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MODAL LOGICS FOR CONTINUOUS DYNAMICS 

Jennifer M. Davoren, Ph.D. 

Cornell University 1998 

This work is a formal investigation of a number of bimodal and polymodal logics built 
on a base of propositional S4, and is a contribution to the theory of hybrid control 
systems. It is the first stage of a larger project of developing logics for the design and 
verification of such systems. A hybrid control system is a network of finite-state digital 
machines which act on and react to a dynamically changing environment, where such 
environments may have mixed analog and digital states. Following Nerode, I look 
to topology to provide a mediating link between the analog and digital worlds; S4 
is taken as a logical foundation since from Tarski and McKinsey, it is the logic of 
topology. 

The base logic S4F adds to the O (topological interior) of S4 a modality [a] for 
representing the effect of an action in an environment; [a] is interpreted by a total 
function. In this logic, the continuity of a function with respect to a topology is 
expressible by the scheme: [a]£2(p —> 0[a](p. In the second stage of this study, a 
fragment of deterministic propositional dynamic logic DPDL is overlaid on S4F to 
produce a new modal dynamic logic. In the resulting logic, called TPDL (topological 
propositional dynamic logic), atomic actions are interpreted by continuous functions, 
and complex actions are formed under the Kleene operations of composition, choice 
and iteration. 

Both a Tarski-style topological semantics and a Kripke semantics are presented 
for the logics. Building on work of Grzegorczyk, I identify a subclass of topological 
structures naturally dual to Kripke frames. Topologies in this class are such that 
every point is contained in a smallest open set. As argued by Nerode, these are 
precisely the topologies needed to give an account of analog-to-digital conversion. 

In addition to Hubert-style axiomatizations, tableaux proof systems are presented 
for each of the logics and proved complete. The tableaux completeness proofs con- 
struct countable T0 topologies whose elements are functional terms, in which the 
term constructor functions are continuous. Finite quotients of the term model are 
obtained, so establishing the decidability of each of the logics. 



Just as this investigation was being completed, the author obtained abstracts of 
very recent work by Kremer, Mints and Rybakov on "Dynamic Topological Logics" 
(DTL's), which are S4-based propositional dynamic logics. Their logics include 
a "next" operator corresponding to the [a] modality, for a single atomic action a, 
and a "star" operator corresponding to [a*] for atomic a. The abstracts announce 
axiomatizations of various fragments; for example, the star-free fragment of the logic 
DTLft of homeomorphic functions. 
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Chapter 1 

Modal Logics for Continuous 
Dynamics 

1.1     Introduction 

This work is principally a formal investigation of a number of modal logics — bimodal 
and polymodal logics built on a base of prepositional S4. These logics have been 
developed as a contribution to the theory of hybrid control systems, and this work 
is the first stage of a larger project of developing logics for the design, specification, 
and verification of such systems. Broadly described, a hybrid control system is a 
network of finite-state digital machines which react to and act on a dynamically 
changing environment, where such environments may have mixed analog and digital 
states. Research in the emerging area of hybrid systems is aimed at providing reliable, 
formally verified, computer control of physical processes, such as aircraft, power grids, 
and manufacturing facilities. 

There is a fundamental tension between the sorts of mathematical structures used 
to represent analog or physical processes, and the sorts of structures used to represent 
digital devices; indeed, much of the effort in the research area of hybrid systems lies 
in addressing this tension. 

In the analog or "continuous" world view, physical processes are usually modelled 
as some form of input/output dynamical system, or more abstractly, as a collection 
of vector fields, where the state space is usually embeddable in a Euclidean space Rn 

and so contains continuum-many points; in such models, states evolve on trajectories 
x(t) changing continuously with (real) time t G R+. 

In the digital or "discrete" world view1, a digital device or program is usually 

ll will use the pair "analog/digital" rather than "continuous/discrete" to mark 



modelled as some form of finite automaton, with finitely many states and finite input 
and output alphabets; state transitions are modelled as occurring in discrete steps, 
so time moments are usually positive integers n G N. 

Following [NK93a], I look to topology to provide a mediating link between these 
two competing world-views. Propositional S4 is taken as a logical foundation since 
from McKinsey [McK41] and Tarski and McKinsey [MT44], it is the logic of topology. 

1.2    Agents and Actions 

The next two sections are devoted to identifying central concepts and laying out a 
broad framework, with the intention of motivating the logics developed in subsequent 
chapters. An overview of the logics themselves is given in Section 1.4. The framework 
given here is loosely based on Nerode and Kohn's "Multiple Agent Hybrid Control Ar- 
chitecture (MAHCA)" 2 [KN92], [NK93b], [NK93c], [KJN+95], [KR97]. It might best 
be described as an attempt to identify the abstract form of the MAHCA framework, 
simplified to a single agent. 

Starting informally, an agent3 is a "dumb" finite machine operating in and in- 
teracting with a complex environment that includes real or "continuous" space and 
time. Its fundamental operational sequence consists of answering the questi cions: 

"What is the current state of the environment?", or more simply, "Where am I 
now?"; 

"What state should the environment be in?", or "What is my next goal?"; and 

the distinction, reserving the term "continuous" for the property of functions. 
2The core of Kohn-Nerode MAHCA framework is a procedure which, given a per- 

formance specification expressed as an optimization problem of a specific form, ex- 
tracts an e-optimal feedback control function 7 : X -» C, where X is the state space 
and C C Rn is a space of control values. The procedure draws on differential geom- 
etry, calculus of variations, optimal control theory and dynamic programming. This 
procedure is not discussed here. See also [KNR95], [KNR96b], [KNR96b], [BV97]. 

3Although engaging in a not dissimilar endeavor, the present work does not engage 
directly with studies in philosophical logic on the logic of (human) action (see, for ex- 
ample, Segerberg's survey [Seg92] and other papers in that issue of Studia Logica, or 
Horty and Belnap's [HB95]) or the AI literature on action and change using the situa- 
tion calculus and non-monotonic logics (see, for example, Shoham's Reasoning About 
Change [Sho88] and the recent work of Shanahan [Sha97] on the "Frame problem"). 



•  "What action can be taken that will realize the desired goal?", or "What do I 
need to do to get there?" 

and then performing the designated action. 
So, an agent acts in an environment in order to bring about a change in that 

environment. I take a control agent4 to be any finite machine that can: 

(a) sense: acquire input from its environment, e.g. take sensor readings of various 
components of the state of its environment. 

(b) act: effect change in its environment by performing one, or a sequence, of its 
primitive actions. 

(c) convert data: 

(i) convert sense data into digital form, suitable as input for internal finite 
automata, and 

(ii) translate symbolic action instructions, which are digital output from an 
internal finite automaton, into action. 

(d) use knowledge: access a "knowledge base" which includes symbolic descrip- 
tions of the known or predicted effects of its actions on the environment, say of 
the form: 

if the current state is in region A and action a is performed 
then the resulting state is in region B 

where A and B are symbolically described regions or sets of states of the envi- 
ronment, and a is a symbolic representation of an action. 

(e) plan: formulate goals, where a goal is a symbolically described region G of 
the environment. The planning module is some form of finite state automaton, 
internal to the agent, which takes as input digitalized sense data i and utilizes 
the knowledge base to produce a symbolic G as output. 

(f) compute: given as input digitalized sense data i and a goal G, and utilizing 
the knowledge base, determine by finite computation whether there is an action 
it could perform that would realize the given goal; if so, output the symbolic 
action instruction a for that action. This module is also some form of finite 
state automaton. 

4The properties listed here are implicit in the description of the MAHCA "agent 
controllers" in [KN92], [NK93b], [NK93c], [KJN+95], [KR97]. 



(g) adapt: whenever a computation of type (f) fails, report the failure to the 
planning module, which reformulates the goal; failure may also be reported to 
the knowledge base if the language is sufficiently expressive. 

In looking for logics appropriate for such agents, I take the objective to be two-fold: 

(1.) Identify formal languages and logics suitable for the "knowledge base" of an 
agent, so that the computation in (f) might be assisted by an internal on-line 
automated theorem prover, as in the MAHCA architecture. If G is the symbol- 
ically described goal state, and from digitalized sense data input i, it is deter- 
mined that C symbolically describes the current region, then the computation 
in (f) has to find a symbolic action instruction a such that the sentence: 

if the current state is in region C and action a is performed 
then the resulting state is in region G 

is provable from the knowledge base, as formalized in some language and logic. 

(2.) Identify formal languages and logics suitable for (external or off-line) reasoning 
about the behavior of an agent and its interactions with the environment, for 
the use in the formal specification and verification of such systems. 

The modal logics investigated in this work go some way towards both (1.) and 
(2.). Regions of the state space are denoted by modal propositional formulas, and 
the language includes "action modalities" [a], so that the formula: 

C ->• [a]G 

means: 

if C, then action a will always make it the case that G 

But being propositional logics, they are limited in their expressive power. In first- 
order extensions of these logics, one would have a richer vocabulary with which to 
describe regions of the environment. A further stage in this project is to investigate 
decidable fragments of such first-order extensions. 

Having outlined the sort of entity an agent might be, what is an action? Starting 
naively, and taking the simplest case first, I think of an action as anything an agent 
can do whose effect can be modelled deterministically as a total function f : X -* X, 
where the state space A" is a representation of the agent's environment. 

For example, an agent might be part of an automated control system in a man- 
ufacturing plant, say a machine that supervises a tank of liquid chemicals.   Points 



x = (xi, ...,£„) € X might include coordinates x,- for the liquid volume, temperature, 
and concentration of various chemicals in a tank. Global or real time t € R+ is likely 
to be a distinguished coordinate of the state space X; perhaps also a relative time or 
"clock" coordinate such as the time since a particular event took place. In addition to 
real valued coordinates #,-, there could also be discrete valued coordinates represent- 
ing data like whether a particular switch is on or off5. The state space X could also be 
expanded to include coordinates for the agent's own internal states, since the agent 
itself lives in its environment. For an agent in such a system, an action might be 
adding a certain quantity of a chemical to a tank, physically brought about by send- 
ing electrical (analog) signals which activate various mechanical devices (actuators). 
The mathematical representation f(x) of the effect of this action on a state x might 
be a prediction of what the volume, temperature and chemical concentrations etc. 
will be 60 seconds later, with the global time coordinate incremented by 60 seconds, 
assuming it takes say 15 seconds for the chemicals to actually get in the tank. 

The mathematics involved in modelling and predicting the effect of an action in 
a physical system may draw on work in differential equations, functional analysis, 
calculus of variations, dynamical systems, differential geometry, linear and nonlinear 
systems theory, and whatever else is useful. In a mathematical model of the effect of 
an action, call it 9JTanaiog, the state space X representing the environment will usually 
be imbued with a great deal of rich mathematical structure. 

In the paradigmatic case, £DTanaiog imbues X with the structure of a C°° or C 
differentiate manifold and includes a coordinate for positive real time, say X — Y x 
R+. In this case, the function / : X -> X is obtained from the flow F : Y x R+ —y Y 
of a vector field v on Y. A vector field defines a system of differential equations, 
which in favorable circumstances has a unique solution for each initial condition; the 
flow is the family of solutions or trajectories y(t) expressed as a function of initial 
conditions and time. Flows can also be written as a family {Ft}teR+ °f evolution 
operators Ft : Y -» Y given by Ft(y) = F(y,t), which represent how a point y e Y 
(i.e. without the temporal coordinate) will evolve according to vector field v over a 
time interval of duration t. The evolution operators satisfy the semigroup axioms: 

Fo = IK     and     FsoFt = Ft+S 

for t,s € R+, where ly is the identity function on Y. These equations are also 
known as the Chapman-Kolmogorov laws, and are taken to express a principle of 
determinism ([AMR83], §4.1). 

In this setting, a primitive action might be represented as a switching of vector 
fields.   Let v,u be vector fields on V, with flows F, G : Y x R+ —>■ F, respectively. 

5See [KNR96b] for a discussion of ways "continualizing" digital states so that they 
may be treated on an equal footing with real-valued ananlog states. 



Causing some event to occur t units of time hence, then allowing the process to evolve 
for a further s units of time, amounts to: 

the process evolving according to vector field v for time duration t, 
then being switched to vector field u for a further time duration s.' 

Then the effect on a point x — (y, r) is given by: 

f{*) = f(y,T) = ((G.oFt)(y),T + t + 8) 

(In the chemical tank example, t = 15 and s = 45 seconds.)6 Alternatively, a primitive 
action might amount to choosing to stay on the same vector field. In that case, we 
have u = v and G = F, so the effect on a point x = (y, r) is given by: 

/(*) = f(y, r) = {(F, o Ft)(y), r + t + s) = (Ft+S(y), r + t + s) 

Clearly, the effect of a single action can admit many different representations /: 
one can keep the same pair of vector fields but vary the time durations t and s, 
or one may refine the modelling to produce a new pair of vector fields. For now' 
something gets to be called an action if someone, somewhere, can represent it as one 
or more systems of differential equations with unique solutions, solve those equations 
and report back, preferably with a nice computable formula for /. 

To obtain a deterministic representation of the effect of an action, many simplify- 
ing assumptions have to be built in to the model 9Jtanalog

7. There are inevitably some 
factors m the dynamics of the situation that have to be ignored for the purposes of 
modelling; the world (environment) is invariably more complicated than any mathe- 
matical model of it. In particular, deterministic models must ignore the imprecision 
with which an agent interacts with the world. Such modelling will have to assume 
that an agent's actuators behave perfectly and are perfectly precise; for example, that 
precisely g grams of some-chemical is added to a certain location in the tank precisely 
t seconds after a signal is received. Such models also leave no room to talk about 
the precision of an agent's sensors since the modelling is based on the mathematical 
representation of a point x in the state space, not on any sensor reading of x. 

The "switching vector fields" idea of action seems not incompatible with von 
Wright's conception of action in his Causality and Determinism [vW74] (quoted in 
[Seg92]): "To act is to interfere with the course of the world, thereby making true 
something which would not otherwise (i.e. had it not been for this interference) come 
to be true of the world at that stage of its history." (p.39) 

Simplifying assumptions are also required for a non-deterministic modelling as a 
set-valued function / : X -+ V(X), though usually fewer of them. 



1.3     Topologies and Continuity 

One of the novel ideas in [NK93a] is to use a topology on the state space to reflect 
the imprecision with which an agent interacts with the world, and more generally, 
to provide a layer of meaning which mediates between the analog and digital world 
views. 

Formally, a topology T on a space X is any family of subsets of X that is closed 
under finite intersections and arbitrary unions, and contains the empty set 0 and the 
whole space X. Sets U G T are called open (relative to 7"). 

Topologies are often represented by a family Br C T of basic open sets, with the 
property that whenever U is open and x € U, there is a basic open set B G Br such 
that x £ B and B C U. So the basic open sets are the small open sets, and every 
open set is a union of basic open sets. 

Think of the basic open sets of a topology T on a state space X as the simple 
meaningful regions of X. Such sets act as a collection of lenses or filters which mediate 
between an agent and its environment, as represented by X. Thought of as lenses, 
the basic open sets reflect the precision with which points in X can be discriminated. 
Thought of as filters, the basic open sets are what an agent uses to make sense of, or 
give meaning to, continuum-much information. 

For example, the standard topology 7R» on Euclidean space Rn (or more generally, 
any metric space) has as a basis the collection of all balls B(x, e) — the points y of 
distance less than e from x — for all x and all real numbers e > 0. This means 
that any two distinct points x and y can be distinguished by disjoint balls B(x, e) 
and B(y, t) by taking e less than half the distance them, no matter how small that 
is, and for any ball around x, there is a yet smaller ball inside it. So 7R" can be 
thought of as a topology of perfect or infinite precision, generated by uncountably 
many "meaningful regions" B(x, e) shrinking down to a point x. 

In the models fDTanaiog, where X is a C°° or Cr differentiable manifold, the topol- 
ogy Tanalog is inherited from the differential structure; X is locally "identical" (home- 
omorphic) with an open subset of Rn for some n, so 7analog will be a perfect precision 
topology. 

On the other hand, for any physically realizable agent, there are intrinsic limits 
to the precision with which it can interact with its environment. Perfect precision 
is not implementable, and single points in space and time are not physically mean- 
ingful. For example, no physically realizable sensor can discriminate between points 
whose distance apart is smaller than the altitude of light waves. Likewise, no phys- 
ically realizable clock can discriminate between time instances closer together than, 
say, the period of the harmonic oscillation of an electron in a helium atom. In the 
world as we know it, there are smallest discernible regions of space and time. For 
any particular agent and its environment, there will always be smallest meaningful 



quantities, of temperature or volume or whatever, which mark the limits of its powers 
of discrimination. 

Call a topology T on X a, digital topology or D-topology if every point x is contained 
in a smallest open set (relative to T)8. 

So T is a D-topology on X exactly when, for each x <E X, the intersection of all 
open sets containing x: 

Bx = f]{u eT\xeU} 

is itself open, and so is the smallest open set containing x. The D-topology condition is 
the requirement that any descending chain of smaller and smaller open sets containing 
a point x must eventually stop, marking the limits of discrimination, and the region 
Bx at which this descent stops is the smallest meaningful region containing the point 
x. It is readily shown that the collection of all such B^s forms a basis for the topology 
T. Points x and y are indistinguishable through the lenses of T, or have the same 
meaning relative to T, exactly when x and y share the same basic open set in T- i e 
Bx = By. ' 

From within the world view of analog mathematics, D-topologies may seem quite 
bizarre; they lack the "separation" properties that are taken for granted from Chapter 
2 onwards of most texts in analysis or topology or their applications. A D-space (X, T) 
is Hausdorff or even Ti only in the trivial case when the topology T is discrete (i.e. 
every subset of X is open, and supposedly "meaningful".) 

But in the digital world view, D-topologies are just the trick. A D-topology on an 
state space X with continuum-many points is a set of lenses through which one can 
get a digital view of an analog world, or a set of filters in virtue of which a "dumb" 
agent can make sense of continuum-much information. 

From [NK93a], a D-topology T on X naturally defines an analog-to-digital con- 
version. Let {#,},£/ be the collection of distinct sets #, such that 5, = Bx — f]{U € 

8These topologies are "identified in [NK93a], §5.2, by the name "AD-topologies" to 
emphasize that they are topologies suitable for describing analog-to-digital conversion. 
There, the term "small topology" is also used to refer to any subtopology of the 
standard topology on a state space. Any finite small topology is a D-topology. 

D-topologies were first identified by Grzegorczyk in [Grz67], where they are given 
the name "totally distributive" topologies. There, the defining property is: 

CIT(A) = \J^ACIT({X}) 

for all AC X. This is equivalent to the property that an arbitrary union of closed 
sets is closed, or dually, an arbitrary intersection of open sets is open; these properties 
are in turn equivalent to the defining property of D-topologies. 



T I x £ U} for some x € X, where / is a (possibly infinite) discrete index set. Then 
define a map AD : X —)■ / by AD(x) = i iff B, = Z^. So /ID identifies points that 
belong to the same smallest open set in T, and hence belong to all the same open sets 
in T. When / is finite, the AD map models the conversion of sense data into digital 
data suitable as input for internal finite automata, as required in the description of 
an agent. Mathematically, the AD map is just the Stone T0 quotient map; we return 
to this point in Section 3.3. 

For a given agent with a set of primitive actions denoted by {aj}jej, let 

QKanaiog = (X', analog, {fjjjeJ, +more structure) 

denote the mathematical structure in which the functions /_,- : X —> X come from 
the flows of pairs of vector fields associated with actions a7-. Now take a D-topology 
7digitai which is a subtopology of 7Inaiog; i-e. 7digital contains only some of the open 
sets of 7Inaiog? but is closed under arbitrary intersections (as well as arbitrary unions). 
Structures of the form: 

97tdigital = (X, 7digital, ifj}j£j) 

are the ones to keep in mind for the logics subsequently developed in this investigation. 

How might one find a D-topology on XI One sure way is to start with a finite 
open cover X — \Jk<m Uk of sets Uk open in the original topology 7Ina|og, then let 
Tdigitai be the topology obtained by taking all (finite) unions and intersections of the 
t4's. The basic open sets will be those sets 5, that are join-irreducible in 7digitai, 
considered as a lattice of sets; i.e. with the property that whenever B{ C U U V then 
either B{ C U or B{ C V. Such a 7digitai will be a finite topology; i.e. the total 
number of open sets is finite, and all finite topologies are D-topologies. 

If X is compact in the original topology 7Inaiog, then we at least know there is a 
finite open cover X = \Jk<m Uk- 

A harder question: How might one go about finding an open cover, and thence a 
D-topology, which directly encodes a particular agent's (current) level of imprecision, 
and includes regions of the state space that are appropriately meaningful for the 
agent, and open in the original topology 7anaiog? 

Suppose the coordinates of points x (z X = Y x T in the state space are x = 
(xi,...,xn,t), with time t € T C R. As a start, identify a precision limit Si > 0 for 
each non-temporal real-valued coordinate a;,-; i.e. differences between values x, and 
x'{ smaller than Si are not meaningful for the agent. Use the Si as the measure of the 
smallest open set in the projection Xi of X onto its ith coordinate, so any interval 
must be of length at least Si. Then try to identify critical or threshold values c which 
when detected by the agent should instigate action, and add intervals, say of the 
form: 

(c - Si, c + Si) = {xi £ Xi | c - Si < Xi < c + Si} 
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(of length 28i, just for good measure). For example, xt- is temperature and c = 100° 
Celsius so water is boiling. A meaningful region of X{ might be any subset that can be 
defined by a finite set of strict inequalities or constraints9, subject to the requirement 
that the intersection of any collection of meaningful regions is of size at least £,-, so still 
meaningful. Digital coordinates x„ say x, <E {0,1}, can be embedded into an interval 
in the reals and treated similarly. Say treat x{ as a value in the open real interval (0,1) 
and cover it with (0, \) and (|,1) together with the whole interval (0,1). A finite 
cover of the non-temporal part Y of the state space might then be pieced together 
from finite covers of its coordinate projections. For the time coordinate t € T, one 
may want to proceed differently10. One should still identify a precision limit 8 > 0, 
but instead of a finite open cover, it may make more sense to take a countable open 
cover of intervals with intersections of at least length 8. This still gives a D-topology, 
and the 8 > 0 lower bound ensures that any sequence {tk} of timings associated with 
a sequence of actions is non-Zeno or realizable11, meaning only a finite number of 
actions can occur in a finite interval of time. The task of systematically generating 
"meaningful" open covers is a worthy object of further investigation, but it is not 
pursued here. 

The last in my shopping list of concepts is continuity. Informally, a function / on 
a space X is continuous if a small variation between x and y gives rise to only a small 
variation between f(x) and f(y). Thinking of / as the effect of an action, continuity 
seems like a most pleasant and desirable property: the action doesn't give rise to 
big "jumps" or "gaps". Of course, a formal account of "small variation" requires 
reference to a topology. 

Formally, a function / : X -4 X is continuous with respect to a topology T on 
X if whenever a set U is open, then the set of points x which get mapped by-/ into 
U is also open, relative to T; more succinctly, "the inverse-image under / of an open 
set is open", where the inverse-image is: 

f-1(U) = {x\f(x)eU} 

If the open sets in T are the meaningful or discernible regions of the state space, then 
the continuity of / means that whenever U is meaningful or discernible, then so is 
the set f~l{U) of points which get mapped by / into U. 

In the model föTanaiog above, the functions fj-.X-^X are obtained from compo- 
sitions of evolution operators of flows of vector fields.  Under suitable hypotheses, a 

9So we will need a first-order logic if we are to define such regions within the formal 
language. 

10The issue of time as a distinguished variable will be addressed in future investi- 
gations. 

uThe notion of a realizable sequence of times is defined in [NK93a], §2. 
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C vector field has a C flow12, so the fj are always continuous with respect to the 
original topology 7Inaiog (although their derivatives are likely to be discontinuous at 
points where the vector field switches). Note, however, that even when 7digitai is a 

subtopology of 7Inaiog, the continuity of fj w.r.t. the larger topology 71naiog implies 
nothing about the continuity of fj w.r.t. the smaller topology 7digitai- (And con- 
versely, continuity w.r.t. a subtopology implies nothing about continuity w.r.t. the 
full topology.) 

In the case when 7digitai is a finite topology, say from a finite open cover in 7Inaiog, 
with basic open sets {#,-},■<„, we have for each i < n, 

rH*) = \JieJ, B, 

for some index set </, C {0, ...,ra — 1}, since f~l{B{) being open is a union of basic 
open sets in 7digltai- This means one can write out all the basic inclusion relations, 
for each i < n and j G «A, 

i.e. 
if x G Bj   then  f(x) G B, 

which completely map out the behavior of / on open sets. When / represents the 
effect of an action a, this translates as: 

if Bj then action a will always make it the case that Bi 

A symbolic representation of such inclusions is the sort of thing that should be found 
in the knowledge base of an agent. 

More generally, when / is continuous with respect to any D-topology 7digitai on X, 
then whenever x and y share the same smallest open set, and so are indistinguishable 
through the lenses-of 7dig-,taii or have the same meaning relative to 7digitai, their images 
f(x) and f(y) will also share the same smallest open set and so be indistinguishable 
relative to 7digItai- So the continuity of / with respect to 7digitai means that the action 
represented by / respects or preserves the precision limitations and meanings of the 
agent, as those limitations and meanings are reflected in 7digitai- 

So as argued in [NK93a], continuity of / with respect to a suitable D-topology 
can be construed as a performance specification. To formally verify that such a 
specification is satisfied, we need a logic in which the purely topological notion of 
continuity is expressible. 

12A C function is continuous, and for 1 < n < r, its nth derivative is also contin- 
uous. 
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1.4     Overview of the Logics 

Starting from first principles, I begin by looking for the simplest logic available in 
which the purely topological notion of continuity is expressible. From the definition: 
"the inverse-image of an open set is open", the two ingredients are open sets and 
functions, so both must be expressible in the logic. The investigation starts with 
a bimodal logic S4F combining two "off-the-shelf" logics: propositional S4 and a 
modal logic known as KF ("F" for "function"). 

From McKinsey and Tarski in [McK41] and [MT44], the S4 axioms for D, namely: 

DK :    D(<p -> V) -> (Ev -» °*!>) 
OT :     Dip -xp 
□4 :      Dip -^ DDip 

characterize the interior operator of a topology, and dually, the S4 O corresponds to 
the closure operator. A set is open in a topology when it is equal to its own interior, so 
'V is open" is expressed by the formula <p -B- Dip. In the relational Kripke semantics 
[Kri63], S4 is the logic of reflexive and transitive binary relations. Continuing the 
metaphors of the basic open sets of a topology as a set of lenses or filters, the formula 
Dip might be read as "discernibly <p" or "meaningfully ip", since 

||üy>||=S= intT (IMI) 

is the union of all basic open sets contained in ||<p||. 

The axioms for the "Box" modality of KF — here [a] for "action" — are: 

[a]K :     [a)(ip ->■ V) ->■ ([a]<p -► [a]V>) 
[a]F :     [a]<p <-»• (a)ip 

where (a) is defined as -.fa]-., and the logic is closed under the rule of [a]-necessitat- 
ion. The logic can be found in [Lem77]13, where it is identified as characteristic for 
total (serial) and functional (deterministic) binary relations in the Kripke semantics. 
In a sense, the [a] operator is nothing more than the "next-time" or "next-state" 
modality of temporal logics14, given a more abstract semantics. The novelty here lies 

13The source manuscript of the "Lemmon Notes" [Lem77] is dated 1966, and was a 
collaboration of E. J. Lemmon and Dana Scott. It was edited for [Lem77] by Krister 
Segerberg. 

14The first appearance of the F axioms seems to be in A. N. Prior's [Pri57] as the 
axioms for the "tomorrow it will be the case that" modality, and appear again in 
that guise in [Seg67]. See also G. H. von Wright's work on the "And Next" modality 
[vW65] and Appendix B of Prior's [Pri67]. 
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in combining it with the S4 □ and O modalities to give symbolic representation to a 
topology as well as an arbitrary function. In the topological semantics, the F axioms 
for [a] are satisfied by the inverse-image of a total function, with 

irwvii = /-1 (ii^ii) 
and in the logic F, it is provable that [a] commutes with all Boolean operations15. 

The formula [a]ip can be read as "action a always makes it the case that v?"16. 

Formulas of the form: 
iß -»• [a](p 

then read: "whenever iß, then action a always makes it the case that 9?" or more 
succinctly, "action a always takes rß states to <p states". Such a formula is true 
(evaluates as the whole space) in a topological model % = (X, T, /; £) exactly when, 

for all x £ X: 
x G ||0||{   implies    f(x) € |M|^ 

where £ is a valuation of atomic propositions as subsets of X. More generally, 

■   rß->[a]k<p 

reads uk iterations of action a always takes iß states to ip states", where [a]°tp is just 
(p and [a]fc+V is [a][°]V- Formulas of this form express the sort of basic facts that 
should be found in the knowledge base of an agent. If ip is a goal region generated by 
an agent's planning automaton, and iß is a region containing the current state, then 
the internal control automaton should be looking for an action a such that: 

iß -> \a]a<p 

is provable from the agent's knowledge base17. 

In the bimodal language £aa, the property of continuity is expressible by the 
axiom scheme: 

Cont :   [a]Oip -> d[a]</> 

15The [a]F axiom scheme says that [a] commutes with negation, and [a]K together 
with its provable converse say that [a] commutes with (classical) implication. 

16Dually, {a)(p would be read as "action a sometimes makes it the case that ip". 
Axiom [a]F says that, for primitive or atomic actions, "sometimes" is the same as 

"always". 
17So a richer language and logic in which to talk about complex actions might be 

quite useful. 
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In the topological semantics, the scheme translates as: 

f~l(intT(A)) C intT(f-l(A))    for all subsets AQX 

and this condition is satisfied exactly when the function / (interpreting actio. a) is 
continuous with respect to the topology T on X 18. The logic obtained from S4F by 
the addition of the Cont scheme is given the name S4C: the prepositional bimodal 
logic of one continuous function. 

In examining the relationship between the topological and Kripke semantics, I 
look to Grzegorczyk [Grz67], and back to McKinsey and Tarski [MT46], with some 
assistance from Scott [Sco72]. Start by defining a reflexive and transitive relation RT 

on X from a topology T on X by19: 

(*> y) e Rr   iff   for all U 6 T,  x elf implies y eU 

Thinking of a topology T as a collection of meaningful regions of X, (x, y) <E RT says 
that y has all the same (topological) meaning as x has; Rr is the meaning relation of 
T. So x and y will have the same meaning when both (x, y) e Rr and (x, y) <= RT

20. 
To go the other way, start with an S4 Kripke frame (W,R), and define a topology TR 

on W by taking as basic open sets all the "upper cones" under R 21: 

Bw = {veW\(w,v)eR} 

The Cont scheme might be read as: "if action a will make it the case that 
discernibly cp, then discernibly, action a will make it the case that 9?". Or try replacing 
"discernibly" with "meaningfully". 

19In [Grz67], the relation is defined by: 

~   (x,y)£Rr   iff   xedT({y}) 

which is provably equivalent to the given definition, taken from [Sco72]. 
20Identifying all such points x and y gives the Stone T0 quotient of (X,T), with 

the quotient map the AD converter map discussed above. 
21The topology TR is known as the "Alexandroff topology" ([Joh82], [Smy92]) when 

R is a partial order, and also goes by the name "cone topology" [Mi95]. In [Grz67], 
the equivalent topology T on W defined from R by: 

clT{A) = {w e W I {3v € W)[ (w,v) € R and v e A ]} 

for all A C W, is attributed to [MT46]. This last equation can also be obtained from 
Jönsson and Tarski's work on Boolean algebra with operators [JT51]. 
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For all reflexive-transitive relations ß, the induced topology TR is a D-topology, and 
if T is a D-topology on X then TRT = T\ i.e. the topology induced by Rr is T itself. 
So D-spaces are the natural topological duals of S4 Kripke frames. Indeed, this exact 
correspondence can be recovered from Grzegorczyk's [Grz67]. 

The transformations between topologies and reflexive-transitive relations also re- 
veal an elegant characterization of continuity in the Kripke semantics. In one direc- 
tion, if T = (X, T, /) is a topological structure for £ao, with Rr the induced binary 
relation on X, then the continuity of / w.r.t. T implies / is monotone w.r.t. Rr- 
This is a variant on the theme of "continuity implies monotonicity" in cpo and do- 
main theory. What is quite pleasing is the other direction: if fC — (W, R, F) is a 
Kripke frame for £Da, with TR its induced topology (and a D-topology) on W, then 
the i?-monotonicity of F implies that F is continuous w.r.t. TR. SO here, "continuity 
equals monotonicity". 

The "continuous dynamics" in the title of this work ambiguously refers to both 
the dynamics of analog or "continuous" processes, and the enterprise of putting a 
"continuous" spin on dynamic logic. In the second stage of the project, propositional 
dynamic logic PDL ([FL79], [Pra79], [Par81], [Seg82], [BHP82]) is overlaid on S4C 
to form a new modal-based propositional dynamic logic. 

Atomic actions a € S are interpreted by continuous total functions, and compound 
actions a are generated from E by the Kleene operations of composition, sum (non- 
deterministic choice) and iteration (star)22. The resulting logic is given the name 
TPDL, topological propositional dynamic logic. The modalities [a] and (a) remain 
equivalent if a = a\ • • • an is a simple composition of atomic actions, but of course 
they diverge in the presence of sum and iteration. The formula [a]cp can be read as 
"action a always makes it the case that </?", while (a)(p is read as "action a sometimes 
makes it the case that </?". 

In the topological semantics for TPDL, the modalities (a) and [a] for compound 
actions a are interpreted by unary operators a{a) and ir(c<), respectively, on the 
power set V(X). These operators are generated from the inverse-image operators 
cr(a) = n(a) = f~l of a family of functions /„ : X -> X for atomic actions a € S, 

22The "test" operation is omitted at this stage, pending a further clarification of an 
appropriate semantics. So what is overlaid on S4C is actually the test-free fragment 
of deterministic propositional dynamic logic DPDL, further restricted to atomic ac- 
tions whose interpretations are both functional (deterministic) and total relations. 
DPDL is studied in [BHP82]; its precursor can be found in a programming logic of 
[Con77], where atomic commands are also interpreted by partial functions. Within 
the "algorithmic logic" school of Salwicki and Mirkowska, the logic of deterministic 
total actions is briefly studied in [MS87], Chp. V, §8. 
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where each /„ is continuous w.r.t. a topology T on X. The modalities are given by: 

||(OH| = (T(O)(|H|)     and     ||[aH| = 7r(a)(|H|) 

where, as one would expect, 

a(aß)(A)   =   (<r(a)oa(ß))(A) 
cr(a + ß)(A)   =   a(a)(A)öa(ß){A) 

<r(a')(A)   =    [J<r(<xk)(A) 
fceN 

and 

n(a)(A) = (-a(a)-) (A) 

for A € V{X). For an arbitrary topology T on X, we have: 

cr(a) (intr(A)) C mir (cr(a)(A))     for all subsets ACX 

and when T is a D-topology on X, 

7r(a) (m^r(A)) C m<r (ir(a)(A))    for all subsets ACX 

So the continuity schemes 

(a)Cont :   (a)atp -> D^)^    and    [a]Cont :   [apip -4 D[a]y> 

are true in all topological structures, and all D-topological structures, respectively23 

Continuous analogs of the Hoare composition rules: 

V> ->• {apX     X -> (ß)B<P   and   rj) -4 [a]aX     x ->• \ßP<P 

are truth-preserving in all topological structures, and all D-topological structures, 
respectively. These later rules will be useful for an internal control automaton in 
looking for an action a such that: 

V> ->■ [oi\Oip 

is entailed by the knowledge base of an agent, where iß represents the current state 
and (p a goal. 

The richer language of TPDL permits the expression of other interesting proper- 
ties of actions. For example, the formula24 9? -»■ [a*]<p is true in a structure exactly 

23T 3For a D-topology T, arbitrary intersections of open sets are open; this is what is 
needed for the continuity of the [a*] operator. 

"*The converse [a*]<p ->■ ip is TPDL provable. 24<" 
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when the set of ip states is closed under every iteration of every application of a; 
equivalently, \\tp\\ is the least fixed point of the operator 7r(a). Properties of this form 
are used in discussions of the viability of hybrid systems [KNRY95]. 

In addition to the Hilbert-style axiomatizations25, I present tableaux proof sys- 
tems for each of the logics. The orthodox treatment of tableaux, stemming from 
Smullyan's [Smu68], labels the nodes of a finitely-branching tree (or more generally, 
a directed graph) with sets of subformulas26 of the formula at the root node. Such 
tableaux are developed according to rules capturing the semantics of the logic's con- 
nectives and operators, and development stops at a node when its label set contains 
a contradiction. In systems where tableaux are trees, there is usually a simple trans- 
lation into a Gentzen-style sequent calculus: given a finite tableaux proof (all paths 
end in contradiction), turn it upside-down and "massage" a little to get a sequent 
calculus derivation, with the contradictions corresponding to axiom sequents. Ortho- 
dox tableaux have been used extensively in various modal, temporal and dynamic 
logics (see, for example, [Pra80], [Fi83], [BMP83], [BS84], [Wo85], [ESr88]) and have 
given rise to automata-based decision procedures for a number of logics (e.g. [Em85], 

[VW86]). 
The tableaux systems presented here are in a different tradition. The system is an 

extension of the treatment of modal tableaux in [NS93] and [Ne90], which is in turn 
a descendant of the modal prefixed tableaux systems of Fitting [Fi72] and [Fi83] Ch. 
8. The essential idea, which traces back to Fitch, is to add to the formal language of 
proofs symbols intended to name possible worlds in Kripke models, taking to heart 
the central idea from Beth [Be59] that the construction of a tableaux proof is an 
attempt to build a countermodel. So to give symbolic representation to such models, 
I include in the formal language of proofs not only symbols for possible worlds, but 
also symbols for both the accessibility relation and the function. A tableaux is a 
labelled binary tree where the labels are either signed forcing assertions: 

T[t\\-<p]     or     F[t\\-(p] 

or accessibility assertions: 
tRs 

The t, s are functional terms generated from a stock of primitive world symbols w,, i G 
N. For the logics S4F and S4C, terms come from iterates of a single unary function 

25For thoroughness, completeness proofs for each of the Hilbert-style proof systems 
are given. They are just variants of the standard constructions of Kripke models of 
maximal-consistent sets (with the usual extra work caused by the * operator). 

26In the case of temporal and dynamic logics, subformulas are replaced by formulas 
in the Fischer-Ladner closure. 
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symbol F, and have the form F*(w,-) for some k € N, while for the dynamic logic 
TPDL, the terms are of the form (FJn o • • • o Fh )(wt), generated from compositions 
of unary functions symbols Fj, j € N. 

The tableaux development rules for signed forcing assertions break down (analyze) 
complex formulas <p> and simultaneously build up (synthesize) complex terms t; these 
rules capture the various clauses of the definition of forcing for Kripke frames. For 
accessibility assertions, the development rules capture the reflexivity and transitivity 
of R, and for the classes of S4C or TPDL tableaux, there is the continuity rule 
capturing the monotonicity of F or the Fj with respect to R. 

A tableaux with root F[ w0 IH </? ] is a proof of ip exactly when every path 
(branch) through the tableaux contains contradictory signed forcing assertions. A 
"failed" proof has a non-contradictory path P which naturally defines a term frame 
K,P and a valuation r/p such that all the assertions on the path are true in the model 
(/CP,?7P). So if the root entry is F[ w0 lh <p ], then <p> is falsified at w0 in the model, 
while <p is satisfied at w0 in the model if the root entry is T[ w0 lh 9? ]. 

The domain of the term frame fCP is generated from on the primitive world symbols 
w, appearing in signed forcing assertions on P by closing under F or the F.,-; this 
ensures that the term constructor functions t M- F(t) or t \-¥ Fj(t) are total, since 
these interpret the single action a, or the atomic actions £ = {aj \ j G N} in the 
language of TPDL. The relation RP on WP is the reflexive and transitive closure 
of the relation defined by the accessibility assertions occurring on the path P; for 
S4C (TPDL) tableaux, we also take the F-functional (Fj-functional) closure of this 
relation, so that (t,s) G RP implies (F(t),F(s)) G RP ((Fj(t),Fj(s)) € RP). The 
tableaux development rules, specially that for F[ t\\- Dip] assertions which force the 
introduction of a new primitive world symbol w,- and an entry *Rw,, ensure that 
the relation defined by the accessibility assertions occurring on a path P is always a 
partial order. Hence the closure RP is always a partial order, and so the induced cone 
topology on WP is a T0 D-topology. 

In proving completeness, we give a deterministic algorithm for constructing the 
complete systematic tableaux (CST) with root entry F[ w0 lh ip ], that applies every 
tableaux development rule that can be applied. The construction either terminates 
with a contradiction on every path, thus yielding a tableaux proof, or else continues 
indefinitely, producing an infinite tableaux. A non-contradictory path P through a 
CST naturally defines a valuation np for the term frame ICP such that the formula tp 
is falsified at w0 in the model (JCP,r)p). 

To prove the finite model property for each of the logics, I define a quotient of the 
term frame fCP for a non-contradictory path P through a CST. The quotient uses the 
set SP{t) of signed forcing assertions on P with subject t, and identifies terms t, s 6 WP 

such that SP(t) = SP(s). For the logics S4F and S4C, the sets SP(t) are consistent 
subsets of the set of signed subformulas of the formula (p in the root entry, while for 
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TPDL, each SP(t) is a consistent subset of the signed Fischer-Ladner closure of ip. In 
either case, the quotient is finite, and the path valuation 77p faithfully passes through 
to the quotient. The sets of formulas S?(t) are essentially signed Hintikka sets, as 
used in the orthodox treatment of tableaux for modal logics; see, for example, [BS84], 

[BMP83]. 
In summary, each of the logics S4F, S4C and TPDL are complete for the class 

of their appropriate topological structures based on countable state spaces with To 
D-topologies; they are also complete for the class of their appropriate topological 
structures based on finite state spaces (whose topologies are necessarily D-topologies). 
However, they cannot be complete for the intersection of the corresponding pair of 
classes since from [Kri63], §5.1, S4 is not complete for the class of finite spaces with 
To topologies, or equivalently, finite partially-ordered Kripke frames. 

Just as this document was being completed, I obtained three short abstracts of 
work on "Dynamic Topological Logics" by Kremer, Mints and Rybakov [KrMi97], 
[Kre97], [KrMiR97]. They have independently developed S4-based dynamic logics, 
called DTL's. Their logics include a "next" operator corresponding to the [a] modal- 
ity, for a single atomic action a, and a "star" operator corresponding to [a*] for 
atomic a. The abstracts announce axiomatizations of various fragments; for example, 
the star-free fragment of the logic DTL-N of homeomorphic functions. 

1.5    Formal Methods in Hybrid Systems 

Much of the work in formal methods for hybrid systems focuses on various classes of 
automata. One of the foundational papers is [ACHH93], which introduces the class 
of hybrid automata. These are discrete transition systems on a finite set of control 
locations, with the behavior of real-valued variables in each location governed by 
differential equations and subject to an invariant condition. (See also [ACH+95], 
[He96].) Hybrid automata generalize a class of timed automata ([AD90], [AD94]) in 
which clock variables take real values. Real-time temporal logics have also been pro- 
posed as specification languages for hybrid systems, such as TCTL which extends the 
branching time temporal logic CTL by the addition of "clocks", with the semantics 
of the logic given by timed automata ([ACD93], [HeK97]). 

This work proceeds on a somewhat different line of inquiry, since it takes as its 
starting point the idea that in a logic for hybrid systems, topology is an essential 
ingredient. Some common ground can be found in recent work by Henzinger and his 
coworkers [GHeJ97] on robust timed automata. That paper starts from the idea that 
an automaton model which represents an event occurring at an exact real time t 6 R+ 
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is not physically realizable; in any physical realization, the most that can be guaran- 
teed is that the event occurs in an interval (t-e,t + e). The acceptance and rejection 
conditions of timed automata are modified so that if a robust timed automaton ac- 
cepts a trajectory, ,t must also accept every trajectory in an e-neighborhood of that 
trajectory, and likewise for rejection. The underlying topology is a metric topology 
on the set of finite words (£ x R+)* (trajectories), where £ is a finite alphabet. 

1.6    Boundaries of this Investigation 

Although drawing its motivation from hybrid control systems, and their "continuous 
dynamics", this work is primarily a formal study in modal logic. There are many 
points of interest not addressed; I envisage it as the beginning of a larger research 
project. In telegraphic form, topics of further investigation include the following: 

. A decent concrete example, to illustrate how the logics can be practically used 
tor hybrid control systems; 

• Getting more value out of the tableaux proof system, including working out an 
explicit tableaux-based decision procedure which yields finite term models; 

• Extensions: Look for decidable fragments of first order extensions, as well as 
proposition^ extensions such as poly-S4 based logics of multiple topologies say 
□iB and O m which case the continuity of /» : (*, Tin -+ (X, Tout) is captured 
by the scheme: 

[apoutf -»• Oin[a](p 

or enriching the modalities of TPDL to represent the actions of multiple control 
agents, necessitating a treatment of concurrency; 

• Dealing with time as a distinguished coordinate, since there are good reasons for 
wanting purely temporal modalities, drawing on the abstract treatment of time 
domains of Nicollin and Sifakis in [NiSi92] and [NiSiY92]; 

. Topological completeness: look for "real" topological completeness results like 
those of [MT44] and [RS63] for S4 for dense-in-themselves metric spaces, start- 
ing by studying the finite subtopologies of such spaces; 

. Exploring the algebraic richness of the TPDL semantic structures, including 
extending the work of Pratt [Pra79] and Kozen [Koz82] on dynamic algebras to 
topological dynamic algebras. 



Chapter 2 

The Logic S4F 

2.1     Syntax and Topological Semantics 

Definition 2.1.1 Let Caa be the propositional language generated from a countable 
set AP of atomic propositions, the propositional connectives -> (negation) and —y 
(implication), and the modal operators □ and [a]. 

Within the language £aa, we can define in the usual way the propositional con- 
stants and the other classical propositional connectives in terms of -■ and —y, the 
diamond operators O and (a) as the classical duals of □ and [a], respectively: 

J_   =   -i(p —y p)      for some p € AP 

<p A xß   =    ->((p -4- ~<r/>) 

ip V ip   =    —xp —y ip 

ip <-y V»   =   (tp -y rp) A (ip -y (p) 

Otp   —    —iO—i(p 

{a)<p   =   ->[a]-«p 

Definition 2.1.2 A topological structure for the propositional language Caa is a 
triple T = (X, T, /) where 

• X T^ 0 is the state space; 

• T C V(X) is a topology on X (i.e. 0, X £ T, and T is closed under arbitrary 
unions and finite intersections); and 

• f : X —y X is a total function. 

21 
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Sets U G T are called open (in T), and A C X is called c/o5e(/ (in T) \i A = -U for 
some U £ T. Note that at this stage, / is not assumed to be anything other than 
total. Our task, after all, is to discern the meaning of / being continuous with respect 
to T. 

Definition 2.1.3 A valuation for a topological structure X = (X,T,f) is any map 
€ : AP -»■ V(X) assigning a subset f (p) C X to each p £ AP. Each such valuation 
uniquely extends to a valuation map ||-||£ : CQa -y V(X), satisfying the following 
clauses: 

\\p\k = to) 
Ihvll, = -IMl{ 

\\<p-+1>k = -IMI«u|H|{ 

\Pv>k = »n*r (llv»||{) 
IMvll« = rl(\\<p\\<) 

where intr is the interior operator determined by the topology T, i.e. for all AC. X, 

intr(A)   =   \J{UeT\UCA} 

and f~l is the inverse-image operator determined by the total function f: 

f-l{A) = {xeX\f(x)eA} 

Continuing the metaphor of a basis for a topology as a collections of lenses, one 
can think of the interior intT(A) as that part of the set A which can be discerned 
through the lenses of T. If BT = {#«• | t G /} is a basis for T, then: 

intr (A)   =   [J{Bi e BT \ Bi C A} 

So D(p may be read as "discernibly ip". Thinking of a topology T as a collection of 
meaningful regions of X, Dip may be read as "meaningfully <p". 

Definition 2.1.4 A topological model for Caa is a pair (X,£), where % = (X,T,f) 
is a topological structure for CQa and £ : AP ->• V(X) is a valuation for T. 

Definition 2.1.5 Let ip G Caa be a propositional formula. 

• ip is satisfied at a state x G X in a topological model (X,£) iff x G ||y||£. 

• (p is true in a topological model (1,0, written (X,£) f= cp, »j^H^IL = X; 
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• <p is valid in a topological structure X, written X \= ip, iff for all valuations £ 
for X, we have ||y|L = X; 

• ip is topologically valid iff X f= <p for every topological structure X = (X, T, /) 
for Cua- 

The topological semantics for the defined constants, connectives and modal oper- 
ators are as one would expect. 

II-MI« = 0 
imi€ = x 

IMifll«  =  IMI^nil^ 
lb v VII,  =  IMI,u|HI, 

\\(a)<p\\t = (-/-1-) (ii^iu) 

where elf is the closure operator determined by the topology T, i.e. for any AC X, 

clT(A) ■=   (-intT-)(A) 
=   f){C I -C e Tand A C C} 

Observe that for any topological structure X = (X, 7~, f) and valuation £ for X, 

II?-► 0H£ = *   iff   IMI^C ||0||^ 

More generally, 

Ik -5" V'll, = {x € X |  if x € IMI,   then   x € |M|, } 

The proposed reading of formulas of the form: 

as "action a always takes ^ states to ip states" is based on the fact that in any 
topological model (X, £), 

(X,0 \=tl)->[a]tp   iff   forallx€X, ifxG ||V>||, then/(x) G ||v||r 

Note also that if / is a finite set and <?,•, i € /, are atomic propositions, the formulas: 

/\ (ft <-► a9,-)     and      Y qi 



24 

are true in a model (X,£) exactly when {||ft||{},-€/ is a finite open cover of the topo- 
logical space (X, T). 

Note that there are no restrictions on valuations £ : AP —> V(X); i.e. each £(p) 
is an arbitrary subset of X. 

Definition 2.1.6 Given a topological space (X,T), let 

®r(X) = {V{X), U, n, -, X, 0, intr) 

denote the topological Boolean algebra [RS63] with universe V(X) determined by 

(^)T); *-C- the complete Boolean algebra of all subsets ofX, equipped with the interior 
operator intT : V(X) -»• T C V(X), which satisfies: 

(i) intT(A) C A 

(ii) m*7-(mtr(4)) = intT(A) 
(iii) in<r(An5) = intT(A) D intT(B) 
(iv) »nir(A") = X 

In McKinsey and Tarski [MT44], topological Boolean algebras go by the name 
of closure algebras, and in the survey of Bull and Segerberg [BS84], and elsewhere, 
the term modal algebra is used for a broad class of algebras consisting of Boolean 
algebras equipped with unary operators satisfying various modal logic conditions. 
Moreover, from [MT44] and [RS63] III.4.3, every topological Boolean algebra A = 
(A,V, A,-,1,0,1) is isomorphic with an algebra *Br(X) for some topological space 
(X,T). 

So algebraically, the topological models (X, T, /, f) correspond to evaluating for- 
mulas of CQa in the topological Boolean algebra *Br(X), together with the inverse- 
image operator /_1 : V(X) -»> V(X) of the total function / on X. As an operator on 
V(X), f~l has particularly strong properties: 

f-'i-A) = -r\A) 
f-^AUB) =   f-1(A)Uf-'(B) 
f-HAn.B) = f-\A)nf-l(B) 

/-1(0) =   0 
r\x) =   X 

for all A,Be V(X); i.e. f~l preserves complements, unions, intersections, and the 
bottom (0) and top (X) elements. (The totality of / is required for the last equation 
since f~l{X) = dom(f).) Moreover, /_1 preserves arbitrary unions and intersections: 
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for any family of sets {Ai},e/ C V(X). Since / * preserves complements, it follows 

that 

IK«MI< = /"'(iMI*)  = IIWvlU 
in all topological models (X, £)• When the apparatus of propositional dynamic logic 
PDL is adjoined in Chapter 5, we will have more to say about unary operators on 
the topological Boolean algebra *BT(X). 

Recall that the standard Gödel embedding of Intuitionistic propositional logic 
Int into S4 proceeds by "Boxing" all atomic propositions, i.e. Dp, and defining 
Intuitionistic negation ~ and Intuitionistic implication >—► by: 

~ ip    =    Of-'</?) 

(p )—> iß    =    D(ip —>■ ifi) 

So in an Intuitionistic topological semantics for the language Caa, we would require 
a restriction to a subclass of valuations £ : AP -> V(X) such that £(p) G T for 
all p € AP, interpret negation as the interior of the complement, and interpret 
implication as the interior of classical implication. Interpreting □ by the interior 
operator would be vacuous, since all sets under consideration would already be open. 
To ensure that f~l{U) is open whenever U is open, we would need to insist that 
the function / be continuous. The advantage of taking S4 rather than Int as our 
base logic is that in adding the [a] modality, we can express in the language both the 
openness of sets and the continuity of a function. 

2.2    Hilbert-style Proof System 

Definition 2.2.1  The Hilbert-style proof system for the logic S4F has the following 
axiom schemes, in the language Caa-' 

CP : axioms of classical propositional logic in £Da 

□K : Ü(V> -»■ x/>) -» (□<£> -> aV') 
DT : Uip^np 
D4 : Utp -* UUip 

[a]K : [a](cp -+ rj>) ->• ([a]<p -)• [a]t/>) 
[a]F : [a](p •H- (a)cp 
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where (a)<p abbreviates ->[a]-i<p, together with the inference rules: 

modus ponens: 

We write 

□ -necessitation: 

\a\-necessitation: 

Dtp 

<P 
[a]ip 

S4F \-H (p 

or say <p is S4F# provable, if the formula <p € Caa has an S4F Hilbert-style deriva- 
tion. 

The axiom schemes DK, DT and D4, together with CP, and the rules of modus 
ponens and ü-necessitation, constitute the standard Hilbert-style proof system for 
propositional S4. The [a]F axiom is of course equivalent to the conjunction of the 
schemes 

[a]D :     [a]cp —► (a)(p 

and 
falDr (a)(p -> [a]tp 

The first is the well-known deontic scheme ("ought implies can"), while the second 
goes by the name of determinism in the dynamic logic literature. In virtue of the ax- 
iom [a]K and the rule of [a]-necessitation, [a] is a normal modal (necessity) operator. 

The following are S4F# provable, for any formulas ip, xf> e Caa and k € N, where 
if k > 0, [a]V denotes the formula [a][o]...[a]y», with k iterations of the [a] operator 
and if k — 0, then [a]k<p is just (p. 

[«]*- 
[a]kA 

[a]*V 

[a]*± 
[a]kO 
[a]kO 

->[a]kip f-f [a]k-'(p 

[«]*(*> -+V0 <+ ([a]V -> [a]krp) 
[a]k{ip A V>) f+ ([a] V A [a] V) 
[a]^V^)f>([a]Vv[a]V) 
WfcT 
[a]*± H> 1 
[a]^ ->. [a]V 
[a|V -> [a]*Oy> 
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DD 
DA 
ÜV 
DT 
OT 
OO 
OA 
OV 
Ol 

DDyj f-» Dip 

DT 
ip —>■ 0(/J 

00</> «-> Oy> 

<0(<^ A^)-> (Oy» A O^) 
o(v? v xp) <-*• (0<p v ov>) 
0±   f+   J_ 

The following are admissible inference rules in S4FW, for any formulas ip,rß,x € 
Caa and fc.iGN: 

[a]fc-necess?iah'on: 

Monotonicity of[a]k: 

Hoare composition: 

[a]V 
(/? —> ^ 

[a]V 
V 

V IM-/ 0 

Observe that there are no axioms for S4F containing both □ and [a], so the 
behaviors of the two modalities are quite independent and the logic can be thought 
of as a "direct product" of S4 and F. When we adjoin a true bimodal axiom such as 

Cont :     [a]Oip -»• n[a]ip 

the result is a richer "amalgamated product" of S4 and F. 

Proposition 2.2.2 Topological Soundness of S4F Hilbert-style proof system 
For all formulas (p of Caa,   if S4F \-H V   then ip   is topologically valid. 

Proof. The topological validity of the S4 axioms for D plus the validity-preservation 
of modus ponens D-necessitation follow trivially from the properties of the interior 
operator; see [McK41], [MT44]. The semantical validity of the [a]-necessitation rule 

translates as 
|M|{ = X  implies  /-1 (ll^HJ = X 

and the equation /-1(^0 = X holds exactly when / : X -> X is a total function. The 
validity of the F axioms for [a] are immediate from the properties of the inverse-image 

operator. ■ 
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2.3    Kripke Semantics 

Although Tarski and McKinsey's topological and algebraic semantics for S4 pre- 
date Kripke's relational semantics1, the interpretation of modal operators via binary 
"accessibility" relations is now the standard approach. We now define Kripke models 
for the language £Qa, and in the following section, we investigate transformations 
between the two types of models. 

Definition 2.3.1 A Kripke frame for Caa is a triple K, = (W, R, F), where 

• W ^ 0 is a set of "worlds"; 

• R C W x W is a reflexive and transitive binary relation on W; and 

• F : W —> W is a total function on W. 

A Kripke frame K = (W, R, F) is called finite iff W is a finite set. 

By standard arguments, reflexive and transitive binary relations capture precisely 
the S4 □ modality. As in [Lem77], §4, pp.60-61, a total function F : W -»■ W is 
used to interpret the [a] modality. If one prefers to interpret modalities with a binary 
relation on W, take Q = graph(F). Then as a binary relation, Q is both "total" and 
"functional", i.e. for all w € W, there exists a unique v € W such that (w,v) € Q. 
The "totality" or "serial" condition: every w € W has at least one Q-successor, is 
characteristic for the deontic scheme: 

[a]D :    [a](p -)■ (a)<p 

The converse scheme: 

[a]De :    (a)(p ->• [a]<p 

is characterized by the "functionality" or "determinism" condition: every w € W has 
at most one Q-successor. 

1 Relational semantics for S4 can also be extracted as a special case from Theorem's 
3.3 and 3.5 of Jonsson and Tarski's work on Boolean algebras with operators [JT51], 
although as noted in [Kri63], Kripke's semantics were developed independently of 
these results. 
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Definition 2.3.2 A valuation for a Kripke frame K, = (W, R, F) is a map 77 : W -» 
V(AP) assigning a set of atomic propositions v(w) C AP to each world w £ W. 
Each such valuation for K, determines a forcing relation lh^ = Ih,, C W x AP defined 

by 

v> IK» P    *ff   P e V(w) 

which uniquely extends a forcing relation \bv C W x Caa (with the same name) on all 
formulas of Caa, by the following clauses: 

(i) w lh„ -><p  iff   w lh„ ip; 

(ii) w Ih,, y? ->■ V»    iff   w Jhj V   or w lh„ i/>; 

(iii) w lh„ □</?    iff   /or aH v eW, if (w, v) £ R then v lh„ y?; 

(iv) w Ih, [a]y>    i^   F(w) Ih, y>. 

/or a// to £ W, and a// y?, V> € Caa- 

HQ = graph(F), then by the total functionality of Q, this last clause is equivalent 
to 

w Ih, [a]ip   iff   for all v € W, if (w, u) £ Q then u lh„ </?. 

Definition 2.3.3 A Kripke model for Caa is a pair (JC, n), where K = (W, R, F) is 
a frame for Caa and 77 : W —>■ V(AP) is a valuation for K. 

Definition 2.3.4 Let tp be a propositional formula of Caa- 

• ip is satisfied (or forced,) at a world w € W in a Kripke model ()C, 77) iff w lh^ ip; 

• ip is true in a Kripke model (£,n), written (JC,n) Ih ip, iff for all worlds w € W, 
we have w lh^ (p; 

• (p is valid in a frame. K,, written K, Ih <p, iff for all valuations r? : W —> V(AP) 
for fC, we have (/C, n) Ih ip; 

ip is Kripke valid iff for all frames K for Caa,   K> Ih ip. 

Proposition 2.3.5 Kripke Soundness of S4F Hilbert-style proof system 
For all formulas ip of Caa,   if S4F h# ip   then ip is Kripke valid. 
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Proof. The required verification is that each of the axioms of S4FH are Kripke valid, 
and that the inference rules of S4F// preserve Kripke validity. For the axioms CP 
of classical propositional logic and for modus ponens, this is trivial. The verification 
for the S4 axioms K, T and 4, and the ü-necessitation rule follow the standard 
proof of soundness of the class of transitive and reflexive frames for S4; see, for 
example, [HC96], pp.56-57. For the [a]-necessitation rule, suppose tp is Kripke valid, 
let K. = (W,R,F) be a frame for £Da, and let 77 be a valuation for fC. Since ip is 
Kripke valid and F(w) € W since F is total, we have F(w) lh„ <p. Hence w H-„ (p. 
Hence [a]ip is also Kripke valid. The verification of the validity of the [a]K and [o]F 
axioms is also straightforward, taking as a starting point the fact that for any formula 
9? and any w € W, either F(w) lh„ (p or F(w) Vtv tp, and then crunching through the 
definitions of forcing for -1, -> and [a]. ■ 

The Hilbert-style proof system for S4F is "obviously" complete with respect to 
the Kripke semantics. For the purposes of the "completeness" of this investigation, 
we give the standard but "cheap" maximal-consistent sets proof, using as a template 
the generic treatment of modal logics in [Gol92], Part One, §3. Building a Kripke 
model out of maximal-consistent sets of formulas doesn't take much work, but then 
the resulting structure doesn't have much in the way of intuitive content. Our real 
interest is in the tableaux proof system developed in Chapter 4, where the proof 
of completeness takes rather more effort, but the reward is a more intuitive and 
conceptually transparent Kripke model constructed out of functional terms appearing 
on a path through the tableaux. 

Definition 2.3.6 Let £ be a propositional language generated from a countable set 
of atomic propositions. A set of formulas A C £ is called a logic (in £) iff every 
tautology in £ is in A, and A is closed under modus ponens. A formula ip € £ is a 
theorem of A, written HA <p, exactly when ip e A. 

Let U be any set of formulas of £. 

A formula <p e £ is A-deducible from U, written U hA <p, iff there is a finite 
number of formulas V>l5..., ipn € U such that:   hA (ipl A ... A xßn) ->• <p. 

U is called A-consistent iff there is some formula of £ that is not A-deducible from 
U; equivalently, U Y-^ _L. 

U is called maximal A-consistent iffU is A-consistent and for all formulas <p £ £, 
either <p £ U or -up € U. 

A formula (p € £ is called A-consistent iff the set {ip} is A-consistent; equivalently, 

We let S4F (and likewise for subsequent extensions) denote the set of all formulas 
<p € £aa such that S4F \-H tp. In particular, every maximal S4F-consistent set 
U Q £aa contains all instances of the axiom schema of S4F. 
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By Lindenbaum's Lemma, every A-consistent set of formulas can be extended to 
a maximal A-consistent set. It follows that 

A = \\{U Q C\U is maximal A-consistent }. 

Proposition 2.3.7 Kripke Completeness of S4F Hilbert-style proof system 
There exists a Kripke model (JCo,r}0) such that for all formulas ip of Caa, 

(/Co,77o)IHv> iff   S4FhH<^ 

Proof. The canonical Kripke frame fC0 = (Wo, Ro, Fo) is defined as follows: 

Wo = {U C Caa | U is maximal S4F-consistent} 
(U, V) G RQ   iff  (Vy> G £aa)[ OcpeU =>  ^K] 
F0(U) = V  iff (Vy> G Caa)[ [a]ip G U =► <p G V ] 

and the canonical valuation r)0 : Wo —>■ V(AP) for /Co is defined by: 

P € J70(tf)    iff   pet/ 

for all p G AP and U G Wo. By standard arguments, the dT axiom ensures that RQ 

is reflexive, and the Q4 axiom ensures that RQ is transitive. To establish that F0 is 
well-defined, it suffices to show for maximal S4F-consistent sets U, V, 

if    (V<^ G £□«)[ [<# €U => <p€V] 
then  (Vy> G £Qo)[ [a]<p £U ^ <p £ V } 

in which case Fo satisfies: 

F0(U) = {cp G Caa | [a]<peU} 

and is thus a well-defined total function; equivalently, F0(U) is maximal S4F-consis- 
tent whenever U is. Assume the antecedent holds and [a]tp (fc U. Hence -"[a]^ G U. 
Since S4F \~H —>[<r]<^> -H- [a]-«^, from the [a]F axiom, we must have [a]-xp G U, hence 
by assumption, -up G V. Hence ip fi V. 

An easy induction on formulas establishes the "Truth Lemma": for all ip G Caa 

and sets U G Wo, 
U\\-no(p    iff   <p<=U 

Then since 

S4F \~H <p    iff   9? G (|{y Q Caa | £^ is maximal S4F-consistent } 

we have 

(/Co, »fa) ^ V iff   S4FI-H¥> 

as required. ■ 
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2.4    Duality of Topological and Kripke Semantics 

In this section, we investigate the transformation of a topological structure into a 
Kripke frame, and conversely. In the process, we rediscover a correspondence that 
can be derived from Grzegorczyk's [Grz67]: the subclass of topological structures with 
D-topologies are the natural duals of Kripke frames for £0a; moreover, the duality 
transformation gives a semantically faithful bijection between Kripke models and D- 
topological models. This duality transformation will establish the correspondence: 

Kripke frame K = {W, R, F) topological structure X = (X, T, /) 
worlds « points in state space 

accessibility or "meaning" relation ~ topology 
function ä function 

forcing RJ membership 

We begin the construction of a reflexive and transitive relation on X from a 
topology T on X, in the form presented in Scott's [Sco72]. 

Definition 2.4.1 Let X = (X,T,/) be a topological structure for Caa- Define a 
binary relation Rj- C X x X by: 

(x,y) eRT iff  (VUeT)[xeU => yeU] 

It is immediate that Rj is reflexive and transitive, and since f : X -*■ X is total, 
K.% = (X, Rr, f) is a Kripke frame for Caa • The frame K,% is called the Kripke frame 
induced by %, and Rj is called the relation induced by the topology T. 

Thinking of a topology T as a collection of meaningful regions of X, (x, y) e Rr 
says that y has all the same (topological) meaning as x has; Rj- is the meaning relation 
of T. In the category-theoretic language of frames and locales, Rj- is known as the 
specialization pre-order ([Joh82], §11.1.8, [Smy92], §4.1, and [Vi89], §7.1). 

In [Grz67] (Lemma 1), a relation R!j- is defined by: 

(x,y)eR'T    iff   x£dT({y}) 

Observe that if (x,y) £ R'T then x G — clj-{{y}) = intr(—{j/}), so U = intj-(—{y}) 
is an open set containing x and not y, hence (x,y) £ Rr. Conversely, if (x, y) ^ Rq-, 
then there exists an open set U € T such that x G U and y £ U. Hence A = — U 
is a closed set such that x £ A and y G A. Since clr({y}) is the intersection of all 
closed sets containing y, we must have x £ clr({y}), and so (x,y) ^ R'T. Hence the 
Grzegorczyk and Scott definitions are equivalent. 

Recall the following definitions of separation properties for topological spaces. 
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Definition 2.4.2 Let (X,T) be a topological space. 
(X,T) is To iff for all x,y G X with x ^ y, there exists U G T such that either 

x G U and y £ U, or y G U and x £ U. 
(X,T) is T\ iff for all x,y G X with x ^ y, there exists U G T such that x G U 

and y £ U. 
(X,T) is Hausdorff or Ti iff for all x, y G X with x ^ y, there exist disjoint open 

sets U, V G T such that x G U and y G V. 

Clearly, Hausdorff =£■ Tx =£> T0. In most texts in topology or analysis or their 
applications, the Hausdorff property is taken as a bare minimum from Chapter 2 
onwards; for example, all metric spaces are Hausdorff. Another way of viewing these 
properties is to see that in a topological space (X, T) satisfying any separation prop- 
erty stronger than To, "meaning" or "information" is concentrated at single points. 

Proposition 2.4.3 Let (X, T) be a topological space, and let R-j- be the relation in- 
duced by T. 

(i) (X, T) is Ti   iff Rj- is the identity relation on X; 

(ii) (X, T) is To   iff Rr is a partial order on X. 

Proof. The equivalence (i) is immediate, since (X, T) is Ti iff for all x,y G X 
with x T^ y, (x,y) £ Rf- Equivalence (ii) is also trivial, since (X, T) is To iff for 
all x,y G X with x ^ y, either (x,y) £ Rf or (y, x) £ Rf, so the T0 property is 
equivalent to the anti-symmetry of Rq- 2. ■ 

Note that if T is the discrete topology on X, then Rr — lx, the identity relation 
on X. So under the transformation % = (X, T, /) ■-»■ K.% = (X, Rf,f), from an arbi- 
trary topological structure to its induced Kripke frame, all structures with topologies 
with Ti or stronger get collapsed with structures with the discrete topology. To get a 
one-one correspondence between Kripke frames and topological structures, we clearly 
need to focus on a smaller class of topologies. 

Definition 2.4.4 A topology T on a space X is a Z)-topology iff for each x G X, 
the set: 

Bx = f]{U eT\xeU} 

is open in T, in which case (X,T) is called a Z)-space. 

2In [Sco72], Scott's interest was in partial orders, so the Rf relation was defined 
for To spaces. 



34 

# 

Proposition 2.4.5 Let (X,T) be a topological space. The following are equivalent: 

(i) T is a D-topology on X; 

(ii) the intersection of any family of open sets is open; # 

(iii) the union of any family of closed sets is closed; 

(iv) for all ACX,    clT(A) = \J clr({y}); 
yeA 

(v) (T, C, U, n, X, 0, (J, fl) is a complete lattice of sets. 

Proof, (ii) says that T is closed under arbitrary intersections (as well as arbitrary 
unions), so (ii) <& (v) is immediate, (ii) <s> (iii) comes from taking complements, 
(iii) =4> (iv) is immediate, and (iv) =$> (iii) is an easy exercise, (ii) => (i) is trivial, 
since Bx is the intersection of all open sets containing x. For the converse, suppose 
T is a D-topology on X, and let {K}«e/ Q T be any family of open sets. Suppose 
* e Dig/ K-, and let Bx = f]{U 6 T | x <E £/}• Then since x <E V{ for all i <E /, we 
must have Bx C f).e/ V{. Since Bx G T and 

•n^(n.-e/^)=u^€ri^cn(.e/K-} • 
we have x G intT (f]ia Vj). Hence f|,-6/ VJ is open, as required. ■ 

In [Grz67], §1, a topological space (X,T) is said to be "totally distributive" when 
condition (iv) above is satisfied. The following proposition summarizes the important • 
properties of D-topologies. 

Proposition 2.4.6 If(X, T) is a D-space, Bx = f]{U € T \ x G U} for each xeX, 
and Rj- is the relation induced by T, then: 

(a) The family {Bx}x€x is a basis for the topology T. 

(b) For all x,yeX,    (x,y) G RT   iff By C Bx. 

(c) For all x eX,   Bx = {y G X \ (x,y) G RT} { 

(d) For all ACX, 

intT(A)   =   {x G X | (Vy G X)[ if (x, y) G RT then yeA}} 

and 

clT(A)    =    {xeX\(3yeX)[(x,y)eRrandyeA}} # 
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(e) For all x e X and {K}ie/ C T, 

if Bx C\\ Vi,   then Bx C V{   for some i G / 

hence Bx is fully join-irreducible in T, considered as a complete lattice of (open) 
sets. Moreover, ifU is non-empty and fully join-irreducible in T, then U = Bx 

for some x G X. 

(f) (X, T) is Hausdorff iff T is the discrete topology on X. 

(g) (X, T) is T\   iff T is the discrete topology on X. 

(h) (X,T) is To   iff for all i,t/6l,   Bx = By   implies   x = y. 

Proof. For (a), suppose U 6 T and x e U. Then Bx C. U and x e Bx. Hence 
{Bx}xex is a basis for T. For (b), observe that By C Bx iff every open set containing 
x also contains y. (c) follows immediately from (b). For (d), using Grzegorczyk's 
equivalent definitions of Rr and a D-topology, the closure equation follows immedi- 
ately from: 

clr(A)   =   {x€X\(3yeX)[xeclT({y})*ndyeA}} 

The interior equation comes by taking complements. 
For (e), fix x G X and {K}te/ Q T, and suppose Bx C (J VJ. Then since the By's 

form a basis for T, each VJ is a union of JE?V'S; indeed, Vi = (J{^y I By C VJ}. Hence 

ßx C |J{ßj, | ßy C Vi   for some » G /}. 

Now since x G Bx, we have x e By for some y and VJ- such that By CVi. Since x G By 

iff Bj; C ßy, it follows that Bx C By C Vv for some i G /. 
Recall from lattice theory that U G T is /u% join-irreducible in T, considered as 

a complete lattice, if for all {K}»e/ Q T, 

if [/ = [J VJ,  then U = Vi  for some i G / 

It is readily shown (see, for example, Definition XII.4.3 of [BD74] and the discussion 
following it) that this last condition is equivalent to: 

if U C (J Vi,  then U C VJ   for some i G / 
te/ 
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for all {Vi}ia C T. 

For the converse, suppose U G T is fully join-irreducible in T.  Then since U = 
U{ßr | x G (/}, we have U = Bx for some x G U, by join-irreducibility. 

For (f), if (X, T) is Hausdorff, then for any x€X, 9 

BX = f){u er\xeu} = {x} = dT({x}) 

hence {x} is open (and closed), so T is the discrete topology. Conversely, the discrete 
topology is trivially Hausdorff. 

For (g), assume (X,T) is Tt. Then given any U G T with xux2eU and xx ^ x2 
# 

there exist sets UUU2 G T such that x,- G £/,- for i = 1,2, but Xl 4, U2 and x2 4 Ux 
Take V = UDUi and W = f/nt/2. Then U = VUW, but if */ = V then £/ = UnUu 

so U C Uu hence x2 4. U, contradicting the assumption that xux2 G U.  Similarly, 
if U = W then U C U2 hence Xl 4. U, again a contradiction.  Hence U is not a join m 
irreducible of the lattice T. So no set U eT containing more than one point can 
be a join-irreducible of (or fully join-irreducible in) the lattice T. Since the Bs's are 
fully join-irreducible in T, the only possibility is Bx = {x} for each x G X, in which 
case the topology T is discrete. Conversely, the discrete topology is trivially Tj. 

Finally, for (h), we have from Proposition 2.4.3 that (X,T) is T0    iff RT is a » 
partial order on X. Then use part (b). ■ 

Now we need to go the other way:  we get a topology TR from a reflexive and 
transitive binary relation R. 

Definition 2.4.7 Let K = (W, R, F) be a Kripke frame for £Qa. Define TR to be the * 
topology on W which has as its basic open sets the collection of all sets: 

Bw = {v G W I (w, v) G R} 

So Bw is the set of all v that are R-accessible from w. Since F : W -+W is a total # 
function, %K = (W,TR,F) is a topological structure for Caa. The structure %K is 
called the topological structure induced by K, and TR is the topology on W induced by 
R. 

Note that w G Bw (by the reflexivity of Ä), and v G Bw implies Bv C Bw (by the r • 
transitivity of Ä); conversely, Bv C Bw implies v G Bw, since v G Bv. To confirm 
that the collection B = {Bw \ w G W} is suitable as a basis for a topology (and 
not merely a sub-basis), observe that if both u G Bw and u G Bv, then we have 
ueBuCBwn Bv. 

The topology TR is a generalization, to reflexive and transitive relations, of what is • 
called in [Joh82], §11.1.8, the Alexandroff topology T< on a partially-ordered set (P, <) 
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generated by the "upper cones" with respect to < (see also [Smy92], §2.4). TR also 
goes by the name "cone topology" [Mi95]. In Alexandroff's Combinatorial Topology 
[Ale56], I, §6.3, the lower cone Cp = {q G P \ q < p} is called the "combinatorial 
closure" of the point p G P. It is readily verified that in the topological space (W,TR), 

where R is reflexive and transitive, the lower cone Cw satisfies: 

cw = {v G w | (v,w) e R} = ciTR({w}) 

Note that in the Scott topology 7s on a partially-ordered set (P, <) ([Sco72], §2), a 
set U C P is open iff: 

(1.) for all p, q G P,  if p G U and p < q then q G U; and 

(2.) for all directed sets D C P, if UD exists and UD G U  then Df1[/^0; 

where UD is the sup or least upper bound of D. Open sets in the Alexandroff topology 
on (P, <) are characterized by condition (1.) only, so the Scott topology 7s is a sub- 
topology of the Alexandroff topology T< on P; i.e. T< has more open sets than Ts- 
Scott topologies are only really appropriate if (P, <) is a dcpo, in which case UD 
exists for every directed set D C P. 

The next proposition records the relevant properties of the topology TR. 

Lemma 2.4.8 Let K. = (W, R, F) be a Kripke frame for £Qa and let TR be the induced 
topology.  Then: 

(a) For all w, v G W, 

(w,v)eR iff (vueTR)[weu ^ veu] 

(b) For all weW, 

Bw = f|{t/ eTR\weU} 

(c) TR is a D-topology. 

(d) For ACW, 

intrR{A)   =   {w G W | (Vu G W){ if (w, v) G R then v G A ]} 

and 
drR{A)   =   {w G W | (3v G W)[ (w,v)e R andv eA}} 
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Proof. Property (b) follows trivially from (a), and for (a), it suffices to observe that 
for all w G W and U 6 TR, W G U iff Bw C U. Property (c) follows directly from 
(b). For (d), observe that for any A C W, the equivalence: 

BWCA   &   (Vt> G W)[ if (w, v)e R then v G A ] 

is trivial. So it suffices to show that intTR(A) = {w G W \ Bw C A}. So suppose 
u; G wiTfi(A). Then for some U G 7ä, W G C/ and £/ C A. Since the ß^'s form a basis 
for TH, there is some vGW such that w G £„ and Bv C £/ C A. Then £„ C ßv since 
u; G ß„, so we have Bw C A. Conversely, suppose £„ C A. Then taking U = Bw, 

we have a U G 7^ such that w; G f/ and U C A. Hence u; G miTR(A). The closure 
equation comes by taking complements. ■ 

In [Grz67], Grzegorczyk uses an equivalent topology TR on W defined from R by: 

cln(A) = {w G W | (3v G H^)[ («;, v) G ß and u G A ]} 

for all A C W, attributing it to [MT46]. This last equation can also be obtained from 
Jonsson and Tarski's work on Boolean algebra with operators [JT51]. 

Definition 2.4.9 Let 1 = (X,T,f) be a topological structure for £0a. 

• T is called an D-topological structure iffT is a D-topology on X. 

• T is called a finite topological structure iff the topology T is finite, i.e. T is a 
finite (complete) lattice of sets. 

• T is called a finite-space topological structure iff the space X is finite (and 
hence TC P(X) is finite). 

Trivially, finite-space topological structures are finite topological structures, and 
finite topological structures are D-topological structures. Finite-space topological 
structures correspond to finite Kripke frames. 

We can now spell out the bijective transformation between Kripke frames and 
D-topological structures. 

Proposition 2.4.10 [Grz67]. Duality of Kripke frames & D-topological structures 

(i) Given a Kripke frame K = (W, R, F) for £Da, let %K = (W, TR, F) be its induced 
D-topological structure. Then the Kripke frame JCXlc = (W, RTR, F) induced by 
XJC is such that: 

R = RrR 
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(ii) Given an D-topological structure X = (X, T, f) for Caa, let K.% — (X, #7-, /) be 
its induced Kripke frame. Then the D-topological structure X*^ = (X,TRT, f) 
induced by fC% is such that: 

T = TRr 

Proof. Part (i) is an immediate consequence of Lemma 2.4.8, part (a). For (ii), let 
B = {Bx I x € X} be the basis of #7-cones for the topology TRT on X. Then for 
each x £ X, 

Bx = {yeX\ (x,y) € RT} = f]{U eT\xeU} 

by Proposition 2.4.6, part (c). Hence by part (a) of that same result, B is a basis for 
the D-topology T on J, so TRT = T. ■ 

Thus the map 
K = {W,R,F) H+ %c = (W,TR,F) 

from the class of Kripke frames for Caa to the class of D-topological structures for 
Caa, is a bijection, with the map 

X = (X,T,/) ^ KX = (X,RTJ) 

its inverse. The restrictions of the same maps establish a bijection between the class 
of finite Kripke frames for Caa and the class of finite-space topological structures for 
Caa- The map also extends to a faithful bijection between valuations for D-topological 
structures and valuations for the corresponding Kripke frames. 

Definition 2.4.11 Dual models Given a Kripke frame K, = (W,R,F) for Caa, let 
X/c = {W-, TR, F) be its induced D-topological structure. For each valuation t] : W —*• 
V(AP) for K,, define the dual of r\ to be the valuation £ : AP -*• V(W) forTLx. given 
by 

we^v(p)    iff   pET](w) 

for allw eW andp 6 AP. The D-topological model (Xx;,^) is called the dual of the 
Kripke model (JC,rj). 

Similarly, given an D-topological structure X = (X,T,f) for Caa, let K.% = 
(X, Rr, f) be its induced Kripke frame. For each valuation £ : AP —f V(X) for 
X, define the dual o/£ to be the valuation 77^ : X —> V(AP) for JC% given by 

P G rj((x)    iff   x<= £(p) 

for all x (E X and p € AP. The Kripke model (fC%,rj,) is called the dual of the 
D-topological model (X, £). 
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Proposition 2.4.12 Duality of Kripke and D-topological models 

(i) Let (£,77) be a Kripke model for Caa, and (XJC,^) its dual D-topological model. 
Then for all worlds w of K and all formulas if of Caa, 

*> G IMI^      iff     w lh, 9? 

Hence 

feg^     iff     {K,ri)\\-<p 

(ii) Let (X, £) be an D-topological model for Caa, and (K.%, nA its dual Kripke model. 
Then for all states xof% and all formulas ip of Caa, 

x \\-V( (p      iff     x £ ll^ll^ 

Hence 
(JCx^ibtp    iff   (i,Ohv 

Proof. For (i), the proof of 

w € |M|^      <£>   w \\-n ip 

is by induction on formulas. The base case for atomic formulas is immediate from the 
definition of the dual valuation £v; the induction for Boolean connectives and [a] is 
trivial; and for □, we use the interior operator equation from Lemma 2.4.8, part (d). 

For (ii), the proof of 
x U-n( (p   iff   x E |M|^ 

is essentially the same, using part (d) of Proposition 2.4.6 for the D case of the 
induction. ■ 

Corollary 2.4.13 For all formulas <p of Caa, 

% \= <p  for all D-topological structures T for £ao 

iff     K, lh <p  for all Kripke frames K. for Caa 

Corollary 2.4.14 For all formulas tp ofCaa> 

X (= ip  for all T0 D-topological structures X for Coa 

iff     K, lh <p  for all partially ordered Kripke frames fC for Caa 



Chapter 3 

The Logic S4C 

3.1     Adding Continuity 

In our definition of a topological structure X = (X,T,f) for the language £aa, we 
place no restrictions on the function / : X —>• X, other than totality. The language 
itself is rich enough to express various properties of /, notably the continuity of / 
with respect to the topology T. The scheme 

Cont :   [a]n<p ->• n[a]ip 

is called the continuity axiom, in virtue of the following proposition. 

Proposition 3.1.1 [Kur66] I,§13; [RS63] III,§3. 
Let X =  (X, T, /)  be a topological structure for Caa ■    Then the following are 

equivalent: 

(a) for each ip E'Caa, X (= [a]0(p —)• a[a](p 

(b) for each (p € Caa, X f= [a]Oip <-> DfajD^ 

(c) the function f : X —K X is continuous with respect to the topology T. 

Proof. Let </? be any formula of £aa, let £ be any valuation for X, and let A = ||y |L C 
X. Then 

\\[apcp^a[a]<p\\t = X    iff   rl{intT(A))<ZintT{rl{Ä)) 

and 
||[a]ü^<->D[a]G^||4 = X    iff   f-l{intT{A)) = intT{f~l {intr{A))) 

41 
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Now the following equivalence is immediate: 

(b):      f-l(intT(A)) = intT(f-1(intr(A)))    for all A C X 
»ff    (c):     f-l{U) = intT{f-\U))    for all U eT 

i.e. / is continuous w.r.t. the topology T 

since U G T iff £/ = *rrfr(£/), and for any KX,we have m*r(/l) = £/ for some 
U G T. So rewriting 

(a):    /-HmM^CJm^/-1^))    for all A C X 

it suffices to show that (a) =*• (c) and (b) =^ (a). 
Assume (a) holds. Then for any U G T, we have £/ = intT(U), hence 

intT{f-l{U)) C /-»(f/) = f-l(intT(U)) C intT(f-l(U)) 

and thus 

f-l{V) = intT{f-l{U)) 
so (a) =» (c). 

Now, for any ACI,   we have m<r(A) C A, hence applying m<r o /-1, we have 

intT(f-l{intT{A))) C »n^K/-1^)) 

Thus if (b) holds, we have 

f-\intT{A)) = m^Z-^m^A))) C m^^-^A)) 

hence (b) =» (a), as required. ■ 

The preceding proposition gives us an alternative, equivalent version of the conti- 
nuity axiom, namely: 

Cont* :   [a]D(p <-» D[a]Dy) 

It is also readily established that over the Hubert system S4F#, the schemes Cont 
and Cont* are provably equivalent1. 

xThe Cont* scheme is appealed to in devising a sequent calculus rule capturing 
continuity. The relevant rule is: 

D[q]Qy),r=> A 
[a]D^,r=^ A 

which violates the sub-formula property, but in a managable way. Sequent calculi for 
S4F and S4C are investigated in [ADN97a]. 
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From [RS63] and [Kur66], the converse of the Cont scheme, 

Open :    0[a]<p ->• [a]Oip 

characterizes the open mapping property. All instances of the Open scheme are true 
in a topological structure % = (X,T,f), exactly when the function / : X -> X is 
such that for all U € T, the image f(U) G T, since the latter condition holds exactly 
when 

intT(f-l(A)) C f-\intT(A))   for all AQX- 

see [RS63], III,§3, p. 99, and [Kur66], I,§13,XIV. For total f:X->X,the set map 
/_1 : V{X) -¥ V(X) is a (topological) homomorphism of the topological Boolean alge- 
bra 23r(^0 = (V(X), U, D, —, X, 0, intj-) into itself, exactly when / is both continuous 
and open, since for such / we have: 

horn :    f-l{intr(A)) = intT{f~l{A))    for all A C X 

and f~l commutes with all the Boolean operations.   If in addition to horn, /_1  is 
both injective and surjective, then /_1 is an automorphism of the algebra *Bq-(X) 
onto itself; equivalently, / is a homeomorphism of X onto itself ([RS63], III,§3). 

In this study, our chief interest is in continuity. 

Definition 3.1.2 Let JC = (W, R, F) be a Kripke frame for Caa. The map F : W -» 
W is called Ä-monotone iff for all u),v£ W,   (w,v) 6 R   implies   (F(w), F(v)) G R. 

Proposition 3.1.3 Continuity in Kripke frames 

(a) Let K = (W, Ä, F) be a Kripke frame for Caa, with %/c = (W, TR, F) its induced 
D-topological structure. 

If F is R-monotone then F is continuous w.r.t. TR. 

(b) Let X = (X,T,f) be a topological structure for Caa, with K,% = (X, Rr,f) its 
induced Kripke frame. 

If f is continuous w.r.t. T then f is Rf-monotone. 

Proof. For (a), assume F is Ä-monotone. Then for arbitrary AC-W and w G W, 

w € F-l(intTR{A)) 
&   F(w) e intTR(A) 
& (VzeW)[(F(w),z)eR^zeA] 
=*   (Vu € W){ (iü, »)£ß^ F(v) 6 A )       (*) 
<£►   (Vu € W)[ (w, v) e R => v € F-\A) ] 
«*■   w e intTR{F-l(A)) 
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with the implication (*) a consequence of: (w,v) G R =*• (F(w), F(v)) G R.  Hence 
F_1(^rR(^)) C mfrR(^

_1(^)), and so F is continuous with respect to TR. 

For (b), assume / is continuous with respect to T. Recall from Definition 2.4.1 
that: 

(x,y) e Ar iff   (WeT)[xeU => yeU] 

Now fix x,y € X, assume (x,y) G Rr, and let £/ G T be any open set. Then 

f(x)eu & xef-l(U) => yer\u) & f(y)eu 

with the implication holding because f~l{U) G T (by continuity of /) and (x,y) G 
RT. Hence (/(x),/(y)) G Ar, and so / is fiT-monotone. ■ 

Part (b), the continuity of/ w.r.t. T implying that / is monotone w.r.t. #r, is a 
variant of the theme of "continuity implies monotonicity" in cpo and domain theory. 
The result can be found in [Smy92], Proposition 4.2.4. It is part (a), while not deep, 
that is most pleasing. The two together give a particularly simple characterization of 
the meaning of continuity in a Kripke frame. 

Definition 3.1.4 A topological structure % = (X,T, f) for CDa is called continuous 
iff f is continuous with respect to the topology T. A Kripke frame K = (W, R, F) for 
Caa is called continuous iff F is R-monotone. 

Proposition 3.1.5 Duality of continuous Kripke and D-topological models 

(i) Let (JC,n) be a continuous Kripke model for £0a, and (Xjc,f„) its dual contin- 
uous D-topological model.   Then for all worlds w of K and all formulas tp of 

w e IMI^    iff    w IK, if 

Hence 

(ii) Let (X,£) be a continuous D-topological model for Caa, and (/Cj,^) its dual 
continuous Kripke model. Then for all states x of% and all formulas <p of Caa, 

x H-„{ <p     iff     x G |M|^ 

Hence 

(x^)i^   iff   (x,ohv 
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Proof. Immediate from Proposition 3.1.3 together with Proposition 2.4.12. 

Corollary 3.1.6 For all formulas <p of Caa, 

X (= ip  for all continuous D-topological structures X  for Caa 

iff     K, \\- ip  for all continuous Kripke frames K, for £aa 

Corollary 3.1.7 For all formulas <p of £aa, 

X (= (p  for all continuous To D-topological structures X  for Caa 

iff     K, IH <p>  for all continuous partially ordered Kripke frames K. for Caa 

It is readily verified that all instances of the scheme 

Open:   0[a](p -¥ \a]nip 

are forced in a Kripke frame K, = (W, R, F) exactly when the condition 

(F(w),u)eR  =►   {3veW)[F{v) = uk(w,v)<=R}      (F-open) 

holds for all u),u £ W. This condition is properly stronger than the converse of 
ß-monotonicity: 

(F(u;),F(t;))€Ä  =>   (w,v)eR 

since the F-open condition can fail when F is not surjective; i.e. there is a u € W 
such that u / F(v) for all v € W. This is the case for the canonical term frame of a 
path through a tableaux in Section 4.2. 

Observe that for a continuous Kripke frame K. = (W, R, F), we always have 

F{BW)   =   {F(v)\(w,v)eR} 
C   {u | (F(w),u) G R}    by the i?-monotonicity of F 

=   BF(W) 

and the inclusion will be strict whenever there is a u £ W such that (F(w),u) € R 
but u 7^ F(v) for any v such that (w,v) € R; i.e. when F fails to be an open map 
with respect to the cone topology TR. Note also that the only way F(BW) can be open 
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in TR IS if F(BW) = BF(W), because BF(w) is the smallest open set in TR containing 
F(w), and F(w) G F(BW). It then follows that: 

(Viü, ueW) [(«,, v)£R^ (F(w), F(v)) G Ä] and 
(Vw, u G W) [(FH, u) G Ä =* (3v G W)[F(u) = u k (w, v) G Ä]] 

<£>   for all tu G W,  F{BW) = BF{w} 

<S>   for all J/GTR,   F-^t/) G TR and F(£/) G TR 

•£T-   F is a continuous and open map w.r.t. TR 

<&   %K\= [dptp <rt 0[a]ip    for all formulas <p of Caa 

<&   K \\-[apip & U[a]ip   for all formulas tp of Caa 

3.2    Hilbert-style Proof System 

Definition 3.2.1  The Hilbert-style proof system for the logic S4C has as its axiom 
schemes those o/S4F (Definition 2.2.1) together with all instances of the scheme 

Cont :     [a]d(p -> D[a]<p 

in the language Caa; the inference rules are the same as those of SAT. 
We write 

S4C \-H <p 

or say ip is S4C# provable, if the formula tp G CQa has an S4C Hilbert-style deriva- 
tion. 

The following are derivable in S4C#, for any formula <p G CQa and k G N. 

[a]fcCont :        [a]*Oy> -». D[a]*y? 
[a]*OCont :    0[a]V -» [a]*<V 

The following is an admissible inference rule in S4C//, for any formulas 97, V>, x G 
£aa and fc, / G N: 

Con£mwous 
/foare composition:       <p ->• [a]fcü^, ^ -> [a]'D0 

V? -5- [a]*+,D^ 
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Proposition 3.2.2 Soundness of S4C Hilbert-style proof system 
For all formulas <p of Caa, if S4C h# ip, 
then %\= if  for all continuous topological structures % for Caa 

and K,\V if  for all continuous Kripke frames K for Caa- 

Proof. Immediate from Propositions 2.2.2, 3.1.1 and 3.1.6. ■ 

As for S4F, a "cheap" proof of Kripke completeness for the S4C Hilbert-style 
proof system is available. 

Proposition 3.2.3 Kripke Completeness of S4C Hilbert-style proof system 
There exists a continuous Kripke model (JCo,r)0) such that for all formulas ip of 

L,Ua> 

(JC0,T)0)\h (p iff   S4C \-H ip 

Proof. From the proof of Proposition 2.3.7, the canonical Kripke frame K,Q = 
(Wo, Ro, Fo) satisfies: 

Wo = {U Q £aa\ U is maximal S4C-consistent} 
((/, V) G Ro   iff  (Vy> G Caa)[ VipeU =► y? G V ] 

Fo{U) = {cp G Caa | [a]veU} 

with the canonical valuation n0 for JC0 given by: p G r)0(U) iff p G U. It suffices 
to show that the function F0, which "peels-off" one [a], is monotone with respect to 
the relation Ro. Fix maximal S4C-consistent sets U, V and a formula ip, suppose 
(U, V) G Ro. Then 

a<p G F0(U) 
■& [a]Otp eU property of F0 

=>• 0[a](p G U Cont axiom 
=$> [a]ip G V definition of Ro 
& <p> G F0(V) property of F0 

Hence (F0(U), F0(V)) G Äo, as required. ■ 

3.3    Quotient Kripke Frames and To Topologies 

This section examines the T0 quotient construction, and the dual construction of 
a partially-ordered Kripke frame. We identify a class of valuations which can be 
faithfully passed through to T0 quotients. The first task is to formalize the notion of 
a quotient of a Kripke frame in our setting. 
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Definition 3.3.1 Let K, = (W,R,F) and fC' = (W',R',F') be Kripke frames for 
Caa, and let h : W —>■ W be a surjective map. 

We say the frame fC' is a quotient under h of the frame K, iff 

(a) h preserves the accessibility relations R and R!: for all w,v € W, 

{w,v)eR    =►    (h(w),h(v))eR' 

(b) h preserves the functions F and F': 

F'oh = hoF 

K.' is called the minimal quotient under h of K iff for all w,v G W, 

(h(w),h(v))€R!     &     (w,v)eR 

Lemma 3.3.2 Given a Kripke frame K = (W, R, F) for Caa and a surjective map 
h:W -+W onto a non-empty set W, any structure K.' = (W, R', F') satisfying: 

(1) R' C W x W is such that for all w, v e W, 

{h(w),h(v))eR'     &     (w,v)eR 

(2) F' : W -> W is such that for all w<EW, 

F'(h(w)) = h(F(w)) 

is a Kripke frame for LQa, and the minimal quotient under hof)C. 
Moreover, if JC is a continuous Kripke frame, then K,' is also continuous. 

Proof. Clause (1) guarantees that R' is a reflexive and transitive binary relation on 
W, and by the surjectivity of h, the equation in clause (2) defines a total function 
F' on W. If F is Ä-monotone, then for all w, v G W, 

(h(w),h{v))eR' 
<&  (w,v)eR (i) 
=*"   (F(w), F(v)) G R monotonicity 
«-   (h(F(w)),h(F(v)))€ff       (1) 
^   (F'(h(w)),F'(h(v)))eR'     (2) 

Hence F' is fi'-monotone. ■ 
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Recall from Lemma 2.4.8, part (a), that in a Kripke frame K. = (W, R, F), with 
its induced topology TR on W, 

(to, v) G R and (w, to) G Ä    iff    (Vf/ G TR)[ W G £/ <S>  u 6 £/ ]. 

i.e. w and u belong to all the same open sets in TR. So we call the quotient which 
identifies all such w and v the To quotient of K. 

Proposition 3.3.3 Let K. = (W,R,F) be a continuous Kripke frame for Caa. For 
each w G W, let: 

w = {v e W | (w, v) € R and (v, w) G R} 

Let W° = {w | w G W}, and let h : W —>■ VT0 6e ^Äe surjective map given by 
h(w) = w. 

Then the structure JC° = (W°, fi°, F°) defined, for all w, v G W, by: 

(i) (h(w),h(v))e R°   iff (w,v) G R; and 

(ii) F°(h(w)) = h(F(w)) 

is a Kripke frame, and JC° is the minimal quotient under hn of K,. 
Moreover, tC° is a continuous Kripke frame, and the relation R° is a partial order, 

so its induced topology TRO on W° is To- The frame JC° will be called the To quotient 
ofJC. 

Proof. First observe that the Ä-monotonicity of F is what is needed to ensure that 
the function F° is well-defined by (ii) (i.e. this quotient construction is not available 
for arbitrary Kripke frames), and F° is i2°-monotone by Lemma 3.3.2. The anti- 
symmetry of the relation R° is immediate from the definition of the quotient map h. 

We now turn to the topological quotient. 

Definition 3.3.4 Let % = (X,T,/) be a continuous topological structure for Caa. 
Define an equivalence relation =o on X by: 

x=0y     iff   (WeT)[xeU&y€U}; 

equivalently, 
x =o y     iff   (x,y) G Rr   and (y,x) G Rr 

where R-y is the relation induced by T'.   Let x = {y G X \ x =0 y} denote the 
equivalence class of x under =0, and let X° = {x \ x G X} be the set of equivalence 
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classes. Let q : X ->• X° be the surjective map given by q(x) = x. The map q is 
called the Stone map for X. Then q induces a unique quotient topology T° on X° ■ 
for subsets V C X°, 

VeT3   iff q-\V)eT 

By standard arguments (see, for example [Th66], Theorem I4.2), T° is a T0 topology 
on X° and the Stone map q : X -4 X° is both open and closed, as well as (trivially) 
continuous. Define f° : X° ->• X° to be the unique map satisfying 

f°oq = qof 

Then (by standard arguments) f° is well-defined on the quotient and continuous with 
respect to the quotient topology T°. Hence X° = (X°,T°,f°) is a T0 continuous 
topological structure, called the T0 quotient o/X. 

The Kripke frame and topological T0 quotient constructions clearly commute with 
the duality transformations K H- %K and X ^ fCz between continuous Kripke frames 
and continuous D-topological structures. 

Proposition 3.3.5 Let K = (W, R, F) be a continuous Kripke frame for Caa, with 
X/c = (W,TR, F) its induced D-topological structure, and JC° = (W°,R°,F°) its T 
quotient. 

o Then 1%, the T0 quotient ofZK, andT^o, the induced D-topological structure of 
K, , are identical topological structures. 

Dually, let X = (X, T, /) be a continuous D-topological structure, with K,% = 
(X, Rr, f) its induced Kripke frame, and CX? = (X°,T°, f°) its T0 quotient.      — 

Then £°, the T0 quotient of K%, and K&, the induced Kripke frame oftf, are 
identical Kripke frames. 

Proof. Immediate. ■ 

Corollary 3.3.6 // X = (X, T, /) is a continuous D-topological structure for Ca 

and X° = (X°,T°,f°) is its T0 quotient, then T° is a D-topology. 

Having established the structure of topological and Kripke T0 quotients, we turn 
to the question of how and when a valuation of atomic propositions in a topological or 
Kripke model can be faithfully passed through to the corresponding T0 quotient. We 
start with a lemma on how the quotient map behaves with the interior and inverse- 
image operators. 
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Lemma 3.3.7 Let % = (X, T, /) be a continuous topological structure for Caa and 
let X° = (X°,T°,f°) be its T0 quotient, with q : X -* X° the Stone map. Then for 
all A C X°, 

q-*((f°)-l(A))    =    f-l(q-\A)) 
q-l(int>ro{A))    =   intT{q~l{A)) 

Proof. The first formula is immediate from the defining equation for f°, namely 
f° o q = q o /. For the second formula, the inclusion 

q~l (intro(A)) C intr (?_1(A)) 

for A C X0, is derivable using only the fact that q~l commutes with arbitrary unions 
and is inclusion monotone, together with the defining property of the quotient topol- 
ogy: V G T° iff q~l(V) G T, for V C X°. For the converse inclusion of the second 
formula, observe that the subset q (intr (q_1 (A))) °f X° is open w.r.t. T°, since 
q : X —y X° is an open map and intq- (q~1(A)) is trivially open w.r.t. 7". So to prove: 

gfiniTtg-1^)))^^^)     (#) 

it suffices to show: 
q(intT(q-\A)))CA     (*) 

and (*) is readily verified using basic properties of intj- and q~l. The desired inclusion 
then follows from (#) by applying q~l to both sides. ■ 

Given X = (X,T,f) continuous, with T° = (X°,T°,/0) its T0 quotient and 
q : X —> X° the Stone map, the preceding lemma suggests that we try to pass a 
valuation f : AP -»• P(X) through to the quotient by defining f : AP -» "P(X°) by: 

#)e(0(p)   iff  *e£(p) 

for all p G AP and x & X. Provided £° is well-defined, we then get the base case of 
an induction proving: 

«T1 (lMI«o) = Nl« 

The well-definedness of £° requires that if q(x) = q(y) then for all p G AP, x G £(p) 
iff y G £(p). Since g(x) = q(y) iff (a:, y) G i?r and (j/, x) G Rr, well-definedness can 
be characterized in terms of the induced relation Rj-. 

Definition 3.3.8  7o-consistent valuations 
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Let X = (X,T,f) be a continuous topological structure for Caa, with Rr the 
relation induced by T. A valuation ( : AP -> V(X) for X is called To-consistent iff 
for all x,y £ X, 

(x, y) e RT    implies    (Vp G AP)[ x G £(p) =*> y G £(p) ] 

Let K = (W, R, F) be a Kripke frame for £aa. A valuation n : W -+ V(AP) for 
K, is called T0-consistent iff for all w, v G W, 

(w,v) G R    implies    n(w) C n(v) 

i.e. n is inclusion-monotone with respect to R. 

So the To-consistency condition for valuations is essentially monotonicity, remi- 
niscent of the monotonicity requirement for valuations in the (partial-order) Kripke 
semantics for Intuitionistic logic. Observe that if f is an open valuation for X, i.e. 
((p) E T for all p G AP, then f is T0-consistent. 

Theorem 3.3.9 Let X = (X,T,f) be a continuous topological structure for £aa, 
let X° = (X°, T°, /°) be its T0 quotient,  with q : X -> X° the Stone map, and let 
£ : AP —>• V(X) be a To-consistent valuation for X. 

Define a valuation £° : AP -»• V(X°) for X° by: 

9(*)e£0(p)   iff xet(p) 

for all p G AP and x G X, 
Then for all tp G £aa, 

?_1 (iMI^o) = IMI, 

Hence 

• e^Ohv iff (x,oi=v 
Proof.   Proceed by induction on formulas ip of £Qo.  The T0-consistency condition 
guarantees that the valuation £° is well-defined, in which case 

9-1 (e°(p)) = tb) 

for atomic propositions p G AP. For the induction cases of -1, ->, D and [a], respec- 
tively, we use the formulas: 

q-H-A)    =    -q-l{A) 
q~l(-A UB)    =    -q-1{A)Uq-1(B) 
q-1 (intro(A))   =   intT{q-\A)) 

q-l{{f°)-\A)) = r*(q-\A)) 
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with the latter two coming from Lemma 3.3.7. 
Then since 

y\\e = x° «. g-
1(iHi,o)=x 

with the (=>) direction from the totality of q, and the (<S=) direction by the surjectivity 
of q, we have 

Corollary 3.3.10 Let K. = (W,.ft, F) 6e a continuous Kripke frame for Caa, let 
/C° = (W°, R°, F°) be its T0 quotient, with h : W -»■ W° the quotient map, and let 
n : W —> V(AP) be a To-consistent valuation for JC. 

Define a valuation n° : W° ^ V(AP) for JC° by: 

n°(h(w)) = n(w) 

for all w € W. 
Then for all ip € Caa o.nd all w 6 W, 

Hence 

h(w) \\-vo ip    iff   w \\-v (p 

(JC0,*0)^?    iff   {K,rj)\\-<p 

Proof. The T0-consistency of 7/ : W —)■ V(AP) implies that its dual valuation 
£ : AP —> V(W) for the induced topological structure TA: is To-consistent, using the 
fact that RTR = R from Proposition 2.4.10. Then apply Theorem 3.3.9, together with 
Propositions 3.3.5 and 3.1.5. ■ 

It is clear that an arbitrary valuation for a continuous topological structure or 
Kripke frame cannot be passed faithfully through to the T0 quotient. From Kripke's 
[Kri63], the formula: 

0(Dp V O^p) 

is not S4 provable, but it is true in every S4 Kripke frame K = (W, R) with the 
property that for each w € W, there is a terminal world v such that (w,v) G R. A 
world v is terminal if (v,u) G R iff u = v. Every K = (W, R) with W finite and 
R a partial order has the "access to a terminal world" property. In Section 4.5, we 
will establish that S4C is complete for the class of finite continuous Kripke frames 
for £aa, but applying Kripke's observation, S4C cannot be complete for the class of 
finite continuous partially ordered Kripke frames for £Q0. 
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Recall from Section 1.3 that the natural analog-to-digital conversion map for a 
D-space is the Stone T0 quotient. Let X = (X, T, /) be a structure with / continuous 
and T a finite D-topology. Let {£,},<=/, where / = {l,...,n}, be the basis for T 
obtained by taking all the non-empty join-irreducibles in the (finite) lattice T, so 
that for each i G /, there is an x G X such that: 

Bi = BX = f]{U 6 T I x G U] 

and for each x G X, Bx = B{ for some i G /. Then the analog-to-digital conversion 
map AD : X —y I is given by: 

AD(x) = i   iff   Bi = Bx 

Let T° = (X°, 7°, f) be the T0 quotient of X, with q : X -> X° the Stone map. The 
mapping d : X° -> I given by %(x)) = AD(x) is well-defined, since: 

q(x) = q(y)    iff    (Vf/ € T)[ x € f/ <^ j/ G t/ ]; 

moreover, it establishes a bijection between X° and /. If / is partially ordered by: 
i < j iff Bj C Bi, and then given the Alexandroff topology T< generated by the upper 
cones under <, it is readily verified that d is a homeomorphism. 

Theorem 3.3.9 says that if we want satisfiability and truth in models (X, T, f; () 
to pass faithfully to the finite T0 quotient (X°,T°, /°; £°) under the AD map, 'we 
must be careful with the choice of valuations f. In practice, this is not a problem, 
since atomic propositions will typically be evaluated by the.basic open sets B{, and 
as noted above, any open valuation is T0 consistent. 



Chapter 4 

Tableaux Proof Systems 

4.1     S4F and S4C Tableaux 

In this chapter, we give a detailed presentation of a tableaux proof system for the 
logics S4F and S4C. The system is an extension of the treatment of modal tableaux 
in [NS93] and [Ne90], which is in turn a descendant of the modal prefixed tableaux 
systems of Fitting [Fi72] and [Fi83] Ch. 8. The essential idea, which traces back to 
Fitch, is to add to the formal language of proofs symbols intended to name possible 
worlds in Kripke models, taking to heart the central idea of Beth [Be59] that the 
construction of a tableaux proof is an attempt to build a countermodel. So to give 
symbolic representation to such models, I include in the formal language of proofs not 
only symbols for possible worlds, but also symbols for both the accessibility relation 
and the function. 

A tableaux is a labeled binary tree, where the labels, called entries, are of two 
sorts: 

• signed forcing assertions T[ t lh <p ] or F[ t lh ip ], and 

• modal accessibility assertions £Rs, 

where the terms t,s are functional terms generated from a set of primitive world 
symbols by applying the unary function symbol F. 
The root entry of a tableaux will always be a signed forcing assertion in which the 
term t is required to be a primitive world symbol w. The tableaux construction rules, 
for extending a path in a tree, correspondingly represent two sorts of inference: 

• rules for the logical analysis of signed forcing assertions T[ t lh if ] or F[ t lh <p ], 
in terms of the principle connective or modal operator of the formula ip, designed 
to capture the various clauses of the inductive definition of forcing, and 

55 
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• rules for the accessibility relation, capturing the reflexivity and transitivity of 
R, and for the class of S4C tableaux, a rule capturing the monotonicity of F 
with respect to R. 

In the course of constructing a tableaux, complex formulas ip are broken down while 
complex terms t are built up. 

A formula tp has a tableaux proof exactly when all paths through a tableaux with 
root F[ w0 lh <p ] are contradictory, while a non-contradictory path P through a 
"finished" tableaux with root F[ w0 lh (p ] gives us the symbolic material to construct 
explicitly a Kripke frame /CP and a valuation 77p such that w0 ¥Vf y. Symmetrically, 
from a non-contradictory path P through a "finished" tableaux with root T[ w0 lh 9? ],' 
we can show that in the Kripke model (JC?, r)p), we have w0 lh„p ip. 

Definition 4.1.1 Let W be a countable set of world symbols and let F be a unary 
function symbol. Let W(F) be the set of terms generated from W under F; i.e. the 
free term algebra. A t G W(F) is called a world term. So every world term t <E W(F) 
is of the form Ffc(w) for some world symbol w G W and integer k>0, where F°(w) 
is w. Terms F*(w) for k > 0 are referred to as complex world terms, while world 
symbols w G W are called simple world terms. 

Definition 4.1.2 For a signed forcing assertion of the form: 

T[t\\-ip]    or    F[t\\-<p] 

the world term t is said to be the subject of the assertion, and the formula ip is said 
to be the object of the assertion. 

Ift = F (w,) then t is said to be relevant to any signed forcing assertion which 
has wt- as its subject. 

We assume we have a fixed enumeration {w,- | i 6 N} of W. In the section on 
completeness, we will also have need of a fixed enumeration of all the world terms in 
W(F), where set-wise W(F) S N x N. Let p : N x N -> N be the standard bijective 
pairing function 

p(i,k) = i+l ^(„ + i)J =I((i + fc)2 + 3i + fc). 
\n<.+it / 

We then take 

{SJ I i, kj € N and j = p(i, k)  and   Sj = F*(w,-)} 
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eis our enumeration of W(F). We also have need for well-ordered index sets. We 
write / :< N to mean / is either a non-empty finite initial segment of N or else all of 
N, and we write 0 ■< I ^ N to allow the possibility that / is empty. 

Definition 4.1.3  The following labeled binary trees are atomic tableaux, where p £ 
AP, ip,xße Caa, and t,s£ W(F). 

(T-AP)    T[t\\-p] (F-AP)    F[t\\-p] 

(T-)     T[ fll--^] (F-.)     F[t\\--«p] 

I I 
F[t\\-<p] T[t\\-<p] 

(T-)-) T[t\\-(p-n/>] ... (F->)    F[t\\-<p-nj>] 

I \ I 
F[t\\-<p] r[ t Ih V ] T[t\\-<p] 

I 
F[t\brl>] 

(TO) T[t\\-Dip] (FD)    F[t\bn<p] 

I I 
T[s\\-ip] fRwj        vfj € W new 

I 
iftHs occurs previously F[ w,- lh p ] 

on f/w's paf/i 

(T[a))       T[t\\-[a]<p] (F[a])       F[t\\-[a]tp] 

I I 
T[F(f)lhp] F[F(f)lhp] 
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Definition 4.1.4  The class of S4F tableaux is defined inductively as follows: 

(i) Ifr is an atomic tableaux in which the world term t in the root entry is a world 
symbol w, e W, then r is an S4F tableaux. 

For the case (FO), the condition that the Wj in w.Rw, be "new" merely means 
that j ^ i; for definiteness, we may take j = i+l. 

For the case (TO),  the condition that tRs   "occurs previously on this path" 
cannot be satisfied in this case, so an atomic tableaux T with root entry 
T[ w, l(- Dtp ] consists of the root node only. 

(ii) Ifr is a finite S4F tableaux, P is a path in r which does not contain contradic- 
tory entries: 

T[t\b(p]   and  F[t\b<p] 

for any <p £ £Da and t G W(F), and r   is constructed from r by extending P 
using one of the following construction rules, then r   is an S4F tableaux. 

(Develop) A signed forcing assertion E occurs on P and r  is constructed from 
T by appending an atomic tableaux with root entry E to the end of the path 

For the case (FO), where E is of the form F[ t U- D<p }, the condition that 
the vrj in tRy/j be "new" means that j <= N is the least integer such that 
Wj is yet to occur in any entry on r. 

For the case (TO), where E is of the form T[ t IH D^ ], the condition 
that tRs "occurs previously on this path" means that tRs is an entry on 
P. If there are no entries tRs on P, for any s € W(P), then as in (i), the 
atomic tableaux in this case consists only of the root node labelled E. 

(R-Reflex) A world term t 6 W(F) is relevant to some signed forcing assertion 
on P, and r is constructed from r by adjoining to the end of P an entry 
tRt. 

(R-Trans) For some t,s,r 6 W(F), accessibility assertions tRr and rRs both 
occur as entries on P, and r is constructed from r by adjoining to the end 
of P the entry tRs. 

(m) If I <n and {rn}ne/ is a sequence of finite S4F tableaux such that r0 is an 
atomic tableaux and for each n < snp(I), rn+1 is constructed from rn by an 
application of clause (ii), then r = Ung/ rn is an S4F tableaux. 
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Definition 4.1.5 Let r be an S4F tableaux. 

• A path P in r is contradictory if for some ip G Caa and t G W(F), both: 

T[t\V<p]   and  F[t\\-ip] 

are entries on P. 

• r is contradictory if every path in r is contradictory. 

• T is a tableaux proof of y> G Caa if r has root entry F[ w,- It- ip ], for some 
w,- G W, and r is contradictory. 

We write 
S4F \~T (p 

if the formula ip G Caa has an S4F tableaux proof. 

Note that by clause (ii) of the definition of S4F and S4C tableaux, only non- 
contradictory paths can be extended, thus any contradictory path is finite. Hence if 
r is a contradictory tableaux, then by König's Lemma, r is finite. 

1 ^ Wo lr-[a](y>->V0 "►([«]¥> "►[<#)]   ^ 

2 r[wolr-[a](p-»V0]    ^ l:(F->) 

3 F[ wo IH [a]<p -> [c]V> ]  / 1:(F-».) 

4 r[ wo lh [o]v> ]    / 3:(F->) 

5 - F[w0(t-[<#]  / 3:(F->) 

6 F[F(w0)lhV] 5:(F[o]) 

7 T[F(w0)lhv5->V]    / 2:(r[a]) 

8 T[ F(w0) lh y> ] 4:(T[a]) 

F[F(w0)lr-¥>]   7:{T->)   T[F(w0)lt-V]   7:(T -►) 

® 8,9 ® 9,6 

Figure 4.1: S4F tableaux proof of axiom [a]K 
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As stated in the (Develop) construction rule, the signed forcing assertion E 
that is being developed should formally be repeated when the corresponding atomic 
tableaux is appended to the path P. In our examples above, we omit this repetition 
as a notational convenience. 

Let's start by giving tableaux proofs of the [a] axioms, found in Figures 4.1 and 
4.2. 

1 F[ w lh -,[a](p-t [a]-«p] / 

2 T[w\\-^[a]<p]   / l:(F->) 

3 F[wlh[a]^]  / l:(F->) 

4 F[wlh[a]y>]    / 2:(T-) 

5 F[F(w)lh-^]   / 3:(F[a]) 

6 F[F(w) lh v] 4:(F[a]) 

7 T[F(w)\\-ip] 5:(F-,) 

® 7,6 

1 F[ w If- [a]~v -j. -.[a]v? ]  / 

2 T[wlh[a]-^>]    / 

3 F[wH--.[a]y>]   / 

4 T[ w lh [a]y> ]     / 

5 T[ F(w) lh -ip ]    / 

6 F[F(w)lh^] 

7 T[F(w)lhy>] 

l:(F->) 

(F-,) 

TO) 

(7^) 

4 

7,6 

Figure 4.2: S4F tableaux proofs of axioms [a]D and [a]De 

To see that the [a]-necessitation rule of the Hilbert-style proof system is preserved 
in S4FT, assume S4Fr h y?, and let r be a tableaux proof with root F[ w0 lh tp ]. 
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Now let w; be a world symbol that does not occur in r, and consider the atomic 
tableaux: 

1 F{ w, lh [a]<p ]    / 

2 F[ F(w,-) lh y> ]        h(F[a]) 

Let T' be the result of substituting the world term F(w,) for w0 throughout r. Note 
that since w0 is the subject of the root entry of r, the only accessibility assertion 
containing w0 that can occur in r is w0Rw0. Appending r' to the atomic tableaux 
above will create a tableaux proof r   of [a]ip. Hence S4Fx h [a]<p. 

The verification of the d-necessitation rule is similar. Assume S4Fr h (p, and let 
r be a tableaux proof with root F[ w0 II" <p ]. Now let i £ N be such that if w7- occurs 
in any entry in r, then j < i. Consider the atomic tableaux: 

1 F[ w, lh Uip ]   / 
2 w,Rwt+1 1:(FD) 
3 F[wt+1lh^] 1:(FD) 

Let T' be the result of substituting w,+i for Wo throughout r. Appending r' to the 
atomic tableaux above will create a tableaux proof r   of □<£>. Hence S4FT H Ocp. 

For modus ponens, the construction of a tableaux proof of T/> from tableaux proofs 
of ip and ip —> xf) is essentially equivalent to giving a cut-elimination algorithm for the 
corresponding sequent calculus. 

Now consider an S4F tableaux for the continuity axiom: 

Cont :     [a]D(p -> 0[a]ip 

given in Figure 4.3, where we take tp to be any fixed atomic proposition p £ AP. 
By inspection of the tableaux, what we need is F(w0) RF(wi), so that from (5) 

by (Tu), we would get T[ F( Wi) lh p ], and a contradiction with (12). 

Definition 4.1.6 The class of S4C tableaux is an extension of the class of S4F 
tableaux obtained by adding to clause (ii) in Definition 4-1-4 the additional construc- 
tion rule: 

(Jp-Cont):   An accessibility assertion iRs occurs as an entry on P, 
and T  is constructed from r by adjoining 
to the end of? the entry F(f)RF(.s). 

We write 
S4C hT ip 

if the formula ip £ Caa has an S4C tableaux proof where the notion of tableaux proof 
for S4C is the same as that for S4F. 

Of course, we now trivially have an S4C tableaux proof of the continuity axiom. 
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1 F[w0lh [a]Op-> a[a]p] / 

2 r[w0lh[a]Dp]    / l:(F->) 

3 F[w0ll-D[a]p]    / l:(F->) 

4 WQRWO 1:(R-Reflex) 

5 T[F(wo)ll-Dp]- 2:(T[a}) 

6 F(wo)RF(w0) lr(R-Reflex) 

7 w0Rwx 3:(FD) 

8 F[ wx If- [a]p ]   S 3:(FD) 

9 W^W! 8:(R-Reflex) 

10 T[F(w0)IHp] 5,6:(TD) 

11 F2(w0)RF2(w0) 1:(R-Reflex) 

12 F[F(Wl)lhp] 8:(F[a}) 

13 F(w,)RF(Wl) 

no contradiction 

8:(R-Reflex) 

Figure 4.3: S4F tableaux for axiom Cont 

4.2    The Term Frame of a Path 

The great attraction of semantic tableaux as a proof system is that the construction of 
a tableaux proof is simultaneously an attempt to build a countermodel. This section 
gives a careful account of the term frame of a path through a tableaux. 

Definition 4.2.1 Let r be an S4F tableaux and let P be a path through T. 

We associate with P a unique Kripke frame KP = (WP, RP, FP), called the term 
frame for P, as follows. 

Let W0 be the set of all world symbols wt- 6 W that are the subject of a signed 
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forcing assertion on P. Let 

WP = {Fk{wi) | w, € W0 and k G N} 

i.e. WP C W(F) is the smallest subset o/W(F) that contains all world terms that are 
the subject of some signed forcing assertion on P and is also closed under application 
o/F. [Note that WP is always countably infinite.] 

The relation Rp on Wp is defined to be the reflexive and transitive closure of the 
relation R on WP defined by: 

(t,s) G R       ■&       tRs   is an entry on P 

for all t,s £ Wp.  That is, 

Rp —  yj Rm 
meN 

where 

Ro        =   {(t,t) | t G Wp}, the identity relation on WP 

Ri        =   R = {(t, s) G Wp x WP | tRs   is an entry on P} 
Rm+1    =   RmD {(t, s) | (3r € Wp) (*, r) € Rm and (r, s) G Rm} 

Define a function FP : WP —> WP by 

FP(t) = F(<) 

for all t G Wp; i.e. FP is the term constructor function on Wp. 

Definition 4.2.2 -Let r be an S4C tableaux and let P be a path through r. We 
associate with P a unique Kripke frame K,P — (WP, RP, FP), called the term frame for 
P, as follows. 

The set of world terms WP as well as the function FP : Wp —> WP is the same as 
in Definition J^.2.1. 

The relation RP on Wp is defined to be the reflexive, transitive and F-functional 
closure of the relation R on WP defined by: 

(2, s) € R       <£>       tUs   is an entry on P 

for all t,s G Wp.  That is, 

Rp= \jRm m 
meN 
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where 

R-o        =   {(M) | t G Wp}, the identity relation on WP 

R\        =   R= {(t,s) e WP x WP | tRs   is an entry on P} 
K+1    =   Ä+ U {(t,s) | (3r € Wp) (t,r) € ß+ amf (r,s) € #+} 

U{(F(i),F(*))| (*,,)€/£} 

Proposition 4.2.3 Let r be an S4C tableaux and let P be a path through r.   Then 
the term frame JCP = (WP, RP, FP) is a continuous Kripke frame. 

Proof. The fip-monotonicity condition: 

(t,s)eRP   =>   (FP(t),FP(s))eRP 

for all t,s £ WP, follows trivially from the definition of RP and FP. ■ 

The term frame K.P = (WP, ÄP, FP) represents all the frame information expressed 
in entries on the path P. The signed forcing assertions occurring on P potentially define 
a valuation np for KP satisfying: 

T[ t lh tp ]   is an entry on P       =j>       t \\-Kr tp 
F[ t\\- ip ]  is an entry on P       =£■       t W& ip 

Of course, if P is a contradictory path, then there can be no valuation 77p satisfying 
these conditions. 

Definition 4.2.4 Let r be an S4F (S4CJ tableaux and suppose there is a non- 
contradictory path P through r. Let K.P = (WP,RP,FP) be the term frame for P. 
The path valuation Vp:WP-> V(AP) for fCP is defined by: 

p E r}p(t)    <&   T[t\\-p]   is an entry on P 

for all t G WP and p £ AP. 

For non-contradictory paths P, the term model (ICP,r]p) is basically a two-sorted 
Herbrand structure. Since we are working in an extension of classical propositional 
logic, the first sort is just the Boolean values B = {0,1}, the values of Caa formulas 
in worlds. The second sort is the real novelty: we have objects denoted by world 
terms Ffc(wt) in WP. The structure JCP comes equipped with a distinguished binary 
predicate RP and a distinguished unary function FP, both defined on the set WP. 
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Accordingly, signed forcing assertions S[ t lh ip ] can be thought of as sentences in a 
two-sorted (first-order) language. 

In making use of the term frame, one of the central notions is that of a Kripke 
model agreeing with a path P, which basically means that the model is a quotient of 
the term model (/CP,77P). 

Definition 4.2.5 Let r be an S4F (S4CJ tableaux, let P be a path through r and let 
)CP = (WP, RP, Fp) be the term frame for P. Let K, = {W, R, F) be a frame for Caa and 
let T) be a valuation for IC. 

We say the Kripke model (£,77) agrees with P iff there exists a surjective map 
h : Wp —> W such that 

(i) K, is a quotient under h of fCp, as in Definition 3.3.1, and 

(ii) h preserves the valuations described on P: 

T[t\\- ip]   is an entry on P       =>       h(t) H-£ tp 
F[ t \\~ (p ]   is an entry on P       =*►        h(t) \F% ip 

for all ip 6 Caa and t £ WP. 

We say (fC,n) agrees with P with quotient map h, or witnessed by h, when we 
need to identify the map h. 

In the proof of completeness, we give a systematic procedure which ensures that 
every entry that could be on P, is on P, if the path is non-contradictory. In this case, 
we have (/CP,/7P) agreeing with P via the identity map. In the proof of the finite model 
property, we obtain a finite quotient of (£P,77P) agreeing with P. 

The remainder of this section is devoted to identifying the key properties of the 
term frame /CP = (Wf, i?P, Ff). We have already noted that W? is always countably 
infinite. Note also that all the world terms generated from distinct world symbols 
occurring on P are distinct: 

F*(w,-) ^ F'(Wi) 

whenever i ^ j or k ^ /. Since 

FP(F
fc(w,)) = Ffc+1(w,) 

the function F? is trivially injective. World terms only get to be identified when we 
take a quotient of /CP. 
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Lemma 4.2.6 Let P be a path through an S4F fS4Cj tableaux r , let r' be an 
S4F fS4Cj tableaux obtained from r by extending P by applying one of the tableaux 
construction rules in clause (ii) of Definition 4.1.4 (Definition 4.1.6), and let P be 
any path through r' extending P. 

(a) If the rule applied is not the (FO) case of the (Develop) rule, then we have: 

n^p1 — K,p 

(b) // the rule (FO) is applied to an entry F[ t l(- O^ ] occurring on P, where 

t = F (wt) € WP, and j e N is the least such that Wj is yet to occur in any 
entry on T, then: 

• * < j; 

• WP, = Wp\j{Fk{vrj) I keN}; 

• Rpi is the reflexive and transitive closure in WP> (reflexive, transitive and 
F-functional closure in Wp>) of RP U {(Ffc(w,), w,-)}; and 

• Fp> is the term constructor function on Wp> uniquely extending FP. 

Hence: 

fCp is a proper subframe of KPi 

Proof. There is only one extension P' of P except for an application of the (T ->) 
case of the (Develop) rule, when there are two possibilities for P'. 

In all cases of the (Develop) rule other than (FD), we have Wv> = WP and 
hence FP> = FP, since no new world symbols are introduced. In these cases, no new 
accessibility assertions are added to P so RP. = RP. Hence tCP> = KP. 

For the accessibility relation rules (R-Reflex) and (R-Trans) (and the (F-Cont) 
rule for S4C tableaux), there are also no new world symbols introduced, so WP> = 
WP and FP/ = FP. In these cases, the sole path P' extending P only contains new 
accessibility assertions, and these new assertions are already accounted for in RP = 
RP>, since RP is the reflexive and transitive (and F-functional) closure of the relation 
on WP = WP> defined by the set of all accessibility assertions occurring on P. Hence 
K.Pi = fCP in these cases also. 

It is then clear that the only case in which JCP> is a proper extension of KP is in the 
(FO) case. Suppose (FD) is applied to an entry F[ t If- D^ ] on P, where t = F*(w,-) 
for some i, k € N, and j 6 N is the least such that w,- is yet to occur in any entry 
on r. Then we must have i < j, and the sole path P' extending P contains a new 
accessibility assertion F*(w,-)RWj, and a new signed forcing assertion F[ wy lh xp ]. 
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By the definition of the term frame of a path, the extension JCP> clearly satisfies (b). 
■ 

So accessibility assertions added to a path in an S4F or S4C tableaux by (FO) 
are always of the form: 

Ffc(w:)Rwj     where  i<j 

The pattern is always from an arbitrary (complex or simple) world term to a later 
simple world term. For S4F, taking the reflexive and transitive closure does not 
change this fundamental pattern, while for S4C, taking the F-functional closure 
opens up more possibilities but the pattern is still quite constrained. 

Proposition 4.2.7 Let r be an S4F tableaux, let P be a path through T, and let 
)CP — (Wp, RP, Fp) be the term frame for P. 

Then for each t = F*(w,-) G WP, every RP chain from t is of the form: 

<Ffc(w,-)>*(w,-. \jeJ) 

for some 0 X J X N, where 
i < io < ij < ij+i 

for all j < sup(J). 
So the term frame K,p has the following properties: Wp is countably infinite, RP is 

a partial order, and Fp is injective. 
Hence the induced D-topological structure %p = (Wp, Tp, Fp) is countable and To, 

with an injective function. 
Moreover, the basic open set for t = Ffc(w.) G WP in the cone topology Tp = TRP 

is of the form 
Bt = {Ffc(wt)} U {wtn | n G N} 

for some (possibly empty) subset N C N, where i < in < in> for all n,n' G N with 
n < n'. 

Proof. Fix t = Fk(w{) G WP. It is clear from the construction of S4F tableaux that 
for all s G W(F), if 2Rs is an entry on P, then either s = t, or else s = W/ G W 
for some / > i and there exists m > 0 and world symbols w,0, w?1,..., wtm G W such 
that 

• i < io < ii < ••• < im = !■', 

• the world symbol w,0 was introduced by (FO) applied to a signed forcing as- 
sertion F[ t Ih OT/)J ] on P, and £Rw,-0 is an entry on P; 
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• for 1 < j < m, the world symbol wtj+1 was introduced by (FD) applied to a 
signed forcing assertion F[ wtj lh O^. ]   on P, and tu,vRw,-i+, is an entry on P. 

Recall from Definition 4.2.1 that 

Rp =   [JRn 

It then follows by induction on n that if (t,s) G Rn and s ^ t, then s = w/ € W 
for some / > i and there exists m > 0 and world symbols w,0, w,-n..., w,-m 6 W such 
that i < t0 < ii < ... < im = h (*,w,-0) € Rn]  and for 1 < j < m, (wtj, wtj+1) e ßn- 

Hence every RP chain from f is of the form: 

(F*(wt-)> * K | i € J) 

for some 0 ^ J X N, where 
i < IQ < ij < ij+i 

for all j < sup(J). 
Now suppose (t,s) G Rp with s ^ t. Then 5 = Wj for some j > i, so (3,^) = 

(wj, Ffc(w,)) ^ Äp. Hence RP is a partial order, as required. The remaining properties 
of JCp have already been noted. 

Finally, observe that in the cone topology 7P, the basic open set Bt is the union 
of all Rp chains from t. ■ 

When P is a path through an S4C tableaux, the RP chains are more complicated 
but still admit an explicit description. 

Proposition 4.2.8 Let r be an S4C tableaux, let P be a path through r, and let 
K,p = (Wp, RP, Fp) be the term frame for P. 

Then for each t = Fk(wi) € WP, every RP chain from t is of the form: 

(Ffc(wO)*(Ffc>(wtj)|ieJ) 

for some 0 ■< J X N, where 

i < i0 < ij < ij+l   and  kj+i < kj < k0 < k 

for all j < sup(J). 

So the term frame JCP has the following properties: WP is countably infinite, RP is 
a partial order, and Fp is continuous and injective. 

Hence the induced continuous D-topological structure Up — (WP,Tp, FP) is count- 
able and TQ, with an injective function. 
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Moreover, the basic open set for t = Ffc(w,) £■ WP in the cone topology Tp = TRP 

is of the form 
Bt = {Fk(wz)}U{Fk>(v,in)\neN} 

for some (possibly empty) subset N C N, where i < in < in< and kn < k for all 
n,n' £ N with n < n'. 

Proof. Fix t = Fk(wi) G Wv. It is clear from the definition of S4C tableaux that for 
all s € W(F), if tRs is an entry on P, then either s = t, or else there exists m > 0, 
world symbols w,0, w,-,,..., w,m € W and world terms t0,tu...,tm € W(F) such that 

• for 0 < j < m, tj = Ffc->(wtj.)  for some kj > 0; 

• for 0 < j < m,  tjTLtj+i is an entry on P; 

• i < i0 < ii < ... < im; 

• the world symbol wt0 was introduced by (FO) applied to a signed forcing as- 
sertion F[ F'(wt) lh n^o ] on P, for some / > 0, and F'(wt)Rwt0 is an entry on 

P; 

• for 0 < h < fco, the entry F,+/l(w.) RF/l(w,0) is on P in virtue of the (F-Cont) 
rule applied to the entry F'+fc-1(w,-)RFÄ-1(w,-0) on P; 

• k = I + ko, and so ko < k; 

• for 0 < j < m, the world symbol w,j+1 was introduced by (Fa) applied to 
a signed forcing assertion F[ F'>(wtj) lh Uxj). ] on P, for some /_,- > 0, and 
F'J(wtj) R w,->+1 is an entry on P; 

• for 0 < j < m and for 0 < h < kj+1, the entry F'>+fc(wy)RFA(wt->+1) is on P 
in virtue of the (F-Cont) rule applied to the entry Fl'+h~1(wij)KFh~1(wi-+l) 
on P; and 

• for 0 < j < m,  kj =■ lj + kj+i, and so kj+i < kj. 

Recall from Definition 4.2.2 that 

ft =   lj  Rn 
n6N 

It then follows by induction on n that if (t, 5) € R+ and s ^ t, then there exists m > 0, 
world symbols wt0, wtl,..., w,m € W, and world terms t0,tu...,tm € W(F) such that 
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i < iQ < h < ... < im = I; for 0 < j < m, tj = F^(wtj) and (tj,tj+l) G ß+, if j < m; 
for 0 < h < k0, (F'+fc(w,-),F'(wt-0)) <= #+ where k = I + k0; and for 1 < j < m and 

0 < h < kj+1, (F'>+*(Wy),F*K+.)) e Ä+ with *,- = /,- + jfci+1. 
Hence every #P chain from t is of the form: 

(FV.))*(F^(wtj)|ieJ) 

for some 0 X J X N, where: 

i < io < ij < ij+\   and  fcj+1 < kj < k0 < k 

for all j < sup( J). 

Now suppose (<, 5) G fiP with 5 ^ t. Then 5 = F'(wj) for some j > t and I <k,so 
(s,t) = (F'(wj),Ffc(w,)) ^ ßp. Hence ßP is a partial order, and so the cone topology 
TP = TRT is T0. AS before, the description of the basic open set Bt follows from the 
fact that Bt is the union of all RP chains from t. ■ 

Note that the continuous term frame will also satisfy the converse of the RP- 
monotonicity condition 

(F(0,F(s))€Ap     =>     (M)€flp 

for all t,s e WP, since if a complex term F(s) occurs on the right hand side of an 
accessibility assertion F(t) RF(a) on P, it got put there by either the (F-Cont) rule 
or else the (R-Reflex) or (R-Trans) rules. However, as noted in our discussion at 
the end of Section 3.1, FP will fail to be an open map w.r.t. the topology TRP because 
the primitive world symbols w,- in W? fall outside the range of FP. 

As a set, WP = / x N for some initial segment / ^ N, so one can think of the 
term frame JCP as a two-dimensional discrete array of points, vertically infinite with 
the points in a column with base w,- labelled by all the iterates Ffc(wt) for k E N, 
but possibly finite horizontally. Accessibility relations are edges always going from 
left to right, from an Ffc(w,) to a w,- for j > », and when F denotes a continuous 
function, there are all the "parallel" edges from Ffc+'(w.) to a F'(wj) as well. In 
practice, there is a bound on the number of iterates k one needs to take. If the 
[a]-rank of a formula tp is the number of subformulas of tp of the form [a]ip, then the 
iterates F*(w:-) for 0 < k < [a]-rank(y>) will be sufficient. Taking all the iterates is a 
technical convenience to ensure that the term constructor function 11-+ F(t) is total. 
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4.3    Soundness of Tableaux 

The Soundness of S4F and S4C tableaux is a simple consequence of the following 
theorem (an extension of [NS97], Theorem 4.2). 

Theorem 4.3.1 Let r be an S4F (S4CJ tableaux, let JC = (W, R, F) be a (continu- 
ous) frame for £aa, let r) be a valuation for JC, and let <p 6 £aa- 

If for some world symbol w G W and some element w € W, either 

(a) F[ w lh ip ]   is the root entry of r, and  w Jh^ if, or else 

(b) T[ w lh if ]   is the root entry of T, and  w lh^ <p, 

then there is a path P through r such that (£,77) agrees with P, where the~ quotient 
map h : Wp —> W satisfies h(w) = w. 

To prove Theorem 4.3.1, we need a further lemma on the inductive construction 
of tableaux. 

Lemma 4.3.2 Let T be an S4F (SAC) tableaux, let P be a path through r, let fCP = 
(Wp, RP, FP) be the term frame of P, let JC = (W, R, F) be a (continuous) frame for 
Coa and let n be a valuation for JC. 

If (JC, 77) agrees with P, with quotient map h : WP -> W, and r' is an S4F fS4C^) 
tableaux obtained from T by extending P using one of the tableaux construction rules 
in clause (ii) of Definition 4-1-4 (Definition 4-1-6), 

then there is a path P through r' extending P and a function h' : Wp> —¥ W 
extending h such that h' witnesses that (JC,r]) agrees with P. 

Proof. By Lemma 4.2.6, if P' is any extension of P in virtue of clause (ii) of Definition 
4.1.4 (Definition 4.1.6), then WP> — WP and JC? = JCP> except if P is extended to P' 
using the (FO) case of the (Develop) rule. So for the tableaux construction rules 
other than (FO), the quotient map h requires no extension and we only need show 
that h = h' preserves the valuations described on a path P' through T' extending P. 

The propositional cases of (Develop) rule are straightforward: from the hypoth- 
esis of the lemma and the corresponding clause in the definition of forcing (Definition 
2.3.2), it is clear that one of the (at most two) extensions P' of P will be such that h 
preserves the valuations described on P'. 

Applications of the (R-Reflex) or (R-Trans) rules, or the (F-Cont) rule for 
S4C tableaux introduce no new signed forcing assertions, so it is immediate from the 
hypothesis of the lemma that h preserves the valuations described on P'. 
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When the (TO) case of (Develop) rule is applied, entries of the form T[ tW-Dy] 
and tRs occur on P, and the sole path P' extending P contains a single new signed 
forcing assertion T[s\\-<p]. By the hypothesis and the definition of agreement for P, 
we have h(t) Irf D<p and (h(t),h(s)) € R, hence by the D clause in the definition of 
forcing,   h(s) l(-£ <p, so h preserves the valuations described on P'. 

When the (T[a\) (respectively, (F[a\)) case of (Develop) rule is applied, an entry 
of the form T[ t IH [a](p } (F[ t IH [a]<p ]) occurs on P, and the sole path P' extending 
P contains a single new signed forcing assertion T[ F(t) IH ip ] (F[ F(t) IH <p ]). By 
the hypothesis and the definition of agreement for P, we have h(t) Ihf [a](p (h(t) ¥K 

[a]<p). By the [a] clause in the definition of forcing, and the commutativity equation 
F(h{t)) = h(F(t)), 

h(t)\^[a]<p   iff   F(h(t))U-$<p   iff   A(F(*)) Ihf y> 

so h preserves the valuations described on P'. 

It remains to deal with the (Fü) case of the (Develop) rule. In this case, for 
some world term t € WP, there is an entry F[ t \\-Dtp ] occurring on P, and the sole 
path P' extending P contains a new accessibility assertion of the form tRv/j, with w- 
a new world symbol, as well as a new signed forcing assertion F[ Wj IH <p ]. Hence 

WP, = WpU{F*(w;)|fceN} 

and Rpl is the reflexive and transitive closure (reflexive, transitive and F-functional 
closure) of RP U {(t, w,-)} in WP>. Now by the hypothesis and the definition of agree- 
ment for P, we have h(t) IHj Dtp. Hence by the D clause in the definition of forcing, 
there is a w e W such that (h(t), w) € R and w JH£ (p. Define h' : Wv> -j- W by 

h'(s) = / hW       if s e W? 
K '      \ Fk(w)   \{s = Fk(Wj)   and   k e N 

Then h' is surjective, and it follows that (s,r) G RP> implies (h'(s),h'(r)) e R, and 
F(h'(s)) = h'(F(s)), for all s,r e WP>. Since w = /i'(Wi), we have A'(Wi) JKj ^. 
Hence (/C, 77) agrees with P' with witness h', as required. ■ 

We now return to the proof of Theorem 4.3.1. 

Proof. Let r be an S4F (S4C) tableaux, let K. = (W, R, F) be a frame for £Do, let 
T] be a valuation for JC, and let (p € £aa. Assume that for some world symbol w G W 
and some element w G W, either 

(a) F[w\\- <p]  is the root entry of r, and   w; JKf y>, or else 

(b) T[ w IH y5 ]   is the root entry of r, and   w WS <p, 
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We proceed by induction on the construction of the tableaux r. 
If r is an atomic S4F (S4C) tableaux, as in clause (i) of Definition 4.1.4, then let 

Pr to be the path through r consisting of the root node only. Then 

WPr = {F*(w) I k e N} 

RPr is the empty binary relation on WPr, and FPr(F
fc(w)) = Ffc+1(w) for all k 6 N. 

Define hr : WPr -»• W by 
hr(F

k(v,)) = Fk(w) 

for all k € N. Then by the definition of hr and the hypothesis of the theorem, hr 

witnesses that (£,77) agrees with Pr and /ir(w) = w. Now apply the same reasoning 
as in the proof of Lemma 4.3.2 to obtain a path P through r extending Pr and a 
function h : WP —J- W extending hr such that h witnesses that (£,77) agrees with P 
and h(w) = w. 

Next, suppose r is an S4F (S4C) tableaux and (/C, 77) agrees with a path P through 
r, with quotient map h : WP —> W such that /i(w) = w, and r' is an S4F (S4C) 
tableaux obtained from r by extending P using one of the tableaux construction rules 
in clause (ii) of Definition 4.1.4 (Definition 4.1.6). Then by Lemma 4.3.2, there is a 
path P' through r' extending P and a function h' : WP> —$■ W extending h such that 
b! witnesses that (JC,r)) agrees with P' and h'(w) = w. 

Finally, suppose that I ^ N and r = [JneI rn is an S4F (S4C) tableaux as 
in clause (iii) of Definition 4.1.4 (Definition 4.1.6), where r0 is an atomic tableaux 
and for each n < sup(7), rn+i is constructed from rn by an application of clause 
(ii) of that definition. Apply the argument as in the atomic case above to obtain 
a path P0 through r0 and a function h0 : WPo —>• W such that h0 witnesses that 
(£,77) agrees with P0 and /io(w) = w. Then for each n 6 /, apply Lemma 4.3.2 to 
the path Pn through rn and function hn : WPn —>• W witnessing that (£,77) agrees 
with Pn with /i„(w) = to, to obtain a path Pn+i through rn+1 extending Pn and a 
function hn+i : WPn+1 -> W extending /in, witnessing that (^,77) agrees with Pn+i 

and satisfying hn+i (w) = w. Then set P = (JnezP" an(^ ^ = Une/ ^" to ODtain a 

path P through r such that (/C, 77) agrees with P, with the quotient map h : WP —>• W 
satisfying /i(w) = w. ■ 

Theorem 4.3.3 Kripke Soundness of S4F and S4C tableaux 
For all formulas 9? of Caa> 
if S4F hr V3 (S4C \~T f) then for all Kripke frames K, for Caa, fC II" (p. 

Proof. Suppose r is an S4F (S4C) tableaux proof of <p, with root F[ w0 IK ip ], 
and suppose for a contradiction that (p is not Kripke valid. Then there is a frame 
K, = (W, R, F) for Caa, a valuation 77 for K, and a world wQ G W such that w0 IF% (p. 
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By Theorem 4.3.1, there is a path P through r such that (£,77) agrees with P, with 
the quotient map h : WP -+ W satisfying A(w0) = w0. Since r is a tableaux proof, 
P is contradictory, so there is a world term t <E WP and a subformula 0 of <p such 
that both T[t\\-xj>] and F[t\\-i/>] occur as entries on P. Since (£, n) agrees with 
P with quotient map h, we have as a contradiction both v If-* ib and u JP* ih  where 
v = ä(<) ew. m " 

4.4    Completeness of Tableaux • 

The construction of a tableaux is a non-deterministic procedure. To prove complete- 
ness, we give a systematic procedure for developing a tableaux, so that every entry 
that could occur on a non-contradictory path, does. We define the complete system- 
atic tableaux starting with a given signed forcing assertion as its root entry. We then • 
prove that for any non-contradictory path P through this tableaux, (JCP,np) agrees 
with P under the identity map. Thus if this systematic development of a tableaux r 
with root entry F[ w0 lh <p } fails to produce a tableaux proof of 93, then we obtain a 
Kripke counter-model for tp, and so demonstrate that y is not Kripke valid. 

In this section on completeness, we are concerned with model-existence, via the • 
existence of a non-contradictory path through the complete systematic tableaux with 
root entry F[ w0 IH y? ], for each formula up of Caa that is not S4F or S4C tableaux 
provable. In general, such non-contradictory paths are infinite, and as we have defined 
it, the term frame of any path is infinite because we take all iterates F*(w,-) of each 
world symbol w, that is the subject of a signed forcing assertion on the path.   In • 
Section 4.5 below, we establish the finite model property by specifying a suitable 
quotient of the term frame. 

Recall from Definition 4.1.4 that when a signed forcing assertion E is being de- 
veloped on a path P, we formally require that the entry E be repeated when the • 
corresponding atomic tableaux with root entry E is appended to P. Most signed forc- 
ing assertions occur at most twice on a path: once (called occurrence 0) when the 
entry first appears, either as the root entry or by one of the cases of the (Develop) 
rule, and again (occurrence 1) if it gets to be developed by any case other than the 
(TO) case of the (Develop) rule. In the (TO) case, an entry E = T[ t lh D^ ] may f< • 
be developed and hence repeated infinitely often, at least once for each world term 
Sj € W(F). For the purposes of defining complete systematic tableaux, we make 
a cosmetic modification to the (TO) case in Definition 4.1.4 so that each time an 
entry E = T[ t If- D^ ] is developed, a candidate world term Sj € W(F) must be 
"declared". The revised version of the rule now reads: f 
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(TO)(sj) case of (Develop): A signed forcing assertion T[ t lh Di/> ] 
occurs on a (non-contradictory) path P in r, and r is constructed from r 
by appending to the end of the path P either: 

(a) the atomic tableaux 

I 

if fRsj occurs on P and T[ Sj lh xj> ] does not occur on P,   or else: 
(b) the atomic tableaux consisting of the sole entry 

T[tn-Di/,] 

otherwise. 

So in an application of (Tü)(SJ), the entry T[ t lh dip ] will be simply repeated, 
without further extension of the path P, if either tUsj does not occur on P or if the 
Sj-instance T[ Sj lh xj> ] already occurs on P. The transformations between tableaux 
constructed using the original version of the (Tu) case of the (Develop) rule, and 
tableaux constructed using the new (Tü)(.Sj) cases of (Develop), are straightforward 
(albeit tedious). 

We also use the pairing function p : N x N —> N to keep track of attempts to 
develop Tu entries. When we are working on occurrence m of E = T[ t lh dip ], 
where m — p(j,l), we make the "/th" attempt at developing E using (TO)(SJ). If 
either tRsj does not yet occur on the path, or if the Sj-instance T[ Sj lh ip ] already 
occurs on the path, then the development of this occurrence m of E stops with the 
simple repetition of E; if tRsj does occur on the path but T[ Sj lh z/> ] does not, 
the path is extended with a repetition of E plus the new entry T[ Sj lh rf> ]. The 
accessibility assertion tTLsj may appear later, on an extension of the current path 
constructed using the rules (R-Reflex), (R-Trans) or (F-Cont) or the (FO) case of 
the (Develop) rule if Sj = w,- is a world symbol that hasn't yet appeared, so we will 
need to make a further "(/'+ l)st" attempt to develop E using (TO)(SJ). 

Definition 4.4.1 Let r = Une/Tn ^e an &4F fS4Cj tableaux and P a path through 
T. Let E be a signed forcing assertion on r and let e be occurrence m of E on P, i.e. 
the "mth " node on P labelled with E, where m = p(j,l), for j,l,m £ N. 

We say e is reduced on P iff one of the following cases hold: 

(i) E is not of the form T[ t lh Dtp ]; and for some n, rn+i is obtained from rn 

by an application of the appropriate case of the (Develop) rule to the entry E, 
the tableaux Tn and the path Pn through rn, where Pn =P\ rn. 
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(ii) E is of the form T[ t Ih D^> ], there is an occurrence m' = p(j,l+ 1) of E on P, 
and either tRsj is not an entry on P or T{ Sj Ih 0 ]   is an entry on P. 

We say T is finished iff for every non-contradictory path P through T, every oc- 
currence of every signed forcing assertion on P is reduced on P. 

Lemma 4.4.2 If 

• T is an S4F (S4CJ tableaux; 

• Pa non-contradictory path in r; 

• 

• 

T' is an S4F (S4CJ tableaux obtained from r by extending P to 
non-contradictory path P; 

e is occurrence m = p(j, I) of a signed forcing assertion E on P; and 

• e is reduced on P; 

then the only way e could fail to be reduced on P is if 

(0) for some t e W(F) and rf> e Caa, E is T[ t Ih U^ ], and 

(1) tKsj is an entry on P but not on P, and 

(2) T[ Sj Ih if) }   is not an entry on P (and hence not an entry on P). 

Proof. Immediate from Definition 4.4.1. Note that since e is reduced on P, by 
hypothesis, then if E is T[ t Ih D^ ], there is an occurrence m' = p(j,l + 1) of E 
on P and hence on any extension P'. In the process of extending P to P', the new 
accessibility assertion tRsj must have been appended using either the (R-Reflex), 
(R-Trans) or (F-Cont) rules, or using the (Fü) case of the (Develop) rule ifSj = w- 
for some world symbol wt- that had not yet appeared on the tableaux. ■ 

As a binary tree, a tableaux r has a natural left-right ordering on the nodes 
(occurrences of entries) at each of its levels. As in [NS97], Definition II.6.8, define the 
level-lexicographic ordering <LL on nodes e, e' of a tableaux r as follows: 

e <LL e'    iff     the level of e is less that e', or else e and e' are on 
the same level, and e is to the left of e' 

It is immediate that <LL is a well-ordering of the nodes e of a tableaux r: there are 
only finitely many nodes of r that are <LL any given node e. 
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Definition 4.4.3 For each formula tp ofCaa, we define the complete systematic S4F 
(S4CJ tableaux, S4F-CST (S4C-CST) T* for <p to be: 

"-IK 
for some I X N, where the sequence of finite S4F (S4CJ tableaux {rn}n€l for ip is 
defined inductively as follows. 

T0 is the atomic tableaux with root entry F[ w0 Ih tp ] (or T[ w0 Ih (p ] ). 
This atomic tableaux is uniquely specified by requiring that in case (Fa), where E 
is F[ w0 Ih Oxp ], we use the entries w0Rwi and F[ wx Ih xj) } (or in the (TO) case, 
the tableaux consists of the root entry only). 

At stage n, we have by induction a finite S4F fS4C,) tableaux rn. 
Ifrn is finished, then we terminate the construction.  Otherwise, we extend rn to 

a finite S4F fS4CJ tableaux rn+1 as follows. 

Case 1: n = Ak + 1, for k <E N. 

Then rn+1 is the tableaux obtained from rn by appending, to the end of each non- 
contradictory path P through rn, the entry SJRSJ for the least j <k such that: 

• "Sy = F (w,) and w,- is the subject of some signed forcing assertion on P, and 

• SJRSJ does not yet occur on P. 

Case 2: n = 4k + 2, fork 6 N. 

Then rn+1 is the tableaux obtained from rn by appending, to the end of each non- 
contradictory path P through rn, the entry SiRsj for the least i < k and the least 
j < k such that: 

• for some r € W(F), both s,-Rr and rRsj are entries on P, and 

• SiRsj does not yet occur on P. 

Case 3: n = Ak + 3, for k € N. 
For an S4F-CST, do nothing. 

For an S4C-CST, construct rn+1 from rn by appending, to the end of each non- 
contradictory path P through rn, an entry F(s,-)RF(si) for the least i < k and the 
least j < k such that: 

• SiRsj is an entry on P, and 
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• F(s,)RF(sj) does not yet occur on P. 

Case 4: n = 4k, for k G N. 

Let e be the <LL least node of rn such that e is an occurrence of a signed forcing 
assertion E that is not reduced on some non-contradictory path P through rn. 

Sub-case 4(i). E is not of the form T[ <lh D0 ]. Then rn+1 is the tableaux 
obtained from rn by appending to the end of every non-contradictory path P through rn 

on which e is not reduced, the atomic tableaux with root entry E, using the appropriate 
case of the (Develop) rule. This atomic tableaux is uniquely specified by requiring 
that in case (Fa), where E is F[ t Ih Dip ], we use the entries (Rw; and F[ w, Ih ip }, 
where i is the least j G N such that Wj does not occur on rn. 

Sub-case 4(H). E is of the form T{ t Ih 0</> ]; e is occurrence m of E on P, 
and m = p(j,l). Then rn+1 is the tableaux obtained from rn by appending to the end 
of every non-contradictory path P through rn on which e is not reduced, the atomic 
tableaux with root entry E, as determined by the (TD)(Sj) case of the (Develop) rule. 

For example, the tableaux in Figure 4.3 for the instance [a]Op -»■ D[a]p of the 
continuity axiom depicts (without repetition of developed entries) an initial subtree 
of the S4F-CST for that formula. The sole path P continues with reflexive accessibility 
assertions F*(w,-) RF*(w,-) for i = 0,1, and for all k e N; the transitivity rule does not 
add any new entries; and the TD entry T[ F(w0) Ih Up ] would be repeated infinitely 
often, without any effect since no new entries F(w0) RSJ will ever be added. 

Lemma 4.4.4 Let r be a CST and P a path through r. 

(i) 7/r is an S4F-CS-T and Ffc(w,)RF'(Wi) is an entry on P, then i < j and 
1 = 0. 

(ii) Ifr is an S4C-CST and F*(w,-)RF/(wi) is an entry on P, then i < j, I <k 
andfork-l<r< I, F*-'+r(w,-) RFr(wy) is an entry on P. 

Proof. Requires an analysis of how accessibility assertions are added to a path 
using the (R-Reflex), (R-Trans) or (F-Cont) rules, or using the (FD) case of the 
(Develop) rule, similar to that in the proofs of Propositions 4.2.7 and 4.2.8. ■ 

Proposition 4.4.5 For each formula tp of C0a, the S4F-CST (S4C-CST) T* is 
finished. 
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Proof. Fix ip G £aa, and let r = T
V
 = [JneI T„, for some / X N. Suppose there is an 

occurrence e of a signed forcing assertion E and a non-contradictory path P through 
T, such that e is not reduced on P. Suppose t is the subject of E, e is occurrence 
m = p(j, /) of E, and there are q nodes of r that are <LL e. Let n be large enough so 
that: 

(a) the occurrence e of E is on the path Pn =Pf rn; and 

(b) the entry £RSJ is on Pn if it is on P at all. 

Then from the definition of the CST, it is clear that we must reduce e on P by the 
time we form rn+4g+i, and once e is reduced, it will remain reduced by Lemma 4.4.2. 
So r is finished, as required. ■ 

Corollary 4.4.6 Let rv = \JneIrn be the S4F-CST (S4C-CST) for some <p G Caa, 
let P be a non-contradictory path through rv, let t G W(F) and let tp be a subformula 
of if. 

If there is an occurrence 0 on P of the signed forcing assertion T[ t lh Oxß ], then 
there is an occurrence m on P of T[t lh Otp ]} for every m 6 N. 

Proof. Immediate from Theorem 4.4.5. For each j, I G N, an "/th" attempt will be 
made to develop occurrence m = p(j,l) of T[ t lh □?/> ] on P using the (Z,ü)(5J) case 
of the (Develop) rule, so generating occurrence m + 1 on P. ■ 

Theorem 4.4.7 If r = r* = |Jne/ rn is the S4F-GST (S4C-CST) for cp e Caa, P is 
a non-contradictory path through T

V, JCP = (WP, RP, FP) is the term frame of P, and 
rjp is the path valuation for K,P (Definition 4-%-4)> then 

(i) for all t,s e WP, 

tUs  is an entry on P      <££>    (t, s) G RP 

(ii) for all t G WP and all ip G £>aa, 

T[t\\-ij)]   is an entry on?     =*>    t Ih^ ip 
F[ t lh tp ]   is an entry on P     =£•     t ¥^p ijj vr 

Hence the identity function on WP witnesses that ()CP, rjp) agrees with P. 
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Proof. For (i), recall from Definition 4.2.1 that for S4F tableaux 

R? =   U   Rm 
mGN 

while from Definition 4.2.2 for S4C tableaux 

*p = U R™ 
mGN 

where 
Ro   =   R+   = {(t,t) | t G WP} 

Ri   =   Rf   = {(t,s) € WP x WP | tRs  is an entry on P} 

and for S4F tableaux, 

Rm+i    =   RmU{(t,s)\(3reWP)(t,r)eRm and (r,s) e Rm} 

while for S4C tableaux 

RUi    =   Rl U {(t, s) | (3r € WP) (t, r) G Ä+ and (r, S) € Ä+ } 

U{(F(0,F(3))|(*,a)€Ä+} 

Hence in either case, we have trivially, 

iRs  is an entry on P      =>    (t, s) € RP 

Dealing first with the reflexive accessibility assertions, fix t G WP, say t = FTO(w,). 
By definition of WP, w, is the subject of some signed forcing assertion on t on P; let 
S[ wj If- iß ] be the first signed forcing assertion on P having w, as its subject, for any 
tj) G Caa- Let j = p(/,m), so t = Sj in the fixed enumeration of world terms. Let Jfc 
the least number such that A; > j and S[ w, lh iß ] is an entry on P4k+1 =P\ Uk+l. 
Then by the definition of S4F-CST (S4C-CST), the entry tRt will be added to P by 
stage n = 4k + 1 of the construction, if it is not already there. 

For the transitive and F-functional closure, we prove by induction on m > 1 that 

(t,s) G fi£      =*►    tRs  is an entry on P 

for all t,s G WP.   Since Rm C R+, the induction can be trivially modified for the 
transitive closure alone. 

For the base case of m = 1, the result is immediate. Assume the result holds for 
m > 1, and fix t,s G PVP. For the inductive step, suppose (t,s) G fl++1 - /?+. There 
are two cases. 
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Case (a): there exists r G WP such that (t,r) G ß+ and (r,5) G /?+. Hence 
by the induction hypothesis, tRr and rRs are both entries on P. For some i,j G N, 
t = S{ and s = Sj in the fixed enumeration of world terms. Let k be the least number 
such that k > max{i, j}, and s,Rr and rRsj are both entries on P^+2 =Pf T4fc+2. 
Then by the definition of S4F-CST (S4C-CST), the entry tRs (i.e. SiRs3) will be 
added to P by stage n = Ak + 2 of the construction, if it is not already there. 

Case (b): there exists t',s' G WP such that i = F(i'), s = F(s') and (t',s') G ß+. 
Hence by the induction hypothesis, t'Rs' is an entry on P. For some i,j G N, t' = s,- 
and s' = Sj in the fixed enumeration of world terms. Let k be the least number such 
that k > max{i,j}i and SiRsj is an entry on P4k+3 =Pf T4fc+3. Then by the definition 
of S4C-CST, the entry tRs (i.e. F(st) RF(sj)) will be added to P by stage n = 4k + 3 
of the construction, if it is not already there. 

Hence 
tRs  is an entry on P      <=*►     (t,s) G R? 

as required. 

For (ii), we proceed by induction on the complexity of formulas ?/> G Caa to prove 
that for all t € WP, 

T[ t lh ip ]  is an entry on P     =$>     t Ih^ ip 
F[t\\-rp]  is an entry on P    =>    t ¥Vr ip 

For atomic propositions p G AP, fix t £ WP. we have from the definition of T]P 

that 
T[t\\~ p]   is an entry on P     ■&    t \\~Vp p 

If F[ t lh ip } is an entry on P, then since P is non-contradictory, T[ t lh tp ] is not an 
entry on P, hence t ]/fVr p. 

For the inductive cases, the key result is that every occurrence of every signed 
forcing assertion on P is reduced, since by Theorem 4.4.5, the S4F-CST (S4C-CST) 
r is finished. 

For the Boolean connectives -1 and -*, the induction steps are completely trivial. 
For □, assume by induction that the result holds for xj) and all world terms in 

WP. Fix t £ WP and suppose T[ t lh dtp ] is an entry on P. By Corollary 4.4.6, 
for each pair j,l G N, there is an occurrence m = p(j,l) on P of T[ t lh dip ], and 
the reduction of this occurrence will consist of the "/th" attempt to develop the entry 
using the (TO)(SJ) case of the (Develop) rule. Hence if tRsj ever appears on P, then 
T[ Sj lh xp } will be an entry on P. Hence by the induction hypothesis applied to Sj, 
we have Sj lh^p \p. Since by (i), tRsj is an entry on P iff (t,Sj) G RP, we have by the 
definition of forcing that t \\-Vf Dtp. 
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On the other hand, suppose F[ t \\~ D^ ] is an entry on P. Then since (every 
occurrence of) this entry is reduced, we will have both iRw, and F[ w: lh tp ] added 
as entries on P at some stage n in the construction of r, where the world symbol 
w,- does not previously occur in any entry in rn. By (i), iRw, is an entry on P iff 
(*,wt-) € RP, so by the definition of forcing we have that t ¥v? Dxß. 

For [a], recall that in the term frame JCP = (WP, RP,FP)'the function F? is just 
the term constructor t ^ F(t). Assume by induction that the result holds for 0 and 
all world terms in WP. Fix t £ WP and suppose T[ t lh [a\xp ] is an entry on P. Then 
since (every occurrence of) this entry is reduced, T[ F(t) lh V ] is an entry on P. 
Hence by the induction hypothesis applied to F(t), we have FP(t) lr-„p %/>. Then by 
the definition of forcing, t lh,,  [a]tp. 

On the other hand, suppose F[ t lh [a]ip ] is an entry on P. Then since (every 
occurrence of) this entry is reduced, F[ F(t) lh 0 ] is an entry on P. Hence by the 
induction hypothesis applied to F(t), we have FP(t) ¥Vf 0. Then by the definition of 
forcing, t ¥Vr [a]if>. ■ 

Theorem 4.4.8 Kripke completeness of S4F and S4C tableaux 
For each formula <p of Caa, if S4F YT cp fS4C FT <p ), then there is a 

(continuous) countable partially-ordered Kripke frame K, and a valuation rj for K. 
such that (fC, n) Jh ip. 

Proof. Consider the S4F-CST (S4C-CST) r = .r* for (p with root entry F[ w0 lh <p ]. 
If S4F FT (p (S4C Fr v?), then there is a non-contradictory path P through r. Let 
£p = (WP, RP, FP) be the term frame for P and let r)p be the canonical valuation 
for JC*. By Proposition 4.2.7 (Proposition 4.2.8), WP is countable, RP is a partial 
order, and FP is injective. By Theorem 4.4.7, (/CP, nP) agrees with P, witnessed by the 
identity map. Hence w0 Jh£p ip, and so (/CP, r]p) lh tp. ■ 

4.5     Finite Quotients and Decidability 

For each (p e Caa, the construction of the complete systematic S4F (or S4C) tableaux 
with root entry F[ w0 lh <p ] is a deterministic procedure. If tp is S4F (S4C) tableaux 
provable, then the CST construction will terminate with a finite proof, but if ip is not 
S4F (S4C) tableaux provable, then the result will, in general, be an infinite tableaux. 
We prove the finite model property, and thus decidability, by defining a quotient K* 

of the term frame K,P such that 

V- 

Wp 
# 

< 3", where n is the number of subformulas of 
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Definition 4.5.1 For each ip G Caa, let SF((p) denote the set of all subformulas of 
(p. Define the set of signed subformulas of if, SSF((p), by: 

SSF(<p) = { T[V>] | 0 € SF(<p)} U { FW | V € SF{<p)} 

Let T be the S4F-CST or the S4C-CST for <p G £0a. 
For each world term t G W(F) and path P through r, define 

SP(t)   = {T[xl>] | T[t\\-ij>]   is an entry on?} 
U    { F[rp] | F[ t lh ip ]   is an entry on?) 

A subset S C SSF((p) of signed subformulas of <p is called inconsistent if there is 
a rp G SF((p) such that both T[ip] G 5 and F[xp] G S; and consistent otherwise. 

Note that the empty set is consistent. A path P through a CST is non-contradict- 
ory iff for each t G WP, the set SP(t) is consistent. Note also that terms t = Ffc(w.) 
where k > [a]-rank(c/?) will always have SP(t) = 0. 

If the cardinality \SF(<p)\ = n, then \SSF(<p)\ = In. For each t G W(F) and 
path P through the CST T

V
, we clearly have: 

SP(t) C SSF(<p) 

hence there is at most 22n = 4n possibilities for SP(t). Moreover, for subsets S C 
SSF(<p), if n + 1 < l^l < 2n, then 5* is inconsistent. By simple combinatorics, the 
number of consistent subsets of cardinality k is 2k (£). Hence the total number of 
consistent subsets S C SSF(ip) is: 

£*© = »• 
fc=0 

Lemma 4.5.2 Lei r be the S4F-CST or the S4C-CST for <p G Caa, suppose P is a 
non-contradictory path through r, and let K,P = (WP, RP, FP) be the term frame for P. 
Then for all ip, X G Caa, P G AP and t G WP: 

• if T\p] G SP{t)  then  F\p] $ SP(t); 

• if F\p] G SP(t)   then T\p] i SP(t); 

• if T[^ip] G SP(t)   then  F[xp) G SP(t); 

• if F[-np) G Sv(t)   then T[ip] G SP(t); 
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if T[TP ^X)e SP(t)   then  Fty] G SP(t) or T[X] G SP(t); 

if F{il> -». x] G &(<)   tfien T[$ G SP(*) and F[X] € &(<); 

*/ ^W] € SP(t)   then for all s G W,, t/(*,s) G RP then T[i>] G 5P(s); 

if Fpxj;} G &(*)   tfien for some Wj G W>, («, w,-) G ß, anrf Fty>] G 5P(wi); 

*/ T[[a]V>] G 5P(0   iAcn T[V>] G S?(F(t)); 

• if F[[a]xß\ G SP(t)   fAen F[V>] G SP(F(*)). 

Proof. The clauses for atomic propositions follow from the fact that SP(t) is con- 
sistent since the path P is non-contradictory. The other clauses are essentially a 
translation into the notation SP(t) of Theorem 4.4.5 that every S4F-CST or S4C- 
CST is finished, so every occurrence on P of a signed forcing assertion is reduced on 
P, together with: 

(t,s) Gfip  «• tKs is an entry on P 

from Theorem 4.4.7,(i). ■ 

The content of the lemma is that, in the language of [Fi83], the family of finite 
sets of signed formulas {SP(t) \t G WP} is a consistency property; the term Hintikka 
structure is also commonly used (although usually for unsigned formulas). 

Definition 4.5.3 Let r be the S4F-CST or the S4C-CST for <p G Caa, let P be a 
path through r, and let JCP = (WP, RP, FP) be the term frame for P, with r]p its path 
valuation. 

Define an equivalence relation =P on WP by: 

t=Ps    iff   SP(t) = SP(s) 

Let t = {s eWP\ t=Ps} and let W* denote the set of all =P-equivalence classes 
t. Define JCP = {W*,R*,F?) tobe the minimal quotient (Lemma 3.3.2) under the 
surjective map h : WP -»• Wf given by h(t) = t; i.e. for all t,s G WP, 

h(t) = h(s)     &     SP(t) = SP(s) 

and 

(h(t),h(s))eR*     &     {t,s)€RP 

and 

F*(h(t)) = h(FP(t)) = h(F(t)) 
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Theorem 4.5.4 Finite model property for S4F and S4C. 
Let T be the S4F-CST or the S4C-CST for ip G C0a, with root entry F[ w0 lh cp ], 

and suppose P is a non-contradictory path through r. Let fCP = (WP, RP, FP) be the 
term frame for P, with nP its canonical valuation, and let JCj — {Wf, Flf, Ff) be the 
minimal quotient of fCP under =P.  Then: 

W* < 3n. (a) The equivalence relation =P is of finite index: ifn = \SF(tp)\ then 

(b) The induced valuation nf : W* —> V(AP) given by: 

rjf(h(t)) = np(t) = {p G AP | T[ t lh p ]   is an entry on P} 

is well-defined. 

(c) For all ip G £aa and t G WP, 

h(t) lh# r/f     &    t\\-if> 

where lh abbreviates Ihjp'   and Ih* abbreviates lh i . 

Hence {JCf,T]*) agrees with P, and in particular, h(w0) Jh# <p, so 

Proof. For (a), observe that each equivalence class h(t) G W* is associated with the 
set Sp(t) of signed subformulas of cp, where SP(t) ^ SP(s) iff h(t) ^ h(s), and since P 
is non-contradictory, each SP(t) is consistent. Since there are 3™ consistent subsets of 

SSF(<p), we have   Wf  < 3". 

For (b), note that the canonical valuation 77p satisfies 

I/P(0 = {p G AP I T\p) G SP(t)} 

Hence /i(£) = h(s) implies 77P(^) = 77P(s) and so rjf(h(t)) = nf(h(s)). 
For (c), we proceed by induction on formulas ip G Caa to show that for all t G WP, 

h(t) lh# V     <3>     t lh t/, 

For atomic propositions p G AP, we have 

M0lh#p    O    p£rif(h(t)) = 7lp(t)    &    t\\-p 

and P is non-contradictory, so the result is immediate. 
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The inductive clauses involve only mechanical appeals to the definition of forcing 
together with the definition of the quotient JCf. 

For example, for the D case, assume by induction the result holds for ip and all 
seWP. Then 

h(t) lh# Dt/> 
<&   for all s e WP, if ((h(t),h(s)) e Rf then  h(s) lh# V    (1) 
<3>   for all s € WP, if (t, s) G RP then  5 Ih %j>                         (2) 
<&   t Ih Oifi (3) 

where the equivalence (1) is from the definition of WP* = {h(s) | s 6 WP} and forcing 
in Kp for D formulas; (2) is from the definition of R* and the induction hypothesis; 
and (3) is just forcing in Kp for Ü formulas. 

Similarly, for the [a] case, assume by induction the result holds for rj> and all 
s € Wp. Then 

h(t) lh# [<# 
«.   F*(h(t))\^^ (1) 
«.   A(F,W)II-^ (2) 
«•   FP(0 Ih V (3) 
<S>   *lh[a]V> (4) 

where (1) is forcing in Kf for [a] formulas; (2) is from the equation of FP* o h = h o FP; 
(3) is the induction hypothesis applied to s = FP(t); and (4) is just forcing in JCP for 
[a] formulas. 

From Theorem 4.4.7, (ii), we have 

T{ t Ih rp ]   is an entry on P     =>     t\b ij> 
F[ t Ih 0 ]  is an entry on P    =►    t ¥ $ 

Hence 
T[ t Ih rp ]  is an entry on P     =>■    /i(£) lh# ^ 
F[ t Ih V ]  is an entry on P    =>    A(<) J^# 0 

and so the quotient map h witnesses that {JCf,rjf) agrees with P. ■ 

Corollary 4.5.5  The logics S4F and S4C are decidable. 

(JCP , ?7p ) is most certainly a near relative of the finite model one would get if 
one took a filtration through set of subformulas SF((p) of the canonical maximal- 
consistent sets model (JC0,r)0) of Propositions 2.3.7 and 3.2.3. 
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Corollary 4.5.6  For each formula <f of Caa, the following are equivalent: 

(1.) S4F(S4C) hT y> 

(2.) S4F(S4C) \-H if 

(3.) X f= if  for all (continuous) topological structures % for £Qa, 

(4.) X (= ip  for all (continuous) D-topological structures T for £aa, 

(5.) K.W <f  for all (continuous) Kripke frames )C for Caa, 

(6.) % \= f  for all (continuous) countable T0 D-topological structures X for Caa, 

(7.) K, \\- ip   for all (continuous) countable partially-ordered Kripke frames fC for 

(8.)   K II- if  for all (continuous) finite Kripke frames K. for Caa; 

Proof. (8.) =► (1.) is Theorem 4.5.4, and (5.) => (8.) is trivial. (7.) =>• (1.) is the 
completeness theorems for S4F (S4C) tableaux, in Theorem 4.4.8. (1.) =>• (5.) is 
the Kripke soundness of S4F (S4C) tableaux, in Theorem 4.3.3. (3.) =r> (4.) and 
(5.) =>• (7.) are trivial. (4.) «» (5.) and (6.) <& (7.) are Corollaries 2.4.13 (3.1.6) 
and 2.4.14 (3.1.7). (2.) =$■ (3.) is the topological soundness of the Hilbert-style proof 
system, in Proposition 2.2.2 (3.2.2). And (5.) =>• (2.) is the Kripke completeness 
results for the Hilbert-style proof system, in Proposition 2.3.7 (3.2.3). In summary, 

(5.) => (8.) =* (1.) =► (5.) 
(5.) => (2.) =► (3.) =» (4.) «. (5.) 
(5.) =► (7.) =» (1.) =► (5.) 
(6.) # (7.) 



Chapter 5 

Topological Propositional Dynamic 
Logic TPDL 

5.1    Syntax and Topological Semantics 

S4C is the logic of one continuous action, and although not without interest in its 
own right, its purpose is primarily to provide a solid foundation. We need to be able 
to talk about more actions, and we need to be able to combine them in interesting 
ways. To this effect, we create a modal, S4-based, dynamic logic by overlaying the 
apparatus of propositional dynamic logic ([FL79], [Pra79], [Par81], [Seg82]). 

In this setting, atomic actions a G E will be interpreted by continuous total func- 
tions, and compound actions a G Act(Y,) are generated using the Kleene operations 
of composition, sum (non-deterministic choice) and iteration (star). The "test" op- 
eration is omitted at this stage, pending a further clarification of an appropriate 
semantics. So what is overlaid on S4C is actually the test-free fragment of determin- 
istic propositional dynamic logic DPDL, further restricted to atomic actions whose 
interpretations are both functional (deterministic) and total. DPDL is studied in 
[BHP82]. A precursor can be found in [Con77], where atomic commands are in- 
terpreted by partial functions. Within the "algorithmic logic" school of Salwicki and 
Mirkowska, the logic of deterministic total actions is briefly studied in [MS87] Chp V 
§8. 

Very recent work of Kremer, Mints and Rybakov (see the abstracts [KrMi97], 
[Kre97], and [KrMiR97]) examines a family of logics DTL (Dynamic Topological 
Logics) extending S4 by the addition of a "next" operator O corresponding to our 
[a] modality, for a single atomic action a, and a "star" operator * corresponding to 
[a*]. The abstract announces axiomatizations of various fragments; for example, the 
star-free fragment of the logic DTLW of homeomorphic functions. 

88 
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Definition 5.1.1 Let 4> = AP be a countable set of atomic propositions, and let E 
be a countable set of atomic actions. The set of formulas Form($,E) and the set 
of action expressions (or more simply, actions,) Act(Ti) of the language £a(<I>,E) = 
Form(<$>, E) U Act(E) are defined inductively as follows: 

• ifaeS then a G Aci(S); 

• ifa,ß G Act(E) then {aß) G Act(Z), {a + ß) G Act(E) and (a*) G Arf(S); 

• i/p € $ iÄen p G Form{$, E); 

• if <p,tf> G  Form($,E) i/ien -■</? G  Form(<J>,E), <£>—>• V> G  Form($,E) and 
□p e Form($,E); 

• t/y € Form($,E) and a 6 Ac^(E) 2/ien (a)y> G Form(<E>,E). 

We omit parentheses when no confusion results. 
For each or G Act(E), define: 

[a]<p = -i(a)--y> 

and define the other Boolean connectives and constants, as well as the S4 O operator, 
as in Section 2.1 above. 

The intended intuitive reading of formulas is: 

[a](p    ~    "action a always makes it the case that ip" 
(a)y>   ~    "action a sometimes makes it the case that </>" 

with "sometimes = always" for atomic actions a G E, and more generally, for com- 
positions of atomic actions. The intended reading of action expressions is: 

aß   ~    "perform action a, then action ßn 

a + ß   ~    "perform (non-deterministically) either action a or action /?" 
a*   ~    "perform action a repeatedly, some finite number of times" 

A finite sequence (under composition) of atomic actions is word 

u = {ax • • -an) G E* 

which can be thought of as a basic control script. We say more about what can be 
expressed in the language and logic in Section 5.3 below. 
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Definition 5.1.2 Given a topological space {X,T), let Cr(X) denote the set of all 
total functions f : X -» X that are continuous w.r.t. the topology T. 

Definition 5.1.3 A (continuous) topological structure for the language £Q($,£) is 
a triple X = (X, T, v) where 

• X T^ 0 is the state space; 

• T C V(X) is a topology on X; and 

• v : £ ->• Cr(^0 is a map assigning a continuous total function v(a) : X -+ X 
to each atomic action a G £. 

77ie map f uniquely extends to a map a = au : Act(E) -> ("P(X) -*■ 7?(X)), as- 
«« a u"aH/ operator o-(a) : V(X) ->■ P(X) *o eac/i acfton a G Aci(E), according 
to the following inductive clauses, where a £ £, a,/3 G 4ci(E), ana1 A £ T^A"): 

(*(a))(A)    =   K«)-J(A) 
(*(a/?))(A)   =   (<r(a)ocr(/?))(A) 

(<r(a + /?))(A)   =   (cr(a))(A)uK/?))(A) 
K«*))(A)   =2=   lUM«)fc)W 

tofcere cr(a)0 = \v{x) is the identity operator on V(X) and a(a)k+1 = <r(a) o ^-(a:)*. 
4 valuation for a topological structure X = (X, T, u) is any map £ : $ -> "P(X) 
assigning a subset £(p) C X to each pE$. £ac/i such valuation uniquely extends 

to a valuation map ||-||{ : Form($,Y,) -» P(X), assigning a subset ||y>||{ G 7?(X) £o 
eac/i formula tp G Form($, £), according to the following inductive clauses,  where 
p G $, V7,^ € Form($,E), ana7 a G Aci(E); 

IWI« = e(p) 
Ihvll,  = -IMI, 

iiv-^ll«  = -IMI<u|Wk 
IM<  = »n*r (llvlk) 

IK«>vlU = *(«)(IMI<) 

A topological model /or £a($, E) is a pair (X, 0, tüÄcre £ is a valuation for X. 
For formulas ip G Form($,E), tfie notions of satisfiability and truth in a model 

(X,£), validity in a structure %, and topological validity, are as in Definition 2.1.5. 
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The topological semantics for the denned action modalities [a] are given by: 

IIHHI« = (-*(«)-) (lMI<) 

By Boolean duality, we can define a family of unary operators n(a) interpreting the 
[a] modalities which agree with cr{a) at the atomic level; i.e. for atomic actions a G S, 

-l ir(a) = (—a (a)—) = cr(a) = u(a) 

Proposition 5.1.4 Let % = (X,T,v) be a topological structure for £0($,£), and 
let a : Aci(E) —>• (V(X) —> V{X)) be the operator map induced by v. For each action 
a G Act(Y,), define its Boolean dual operator n(a) : V(X) —> V(X) by: 

(*{<*)) (A) ± (-*{<*)-) (A) 

Then for a € S, a,ß G Arf(E), A G V(X) and <p G Forra($, S): 

(*{a)){A) = u{a)-\A) = a(a){A) 
(ir(aß))(A) = (Tr(a) o *(/?)) (A) 

(*(<* + /?)) (A) = (*(<*)) (A) n (*(/?)) (A) 
(7r(or))(A) = aeNW«)fc)(A) 

where 7r(a:)0 = lp(x) is the identity operator on V(X) and 7r(a:)fc+1 = 7T(Q:) O ir(a)k. 
Hence for any valuation £ for %, we have: 

||[aM|<   =   *(a) (|MI,) 

Proof. Straightforward induction on actions a. ■ 

The remainder of this section is devoted to studying the behavior of a(a) and 
n(a) as operators on the topological Boolean algebra 

<BT(X) = (V(X), u, n, -, x, 0, m*r) 

of a topological space (X, T), and identifying the sense in which these operators are 
continuous relative to the topology T. The behavior of the operators can be separated 
into two sorts: how they behave with respect to the Boolean algebra operations, and 
how they behave with respect to the topological interior operator. The pioneering 
work on Boolean algebras with operators is Jonsson and Tarski's [JT51]. 
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Definition 5.1.5 [JT51]. 

Let (X T) be a topological space, and let <Br(X) = (V(X), U, n, -, X, 0, intT) its 
topological Boolean algebra.. 

A unary operator H : V(X) -> V(X) is called normal and completely additive on 
»r(A), abbreviated "nca" iff for all A, B,A{ e V{X), 

(a) //(0) = 0; 

(b) #(Ue/4) = U6/ff(4); 
(c) ifACB then H(A) C tf(£); 

(d) H(AnB) C H(A)nH(B). 

Dually,  a unary operator H : V(X) -> V(X) is called normal and completely 
multiplicative on VßT{X), abbreviated "ncra" iff for all A, B, A{ <E V(X), 

(a') H(X) = X; 

(c') ifACB then H{A) C H(B); 

(d')  H(A)\JH(B)C H(AUB). 

We call a unary operator H : V(X) -> *>(*) continuous on <8r(X) iff for all 
Ae V{X), 

H{intT{A)) C m*T(#(A)) 

The terms "normal" and "completely additive" are from [JT51], and refer to 
properties (a) and (b) respectively. Properties (c) and (d) are trivial consequences 

°i (b)'^* arC ^ded here f0r useful Terence. Observe that if a unary operator 
ti : P{X) -> V(X) is nca, then considering V{X) as a dcpo (pointed, directed- 
complete partial order) under inclusion, then H is trivially Scott-continuous, since 
bcott-continuity only requires preservation of directed unions. 

The notion of continuity in <BT(X) is an abstraction of the behavior of the inverse- 
image /"   with respect to the intr operator when / is continuous with respect to 

Lemma 6.1 6 Let <Br(X) be the topological Boolean algebra of a topological space 
(XT) and let H : V{X) -> V{X) be a unary operator which is C-monotone (prop- 
erhes (c) and (c) in Definition 5.1.5).  Then the following are equivalent- 
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(i) H is continuous on ^Bf(X); 

(ii) for all A G V{X),  H(intT(A)) = intT(H(intr(A))); 

(iii) for all open U € T,   H(U) G T. 

Proof. Going back to the proof of Proposition 3.1.1, the only property of the inverse- 
image needed to establish these equivalences in the case H = f~l (for total / : X —V 
X) is C-monotonicity. ■ 

Lemma 5.1.7 Let T = (X,T,v) be a topological structure for £a($,£), let cr : 
Act(H) —> (V(X) —>■ "P(X)) 6e i/ie operator map induced by v, let *B-j-(X) be the 
topological Boolean algebra of(X,7~), and let a G Ac£(E). 

(i)   The operator a [a] is nca and continuous on VB-j-(X). 

(ii)   The operator ir(a) is ncm, and iff is a D-topology then ir(a) is continuous on 

»r(A-). 

(iii) For all A G V{X), n(a)(A) C <r(a){A). 

Proof. The base case of the induction on actions a G Act(E) for each of (i), (ii) 
and (iii) is immediate: for atomic actions a G S, a(a) = n(a) = /_1, where / = 
v(a) : X —)• X is a total function continuous w.r.t. T. For (i), establishing the 
nca properties of cr(a) is easy. We write out the details of the induction on actions 
a G Act(Yi) for the continuity of <r(a) on ^ßq-{X): 

a(a) (intT(A)) C intr (a(a)(A)) 

The base case for atomic actions is done. For composition, 

cr(aß){intT(A)) 
=   o-(a)(a(ß)(intT(A))) 
C   o-(a)(mir(o-(/3)(A)))      Ind. Hyp. for /? and A 
C   intT(a(a)(cr(ß)(A)))     Ind. Hyp. for a and <r(ß)(A) 
=   intT(<T(aß)(A)) 

For sum, 

a(a + ß) {intT(A)) 
=   o-(a) (intr(A)) U <r{ß) (intT(A)) 
C   mtr(cr(a)(A))Uinir((r(/?)(A))      Ind. Hyp. for a, /? and A 

C   mtr M")(^) u a(ß)(A)) U property of mir 

=    intr(v{a + ß)(A)) 
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Finally, for iteration, it is readily verified by induction on k that if a(a) (intT(A)) C 
intT(a(a)(A)) for all ACX, then a{a)k (intT(A)) C intT (<r(a)k(A)) for all k € N 
and all A C X. Then 

o-(a') (m<r(i4)) 

C   \JkeNintT (a(a)k(A))       result for a(a)k and A 

C   m<r (LUN °"(a)*(^))      U property of intT 

=   intT(a(a*)(A)) 

For (ii), the ncm properties of n(a) come by duality from the nca properties of 
cr(a) and Proposition 5.1.4. For the continuity of TT(O) on »r(A"), the hypothesis that 
T is a D-topology is needed for the a* case of the induction, which goes as follows: 

7r(a*) (intT(A)) 
=   Ow K(")k (intT(A)) 

C    f]keNintT (n(a)k(A)) result for ir(a)k and A 
=   intr(f)keNintr(^(a)k(A)))    f| property of D-topologies 

£   *»*r (aeN ^(«)fc(^)) 
=   intr(<r(et*){A)) 

For (iii), the inclusion ir(a)(A) C <r(a)(A) is an easy induction on actions a e 
Arf(E). ■ 

So we have established that the continuity scheme: 

(a)Cont :   {a)D(p -» D(a)(p 

is valid in all topological structures for £a($, £), while the corresponding scheme for 

[a]Cont :   [a]Dy? -> D[a]v? 

is valid in all D-topological structures.   We also have that the deontic or totality 
scheme: 

[o]D :   [a]<p -»■ (a)y> 

is valid in all topological structures. 

5.2    Kripke Semantics 

Definition 5.2.1 Let W be a non-empty set and R a reflexive and transitive binary 
relation on W. Let MR(W) denote the set of all R-monotone total functions F ■ 
W ->W. 
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By Proposition 3.1.3, MR(W) = CTR{W) and if (X,T) is an D-space, then 
CT(X) = MRr(X). 

Definition 5.2.2 A (continuous) Kripke frame for the language £a(<I>,E) is a triple 

JC = (W, R, u), where 

• W 7^ 0 is a set of worlds; 

• R C W x W is a reflexive and transitive binary relation on W; and 

• v : E —> MR(W) is a map assigning an R-monotone total function v(a) : W —> 
W to each atomic action a G E. 

The map v uniquely extends to a map p = pu : Act(Y,) —>• V(W x W), assigning a 
binary relation p{a) C W x W to each action a G Act(E), according to the following 

inductive clauses, where a G E and a,ß G Act(E): 

p(a)    = graph (v(a)) 
p(aß)    = p(a)op(ß) 

= {(w,v) | (3u)[(w,u) G p{a) and (u,v) G p(/3)]} 
p(a + /J)    = />(<*) Up(/?) 

where p(a)° = lwxW   is the identity binary relation on W, p(a)k+1 = p(a) o p(a)k, 
and p(a)rtc is the reflexive and transitive closure ofp(a). 

A valuation for a Kripke frame K = (W, R, v) is a map n : W —> P($) assigning 
a set of atomic propositions t](w) C $ to each world w G W. Each such valuation 
T] for K, uniquely extends to a forcing relation ||-K=lh„C W x Form($,E), between 
worlds w G W and formulas <p G Form($,E), according to the following inductive 
clauses, where p €$,</?, tp € Form($, E) and a; G Aci(E), for all w G W: 

iff pe rj(w) 
iff w^v(p 
iff w \Pn (p  or w \\-n xp 
iff for all v G W,   if (w, v) G R   then v lr-„ ip 
iff for some u G W,   (w,u) G p(a) and u \hn <p 

A Kripke model for £D($, E) is a pair (K., n), where n is a valuation for K,. 
For formulas ip G Form($,E), the notions of satisfiability and truth in a Kripke 

model (fC,T]), validity in a frame K, and Kripke validity, are as in Definition 2.3.4- 

w \t„p 
w W-r, -><p 

w \\-v <p -¥ xp 

W [by, Off 

w IK, (a)(p 
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The [a] modality has the standard "Box" reading in the Kripke semantics: 

w lh„ [a]<p    iff    for all u € W,  if (w, u) e p(a) then u H-„ tp 

The next task is to establish the duality between D-topological models and Kripke 
models, and with that, the duality between the unary operators cr(a) (and 77(a)) of 
topological models and the binary relations p(a) of a Kripke frame. The translations 
come from [JT51], Section 3, where a one-one correspondence is established between 
nca unary (indeed n-ary) operators on the Boolean algebra on V{X) and binary (or 
(n + l)-ary) relations on a set X. 

Definition 5.2.3 A topological structure % = (X,7>) for £□(<!>, E)  is called an 
D-topological structure iff (X, T) is an D-space. 

Given a Kripke frame JC = (W, R, u) for £□($, E), define %K = (W, TR, V) to be 
its dual I-topological structure. (By Proposition 3.1.3, MR(W) = CTR{W), so the 
assignment map u : S -► MR(W) in JC is suitable as an assignment map I ■ E -»• 
CTR{W) in %K.) 

Similarly, given an D-topological structure % = (X,T,ts) for £Q($,E), define 
K.% = (X, Rj-, v) to be its dual Kripke frame. 

Duality for valuations is defined as in Definition 24.ll. 

Proposition 5.2.4 Duality of Kripke frames & D-topological structures 

(i) Let IC = (W,R,v) be a Kripke frame for £Q(*,E), and let %K = (W,TR,V) 

be its dual D-topological structure. Let p = pv ; Act(E) -4 V(W x W) be the 
relation map for actions in IC, and let a = a„ : Act(E) -> (P(W) -»• V(W)) be 
the operator map for actions in %K. Then for all worlds w eW, alia e Act(E) 
and all A e V(W), 

we a(a) (A)     iff     (3ve W)[(w,v) e p(a) and v £ A)     (Op) 

(ii) Let T = (X,T,u) be a D-topological structure for £G($,E), and let K.% = 
(X, RT, v) be its dual Kripke frame. Let a = <jv : Act(E) -»■ (P(X) ->• V(X)) 
be the operator map for actions in %, and let p = pu : Act(E) ->• V(X x X) 
be the relation map for actions in K.%. Then for all states x,y G X, and all 
a e Act(E), 

(x,y)ep(a)    iff     xea(a)({y}) (Rel) 
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Proof. We prove (i) by induction on actions a G Acf(E); (ii) is then a consequence 
of [JT51], Theorem 3.3, which uses the equivalences (Op) and (Rel) to establish a 
one-one correspondence between nca unary operators on V(X) and binary relations 

onX. 
For an atomic action a G E, let v(a) = F G MR(W) = CTR{W). Then a{a) - F~l 

and p(a) = graph (F). Hence 

w G <r(a) (A) 
<& weF~l(A) 
<&   F(w) G A 
<&   (3v G W)[(w,v) G graph (F) and v G A] 
&■   (3v G W)[(w,v) G /)(a) and v G A] 

For composition, assume the result (Op) holds for a,ß E Aci(E), for all A G ^(W) 
and tu G W. Then 

w G o-(a/3) (A) 
& we(a(a)o<r{ß))(A) (1) 
4* u; G <r{a) {<r{ß) {A)) 
<* (3u G W)[(u>,u) G /9(a) and ue<r(/J)(A)} (2) 
<3> (3uG W)[(u;,u)€p(a) and (3v G W)[(u,u) € p(/3) and u G A]]   (3) 
4» (3vG W)(3u G W)[(u>,u) G/9(a) and (u,u) € p(ß) and t> G A] 
«*• (3v G W)[(u>,t>) ep(a)op(ß) and u G A] 
<£> (3v G W)[(to,v) G p(or/?) and v G A] (4) 

where (1) is by definition of cr(aß); (2) is (Op) for a, B = <r(/?) (A) and to; (3) is 
(Op) for ß, A and u; and (4) is by definition of p(aß). 

For sum, assume (Op) holds for a,ß G Arf(E), for all A G 7>(W) and w G W. 

tu G o-(a + /?) (A) 
^   w€<T(a)(A)\J*(ß)(A) (1) 
^   (3u G W)[(w,v) G /9(a) and u G A]   or 

(3u G W)[{w,v) G p(£) and u G A] (2) 
<3>   (3u G W)[[(u>,v) G p(a) or (w,v) G /?(/?)] and u G A] 
<3>   (3veW)[(w,v)ep(a + ß) anduG A] (3) 

where (1) is by definition of a(a + ß)\ (2) is (Op) for a and /?, A and to; and (3) is 
by definition of p(a + ß). 

For iteration, assume (Op) holds for a G Ac£(E), for all A G V(W) and to G W. 
It is readily verified, by induction on k, that (Op) holds for cr(a)k for all k G N and 
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all AeV(W) and w G W. Then 

w G <r(a*)(A) 

* ^UeNM«)')^) (1) 
& (3keN)[we (<r(a)k)(A)] 
«- (3A;eN)(3t;6^)[(u;,u)e/9(a)/: and i; G i]    (2) 
<3> (3v G W0(3* G N)[(to,v) G p(a)* and t, G A) 
<S> (3v € W^)[(ti;,v) GUfcgN/"(")* and u€ A] 
«• (3u G W)( K u) G />(«*) and v G A] (3) 

where (1) is by definition of a(a*)- (2) is (Op) for ak, A and w; and (3) is by definition 
of p(a*). m 

Note that since a(a) is completely additive, 

a(a)(A)=U °(a)({y}) 
y€A 

In establishing the duality transformation between Kripke models and D-topological 
models, the equivalences (Op) and (Rel) are exactly what is needed for the (a) case 
of the induction on formulas. 

Proposition 5.2.5 Duality of Kripke k D-topological models 

(i) Let {K,rj) be a Kripke model for £a($,£), and let (Xjc,f„) be its dual D- 
topological model. Let p : Act(E) -> V(W x W) be the relation map for actions 
in K, and let a : Act(Z) -> (V(W) -» V{W)) be the operator map for actions 
in Xjc.  Then for all worlds w eW, all a G Act(E) and all ip G Form($, £), 

w e IMI^      iff     w ll-„ <p 

Hence 

(££>£„) NV     iff     (K,ri)\\-<p 

(ii) Le* (T,0 6e a D-topological model for £□($,£), and /ei (/Cs,»7e) 6e »is dua/ 
tfnp&e model. Le* a : Ac«(E) -> (P(X) -+ P(X)) 6e fte operator map for 
actions in %, and p : Act(Z) -j- V(X x X) be the relation map for actions in 
K,%. Then for all states x G X, all a G Act(E), and all tp G Form($, E), 

x lh^ if      iff     x£ |M|f 

Hence 

(Kk^jn-ip   iff   (x,ohv 
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Proof. For (i), proceed by induction on the sub-formula ordering, extending the 
proof of Proposition 2.4.12, with the new (a)ip case appealing to the (Op) equivalence; 
similarly for (ii) using the (Op) equivalence. ■ 

Corollary 5.2.6 For all formulas <p G Form($, £), 

X [= ip  for all D-topological structures X for £a($, E) 
iff     K. Ih <p  for all Kripke frames K for £a($, E) 

Corollary 5.2.7 For all formulas <p € Form($,E), 

X \= <p  for all T0 D-topological structures X for £Q($, E) 
iff     JC \\- (p  for all partially ordered Kripke frames K, for £a($, E) 

Corollary 5.2.8 For all Kripke frames K, for £a($, E), and all <p £ Form($, E), 

K, Ih (a)D(p -4 0(a)(p 
K\V [ap(p-+ a[a]<p 
)C Ih [a]ip —> (a)<p 

5.3    Expressivity of TPDL 

In this section, we briefly give examples of the sorts of properties that can be expressed 
in the language of TPDL. It is by no means an exhaustive study of the "expressive 
power" — that will have to await a further investigation — but rather a few suggestive 
examples. 

Various reachability properties can be expressed. Fix a topological model (X, £), 
with X = (X,T, u). Then we have: 

(X, £) 1= xp —> (a*)ip      iff     from \\ip\\*, some iteration of a leads to \\<p\\f 
(X, £) \= xp —>• [oi*]ip       iff     from \\ip\\., every iteration of a leads to ||y?|L 

Similarly, the formulas 

xp ->• («*)□</?    and    xp -> [a*]Oyj 

express a topological reachability properties, requiring int-ri IMI^j  to be reachable 

by some or all iterations of a from \\ip\\e. Thinking if intr as allowing a "margin of 
error" or a "robustness" in the presence of imprecision, many useful properties will 
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of this form. Moreover, continuity says that we can safely "push" operators (a) and, 
in D-spaces, [a], "through D's". The continuous analogs of the Hoare composition 
rules: 

j> -> (a)ux     x -» (ßP<P  and   V> -?• [apx    X -+ \ß]D(P 
V> -+ (af/3>ay> an ^ _> [a^]D^ 

are truth-preserving in all topological structures, and all D-topological structures, 
respectively. 

One can think of the word 

u = at ■ ■ • an G E* 

as a basic control script: a finite sequence of atomic actions. Suppose u(aj) = /,- for 
1 < j < n, and let g = fn o • • ■ o fx. Then g is a continuous function, and extending 
v to words u G E*, we have i/(u) = g and a(u) = g'1. Then 

Hence 

and 

x G o-(ai ■ ■ ■ an){A)    iff    flr(x) = (/„o-..o/1)(x)e A 

x G ||<r*>V»IU   iff * G HfrMI*   ^ <?(*) G IMI^ 

1 G ||(u*>V||(    iff    for some fc € N,   <7*(x) € |M|{ 

x€||[u*]^     iff    for all & € N,   flr*(z) G |M|f 

The formula (u*)(p -»• y>, whose converse is valid, defines the property of weak 
closure under g, since: 

<S>   for all x G X,    x G |M|{   iff   for some k G N,   #fc(x) € ||^||^ 

i.e. every x G |M|^ eventually returns to ||y»||c by some iteration of $r.  Equivalently, 
\\ip\\^ is the greatest fixed point of <r(u) = </-1. 

Similarly, the formula y> -*• [u*]y? defines the property of strong closure under g, 
since: 

(X,0 *=¥>"► [«*]¥> 

<S>   for all x G X,    x G |M|^ iff   for all fceN,  #fc(x) G ||y>||? 

i.e. every x G ||^||^ remains in ||^||{ under all iterations of g.  Equivalently, ||<p||{ is 
the least fixed point of <r(u) = g~l. 
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5.4    Hilbert-style Proof System 

We overlay the axiomatization for PDL given in [Ha84], §2.2,2.5, on top of S4C, 
with atomic actions as continuous total functions. The axiomatization given here is 
not a minimal axiomatization; for example, we probably only need the f- direction of 
the (a") scheme, and the continuity scheme for arbitrary actions (a)Cont should be 
derivable from corresponding scheme for atomic actions. It should rather be thought 
of as a useful reference list. 

Definition 5.4.1 The Hilbert-style proof system for the logic TPDL has the follow- 
ing axiom schemes, for atomic actions a £ S, (p,iß € Form($,E) anda,ß 6 Aci(E); 

CP : axioms of classical propositiona 
DK: D((p ->■ ip) -»■ (Dtp -> DT/>) 

□T : Dip -» ip 

D4: Dtp -» DD^ 

[a]F: [a](p <-> (a)ip 

[a]K: [ct](<p —> rß) —> ([oc](p —> [ai]xl>) 

[a]D: [oc]ip —¥ (oc)ip 

(a)Cont : (a)0(p —¥ n(a)tp 

(a)V : (a)(ip V T/>) <r+ ((a)«/3 V (a)tp) 

(aß): (aß)ip -H- (<*)(/?)</> 

(a + ß): (a + ß)<p *-> ({a)tp V (ß)ip) 
(a*): (a*)ip <-> (y> V (a)(a*)y3) 
(a*)Ind : (a*)v -> (</> V («*)(-■</? A (a)y>)) 

and £/ie inference rules: 

modus ponens: 

O-necessitation: 

fal -necessitation: 

Dtp 

[a]<p 

We write 
TPDL \-H ^ 

or say <p is TPDL# provable, if the formula ip £ Form(<&, E) has an TPDL Hilbert- 
style derivation. 
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The following formulas are TPDL„ provable, for any for atomic actions a,        a   G 
.£, </>, V-€ Form($, £) anda,/?e Arf(E), and fc e N: '"'   " 

[a]Cont : 
[a]A: 
[a]V: 

[« + /?]: 

[a*]Ind : 

MM : 
MT : 
[oT]4 : 

0[a]</7 -> [a]Oy> 

[*){<p/\il>) *+ ([a]<p h [a]if>) 

([a]<p V [a]if>) -»• [a](^ V ^) 

fa% <-> [a][/% 
[a + ß]<p «+ ([ajy, A [%) 

[a^B(^A[a][a>) 
(V A [a*](y> -»> [a]<p)) -». [a*]^ 
[a*]y> -> [a*]^ 

[«*]V -» ¥> 
MMv <-+ Mv> 

(a) A : (of)(v? A rf>) -+ ((a)y, A (a)V>) 

(a*)T :        p -> (<*> 

• aB]y> ** (oi • • • an)<p 

■■an)<p f* (ai • • ■ an)-np 

• an){<f -> V») «-> ((ai---an)^ 
■an)(yA^) f> ((ai 

•a„)(v V V») H- ((ax 

■an)T 
■a„)l <->■ 1 

This last block of derivable formulas asserts that compositions (ax • • • an) of atomic 
actions behave just like a single atomic action a: they are functional and continuous 
and commute with all the Boolean operations. ' 

[öl- ■an]F: [<*i- 
(<*!• ••On)-1 : -•(«l 
(«1- •■«n> -►: («l- 
(«1- ••«n)A : <«i- 
(«1- ■■On)V: («i- 
(«1- •a»)T: (OI- 

(<*!• •«n>±: (ai- 

(öi---an)V') 
■ an)<p A ((n • ■ ■ an)i;) 
■ ön)y V (ax • • • an)rß) 

Proposition 5.4.2 Soundness of TPDL Hilbert-style proof system 
For all formulas <p € Form(^, E), ,/ TPDL \-a y  then %\=<p for all topological 

structures'! for £□($,£), and JC IH <p for all Kripke frames K for £a($, £). 

Proof. An easy extension of Propositions 2.2.2, 2.3.5 and 3.2.2. The topological and 
Kripke validity of the (or)Cont and [a]D axiom comes Proposition 5.1.7 and Corollary 
5.2.8, and the validity of the PDL axioms for compound actions is a straightforward 
exercise. ■ 
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Completeness proofs for the axiomatization of PDL (e.g. [KP81], [Seg82], [KT90]) 
can be easily adapted to TPDL. As is for all dynamic logics, the infinitary nature of 
the iteration operation is the core complication which prevents the "cheap" maximal 
consistent sets construction from going through quite so smoothly. 

In virtue of the equation p(a*) = p{a)rtc among the inductive clauses extending 
the relation map p from atomic actions to all actions in Definition 5.2.2, our Kripke 
models are by definition standard in the sense of [Koz80]: p(a*) is defined to be the 
reflexive and transitive closure of p(a). 

Definition 5.4.3 A non-standard Kripke model for £a($,£) is a quadruple 

M = {W,R,{R{a)}aeActW,ri) 

where 

• W'^0; 

• R C W x W is reflexive and transitive; 

• rj :W —)• P($) is a valuation; and 

• for each a G Act(H), R{a) C W x W is a relation satisfying: 

(i) for each atomic action a G S, R(a) is total, functional, and R-monotone; 

(ii) R(aß) = R(a)oR(ß); 

(iii) R(a + ß) = R(a) U R(ß); and 

(iv) R(oc*) is a reflexive and transitive relation containing R(a) (and hence 
containing R(a)rtc) and also satisfying the (a*)Ind induction axiom, which 
means: for all w € W and A C W, if for some v € W, (w, v) € R{a*) and 
v e A, then either w € A or there exists u,z eW such that (w, u) € R(a*), 

(u,z) e R(a), u <£ A and z € A. 

Now define M0 = (W0, Ro,{Ro(a)}aeAct(^),n0) by: 

W0 = {U C Form($, E) | U is maximal TPDL-consistent} 
{U, V) G ßo  iff  (Vy> G Form($, Z))[D<peU =► <p G V ] 

(U, V) G Ro(a)   iff  (Vy> G Form($, £))[ ip G K =» (a)y> G (/ ] 
%(^) = {Pe^\ PeU} 
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From the proofs of Propositions 2.3.7 and 3.2.3, Ro is a reflexive and transitive binary 
relation on W0, and for each atomic action a e E, the relation Ro(a) defines the total 
function: 

(F0(a)) (U) = W e Form($, E) | (a)<p 6 U } 

which "peels-off" one (a); moreover, each F0(a) is #o-monotone. 

Lemma 5.4.4 The structure M0 = (Wo,Äo,{Äo(a)}ae>ict(£),»7o) is a non-standard 
Kripke model for £D($, £), and for all ip G Form($, E) and U € Wo, 

tf>,o¥>    iff   V£U 

Proof. For the first part, it suffices to show that the relations {Ro(a)}a€Act(Z) satisfy 
conditions (ii), (iii), and (iv). The reasoning is identical to that for PDL; see, for 
example, [Seg82], §4. The "Truth Lemma" is a straightforward induction on formulas. 
■ 

The failure of the converse of the condition: 

R(a)rtc C R(a*) 

is due to the failure of compactness: every finite subset of 

C = {{a*)p} U {^(ak)p \keN} 

is satisfiable (in a standard Kripke model), but C is not satisfiable. To produce a 
standard Kripke model in which a TPDL// non-provable formula is falsified (or in 
which a TPDL-consistent formula is satisfied), we continue to follow the pattern of 
PDL completeness proofs by taking a filtration (or quotient) through the Fischer- 
Ladner closure. The Fischer-Ladner order on formulas, which extends the subformula 
ordering by having ip -< ip whenever x/> is "relevant" to the semantics of ip, is also 
required for the proof of completeness for tableaux in Section 5.7 below. 

Definition 5.4.5 [FL79], [KT90]. Let -< be the smallest transitive binary relation on 
the set Form($,E) of formulas o/£Q($,E) satisfying the following inequalities, for 
allip,ip e Form($,E) and a,ß e'Aci(E): 

(--) : <p -< ^<p 
(—») : ip -< ip —> xj>   and xp -< if —¥ ip 
(D) : tp -< Dy? 

(a): ip ■< (a)<p 

(aß): (a)(ß)(p -< (aß)ip   and  (ß)ip -< (aß)ip 
(a + ß): (a)<p -< (a + ß)ip   and  (ß)ip -< (a + ß)v 

(«*) : (a)(a')ip x (a*)ip 
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The relation -< is called the Fischer-Ladner order. Define, for ip, 4> € Form($, £), 

V'^V3     iff   ^ ~< V?   or  iß = ip 

Then for any formula tp € Form($,E), define the Fischer-Ladner closure of(p, de- 
noted FL(ip), to be the set of formulas: 

FL(ip) ±{ipe$\xp4<p} 

It is immediate that SF(<p) C FL((p), where SF((p) is the set of subformulas of 
<p. The crucial property is that -< is well-founded. To see this, let |o| and \<p\ denote 
the lengths of a E Act(T,) and ip G Form($,T,), respectively, considered as strings 
over the alphabet: 

EU$U{-,+,-,(,)}U {-,-►, D,(,)} 

where "•" is used to denote composition. Then (ß)ip -< (a)f implies \ß\ < \a\. Since 
only (a) formulas have -<-predecessors that are not subformulas, it follows that there 
can be no infinite descending -<-chains, and every descending -<-chain ends with an 
atomic proposition p6$. A straightforward induction with respect to -< establishes 
that: 

\FH<P)\ < M 
for all ip € Form($, E). 

Let Mo = (W0, Ro, {R0(a)}aeActC£),rlo) De the non-standard Kripke model for 
£o($,E), as above, and fix ip 6 Form($,Y,). Define an equivalence relation =v on 
Wo by: 

U==VV    iff   UnFL((p) = VC\FL(ip) 

For each U € W0, let Ü = {V € W0 | U =<? V} denote the =v-equivalence class 
of U, and let Wv denote the set of all such equivalence classes. Define a (standard) 
Kripke frame fCv = (Wv, Rv, uv) to be the minimal quotient (Lemma 3.3.2, extended 
to Kripke frames for £a($, E)) of the frame of Mo under the surjective map h : W0 —> 
Wv given by h(U) = Ü\ i.e. for all U, V € W0, 

h{U) = h(V)    iff   UDFL(ip) = VnFL(<p) 

and 
{h{U),h(v))eRv   iff {U,V)eRo 

and for each atomic action a € E, where graph(F0(a)) = R0(a) in Mo, 

Ma))(h(U)) = h((Fo(a))(U)) 
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i.e.   i/v(a) o h = h o F0{a). Define a valuation n„ : Wv -» P($) for JCV by: 

MM^)) = {? € $ |  p€(/} 

The Kripke model (JC^rj^) is commonly called the filtration of Af0 through FL(<,e>). 
Note that £v has at most 2M worlds (states). 

Lemma 5.4.6 Filtration Lemma. 

(a) For all V> G FL(y>) and all U G W0, 

WK^    iff   UU-Vo4, 

(b) For a// (a)0 G FL(yp) and a// £/, K € W0, 

»7   (£/,V)6Äo(a)   tÄen   (h(U), h(V)) G p(a) 

*/ (n(t/),/i(t/)) € p(a) and x/> G V     tfien   (a)V> G £/ 

w/iere /> is £/ie induced relation map for (JCv,rj ). 

Proof. By induction on the Fischer-Ladner order -<. See [KT901, [See82l, Lemmas 
6.3A and 6.3B. ■ 

Proposition 5.4.7 Kripke Completeness of TPDL Hilbert-style proof system 
For each <p 6 Form($yZ), if TPDL PH <p,   then there exists a (finite) Kripke 

model (£„, rjv) for £□($, £) such that (£„, TJV) ¥ (p. 

Proof. Fix <p G Form($, E) and suppose TPDL Y-H (p. Then {-.p} is TPDL- 
consistent, so there exists a maximal TPDL-consistent set U such that -up G U; 
equivaleritly, (p $ U. Hence in the non-standard model M0, we have U ¥VQ tp, by 
Lemma 5.4.4. Let (JCV,TIV) be the filtration of M0 through FL(tp). Then by Lemma 
5.4.6, we have h(U) F^ tp. Hence (JCV, T/V) JK y>, as required. ■ 
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5.5     Tableaux Proof System 

The tableaux proof system developed for the logics S4F and S4C readily extends to 
TPDL. The tableaux rules for complex action modalities (a) reflect the correspond- 
ing axioms in the Hilbert-style system. 

Definition 5.5.1 Let W = {w,- | i G N} be a countable set of world symbols and let 
T — {Fj | j G N} be a countable family of unary function symbols. Let ^W(J-) be the 
set of terms, called world terms, generated from W under J-. So every world term 
t G W(.F) is either a world symbol w,- G W, or else of the form (FJn o • • • o FJ-1)(w,-) 
for some function symbols F^,..., FJn G T. 

To simplify notation, let N* denote the set of all finite strings (sequences) over N, 
with the empty string AGN*. For each igN and a G N*, define the term F(T(w,) by 
induction on strings as follows: 

FA(w.)    =   w, 
F0-(w,-)   =   F^F^wO) 

where cr"j is the result of adjoining j G N to the string a. 

It is immediate that W(^r) is in one-one correspondence with the set N x N* 
under t <=± (hcr) iff 2 = FCT(w,). We also assume we have a fixed enumeration 
£ = {aj | j G N} of atomic actions of the language £a($,£)- In the canonical 
term frame, the atomic action aj will be interpreted by the term constructor function 
t h-> Fj(t), or in the string notation, F(7(wt) H* F^-^W,). 

Definition 5.5.2 For each formula <p G £o($,£), define Sv to be the set of indices 
of atomic actions appearing in ip: 

Sv = {j G N | (a^ G FL(if)} 

Let E*  denote the set of all finite sequences over Sv. 
If t — Fo.(w,) and a G S*, then t is said to be relevant to any signed forcing 

assertion T[ w,- lh <p ] or F[ wt- lh <p ] which has W; as its subject and (p as its object. 

Definition 5.5.3 The class of atomic tableaux includes the labeled binary trees (T- 
AP), (F-AP), (T-.), (F-), {T -+),(F -»), (Tu), and(FD), of Definition 4.1.3, with 
atomic formulas p G $ = AP, formulas <p,4> € Form{<f>, £), and world terms t,s G 
W(^r), and in addition, the following labelled binary trees: 
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Atomic actions a,j G S; 

(T(aj))       T[t\\-(aj)tp] (F(aj))       F[t\\-(aj)<p] 

r       I I 

Composition aß, for actions a,ß G Act(T,): 

{T{aß))       T[t\\-(aß)<p] {F(aß))        F[t\\-(aß)<p] 

I I 
T[t\\-(a)(ß)<p] F{t\V{a){ß)y 

Sum a + ß, for actions a,ß G Act(Yi): 

(T(a + ß)) T[t\\-(ct + ß)<p] 

I \ 
T[t\\-(a)<p] ■■      T[t\\-{ß)ip] 

(F(a + ß))       F[tl\-{a + ß)<p] 

I 
F[t\b(a)<p] 

I 
F[t\\-(ß)<p] 

Iteration a*, for an action a G Act(E): 

(T(a*))    ■ T[t\\-(a*)<p] 

I \ 
T[t\\-ip] T[t\\-{a}(a*)<p] 

(F(a*)) F[t\h(a*)<p] 

I 
F[t\\-(p] 

I 
F[t\t-(a)(a*)<p] 
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Definition 5.5.4  The class o/TPDL tableaux is defined inductively as follows: 

(i) If T is an atomic tableaux in which the world term t in the root entry is a world 
symbol w, £ W, then T is a TPDL tableaux. 

For the case (FO), the condition that the Wj in W,RWJ be "new" merely means 
that j ^ i; for definiteness, we may take j — i + 1. 

For the case (TO), the condition that tRs "occurs previously on this path" 
cannot be satisfied in this case, so an atomic tableaux r with root entry T[ wt- li- 
ny? ] consists of the root node only. 

(ii) If T is a finite TPDL tableaux, P is a path in r which does not contain contra- 
dictory entries: 

T[t\\-(p]   and   F[t\btp] 

for any formula ip £ Form(<b,Y,) and t £ W(Jr), and r is constructed from r 
by extending P using one of the following construction rules, then r is a TPDL 
tableaux. 

(Develop) A signed forcing assertion E occurs on P and r is constructed from 
T by appending an atomic tableaux with root entry E to the end of the path 
P. 

For the case (FO), where E is of the form F[ t If- Oip ], the condition that 
the v/j in tRv/j be "new" means that j £ N is the least integer such that 
Wj is yet to occur in any entry on r. 

For the case (TO), where E is of the form T[ t If- Ocp ], the condition 
that tUs "occurs previously on this path" means that tRs is an entry on 
P. If there are no entries tRs on P, for any s £ W(^r); then as in (i), the 
atomic tableaux in this case consists only of the root node labelled E. 

(R-Reflex) A world term t £ ~W(J-) is relevant to some signed forcing asser- 
tion on P, and r is constructed from r by adjoining to the end of P an 
entry tut. 

(R-Trans) For some t,s,r £ ~W(J-), accessibility assertions fRr and rRs both 
occur as entries on P, and r is constructed from r by adjoining to the end 
of P the entry tRs. 

(Fj-Cont) For some t,s £ W(^"), an accessibility assertion tRs occurs as an 
entry on P, j £ Ev where <p is the object formula in the root entry of 
P, and T is constructed from r by adjoining to the end of P the entry 
F^RF.OO. 
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(iii) If I ■< N and {rn}ne/ is a sequence of finite TPDL tableaux such that r0 is 
an atomic tableaux and for each n < sup(7), rn+1 is constructed from rn by an 
application of clause (ii), then r = \JneI rn is a TPDL tableaux. 

Definition 5.5.5 Given two signed forcing assertions S[ t \\- tp } and S'[ t' lh tp' ], 
with S,S' e {T,F}, t,t' 6 W(F) and <p,tp' e Form($,Z), we say that S'[ t' lh tp' ] 
is a direct descendant of S[t\\-tp) iff S'{ t' lh tp' ] is an entry in the atomic tableaux 
which has S[ t lh tp ] as its root entry. 

Lemma 5.5.6 If S'[ t' lh tp' ] is a direct descendant of S[t\\- tp) then tp' < tp in the 
Fischer-Ladner ordering (Definition 5.4-5). 

Proof. Immediate from the definitions. ■ 

We will of course be using the Fischer-Ladner ordering rather than the subformula 
ordering in inductive proofs. 

5.6    The Term Frame of a Path 

The term frame is this setting is just a beefed-up version of the term frames for paths 
in S4F and S4C tableaux. 

Definition 5.6.1 Let r be a TPDL tableaux with tp <= Form($, S) the object of the 
root entry, and let P be a path through r. We associate with P a unique Kripke frame 
K.p = (Wp, RP, up), called the term frame for P, as follows. 

Let W0 be the set of all world symbols w,- e W that are the subject of a signed 
forcing assertion on P. Recall that Sv is the set of indices of atomic actions appearing 
in tp. Define EP = Ev, and define: 

Wp = {Fff(w.) | w,- € W0 and a e E;} 

i.e. WP C W(F) is the smallest subset ofW(T) that contains all world terms that are 
the subject of some signed forcing assertion on P and is also closed under application 
of all appropriate F, (for j e £ J; equivalently, WP is the set of all terms in W(T) 
that are relevant to some signed forcing assertion on P. 

The relation RP on WP is defined to be the reflexive, transitive and Fj-functional 
closure, for all j € SP, of the relation R on WP defined by: 

(t,s) (E R       <=>        tRs   is an entry on P 
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for all t,s G WP.   That is, 

where 

Rp= [}R+
m 

m£N 

Ro        —    {(M) I *- *= W/>}, ^e identity relation on WP 

R+       =   R = {(M) £ Wf x WP | fRs   is an en£n/ on P] 
Ä++1    =    Ä+ U {(*, 5) | (3r e WP) (*, r) € Ä+ and* (r, 5) € ß+} 

UiiFji^Fjis)) | (*,s) e Ä+ and j <E EP} 

For each aj 6 S, define the function uP{af) : Wp —>■ W/> 6y 

v       J// v [ i otherwise 

for all t € W/>; i.e. vP{aj) is the term constructor function t t-> Fj(<) on I4^> i/" £/ie 
atomic action aj occurs in the object formula ip of the root entry of P, and the identity 
function otherwise. 

In this setting, the notion of a Kripke model (£, n) agreeing with a path P is the 
obvious extension of the notion in Definition 4.2.5: )C is a quotient of /CP, under some 
quotient map h : WP —> W, where h preserves RP and R; the family of maps {v{a)}aeE 
for £ and {vP(a)}a^£ for £P satisfies i/(a)(h(t)) = /i(z/P(a)(£)); and n preserves the 
valuations described on P. 

The process of constructing a TPDL tableaux proceeds analogously with the 
process of constructing an S4F or S4C tableaux. In particular, if P is a path through 
a TPDL tableaux r, r' is a TPDL tableaux obtained from r by extending P by 
applying one of the tableaux construction rules in clause (ii) of Definition 5.5.4, and 
P' is any path through r' extending P, then: 

(a) If the rule applied is not the (Fü) case of the (Develop) rule, then we have: 

I\,PI    =   l\sP 

(b) If the rule (Fü) is applied to an entry F[ t lh O0 ] occurring on P, where 
t = F(T(wf) £ Wp, and k € N is the least such that w^ is yet to occur in any 
entry on r, then: 

• i < k; 

• Wp, = WP U {Fw(wfc) | CJ <E £;,}, where EP = EP,; 
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• Rp' is the reflexive, transitive and F,-functional closure in WP<, for j G SP 

offiPU{(F(T(w,),wO}; 

• for each j G EP, vv>(af) is the term constructor function on WP> uniquely 
extending u?(aj), and the identity function otherwise. 

Theorem 5.6.2 Kripke Soundness of TPDL tableaux 
For all formulas ip G Form($, £), 

z/TPDL hT ip then for all Kripke frames K for £G($, S), JC IH 9?. 

Proof. The additional tableaux rules for complex actions create no complications in 
the main path extension lemma on the inductive construction of tableaux since these 
rules do not involve the introduction of new primitive world terms. ■ 

Contemplation of the tableaux construction rules reveals the following: 

if F,(wi)RFu(wi)   is an entry on P, 
then i < k and a = TT"U for some (possibly empty) string IT G ££, 
and   F7r(w,)Rwfc   is an entry on P. 

For strings a,u G E£, define the final segment ordering < by: u < a iff a = -K"U 

for some string TT <= S;. Equipped with this extra machinery, we can easily describe 
the chains in the term frame. 

Proposition 5.6.3 Let T be a TPDL tableaux, let P be a path through r, and let 
K,p = {Wp, RP, Up) be the term frame for P. 

Then for each t = F(T(wt) 6 WP, every RP chain from t is of the form: 

(Fff(w,-)>*(PWi(wi,.)|ieJ) 

for some 0 ■< J -< N, where 

i < io < ij < ij+i   and ujj+1 < Uj < u0 < a 

for all j < sup(J). 

So the term frame K,P has the following properties: WP is countably infinite, RP is 
a partial order, and for each a, e S, vP(aj) is continuous and infective. 

Hence the induced continuous D-topological structure %P = (WP,TP,vP) is count- 
able and T0, with injective functions. 

Moreover, the basic open set for t = F<r(wt-) € WP in the cone topology TP = TRp 

is of the form: 

Bt = {Ftr(wi)}UiFUn(win)\neN} 

for some (possibly empty) subset N C N,  where i < in < in, and un < a for all 
n,n' G N with n < n'. 
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Proof. The obvious modification of the proof of Proposition 4.2.8. ■ 

5.7    Completeness of Tableaux 

Extending the completeness result for the bimodal logics to TPDL is quite straight- 
forward, once one has in place the Fischer-Ladner order for inductions. 

Given a tableaux with <p (E Form($, E) as the object of the root entry, we can fix 
an ordering on terms Sj — F(T(w,) G W(^") such that a € S* and i € N, by taking 
some well-ordering on NxE*. The definition of the mth occurrence e of a signed 
forcing assertion E being reduced on a path P, is carried over from Definition 4.4.1; 
the m = p(j,l) is used only in the (TO) case, when the term Sj is dealt with for the 
/th time. The definition of a tableaux being finished is also carried over. 

Definition 5.7.1 For each formula tp 6 Form($,Yi), we define the complete sys- 
tematic TPDL tableaux rv for <p to be: 

r-=\Jrn 

for some I X N, where the sequence of finite TPDL tableaux {T„}ne/ forip is defined 
inductively as in Definition 4-4-3, except that Case 3 of stage n + l, which is modified 
as follows: 

Case 3: n = 4k + 3,forke N. 
Construct rn+1 from rn by appending, to the end of each non-contradictory path 

P through r„, an entry Fm(s,-) RFm(.Sj) for the least i < k, the least j < k and the 
least m <k, such that: 

• me Ev, 

• S,-RSJ is an entry on P, and 

• Fm(s,-) RFm(.Sj) does not yet occur on P. 

Proposition 5.7.2 For each formula y € Form($,Y,), the TPDL-CST T
V
 is fin- 

ished. ■ 
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Theorem 5.7.3 If T = T* = (Jne/rn is the TPDL-CST for <p g Form(<&,E), P is 
a non-contradictory path through rv', JCP = (WP,RP,i/P) is the term frame of P, and 
T]p is the path valuation for K,P (Definition 4-2.4), then 

(i) for all i,sg WP, 

tRs   is an entry on P      <=$>     (t,s) e RP 

(ii) /or a//1 e WP and all xj> <E FL(<p), 

T[ t lh ip ]   is an entry on P     =*>    i \hICp i/> 
F[t\b x/>]   is an entry on P    =*>     £ JK& ^ 

i/ence tfie identity function on WP witnesses that (ICP, np) agrees with P. 

Proof. The proof of (i) requires only a cosmetic change to the argument, verifying 
that P is closed under the (F,-Cont) rule for each j G E„. For (ii), there are extra 
cases in the induction, and the induction proceeds with respect to the Fischer-Ladner 
order -<. 

For example, for T(aß), assume by induction that the result holds for all formulas 
-< (aß)i/> and all world terms in WP. Fix t <E WP and suppose T[ t lh (aß)ij> } is an 
entry on P. Then since (every occurrence of) this entry is reduced, T[ t lh {a)(ß)if> ] is 
an entry on P. Hence by the induction hypothesis, we have t \\-„r {a)(ß)tp. Since 

(aß)tl> <* (a)(ß)r/> 

is Kripke valid, it follows that t lh„p (aß)ijj, as required. 

The other additional cases proceed similarly, appealing to the Kripke validity of: 

(a + ß)i/> *+(a)i/> V (ß)ij> 

Theorem 5.7.4 Kripke completeness of TPDL tableaux 
For each formula <p e Form($, £), if TPDL YT <p, then there is a countable 

partially-ordered Kripke frame JC for £Q($,E) and a valuation n for JC such that 
{tC,n)Vy. 

Proof. Same as the proof of Theorem 4.4.8. ■ 
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5.8    Finite Quotients and Decidability 

We have in fact already proved the finite model property in Proposition 5.4.7, but 
since tableaux are more pleasing to contemplate that maximal consistent sets, we 
sketch the finite quotient argument for the term frame. If one were inspired, one could 
formalize the correspondence between the filtration of the non-standard canonical 
model through the Fischer-Ladner closure, and the finite quotient constructed here. 

Definition 5.8.1 For each ip G Form(<I>,£), let FL((p) denote the Fischer-Ladner 
closure of ip, as defined in Definition 5-4-5. 

Define signed Fischer-Ladner closure of<p, SFL(<p), by: 

SFL(<p) = {TM | V e FL&)} U { Fty] | V € FL{<p)} 

Let T be a TPDL-CST for <p G Form($, E). 
For each world term t G W(jF) and path P through T, define 

S,{t)   = {T[rl>] | T[t\\-if>]   is an entry on?} 
U    { F[ip] | F[ t II- t/> ]   is an entry onP} 

A subset S C SFL(if) is called inconsistent if there is a \\) € FL(cp) such that 
both T[ip] € S and F[iß] G S; and consistent otherwise. 

On a path P through a tableaux, every set SP(t) C SFL(ip), and if the cardinality 
\FL(ip)\ = n, then the total number of consistent subsets S C SFL(ip) is: 

±*(l)=* 
k=o 

Definition 5.8.2 Let r be the TPDL-CST for ip G Form(<E>,E), let P be a path 
through r, and let fCP = (WP, Rp, uP) be the term frame for P, with np the path valua- 
tion. 

Define an equivalence relation =p on Wp by: 

t=Ps    iff   SP(t) = Sv(s) 

Let t = {s G WP | t =p 5} and let Wf denote the set of all =P-equivalence classes 
t. Define )Cf = (Wf,Rf,Ff) to be the minimal quotient under the surjective map 
h:Wp -> V/f given by h(t) = i; i.e. for all t,s G WPl 

h(t) = h(s)      &     SP{t) = SP(s) 
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and 

(h(t),h(s))en*   &   (t,s)6RP 

and 

(«*(«;)) (MO) = h (Ma,-))(0) = { ?^'(0)    ?/i e ^ v ' (_ «(tj otherwise 

Theorem 5.8.3 Finite model property for TPDL. 
Let T be the TPDL-CST for <p G Form{$, S) wtfA rooi F[ w0 lh y> ], and suppose 

P is a non-contradictory path through r. Let KP = (WP,RP,vP) be the term frame 
for P, with np its canonical valuation, and let fC* = (W*,R*,4) be the minimal 
quotient of JCP under =P.  Then: 

W* <3n. (a) The equivalence relation =P is of finite index: if n = \FL(y)\ the 

(b) The induced valuation rjf : Wf -» P($) ^z'uen by: 

nf(h(t)) = Vp(t) = {pe$\T[t\\-p]   is an entry on P} 

is well-defined. 

(c) For all $ <= FL(y>) and * e WP, 

h(t) lh# V <S> * lh ip 

where lh abbreviates Ih^f and lh# abbreviates lhJC/. 

i/ercce (JCf.nf) agrees with P, and in particular, h(w0) JP# p, so 

(/Cf.iyfjJKy, 

Proof.    Using the Fischer Ladner order, the induction in part (c) requires only 
straightforward appeals to the definitions of forcing. ■ 

Corollary 5.8.4  The logic TPDL is decidable. 
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Corollary 5.8.5  For each formula ip E Form(§, E), the following are equivalent: 

(1.) TPDL hT ip 

(2.) TPDL \-H <f 

(3.) %\=ip  for all topological structures X for £a($,E), 

(4.) %\=f  for all D-topological structures X for £D($, E), 

(5.) /C II- 93  /or a// Kripke frames K, for £a($, E), 

(6.) X (= v?   /or a// countable T0 D-topological structures X /or £D($, E), 

(7.) tC\\- ip  for all countable partially-ordered Kripke frames JC for £a($, E), 

(8.) JC\\- (p  for all finite Kripke frames K. for Ca($, E). 

Proof. (8.) =$> (1.) is the finite model property, and (5.) =4> (8.) is trivial. (7.) =3> (1.) 
is the completeness theorems for TPDL tableaux, in Theorem 5.7.4. (1.) =*• (5.) is the 
Kripke soundness of TPDL tableaux, in Theorem 5.6.2. (3.) =*• (4.) and (5.) =► (7.) 
are trivial. (4.) <£> (5.) and (6.) <^ (7.) are Corollaries 5.2.6 and 5.2.7. (2.) =► (3.) 
is the topological soundness of the Hilbert-style proof system, in Proposition 5.4.2 
(3.2.2). And (5.) => (2.) is the Kripke completeness results for the Hilbert-style proof 
system, in Proposition 5.4.7. ■ 

5.9     Conclusion 

The larger goal of this investigation was to provide a logical foundation for hybrid 
control systems in which topological structure is taken seriously. This work is at least 
a modest contribution to that endeavor, and will serve as a base for future research. 
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