because the input 
cannot uniquely (and predictably) determine the output. This 
problem is pathological in many proposed schemes of nano- 
electronic architecture. Other proposals, which advocate the 
use of cellular automata architectures with local connectivity 
[1], also have shortcomings; they offer no mechanism for 
loading the initial program into the cellular array of quantum 
devices [11]. As a result, they are also of questionable efficacy. 
Recently, a scheme, based on the precise phase-locking of 
single electron tunneling oscillations in capacitively coupled 
nanqjunctions to realize the parametron computing model 
of von-Neumann and Goto, has been proposed [10]; but it 
seems to lack fault-tolerance. Finally, some recent proposals 
for dissipationless computing [4], although quite intriguing, 
can hardly be considered practical since they have no error- 
correcting capability. Added to all this is the fact that most of 
these schemes make unreasonable demands on materials and 
fabrication technology that cannot be met in the near future. 

In [6], [8], and [9], we proposed a radically different 
scheme for nanoelectronic architecture that suffers from none 
of the drawbacks just discussed. It has a number of un- 
usual features. First, we realized that any proposal, which 
requires extreme fabrication tolerance whereby billions of 
nanoelectronic devices must be fabricated on a wafer with 
nominally identical behavior, is unrealistic. There will always 
be stochasticity in a large-scale system (e.g., a complex 
computer or signal-processing chip) and it may be wiser to 
exploit this stochasticity to realize useful functions rather thai 
strive against it. This is precisely what we do. Second, we insist 
on room temperature operation since cryogenic operation is 
impractical. Finally, we restrict attention to niche applications 
where the collective (and sometimes stochastic) activity of 
a large number of nanostructure devices, working in unison, 
gives rise to useful computational activity. 

The architecture that we implement is inspired by standard 
models of neural networks. It is massively parallel and in- 
herently fault-tolerant. Moreover, it has significant fabrication 
tolerance (a 100% variation in the size of an individual device 
is quite tolerable) and a great deal of noise immunity. The 
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relative insensitivity to size variation accrues from the fact that 
the size determines the capacitance of an individual device. A 
100% variation in the size of an individual device will result 
in a similar variation in the capacitance and this does not 
affect the performance of the circuit as a whole very much 
because of the "collective" nature of the computation. Here the 
collective activities of all devices acting cooperatively matter, 
rather than the characteristic of a single deviee. The switching 
speed of every device is ~ 1 ps and the power delay product 
can approach the fundamental theimodynamic limit of kT In 2 
[12] which is less than 10~20 Joules. Needless to say, all of 
these are very desirable features. 

This paper is organized as follows. In the next section, we 
describe a prototype nanoelectronic network fashioned from a 
2D array of metallic islands self-assembled on the surface of 
a double barrier resonant tunneling diode structure. This very 
simple system produces associative memory effects, realizes 
the short-term additive memory (STM) or content addressable 
memory (CAM) model of neural networks, performs 2D image 
processing and solves NP-complete combinatorial optimiza- 
tion problems. Examples of all this are provided in Section III. 
In Section IV, we discuss possible techniques for fabricating 
the network. Finally, in Section V, we provide the conclusions. 

II. A SELF ASSEMBLED ARRAY OF METALLIC. ISLANDS ON A 

RESONANT TUNNELING DIODE: A NEUROMORPHIC CIRCUIT 

In the past, many proposals for nanoelectronic circuits 
advanced ideas that could not be implemented in practice using 
technology that is either presently available or is likely to be 
available in the near future. In contrast, the basic array of 
circuit nodes in our proposed system can be fabricated with 
relative ease. The primary technology required to produce 
our circuits is a technology to create a 2D periodic array 
of nanometer-sized metallic islands (with nearest neighbor 
interconnections) on a substrate whose current-voltage char- 
acteristic has a nonmonotonic nonlinearity. Individual islands 
can have a diameter between 10 and 100 nm depending on 
the application. Such a structure is shown in Fig. 1(a). The 
nearest-neighbor interconnects are implemented by organic 
molecular wires or some other suitable means. This is an 
established technology and the details of the fabrication will 
be given in Section IV. The substrate can be a resonant 
tunneling diode (RTD) whose conduction characteristic has 
the required nonmonotonic nonlinearity [13]. All our circuits 
utilize this basic structure. We assume that the molecular 
wires or other interconnections between the.metallic islands 
can produce a variety of different network mechanisms (e.g., 
phase-coherent, or ohmic, or nonlinear, or single-electron, or 
rectifying transport, .etc.) which lead to a rich plethora of 
circuit functions. Some of these possible network mechanisms 
are depicted in Fig. l(b)-(d). 

Electrically coupled arrays of nanometer scale metallic 
islands, comparable to that depicted in Fig. 1(a), have been 
fabricated in the past using self-assembly [14]. There is 
experimental evidence that one can establish inter-island con- 
ductive and capacitive links between the nanometer sized 
metallic islands with organic molecular wires [14]. Single 

electron charging effects and nonlinear transport have been 
demonstrated in these systems at room temperature [15]. 
Furthermore, self-assembled buckytubes may also realize the 
interconnects [16], [17]. Additionally, there is experimental 
evidence that phase-coherent links may prevail between metal- 
lic spheres which have been embedded in a porous dielectric 
matrix [18]. Therefore, a wide variety of transport mechanisms 
can be realized at present which provides an adequate degree 
of design flexibility. 

The final requirement for realizing the complete system 
shown in Fig. 1(a) is a suitable scheme for reading and 
writing data. In the topologies described in Section III, each 
circuit node must be addressed individually. Present inter- 
connect technology is not capable of providing individual 
connections at this density, although advances in nanometer 
scale patterning or self-assembly techniques may provide such 
capabilities in the near future. In the shorter term, related 
computational topologies with somewhat reduced functionality 
can be realized with all input/output ports and program nodes 
at the periphery of the chip. In that case, all input/output are 
provided to or retrieved from a few selected nodes at the 
periphery or edge of the chip. An architecture based on such 
"edge-driven" paradigm is represented by the general structure 
proposed in Fig. 1(a). A scheme that can implement logic 
functions using such a structure has been recently proposed. 
The interconnect problem is greatly simplified in the "edge- 
driven" case, since it is necessary to externally access only 
those islands that communicate with the external world. Of 
course, conventional bonding technology will not be adequate 
to access these islands because it does not possess the resolu- 
tion needed to address individual quantum dots. In fact, typical 
bonding pads will probably consume the area occupied by 
about 10000 islands. Therefore, we need a contact technology 
capable of virtually atomic resolution. The obvious choice is 
a scanning tunneling microscope (STM) tip which has been 
shown to be capable of such resolution [19]. They can also 
read the voltages on the island. STM tips were proposed for 
input/output data lines in [6] which visualized an array of 
tips micromachined into a wafer and permanently attached 
to input/output ports for data reading and writing. Attaching 
an STM tip to an individual 'dot may be accomplished using 
fine line direct-write lithography followed by metallization. 
This is a difficult step and significant developmental work 
should precede implementation. Recently, the operation' of 
an integrated 100 micron size STM fabricated on a chip by 
standard lithography was demonstrated by Hitachi Research 
Laboratories [20] which is an important advancement in this 
direction. It should be noted that the size of the dots in our 
proposed structures is typically 10 nm so that once the STM 
tips are correctly attached, thermal drift or vibration is no 
longer a problem. Additionally, one should note that direct 
write lithography is being used only for making contacts to 
the chip and not for delineating the quantum dots or the 
interconnects between them. Therefore, the throughput will not 
be unacceptably slow even though direct write lithography is 
used. Recent work on arrays of scanning tunneling microscope 
tips, in which each tip has been individually addressed [21] 
lends further credence to this idea. 
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Hi 1. A generic array of nanometer-sized metallic islands deposited on a resonant tunneling diode (RTD). It is assumed that all ISlands have direct 
conducüve/capacitive links to their nearest neighbors established, for example, via organic molecular wires. These wires are not shown for the sake of clarity. 
A subset of the islands serve as program nodes that are driven by external current sources. Another subset of ISlands serve as input/output ports, and the 
remaining islands introduce complexity to the system through nonmonotonic nonlinear conductive link to the substrate; (bHd) Cross-sectional view showing 
island i, whose potential v{ is influenced by the charges qj in the rest of the network through a capacitance matrix. Continuous charge dynamics (where 
electric charge is a classical continuous variable) is depicted in (b). An analogous system governed by single electron dynamics (charge is a discrete variable) 
is depicted in (c). Dynamics of networks with quantum links (in which charge transport is phase-coherent) is depicted in (d). 

The choice of the system in Fig. 1(a) was motivated by 
the observation that complex spatial and temporal patterns 
of the electronic charge distributions on the metallic islands, 
resulting from the nonlinear interactions amongst thousands 
of devices (islands) which are collectively driven far from 
equilibrium by currents applied at the program nodes, may 
reveal a fundamental kind of computational effect [22]. Indeed, 
we will show in Section in that this system is tailor made for 
neuromorphic computation and signal processing. 

m. SPECIFIC EXAMPLES OF NEUROMORPHIC 

NETWORKS USING QUANTUM DOT ARRAYS 

In this section, we will provide specific examples of useful 
computational or signal processing functions performed by the 
generic array of electrically linked nanometer sized metallic is- 
lands shown in Fig. 1(a). We will consider, primarily, memory- 
like circuits which operate on the basis of neuromorphic 
principles. It is possible to establish a connection between 
neuromorphic computational models and the charge dynamics 
in an array of metallic islands, in the presence of each of the 
different network mechanisms indicated in Fig. l(b)-(d)- F°r 

example, when the operation of the network is governed by 

single-electron effects at each island [see Fig. 1(c)], the choice 
of a neuromorphic approach is motivated by a straightforward 
comparison between the granular dynamics of electrons in 
an array of islands, and the dynamics of discrete Hopfield 
networks [23]. We will illustrate this in Section ITJ-C with a 
specific example. Additional impetus for restricting attention 
to memory applications comes from the realization that single- 

' electron charging dynamics is stochastic in nature, which 
hinders the conceptualization of logic applications. Associative 
memory, on the other hand, can benefit from an appropriate 
kind of stochasticity. 

A. Neuromorphic Continuous Charge Network 

The first example of neuromorphic networks we consider is 
a purely classical example where the islands in Fig. 1(a) are 
large enough (diameter ~100 nm) and the temperature high 
enough that single electron effects are not prominent. Charge 
can be considered a continuous (rather than discrete) variable 
and the corresponding network mechanism is illustrated in 
Fig. 1(b). A one-dimensional (ID) version of the circuit is 
shown in Fig. 2 in which we assume that the current between 
islands i and j is Jy, and that the current between island i 
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(a) (b) 

Fig. 2.   (a) A ID array of islands, whose dynamics is described by (2); (b) a nonmonotone substrate nonlinearity of the kind shown here, is the minimal 
condition for the realization of collective effects. This characteristic can be produced by a resonant tunneling diode. 

and the grounded substrate is J{s. Since charge is considered 
a continuous variable, we can write from Kirchoffs current 
balance condition that 

d d 
dtqi=zCidtVi 

JisM + ]P Jij(Vi - Vj) + Ii(t)       (1) 

where Ii(t) is the driving current, qi is the charge, v, is 
the potential, and d is the capacitance, with the subscript i 
indicating the relevant island. Ju is a nonmonotonic nonlinear 
function of Vi corresponding to the current-voltage character- 
istic of an RTD. 

1) Operation as an Associative Memory: Qualitatively, the 
multiple solutions to the nonlinear system of equations which 
results from (1) under steady-state conditions (dv,/dt = 0 
for all i) will be taken as a set of memory states which 
can be programmed by properly choosing the current biases 
Ii. The current biases I, will be assumed to be either time 
independent, or slowly varying on time scales over which the 
network relaxes into its memory states. If the network is begun 
at time 4 = 0, with a certain initial condition Vi = g»/Cj for 
all i, arranged, for instance, by an initial impulse of charges g, 
at each of the islands, then the network will evolve toward the 
closest memory state, as programmed by the current biases Jj. 
This is the functioning of an associative memory. 

Equation (1) bears strong similarities to the equations rep- 
resenting the additive short-term memory (STM) (or Content 
Addressable Memory (CAM)) model of neural networks [24]. 
Therefore, it is obvious by analogy that the system in Fig. 2 
realizes the STM or CAM model. The significant difference 
is that, while conventional circuit realizations of the STM 
model require operational amplifiers (whose transfer functions 
exhibit monotonic sigmoidal nonlinearities) and massively 
interconnected networks of resistors [24]-[26], all we need 
is an RTD as a substrate which provides a nonmonotonic 
nonlinearity in the local transport. In [8], we showed that this 
nonmonotonic nonlinearity is sufficient for the realization of 
associative memory effects. Op-amps are very costly in terms 
of real estate on a chip and also consume too much power. As 

a result, neural networks have been unable to compete with 
conventional silicon VLSI technology. In contrast, RTD's are 
very compatible with low-power nanoelectronics. They can 
be integrated vertically beneath the array of islands so that 
they do not use up any real estate on the chip. There has 
been some prior research involving resonant tunneling diodes 
(RTD) for the realization of neuromorphic systems by Levy 
and co-workers [27]. Additionally, some early investigation 
of networks of tunnel diodes has been reported by Stern 
[28] and by Wilson [29], which also exhibit current-voltage 
characteristics of the kind shown in Fig. 2(b). 

In [8], we proved two important results pertinent to this 
system. First, based on global stability analysis using Liapunov 
functions, we showed that the system in (1) is globally stable. 
This implies that there are no limit cycles, and that every 
trajectory of the system will converge to one of its equilibrium 
points. Second, we showed that nonmonotonic nonlinearities 
in the current-voltage characteristic of local transport, such 
as that .shown in Fig. 2(b), are necessary to obtain multi- 
ple equilibrium points for nontrivial collective computational 
activity in these networks. It should be contrasted with the 
general requirement of monotonic nonlinearities in generic ad- 
ditive short-term memory systems [24]-[26] which is realized 
through op-amps. This result also has immediate consequences 
to nanoelectronics, in that staircase nonlinearities, which have 
been produced in quantum point contact constriction [30] and 
asymmetric double junction single electron tunnel devices [31] 
can be seen to be inadequate for the realization of collective , 
activity. However, there are several electronic devices which 
can produce nonmonotonic nonlinearities, e.g., Esaki diode, 
IMPATT diode, BARTTT diode, etc. [32]. We are interested 
chiefly in semiconductor heterostructure devices which can be 
integrated vertically beneath the array of islands. They must 
also be low power devices. Therefore, the ideal structure is a 
RTD. Since our work focuses on nanoelectronic realizations, 
complex circuitry cannot be integrated with the basic elements 
anyway owing to the small size of the islands. Therefore, an 
RTD seems to be the optimum choice. 

We next provide numerical results based on particular 
choices of Jy's and Ju's. Our first example is illustrated in 
Fig. 3(a), in which the two islands are coupled with each other 
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(a) (b) 

Hg. 3. (a) Two islands coupled by a resistor Ä12 and capacitor C. Each island is also coupled to the substrate by a capacitance C0 and a nonlinear resistor 
whose current voltage characteristic is given in (b); (b) Piecewise approximation to the nonmonotonic nonlineanty of the substrate conduction [cf. Fig. Z(b)J. 
This characteristic defines the quantities R and v0. Each segment has the same magnitude of slope 1/Ä. 

Fig 4    Phase portrait for two-island system in the continuous-charge model, in which the voltage axes have been scaled with respect to t>o. The parameters 
are fi12 = OR, and I0 = »o/2Ä. (a) with only substrate capacitance Co - 2q/v0., and (b) with identical mutual and substrate capacitances: C - C0. 

through a linear resistor R\% and a capacitor C. In addition, we 
assume that each island is individually coupled to the substrate 
through a capacitance Co, and a nonlinear resistor whose 
current-voltage characteristic is shown in Fig. 3(b). Further- 
more, each island is driven by a current I0 fed externally. Since 
the results presented here are numerical in nature, we have 
minimized the number of parameters by choosing a piecewise 
linear function to represent the I-V characteristic of the RTD 
(substrate conduction). Each of the three segments are given 
slopes of the same magnitude R 

(v/R 
's{v) = < {2v0 - v 

{(v- 2v0 

)/R 
- 2v0)/R 

V<Vo 
vo < v < 2uo • 
v>2v0 

(2) 

The equilibrium points of this two-node system can be found 
by setting i\ = v% — 0, and the stability properties of 
those equilibrium points can be ascertained by examining the 
eigenvalues of the system matrix near the equilibrium points 
[33], [34]. Provided that the driving current Jo < v0/R, each 

island can in principle be on any one of the three branches 
of the nonlinear function Js(v). We can, however, show that 

•the system will be unstable if either island is operated on 
branch 62. So, it follows that this system can have at most four 
different globally stable points, since each island is restricted 
to being on either branch &i or 63. Two of these stable points 
are trivial ones corresponding to both islands operating on 
the same branch : either &i, or 63. We have determined a 
necessary and sufficient condition for the existence of all four 
"memories," and the corresponding phase portraits are shown 
in Fig. 4. 

One can also realize programmed associative memory. An 
example is shown in Fig. 5 where different choices of inter- 
island resistances lead to the occurrence of either eight, four, 
or two equilibrium points. 

2) Image Processing Network: Fig. 6 shows results of fur- 
ther numerical investigations, where a 2D array of 10 x 10 
islands with only near-neighbor connections and the same 
substrate nonlinearity [as shown in Fig. 3(b)] are used. An 
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(a) (b) 

(c) - 

Rg. 5. Phase portrait for a three island system. This figure indicates the possibility of programming a network by choosing resistance parameters appropriately. 
Only substrate coupling Co is permitted. The stable equilibrium points are indicated by the shaded circles, (a) eight states, with Rn — R23 = Ris = 10R,; 
(b) four states, with Rn = R23 = 10R. and R13 = OR.; (c) two states, with R& = B23 = Ri3 = oR. 

input image is digitized to create dark and light pixels. 
Each pixel generates a voltage on a corresponding island. 
These voltages lie on a particular branch—61,62, or 63, in 
Fig. 3(b)—of the substrate nonlinearity. Dark pixels place 
the corresponding voltages on the branch 63, light pixels on 
the branch 61 and intermediate grey pixels on the branch 
62. In example (a), the input contains domains which are 
either predominantly dark, or light, and the resulting output 
recovers domains which are either all dark, or all light. 
This is an example of "smoothing," an important image 
processing capability. Other image processing functions can be 
realized as well. We must point out that this 10 x 10 network 
consumes an area of 10~10 cm2 so that ten trillion such image 

processors can be fabricated within an area of 1 cm2. This is 
an unprecedented functional density. 

B.   Single-Electron Charging Effects 

We have also considered the same two-island-network as in 
Section III-A, with the assumption that single electron charge 
effects (granularity of charge) have become pertinent either 
due to the lowering of temperature, or due to the physical 
scaling of the metallic islands down to d ~ 10 nm. Single- 
electron effects will become relevant, when the change in 
potential 6V = q/C, associated with the addition of a single 
electron charge q to an island, becomes comparable to kT/q, 
the thermal potential. This condition can be met even at room 
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Fig. 6. Rudimentary image processing capability in a near-neighbor connected network of 10 x 10 islands, which are all pumped by the same current 
Jo = i'o/2R. Each island is colored in accordance with the particular branch—6i. 62. or 63 • in Fig. 3(b)—of the substrate nonlinearity, the island potential lies 
on. (a) The resistive network is uniform Ri±i.j±i = 6Ä. The input contains domains which are either predominantly black, or white, and the resulting output 
recovers domains which are either all black, or all white, (b) The network is partitioned into three concentric regions. The islands in the outermost and innermost 
regions are coupled with low resistances Ä.±i.j±i = 3H. and the islands in the intermediate region are coupled with high resistances Ä«±i.j±i = 13-^- 
Parts of the network with low resistance produce regions which are either all white, or all black depending on which was predominant in the initial state. 

temperature if islands with an effective capacitance smaller 
than C « 5 x 10~18 F are fabricated. 

Single electron dynamics are characterized by discrete run- 
nel events. Therefore, the differential equation systems of (2) 
cannot be used to model the arrays. We developed a Monte- 
Carlo simulation technique [35], [36], for the simulation of 
a current biased network of islands, shown in Figs. 1 and 2. 
Owing to space limitations, we cannot describe it here, but 
instead refer the reader to [8]. 

The results based on our numerical simulator show the 
following: 

1) For large enough values of the effective substrate capac- 
itances (Co), the effect of the single electron dynamics 
is marginal and the system is adequately described by the 
continuous charge models. Thus even arrays of metallic 
islands with diameters of few nanometers can exhibit 

the same associative memory and image processing 
capabilities studied in Section III-A. 

2) If the substrate capacitance is made smaller, the gran- 
ularity of the trajectories become larger, and for small 
enough values, the phase portrait breaks out into oscil- 
lations [8].    j 

These effects are illustrated in Fig. 7, where the same system 
shown in Fig. 3 is investigated under single-electron dynamics. 

C.  Ising-Type Single-Electron Networks 

The examples in Section III-A and III-B did not utilize 
single-electronics in a direct way, i.e., single electron charging 
effect was not central to the operation of the circuit. However, 
there are instances when single electronics plays a pivotal role. 
In [8], it was shown that the evolution of an initial charge 
distribution toward a stable final equilibrium distribution in a 
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(a) (b) 

Fig. 7.   Phase portrait for the same two island system in Fig. 3 where the granularity of charge (single electron chlrging) has been taken into account. These 
results are obtained from Monte-Carlo simulation and are discrete charge versions of the two cases in—Fig. 4(a). 

system of the type of Fig. 1(a) can be given a neuromorphic 
interpretation. These properties emerge purely as a result of 
the discreteness of electronic charge, and the only assumption 
made in establishing this connection is that the inter-island 
capacitances can be chosen arbitrarily. 

In [8], it was shown that the discrete stochastic dynamics 
of electrons can be viewed as a procedure for simulated 
annealing. Consequently, several problems from combinatorial 
optimization can then be mapped to different single-electron 
networks. A novel mapping methodology tailored specifically 
for single-electron networks was developed. Owing to space 
limitations, we cannot address this in greater detail here, 
but we mention that a specific example we examined is the 
traveling salesman problem. This NP-complete optimization 
problem can be solved very fast by an appropriate single 
electron network. For details, we refer the reader to [8]. 

IV. FABRICATION OF NEUROMORPHIC 

NETWORKS: SELF-ASSEMBLY 

We now address the fabrication of these networks. Con- 
ventional nanolithography involving electron beam, ion be.am, 
x-ray ..or even scanning tip lithography [37] are unsuitable 
for fabricating single-electron circuits for two basic reasons: 
1) they are usually serial hi nature (direct-write techniques) 
whereby the patterns on each wafer must be exposed se- 
quentially, resulting in a throughput that is unacceptably 
slow for commercial mass production; and 2) they often 
cause significant radiation damage to processed nanostructures 
[38]-[43]. In contrast, the recently developed techniques for 
self-assembly of periodic quantum dot arrays [14], [44] suf- 
fer from neither of these drawbacks and therefore offer an 
attractive choice. 

Fabrication of the network shown in Fig. 1(a) has three 
key elements: 1) deposition of a regimented, periodic array 
of nanosized metallic islands on a RTD; 2) electrical isolation 
of these islands via mesa-etching through the RTD; and 3) 

linking the islands with molecular wires or some other means. 
Fabrication of a periodic, 2D array of metallic islands with 
diameters in the 5-100 nm range has been demonstrated by 
us using electrochemical self-assembly [44]. This approach 
has two advantages over conventional direct-write lithography 
(e.g., e-beam, ion-beam or STM lithography). First, it is a 
"gentle" technique that does not cause serious processing dam- 
age, and second, it is parallel in nature whereby large batches 
of wafers can be processed simultaneously and all patterning 
on a given wafer is performed simultaneously, resulting in 
several orders of magnitude improvement in throughput. In 
order to illustrate the feasibility of realizing nanoscale circuits 
using these methods, we outline a specific process which 
employs self-assembly techniques, several of which have been 
developed by the authors and their collaborators. 

First, using molecular beam epitaxy, an RTD structure is 
synthesized and capped by a thin (3 nm).low-temperature 
grown GaAs layer (LTG:GaAs), which is highly resistant, 
to oxidation [45] and which serves to passivate underlaying 
doped layers [45], [46]. Then on the surface of this layer, 
a thin-film of Al (~100-nm-thick) is resistively evaporated. 
This film is electropolished in perchloric acid/butyl cellu- 
solve/ethanol/distilled water at 60 V for 30 s resulting in a 
dimpled surface containing a highly periodic array of crests 
and troughs as shown in the raw atomic force micrograph 
data in Fig. 8. 

The trough regions of this dimpled film can be selectively 
etched away by bromine/methanol leaving isolated islands of 
Al (the crests) on the surface (see Fig. 9). The trough regions 
are etched away before the crests since the Al film is much 
thinner in these regions (by approximately 50 nm). In fact, the 
ratio of the Al film thicknesses in the crest and trough regions - 
can be easily made as large as 10:1 which facilitates selective 
etching of the troughs. This results in a 2D periodic array 
of nano-sized metallic islands on the surface (vestiges of the 
crests) which now need to be electrically isolated. For this, we 
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Fig. 8.   Atomic force micrograph of a dimpled electropolished Al surface showing a periodic array of crests and troughs. This pattern is self-organized. 
The height of the crests above the troughs is about 50 nm. 

flexibility in choosing the resistance and capacitance between 
clusters [48]; and 2) electrical access to individual nanometer 
sized dots may be feasible due to the nanometer size scale 
of the wires and the ability to deposit wires on selective 
regions based on the composition of the regions and of the 
molecular end groups. These capabilities would be necessary 
for realizing certain processors where one needs variable inter- 
island resistances and capacitances as well as image processors 
where one needs to address individual dots. 

The fabrication steps outlined to this point have addressed 
the metallic island array, the interisland linking and the RTD 
substrate required for the computational cells. The same tech- 
niques used to provide resistive linking between islands can 
provide the linking between islands at the edge of the array 
and input/output or programming contacts. In "edge-driven" 
configurations, the computational cells will also require a 
resistive link between each island and a bias plane, presumably 
located above the island array, to provide the current bias 
required to achieve bistability in voltage. This capability 
appears feasible using either molecular wires or a thin-film 
resistive layer deposited between the island array and the bias 
plane. It should be noted that the most time consuming "direct- 
writing" steps of nanolithography have been replaced by 
chemical self-assembiy in the proposed synthesis techniques. 
In principle, large batches of wafers can be electropolished 
and subsequently etched in a large bath, thereby making the 
electropoliShing technique a truly parallel process with fast 
throughput. The self-assembly synthesis of metallic cluster 
arrays could also be a high throughput process. This is a 
significant advantage over "direct" write based fabrication 
processes for nanoscale circuits. 

The ability to realize individual address lines for each island, 
while beyond the capability of the self-assembly techniques 
presented here, would allow configurations where individual 

proceed as follows. One can use this periodic array of islands 
as a mask to shallow-etch electrically isolated mesas capped 
by the metal Al. The use of the metallic island array as the 
etching mask for patterning the RTD substrate provides a self- 
alignment between the metal islands and the semiconductor 
mesas. Deep etching is not feasible, due to the small areas of 
the Al dots and the need to keep a relatively planar surface 
for subsequent interconnect steps. The LTG:GaAs layer allows 
one to keep the underlying n-GaAs layer very thin without 
risking oxidation [45]. The isolation etch can be shallow since 
the removal of the LTG:GaAs layer eliminates the passivation 
effect, resulting in the depletion of the regions between the 
islands. The final step is to electrically link the islands. For 
this, the space between the mesas may be filled up with 
a chosen material by electrodeposition, sputtering, or low- 
temperature grown MBE layer to create a resistive and/or 
capacitive connection between the dots. 

Instead of using the electropolished Al technique, one can 
also deposit a self-assembled, 2D network of metal clusters 
on the surface of the substrate with adjacent clusters linked 
by molecular wires. Techniques to deposit ordered arrays of 
nanometer diameter Au clusters on various flat substrates, to 
deposit organic molecules (molecular wires) between adjacent 
clusters have been demonstrated and the in-plane electronic 
conduction through arrays of 4 nm clusters deposited between 
lithographically defined contacts has been studied [14], [15], 
[47]. Again, the deposited cluster network can be used as 
a self-aligned mask to etch through the RTD and create 
mesas capped by metal dots (Fig. 10). The inter-island links 
are already provided by the molecular wires. Although the 
technology of molecular wires is in its infancy, significant 
progress has been made in the synthesis, characterization 
and modeling of molecular wires suitable for this application 
[48], [49]. The advantages of molecular wires are: 1) great 
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Fig. 9. Fabrication steps to realize the neuromorphic network in Fig. 1(a) 
using self-assembly techniques. The steps are described in the text. The 
inter-island connection is made not by molecular wires, but by an electrode- 
posited, sputtered or MBE-grown layer grown on the etched surface. A wide 
variety of layer materials can be used, resulting in phase-coherent, rectifying, 
resistive or capacitive links. 

islands could be addressed in order to provide input/output or 
programming, Achieving this type of interconnect configura- 
tion at the nanometer scale would require significant advances 
in technology, but may be possible using scanning probe based 
lithography. 

In order to establish the feasibility of the proposed syn- 
thesis techniques, it is informative to consider the ranges of 
capacitance and resistances achievable with these techniques. 
Using a conservative estimate for the minimum achievable 
island diameter of 20 nm, the capacitances between adjacent 
islands and between an island and the substrate will be on 
the order of 10-1? F, corresponding to Coulomb charging 
energies of about 70 meV. Molecular wires which have been 
reported to date have resistances on the order of 20-40 M fi per 
molecule when bridged between metal electrodes [15], [48], 
[49]. Since metallic clusters with 20-nm diameters can have 
hundreds of molecular wires in parallel between each pair of 
adjacent clusters, achievable island to island resistances should 
be on the order of 0.1-10 Mfi [15], [47], [49]. In order to 
bridge distances significantly longer than 2 nm, networks of 
these molecular wires may be required. An RTD substrate with 
peak current density of 1 x 105 A/cm2 would yield a peak 
current of 0.3 ph. for each semiconductor mesa, assuming that 
the current density remained constant as device dimensions 

Fig. 10. Another possible fabrication strategy where the metal dots are 
clusters self-assembled on the surface and linked by molecular wires. R\\u^ 
and GDO« are the interdot resistances and capacitances that are realized by 
molecular wires. Self-assembly techniques for 2D linked arrays have been 
demonstrated and the in-plane electronic conduction through such an arrays 
has been studied (see [14] and [48]). 

are scaled down. For a voltage at peak current of 0.5 V, this 
corresponds to an average resistance of approximately 1.5 M fi 
for the RTD characteristic. The use of short-chain molecular 
wires along with a low-resistance, nonalloyed contact structure 
[50] should provide an interface coupling resistance of less 
than 200 Kfi between the metal island and the semiconductor 
mesa for this island size. The devices can be effectively current 
biased if the resistance from a bias plane, located above the 
array, to each island is much greater than the characteristic 
resistance of the RTD mesa. Since the resistance through 
certain molecular wires consists of state-assisted tunneling 
[48], a suitable resistance, e.g., a resistance on the order of 
5-10 Mn. could be achieved by using longer molecular wires 
to connect each island to the bias plane. It may also be possible 
to use a thin-film resistive material deposited between the 
metallic island array and the bias plane to realize the linking 
of each island both to adjacent islands and to the bias plane. 
A resistivity of approximately 50 Q ■ cm would be required; 
an ideal material would also possess an anisotropic resistivity 
characteristic to allow independent control of the vertical and 
horizontal linking resistances. It therefore appears feasible to 
realize appropriate resistance and capacitance elements for the 
proposed computational cells using the technologies discussed . 
in this section. 

v. CONCLUSION 

In conclusion, we have presented a neuromorphic architec- 
ture for powerful computing and signal processing applications 
using an array of metallic islands on a resonant tunneling 
diode. Some of the components required to fabricate these 
circuits are in their infancy. Nontheless, the rapid progress in 
nanoelectronics may make these circuits a reality in not too 
distant a future. 
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Nanoelectronic Architecture for Boolean Logic 
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AND SUPRIYO BANDYOPADHYAY, SENIOR MEMBER, IEEE 

A nanoelectronic implementation of Boolean logic circuits 
is described where logic functionality is realized through 
charge interactions between metallic dots self-assembled on 
the surface of a double-barrier resonant tunneling diode (RTD) 
structure. The primitive computational cell in this architecture 
consists of a number of dots with nearest neighbor (resistive) 
interconnections. Specific logic functionality is provided by 
appropriate rectifying connections between cells. We show how 
basic logic gates, leading to combinational and sequential 
circuits, can be realized in this architecture. Additionally, 
architectural issues including directionality, fault tolerance, 
and power dissipation are discussed. Estimates based on the 
current-voltage characteristics of RTD's and the capacitance and 
resistance values of the interdot connections indicate that static 
power dissipation as small as 0.1 nW/gate and switching delay as 
small as a few picoseconds can be expected. We also present a 
strategy for fabricating/synthesizing such systems using chemical 
self-organizing/self-assembly phenomena. The proposed synthesis 
procedure utilizes several chemical self-assembly techniques 
which have been demonstrated recently, including self-assembly 
of uniform arrays of close-packed metallic dots with nanometer 
diameters, controlled resistive linking of nearest neighbor dots 
with conjugated organic molecules and organic rectifiers. 

I.  INTRODUCTION 

It is generally accepted in the solid-state community that 
conventional strategies for integrating electronic devices on 
a chip will not be suitable for nanometer-sized elements 
because of the minuscule size of the elements and the 
corresponding low power handling capacity, low gain, and 
low fanout. Accordingly, a number of proposals have ap- 
peared in the literature that envision novel architectures for 
nanoelectronic logic circuits. Most of these schemes purport 
to exploit discrete (single- or few-electron) charge inter- 
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actions between semiconductor or metallic dots [1]—[10]. 
Unfortunately, they all suffer from one or more drawbacks. 
References [3] and [4] propose a paradigm which is plagued 
by problems associated with unavoidable and ubiquitous 
background charge fluctuations that make the circuits error 
prone, [5] requires precise clocking control and lacks suf- 
ficient fault tolerance, while [7]-[9] proposes a system that 
is difficult to fabricate. References [1] and [2]' suffer from 
all the problems associated with [3]-[9] and additionally 
raise a serious concern in that logic signal cannot propagate 
unidirectionally from the input to output since the input 
is linked to the output by Coulomb interaction which is 
bidirectional (reciprocal). Bidirectional flow of signal does 
not distinguish between input and output terminals [7]—[15]. 
There are additional problems in this paradigm such as the 
lack of isolation between input and output and the problem 
of unbalanced logic gates which tends to generate wrong 
answers for certain configurations of gates [16]. 

In this paper, we propose and demonstrate a novel par- 
adigm for nanoelectronic implementation of Boolean logic 
that can potentially eliminate the above drawbacks. In this 
implementation, each computational cell contains nanoscale 
metallic dots formed into regimented, two-dimensional (2- 
D) arrays on an active substrate which possesses, a non- 
linear, nonmonotone current-voltage characteristic. Logic 
functionality is achieved through charge exchange between 
the metallic dots. In order to demonstrate the feasibil- 
ity of making these circuits, we also outline a fabrica- 
tion strategy which exploits chemical self-assembly/self- 
organization techniques to realize the nanoscale elements 
and the interelement connections. It appears that all of 
the individual components of the enabling technology have 
already been demonstrated and what remains to be achieved 
is the combination of these components to synthesize the 
circuits described in this paper. While this is certainly a 
npntrivial task, it seems that proof of concept demonstra- 

'This scheme lacks uriidirectionality and does not work (see [7]-[15] 
for a discussion of this issue). Recent modifications of this scheme, 
whereby each cell is accessed and clocked individually to realize adiabatic 
switching, provides unidirectionality but results in exceedingly slow speed. 
There is still the lack of isolation between input and output Furthermore, 
it is not clear how "logically irreversible" gates described in this paradigm 
can be switched adiabatically. 

0018-9219/97S10.00 © 1997 IEEE 
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Fig. 1. (a) A generic array of metallic islands deposited on a nonohmic layer which has been 
grown on a conductive substrate. It is assumed that all islands have direct conductive links to 
nearest neighbors. A subset of the islands serve as program nodes which are driven by external 
current sources. Another subset of islands serve as input/output ports, and the remaining islands 
introduce complexity to the system through nonlinear conductive links to the substrate. The 
substrate nonlinearity could arise, for example, from resonant tunneling which causes the substrate 
current-voltage characteristic to have a nonmonotonicity. (b)-(d) Cross-sectional view showing 
island i, whose potential vi is influenced by the charges qj in the rest of the network through a 
capacitance matrix. The different transport mechanisms lead to a rich variety of computational 
capabilities. 

tions of nanoscale computational cells using the proposed 
architecture will be possible in the relatively near future. 

This paper is organized as follows. In Section II, we de- 
scribe the paradigm, and present theoretical and simulation 
results to demonstrate the functioning of the logic gates. 
The rest of the sections are devoted to describing possible 
routes to fabrication. 

n.  ARCHITECTURE: ARRAY OF QUANTUM DOTS ON 

A RESONANT TUNNELING DIODE 

A. Basic Computing Block: Background and Motivation 

The basic computational block for our logic scheme 
can be realized by assembling a* 2-D periodic array of 
nanometer-sized metallic islands with resistive nearest 
neighbor interconnections, on a substrate whose current- 
voltage characteristic has a nonmonotonic nonlinearity. The 
simplest choice for the substrate is a resonant tunneling 
diode (RTD). This system is shown in Fig. 1(a). All our 
circuits utilize this basic structure. 

We have already shown that different types of transport 
nonlinearities in the interdot connections can lead to a wide 

variety of global activities in this system; moreover, it is 
possible to impart computational interpretations to these 
activities [14], [17]. Additionally, we have shown that 
within a classical circuit theoretic model (where electric 
charge is considered a continuous variable), nonmonotone 
nonlinearities of the substrate conduction can yield global 
associative memory effects and lead to image processing 
capabilities [10], [14], [17]. We have also shown that 
this interpretation remains valid even when granularity of 
charge (or single-electron effects) come into play, provided 
that the effective capacitance of the islands is not too small. 
Finally, we have investigated networks of islands in which 
the sole nonlinearity in charge transport arises from single- 
electronics (Coulomb blockade), rather than any inherent 
nonlinearity in the molecular wires or substrate conduction. 
These networks exhibit associative memory effects, as well 
as the ability to yield approximate solutions to certain 
NP-complete optimization problems such as the traveling 
salesman problem [10], [17]. 

Our past work has shown that the functionality of these 
networks is determined by the type and versatility of the 
interconnects. Increased functionality can be achieved at 
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'    (a) 

Fig. 2. (a) A 1-D array of islands, whose dynamics is described by (1). (b) A nonmonotone 
substrate nonlinearity of the kind shown here, is the minimal condition for the realization of 
collective effects. 

(b) 

the cost of a commensurate increase in the fabrication 
complexity involved in realizing the underlying networks. 
Hence, a natural question to ask is: what are the minimal 
requirements that the lateral interconnects must satisfy 
so that the underlying computational unit displays useful 
computational properties? 

In this paper, we provide an answer to the above ques- 
tion, and show that the architecture shown in Fig. 1 can 
realize basic logic functions such as AND gates, OR gates, 
and multilevel circuits comprising these gates using the 
simplest of interconnects. We need just nearest-neighbor 
resistive links, and at certain prespecified locations that 
demarcate gate boundaries, we need rectifying or diode 
links. 

B. Bistability 

In order to make logic gates and circuits, one first needs to 
demonstrate a bistable device, i.e., a device that is capable 
of assuming only two possible stable states, one of which 
can be interpreted as a binary 0 and the other as a binary 
1. We shall show later that a bistable device by itself is 
not sufficient for realizing logic circuits (one also needs to 
impose "unidirectionality," a issue that is addressed later 
in this paper), but bistability is a necessary ingredient. In 
this section, we demonstrate how bistable devices can be 
generated using the computational prototype described in 
Fig. 1. 

1) Networks with Multiple Stable States: First consider a 
simple one-dimensional (1-D) version of the network, as 
shown in Fig. 2. Here we designate the current between 
islands i and j as Jy, and the current between island i 
and the grounded substrate as Jis. We can then write from 
KirchofPs current balance condition that, 

d        n d 
Jtqi=CiJtVi 

Jis{vi) + Y^ Ja(vi - VJ) 

3*i 
+ Ii(t)     (1) 

where /,(*) is the driving current, g; is the charge, vi is 
the potential, and C, is the capacitance, with the subscript 
i indicating the relevant island. 

Qualitatively, the multiple solutions to the nonlinear 
system of equations which results from (1) under steady- 
state conditions (i.e., dvi/dt = 0 for all i) will be taken as 
a set of memory states (or equilibrium points) which can 
be programmed by properly choosing the current biases 
Ii, and the transport functions Jy and J«. The current 
biases 7» will be assumed to be either time independent, 
or slowly varying on time scales over which the network 
relaxes into its memory states. If the network is begun at 
time t = 0, with a certain initial condition Vi = qi/Ci 
for all i, arranged, for instance, by an initial impulse of 
charges # at each of the islands, then the network will 
evolve toward the closest memory state, as programmed by 
the current biases /,-. 

In [14], [17], we demonstrated two important properties 
of this network: 1) it is globally stable and 2) the non- 
monotonic nonlinearity causes multiple (more than one) 
equilibrium points. The number of equilibrium points can 
be programmed by appropriate choice of the inter-island 

% resistances. For binary logic, we need only two equilibrium 
points. 

We next provide numerical results for multiple equilib- 
rium points that can be observed in our networks by making 
different choices of Jy-'s and JiS's. Our example, based on 
two dots, is illustrated in Fig. 3(a), in which the two islands 
are coupled with each other through a linear resistor Ä12 

and a capacitor C. In addition, we assume that each island 
is individually coupled to the substrate through a capac- 
itance Co, and a nonlinear resistor whose nonmonotonic 
current-voltage characteristic is shown in Fig. 3(b). This 
characteristic approximates that of a RTD. Since the results 
presented here are numerical in nature, we have minimized 
the number of parameters by choosing a piecewise linear 
function for the characteristic, in which each of the three 
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Fig. 3. (a) A network of two islands that are laterally coupled via a linear resistance Ru and a 
capacitance C. Each island is also coupled vertically to the substrate via a capacitance Co, and a 
nonlinear resistive element, (b) The substrate nonlinearity is modeled as a piecewise linear function. 
We can show theoretically that more realistic nonlinearities due to resonant tunneling, for example, 
will yield qualitatively the same dynamics as generated by this nonlinearity. The three segments 
of the function are denoted by 6j, 62, and 63. The other two figures show the phase portrait for 
two-island system in the continuous-charge model, in which the voltage axes have been scaled with 
respect to t>o- The parameters are R12 = oR. and Jo = vo/2R. (c) With only substrate capacitance 
Co = 1, and (d) with identical mutual and substrate capacitances: C = Co. 

(d) 

segments have slopes of the same magnitude 1/R 

Js{v) = < 

v 
R 

2uo - v 
R 

v — 2VQ 

R 

V <VQ 

vo<v< 2uo 

v > 2VQ- 

(2) 

The equilibrium points of this two-node system can be 
found by setting v"i = v'2 — 0, and the stability properties of 
those equilibrium points can be ascertained by examining 
the eigenvalues of the system matrix near the equilibrium 
points [18], [19]. Provided that the driving current J0 < 
VQ/R, each island potential can in principle be on any 

one of the three branches of the nonlinear function Ja(v) 
shown in Fig. 3(b). We can, however, show that the system 
will be unstable if either island is operated on branch 62 
which has a negative differential resistance. So, it follows 
that this system can have at most four different globally 
stable points, since each island is restricted to being on 
either branch 61 or 63. Two of these stable points are trivial 
ones corresponding to both islands operating on the same 
branch: either 61 or 63. We have determined a necessary and 
sufficient condition for the existence of all four "memories," 
and the corresponding phase portraits are shown in Fig. 3. 
The figure shows that if the interdot resistance (Ru) is 
large enough, then all the four possible equilibrium points 
are stable. In that case, this system can be used as an 
associative memory. 
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(a) (b) 

Fig. 4. (a) The phase portrait of the two-island system shown in 
Fig. 3, when the inter-island resistance is small, e.g., R12 < R. 
The whole system now behaves as a bistable device with only 
two stable states, (b) The phase portrait of the same system 
when single-electron effects and Coulomb blockade are taken into 
consideration. 

2) Networks with Two Stable States: Now, if instead of 
an associative memory application with multiple stable 
states, one needs a device for binary logic functions, 
then we have to demonstrate the existence of only two 
stable points. We consider the same two-island example as 
described in (2) and Fig. 3. However, instead of choosing 
a large interdot resistance (i.e., Rx2 = 5.R), we choose 
a small interdot resistance (e.g., R12 = R). Our analysis 
and simulations (see Fig. 4) show that with small inter- 
island resistance, instead of having four stable points, the 
two-node system will have exactly two stable states. These 
two stable states correspond to the voltages on both islands 
being on branch &i or branch 63. 

In general, one can consider any large network compris- 
ing a collection of n islands [as depicted in Fig. 2 and 
characterized by (1)] and show that the whole network 
behaves as a single bistable device when the lateral in- 
terconnects have small enough resistances. A proof of this 
statement follows easily from the preceding analysis of the 
two-island case, and will be skipped here. 

3) Limits to Continuous Models—Single-Electron Effects: 
We now study the same networks, with the assumption 
that single electron effects have become pertinent either 
due to the lowering of temperature, or due to the physical 
scaling of the metallic islands down to d ~ 10 nm. Single- 
electron effects will become relevant when the inter-island 
resistances exceed h/e2 (« 12 kfi) and when the change 
in potential SV = q/C, associated with the addition of a 
single charge q to an island, becomes comparable to kT/q, 
the thermal potential. The latter condition can be met even 
at room temperature if islands with an effective capacitance 
smaller than C as 5 x 10-18 F are fabricated. In fact, as 
described in the experimental section of this paper, we have 
already observed room temperature single-electron effects 
in the quantum-dot arrays that we have synthesized [20], 
[21]. 

. Single electron dynamics are characterized by discrete 
tunnel events, and differential equation systems cannot be 
used to model the arrays. We have developed a Monte 
Carlo simulation technique [22], [23] for the simulation of 
a current biased network of islands shown in Fig. 2(a). This 
simulator has been described in [17]. The results obtained 
from this simulator show the following features [see also 

Fig. 4(b)]: For large enough values of the effective substrate 
capacitances (C0), the effect of the single electron dynamics 
is marginal and the system is adequately described by the 
continuous charge models. Thus, even arrays of metallic 
islands with diameters of few nanometers can exhibit the 
same associative memory and bistability properties studied 
in the context of continuous dynamics. 

C. Networks for Logic Gates and Functions 

The preceding discussions clearly show how a collection 
of resistively coupled quantum dots with an RTD substrate, 
can behave as a single bistable device. For the purposes of 
this section, we shall represent the computational structures 
described in Figs. 1(a) and 2(a), simply as an array of 
dots; it will be assumed that the quantum dots are laterally 
connected by sufficiently low-impedance links, and that 
there is an RTD substrate underneath the array. The results 
presented in this section are based on the outputs of 
the simulators that we have developed for solving the 
continuous-time (1), as well as, based on the Monte Carlo 
simulator designed to study the behavior of the networks 
under single-electron dynamics. 

Given such an array, an implementation of a logical OR 
gate is demonstrated in Fig. 5. We will assume "positive 
logic" so that the high voltage state corresponds to logic 
level 1 and the low voltage to logic level 0. The diodes 
at the boundary provide isolation between the two inputs 
A and B. The whole array is initialized to a 0 state, and 
if any of the inputs is a 1 then the array switches its state 
from a 0 state to 1. An analogous realization of an AND 
gate is shown in Fig. 6. 

An example of the realization of a two-level OR/AND 
circuit is shown Fig. 7. The figure shows the results of our 
numerical simulations and establishes how the individual 
gates can be integrated into realizing Boolean circuits. The 
first level of the circuit shown in Fig. 7 consists of two 2- 
input OR gates. In the first step, the OR gates are allowed to 
operate while the AND gate in the second stage is disabled. 
Next, the AND gate is enabled by a clock pulse and the two 
OR gates drive the AND gate. Multilayered logic circuits 
can be also realized by propagating the signals stage by 
stage. That is, successive levels or stages of the circuit are 
activate sequentially allowing the signal to propagate from 
the input to the output of the circuit. 

Note that we have not provided a realization of an 
inverter (or a NOT gate) in our scheme. That is because, 
without loss of generality, we can assume that for every 
binary input A, its inverted value A. is also available as 
an input. This is the usual assumption made in many 
currently available schemes for logic implementations, such 
as the programmable logic arrays (PLA's), where all the 
variables and their complements are available as inputs. The 
inversion of the inputs can be also done at the boundaries 
of our computational block using nanoscale single electron 
transistors (SET's). It can be easily shown from the basic 
principles of Boolean logic that if input variables and 
their complements are available, then a two-level OR/AND 
circuit is universal. 
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Fig. 5. A schematic description of the realization of a two-input OR gate using arrays of metallic 
dots deposited on a nonohmic layer. The metallic dots are interconnected with each other by resistive 
links, and to the inputs by rectifier (or diode) links. The computation starts by initializing the 
individual dots to a low state, and if any of the inputs is a logical 1, then all the dots will switch 
to a high state (represented by •). 
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Fig. 6. A schematic description of the realization of a two-input AND gate using arrays of metallic 
dots deposited on a nonohmic layer. The metallic dots are interconnected with each other by resistive 
links, and to the inputs by rectifier (or diode) links. The computation starts by initializing the 
individual dots to a high state, and if any of the inputs is a logical 0, then all the dots will 
switch to a low state. 

D. Basic Architectural Issues 

In this section, we highlight several architectural issues 
involved in the scheme that we have developed. 

1) Unidirectionality and Pipelining: As described in the 
introduction, a major drawback of the proposals for logic 
implementations based on bistable devices without direc- 
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gates to complete their respective computations. This step is followed by an initialization of the 
AND part of the array to a high state. The final state of the AND part will be determined by the 
already computed states of the OR gates. 
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tionality [1] lies in their failure to ensure propagation of 
the logic signal from the input to the output. That is, if 
two bistable devices are connected together in series, then 
the one closer to the input terminal should drive the other, 
and not the other way around. This will ensure that the 
signals propagate from the input to the outputs and the 

whole system does not get stuck in metastable states [12], 
[13], [15]. 

As illustrated in Fig. 7, in our scheme, unidirectional 
signal propagation from the input to the output is effected 
through a clocking mechanism. For example, when the 
OR gates in the first layer are operational, the AND gate 
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in the succeeding stage is disabled. Once the OR gates 
have reached stable states, then a clock pulse is applied to 
initialize the AND gate. This scheme avoids the potential 
problem of the AND gate acting as an input to the OR gates, 
and instead allows the OR gates to drive the AND gate. The 
same strategy can be extended to the case of multi-level 
circuits. Such a scheme of multiphase clocking ("push- 
clock" and "drop-clock") is also used in conventional 
charge-coupled devices (CCD's) [24]. 

Moreover, the multiphase clocking scheme will enable 
pipelining in our computational blocks. That is, every other 
level in a multilevel circuit can operate simultaneously, and 
a new set of inputs can be fed to the circuit every other clock 
cycle. This allows the implementation of a high throughput 
logic block. 

2) Fault Tolerance: Any computational architecture at 
the nanoscale level should display inherent fault-tolerant 
properties [12], [13]. Nanostructure devices will probably 
have more variability in their characteristics than their 
earlier generation microstructure counterparts. Any scheme 
that ignores this fact and relies on every quantum dot being 
perfect will almost inevitably be impractical. 

In order to ensure fault-tolerance in our scheme, we allow 
a cluster of islands to represent a gate rather than a single 
or just a few dots. Note that the size of the arrays for each 
gate (as shown in Figs. 5 and 6) can be varied depending 
on the state of the technology. By providing larger arrays 
one can increase fault tolerance. We have done extensive 
simulations of the two-level OR/AND circuit shown in 
Fig. 7 under different fault conditions. For example, our 
simulations show that the operation of the circuit remains 
unimpaired even if up to 15% of the dots fail. Similar 
behavior holds even if the sizes of the dots are varied up 
to 100%. 

3) Power Dissipation and Density Issues: Given the high 
circuit density of the proposed computational architecture, 
it is important to consider the power dissipation of the 
cells. While dynamic power simulations are not available 
at this time, the static power dissipation can be estimated 
from the stable current and voltage states. For the case 
with optimally chosen current bias to each node, the static 
current level for both stable states of each island will be 
approximately the valley current level of the RTD mesas; 
the corresponding voltage levels will be approximately the 
valley voltage and zero voltage for the high and low voltage 
states, respectively. For a cell containing 5 nm diameter 
islands, the static power dissipated in the high voltage 
state is approximately 0.1 nW per island, while the static 
power in the low voltage state is approximately zero. This 
calculation assumes a peak current density of 104 A/cm2, 
a peak to valley current ratio of 10:1 and a valley voltage 
of 0.5 V, all consistent with RTD performance reported in 
the literature. A computational cell containing 100 islands 
would therefore dissipate 10 nW and would occupy about 
1 x 10~10 cm2. To a first approximation, only half of the 
computational cells will be biased at a given time and only 
half of the nanoscale islands in the active cells will be in the 
high voltage state. Therefore, the static power dissipation is 

estimated to be 25 W/cm2 for a computational circuit with 
1 x 1010 cells per cm2. 

For comparison, projected values for silicon CMOS cir- 
cuits in the year 2007 are a dissipation of 600 nW per 
computational cell Qogic gate) with a cell density of 5 x 
107 cells/cm2, corresponding to 30 W/cm2 [25]. The CMOS 
power is primarily dynamic power, so detailed comparisons 
to the static predictions of the proposed architecture are 
probably not appropriate. However, the power estimations 
indicate that the proposed architecture has the potential 
for significantly reduced power dissipation per cell and 
comparable power densities, along with the potential for 
realizing higher functionality per cell and much higher cell 
densities. 

We can also estimate an upper limit for the dynamic 
energy dissipation during a logic signal swing. This energy 
is ~CV2 where C is the capacitance of an island and V is 
the power supply voltage. Assuming C = 1 aF and V = 1 
V, the energy dissipation (or power-delay product) is 10~18 

J. 
The switching delay is ~Runk{CSub + Qsiand + Clink) 

where .Rank is the resistance of the interdot resistive link, 
Csub is the substrate capacitance associated with the RTD's, 
Ciink is the capacitance between nearest neighbor dots, and 
Cisiand is the capacitance of the metallic island. Assuming 
that the value of Aunk is 1 Mft, a value consistent with the 
interdot resistances of metal dot arrays described in the next 
section [21], and all capacitances are on the order of 1 aF, 
we obtain a switching delay of 3 ps. Therefore, the dynamic 
power dissipated is about 300 nW per island. However, one 
should remember that this is an upper limit. Heat-sinking 
of 1000 W/cm2 from a silicon chip was demonstrated more 
than 15 years ago [26]. 

m.  NANOSCALE FABRICATION 

There are several key components required to fabricate 
computational cells of the proposed architecture, including 
definition and interconnection of the cell core, i.e., the 
area covered by a uniform array of metallic nodes, the 
rectifying interconnects which connect adjacent cell cores 
and the bias/clocking circuitry. This section provides abrief 
overview of synthesis techniques that could be employed 
to realize the required components and interconnections. 
The basic cell configuration will be briefly reviewed and 
the requirements for fabricating a logic element using this , 
topology will be discussed. 

It should be noted that one of the attractive features of the 
proposed architecture is its compatibility with fabrication 
techniques of the type described in this section. In this case, 
local interconnects between the nanometer scale elements 
can be uniform resistive links, i.e., it is not necessary to 
provide arbitrary interconnection paths at the level of the 
smallest circuit nodes. This feature can be realized with 
self-organized or self-assembled networks, which can be 
formed with a relatively high throughput and relatively 
low cost. The internal connections to each nanometer scale 
element in the computational cores consist of a bias current 
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line and a load with a nonmonotone, nonlinear current- 
voltage relationship. These elements provide a voltage 
Instability for each element, as well as the power required 
to switch. The specific functionality of the circuit comes 
from the intercell interconnections. Since these intercon- 
nections can be at larger scales than the nanometer scale 
nodes, it should be feasible to use lithographic techniques 
for their delineation and this can provide more arbitrary 
interconnections. 

Since the architecture is intended to be scalable to 
nanometer dimensions,  the  underlying  assumption  of 
this discussion is that the individual metallic nodes will 
have dimensions in the range of 5-20 nm.and that the 
computational cells will have dimensions (lengths and 
widths) in the range of 20-200 nm. The minimum feature 

• sizes are well below those employed in conventional silicon 
circuits. While the small areas of computational cells 
would result in very large circuit densities (potentially 
approaching 1 T gates/cm2), realization of circuits at this 
scale will require a significant shift in fabrication techniques 
from  those  used  in  conventional  silicon  processing. 
Conventional lithographic techniques, including capabilities 
such as electron beam lithography, might be capable 
of patterning at the scale of the (larger) cell regions 
but would not be practical for defining the individual 
metallic nodes which are much smaller.  In contrast, 
chemical self-assembly or self-organizing techniques, i.e., 
techniques which exploit chemical affinities rather than 
lithographic techniques to arrange clusters or molecules, 
have been developed which can provide highly organized 
structures  with  minimum  sizes  and  spacings  on  the 
order of 2-10 nm. While these techniques can provide 
uniform arrays of molecules or metallic islands, they 
do not appear to be capable of spontaneously forming 
specific  nonuniform  patterns  or  arbitrary  interconnect 
configurations.  The  fabrication  techniques  best  suited 
for realizing the structures required for the proposed 
computational  cells  will  likely be  a combination of 
chemical self-assembly techniques, to realize the networks 
of nanoscale metallic nodes within a computational cell, and 
lithographic techniques to define the cells and interconnect 
structures. 

An equivalent circuit representing a 1-D slice through 
two computational cells is shown in Fig. 8. Each com- 
putational cell contains a number of nanoscale metallic 
nodes, as illustrated in the figure. Adjacent nodes within 
the cell are coupled resistively via intracell resistances 
(Ri), as well as capacitively via Cx. Each nanoscale 
node is connected to an active element, labeled "RTD" 
in the figure, which provide the required nonmonotone 
nonlinearity. The intercell diode connections are configured 
to realize specific logic functions. Each cell core is biased 
through a clock electrode; two or more clock phases are 
required to provide unidirectional propagation of logic 
signals. When enabled, the clock lines provide the bias 
voltage to the nanoscale nodes within a given cell. The 
bias resistance, ÄHas can be realized through a thin-film 
resistive layer. 

Clocks 
1 

Clockß 

tRBiasL Y   |       |Rßiasi 

H \ MC1H \ 
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Fig. 8. Circuit schematic corresponding to a 1-D slice through 
adjacent computational cells. Indicated elements include nodes 
representing nanoscale metallic islands, bias resistors, bias/clock 
electrodes, elements with nonlinear nonmonotone current-voltage 
(provided by semiconductor mesas and labeled as RTD), and 
intercell rectifying links. 
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Fig. 9. Cross-sectional view of major steps in fabrication se- 
quence for computational cells, (a) Lithographic patterning of 
regions in which computational cell cores will be deposited, (b) 
Self-organized deposition of arrays of nanometer scale metal- 
lic islands in patterned core regions. Internode resistive linking 
and patterning of semiconductor mesas, realized by chemical 
self-assembly and etching using metallic islands as "natural" 
masks, respectively, are also shown, (c) Deposition of thin film 
resistor layer for bias resistance and bias/clock electrodes for each 
cell, in regions defined by lithographic patterning. 

A general synthesis approach can be formulated, based 
on self-organization and lithography techniques described 
later. The major steps in the synthesis procedure are il- 
lustrated in Fig. 9. The active substrate for this structure 
is a semiconductor heterostructure which contains layers 
designed to provide the required nonmonotone nonlinear- 
ity. For example, a double barrier RTD structure grown 
using molecular beam epitaxy (MBE) or metal-organic 
chemical vapor deposition (MOCVD) could provide an 
appropriate current-voltage relationship. The synthesis pro- 
cedure begins with the lithographic definition (at a scale 
of approximately ten times the nanoscale node dimen- 
sion) of regions which will contain the computational 
cell core regions, i.e., the regions in which arrays of 
nanometer diameter metallic islands are deposited. The 
arrays of metallic islands, along with the internode linking 
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Fig. 10. Two typical patterns produced by electropolishing a thin film of aluminum. The first can 
be used to produce narrow metallic wire arrays and the last can be used to produce a hexagonal 
close-packed array of metallic islands. These figures are raw atomic force microsraphs Depth 
profile along arbitrarily selected directions on the surface are shown with well resolved peaks in the 
corresponding Founer spectra indicative of the high degree of periodicity and ordering 

resistors, are deposited in these patterned regions using, 
for example, self-organizing techniques. The active sub- 
strate must be patterned to provide individual mesas for 
each of the metallic islands. In order to provide self- 
alignment of the semiconductor mesas with the nanoscale 
metallic islands, it is desirable to use the metallic island 
arrays as "natural" masks for etching of the mesas [27], 
[28]. Next, it is necessary to define the intercell cou- 
pling elements, namely the diodes. Finally, a thin film 
resistive layer, to provide effective bias resistors for each 
nanoscale metallic island, and bias/clock electrodes must 
be deposited over each computational cell. The deposition 
of electrodes- for the polyphase clock requires another 
lithographic step, with registration to the cell definition 
lithography. Details of these procedures are described be- 
low. 

A. Nanoscale Elements in Cell Core 

The primary features of the computational cell core are 
1) a uniform array of nanometer scale metallic islands 
with controlled resistive coupling between islands, 2) low- 
resistance coupling of the metallic islands to semiconductor 
mesas with appropriate nonmonotone nonlinearity, and 3) 
a thin film resistive layer to provide bias connections to 
the metallic islands. Fabrication of the metallic nodes and 

active substrate connections within a cell have been de- 
scribed previously [14]. There are several techniques based 
on chemical self-assembly which can provide uniform 2-D 
arrays of metal islands suitable for cell core applications. 
Highly ordered, self-organized arrays of quantum dots and 
wires have been demonstrated using electropolishing of an 
aluminum film in an acidic solution of perchloric acid, 
butyl cellusolve, and ethanol [10], [27], [29], [30]. Fig. 10 
shows examples of arrays of wires or dots formed by 
the electropolishing technique. The feature sizes of these 
patterns can be controlled over the range of approximately 
20-100 nm by varying the temperature and composition of 
the electrolyte and possibly the voltage of electropolishing; 
The required nanoscale islands can be realized either by di- 
rectly employing the patterned aluminum film or by pattern 
transfer to another material [14]. Resistive links between 
the islands can be provided by depositing a material such 
as low-temperature MBE grown GaAs on the surface to 
contact the islands. 

Another independent approach that has been demon- 
strated involves fabricating large area, 2-D close packed 
arrays of 4 nm diameter gold clusters with controlled 
intercluster resistances [20]. In this technique, the arrays 
are formed from colloidal suspensions of neutral, encap- 
sulated gold clusters. The intercluster resistance can be 
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controlled by exposing the array to conjugated organic 
molecules with end groups which bind to gold [31], [32J. 
An example of such a molecule is biphenyl-dithiol. The 
conjugated molecules bridge the gaps between clusters 
and result in a strong mechanical link between clusters 
and a controlled intercluster resistance [20], [21]. The 
measured in-plane conductance of linked cluster arrays 
formed using this procedure exhibit significant single elec- 
tron charging effects at room temperature, consistent with 
the predicted capacitances for 4 nm diameter clusters and 
the predicted resistances for the conjugated organic link- 
ing molecules [20], [33]. The resistances of the organic 
molecules deposited between gold surfaces inferred from 
the array experiments and from scanning tunneling mi- 
croscope experiments on individual clusters are in the 

•range of 10-40 Mfi per molecule [20], [34]. Theoretical 
predications indicate that the resistance per molecule can 
be varied significantly by employing different conjugated 
organic molecules [33]; experimental evidence supports 
this prediction. While experiments to date have employed 
gold clusters, nanometer scale clusters of other metals 
have been synthesized using similar techniques and it 
is expected that 2-D arrays could be formed with other 
materials. In addition, alternate synthesis techniques yield 
clusters of semiconductor materials such as CdS and CdSe 
[35]. 

In order to provide effective coupling to the active 
substrate mesas, low resistance ohmic contact is required 
between the nanoscale metallic islands and the semicon- 
ductor mesas. The interface between the metallic nodes 
and the semiconductor surface layer must provide a stable, 
low-resistance contact without the need for alloying or 
other high temperature processing, since the self-assembly 
techniques used to form the metallic island arrays tend to 
be room temperature processes and nonreactive with the 
surface. In addition, post-deposition annealing of nanometer 
diameter islands could result in unacceptable size vari- 
ation and shape distortion. A nonalloyed ohmic contact 
structure utilizing low-temperature grown GaAs has been 
demonstrated which should provide a suitable coupling 
layer for the node to active substrate interface [36]. This 
structure provides low-resistance ohmic contacts without 
annealing and also provides a surface which can remain 
free of significant oxidation even after hours of air ex- 
posure [36], [37]. In addition, this structure results in a 
controlled effective surface potential, without a significant 
surface depletion layer, as evidenced by the observation 
of a midgap band of states in a scanning tunneling spec- 
troscopy experiment performed following air exposure [38]. 
Layers as thin as 2 nm are effective in providing this 
surface passivation effect and also allow thin n-type layers 
with very high activated donor densities to be realized 
immediately below this surface layer [36]. A relatively 
shallow etch can be used to selectively remove this iow- 
temperature grown GaAs passivation layer, resulting in the 
depletion of the exposed surface and therefore providing 
effective patterning. The resulting surface is nearly planar, 
in contrast to high aspect ratio pillars often reported for 

small area device mesas. This near planarity is essential 
for subsequent fabrication steps, which may include self- 
assembly deposition of conjugated organic molecules for 
inter-island linking and the deposition of the thin-film 
resistive bias layers. 

In the proposed cell cores, each nanometer scale metallic 
island needs to be connected to an individual semicon- 
ductor mesa. The requirements for registration between 
the islands and the mesas dictate a self-aligned technique. 
One possibility would be to use the self-organized metallic 
islands themselves as the masking elements, in a "natural" 
patterning technique comparable to that recently reported 
for 20-50 nm islands of gold evaporated onto a semicon- 
ductor substrate [28]. Other possibilities include using a 
masking layer, formed using a lithographic technique or 
a self-organized array, to define the semiconductor mesas 
and then to nucleate a metallic island on each mesa. Mesa 
isolation is achieved either by reactive ion etching, or by 
using the metal islands as a mask and photo-oxidizing the 
exposed areas in ultraviolet (UV) light. 

B. Cell and Interconnect Patterning 

While self-assembly techniques can realize highly uni- 
form arrays of metallic islands over relatively large area, 
the delineation of cell cores, intercell connections and 
bias/clock lines will require patterning techniques with 
minimum feature sizes approximately equal to the cell core 
dimension. For a computational cell in which the nanoscale 
metallic islands are 10 nm in diameter, the required min- 
imum feature size would be 20-100 nm. High resolution 
lithography techniques such as electron beam or X-ray 
lithography can realize features in this range, but these 
techniques can induce surface damage and generally require 
photoresist materials that may be incompatible with the self- 
organizing techniques which may be used for definition 
of the nanoscale elements. There are, however, several 
demonstrations of patterning techniques which can provide 
the required feature sizes and which are compatible with the 
definition of self-assembled nanoscale arrays in patterned 
regions. Self-assembled monolayers (SAM's) of organic 
molecules, the most famous example of which is alkanethiol 
on gold [39], [40] could potentially be used to define 
areas for deposition or etching. SAM's on various surfaces, 
including semiconductors such as Si and GaAs, have been 
used to passivate the surface or to provide controlled 
surface characteristics such as hydrophobic/hydrophilic re- 
gions [41]. SAM's have also been employed as electron 
beam or scanning tunneling microscope resists [42]. In 
addition, deposition of SAM's using elastomer stamp pads 
or patterning of photoresist materials using nanoimprint 
lithography techniques can potentially provide low cost, 
high throughput patterning, provided that issues such as 
registration are addressed [41], [43]. The characteristics 
achievable with various SAM's, including small thickness 
(typically 1-2 nm), uniformity and chemical affinities, 
makes them well suited for applications involving nanoscale 
islands. Deposition of gold nanoclusters on organic layers 
patterned by electron beam lithography has been reported, 
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indicating that deposition within patterned regions is fea- 
sible [44]. In contrast, conventional photoresist materials 
may prove unsuitable as patterning templates for nanoscale 
arrays due to the residual surface contamination left after 
development and the relatively large thickness of the resists, 
in comparison with the dimensions of the nanoscale metallic 
islands. 

While the fabrication of the proposed computational cells 
will require several significant development efforts, proof of 
concept experiments exist for most of the major steps out- 
lined above. One area of difficulty is the need for intercell 
rectifying elements with relatively low tum-on voltages. 
There has been a great deal of interest in molecular rec- 
tifiers since the paradigm of a donor-7r system, a bonded 
tunneling bridge and an acceptor-^ system was proposed 
[45]. Theoretically speaking, rectification should occur in 
nearly any molecule with sufficient asymmetry in the one- 
electron energy levels [46]. Molecular rectification has 
been demonstrated unambiguously in Langmuir-Blodgett 
films [47] although, to our knowledge, there has been no 
report of rectification by a single molecule as opposed 
to Langmuir-Blodgett films. Reports of rectifying charac- 
teristics for molecules using a TTF/TCNQ donor/acceptor 
configuration deposited between metal plates [48] indicate 
that rectification is possible in elements which are com- 
patible with the dimensions and chemical characteristics of 
the proposed synthesis techniques. However, the reported 
current densities (/iA/cm2) have been well below the levels 
required for operation in this application [48]. Assuming 
that a suitable molecular rectifier is available, it will be 
a different molecule than the one needed to provide the 
resistive links between the metallic islands within a cell 
core. Two levels of molecular self-assembly in patterned 
regions will therefore be required for the two interconnect 
functions, namely intracell resistive connections and in- 
tercell rectifying connections Other alternatives, including 
rectifiers incorporated in the semiconductor active layers, 
can also be explored. 

C. Alternate Molecular Diodes 

The molecular diodes described in the previous section 
are incapable of handling sufficiently large current densities. 
To overcome this drawback, we can explore two alternate 
routes for synthesizing diodes to link selected quantum 
dots. These techniques result in vertical diodes between a 
molecule and an underlying semiconductor substrate. Con- 
sequently, they are not immediately suitable for synthesiz- 
ing lateral rectifying connections between metallic islands. 
However, these diodes can carry significantly higher current 
densities, well in excess of 106 A/cm2 [49] and are therefore 
attractive. Needless to say, significant further research needs 
to be done in this area before these vertical diodes can be 
modified to provide lateral connections. We describe these 
diodes below. 

1) Scanning Tunneling Tip Induced Molecular Decompo- 
sition: The combination of a CVD source molecule and 
a scanning tunneling microscope (STM) provides a way 
to "direct write" nanometer-sized diodes on a suitable 

substrate. In this process, the energy-tunable electron flux 
from the highly positionable STM-tip is used to decom- 
pose the appropriate regions of a deposited layer of CVD 
source molecules on the substrate. In these regions, a 
heterojunction diode is formed between the decomposition 
product and the underlying substrate. This is followed 
by annealing to remove any unwanted species or un- 
decomposed molecules through thermal desorption [50]. 
The final product is a designed array of local regions 
with altered composition forming heterojunction diodes. 
Organometallics and main group carboranes are potential 
candidates for CVD source compounds to be used in this 
approach [51]—[55]. For this process to be truly a selective 
area process, the source compound must adsorb molecularly 
rather than dissociatively [50]. Carpinelli et dl. [50] have 
shown that such a molecular precursor state exists over 
a limited coverage range at room temperature for the 
icosahedral cage molecule closo-l, 2-dicarbadodecaborane 
(C2B10H12) on Si. They studied the surface reaction of 
Si(lll)-(7 x 7) reconstruction with the above molecular 
species using an STM. The current-voltage characteristic 
of the B5C/Si(l 11) interface (measured with STM) showed 
anisotropic rectifying behavior indicating that this is truly a 
process for "direct-writing" nanometer-sized heterojunction 
diodes. 

The above technique is a "direct-write" process and hence 
serial in nature. Each wafer has to be patterned one' at a 
time resulting in slow throughput. A faster technique is to 
make the process compatible with masking and exposure. 
This is realized as follows. Decomposition of closo-l, 2- 
dicarbadodecaborane can be achieved by exposing the mol- 
ecule to either UV or X-ray radiation. UV decomposition 
of organometallics or cluster source molecules offers better 
selective chemistry than X-ray, partly because decompo- 
sition by X-ray is due to secondary electrons [56], [57]. 
However, X-ray is superior in that smaller feature sizes can 
be delineated since the wavelength is shorter. There have 
been definite indications that a B5C/Si(lll) heterojunction 
diode can be fabricated by synchrotron (X-ray) induced 
decomposition of closo-l, 2-dicarbadodecaborane on Si 
[58]. This can lend to a projection lithography technique 
for synthesising B5C/Si(lll) heterojunction diodes. Since 
this process involves exposure of the chemisorbed species 
to the X-ray source through a mask, it will result in a high 
throughput. 

IV.  CONCLUSION 

We have described a novel architecture for realizing 
nanoelectronic logic gates and circuits based on arrays of 
metallic dots assembled on a double-barrier RTD substrate. 
Resistive connections link nearest neighbor dots within a 
logic cell and .rectifying connections link the cells. The 
use of minimal complexity in the nanoscale interconnection 
elements should reduce the processing demands for this 
architecture. We have presented a theoretical analysis of 
this architecture, and provided results of simulations to 
exemplify logic operations. We have shown that the cells 
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can exhibit bistable voltage states in both the continu- 
ous charge and discrete charge (single electron) regimes. 
Topologies for realizing OR and AND gates as well as 
somewhat more complex Boolean circuits have been de- 
scribed. With appropriate cell configurations and clocking 
sequences, unidirectional propagation, fault tolerance, and 
manageable power dissipation levels can be achieved in 
the logic circuits. These systems, if realized, could result 
in extremely dense circuits with high operating speeds 
and sufficiently low power dissipation for ultra large scale 
integration. 

A fabrication procedure for cells and interconnections 
of the architecture has been described. The fabrication 
incorporates self-organization and "natural" patterning tech- 
niques to realize the nanometer scale elements, internode 
resistance, and self-aligned semiconductor mesas required 
in the cell cores. Cell areas, bias/clock electrodes and 
interconnect areas are defined using conventional nanolitho- 
graphic techniques which are compatible with the chemical 
self-assembly based techniques used for the nanometer 
scale elements. Although proof of concept experiments 
exist for the major technologies involved in the fabrication 
procedure, integration of the overall fabrication sequence, 
and control of various element values undoubtedly present 
significant challenges. Nonetheless, these challenges may 
be overcome with time. Moreover, it is anticipated that 
this technology could be readily adapted to fabrication of 
other computational circuits with nanometer scale elements. 
Thus, we conclude that these architectures and alternate 
fabrication methodologies for synthesizing them deserve 
serious attention. 
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Abstract.   We describe two electrochemical self-assembly processes for producing 
highly ordered quasi-periodic arrays of quantum dots on a surface. The advantages 
of these techniques are: (i) they are 'gentle' and do not cause radiation damage to 
nanostructures unlike beam lithography, (ii) they have high throughput and are 
amenable to mass production unlike direct-write lithography, (iii) structures can be 
delineated on non-planar substrates, and (iv) the techniques are potentially orders 
of magnitude cheaper to implement than conventional nanosynthesis. Samples 
produced by these techniques have been characterized by microscopy, optical and 
transport measurements, Auger and x-ray. These measurements reveal intriguing 
properties of the nanostructures. In this paper, we describe our initial results and 
show the promise of such techniques for low-cost and high-yield nanosynthesis. 

1. Introduction 

It is well known that conventional fine line lithography 
(electron beam, focused ion beam, x-ray, STM/AFM etc.) 
has at least one of two major shortcomings: (i) process 
related damages incurred through exposure to high-energy 
beams during pattern delineation (writing) [1-4] or through 
reactive ion etching (pattern transfer) [5], and (ii) slow 
throughput associated with direct-write lithography where 
each wafer is patterned serially one at a time. Recently, 
parallel electron-beam columns and arrayed nanoprobes 
have been implemented to increase the throughput and 
introduce some parallelism into the process, but-the cost 
of such systems is usually prohibitive [6]. 

In an effort to mitigate these problems, -we are 
developing two electrochemical self-assembly techniques 
for nanosynthesis that fine-tune a current 'low technology' 
process routinely available in the anodizing industry into 
a 'high technology' process for mass-fabricating dense 
(>1012 cm-2) two-dimensional quasi-periodic arrays of 
metallic, semiconducting or superconducting quantum dots. 
Samples produced by these techniques have been directly 
imaged with transmission electron microscopy (TEM), 
field emission scanning electron microscopy (FESEM) 
and atomic force microscopy (AFM). Quantitative image 
analysis carried out by an image capture and digitization 

system indicates that the average diameter of dots produced 
by one of these techniques can be as small as 10 
nm with a 1 nm variation across a wafer, while the 
average interdot separation can be as small as 40 nm 
with a 2 nm variation. This tight size control is 
comparable with that obtained with advanced lithographic 
techniques [7], or molecular-beam epitaxy (MBE) growth 
of randomly distributed self-assembled quantum dots 
realized through coherent islanding in Stranski-Krastanow 
mode [8]. The quantum dots produced by the 
electrochemical technique have also been characterized by 
energy-dispersive analysis of x-ray, AC susceptometry, 
photoluminescence, Raman spectroscopy, absorption and 
reflectance studies, ellipsometry, and transport studies 
to investigate their magnetic, optical, electronic and 
superconducting properties. In section 4, we describe 
some of these results; but first we describe the fabrication 
processes. 

2. Self-assembly of a mask for a periodic array of 
quantum dots: electropolishing of aluminum 

In this section, we describe the first of the two 
electrochemical processes that creates a self-assembled 
mask for a highly periodic array of quantum dots. The array 
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Figure 1. Atomic force micrographs of various patterns that are formed on the surface of electropolished aluminum films after 
electropolishing in perchloric acid, butyl cellusolve, ethanol and water for various durations of time and at various voltages. 

has a hexagonal order (a two-dimensional Fourier transform 
of an atomic force micrograph of the pattern shows six 
disinct peaks attesting to the high degree of regimentation 
and the hexagonal order). 

To create this structure, we start with a 99.99% 
pure Al film which could be evaporated on any chosen 
conducting substrate such as doped silicon. This film 
is then electropolished in a solution of 62 cc perchloric 
acid, 700 cc ethanol, 100 cc butyl cellusolve and 137 cc 
distilled water for various time durations and at various 

voltages. The electropolishing process patterns the surface 
of the aluminum film into a dimpled and undulating 
landscape which may or may not have spatial ordering 
depending on the duration and voltage of electropolishing. 
Atomic force micrographs (raw data) are shown in figure 1 
indicating the patterns that form at various voltages and 
for various durations of electropolishing. The patterns 
evolve from a random geography through highly ordered 
stripes (50 V, 10 s) and an 'egg-carton' pattern (60 V, 
30 s).    Obviously,  the stripes and the egg-carton are 
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Figure 2. Magnified atomic force micrographs (raw data) of stripes and 'egg-carton' patterns that form on the surface of 
electropolished aluminum. Stripes form after electropolishing at 50 V for 10 s and egg-cartons form after electropolishing at 
60 V for 30 s. These patterns can be used as self-assembled masks for quantum wires and dots. The figure also shows 
depth profiles along the lines indicated. Well resolved peaks in the Fourier transform of these profiles attest to the high 
degree of periodicity and order within the scanned area. 

useful for making quantum wires and dots respectively. 
Figure 2 shows a magnified micrograph of the stripe and 
dot patterns with depth profiles along arbitrary lines drawn 
on the surface. Fourier transforms of the depth profiles 
show very narrow and well resolved peaks attesting to 
the high degree of periodicity of the structures. These 
structures are incomparably more periodic and ordered 
than those produced by coherent islanding in Stranski- 
Krastanow growth [8]. The 'pitch' or 'period' of the pattern 
is about 100 nm (peak to peak separation) and the height 
of a crest above a trough is about 3 nm. The hills appear 
to be conical in shape with a full width at half maximum 
of about 30 nm. 

These structures can be used as self-assembled masks 
for producing highly periodic arrays of quantum wires and 
dots. This is achieved as follows (see figure 3). A thin 
film of aluminum (about 10 nm thick) is evaporated on 
a chosen substrate. After electropolishing to produce the 
desired landscape (stripes or egg-carton), the troughs are 
selectively etched away in a suitable etchant (note that the 
peak to valley ratio, or the ratio of the Al film thicknesses 
at the crests and troughs is about 3:2). The etching leaves 
behind the crests which form isolated islands of metal dots 
in a periodic pattern on the surface of the semiconductor. 
These Al islands can be used as a mask for mesa-etching 

of quantum dots using reactive ion etching. Finally, a 
layer of a material can be deposited on the surface to 
electrically connect the quantum dots, if desired. The four 
steps in the process are depicted in figure 3. Note that 
electrical connection between the quantum dots can also 
be established via molecular-wire linked clusters [9-11] 
deposited between the dots. The latter is an established 
technology at this time. 

2.1. Theory of pattern formation during 
electropolishing 

The formation of the various patterns during electropolish- 
ing can be explained by field-assisted dissolution of metals. 
We are able to model and mathematically capture the proper 
conditions for the formation of the patterns on the Al sur- 
face and the spatio temporal scalings. During electropol- 
ishing, a double layer is formed on the liquid electrolyte 
side near the constant-potential metal surface as ions are 
attracted to it under the action of the electropolishing volt- 
age. This sets up a potential gradient normal to the metal- 
electrolyte interface. The electrolyte contains organic 
molecules like ethanol and butyl cellusolve. The potential 
gradient reduces the threshold for the desorption of the or- 
ganic molecule and consequently, crests, with higher poten- 
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Figure 3. Figure indicating the four steps in using the 
electropolished aluminum as a self-assembled mask to 
create a periodic array of electrically linked quantum dots 
on a surface. Such structures have applications in 
nanoelectronic computing architectures utilizing single 
electron effects in quantum dots (see [20]). (a). Structure 
after electropolishing a 100 nm Al film deposited on a 
semiconductor layer, (to) after etching the troughs 
selectively to leave behind the crests that form isolated 
islands on the surface, (c) shallow mesa etching with 
reactive ions using the aluminum dots as a mask, (d) 
electrically connecting the dots by depositing a layer 
between the mesas. 
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Figure 4. Figure to explain the chemistry of the formation 
of various surface morphologies on electropolished 
aluminum. Regions covered by ethanol molecules are 
protected from dissolution and this results in the formation 
of various undulating patterns. Ethanol molecules are 
selectively adsorbed on the crests because the higher 
potential gradient there reduces the threshold for 
desorption of ethanol molecules. The constant potential (^) 
surfaces are schematically depicted. 

ure 1. Details of these results will be published elsewhere. 
We are able to estimate the curvature-dependent 

threshold for desorption of organic molecules and 
dissolution of the Al ion by studying the free energy of 
the pertinent chemical complexes in the presence of a field. 
This information allows us to predict the critical voltages 
beyond which patterns appear, the time scales for transition 
from stripes to dots, and the characteristic length scales of 
both patterns. Because of the activated desorption process, 
the wavelength or 'pitch' of the patterns scales as the 
exponential of the square of the electropolishing voltage 
as shown in figure 5. We also believe that by reducing the 
temperature of the electrolyte during electropolishing, we 
can reduce the pitch of the pattern and also the full-width- 
half-maximum of the crests which will result in smaller 
quantum dots and a denser array. This, however, remains 
to be tested at this time. 

tial gradients, are preferentially covered by these molecules. 
The dissolution of Al3+ is then hindered at the crests and 
troughs dissolve faster (figure 4). This destabilizing mech- 
anism is countered by a curvature stabilizing mechanism 
which favours surface Al atoms on a concave surface over 
dissolved Al3+ ions. As a result, short wavelength dis- 
turbances are damped. More importantly, as troughs dis- 
solve deeper, the stabilizing effect at the valley increases 
while the destabilizing potential gradient in the double layer 
decreases. Consequently, a finite equilibrium amplitude 
h(x, y) of the patterns is reached where the two curvature- 
dependent mechanisms balance to yield regular patterns. 
The two-dimensional distribution of the amplitude h(x, y) 
obeys the generalized nonlinear Kuramoto-Sivashinsky 
equation. Numerical simulation to extract the two- 
dimensional profile of h(x, y) shows patterns that are strik- 
ingly similar to the experimentally observed patterns. The 
simulations show clearly that depending on the voltage and 
duration of electropolishing, one does indeed get stripes or 
'egg-carton' pattern or the random patterns as shown in fig- 

3. Nanoporous films formed by anodization of 
aluminum 

We now describe the second process for the creation of 
quasi-periodic arrays of quantum dots. This technique 
produces quantum dot arrays with somewhat reduced 
periodicity, but the individual dot diameter is about 
five times smaller (~ 10 nm). We DC-anodize the 
electropolished aluminum film produced in the previous 
step under a constant current density of 40 mA cm-2 at 
room temperature in 15% H2S04 (pH = 0.6). The Al film 
is used as the anode and a platinum mesh as the cathode. 
Anodization creates a porous alumina film on the surface of 
Al with a regimented, hexagonal close-packed arrangement 
of nanopores as shown in the idealized diagram in figure 6. 
Formation of this film has been known in the anodizing 
industry for the last 50 years and has been recently revisited 
and studied by a number of researchers [12-15]. A bright 
field transmission electron micrograph of an actual porous 
alumina film is shown in figure 7. Image analysis of such 
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Figure 5. Dependence of the wavelength (or pitch) of the periodic patterns on electropolishing voltages. The solid curve is 
the computed theoretical result and the experimental data are due to one of us (D-F Yue). 
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Figure 6. Schematic depiction of the nanoporous film that forms on the surface of aluminum upon anodization. The pores 
have a hexagonal order. Both the top view and the side view of a pore are shown. 

micrographs reveals that typically the average diameter 

of the pores is ~ 10 nm with a 7% standard deviation 
and the center-to-center separation is about 40 nm with a 

2% standard deviation. Histograms of the pore diameter 
distribution are approximately Gaussian. 

Based on extensive 1EM, field-emission SEM and 

AFM characterization of the nanoporous films formed under 
various conditions of anodization, we have arrived at the 
following conclusions. 

• Other factors being the same, the pore density decreases 
and the pore diameter increases slightly with increasing 
anodizing current density. 
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Figure 7. A bright field transmission electron micrograph of 
a nanoporous film formed by anodizing aluminum in 15% 
sulfuric acid at room temperature with a current density of 
40 mA cm-2. The average pore diameter is 15 nm. The 
ordering in some regions is clearly hexagonal. TEM 
samples are produced by dissolving the aluminum backing 
from the nanoporous film with bromine/methanol and 
capturing the released porous film in TEM grids. 

• The control over pore size, pore density, and 
most importantly, regimentation (or spatial ordering) 
improves with increasing current density. Our most 
regimented pore arrangements are those that are 
produced at the highest current densities. The highest 
current densities also result in the minimum standard 
deviation in the pore diameter, thereby affording the 
best feature size control. 

• Pores tend to nucleate in regions of increased surface 
elastic energy. Typically grain boundaries are preferred 
sites as shown in figure 8. 

• The pore depth depends strongly on the time of 
anodization. For the first few seconds of anodization 
(typically 6-7 s for a current density of 40 mA cm-2), 
a barrier layer of alumina forms on the surface and then 
the pores begin to nucleate. The pore depth continues 
to increase with increasing duration of anodization. 
To make pores that are about 10 nm deep, the time 
required is usually a few seconds. The pore depth 
also depends slightly on the underlying crystallographic 
orientation of the underlying aluminum grain. This is 
shown clearly in figure 9. 

The pore diameter, pore depth, pore density and 
regimentation can be controlled by fine tuning the 
temperature, the pH of the acid, the chemical composition 
of the acid used during anodization (generally H2SO4 
gives the smallest pore diameter while phosphoric and 

Figure 8. A bright field transmission electron micrograph of 
pores nucleating on a 300 nm thick layer of Al evaporated 
on a single crystal silicon substrate. The evaporated layer 
was composed of ultrafine grain aluminum with typical 
grain diameters of 1 urn. The anodization was carried out 
in 15% sulfuric acid with a current density of 30 mA cm-2. 
The magnification is 90 000x. Note that pores begin to 
nucleate at first along grain boundaries which are regions 
of increased surface elastic energy. 

oxalic acids produce much larger pore diameters), and 
the current density. Pore diameters as small as 5 nm 
have been reported in the literature [15]. In some 
situations, quite well regimented arrays of pores can 
be produced as shown by the transmission electron 
micrograph in figure 10. The pore densities in such 
structures can approach 1012 cm-2 which is excellent 
for applications in high density magnetic storage or high 
density semiconductor dot arrays for nonlinear optical 
"devices. If the periodicity can be improved slightly, 
these will also result in self-organized two-dimensional 
dielectric structures that exhibit a photonic bandgap for 
all electromagnetic wave propagation directions along the 
plane of the film [16]. The bandgaps will open up at 
wavelengths corresponding to deep ultraviolet or possibly 
x-ray. 

3.1. Theory of pore formation 

The mechanism of pore formation is not entirely 
different from that which undergirds the formation of the 
undulating patterns during electropolishing. In contrast to 
electropolishing, where the potential gradient occurs within 
the double layer on the metal surface, the potential gradient 
during anodization lies mainly in the oxide layer which is 
insulating. Dissolution occurs because the surface oxygen 
atoms prefer to be surrounded by water molecules in the 
bulk solution owing to the presence of the electric field. 
Pitting initiates at a thinner part of the oxide layer because 
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Figure 9. A bright field TEM image of pores formed on 
various grains in a large grained polycrystalline Al substrate 
anodized in sulfuric acid at room temperature for 6 s with a 
constant current density of 30 mA cm-2. The magnification 
is 12000x. Some (but not all) grain boundaries are 
decorated with extremely regimented arrays of pores 
indicating once again that regions of increased elastic 
energy produce better regimentation. Lighter shades 
indicate smaller film thickness (more transparent to 
transmission electron beam). Thus, the thickness of the 
anodized film depends somewhat on the crystallographic 
orientation of the underlying aluminum. 
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Figure 10. A bright field TEM image of pores taken at a 
low magnification of 30 000 x. The white bar is 300 nm. 
The anodizing current density was 40 mA cm-2 and the 
aluminum film was cold worked. The image shows fairly 
long range regimentation along strips oriented in the 
direction of the white bar. These strips are several microns 
long and few hundreds of nm wide. Adjacent strips are 
separated by regions of short range regimentation. The 
pore density is 4 x 1010 cm-2 which is excellent for high 
density magnetic storage or semiconductor quantum dot 
arrays for applications in nonlinear optics. 

of the enhanced electric field there. This accelerates the 
solvation rate of the surface oxygen atoms. Since the 
potential gradient increases as the oxide layer thins, the pits 
(or pores) grow self-catalytically because of the positive 
feedback mechanism. The curvature-reduced dissolution 
rate serves only to select the size of the pore. Owing to the 
fact that the potential gradient scales linearly with the oxide 
layer thickness, the pore separation and the pore diameter 
scale linearly with the anodizing voltage—a drastically 
different situation from the exponential scaling associated 
with electropolishing. Because the oxide layer dissolution 
is determined almost solely by its thickness, these pore 
size scalings are universal correlations independent of 
the electrolyte composition (see figure 11). The basic 
mechanism is, however, somewhat complicated by the field 
driven flux of oxygen ions through the oxide (alumina) film 
which thickens the layer. The mechanism of pore initiation 
is schematically depicted in figure 12(a). As shown from 
our numerical construction of the pit/pore in figure 12(b), 
the enhanced potential gradient at a pit also produces a thick 
oxide layer which obviously stabilizes further growth. This 
secondary mechanism finally arrests the accelerated pore 
growth and determines the final pore depth. Unlike the 
pore diameter and the interpore separation, the scaling of 
the pore depth with the applied voltage is a function of 
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Figure 11. Dependence of the pore diameter and interpore 
separation on the anodizing voltage. The solid lines are the 
computed theoretical results and the experimental data are 
those reported by various researchers. 

the electrolyte composition, especially the concentration of 
oxidizing ions. 

This model of pore formation should be compared 
and contrasted with the various models proposed for the 
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Figure 12. (a) Schematic representation of the initiation of 
pore nucleation. (b) Numerical construction of a pore 
showing its formation. 

formation of porous silicon [17]. 

3.2. Filling the pores by electrodeposition 

To finally create 'quantum dots', the nanopores formed 
by anodization are selectively filled with the material of 
interest by electrodeposition. When this is complete, one 
obtains a two-dimensional quasi-periodic arrangement of 
quantum dots (or short, vertical quantum wires if the pore 
depth significantly exceeds the pore diameter) surrounded 
by A1203 (a dielectric insulator). The AI2O3 insulator can 
be removed, if desired, by first depositing a suitable film 
on the filled pores (third step) and then dissolving away the 
insulator in an etching solution (final step). This produces a 
quasi-periodic quantum dot array with the film deposited in 
the third step acting as the substrate (see figure 13). The last 
two steps may be unnecessary in most electronic, magnetic 
and optical applications since the presence of an insulating 
dielectric surrounding the quantum dots does not interfere 
with these applications. We describe the basic pore-filling 
step below. 

The pores are filled with the material of interest by 
electrodeposition. For this, the porous film is first washed 
in distilled water and dried. The pores are enlarged and 
'rounded', if needed, by dissolving part of the surrounding 

(O (.d) 

Figure 13. Various steps in producing quantum dots by 
electrodepositing materials of interest within pores, (a) Side 
view of the nanoporous film, (b) after electrodepositing the 
material of interest within the pores, (c) depositing a film 
over the structure, (d) selectively etching away the alumina 
to create mesa quantum dots on the film deposited in the 
third step acting as the final substrate. 

alumina walls in an aqueous acid solution. After this, the 
film is washed to remove debris and dried. 

For electrodepositing most metals (e.g. Fe, Ni, Pb, etc.), 
the porous film is placed in an acidic, non-cyanide bath 
that does not attack alumina, and AC current is passed at a 
suitable rms voltage between 18 and 20 V using the bottom 
Al substrate and a graphite plate immersed in the bath (or 
a platinum mesh) as the electrodes. The bath contains a 
soluble salt of the metal which ionizes to produce the metal 
ion which is preferentially electrodeposited within the pores 
since the pores offer the least impedance paths between the 
two electrodes. The time of electrodeposition determines 
the depth of pore filling. To control the filling factor (how 
much of the pore is filled up), one can monitor the surface 
resistivity of the film or carry out real-time impedance 
spectroscopy. The surface resistivity correlates very well 
with the filling factor and can be used to calibrate this 
process. We show a cross-sectional transmission electron 
micrograph of nickel filled pores in figure 14. These TEM 
specimens were produced by ultramicrotomy. For a 5 s 
electrodeposition, only a small part of the pores is filled 
resulting in 10 nm sized quantum dots of nickel situated 
at the bottom of the pores (figure 14(a)). For a 20 s 
electrodeposition, the pores are filled up almost to the brim 
resulting in short and vertical quantum wires of nickel (200 
nm height) within the pores (figure 14(b)). 

For electrodepositing compound semiconductors like 
CdS or ZnS within the pores, the alumina film is first 
immersed in H2S04 and AC electrolysis is performed for 
10 s with a rms current density of 40 mA cm-2 which 
leaves behind the S2_ ion in the pores. This is followed by 
immersing the film in boiling deionized water containing a 
10% solution of CdS04 or ZnS04. This solution must be 
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Figure 14. A cross-section TEM image of nickel filled pores, (a) After electrodepositing nickel for 5 s, and (b) after 
electrodepositing nickel for 20 s. In the first case, we have obtained spherical nickel quantum dots of 10 nm diameter and in 
the second case, we have obtained cylindrical short quantum wires with 10 nm diameter and 200 nm height. 

chemically pure. Quite often, this is the major source of 
contamination. The cation Cd2+ or Zn2+ in the solution 
reacts with the S2~ in the pores to form CdS or ZnS 
inside the pores. The time of immersion determines 
the amount of compound produced by this reaction and 
therefore determines the depth of pore filling. Usually not 
all the S2_ reacts with the metal ion so that some excess S2_ 

is left behind in the pores. This does not cause a problem. 
Deposition of CdS or ZnS takes place within the pores at a 
slow rate thereby affording excellent control. The bath can 
be used for several successive operations if material purity 
is not a serious concern. The water for rinsing is treated 
by usual chemical treatment or ion exchange before being 
drained. 

The materials electrodeposited within the pores may 
not be crystalline. However, crystallinity may be restored, 
at least partially, by thermal annealing following the 
deposition. For CdS, we anneal at 150 °C for 6-24 h. 

The above process can be used to create quantum dots 
of ZnTe, CdTe, ZnSe, CdTe, GaAs, InAs, InP, GaP, etc. 
For tellurides, one uses telluric acid instead of sulfuric acid; 
for arsenides, one uses arsenic acid, for phosphides, one 
uses phosphoric acid and for selenides, one uses selenic 
acid. 

After the electrodeposition step, one is left with a 
quasi-periodic arrangement of quantum dots surrounded by 
AI2O3. The oxide can be removed, if desired, by following 
the last two steps illustrated in figure 13. Usually however, 
this is unnecessary. 

Before concluding this section, we would like to point 
out a few advantages of this technique for producing quasi- 
periodic quantum dot arrays: 

(1) It is a 'gentle' electrochemical technique and does 
not subject the nanostructures to high-energy beams 
such as x-ray, electron or ion beam. There is no 
etching step which would have caused material damage. 
Consequently, it may result in better material quality 
when perfected. 

(2) It is amenable to mass production. The number of 
wafers that can be handled simultaneously is limited 

by the size of the anodizing or electrodeposition bath. 
For a sufficiently large bath, this number can be several 
millions. 

(3) One can produce nanostructures on curved substrates 
(such as the surface of a cylinder or sphere) rather than 
plane substrates exclusively. Anodization of curved 
substrates and the subsequent ac electrodepostion is no 
different than for plane surfaces. 

(4) The technique is much cheaper than most other 
techniques for nanosynthesis. The capital investment 
cost is a few thousand dollars rather than a few million 
dollars. 

4. Characterization 

We now present some results that characterize the properties 
of the quantum dots. We chose six different methods for 

•studying the dots. 

(1) Analysis of energy dispersive x-ray; 
(2) optical characterization such as photoluminescence, 

absorption and reflectance, ellipsometry and Raman 
spectroscopy; 

(3) magnetic and transport studies; 
(4) cross-sectional TEM; 
(5) AC susceptometry; 
(6) Scanning Auger spectroscopy. 

We will discuss some of them here. 

4.1. Energy-dispersive analysis of x-ray scattering 

Energy-dispersive analysis confirms the presence of the 
material of interest within the pores. The data for Pb 
quantum dots produced by this technique are shown in 
figure 15. 
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Figure 16. Photoluminescence spectrum of CdS quantum dots prepared by electrodepositing CdS within the pores. The 
peak shows a blue shift of 200 meV from the bulk bandedge indicating quantum confinement. The calculated dot diameter is 
6 nm which is less than the TEM observed pore diameter of 13 nm. The difference of 7 nm can be explained by side 
depletion by interface states, or by the fact that the blue shift is not entirely due to quantum confinement, but partly due to 
strain. The large full-width-at-half-maximum could be due to lack of complete crystallinity, homogeneous and inhomogeneous 
broadening, strain, phonon-bottleneck effect, etc. 
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Figure 15. Energy dispersive x-ray data showing the 
presence of Pb in the pores. The samples were prepared 
by electrodepositing Pb into the pores from a solution of 
lead acetate. 

4.2. Optical characterization 

The photoluminescence data for CdS dots are shown in 
figure 16. Because of the relatively poor quantum efficiency 
and the dimness of photoluminescence, the spectrum is 
noisy. However, it shows definite indication of quantum 
confinement since the peak is blue shifted from the bulk 
CdS bandedge by 200 meV (bulk CdS bandgap at the 
measurement temperature of 14 K is ~ 2.41 eV) [18]. If 
we neglect any strain-induced shift or any Burstein-Moss 
shift, then this amount of blue shift indicates a quantum dot 
diameter of ~ 6 nm (in this calculation, we assumed that 
the electron and heavy-hole effective masses retain their 
bulk values; m* = 0.21 mo and m\h = 0.8mo). This 6 nm 
diameter is somewhat less than what quantitative image 
analysis indicates!. The latter indicates that the physical 
quantum dot diameter is ~13 ± 1 nm. However, if the 
side depletion of the dots (caused by Fermi level pinning) 

f If we account for any Burstein-Moss shift (which may not be negligible 
because the total number of states is small in a quantum dot and can be 
easily filled), then the quantum dot diameter will be larger than 6 nm. 

is a mere 3.5 nm, then the effective optical dot diameter 
measured by this technique will be indeed 6 nm. A mere 
3.5 nm side depletion is quite plausible for these systems. 

A disturbing feature in the photoluminescence spectrum 
is its very broad width (400 meV full width at half 
maximum). There are at least four possible sources for 
this broadening. 

• Homogeneous broadening caused by either impurities, 
surface states or by the fact that the CdS quantum 
dots are amorphous and not crystalline. The dots were 
annealed for six hours at 150 °C to recrystallize them. 
However, this may not have been sufficient. We are 
investigating this possibility using electron diffraction 
to ascertain the crystallinity (or lack thereof) of the CdS 
dots. However, the most likely culprit is strain. These 
dots are severely strained which may cause very large 
broadening. 

• Inhomogenous broadening in the system. We found 
that even a 2 nm variation in the effective dot diameter 
will result in an inhomogeneous broadening of ~150 
meV. This problem is pathological to extreme quantum 

, confined structures [8]. The laser spot size used in 
exciting the dots has a diameter of 100 ixm so that 
4xl06 dots are excited simultaneously. In future, we 
will etch mesas of area 10 /xmx 10 pm and excite them 
individually to reduce the inhomogenoeus broadening. 

• Because of selection rules imposed by restricted 
momentum conservation in quantum dots, scattering 
of photoexcited carriers from higher subbands to the 
lowest subband is inhibited. This so-called 'phonon 
bottleneck' effect [19] can cause broadening of the 
spectrum since it promotes transitions involving excited 
states. 

• Finally, it is possible that the broadening is caused by 
nonlinear optical effects. Since the amount of CdS is 
very small, it is necessary to use intense excitation so 
that the photoluminescence is detectable. If nonlinear 
effects are manifested at this excitation power (and they 
are expected to be), then harmonic generation may 
cause a wide spectrum. We are planning to study 
nonlinear  effects  by  direct  transmission/absorption 
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Figure 17. (a) Transmission and (b) reflectance spectrum showing a blue-shifted absorption edge at 3.0 eV which is 500 
meV above the bulk bandedge. The calculated diameter of the quantum dots (assuming that the blue shift is entirely due to 
quantum confinement) is 3.5 nm. 

measurements. These measurements will be carried 
out by stripping the Al substrate (after the CdS 
electrodeposition) using bromine/methanol solution and 
then capturing the stripped film on a transparent quartz 
slide. We expect to observe absorption saturation 
in these dots owing to either phase space filling, 
or bandgap renormalization, or inherent third order 
nonlinear susceptibility x(3) associated with formation 
of excitonic complexes (e.g. biexcitons). At the time 
of writing this manuscript, preliminary evidence of 
absorption saturation has been observed in pump-probe 
experiments by our collaborators. 

Still smaller structures (produced by shorter duration 
of electrodeposition) have been characterized by absorption 
and reflectance studies. The spectra are shown in figure 17. 
In this case the blue-shift of the absorption bandedge is 
about 500 meV indicating an effective optical diameter of 
the dots to be 3.5 nm. These are some of the smallest 
semiconductor dots produced in non-agglomerated quasi- 
regimented arrays that are optically active. 

In addition to photoluminescence, Raman spectroscopy 
of CdS quantum dots has also been performed. The data 
are shown in figure 18 where the longitudinal optical (LO) 
phonon peak for CdS and a peak at twice the LO frequency 
are consistently observed. The peaks were observed when 
the laser photon energy resonantly excited the Raman 
modes (2.71 eV or 2.54 eV) but were not observed when 
the photon energy was below the bandgap (2.41 eV). These 
data unambiguously indicate that the material formed within 
the pores is definitely CdS. Since the peaks were neither 
significantly wide nor asymmetric in their lineshape, we 
believe that the CdS material within the pores is mostly 
crystalline. 
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Figure 18. Raman spectra of CdS quantum dots showing 
the LO and 2LO phonon peaks. Other phonon peaks were 
not observed possibly because of inadequate quantum 
efficiency. Observation of these peaks characteristic of 
CdS indicates the presence of CdS within the pores. 

4.3. Magnetic properties 

To study magnetic properties, we fabricated an array 
of magnetic quantum dots using the structure shown in 
figure 14(a). This structure was then electroplated with 
copper and four leads were attached to the top copper 
layer. The four terminal resistance of this structure was 
measured in a magnetic field. Electrons flow in the copper 
layer but suffer spin-dependent scattering from the magnetic 
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moments of the underlying nickel quantum dots. Using a 
simple model, we predicted that this structure will exhibit 
giant magnetoresistance. Room temperature measurements 
indeed showed a 3% magnetoresistance up to a magnetic 
field of 2 T [14]. 

4.4. Superconducting properties 

We have deposited the high-temperature superconductor 
YBCO within the pores from an organic electrolyte. 
Stoichiometry has been verified. by Auger. Microwave 
surface resistance measurements have shown that these 
quantum dot superconductors retain the superconductivity 
and reach zero resistance at a slightly depressed Tc of 88 K. 

5. Conclusion 

In conclusion, we have described two electrochemical self- 
assembly processes that we believe may lead to cheap 
and versatile techniques for producing regimented quantum 
dot arrays. Further characterization of the structures and 
theoretical simulations geared towards understanding the 
self-assembly mechanism are currently underway. 
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Switching in a reversible spin logic gate 
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Theoretical results for the adiabatic switching of a reversible quantum inverter-realized 
with two antiferromagnetically coupled single electrons in adjacent quantum dots—are 
presented. It is found that a large exchange interaction between the electrons favors faster 
switching but also makes the timing of the read cycle more critical. Additionally, there exists 
an optimal input signal energy to achieve complete switching. Only for this optimal signal 
energy does the inverter yield an unambiguous, logically definite state. An experimental 
strategy for realizing circuits based on such gates in self-assembled arrays of quantum dots 
is briefly discussed. 

© 1997 Academic Press Limited 
Key words: quantum dots, single electronics, quantum computing. 

1. Introduction 
Research in nanoelectronic classical Boolean logic circuits derived from single electron interactions in 

quantum dots has been a busy field for the last few years [1-9]. A number of ideas have appeared in the 
literature [1-9] that visualize building dissipative (non-reversible) logic circuits based on Coulomb or exchange 
interaction between single electrons in arrays of quantum dots. Some of these schemes (e.g. [2]), however, 
are not only flawed, but they also violate the basic tenets of circuit theory. The individual logic devices have 
no isolation between input and output so that the input bit cannot even uniquely determine the output bit! (for 
a discussion of this issue see [3-6,10]). 

In this paper, we explore a different type of gate. It is a quantum mechanical gate that is reversible and 
non-dissipative. It should be contrasted with 'parametron-type' constructs that dissipate less than fcTln2 
energy per bit operation [ 11], but are otherwise not entirely non-dissipative. While the bits in a parametron are 
c-numbers, the bits in the quantum gate to be described are true qubits and the time evolution of the system 
is unitary. For the sake of simplicity, we consider the smallest quantum gate possible, namely an inverter. 
It is fashioned from two antiferromagnetically coupled single electrons in two closely spaced quantum dots 
as envisioned in [3-5]. The equilibrium steady-state behavior of such a system has been investigated by 
Molotkov and Nazin [7,8]. Here, we will explore the dynamic behavior and the unitary time evolution of this 
system in a non-dissipative and globally phase-coherent environment. 

t On leave from the University of Notre Dame. 

0749-6036/97/070411 + 06 $25.00/0   sm970365 © 1997 Academic Press Limited 
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Fig. 1. Two adjacent quantum dots hosting single electrons. In the ground state, the spins of the two electrons are antiparallel. If spin 
polarization is used to encode binary bits, the logic state of one dot is always the inverse of the other. This realizes an inverter in which 
one dot acts as the input terminal and the other as the output. 

2. Theory 

Consider two single electrons housed within two closely-spaced quantum dots as shown in Fig. 1. It was 
shown in [3] that the preferred ordering of this system is antiferromagnetic, i.e. the two electrons have opposite 
spins. If the spin polarization in one dot is considered to be the input 'qubit' and that in the other the output 
'qubit', then this system acts as an inverter since the spin-polarizations are antiparallel (logic complement) 
[3,8]. Note that an inverter is always logically reversible since one can invariably predict the input bit from a 
knowledge of the output bit (in practice, the input bit is recovered by merely passing the output through another 
inverter). However, such a gate is not a universal quantum gate unlike the Toffoli gate [12]. Various schemes for 
realizing non-dissipative and reversible quantum logic gates have recently appeared in the literature [13-18]. 
Experimental demonstrations of quantum logic gates have also been reported [19,20]. Almost all of these 
schemes encode the qubit in a photon (rather than an electron) state thereby requiring optical components 
that are incompatible with ultra-large-scale integration. In contrast, the spin gate based on single electrons in 
quantum dots is very appealing from the perspective of high-density circuits. 

To analyse the system in Fig. 1 quantum-mechanically, we will assume that there is only one size-quantized 
level in each quantum dot. Then, the Hubbard Hamiltonian for this system in the presence of a globally applied 
magnetic field can be written following Molotkov and Nazin [7] as 

U = Y^^ni" + gMB#/sign(<7)) + J2 tij(cfcja + h.c.) + ]T £/,n,tnu 
ia (ij) i 

+ ^2 JucfcißcfßcJa + Hz ^g^BniTsign(cr) (1) 
(ij)aß ia 

where the first term denotes the electron energy in the ith dot (//,- is a z-directed local magnetic field selectively 
applied at the ith dot), the second term denotes the hopping between dots, the third term is the Coulomb 
repulsion within the ith quantum dot, the fourth term is the exchange interaction between nearest-neighbour 
dots and the last term is the Zeeman splitting energy corresponding to the globally applied magnetic field 
oriented along the z-direction. 

We can simplify the Hamiltonian in Eqn (1) to the Heisenberg model following Molotkov and Nazin [8] to 
yield 

W = j5>dffV + /5>,,(rJt; + <r„cr,;)+   ]£   aZ(^
put       (7 > 0) (2) 

(ij) (ij) input dots 

where we have neglected the global magnetic field. The quantity A™put is the Zeeman energy caused by a 
local magnetic field applied to the ith dot in the z-direction which will orient the spin in the ith dot along that 
field. Such a local field can be applied via a spin-polarized scanning tunneling microscope (SPSTM) tip as 
visualized in [3] and serves to provide an input signal to the gate. 
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Table 1:   Eigenenergies and eigenstates of the Hamiltonian for an inverter. 

Eigenenergies Eisenstates 

flA + J 

-J + y/h2
A+4P 

-J -y/hA+4P 

' r-hA + J 

144) 

Jj(i+-i)iti) + lUi-j^J)* 
V2V      Jh\+Ap) V2V       Jh\+4p) 

/l(i--=L=)lU> - /ifi + ^ä^),!- 
V2V       y/hA+4pJ V2V      Jh\+4J*J 

In the basis of states |OACTB) (A and B are the two electrons), the Hamiltonian in Eqn (2) can be written as 

0 
0 
0 

\ 

(3) 

-hA + J/ 

0 
27 

-hA-J 
0 

where hA is the interaction with the input magnetic field selectively applied to quantum dot A. The two- 
electron basis states can be denoted as |44), |"[4), U-t) and Itt); tney form a complete orthonormal set. 
The 'upspin' polarization is oriented along the direction of the locally applied external magnetic field in this 
representation. 

The eigenenergies and corresponding eigenvectors of the above Hamiltonian are given in Table 1. 
It is obvious that the third row in Table 1 corresponds to the ground state. In the absence of any external 

magnetic field (h A = 0), the ground-state energy is -3 J and the ground-state wavefunction is^=(|t4-)-l4-t»- 
note that the ground state in the absence of any external magnetic field is an entangled state in which neither 
the quantum dot A nor the quantum dot B has a definite spin polarization. 

3. Adiabatic switching 
We now wish to study the following switching problem. Assuming that the inverter is in its ground state 

without any applied magnetic field, we will calculate how long it takes after a magnetic field is applied to 
quantum dot A for the spin in A to orient along the field and the spin in B to orient in the opposite direction 
(as required by the inversion operation). 

After the external field is applied at time t = 0, the inverter evolves in time according to the unitary 
operation 

[c(0] = exp[-iWf/ft][c(0)] (4) 

where H is given by Eqn (3) and [c] is a four-element unit vector [ci ,c2,cz, c4] that describes the wavefunction 
Vr(f) according to 

Vf(0 = ci(r)IU>+c2(0it4.) + c3WI4t> + c4(0ltt>. (5) 

The initial conditions are described by 

■ci(0) 
c2(0) 
c3(0) 

• c4(0)J 

0 
l 

V2 
j_ 

0   J 

(6) 
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The solution of Eqn (4) subject to the initial condition given by Eqn (6) is 

c,(f) = c4(f) = 0 

eUt/ti 

c2(t) 

c3(0 = 

V2 
ei/r/ft 

C0SiM)-{t>+f-A)S[n{(at\ (7) 

V2 
cos(o)f) - i ./1 - -r±-   sin(wf) 

where co = \lh\ +4J2/h. 
Therefore/ the wavefunction at an arbitrary time f is given by 

C2(0IU> + <*(0i;t> (8) 
with ci and C} given by Eqn (7). 

After the switching is complete, the system should be in the state ItJ,). Therefore, the switching delay fd 

can be defined as the time taken for |c2(f)| to reach its maximum value and, correspondingly, for |C3(f)| to 
reach its minimum value. 

This yields 
h 

fd =     , , (9) 
4y/h\+4P 

It should be understood that the system does not reach a steady state at time t = fd, but instead continues to 
evolve in accordance with Eqn (4). The computation (inversion) can be halted by reading the spin-polarization 
(logic bit) in the output dot (dot B) with a SPSTM tip at time t = fd since the reading operation is dissipative 
and collapses the wavefunction. Note that the higher the frequency co, the more critical is the timing for the 
read cycle that halts the quantum computation. Since co increases with the exchange energy 7, a larger 7 will 
mandate a greater accuracy in the read cycle. 

To achieve complete switching, the magnitude |c2(?d)l should be unity and |c3(fd)| should vanish. From 
Eqns (7) and (9), we obtain 

hA+2J 
|c2(fd)| =       V (10) 

-Jlh\ + 872 

The magnitude |c2(fd)l
2 as a function of the normalized input signal energy hA/J is shown in Fig. 2. It reaches 

a maximum value of unity (corresponding to complete switching) when hA = 27. Therefore, there exists an 
optimal value of the input signal energy hA for which complete switching can be obtained. 

It should be noted from Eqn (9) that the switching delay decreases with increasing exchange energy 7. For 
the optimal case {hA = 27), the switching delay is /i/(8\/27). We can estimate the order of magnitude for fd- 
Presumably, the maximum value of local magnetic field that can be applied to a dot with a SPSTM tip is about 
1 T. Since hA «« g/x^B (/is is the Bohr magnetron), this means that the maximum value of hA that we can 
hope to obtain is about 0.1 meV if we assume the Lande1 g-factor to be 2. Consequently, 7optimai = 0.05 meV. 
This gives a value of fa «* 7 ps. Therefore, these inverters are capable of quite fast switching. 

We can also estimate the temperature of operation for such inverters. Since the exchange energy should 
exceed the thermal energy kT for stable operation, the ambient temperature should be restricted to below 
T = J/k = 570 mK. Because the operation of the inverter requires global phase coherence (i.e. the phase 
breaking time should be significantly longer than fd), a low temperature is also otherwise required. To increase 
the temperature to a more practical value of 4.2 K, 7optimai should be 0.364 meV and therefore hA should be 
as large as 0.728 meV. This requires the ability to generate a local magnetic flux density in excess of 7 T with 
an SPSTM tip as an input to cell A. This is not possible with present state of SPSTM technology, but could 
become feasible in the future. 
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Fig. 2.   The magnitude of |c2(fd)l: as a function of the normalized unput signal energy IIA/J. 

1000 

Fig. 3.   Atomic force micrograph of a self-assembled mask to create a periodic array of quantum dots. Details can be found in [4,6]. 

We conclude this paper with a brief discussion of experimental strategies undertaken by us in our efforts to 
fabricate such gates. We believe that the optimal technique is 'gentle' self-assembly of quantum dots rather 
than nanolithography which causes processing damage and has a slow throughput. We fabricate a regular array 
of the dots using a self-assembled mask for mesa-etching. The self-assembled mask is created by evaporating 
aluminum on the chosen semiconductor structure and then electropolishing it in a solution of perchloric acid, 
butyl cellusolve and ethanol at 60 V for 30 s at. room temperature. Figure 3 shows the raw atomic force 
micrograph of a self-assembled mask of aluminum with a dimpled surface that consists of a periodic array of 
crests and troughs with hexagonal packing. The troughs are etched away by an appropriate etchant leaving a 
regular pattern of isolated crests on the surface of the semiconductor structure that serve as a mask through 
which mesas are etched. Owing to space limitations, we will omit details of the fabrication process, but instead 
refer the reader to [4,6]. 
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Giant magnetoresistance in an electrochemically synthesized 
regimented array of nickel quantum dots 
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(Received 29 September 1995) 

Giant magnetoresistance (GMR) due to remote spin dependent scattering of electrons has 
been observed in an electrochemically synthesized structure consisting of a two-dimensional, 
quasi-periodic array of nickel dots (diameter ~ 100 Ä) overlayed with a thin copper layer. 
Current flows exclusively in the copper layer, but the electrons scatter from the magnetic 
moments on the remote, underlying nickel quantum dots. Since the scattering cross-section 
depends on the magnetization of the dots, the resistance of the structure can be altered with 
a magnetic field which then gives rise to the GMR. The magnetoresistance is about 3% of the 
zero-field resistance up to a magnetic flux density of 2 tesla at room temperature. 

© 1996 Academic Press Limited 

1. Introduction 
Giant magnetoresistance (GMR) is routinely observed in granular films consisting of a magnetic 
phase such as Co dispersed in a non-magnetic matrix such as Cu [1-3]. The GMR in these samples 
arises from the fact that the scattering cross-sections of electrons depends on the magnetization of 
the magnetic particles (Co). Since a magnetic field can alter the magnetization, the scattering rates 
and the resistance of the film can be modulated by a magnetic field which then gives rise to GMR. 

Typically, granular films for GMR are prepared by dc sputtering from separate sources of 
immiscible ferromagnetic and non-magnetic materials [1]. This results in a very wide distribution in the 
magnetic particle size and also random placement of the particles within the film. Such variations make it 
difficult to study systematically the physics of the spin-dependent interaction of electrons with the 
magnetic moments. We therefore decided to prepare films that have a uniform distribution of ferromag- 
netic particles with well-controlled size. Accordingly, we prepared a structure consisting of a regimented 
quasi periodic array of Ni quantum dots with diameter 13 + 1 nm, overlayed with a thin layer of Cu. 
Electrons mostly carry current through the Cu layer without encountering the Ni quantum dots. 
Nonetheless, they suffer remote scattering from the magnetic moments of the underlying Ni dots which 
then results in a GMR. To our knowledge, this is the first study of GMR due to remote scattering and also 
the first study of GMR in a film containing regimented arrays of size-controlled ferromagnetic particles. 

2. Sample preparation 
Samples are prepared in the following way. A foil of 99.999% pure aluminum is first electropolished 
in perchloric acid, ethanol and butyl cellusolve with 60 V for 30 seconds at 15°C. It is then anodized 

0749-6036/96/030191 +05 $18.00/0 © 1996 Academic Press Limited 
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Fie 1 A Bright field TEM image of pores produced in anodized alumina film. The anodization was carried 
oSwith a dc current density of 40 mA cm"' in 15% H2S04 (pH-0.6) at room temperature. The pore diameter 
U -20 + 2 nm. The pore density is -10» cm"*. B, Cross-section TEM of the porous film with ^trodepo ed 
Ni. The~striations are the pores. In the top micrograph, the electrodeposition was carried oifor 5 ^resulting 
m quantum dots of diameter -13 nm (the black dots in the pores). A 20 s deposition (bottom micrograph) 
results in the formation of vertical quantum wires with 1§0 nm height. 

at room temperature in 15% H2S04 (pH=0.6) using a dc current density of 40 mA cm"2. The 
anodization produces a nanoporous alumina film on the surface with a quasi-periodic distribution of 
pores [4] with ~ 15 nm diameter and a pore density of about 10» cm"2 [5], The time of anodization 
determines the thickness of this porous film. A bright field TEM image of a typical alumina film is 
shown in Fig. 1A. _     ,. 

The pores are then filled up by Ni up to various depths using ac electrodeposition. For this 
the porous film is washed in distilled water and dried. It is then placed in a non-cyanide acidic bath 
containing NiS04. AC current is passed at 18-20 V rms using the Al substrate and a platinum mesh 
as electrodes. The Ni" is preferentially electrodeposited in the pores since the pores offer the least 
resistance paths between the two electrodes [6]. The time of electrodeposition determines the depth 
of pore filling. One can monitor the surface resistance during electrodeposition, or carry out real time 
impedance spectroscopy, to ascertain the extent of pore filling. The surface resistance correlates very 
well with the filling and can be used to calibrate this process. For preparing GMR samples, we earned 
out the electrode position for four different durations of 3, 5, 10 and 15 seconds. 
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Fig. 2. A, A schematic cross-section of the sample used to measure GMR. B, The GMR data measured at 
room temperature. 

3. Characterization of samples 

To ascertain that we can indeed selectively electrodeposit Ni within the pores, we carried out cross- 
section TEM characterization. For this, we produced relatively thick porous alumina films (~200 nm) 
and electrodeposited Ni in the pores for two different durations of 5 and 20 s. We then produced 
specimens for cross-sectional TEM characterization using ultra-microtomy. TEM micrographs are 
shown in Fig. IB. It is clear that a 5 s deposition produces fairly spherical dots of diameter 13 nm 
while a 20 s deposition produces short vertical wires of ~ 180 nm height. Samples that were used in the 
GMR experiments actually had a much thinner alumina film since the anodization was carried out for 
a much shorter duration. In that case, a 20 s Ni deposition would have certainly caused the Ni to 
overflow and spill outside the pores. Therefore, we restricted the Ni deposition to 15 s or less. 

4. Experiment 

Four-probe resistance measurements were made on four sets of samples with 3, 5, 10 and 15 s Ni 
deposition. Only the samples where the electrodeposition was carried out for 5 s showed significant 
GMR. The magnetoresistance data obtained at room temperature is shown in Fig. 2 along with the 
cross-section of the sample. Because of equipment limitations, the magnetic field was not scanned 
past 2 tesla and the magnetoresistance shows no sign of saturating at this field strength. Nonetheless, 
the value of the magnetoresistance is 3% of the zero-field resistance. 

5. Analysis 

Following Berkowitz et al. [1], the conductivity G of this system measured between the two contacts 
can be written as 

G= 
ne2x 
m (1) 

where n is the electron concentration in the Cu layer, m is the electron's effective mass in Cu and x 
is the momentum relaxation time or transport lifetime. Following Mathiesson's rule, we write 



 —^ 
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I--UJ-. ra 

where the first term is the characteristic momentum relaxation rate in Cu and the second term is the 
spin-dependent mpmentum relaxation rate associated with scattering from the isolated magnetic 
moments of the underlying ferromagnetic Ni dots. The second term is given by 

(3) 

where 5 is the Pauli spin vector for the electrons, &„, is the magnetization of the Nx quantum dots 
(normalized with respect to the saturation magnetization) and A is a parameter that is indicative of 
the strength of remote scattering (note that the ferromagnetic dots do not lie in the path of the 
electrons unlike in conventional granular films and immiscible alloys [1]). When no magnetic field is 
present, the normalized magnetization of the Ni dots (at room temperature) is zero. It reaches a value 
of unity (Jfyv=l) at the saturation field Bs. At this field strength, the electrons whose spins are 
aligned parallel and anti-parallel with the field have different conductivities given by 

:=?f!rj-+C(l±A)~r 
m \_xCu J 

(4) 

where the + superscripts refers to spins aligned along the field and the - superscripts to spins 
anti-aligned. 

The conductivity at the saturation magnetic field is 

N    n
+G++n~G- n+ (5) 

" 1+"- n 

where n+ and n" are the concentrations of electrons with the two different spin orientations Their 
ratio depends on the Zeeman splitting giiBB (/^Bohr magnetron, influx density, r=absolute 
(temperature) and is given by «"/n+ «exp[-gixBBlkT\. Therefore we get 

nn    m   nei[llxr,.k-$Xtanh[glxBBsl2kT]l (6) 

G(B=BS)=— [ (l/Tcu+02-C2A2 J 

while the conductivity at zero magnetic field is 

G(5=0)=^T7l-? (7) v m 1/TCII+C 

As long as the argument of the hyperbolic tangent is relatively small, the magnetoresistance will be 
negative (i e G{B=B^> G(5=0)). However, at very large fields, the magnetoresistance may change 
sign and become positive. If such a behavior is observed, it may be used to estimate X. 
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6. Conclusion 

We have shown the existence of GMR due to remote spin-dependent scattering in a structure con- 
sisting of a regimented array of size-controlled magnetic particles. Experiments are currently under- 
way to measure the susceptibility of these particles and establish their magnetic properties. 
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We have calculated the binding energy and 'length' of a quasi one-dimensional exciton in a 
semiconductor quantum wire subjected to a magnetic field. The magnetic field causes these 
quantities to have non-mono tonic dependences on wire width. Below a critical width, the 
binding energy decreases with increasing wire width as usual, but above this critical width the 
opposite behavior is observed. This gives rise to a pronounced minimum in the binding 
energy. A similar behavior gives rise to a pronounced maximum in the exciton length. These 
features are explained by invoking the complementary roles of the electrostatic and magneto- 
static confinement of the exciton. 

© 1996 Academic Press Limited 

1. Introduction 

Quasi one-dimensional excitons and biexcitons in quantum wires are dirctly responsible for the giant 
third order non-linear susceptibility zm in these systems. The large magnitude of /3) is caused by the 
increased binding energy of excitonic complexes due to one-dimensional confinement. A magnetic 
field can further enhance the confinement, leading possibly to improved performance in non-linear 
optics, specifically in low power and high density systems. Additionally, the field can act as an agent 
to modulate the non-linear absorption/gain in quantum wires which opens up the possibility of 
realizing externally tunable couplers, limiters, phase shifters, switches, etc. 

Recently, Someya, Akiyama and Sakaki [1] reported the efFect of an external magnetic field on 
the exciton binding energy and radius in a GaAs quantum wire by measuring the photoluminescence 
spectra and comparing them with those of quantum wells. They found that a magnetic field squeezes 
the exciton wavefunction to a size that is far below what can be achieved in quantum wells. This is 
consistent with our observation. We provide a detailed theoretical calculation which sheds light on 
this effect. 

This paper is organized as follows. In Section 2, the theory of a quasi ID exciton subjected to a 
magnetic field is developed rigorously within the framework of a two band model and perfect confine- 
ment. Section 3 presents the results of the variational calculations of the binding energy and exciton 
'length' followed by a discussion of the excitonic properties. Conclusions are given in Section 4. 

2. Theory 
2.1 Exciton binding energy 

Let us consider a quantum wire as shown in the inset of Fig. 1 with infinite potential barriers located 
at y= ±LJ2 and z = ±LJ2. A magnetic field of flux density B is applied along the z-direction. 

0749-6036/96/020097+08 S 18.00/0 © 1996 Academic Press Limited 
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the weaker confinement along the thickness. The inset shows a wire with £e var£ coordinate tectL 

For nondegenerate and Isotropie bands, the Hamiltonian of a free Wannier exciton in thi 
system is given within the envelope-function approximation by 

XX^tiXe-eByy+^(ßXh + eByhy+
PJ^jA^ 2me 

1 
7mh^ 2m. 

'lb- 
2niu 

s + ^e<Hi/0"«»vÄ,r„rA) (1 

where we have chosen the Landau gauge for the magnetic vector potential:      • 

A = (-By,0,0). 

The quantities mA and xtJt,y,M, ztM are the effective masses and coordinates of electrons and holes 

and hnl "I S1S the d,iele,CtnC C°nStant' *"&» y- Z<> **>is the c°nfinement potentials for electron' and holes along y and z directions. 

nates M0TC^nkfnCe' TVTu* :v^coordinates ^ the center-of-mass (*) and relative coordi- 
nates (x) This is accomplished by using quantum mechanical definition of momentum operators and 
talcing into account that in a center-of-mass and relative coordinate system 

h      _     ;* me.h   3d 
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Defining 

Px<* { M     dX2+        M dXdx       dx2' 

Pxs-Ah 
■td 

Px=-"lT~ ox 

we obtain 

where 

„x_px2 , Pi , Pu+Pl, , Pn+Pl , eB(ye-yh) p       R(   . .    .. 

+'-f iy]hn<+yllrnh) + VconÄye,yh,ze,zh) - ^tf + (y-yj> + ix-Zhyyi» (2) 

I-_L   _L 
V-   mt   mh' 

MR=meTe+mh?h, 

f=re-r„, 

R = xX+yY+zZ, 

Even for this relatively simple Hamiltonian of eqn (2), no exact analytical solution of the 
exciton wave function is possible. Therefore we adopt the standard variational approach [2-4]. Since 
the Hamiltonian does not depend on X, Px is a good quantum number. Dropping the term associated 
with Px we take the following trial wave function: 

> 

^ = ^(x,ye,yh,ze>zh)=gs(x,T])<l>g{ye)(f)h(yh)xe(ze)xi,^h)> (3) 

where g,(x,ij) is chosen to be the Gaussian-type 'orbital' function [6-8]: 

g,(x>*i)=-^(iy'*'-(xM2 (4) 

in which tj is a variational parameter. The variables Xe%h(ZeJ) are the z-components of the wave 
functions which are not affected by the magnetic field. They are given by particle-in-a-box states 
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the prescription given in Ref. [11] y g the SchrodinSer «I^ion directly following 

separat«* „ Z, 4 = 3^, where aB is the effective Boh7aZ?n the full' The^ ftenon/M this 

(3) implicitly assumes the electron and the hole are indenenTnM « J' ™e tnal wave functi°n 
tions, which corresponds to the case independently confined along the ;- and z-direc- 

Ly,L.<3aB. 

P^f^^^^S^L^ r T be Ch0- ™° «Dl preserving the 
checked <* ^W by^^^n^lÄ

0bta,ned "f tWS ** fUnCtion can be 
energycalculated hy o«£ .neü«^^^^ * "ith Ending 

the «^uTÄtlÄ **"'" evaluated by minimizing 
respect to ,. Once this is ac«SK OM «?£5 hV , °VT ^ WaVe fUnCtions> with 

length for different values of S t^field Ld^ ««on binding energies and the exciton 
be written as follows ° nd the Wlfe Wldth- The functiona> to be minimized can 

e2i?2 rL/2 ' /• •> 

Ät^L^rÄ^ T?" Carried «* °- * byper- 
along y and , directions respec velv Tnoh ?w£       v^0" Snd I,mited b* ±V* «nd +1/2 
^(±^ = 0 which ZvedCo^ 
Note that the expectation value of the non ZS , XT^ USm§ in*2™™ by parts, 
the presence of a magnetic fidd)° SnticalfyzTroTr STS«' ^f^^* W** arises in 
the expectation value in (6) strictly realan'd show^W ,. fT      1WaVe fUnCti°n which makes 

Equation (6) allows us to treat thf Co2l    >      f ^ fUnCti°n Space is admissible. 
throughout the ^^i^T^^ SSSS^?-^ ^ * ^ 3D *»» 
previous (2D) exciton binding energy Lfcula&n^ P? emploved in °ur 

Ground state exciton binding energies £* can now be found using the relation 

of the bulk valence yJt^^^^^T^ °f ?* bu k COnduction band and the top 
value of, that minimizes £%£££^^^ » »** ^ ^re •«. « <& 
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Fig. 2.   The same results as in Fig. 2 in the present of a magnetic flux density of 10 tesla. There are pronounced 
minima around a wire width of 400 A. The magnetic length in this case is 96 Ä. 
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3. Results and Discussion 

In Fig. 1 we present the exciton binding energy as a function of Ly (wire dimension along y direction) 
for two values of Lz (wire dimension along z direction) when no magnetic field is present. With 
increasing values of Ly> the binding energy rapidly decreases and begins to approach the bulk value 
(about 5.5 meV for GaAs). The binding energy does not approach the 2D limit because confinement 
along the z direction is not strong enough. In Fig. 2 we display the same results when a magnetic 
flux density of 10 tesla is present. It is interesting to note that when a magnetic field is present, the 
binding energy curves have a clearly resolved minima at L«400 Ä. An explanation for this somewhat 
surprising behavior is provided later. Figure 3 show the exciton length as a function of wire width. 
Pronounced maxima at L«400Ä are seen corresponding to the minima in the binding energy. 

Unfortunately, we cannot examine the behavior,of the binding energy or the exciton length in 
the limit L->oc because our model does not contain any provision to make the transverse compo- 
nents of the wavefunction to deform into atomic Slater Orbitals. However, a direct comparison of 
our results for zero magnetic field with those in Refs [6,13] shows excellent agreement. 

Figure 4A and B shows the exciton binding energy as a function of the magnetic field for 
different values of Ly and Ls. Binding energy increases with the magnetic field for all wire widths, 
which is in qualitative agreement with the results obtained for 2D systems [14,15], except that while 
the increase is sublinear in 2D systems, it is superlinear in ID systems. This can be explained in two 
different ways. A magnetic field squeezes the electron and hole wavefunctions along all directions 
causing these states to condense into cyclotron (Landau) orbits whose radii shrink with increasing 
magnetic fields. As long as the wire width W is comparable to the magnetic length or the lowest 
cyclotron radius / (=JhleB), the additioal confinement induced by the magnetic field is not very 
important and the geometric (i.e. the electrostatic confinement of the walls) confinement predomi- 
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Fig 3 Exciton length versus wire width at a magnetic flux density of 10 tesla. There are maxima around a wire 
width of 400 Ä corresponding to the minima in the binding energy shown in Fig. 2. 

nates It is only when W>1 that the effect of the magnetic field becomes predominant Therefore a 
wider wire will show a stronger dependence of the binding energies on the magnetic field. Another 
way to explain the relation between the wire width and the sensitivity to the magnetic field is in terms 
of the standard time-independent perturbation picture. The magnetic field perturbs the quantum wire 
states, and the first order correction to the wave functions that correspond to the perturbed states is 
given by the formula 

,£10)- 
(8) 

where £l0) ^(0> are the unperturbed energy eigenvalue and eigenfunction of the mux subband respect- 
ively, |j£B| ha perturbation matrix element due to the magnetic field. Since in the case of perfect 

confinement 

(9) 

it is easy to see that the perturbation decreases with decreasing wire width. Since it is this perturbation 
that squeezes the exciton wave function, we see clearly that the squeezing is more effective in wider 
wires In other words, the wave function is softer and more «squeezable' in wider wires which causes 
the magnetic field effect to be more dominant in those wires. A very similar physics causes the hole 
wave function to be perturbed more than the electron wave function in a quantum wire [12] _ _ 

We can now revisit the pronounced minima in Fig. 2 and try to explain their physical origin. 
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♦•  fi.w f«r A two different wire thicknesses and a fixed wire width, and Fig. 4.   Binding energy versus magnetic field for A, two ainerent wire 
B.Vvo different wire widths and a fixed wire thickness. 

nail values of L   the magnetic field is not very effective in squeezing the exciton wave function 
s.nceZgeometrc^onnnemel, predominates. Consequently «he bin ,ng <W*~~£££ 

ÄLS^i^Üi the magneto-static confinement becomes stronger since the wave function 

Z^^f^Zo^s^^H, This causes the ^.«^£^^£EE 
with increasing wire width resulting in the occurrence of a minimum. The same physics explains the 
magnetic field dependence of the exciton radius as well. 

(8) 

(9) 

4. Conclusion 

In this paper, we have calculated the magnetic field dependence of the ground state exciton binding 
nergy and exciton radius in a GaAs quantum wire. Two important observations are that (i the 

h2Ancreases superiorly with increasing magnetic field unlike in a quantum well where the 
inaeas°e ^ub-UneaTtlS], and (ii) there are pronounced mimima in the binding energy (and cone- 
1 "dng^p^onounced maxima in exciton length) as a function of wire width when a magnetic: field 
is Resent To our knowledge, the existence of these extrema was never shown be ^Occurrence of 
these extrema has been explained in terms of the time-independent perturbation theory. 
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Giant dipole effect and second-harmonic generation in quantum wires 
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We have theoretically studied giant dipoles associated with transitions between magneto-electric 
subbands in a quantum wire subjected to a transverse magnetic field. The strengths of these dipoles 
and their resonant frequencies can be varied with the magnetic field which then allows one to tune 
the emission wavelength of these transitions. The large magnitude of the dipole moments also leads 
to a strong second-harmonic component of the dielectric susceptibility that can be utilized for 
nonlinear optical applications such as second-harmonic generation, limiting, mixing, optical 
switching, etc. © 1997 American Institute of Physics. [S0021-8979(97)02612-l] 

I. INTRODUCTION 

Direct intraband transitions between the quantized states 
(subbands) of the conduction band in a quantum well is a 
well-researched topic.1 It has been shown both experimen- 
tally and theoretically that such transitions have very large 
dipole moments and narrow bandwidths. Strong infrared ab- 
sorption, associated with transitions between the lowest two 
electronic subbands in a GaAs quantum well, was observed 
long ago by a number of experimental groups.2 Recently, 
population inversion between the second and third subbands 
of a quantum well has been established unambiguously and 
has led to demonstration of the celebrated quantum cascade 
laser.3 The energy separation between the subbands in a 
quantum well or wire can be varied by an external magnetic 
field which then allows one to realize a continuously tunable 
laser or light-emitting-device. Moreover, the field can induce 
forbidden transitions that make additional frequency ranges 
accessible, thus permitting flexible device design. 

Another potential use of magnetic field biasing of quan- 
tum wells or wires is in nonlinear optics. Nonlinear optical 
properties stem from higher order dielectric susceptibilties. 
Specifically, the second-order susceptibility x{2) is respon- 
sible for such phenomena as mixing and second-harmonic 
generation. It is well known that even-order susceptibilities 
vanish in structures with inversion symmetry. Consequently, 
finite second-order susceptibilities can be obtained in such 
structures only if the inversion symmetry of the conduction- 
band potential is broken either by an external electric field or 
by the intentional growth of an asymmetric well. Obviously, 
the former is the preferred method since an electric field can 
be continuously varied which allows one to tune the degree 
of symmetry breaking and the magnitude of x(2). This 
method, however, has a practical shortcoming. An electric 
field tilts the potential barriers of the well thereby allowing 
carriers to escape by tunneling or thermionic emission. This 
is especially serious in GaAs/AlGaAs systems where the bar- 

ton leave from the University of Notre Dame. 
b)Electronic mail: bandy@engrssl.unl.edu 

rier height is relatively small. It has been pointed out that the 
electronic states in a quantum confined system biased by a 
transverse electric field are never true bound states since the 
particles can always lower their energy by escaping from the 
well.4 Therefore, these states have a finite lifetime, which 
broadens the transitions. 

To overcome this shortcoming, one can adopt magneto- 
static biasing. A magnetic field can break inversion symme- 
try without tilting potential barriers and promoting carrier 
escape. A transverse magnetic field applied to a quantum 
wire exerts a Lorentz force on an electron moving along the 
wire. As a result, its wave function (in any subband) will be 
skewed towards one edge of the wire. This skewing does not 
tilt potential barriers to first order (the barriers may tilt 
slightly because of a second-order effect associated with 
space charges and the self-consistent (Hall) electric field). 
However, it effectively breaks inversion symmetry since it 
causes a net charge to accumulate at either edge of the wire 
(the charges at the two edges have opposite signs as in the 
classical Hall effect). This leads to a nonvanishing even- 
order susceptibility in a symmetric structure. The skewing 
•has another subtle effect. The degree to which the wave 
function is skewed is different in different subbands since an 
electron has different kinetic energies and hence experiences 
different Lorentz forces in different subbands. As a result, • 
transitions between subbands whose wave functions have the 
same parity — which are forbidden without a magnetic field 
 are now allowed since the parities are altered by different 
amounts in different subbands by the different degrees of 
skewing.5 

This article is organized as follows. In Section II, we 
describe the theoretical formulation, followed by results. Fi- 
nally, in Section IV, we present the conclusions. 

II. THEORY 

We consider a quantum wire as shown in Fig. 1 with a 
magnetic field applied along the z direction. The thickness 

a*  14 OV   1 C   li mo 1QQ7 0021,8979/97/81(12V7927//7$10.00 © 1997 American Institute of Physics       7927 



B* 

FIG. 1. An electron waveguide (quantum wire) subjected to a magnetic field 
alons the z axis. The width of the wire is much larger than the thickness. 

along the z direction is so small (and consequently the sub- 
band separation in energy is so large) that, for the range of 
photon energies considered, an electron cannot be excited 
(by real transition) into a subband which has more than two 
nodes along the z direction. Such a transition will not be 
accessible in energy. This restriction, coupled with the fact 
that a magnetic field does not affect the z component of the 
electron wave function, allows us to drop the z component 
from further consideration. The width of the wire along the 
y direction is however large enough that subbands with more 
than two nodes along the y direction are accessible in 
energy. 

In the framework of the envelope function approxima- 
tion (EFA), an electron wave function can be written as the 
product of a Bloch wave function, periodic with the atomic 
lattice spacing, and an envelope wave function, describing 
the nonperiodic behavior. Consequently, the wave function 
of an electron for a given wave vector k along the x direc- 
tion, in the nth magnetoelectric subband, at a magnetic field 
B can be written as 

$n(x,y,k,B,t) = Vn(x,y,k,B)un(x,y,z,k)e-iE"Wlh, 
(1) 

where ^„(x,y,k,B) is an envelope function, un(x,y,z,k) is 
a Bloch function of a conduction band and E„(k,B) is the 
dispersion relation of the nth magnetoelectric subband at a 
flux density B. The Bloch wave functions are assumed to be 
5 states which is the usual case for semiconductors where 
J= 1/2 for the conduction band. 

The envelope function can be further decomposed into a 
plane wave along the unconfined x direction and a confined 
component-along the y direction. Thus, 

^n{x,y,k,B)=XAyXB)e''a. (2) 

Using the electric dipole approximation, we can write 
the matrix element of photoinduced intersubband transitions 
within the conduction band as6 

dfJ(k,B) = ej X/{yXB)v-rXi(yXB)dr 

X j i{f(x,y,z,k)iii(x,y,z,k)da, (3) 

where dQ. is a volume element, rj is the unit vector along the 
direction of the incident photon polarization, r=xax+yay is 
the two-dimensional radius vector, and subscripts i,f stand 

for initial and final states respectively. The exponential term 
of Eq. (2) is not present in Eq. (3) since, for photoinduced 
transitions (kf—ki), the product of the exponential function 
and its complex conjugate are exactly unity. The volume 
overlap of the Bloch functions is also unity for s states with 
the same wave vector. Now, if we assume that the incident 
light is polarized along the y direction so that y=ay, the 
above equation simplifies to 

rwa 
dfj(k,B) = e{xf\y\Xi) = e J _wiyXf(y,k,B)xi{yXB)dy, 

(4) 

where W is the width of the quantum wire along the >• direc- 
tion. 

One should note here that if there is no magnetic (or 
electric) field applied, the envelope functions Xt are Just 

particle-in-box states and the dipole moment in Eq. (4) is 
nonzero only for the transitions between subband states of 
opposite parity. For a symmetric square potential well, these 
dipole elements (between any two states n and m) are inde- 
pendent of the wave vector k and can be found analytically1 

by evaluating the integral in Eq. (4). 

8 mn 
dfj-eixflylxd-eW^ {mi_nl)i, 

if   n and m have opposite parity 

= 0, otherwise. (5) 

However, when a magnetic field is applied, the skewing of 
the wave functions changes the integral in Eq. (4) and alters 
the selection rules. Generally, the skewing causes three ef- 
fects. First, it makes the dipole moment depend on the wave 
vector fc (since the degree of skewing depends on k). Sec- 
ond, it reduces the dipole moment for transitions between 
states of opposite parity [since the integral in Eq. (4) de- 
creases], and third, it allows forbidden transitions between 
states of the same parity [since the integral in Eq. (4) no 
longer vanishes for states of the same parity]. 

It is clear from Eq. (4) that, to calculate the dipole mo- 
ments in the presence of a magnetic field, all we need to 
compute are the wave functions X/,i(.y*k,B) at a given mag- 
netic field B, for given magnetoelectric subbands / and i, 
and for a given wave vector it. This is achieved via a nu- 
merical (finite difference) solution of the Schrodinger equa- 
tion following the prescription of Ref. 7. Once this is done, 
we can calculate the dipole moment in Eq. (4) for any chosen 
intersubband transition at any chosen magnetic field and for 
any chosen wave vector. 

In the limit of high magnetic fields, when the magnetic 
length I( = y[h/eB)<SW, one can again obtain an analytical 
expression for the dipole moment dfii. In this case, the mag- 
netostatic confinement predominates over electrostatic con- 
finement and the envelope functions XnO,>fc»-B) can ^e aP~ 
proximated by harmonic-oscillator wave functions: 

Xn(yXB)=x(y-yk,B) 

=NnHn(a,y-yk)e-?a^-K)2, (6) 
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where Nn={alTrm22n\)m is  a normalization constant, 
Hn(

a>y) is ^e nth Hermite polynomial, yk=hk/eB, and 

a= 
eB_ 

h (7) 

In order to evaluate the integral in Eq. (4) analytically, 
we extend the limits of integration to infinity assuming that 
the wave function tail is negligible at the boundaries of the 
wire (i.e. at y= ± W/2). This is a very reasonable assump- 
tion in a high confining magnetic field. The resulting analyti- 
cal expression for the dipole moment is 

df,i(B) = e{Xf\y\xö = el 
n+1 1/2 

if m=n +1      (8) 

-5 
1/2 

if m = n — 1 

= 0, otherwise. 

The physical significance of the two analytical limits, 
B—>0 and B-+&, is obvious. At zero field, the dipole is 
determined by the width of the wire dfj~eW, and at the 
high field limit it is determined by the magnetic length 
dfi~el. This is what one would expect intuitively. At zero 
field, the dipole is confined electrostatically with the wire 
width being a measure of this confinement while at high 
magnetic field, the dipole is confined magnetostatically and 
the magnetic length is the corresponding measure of this 
confinement. 

III. RESULTS 

A. Intraband dipoles 

We now present results of our calculations. The physical 
parameters used for the numerical calculations correspond to 
a GaAs quantum wire with relative dielectric constant er 

-12.9, and effective mass me=0.Q67m0 where m0 is the 
free electron mass. 

In Fig. 2, we show the dependence of the dipole moment 
dfj(k,B) for three transitions (el-^2, c2-e3, and el-e*3) on 
the wave vector k when a magnetic field of 1 T is applied 
(following usual practice, the transitions are numbered by the 
subband indices). The dipoles corresponding to transitions 
between states of opposite parity (el-e2 and e2-e3) have 
maxima at k=0 and then decrease with increasing wave vec- 
tor. This can be easily understood as follows. At zero wave 
vector (no translational velocity) these states do not experi- 
ence any Lorentz force and hence the wave functions are not 
skewed. As the wave vector k increases, the translational 
velocity and the Lorentz force experienced increase. Conse- 
quently, the envelope wave functions are skewed more and 
more and the dipöle moment decreases. Real transitions be- 
tween states of the same parity are forbidden at zero mag- 
netic field, but at a finite magnetic field, they are forbidden 
only at k=0 when there is no translational velocity and no 
Lorentz force to skew the wave functions. With increasing 
k, the wave functions are increasingly skewed and the dipole 
moment of forbidden transitions increases. In our chosen 
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FIG. 2. Dipole moments for various intersubband transitions as functions of 
the propagating wave vector k for a magnetic flux density of 1 T. At zero 
translational velocity (fc=0) the dipole of transition e\-e1 vanishes. The 
GaAs quantum wire is 1000 A wide. 

prototype wire, del_e3 reaches a maximum of 28 e-k at k 
= 0.0051 Ä and then decreases gradually ultimately reaching 
zero. This intriguing nonmonotonic dependence on it is ex- 
plained later on. However, at this point, it is interesting to 
note that a fairly large forbidden dipole moment of ~30 
e-k can be achieved in realistic structures at a moderate 
magnetic field of 1 T. 

Fig. 3 presents the dipole moments for the same transi- 
tions as a function of magnetic flux density. The propagation 
wave vector k is chosen to be 0.01/Ä. At zero magnetic field, 
a nonvanishing dipole matrix element occurs only for transi- 
tions between states of opposite parity (el-e2, el-e3) as 
expected from Eq. (5). This equation also allows us to esti- 
mate the strengths of these zero-field dipoles to be 180 e-k 
for el-c2 and 195 e-k for e2-e3 transitions. As we can see 
from Fig. 3, these values are in excellent agreement with our 
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FIG. 3. The dipoles of three intersubband transitions as functions of the 
applied magnetic field. The dipole dtl.ei peaks at a magnetic flux density 
of 0.3 T. The wire width is the same as that in Fig. 2. 
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numerical results. From the analytical expression in Eq. (8), 
we can estimate the strength of the el-«2 dipole to be 66 
e-A at a magnetic flux density of 15 T. This number also 
agrees with our numerical result. The el-e3 dipole vanishes 
at both zero field (because of the spatial symmetry of the 
particle-in-a-box states) and at high fields because of the 

.symmetry of the Landau states or Hermite polynomials. This 
behavior is consistent with Eqs. (5) and (8). Only at interme- 
diate fields, when the wave functions of the subbands are a 
hybrid between particle-in-a-box states and Hermite polyno- 
mials (and thus "nonsymmetric" in space), is this transition 
allowed. This immediately tells us that de3-ei must have a 
nonmonotonic dependence 'on the magnetic flux density B 
and indeed it does. 

Let us now examine the nonmonotonic behavior of 
de3-el more closely. This transition is forbidden at zero field 
since the wave functions of the first and third subbands have 
the same parity. At low magnetic fields, the parities are al- 
tered by the skewing of the wave functions and consequently 
dei-el is no longer zero but increases with the magnetic 
field. It reaches a maximum of about 30 e-A and then de- 
creases. This latter decrease is related to the following effect. 
For a fixed wave vector k, a sufficient increase in the flux 
density B forces the traversing states ("skipping orbits" or 
"edge states") to condense into closed cyclotron orbits 
(Landau levels) that are no longer skewed by the magnetic 
field to the wire edge since they have no translational veloc- 
ity and hence no Lorentz force. While edge states have a 
skewed wave function that is not symmetric in space, cyclo- 
tron orbits have a wave function that is symmetric about the 
orbit center yk. Note that yk depends only on k and B. 
Therefore, at a fixed k, the wave functions of the first and 
third Landau levels are symmetric about a common center. 
Whenever this kind of symmetry holds, dej-ei vanishes. 
Therefore, the dipole moment dej-ei decreases gradually to 
zero at high magnetic field with the onset of Landau conden- 
sation. 

The same physics can be elucidated in a different way by 
considering the energy versus wave vector relation in Figs. 
4(a) and 4(b) which show the dispersion of the first and third 
magneto-electric subbands respectively. 

At Z?=0, velocity (slope of the curves) at &=0.01/A are 
nonzero for both the el and e3 subbands. However, the 
Lorentz force is zero because 5=0 and hence ^j_e3=0. At 
B=5 T, the group velocities for the two subbands are still 
nonzero and the Lorentz force is finite resulting in skewing 
of wave functions and a nonvanishing value of ^i-*3- At 
B= 10 T, the group velocities at &=0.01/A are zero in both 
subbands indicating that the corresponding states have un- 
dergone Landau condensation. In this case, the Lorentz force 
(for skewing) is again zero and the dipole moment <f4i-«3 
vanishes once more. The crucial point to note is that the 
Lorentz force evXB can vanish in two different ways: (i) 
B=0, and (ii) u = 0. These two conditions are met at zero 
and very high magnetic fields. As a result, the dipole mo- 
ment dei„e3 exhibits a nonmonotonic behavior in magnetic 
field. One can ask why the same physics does not cause 
nonmonotonicity in the el-e2 and e2-e3 curves. It is not 
clear a priori that nonmonotonicity cannot occur (indeed 

(b) k (1/A) 

FIG. 4. Energy vs wave vector relation of electrons in (a) the first subband 
and (b) in the third subband of a 1000 A wide quantum wire. The wave 
vector is along the free propagation direction. The results are shown for 
three values of a magnetic field. The energy is calculated from the bulk 
conduction band edge and the confinement energy for the z-direction is 
assumed to be zero. 

there are regions of inflexion in the two curves). However, 
the point to note is that Landau condensation causes recovery 
of the wave function symmetry (or antisymmetry), but does 
not restore the original zero-field wave functions. This is 
shown in Fig. 5 where we show the wave functions in the 
el subband at 0 and 10 T. Both wave functions are "sym- 
metric" in space, but they are otherwise vastly different 
since the magnetostatic confinement squeezes the wave func- 
tions binding them in cyclotron orbits. 

The nonmonotonicity in the wave vector dependence of 
dei-e3 in Fig. 2 has a similar origin. As k is increased, the 
relative skewing between the wave functions in el and e3 
subbands change nonmonotonically causing the nonmonoto- 
nicity seen. • 

The process described above is illustrated in Figs. 6(a)- 
6(c), where we present wave functions of two electronic 
states (el and e3) for three values of magnetic flux density. 
At zero magnetic field the wave functions are symmetric 
about the center of the wire and dipole transition ^3_ei is 
forbidden [Fig. 6(a)]. At low magnetic field the wave func- 
tions are skewed to the edge of the wire ["edge states" Fig. 
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FIG. 5. The y component of the electron envelope function for the first 
subband at a magnetic flux densities of 0 and 10 T. 

6(b)] and the spatial- symmetry is broken for both states. 
Dipole transition de3^el is now allowed. It is important to 
note here that the symmetry breaking skewing of the wave 
functions is caused by the simultaneous presence of a mag- 
netic field and the electrostatic potential barriers at the edges 
of the quantum wire. At higher magnetic fields, when the 
magnetic length is smaller than the wire width, the electrons 
do not "feel" the potential barriers at the edges of the wire 
as they undergo complete Landau condensation and execute 
cyclotron motion with a radius much smaller than the width 
of the wire. In this case, the wave function symmetry is 
essentially restored [Fig. 6(c)] although the wave functions 
are now symmetric about a point that is not at the center of 
the wire. Nonetheless, what is important is that both wave 
functions are symmetric about the same point. Consequently, 
the rfe3_«i transition vanishes. The simultaneous presence of 
both electrostatic confinement and magnetostatic confine- 
ment is therefore necessary for wave function skewing, 
formation of edge states and the observation of forbidden 
transitions. 

B. Second-harmonic generation 

It is well known that in systems with inversion symme- 
try there can be no second order nonlinearity.8 However, in 
systems without inversion symmetry, the lowest order opti- 
cal nonlinearity is of the second order and is expressed by 

pW(fe,a>)=A:(2)(^;^i^2)^(^.Wi)^(^,cö2),     (9) 

where P is the polarization caused by two electric fields Ey 
and E2 that are associated with the electromagnetic fields of 
either two frequency components of the same light beam or 
two different coherent beams with frequencies ©/ and wave 
vectors kt. The frequencies and wave vectors obey the en- 
ergy and momentum conservation laws 

-500.0 -300.0 

(a) 
-100.0 100.0 300.0 

y - coordinate (A) 

-0.10 
-500.0 -300.0 -100.0 100.0 300.0 500.0 
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£ J      0.00 
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V«i 

i 
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V«3 
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(c) y - coordinate (A) 

300.0 50O.O 

FIG. 6. The y component of the electron envelope functions for the first and 
third electronic subbands. The results are shown for cases when (a) no 
magnetic field is present, (b) when a weak magnetic field is present and, 
finally, (c) when a strong magnetic field is present 

i 

M=2 ±hki. 

(10) 

It is obvious that the third-ranked tensor #(2) will vanish 
in any structure with inversion symmtery. A quantum con- 
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fined structure may lack inversion symmetry for two main 
reasons, (i) The semiconductor material by its intrinsic 
chemical and crystalline structure may lack inversion 
symmetry,9 and this is the case in most III-V, II-VI, and 
I-VII compounds along certain crystallographic directions. 
(ii) The quantum confining potential well may be asymmet- 
ric (e.g. triangular potential well, asymmetric double square 
well potential, etc.). In the first case, the asymmetry is related 
to the intracell charge asymmetry and is not affected by the 
confinement since the latter extends over several unit cells. 
In the second case, the asymmetry is artificially imposed and 
therefore can be engineered. It clearly depends on the con- 
fining potential and hence; an applied electric field can alter 
the potential and change the degree of symmetry breaking. 

In the present work we restrict ourselves to the second 
case and do not consider intrinsic second-order nonlinearities 
of GaAs which are actually quite large (the nonlinear suscep- 
tibility of bulk GaAs is x^^.SXlO-10 m/V10). As men- 
tioned before, we avoid an electric field since it promotes 
carrier escape and we consider a magnetic field instead. Al- 
though a magnetic field does not affect the potential to first 
order, the simultaneous action of symmetric electrostatic po- 
tential and an external magnetic field may lead to the uneven 
charge distribution along the width (y axis) of the wire 
caused by different degrees of skewing of the wave func- 
tions. Because of this reason, it is possible to break the in- 
version symmetry in a symmetric quantum well or wire with 
a magnetic field alone. This approach is superior to applying 
a transverse electric field since the latter will tilt the confin- 
ing potential wells thereby promoting carrier escape from the 
well by either tunneling or thermionic emission. 

The large magnitude of the dipole moments associated 
with otherwise forbidden transitions between subbands of the 
same parity and their sensitivity to the biasing magnetic field 
opens up the possibility of second-harmonic generation 
(SHG) that can be controlled by the magnetic field. In order 
to evaluate the magnitude and dependences of SHG on the 
biasing field and wire geometry, we calculate the second- 
order susceptibility using the formula11 

NeJ 

X%IB(-<0<r;o>i;<>)2)= —xrr^rS P0(a) 
€Q2A       abc 

X 
dabdbcdca 

XClba-a)x-(o2)(Clca-ü>2) ,(11) 

where N is the concentration (number density) of conduction 
electrons, h£laß=hQ,aß(B,W) is the energy spacing be- 
tween a,ß subbands that depends on the applied magnetic 
field and wire width, dmn^dmn(B,W) is a dipole element 
calculated using Eq. (4), and wff is defined to be 

w0.= ü)1 + cj2. The total symmetrization operation 5^ indi- 
cates that the expression that follows it is to be summed over 
all six permutations of the pairs (fj^ — Wg), (a,<o{), 

(ß,o)2). Since ^ involves a summation over all possible 
permutations, it is clear that x^lßi -^'.(Ui; w2) is invariant 
under any of them. For simplicity, the Fermi distribution 
p0(a) was assumed to be unity. 

4.0 6.0 
magnetic field (T) 

FIG. 7. Second-order susceptibility as a function of the biasing magneti 
field. The peak values of the susceptibility are 13.2X10"7 m/V, 1.: 
X10"7 m/V and 3X10"8 m/V for wire widths of 1000 A, 500 A, and 3CH 
A, respectively. The results are shown for the wave vector fc=0.01/A (fixe< 
excitation frequency). 

Eq. (11) is an approximation that applies only under the 
condition that all of the optical frequencies involved (opera 
tional frequencies 0}a,cüi ,co2) are removed far enough fron 
the subband transition frequencies. It means that the mediun 
is assumed to be transparent and loss free at all the relevan 
optical frequencies. This assumption can be relaxed by the 
introduction of transition damping factors into the expressior 
in Eq. (11). In our study we are mainly interested in the 
effects of an applied magnetic field on the second-order sus 
ceptibility. Since these effects manifest themselves in Eq 
(11) primarily via the magnetic field dependence of the di 
pole elements dmn^dmn(B), we did not include any damp 
ing constants and associated finite linewidths of the elec 
tronic states. One should also note here that Eq. (11) i: 
strictly correct only for dilute media. In this case, one car 
write xm=Na{2) with a(2) being the second-order nonlin 
ear polarization. The above expression is valid only unde: 
moderate excitation. 

In Fig. 7, we present normalized values of *(2) as i 
function of magnetic field for three different wire widths änc 
a fixed value of the wave vector k (fixed excitation fre 
quency). The operational frequencies <Ui = <u2 are chosen fo; 
a C02 laser. For wide ranges of magnetic flux densitie: 
(B<20 T) and wire widths (100 Ä <W<1000 Ä), these 
frequencies are removed far enough from the subband tran 
sition frequencies Claß(B,W). As long as the latter is true 
the xc2) dependence on magnetic field is governed mainly bj 
dipole elements dmn. Consequently, the #(2) curve fo 
VV= 1000 Ä peaks at the same value of a magnetic flux den 
sity (B=0.3 T) as the el-e3 dipole curve of Fig. 3. The 
magnetic flux density at which *(2) reaches its maximun 
increases with decreasing wire width. This happens because 
it takes a higher magnetic field to condense electronic state: 
into cyclotron orbits (Landau condensation) when the elec 
trostatic confinement is stronger (narrower wires). 

Fig. 8 shows the dependence of the normalized values o 
X{1> on wire width for three different values of a magnetic 
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FIG. 8. Second-order susceptibility as a function of the wire width for three 
values of the biasing magnetic field. The maximum values of the x<2) curves 
are the same as in Fig. 7. The narrow peaks at a wire width of ~200 Ä are 
due to resonances occurring when either Ctbc= u>l + (o2 or flco= OJ2 . 

field and a fixed value of the wave vector. For weak mag- 
netic field of 0.3 T, the x(2) curve increases monotonically 
with increasing wire width. This happens because dmn is 
proportional to the wire width W (see Eq. (5) which is valid 
at zero field). The magnetic field is obviously not strong 
enough for the onset of Landau condensation. At a moderate 
magnetic flux density of 1 T, we can observe some saturation 
features, and for a strong magnetic field of 5 T, the curve is 
nonmonotonic, rolling down to almost zero for the wire 
width of 1000 Ä. The physics underlying the difference in 
the behaviors of the three curves is essentially the same as 
that responsible for the features in Fig. 7. At small values of 
wire width (^==170 Ä), there is an additional peak in the 
Xm curve. This peak is a manifestation of the fact that 
Clba has become comparable to the operational frequencies, 
i.e. £lba<s=c>)l + o)2. 

In our numerical calculations we have used N= 1017 

cm-3. For this dilute concentration, high density effects such 
as screening and bandgap renormalization are not important 
and Eq. (11) is strictly valid. In fact, Ref. 1 demonstrated 
excellent agreement between theory and experiment without, 
accounting for any high density effect even though the car- 
rier concentration in that study was N= 5 X 1017/cm3. There- 
fore, we believe that high density effects are not significant 
in this regime. 

The peak value of the second-order susceptibility for a 
wire width of 500 Ä is x{2)= 1-5X 10~7 m/V (the absolute 
magnitudes of the peak values for various wire widths are 
given in the caption of Fig. 7). For comparison, the nonlinear 
susceptibility of electric field biased GaAs quantum wells 
(W=92 Ä), calculated theoretically and measured experi- 
mentally in Ref. 1, was x(2)=2.4X10~8 m/V for an electric 
field of 36 kV/cm. This shows that relatively weak magnetic 
fields in quantum wires can produce similar magnitudes of 

X{2) as rather strong electric fields in quantum wells. Unfor- 
tunately, to our knowledge, there is no theoretical or experi- 
mental result available for either electric field biased quan- 
tum wires or magnetic field biased quantum wells so a direct 
comparison is not possible. Nonetheless, it is obvious that 
magnetic field biased quantum wires provide a very attrac- 
tive alternative to other means of producing large x{1) val- 
ues. In fact, the largest value of x(2) (obtained at a magnetic 
flux density of 2 T) in a magnetic-field-biased quantum wire 
is found to be three orders of magnitude higher than what 
can be achieved in bulk GaAs. 

IV. CONCLUSION 

We have theoretically studied the giant dipole effect in 
magnetic-field-biased semiconductor quantum wires. The di- 
poles are associated with transitions between magneto- 
electric subbands within the conduction band, some of which 
are forbidden in the absence of the magnetic field. The reso- 
nant frequencies of these transitions can be tuned by the 
magnetic field which allows the realization of externally tun- 
able intersubband lasers. We have also studied the possibility 
of second-harmonic generation in a quantum wire biased 
with a magnetic field and find a strong second-harmonic 
component of the susceptibility. This may have important 
applications in nonlinear optics. 
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Abstract 

We report the observation of strong second harmonic optical signal generation in 15- 
nm sized CdS quantum dot arrays produced by electrochemical self-assembly. At incident 
photon energies well below the bandgap of CdS, the measured second-order susceptibility 
X(2) is five times larger than that of bulk CdS. Some speculations about the origin of this 
enhanced second-order optical non-linearity are presented. 

1      Introduction 

Optical non-linearities causing frequency conversion are useful in a number of applications 
such as mixing, switching, limiting and coupling. Most ordinary solids, however, are not 
efficient frequency converters because they exhibit extremely small higher-order components 
of dielectric susceptibilties, and also because phase matching, which optimizes frequency 
conversion, is difficult to attain in solids that are not birefringent. Furthermore, if the solid, 
has inversion symmetry, then it can exhibit no even-order susceptibility1 unless the symmetry 
is broken artificially either by the intentional growth of an asymmetric structure2, or by an 
external field; electric3 or magnetic.4. On rare occasions, inversion symmetry can be broken 
spontaneously by built-in fields. 

Typically, second-order optical non-linearity in a solid has two sources; a bulk contribution 
and a surface or interface contribution.5 The inversion symmetry is automatically broken at 
an interface because of the discontinuity of the crystalline structure and the large gradient 
of the normal-to-surface component of the electric field of incident radiation. This alone can 
result in finite (but small) second-order dielectric susceptibility x(2) which causes weak second 
harmonic generation (SHG). Other possible mechanisms of SHG in semiconductors include 
(i) electric quadrupole nonlinearity,6 (ii) deformations and stresses in the structure leading to 



internal fields and nonlinear polarization, (iii) lowering of the symmetry of the crystal under 
the action of the intense electric field of incident radiation, and (iv) high degree of disorder 
of the crystalline structure (quasi-amorphism). 

In this paper, we, report the preliminary observation of second harmonic generation in 
ordered regimented arrays of 15-nm diameter CdS quantum dots that were electrochemically 
self-assembled. We believe that all of the above mechanisms play some role in SHG in these 
samples. However, regardless of its origin, the very observation of SHG in these samples 
is promising because it provides a cheap and convenient way to produce non-linear optical ' 
components. These structures may find use in frequency converters, mixing and limiting. 

The rest of the paper is organized as follows. In section 2, we describe sample preparation. 
Section 3 outlines experimental setup and the measurement technique. In section 4, we 
present results and estimate the second-order susceptibility. Conclusions are given in section 

5 of the paper. 

2    Sample Preparation and Characterization 

Our samples are electrochemically self-assembled quasi-periodic two-dimensional arrays of 
CdS quantum dots embedded in alumina. The average physical diameter of the dots 15 nm, 
but the effective optical diameter is significantly less because of side depletion. They are 
synthesized by first anodizing a thin foil of aluminum for a few seconds in 15% H2S04 at 
a dc current density of 40 mA/cm2 to produce a nanoporous alumina film on the surface 
of the foil. These pores form an ordered hexagonal array with an average diameter of 15 
nm with a 7% standard deviation. A bright field TEM image of a typical pore assembly is 
shown in Fig. 1. The pores are then selectively filled up with CdS using ac electrodeposition. 
This is accomplished by immersing the alumina film in a boiling aqueous solution of CdS04. 
An ac potential of 18 volts rms is applied for different durations (5-30 seconds) using the 
sample and a graphite rod as electrodes. The Cd++ ion in the solution reacts with the 
S— ion left behind in the walls of the pores from the previous anodization step to form 
CdS. The amount of CdS produced (pore filling) increases superlinearly with the duration 
of electrodeposition. The pores have been directly imaged with TEM and field-emission 
SEM7. Presence of material in the pores has been verified with cross-section TEM and 
stoichiometry was checked with Auger. Optical signatures of CdS were also verified in the past 
by Raman, photoluminescence, reflection and absorption7'8. These measurements revealed 
strong quantum confinement effects. In fact, the measured blue-shift in the optical sepctra 
indicates that the effective optical diameter of the dots is ~ 3.5 nm (even though the physical 
diameter is 15 nm)7,8. The size reduction is presumably caused by side depletion around the 
periphery of the dots due to interface states. These are some of the smallest quantum dots 

that have shown optical activity. 
We have also performed variable angle spectroscopic ellipsometry study of the samples9 

in order to determine (i) the thickness of the alumina layer in which the quantum dots are 
embedded, (ii) the shape of the CdS dots, (iii) the volume fraction of CdS in the alumina 



Figure 1: Bright field TEM image of a porous alumina film showing a regimented array of 
nanopores. The average diameter of the pores is 15 nm with a 7% standard deviation. These 
pores are filled up with CdS by electrodeposition to create the CdS quantum dot arrays. 

layer, and (iv) surface roughness and lateral thickness non-uniformity. To obtain information 
about sample optical constants and structure, ellipsometry data were fitted with a multilayer 
model based on effective medium approximation. Model parameters were varied (using the 
Levenberg-Marquardt algorithm) to minimize the mean-square error between two sets of 
data: measured and model-generated. The samples were viewed as arrays of CdS dots in an 
alumina matrix that could be treated within the Maxwell-Garnett formalism. This allowed 
us to determine the volume fraction of CdS in the alumina layer, and the depolarization 
factor directly related to dot shape. It was found that the CdS dots can be best modeled 
by rotational ellipsoids with a depolarization factor » 0.7. The thickness non-uniformity is 
about-7%; and the volume fraction of CdS for 10 second deposition time was found to be 

also ~ 7%. 

3    Experimental Setup and Measurements 

For optical SHG measurements, we used a mode-locked Nd:YAG laser producing 10-ns-long 
pulses with an average power density of 1 W/cm2 and absolute peak intensity of about 
1 MW/cm? at a wavelength of 1.064 pm (photon energy = 1.32 eV). This corresponds to 
sub-bandgap radiation. The bulk bandgap of CdS is 2.4 eV and the optically measured 
bandgap, enhanced by quantum confinement, is about 3 eV for samples prepared by 10 
seconds electrodeposition7.   The samples were irradiated by laser light at an angle of 20 
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degrees and the spotsize was about 1cm which is approximately equal to the sample size. 
The second harmonic signal was observed in the reflection mode by collecting all radiation 
reflected back (in 7r rad). 

A quartz {a-SiOi) etalon was used as a reference. The nonlinear coefficient of the etalon 
is d\\ — 4.4 x 10-13 m/V and the refractive indices, in the spectral region of interest, are 
about n0 = 1.5350 and ne = 1.5438 for ordinary and extraordinary rays, respectively. The 
measured absolute intensity of the SHG of the ..quartz etalon was about 10~15 W/cm2. 

In Fig. 2, we show the normalized intensity of the SHG in arrays of CdS quantum dots as 
a function of the time of deposition. As mentioned before, the time of deposition determines 
the height of CdS ellipsoids in the alumina pores. The maximum value of the second harmonic 
intensity, I{2u), for our sample with the highest volume fraction of CdS is about 2% of the 
I(2UJ) of the quartz etalon. 

4    Results 

In order to characterize the process of SHG quantitatively, we use the following formula for 

the conversion efficiency10 

I(tjj) n3<^e0 
(1) 



where sinc(x) = sin{x)/x, I(u) is the intensity of incident light at the fundamental fre- 
quency, I is the interaction length, deff is the effective material nonlinear coefficient, n is the 
refractive index of the material, c is the speed of light, and Afc = fc(2w) - 2*(w) is thewave 
vector mismatch. Phase matching determines the phase synchronism factor sine2(Afci/2) 
which is unity at Afcf= 0. The above formula is valid in the limit of small conversion and 
plane wave focusing. It is reasonable to assume that the interaction length, /, in our case 
is approximately equal to the size of a quantum dot. Since the size of the dot is very small 
(vertical dimension of the dots is of the order of 50A) and the difference between refractive • 
indices at the fundamental and doubled frequencies is insignificant, we can limit our consid- 
eration to the case when Afcf« 0. Under such conditions, one can estimate from Eq. (1) the 
value of the effective nonlinear coefficient deff. We find that deff = 8.8 xlO"11 m/V which 
is five times* larger than that of bulk CdS. Since deff is proportional to the second-order 
susceptibility x(2), we conclude that our quantum dots have a value of x(2).that is five times 
larger than that of bulk medium. We should point out that the overall x(2) of our samples is 
actually much smaller since only 6-7% of the samples consist of CdS dots. Taking this factor 
into account, the average de/f for our samples is 5.28xl0-12 m/V. 

5    Discussion and Conclusion 

It should be noted that the second-order non-linearity in our samples is observed at below- 
bandgap frequency. This indicates that the non-linearity is either related to virtual proccesses 
or intraband processes. As far as the latter is concerned, the second harmonic generation is 
may be associated with inter-subband dipole transitions in the conduction band which is a 
well-known mechanism4. In our samples, the calculated energy spacing between the electronic 
subbands is between 1 and 1.5 eV (assuming infinite potential barriers at the interfaces and 
typical amount of side depletion) while the incident photon energy is 1.32 eV. Consequently, 
the incident radiation may be exciting real transitions between subbands. This mechanism is 
obviously directly related to quantum confinement and would not be relevant for bulk samples. 
Other possible origins of the SHG include electric quadrupole nonlinearity,6 deformations and 
stresses in the structure leading to internal fields and nonlinear polarization, lowering of the 
symmetry of the crystal under the action of the intense electric field of the incident radiation,.' 
and high degree of disorder of the crystalline structure (amorphism). 

An interesting question is what breaks the inversion symmetry in these structures to cause 
even order non-linearities. The obvious answer is local electric fields associated with trapped 
charge centers in the alumina matrix.  Local fields can also be generated by stresses and 

dislocations. 
In conclusion, we have shown that electrochemically self-assembled semiconductor quan- 

tum dot arrays can exhibit strong second-order non-linearities in their optical properties. The 
magnitude of the second-order susceptibility is five times larger than that of bulk CdS. Po- 
larization studies and study of the dependence of SHG on the angle of incidence are planned 
for the near future to further elucidate the origin of this enhancement. 
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Abstract 

We have theoretically studied non-linear frequency conversion in 
a semiconductor quantum wire biased with a magnetic field. In these 
systems, efficient second harmonic generation occurs as a result of 
the large value of the second-order dielectric susceptibility x(2) aris- 
ing from dipole transitions between magneto-electric subbands. The 
magnitude and peak frequency of x(2), as well as the absorption and 
refractive index associated with x^2)> can be tuned with the magnetic 
field. This allows one to achieve low insertion loss and efficient phase 
matching by manipulating the absorption and refractive index with a 
magnetic field. 

I. Introduction 

Most ordinary solids are not efficient frequency converters because they 

exhibit extremely small even-order dielectric susceptibilties. Ideally, even- 

order susceptibilities vanish in solids with inversion symmetry.1 Conse- 

quently, a semiconductor structure can exhibit a large value of the second 

order susceptibility x(2) only if tne inversion symmetry of the conduction- 

band potential is broken artificially either by an external electric field, or by 

the intentional growth of an asymmetric structure. Obviously, the former is 

the preferred method since an electric field can be varied continuously and 



this allows one to tune the degree of symmetry-breaking and the magnitude 

of x(2)- However, an electric field has a practical shortcoming. In a quantum 

confined structure, it tilts the potential barriers confining the photogener- 

ated carriers. 'As a result, carriers can escape by tunneling or thermionic 

emission and this is especially serious in GaAs/AlGaAs systems where the 

barrier height is relatively small. Indeed, it has been pointed out that the 

electronic states in a quantum confined system biased by a transverse elec- 

tric field are never true bound states since the particles can always lower 

their energy by escaping from the well2. Consequently, optical transitions 

(and their higher order harmonics) associated with these states have incon- 

veniently large linewidths and small oscillator strengths. 

Recently, we proposed magnetostatic biasing as an attractive alternative 

to mitigate this problem.3 We showed that a magnetic field can break in- 

version symmetry in a quantum wire without tilting potential barriers.  A 

transverse magnetic field, applied to a wire, exerts a Lorentz force on an 

electron moving along the length.   As a result, its wave function (in any 

magneto-electric subband) will be skewed towards one edge of the wire. This 

skewing does not tilt potential barriers to first order (the barriers may tilt 

slightly because of a second-order effect associated with space-charges and 

the self-consistent (Hall) electric field).   However, it effectively breaks in- 

version symmetry since it causes net charges to accumulate at either edge 

of the wire.  This leads to a non-vanishing even-order susceptibility in an 

otherwise symmetric structure. The skewing has another subtle effect. The 

degree to which the wave function is skewed is different in different subbands 

since an electron has different kinetic energies (and hence experiences differ- 

ent Lorentz forces) in different subbands. As a result, transitions between 

subbands whose wave functions have the same parity - which are forbidden 

without a magnetic field - are now allowed since the parities are altered by 

different amounts in different subbands. This effect has some similarity with 

the quantum confined Lorentz effect (QCLE) previously examined by us4 in 



the context of interband transitions between conduction and valence band 

states. 
In this paper, we first calculate the second-order susceptibility x(2) in a 

symmetric quantum wire whose inversion symmetry (along the width) has 

been broken with a magnetic field.  We restrict ourselves to narrow GaAs 

wires with a width of about 150Ä. The energy spacing between the first and 

second subband is A£i2 » 72 meV. This choice of the wire dimension puts 

the resonant frequency (for transitions between the lowest subbands) in the 

mid-infrared spectral region. The wavelength of the second harmonic compo- 

nent of this transition is about 8.6 fim. Here we will be mainly interested in 

X(2) arising from resonant and near-resonant inter-subband transitions which 

are governed by the interplay of dipoles and resonant excitations.  In con- 

trast, Ref. [3] focussed on the off-resonance regime which was governed solely 

by the dipoles. We will also calculate absorption and refractive index in the 

frequency region of interest for both pump and second harmonic frequencies 

and show how they can be manipulated with an external magnetic field to 

realize low insertion loss and efficient phase matching. 

The rest of the paper is organized as follows. In the next section, we 

describe the theoretical formulation, followed by results. Finally, in section 

IV, we present the conclusions. 

II. Theory 

We consider a generic GaAs quantum wire (as shown in the inset of Fig. 

1) with a magnetic field applied along the z direction. The thickness along 

the z direction is so small (and consequently the subband separation in energy 

in this direction is so large) that for the range of photon energies considered, 

an electron cannot be excited (by real transition) into a subband which has 

more than two nodes along the z-direction. In other words, such a transition 

will not be accessible in energy. This restriction, coupled with the fact that a 

magnetic field does not affect the z-component of the electron wave function, 

allows us to drop the z-component from further consideration. The width 



of the wire along the y-direction is however large enough (W = 150A) that 

subbands with more than two nodes along the y-direction are accessible in 

energy. 
In systems without inversion symmetry, the lowest order optical nonlin- 

earity is of the second order and is expressed by 

P?2)(£)W) = x{2){u\ux,U2)Ei(kuui)E2{k2,u2), (1) 

where P is the polarization caused by two electric fields E\ and E2 that 

are associated with the electromagnetic fields of either two frequency compo- 

nents of the same light beam or two different coherent beams with frequencies 

Ui and wave vectors k{. It is well known that the third-ranked tensor x(2) 

will vanish in any structure with inversion symmetry. A quantum confined 

structure may lack inversion symmetry for two main reasons, (i) the semi- 

conductor material by its intrinsic chemical and crystalline structure may 

lack inversion symmetry,5 and this is the case in most III-V, II-VI, and I- 

VII compounds along certain crystallographic directions, or (ii) the quantum 

confining potential well may be asymmetric (e. g. triangular potential well, 

asymmetric double square well potential, etc.). In the first case, the asym- 

metry is related to the intracell charge asymmetry and is not affected by the 

confinement since the latter extends over several unit cells. In the second 

case, the asymmetry is artificially imposed and therefore can be engineered. 

It clearly depends on the confining potential. Insofar as an applied electric 

field can alter the potential, it can change the degree of symmetry-breaking 

and hence modulate x(2)- 
In the present work we restrict ourselves to the second case and do not 

consider intrinsic second order nonlinearities which can be quite large in some 

materials (the nonlinear susceptibility of bulk GaAs is x8?=3.8 10"10 m/V).6 

As mentioned before, we avoid the use of a symmetry-breaking electric field 

since it promotes carrier escape. Instead, we consider a magnetic field. Al- 

though a magnetic field does not directly affect the potential, it leads to an 

uneven charge distribution along the width {y - axis) of the wire because of 



the different degrees of skewing of the wave functions in different magneto- 

electric subbands. This has the effect of breaking inversion symmetry. 

As mentioned before, a magnetic field induces forbidden transitions be- 

tween subbands of the same parity. The large magnitude of the dipoles 

associated with these transitions and their extreme sensitivity to the field 

open up the possibility of controllable second harmonic generation (SHG) 

that can be manipulated by the magnetic field. In order to evaluate the 

magnitude and dependence of SHG on the biasing field and wire geometry, 

we calculate the second order susceptibility using the formula1 

X<2>(2*; W;u) = -^ST£ (aa-a,-i7)(aQ-2u;-i7)'        ™ 

where N is concentration (number density) of conduction electrons, 7 is 

a damping factor associated with elastic and inelastic scattering, hQ.ba = 

hQba{B, W, k) is the energy spacing between the b-th and a-th magnetoelec- 

tric subbands which depends on the applied magnetic field, wire width and 

electron wave vector and dmn = dmn{B,W,k) is a dipole element of tran- 

sitions between different subbands. The total symmetrisation operation ST 

indicates that the expression which follows is to be summed over all permuta- 

tions of the pairs (M,2ü/), (a,u), (ß,u). Since ST involves a summation over 

all possible permutations, it is clear that x£g(2w;w;w) is invariant under 

any of them. 
In order to calculate dipole elements ämn{B, W), we proceed as in Ref. [3]. 

Under the electric dipole approximation, the matrix element of photoinduced 

inter-subband transitions within the conduction band is given by7 

dfti{k, B) = ej Xfiv, *, B)fj • fXi(y, k, B)dfJ u}{x, y, k)ui{x, y, k)dSl   (3) 

where dQ, is a volume element, f\ is the unit vector along the direction of the 

incident photon polarization, f=xax + yay is the two-dimensional radius 

vector, and subscripts t, / stand for initial and final states respectively. Now, 

if we assume that the incident light is polarized along the y-direction so that 



f\ — dy, the above equation simplifies to 
/■W/2 

dfti{k,B) = e < Xf\y\Xi >= e J_w/2yXf{y,k,B)xi{y,k,B)dy,       (4) 

where W is the-width of the quantum wire along the y-direction. One should 

note here, that if there is no magnetic (or electric) field applied, the envelope 

functions Xi are just particle-in-box states and the dipole moment in Eq. (4) 

is non zero only for the transitions between subband states of opposite parity. 

However, this is obviously not the case when a magnetic field.is present. It 

is clear from Eq. (4) that to calculate the dipole moments in the presence of 

a magnetic field, all we need to compute are the wave functions X/,*(v» *>B) 

at a given magnetic field B, for given magnetoelectric subbands / and i, and 

for a given wave vector k. This is achieved via a numerical (finite difference) 

solution of the Schrödinger equation for the y-component of the wavefunction 

*M + 2
-£EX{V)- (|)2xfe)+2^x(y) - **xto) = o     (B) 

with I being the magnetic length given by I = y/h/eB, assuming hardwall 

boundary conditions 

X(y = W/2) = x(y = -w/2) = 0 (6) 

and following the prescription of Ref. [8]. Once this is done, we can calculate 

the dipole moment in Eq. (4) for any chosen intersubband transition, at any 

chosen magnetic field and for any chosen wave vector. 

The absorption of both the fundamental frequency (pump) and its second- 

order harmonic is very important when considering frequency conversion with 

low insertion loss. In general, it is desirable to have large absorption coef- 

ficient a{u) for the pump frequency and small o(2w) for the converted fre- 

quency so that the latter is not re-absorbed to cause large insertion loss. In 

order to obtain the absorption coefficients in the whole range of frequencies 

and for different values of a magnetic flux density, we need to calculate the 

first-order susceptibility as follows     

(i)r \    iVe2 y-,      {dabf (7) 



where we have used the same notation as in Eq. (2). The imaginary part of 

X(1) (OJ) is related to the absorption coefficient while the real part is related 

to the refractive index. 
i 

i 

II. Results 

We now present results of our calculations. The physical parameters used 

for the numerical calculations are relevant for a GaAs quantum wire with 

relative dielectric constant er = 12.9, and effective masses me = 0.067mo and 

mh = 0.5mo where m0 is the free electron mass. 

4 6 8  .      10 12 14 16 
MAGNETIC FLUX DENSITY (TESLA) 

18 20 

Figure 1: The dipoles of three inter-subband transitions as functions of the 
applied magnetic field. The induced dipole dei_e3 peaks at a magnetic flux 
density of 5.3 tesla. 

Fig. 1 presents the dipole moments for the lowest intraband transitions as 

a function of magnetic flux density. At zero magnetic field, a non-vanishing 

dipole matrix element occurs only for transitions between states of opposite 

parity (el-e2, e2-e3) as expected from Eq.   (4).   Transition dipole de3_el 



has a noii-monotonic dependence on the magnetic field. This transition is 

forbidden at zero field since the wave functions of the first and third subband 

have the same parity. At low and moderate magnetic fields, the parities are 

altered by the skewing of the wavefunctions. The skewing effect of the wave 

functions of the first and the third subbands is shown in Fig. 2 (top). Its 

degree depends on a subband number, which causes a breaking of inverion 

symmetry and, consequently, non-zero value of dipole matrix element de3_ei 

for otherwise forbidden transition. 

-50 o 50 
Y-COORDINATE (A) 

-100 0 100 
k(1e-6cm-1) 

200 -200 

50 0 50 
Y-COORDINATE (A) 

-100 0 100 
k(1e-6cm-1) 

200 

Figure 2: (Top left and right). Skewing of the wave functions of the first 
and third subbands in a magnetic field. The left panel corresponds to zero 
magnetic flux density and the wave functions are particle-in-a-box states. 
The right panel corresponds to a flux density of 3 tesla and the wave functions 
are those of "edge states". (Bottom left and right). The energy spacing 
hQmn between the mth and nth subbands vs. wave vector A: at a magnetic 
flux density B=l tesla (left) and B=3 tesla (right). The lowest curve (at 
k=0) corresponds to el-e2, the intermediate curve to e2-e3, and the highest 
to el-e3. 

The dipole moment reaches a maximum of about 6 e-A   and then de- 

8 



creases. This later decrease is related to the following effect. For some fixed 

wave vector k (electron velocity), a sufficient increase in the flux density B 

forces the traversing states ("skipping orbits" or "edge states") to condense 

into closed cyclotron orbits (Landau levels) which are no longer skewed by 

the magnetic field to the wire edge since they have no translational velocity 

and hence experience no Lorentz force. While edge states have a skewed 

wave function which is not symmetric in space, cyclotron orbits have a wave 

function that is symmetric about the orbit center. Note that the orbit cen- 

ter's coordinates depend only on k and B. Therefore, at a fixed k, the wave 

functions of the first and third Landau levels are symmetric about a common 

center. Whenever this kind of symmetry holds, de3-ei vanishes. Therefore, 

the dipole moment deZ-ei decreases gradually to zero at high magnetic field 

with the onset of Landau condensation (5 tesla for this wire dimensions). 

In Fig. 3, we plot the absolute values of x(2) as a function of photon 

energy for two different values of the magnetic field. In our numerical cal- 

culations we have used a dilute carrier concentration of iV=1017 cmTz which 

allows us to neglect high density effects such as screening and bandgap renor- 

malization. Both susceptibility curves have pronounced three-peak resonant 

structure which corresponds to two one-photon transitions el-e2 (at 72 meV) 

and e2-e3 (at 124 meV) and one two-photon transition el-e3 (at 100 meV) 

between magneto-electric subbands. These three peaks have different broad- 

enings because the sum in Eq. (2) represents an integral effect of all direct 

transitions with different values of electron wave vector k and because of the 

complex dependence of the subband spacing %ümn on k and B (see Fig. 2 

(bottom)). The latter also gives rise to an uneveness in the second order 

susceptibility peaks. The peak value of the second order susceptibility is 

X® = 14.5Ä/V for 1 tesla field (left panel); and x(2) = 43.1Ä/V" for 3 tesla 

(right panel). For comparison, the nonlinear susceptibility of electric field 

biased GaAs quantum wells (W=92 A) - calculated theoretically and mea- 

sured experimentally in Ref. [9] - was X
(2)=240Ä/V for an electric field of 36 
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Figure 3: Second order susceptibility as a function of the photon energy 
for two values of the biasing magnetic field. The left panel corresponds to a 
magnetic flux density B=l tesla, the right panel to B=3 tesla. The maximum 
values of the x(2) curves are 14.5A/V for 1 tesla field and 43Ä/V for 3 tesla 
field. 

kV/cm. The carrier concentration used in their calculations was N= 5xl017 

cm~3. Adjusted to that carrier concentration, the second order susceptibility 

for a 3-tesla magnetic field is about 215Ä/V compared to 240A/^ of Ref. 

[9]. This shows that relatively weak magnetic fields in quantum wires can 

produce similar magnitudes of x(2) as rather strong electric fields in quantum 

wells. 
Fig. 4 shows the dependence of the imaginary part of the first-order sus- 

ceptibility im(x(1)) as a function of photon energy for two different values of 

the magnetic field. We have used the same wire dimensions and carrier con- 

centrations for this plot as in the previous one. The same physics pertinent 

to the previous plot explains different broadening; however, the peaks are 

now attenuated because of averaging over different transition probabilities. 
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Figure 4: Imaginary part of the first-order susceptibility as a function of the 
photon energy for B=l tesla (left panel) and B=3 tesla (right panel). 

Since 7m(x(1)) is related to the absorption coefficient a(w) as 

oM = —Mx(1)), (8) 

one can estimate the absorption over the whole frequency range. At res- 

onant photon energies of 72 meV and-124 meV, the absorption coefficient 

a = 1.5 104 cm~l and a — 4.5 104 cm'1, respectively. It is clear from the 

figure, that the absorption coefficient at twice these frequencies, a(2u>) is 

much less. This implies that a large portion of the pump energy at these 

resonant frequencies will be absorbed by the structure and converted into 

second harmonic signal which will not be significantly re-absorbed. 

Another important factor for efficient second harmonic generation is phase 

matching. Since the refractive index n(w) of most materials is frequency de- 

pendent, the following inequality holds n(w) # n(2w). As a result, the coher- 

ence length lMh = \,/4(n2w-nw) for GaAs (typical non-birefringent crystal) 
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varies between 10/zm and lOO^m. The efficiency of nonphase-matched inter- 

actions are about 10~5 times less than that of the phase-matched interactions 

over a length scale of 1 cm. 
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Figure 5: Real part of the first-order susceptibility as a function of the photon 
energy for B=l tesla (left panel) and B=3 tesla (right panel). 

Using a magnetic field as an additional degree of freedom, we may try 

to adjust n{(jj). In Fig. 5 we present' .the dependence of the real part of 

the first-order susceptibility Re(xm) as a function of photon energy for two 

different values of the magnetic field. Using the relation 

An{u) = 27TÄe(x(1)), (9) 

and Eq. (8), one can determine the frequencies where two conditions simul- 

taneously hold: n{u) « n(2w) and a(u) » a{2u). For the 3-tesla field, this 

frequency TUUJ corresponds to 75 meV. 

12 



IV. Conclusion 

We have theoretically studied second harmonic generation in a semicon- 

ductor quantum wire biased with a magnetic field. A strong second-harmonic 

component of the dielectric susceptibility, due to the dipoles associated with 

transitions between magneto-electric subbands, is found. We have also calcu- 

lated absorption coefficient and refractive index in the appropriate frequency 

range to assess the efficiency of frequency conversion and insertion loss. We 

have shown that a magnetic field can be used as an additional degree of 

freedom in optimizing second harmonic generation efficiency. This may have 

important applications in nonlinear optics. 
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Abstract 

In this paper, we have calculated the refractive index of a quantum 
wire waveguide in the vicinity of an exciton-polariton resonance. The 
critical values of the exciton decay parameter, defining the onset of 
polariton transport regime, and the associated temperature were also 
found using the combination of a variational approach and a numeri- 
cal solution. Our theoretical model allows us to include the effects of 
an external magnetic field. The results show that confinement of exci- 
tons to one dimension and the simultaneous application of a magnetic 
field may lead to the extension of the temperature and spatial limits 
of polariton transport. The magnetic field can be used to shift refrac- 
tive index peaks in frequency thus providing a much-desired tuning 
capability. 

I. Introduction 

Exciton dynamics in semiconductor quantum confined structures has al- 

ways been attractive because of its potential applications in optoelectronics. 

One of the most interesting phenomenon related to excitons in such struc- 

tures is the formation of exciton-polaritons. In the spectral region around an 

exciton resonance, a photon, absorbed by a semiconductor, linearly couples 

with an exciton to create a polariton. Exciton polaritons have been studied 

extensively in quantum wells by measuring photoluminescence and reflection, 



as well as by picosecond time-of-flight measurements.1'2 It was shown that 

polaritons are much more stable in quantum wells than in bulk,3 and they are 

expected to be even more stable in quantum wires since the exciton binding 

energy and oscillator strength tend to increase with reducing dimensionality.4 

The formation of polaritons modifies the transport of light through the 

medium. In particular, the medium of propagation becomes substantially 

more transparent5,6 and the group velocity of light propagating along the 

waveguide approaches the speed of light in vacuum.7 At the same time, there 

is a possibility of controlling polariton transport with an external field. In this 

paper, we argue that a relatively weak magnetic field is particularly attractive 

for tuning polariton transport because it increases exciton oscillator strength 

thus extending the polariton regime of energy transfer, while an electric field 

would decrease exciton oscillator strength and quench polariton transport. 

Although existing theoretical models recognize modification of polariton 

transport due to spatial confinement, they account for it by using heuristi- 

cally peaked values for exciton oscillator strength and binding energy. The 

authors are not aware of any attempts to include an external field, particu- 

larly magnetic, into consideration. 

In this work, we present a model for calculating the exciton-polariton crit- 

ical decay parameter and the refractive index of a quantum wire around a 

polariton resonance in the presence of a magnetic field. The decay parameter 

determines the regime of polariton transport. To our knowledge, this is the 

first study where the exciton longitudinal-transverse (LT) splitting and ex- 

citon resonance frequency - which define the polariton dispersion - are found 

in a non-ad-hoc manner using the combination of a variational approach and 

an exact numerical solution of the Schrödinger equation. The calculations 

are performed for a quantum wire with finite lateral dimensions subjected to 

a magnetic field. 

The rest of the paper is organized as follows. In section II, we establish the 

polariton dispersion relation used throughout the model; section III presents 



the results of calculation of the LT splitting and oscillator strength of the 

exciton transition in a quantum wire subjected to a magnetic field; in section 

IV, we examine the exciton critical damping for the onset of the polariton 

transport regime and calculate refractive index of the wire in the vicinity of 

exciton resonance. Conclusions are given in section V of the paper. 

II. Polariton dispersion 

We consider an array of parallel GaAs quantum wires of rectangular cross 

section separated by infinite potential barriers so that wavefunctions of the 

excitons from different wires do not overlap. In such a structure, excitons 

are free to move along the wire axes but are confined in perpendicular direc- 

tions. The lateral dimension of each wire is comparable to the exciton Bohr 

radius. The cladding material is assumed to have a similar refractive index 

so that we can ignore image charges of the exciton and associated dielectric 

confinement effects. Under these conditions, the dispersion relation of the 

exciton polaritons can be determined for each separate wire. The multiple 

wire structure in this case merely forms a waveguide structure analogous to 

that considered in Ref. [8]. 

Most theoretical models for exciton polaritons (both in bulk material 

and nanostructures) embody a semi-classical approach and utilize the disper- 

sion relation of a polariton derived for a single electric-dipole-active exciton 

resonance.5'8 Here, we adopt the same'philosophy and consider electromag- 

netic waves propagating through an array of quantum wires with a wavevec- 

tor k parallel to the wire axis. This choice of the direction of propagation 

allows for a spatial dispersion of the light waves. In the opposite case of light 

propagating normal to the wire axis, the translational motion of excitons is 

suppressed and the spatial dispersion effects do not occur. 

In the long-wave approximation {kLViZ < 1, where Ly>z are the wire lateral 

dimensions) the array interacts with light waves like an effective medium, and 

the dielectric function in the vicinity of an isolated exciton resonance can be 



written as9 

/    M . 2e0wLTUo  ,., 
e(u,k) = c0 + —z , , t,9—777—:—. (1) K      ' u2 - u2 + hk2oj0/M - IüJJ K ' 

where e0 is the background dielectric constant (contribution made by other 

resonances), OJ is the frequency of light, CJLT is the longitudinal-transverse 

splitting of the exciton related to its oscillator strength, u0 is the exciton 

resonant frequency at k = 0, M = m& + m^ is the translational mass 

of an exciton, and r = Ky is the exciton damping parameter. Here we 

have assumed parabolic wavevector dependence of the exciton frequency 

hojt(k) = TVJ}0 + K7k2/2M, with the caveat that this is valid only in weak 

magnetic fields when the magnetic length lm (= yJhfeB) is much larger than 

the transverse dimensions of the wire. In the formula above, the quanti- 

ties u)LT = u)LT(LytZ, B) and u0 = w0(LytZ,B) are the functions of the wire 

lateral dimensions and a magnetic field. The exciton damping constant is 

considered to be independent of the magnetic field since it is known that 

energy-averaged phonon-interaction rates in quantum wires are not terribly 

sensitive to a magnetic field. In any case, Eq. (1) is a good approximation 

when the magnetic field applied to the system is relatively weak: lm > Ly>z. 

This equation relates u and k and is the sought-after dispersion relation of 

a polariton. 

Before we can go further into polariton transport properties, we have to 

calculate ULT and u0 as the functions of wire dimensions Lyi2 and a magnetic 

flux density B. This is discussed in the next section. 

III. Longitudinal-transverse splitting 

Let us assume that the infinite potential barriers of the quantum wire are 

located at y = ±Ly/2 and z - ±Lz/2. A magnetic field is applied along 

the ^-direction (see inset to Fig. 1). To simplify the calculations, we assume 

strong quantum confinement of the carriers which enables us to factorize an 

exciton wavefunction into the product of electron and hole wave functions. 

Moreover, we limit our consideration to systems with relatively large dielec- 



trie constants so that all Coulomb interactions are strongly screened. This 

assumption, together with the hard-wall boundary condition, allows a co- 

ordinate separation. Consequently, the wave function of an exciton in the 

vicinity of subband bottom (with center-of-mass momentum Px ~ 0) is given 

by4 

# = #(x, yet yh, ze, zh) = gt{x, T))ipe{ye, ze)iph{yh, zh) (2) 

= 9t{x, V)<Pe(ye)Myh)Xe{ze)Xh{Zh), 

where gt{x,rj) is chosen to be the Gaussian-type "orbital" function: 

in which 77 is a variational parameter which defines the exciton size ("longitu- 

dinal length"), and x is the relative electron-hole coordinate. The subscripts 

in xeth,ye,h,Ze,h identify them as electron or hole coordinates. The variables 

Xe,h(ze,h) are the z-components of the wave functions which are not affected 

by the magnetic field. They are given by particle-in-a-box states. The elec- 

tron and hole wave functions along the y direction, <f>eih(ye,h), are to be cal- 

culated numerically when a magnetic field is present. This is done by solving 

the one-particle Schrödinger equation using a finite difference method.10 

In order to find an exciton "length" rj, we use the variational approach of 

minimizing the energy given by < ^\Hx\^f >, where the exciton Hamiltonian 

is 

2M     2fj. 2me 2mh 
w 

+   eB^~Vh^px + eB(ye/me + yh/mh)px + ^-(y2Jme + yl/mh) 

+   Uc(xe, xh, ye, yh, ze, zh) + Us{ye, yh, ze, zh). 

Here we have chosen the Landau gauge A — (—By, 0,0). The quanti- 

ties me,mh, are the effective masses of electrons and holes respectively, 

l/n(= l/me + 1/m/i) is the exciton's reduced mass, Uc{xe,xh,ye,yh,ze,zh) 

is the electron-hole Coulomb interaction term, Us(ye,yh,ze,Zh) is the spa- 

tial confinement potentials for electrons and holes along y and z directions. 



Details of the variational procedure, calculations of 77, etc., can be found in 

some of our earlier work.4 

We can find the oscillator strength of the exciton transition a0 and the 

LT splitting by'evaluating the momentum matrix element which is given as 

|M*|2H^/^M*^W*)la, (5) 

where MCT is the valence-band to conduction-band dipole matrix element, 

and k is again the wave vector along the unconfined direction of the wire. 

When the A; dependence of Mw is neglected, Eq. (5) reduces to the simple 

expression 

|M^|2 = |Ma;|
2|^(x = 0,7?)|

2. (6) 

The exciton oscillator strength per unit length can be written as follows 

2    |M*|2. (7) 
mdhuJc 

Here hu0 = EG + Et\ + Ehh\ - min< ^f\H\^ > is the exciton ground state 

energy, EG is the fundamental bandgap of the bulk material, JE?ei, Ehhi are 

the lowest electron and the highest heavy hole magneto-electric subband 

bottom energies in a quantum wire measured from the bottom of the bulk 

conduction band and the top of the bulk valence band, and m0 is the free 

electron mass. The exciton IT splitting ÜLT = fu^ur can now be written as 

to    fcaüü *L|M2|,. (8) 
€0 m0e0 

In Fig. 1 we present the LT splitting calculated for different wire dimen- 

sions and magnetic flux densities. The physical parameters used for the calcu- 

lations correspond to a GaAs quantum wire with e = 12.9e0, EQ = 1.515eV, 

me = 0.067mo, rrih = 0.5mo, where m0 is free electron mass and e0 is electri- 

cal permitivitty of free space, J5el, Ehh\ are calculated numerically following 

the prescriptions of Refs. [10,11]. One can see from the figure, that the ex- 

citon splitting is sensitive to the spatial confinement and increases by about 

60 % when the wire width decreases from 500 A to 50 A. A magnetic field 
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Figure 1: Longitudinal-transverse splitting of an exciton as a function of 
wire width (left pannel); and as a function of magnetic flux density for a 
500 A wide wire (right panel). For both panels, the upper and lower curves 
correspond to 200 A and 500A thick wires, respectively. 

also increases the splitting (and oscillator strength) thus making the exciton 

polaritons more stable. 

IV. Refractive index and decay parameter 

The experimentally observed higher transparency of the medium of prop- 

agation in polariton transport regime has been attributed to certain features 

of the dispersion law for excitonic polaritons and to the fact that polariton 

transport by itself cannot cause true absorption. In order for absorption to 

occur, polaritons have to be scattered inelastically, e.g., by phonons. The on- 

set of polariton transport through some structure is governed by the exciton 



polariton coherence length related to the exciton decay parameter V = hj. 

It has been shown, both experimentally and theoretically, that there exists 

a critical value of the exciton decay parameter, Tc, which corresponds to a 

change in the nature of absorption.5'6 Here we intend to examine the influence 

of spatial confinement and a magnetic field on this parameter and calculate 

the refractive index of a quantum wire in the polariton regime. 

Confining ourselves to the TE waves relevant to light propagation in the 

medium, we can write polariton dispersion in the following form 

c2*2 

e(u,k) = -r = n2. (9) 
w2 

Combining this equation with Eq. (1), and after some algebra, we obtain 

^n4 + (w2_w2_i7W_eo^)n2_€o(w2_a;2_i7a; + 2w£Ta;o) = Q    (10) 

This equation can be solved for two sets of the refractive indices, n\ and n2, 

corresponding to different transverse polariton branches. It also follows from 

Eq. (10) that if the damping parameter T becomes larger than the critical 

value   

^^,^ = 2^^, (11) 

then only one light wave mode can propagate in the medium, since there is 

only one real solution for n. This is the boundary of the polariton propaga- 

tion regime. The critical value comes about because of the term frk?cj0/M 

associated with spatial dispersion effects. The physical importance of the 

critical damping can be illustrated by the following example. It was shown6 

that when the damping exceeds the critical value, the integral absorption is 

independent of V and proportional to the oscillator strength of transitions 

(non-polariton regime). When T < Tc, the integral absorption depends on T 

linearly, and decreases with decreasing damping. 

Using the results from the previous section, we can calculate Vc for dif- 

ferent values of wire widths and magnetic field. In Fig. 2 we present the 

critical exciton damping (decay) parameter as a function of wire width. It is 
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Figure 2: The critical exciton decay parameter (damping) as a function of 
wire width. The upper and lower curves correspond to the thickness along 
the z-direction of 200 A and 300 A, respectively. 

normalized by the value of the decay parameter of a very wide wire (1^=700 

A) which is wide enough to be approaching the 2D limit. For this wide 

wire, rc « 1.01 meV. Combining Eqs. (7, 8, 11) we can also estimate the 

magnetic field dependence of the critical decay parameter using the formula 

rc(B)/rc(0) = {u)o{B)/uo{0))y/uLT{B)/uLT(0)- Although not shown here, 

the magnetic field dependence of the critical parameter is weak; it increases 

only 5% at a magnetic flux density of 5 tesla. The strong dependence of the 

critical damping on the wire width may lead to a pronounced modification of 

the integral (total) absorption of systems consisting of a number of narrow 

quantum wires. 

We can now find a temperature which corresponds to the critical damp- 

ing from the relation TC = T0 + Tph{Tc), where T0 is the damping associ- 

ated with the impurity and other temperature-independent elastic scatter- 

ing, while Tph{Tc) represents interactions with acoustic and optical phonons. 

By increasing rc one can increase Tc which defines the onset of polariton 

transport and, as a consequence, higher transparency. 



Since there is no data available on quantum wires, we assume that the 

half-width at half maximum (HWHM) of the exciton resonance in a quantum 

wire is the same as in a 200 Ä thick GaAs/AlGaAs quantum well. Using the 

approximation<pf Ref [11] we may write for our case (energy units are meV) 

Tc = T+ + 0.00147TC + 4.0(ehu*h/kBT< - 1)_1 + Tirnpe~EblkBT<, (12) 

where huph = 36 meV is a longitudinal optical phonon energy, kB is the 

Boltzman constant, Eb « 10 meV is the everage binding energy for donor 

impurities in GaAs, Timp = 0.75 meV is a linewidth due to fully ionized 

impurity scattering, T+ « 0.45 meV is the linewidth due to inhomogeneous 

fluctuations of the wire thickness. The values chosen for the various param- 

eters are typical of experimental systems reported in the literature. 

Table I. Critical temperature vs. wire width 

Lv, (A) 500 300 100 
rc, (meV) 1.09 1.16 1.45 

Tc, (K) 118 138 169 

Solving Eq. (12) for the temperature Tc for each value of rc(Lj,iZ, JB), we 

are able to obtain the dependence of the critical temperature on the wire 

width. The thickness of the wire, Lz, was fixed at 200Ä for this calculation. 

As one can see from Table I, that the critical temperature Tc, that defines the 

onset of polariton transport, can be controlled over a wide range by changing 

the wire width Ly. 

Now let us assume that T <TC (exciton polariton regime) and find the 

refractive index of the quantum wire in the vicinity of polariton resonance. 

In order to do this, we make use of Pekar's additional boundary condition 

(total polarization is zero at the boundary) and write the effective refractive 

index as 

neff = 
HI +712 

(13) 

In Fig. 3, we present the real (upper panel) and imaginary (lower panel) 

parts of the refractive index of a quantum wire with thickness 200 Ä  and 
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Figure 3: The refractive index of the wire in the vicinity of exciton resonance. 
The solid, dashed and dash-dotted curves correspond to a 0, 1, and 5 tesla 
magnetic flux density, respectively. 

width 300 A. An external transverse magnetic field is applied along the 

thickness. The decay parameter, is chosen to be T = lmeV which is less 

than Tc for the given wire dimensions. As one can see from the figure, the 

maximum of the real part of the refractive index is as large as 4.97 at zero 

field and 5.04 at 5 tesla magnetic field; It is about 1.4 times larger than 

that of the bulk material. The refractive index attains its maximum value 

at a photon energy slightly lower than the resonance energy ficjj0(Ly!Z,B) 

at any given magnetic field B. The minimum value of the refractive index, 

which is 1.66 for zero field and 1.59 for 5 tesla, is located at a frequency of 

u0{LytZ, B) +ULT{Ly,z, B). It is interesting to note that efficient waveguiding 

can be achieved in the spectral range where the real part of the refractive 

index increases. However, in this region, the imaginary part of the refractive 

index (extinction coefficient) also peaks and this increases the transmission 
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loss. The mitigating factor in all this is that the two peaks do not occur at 

exactly the same frequency so that an optimal region for optical waveguiding 

exists. 

A magnetic field of 5 tesla blue-shifts the refractive index peak by 2 meV. 

According to Ref. [13], approximately the same magnitude of an opposite 

red-shift can be achieved by applying an electric field of about 4xl04 V/cm. 

However, the electric field leads to a 15-20 % increase in exciton radius and a 

concomitant decrease in the binding energy. This, in turn, causes a decrease 

in exciton LT splitting and makes exciton polaritons less stable. Note that 

while an electric field will tend to ionize an exciton by pulling the electron 

and hole apart, a magnetic field has the opposite effect. It squeezes the 

electron and hole even tighter together and increases the binding energy. 

Therefore, the magnetic field can be used to advantage in this context since 

it shifts the peaks in frequency while actually increasing polariton stability. 

This frequency tuning capability, acquired without a penalty in polariton 

stability, is obviously very attractive and has device applications. 

VI. Conclusions 

In this paper, we have calculated the refractive index of a quantum wire 

waveguide in the vicinity of polariton resonance. The critical values of the 

exciton decay parameter and associated temperature were also found taking 

into account the effects of spatial corifinement and an external magnetic 

field. Our results show that confinement of excitons to one dimension and 

the application of a magnetic field may lead to the extension of temperature 

and spatial limits of polariton transport. The magnetic field can be used to 

shift refractive index peaks in frequency - without compromising polariton 

stability - thus providing a much-desired tuning capability. 
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The magnetic-field dependence of the third-order excitonic nonlinear susceptibility x0) in a quantum wire is 
explored within the rotating wave approximation. Both the real and imaginary parts of *f3\ arising from 
population saturation of the excitonic state under optical pumping, are calculated for a GaAs wire as a function 
of magnetic field and pump-probe detuning frequencies. The imaginary part of *(3) exhibits a negative peak 
associated with the bleaching of the excitonic resonance and a positive, broad, off-resonance absorption peak 
associated with biexciton formation. The amplitude, line shape, and spectral frequency of both these peaks can 
be modulated by a magnetic field which indicates the possibility of using such a field to probe the mechanism 
underlying optical nonlinearity in a quantum wire. Furthermore, the field can also be used to tune the optical 
nonlinearity over a range of frequencies which has device applications. [S0163-1829(96)04228-2] 

I. LNTRODUCTION 

It is well known that quasi-one-dimensional systems 
(quantum wires) exhibit giant third-order nonlinear suscepti- 
bility x(3) under optical pumping because of quantum con- 
finement of excitons and polyexcitonic complexes.1,2 A mag- 
netic field further increases the confinement by localizing the 
electron and hole wave functions, leading to even larger 
X(3). This allows one to modulate the nonlinear refractive 
index and absorption (or gain) in quantum wires with a mag- 
netic field, thereby opening up the possibility of realizing 
externally tunable couplers, limiters, phase shifters, 
switches, etc. Furthermore, the field can also be used as an 
experimental tool to extract the specific mechanism respon- 
sible for the optical nonlinearity in the system. 

In this paper, we will investigate the effects of a magnetic 
field on optical nonlinearity (and the associated *(3)) in a 
quantum wire caused by exciton-exciton interaction, and for- 
mation of excitonic molecules (specifically biexcitons). This 
interaction is likely to be the dominant mechanism for opti- 
cal nonlinearity, and the leading contribution to *(3) in quan- 
tum wires of most technologically important semiconductors. 
Recently some researchers2,3 reported experimental observa- 
tions of giant optical nonlinearity in quantum wires which 
they attributed to this mechanism. The enhanced nonlinearity 
is undoubtedly caused by quantum confinement which in- 
creases the binding energy of all excitonic complexes. Addi- 
tionally, the oscillator strength for the lowest-energy exciton- 
to-biexciton transition increases and gives rise to huge third- 
order susceptibilities. This oscillator strength is already 
significant because the biexciton radius is very large, and a 
second photon (two-photon absorption) in the volume of an 
excitonic molecule can be easily found and absorbed to cre- 
ate the molecule. 

In Sec. II, we outline the theoretical framework that was 
used for calculating *<3) associated with population satura- 
tion of the excitonic state and biexciton formation. Section 
III presents the results of our numerical computation fol- 
lowed by a discussion. We also compare the results that we 

obtain (in the absence of any magnetic field) with the theo- 
retical calculations of Ref. 4, and with available experimen- 
tal data. Conclusions are given in Sec. IV. 

II. THEORETICAL MODEL 

We consider a rectangular GaAs quantum wire of the ge- 
ometry shown in the inset of Fig. 1. An external magnetic 
field of flux density B is applied perpendicular to the wire 
axis, as indicated in the inset. In order to'calculate x(3) for 
this system, we make the following assumptions: (i) x0) is 
measured in a nondegenerate pump-and-probe spectroscopy 
experiment with nearly resonant pumping of the excitonic 

■ state; (ii) the exciton gas is sufficiently dilute that higher- 
order complexes (beyond the biexcitonic state) can be ne- 
glected; (iii) the rotating wave approximation5 is valid; and 
(iv) in the frequency range of interest, the lowest-lying states 
are the major contributors to x(3) and therefore we can treat 
the system approximately as a two-level system. 

Following Ishihara2 and Madarasz et a/.,4 we can write 
the third-order susceptibility as follows: 

-2     T   N0e<    . 

x     —ir= T7 J,^ Ep 

l 

l 
(0>! ■<u io + Tf0) 

r=\ 

1 

1 

(£üg0-w2+iTi0) 

{ü>r-ü)g0 + llgo)\\ 

where o>2 and b)X are the pump and probe frequencies, 
hcog0 is the exciton ground-state energy, ha>b is the biexci- 
ton binding energy, m0 is the rest mass of a free electron, and 
N0 is the average areal density of unit cells. The quantities 
r« and y sit the transverse and longitudinal broadening pa- 
rameters (or damping constants), and Ep is the Kane matrix 
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FIG. 1. The absolute value of the third-order 
susceptibility ^(3) (for resonant excitation) as a 
function of wire width for two different values of 
magnetic field. The inset shows the wire geom- 
etry and the orientation of the magnetic field. The 
wire thickness along the ; direction is 200 A . 
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element. The indices i or; indicates system ground state (0), 
exciton ground state (g), and biexciton ground state (£). 
The values of the parameters used are listed in Table I, and 
correspond to GaAs. Parameters 77 and r physically corre- 
spond to the exciton and biexciton correlation lengths (elec- 
tron hole and hole hole mean separations in the two cases), 
and have to be determined variationally for each magnetic- 
field strength and for each set of wire dimensions following 
the prescription given in Refs. 6 and 7. 

The exciton ground-state energy Awj0 is defined as fol- 
lows: 

^-^W£0-£G + £*l + £hhl_£fl. (2) 

where Ec is a bulk band gap of the material, Eel and E^ [ 
are the lowest electron and the highest heavy-hole magneto- 
electric subband bottom energies in a quantum wire (mea- 
sured from the bottom of the bulk conduction band and the 
top of the bulk valence band) respectively, and Eg is the 
ground-state exciton binding energy which is also deter- 
mined variationally.6,7 

One should note from Eq. (l) that ^(3) is a strong function 
of the transverse and longitudinal broadening parameters 
Tfj and y. Physically, y is related to the population decay 
rate of the excitonic states. The smaller the value of y, the 
larger the lifetime of excitons and the higher the probability 
of forming a biexciton in a two-step photon absorption. The 
transverse broadening parameters Ty represent, for i&j, the 
phenomenological coherence decay rate of the ij transition, 
while, for /=;, they describe the population decay of the 

TABLE I. Physical parameters for GaAs. 

EG= 1.519 eV 
ftr=3 meV 
£,=23 eV 
JV0=7.89X1014/cm2 

state i. The population decay rate, in its turn, is determined 
by the dominant scattering mechanism in the sample. In most 
cases, the values of r,;- and y are difficult to obtain experi- 
mentally, and fairly difficult to estimate theoretically. More- 
over, these parameters could be strong functions of the con- 
finement, population density of excitons, magnetic field, and 
temperature. In view of little experimental data available, 
and in order to simplify the calculations, we assume that 
T{j=T for all i and;. 

Since in this work we are interested in the modulation of 
the nonlinear response of quantum wires with a magnetic 
field, the influence of the field on the above parameters is 
especially important. The value of T in quantum wires is 
primarily determined by carrier-phonon interaction.8 As 
shown in Ref. 8, the scattering rates associated with these 
interactions can be affected by a magnetic field at any given 
kinetic energy of an electron or hole. However, when the 
rates are averaged over the energy, the magnetic-field depen- 

' 'dence turns out to be quite weak. As a first approximation, 
we can therefore consider the rates to be independent of the 
magnetic field. We also neglect thermal broadening of the 
damping parameters, since it is less important in quantum 
confined systems than in bulk.9 An important property of Eq. 
(1) is the following. If all the transverse relaxation param- 
eters are assumed to be equal (like in our case) and the biex- 
citon binding energy (hcob) approaches zero, then x(3) van- 
ishes. This is a reflection of the well-known fact that 
noninteracting ideal independent bosons do not show any 
nonlinearity.10 Consequently, exciton-exciton interaction, 
leading to biexciton formation, is necessary for the existence 
of nonlinearity. 

A calculation of the excitonic contribution to x(3) requires 
that the exciton and biexciton binding energies be obtained 
first. Additionally, the parameters 77 and T need to be found. 
For details of computing these energies and these parameters 
in the case of a quantum wire subjected to a magnetic field, 
we refer the reader to our past work.6,7,11 Once these quan- 
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tities are evaluated, we can calculate #(3) from Eq. (1) as a 
function of magnetic field, wire width, and pump-probe de- 
tuning frequencies. 

HI. RESULTS AND DISCUSSION 

All results in this paper are pertinent to GaAs quantum 
wires. In Fig. 1, we plot the absolute value of x(3) as a 
function of the wire width for a fixed wire thickness of 200 
A , with and without a magnetic field. The susceptibility 
peaks at about 0.97 esu, corresponding to a wire width of 
about 100-120 A . The sharp drop at smaller wire widths is 
caused by a fast rise in electron and hole confinement ener- 
gies Eel and £hhl with shrinking wire width. This rise is 
faster than the rise in the exciton binding energy E'B, which 
eventually leads to a decrease in |^(j)|. For dimensions 
larger than 120-150 Ä , the ground-state energy varies little, 
and the behavior of x(3) is primarily determined by the ef- 
fective exciton and biexciton correlation lengths r and 77. 
When no magnetic field is present, both T and 77 increase 
with increasing wire width, but 77 increases at a faster rate. 
Consequently, the term (r/772) decreases monotonically with 
increasing wire width, making x(3) decrease. This decrease 
is somewhat offset by the variation of the ground-state exci- 
ton energy, which causes the roll-off rate to be more gentle 
than at small wire widths. For a nonzero magnetic field (of 
10 T), the exciton radius 77 in a quantum wire has a non- 
monotonic dependence on wire width which results in a well- 
resolved maximum in 77. This rather surprising behavior was 
reported by us earlier,11 and explained in terms of the 
complementary roles of electrostatic and magnetostatic con- 
finement. The biexciton radius T also has a maximum, but it 
is much broader and shallower than the one associated with 
77. Consequently, there exists a minimum in the ratio rlrf 
which causes x(3) to exhibit a nonmonotonic dependence on 
the wire width (past the maximum) when a magnetic field is 
present. This accounts for the broad valley in the curve when 
a magnetic field of 10 T is applied. 

In Figs. 2-4 we have calculated Im^{3) for a two-beam 
experiment in which the frequency of one beam, the pump, is 
fixed, and that of the other, the probe, is allowed to vary over 
a frequency range of AAOJ=40 meV centered around the 
pump frequency. In Figs. 2 and 4, the pump frequency is 
chosen to be resonant with the exciton ground-state transi- 
tion, and in Fig. 3 the pump is detuned from the exciton 
resonance by a frequency -I7(21/2A). It is important to 
remember that since the ground-state exciton binding energy 
is a function of magnetic field, the pump should be retuned 
every time the magnetic field changes. In all figures, the 
imaginary part of the third-order susceptibility is plotted for 
four values of magnetic field. The significance of Im^(3) is in 
that it is proportional to the differential change in the optical 
transmission or in the absorption coefficient A a. This rela- 
tion is given by the formula 

Im* (3) = 
c2noAa(oj) 

(3) 
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FIG. 2. The imaginary part of the third-order susceptibility as a 
function of the probe detuning energy for a dual-beam pump-probe 
experiment. The pump is set at exciton resonance for each value of 
magnetic field, and the longitudinal broadening parameter is as- 
sumed to be one-tenth the value of the transverse broadening pa- 
rameters. 

absorption and negative peaks to the spectral regions of 
strong transmission (bleaching bands). 

Figure 4 illustrates the dependence of third-order suscep- 
tibility on the longitudinal broadening parameters y (atten- 
tion should be paid to the change of scale along the vertical 
axis compared to Fig. 2). The difference between Figs. 2 and 
4 is that, in the former case, the longitudinal broadening 
parameter is one-tenth that of the transverse broadening pa- 
rameter, whereas in the latter figure they are equal. Im^35 is 
extremely sensitive to the magnitude of y: varying this 
damping parameter from 7=0.IT to y=r changes the value 
of Im^(3) by more than an order of magnitude. 

where «0 is a linear refractive index, c is the speed of light, 
and I(co) is the intensity of a resonant monochromatic light 
beam. Positive peaks in Im^(3> will correspond to strong 

-5        0       5 
PROBE DETUNING  (m«V) 

FIG. 3. The imaginary part of the third-order optical suscepti- 
bility as a function of the probe detuning energy for a dual-beam 
pump-probe experiment. The pump is detuned slightly below the 
exciton resonance for each value of magnetic field. Again, the lon- 
gitudinal broadening parameter is one-tenth the value of the trans- 
verse broadening parameters as in Fig. 2. 
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FIG. 4. The imaginary part of the third-order optical suscepti- 
bility as a function of the probe detuning energy for a dual-beam 
pump-probe experiment. The pump is set at exciton resonance at 
each value of a magnetic field as in Fig. 2, but the longitudinal 
broadening parameter is equal to the transverse broadening param- 
eters. Attention should be paid to the change of scale along the 
vertical axis compared to Fig. 2. 

A pronounced negative peak is present in all of the spec- 
tra. It represents a strong transmission which is due to a 
saturation (or bleaching) of the excitonic state. Physically, 
the initial exciton population created by the pump beam 
tends to amplify the probe beam when its energy is tuned at 
or near the exciton ground state (this corresponds to the lin- 
ear gain peak). A magnetic field makes the peak deeper, 
without significant broadening, thus enhancing transmission 
further. At first glance, it may surprise the reader that the 
peak is not shifted in frequency by the magnetic field even 
though the exciton binding energy depends on the magnetic 
field. The reason for this is that the probe beam is retuned to 
the exciton resonance for each value of the magnetic field, so 
that no frequency shift should arise. 

Another feature of interest in all of these plots is in the 
region of positive Im^(3> that corresponds to optical absorp-' > 
tion. This absorption may be attributed to the formation of 
the excitonic molecule (biexciton).4,13,14 The initial exciton 
population enables the probe to be more strongly absorbed 
when its energy matches the exciton-biexciton transition en- 
ergy h(<j)SQ-cüb). Consequently, at zero magnetic field, the 
positive peak is separated from the exciton resonance by ap- 
proximately -5 meV, which corresponds to the biexciton 
binding energy for this case. At a magnetic flux density of 5 
T the peak separation is about -7.5 meV, which again cor- 
responds to the biexciton binding energy, this time for a flux 
density of 5 T. Such a dependence of the energy difference 
between transmission (negative peak) and absorption (posi- 
tive peak) on a magnetic field can be used to modulate the 
optical properties of a quantum wire with an external field. It 
can also be used as a means to determine the particular 
mechanism causing nonlinearity in a quantum wire. Note 
that the energy separation between the peaks is not seriously 
affected by the increasing damping (see Fig. 4) or by the 
detuning of the pump (see Fig. 3). As a result, this technique 
of modulation with a magnetic field cannot only be used to 

-20 -15 -10 -5 0 5 10 15 20 
PROBE DETUNING RELATIVE TO ZERO FIEL0 EXCITON RESONANCE (meV) 

FIG. 5. The imaginary part of the third-order susceptibility as a 
function of the probe detuning energy for a dual-beam pump-probe 
experiment. The pump is now set at the exciton resonance at zero 
magnetic field and not retuned every time the magnetic field 
changes. Again, the longitudinal broadening parameter is one-tenth 
the value of the transverse broadening parameters as in Fig. 2. Due 
to the pump detuning at nonzero magnetic field, both exciton and 
biexciton resonances are quenched. 

extract the mechanism responsible for nonlinearity, but also 
to measure biexciton binding energies and their dependences 
on a magnetic field. 

Figure 5 shows Imx(3) for four values of a magnetic field 
and a small longitudinal damping y=0.ir. The difference 
between this case and the one presented in Fig. 2 is that now 
the pump beam is permanently tuned to the exciton reso- 
nance at zero magnetic field, and not retuned every time the 
magnetic field changes. Since the ground-state exciton en- 
ergy is a function of magnetic field, the negative peak in Fig. 
5 is now shifted by the applied magnetic field. Another im- 
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lj-200A.ly=700A:-* 

-'•*0 2 4 6 8 10 12 14 16 18 

MAGNETIC R.UX DENSITY (tesla) 

FIG. 6. The imaginary part of the third-order susceptibility as a 
function of an applied magnetic field for two different wire widths. 
The thickness of the wire is 200 A . The effect of a magnetic field 
is more pronounced for a wider wire since the wave functions of the 
electrons and holes are "softer" and more "squeezable" by a mag- 
netic field if the wire is wider. 
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FIG. 7. The real part of the third-order susceptibility as a func- 
tion of an applied magnetic field for two different wire widths. The 
thickness of the wire is 200 A . 

portant feature to notice is that when the pump is not tuned 
to an exciton resonance at a particular magnetic field, the 
magnitudes of both the positive and negative peaks are re- 
duced by the magnetic field, leading to a quenching of both 
absorption and transmission. This effect is opposite to what 
is observed when the pump is tuned to the exciton resonance. 
However, this effect has immediate device applications such 
as the quantum-confined Lorentz effect.15 

In Figs. 6 and 7 we present the imaginary and real parts of 
the third-order susceptibility as functions of an applied mag- 
netic field for two different wire widths. The effect of a 
magnetic field is quite strong. At a magnetic flux density of 
10 T, |Imx(3)| is approximately three times larger than at 
zero field for the 700 Ä -wide wire. Again, the effect of a 
magnetic field is more pronounced for wider wires, since in 
wider wires the magnetostatic localization is stronger.11 

We have compared our results for zero magnetic field 
with those given in Ref. 4. The ground-state binding energies 
for both excitons and biexcitons are in excellent qualitative 
agreement. Some discrepancy can be attributed to different 
values of electron and hole effective masses used in our cal- 
culations and the calculations of Ref. 4. We also compare 
our binding energy results with the experimental observa- 
tions of Refs. 16-18. Since Ref. 16 employed T-shaped edge 
quantum wires whose geometries are very different from 
ours, a direct quantitative comparison is not possible. None- 
theless, we find that our numerical results are within the 
same order of magnitude as theirs, and that their data are in 
excellent qualitative agreement with ours. The Imx(3) curves 
for zero magnetic field are also consistent with those given in 
Refs. 4,14, and 19. In Fig. 8, we present a direct comparison 
of the wire-width dependence of *(3) obtained with zero 
magnetic field with the result given in Ref. 4. The slight 
discrepancy of 15-20 % is a result of using different electron 
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FIG. 8. Comparison of the wire-width dependence of the abso- 
lute value of the third-order susceptibility (resonant excitation) with 
the result given in Ref. 4. The discrepancy (15-20 9c) is an after- 
math of different values of material parameters used in the two 
studies. The thickness of the wire is 200 A in both cases. 

and hole effective masses in the calculation of exciton and 
biexciton binding energies. Other factors, such as the exact 
choice of the variational wave function, also contribute to the 
difference. 

Again, in most cases, a complete quantitative comparison 
of the data is not possible because of the different geometry 
of the wires used. In our model calculations, we utilized wire 
sizes that are typical for structures delineated by lithography, 
and that correspond to the regime of moderate quantum con- 
finement. 

rv. CONCLUSION 

We have investigated the effects of a magnetic field on 
the third-order nonlinear susceptibility in quantum wires. 
The magnetic field modulates the frequency shift between 
the transmission peak associated with the bleaching of exci- 
tonic transitions and the absorption peak associated with the 
formation of excitonic molecules (biexcitons). Additionally, 
the field also affects the magnitudes of the peaks. These ef- 
fects can be utilized for magneto-optical devices, and can 
also be used as a tool to probe the precise mechanism re- 
sponsible for optical nonlinearity in quantum wires. 
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