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Preface

This document is a record of the papers and other material presented at the Second European
Conference on Cognitive Modelling (ECCM-98), which was held on the campus of the
University of Nottingham from 1st to 4th April 1998. The conference attempted to build on the
success of the first meeting in the series, which had been held in Berlin in November 1996. As
well as presented papers, the conference included tutorials (on ACT-R, Soar, and COGENT),
invited addresses, Ssymposia, posters, and demonstrations of models and modelling software.

In the call for papers, we tried to encourage the submission of papers which report both a
running (i.e. implemented) computer model and some empirical data against which the model
can be compared. We were pleased with the results. Almost all the papers submitted included
both those components, the only real exceptions being papers where such a criterion was not
appropriate, such as those dealing with tools or methodology.

We were also pleased by the quality of the papers submitted. The quantity and the quality were
high enough that we were able to be selective, while still having enough papers for a full
conference programme. Within the constraints of preparing for a conference — where a large
number of papers have to be assessed in a short interval of time, and where decisions about
acceptance or rejection have to be made on the basis of a paper as it stands — we attempted
some serious refereeing. Of course, the review process could not be as thorough as it is for
journal publication, but each paper was read and commented on by at least two members of the
programme committee, and we tried hard to make the feedback given to authors clear and
informative, especially in cases where changes were suggested or where reasons for rejecting a
paper (or accepting it as a poster) were offered.

Of the 40 papers submitted, we accepted 20, and invited a further 10 to be presented as posters
(6 of which took up the invitation). We also accepted 5 of the 6 contributions submitted as
posters. Our main criterion for posters was that they should be of relevance to the cognitive
modelling research community, but possibly reporting work that is too preliminary to be
presented as a main paper, or possibly focused on a model without as yet including the
comparison to data.

As well as having representation from a wide range of areas of cognitive modelling, the
conference is a truly international event. Contributions to the programme came from 14
different countries: the UK (11), USA (9), France (8), Germany (7), Italy (3), Belgium (2),
Finland (2), The Netherlands (2), Australia, Bulgaria, Greece, Japan, Sweden, and
Switzerland (1 each). It should be noted that the author index to these Proceedings lists no
fewer than 80 authors who have contributed to the conference.

It is appropriate to end this introduction with some thoughts about the nature of the ECCMs and
how they relate to other meetings. Many of us tend to think of cognitive modelling as a
research activity dominated by the USA. Yet even in the USA, the publication of descriptions
of running computer models and their detailed comparison with empirical data is comparatively
rare, and there seem to be no meetings attempting what ECCM is trying to do. The closest that
comes to mind is the annual meeting of the Cognitive Science Society. Yet the feel of that
meeting is entirely different to ECCM, in part because it is indeed a meeting of a particular
scientific society (which ECCM is not), and in part because Cognitive Science (as viewed by
the Society) is a broad field, of which cognitive modelling is seen as just a small part. Mainly,
what makes ECCM distinctive is the point we stressed above, namely our emphasis on the
presentation of both an implemented model and its comparison against empirical data, and on
keeping a reasonable balance between the two.

vi



At the time of writing, nothing has been decided about the location and timing of any third
ECCM. There are some uncertainties about future meetings, and especially about our
relationship to the ongoing series of European Conferences on Cognitive Science (ECCS: St
Malo, 1995; Manchester, 1997; Sienna, 1999). These matters are to be discussed at a special
session during the conference. We certainly hope that something recognisably similar to the
first two ECCMs continues, though perhaps still more international in flavour. To judge from
the papers at this conference, cognitive modelling in Europe is in a comparatively healthy state.

Richard M Young and Frank E Ritter
Hatfield and Nottingham
March 1998
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ABSTRACT

Recent brain imaging findings suggest several new
assumptions concerning the architectural properties of the
neural systems that underlie high level cognition, such as
language, comprehension, visual cognition, and problem
solving. Some of these assumptions have to do with

1. resource-constrained processing and task assignment;
2. dynamic configuration and resource recruitment;

3. functional embedding, self-similarity, and
interaction among the components of the cognitive
system,;

4. apreference ordering for the types of processing that
each cognitive component can perform (graded
specialization).

The 4CAPS computational modeling system implements
these assumptions, with the goal of accounting not only
for processing times and error probabilities, but also for
the amount of brain activation observed in each of the
activated component neural systems. 4CAPS consists of
several component processing modules, each of which is
a parallel production system with some connectionist
properties, and each of which is intended to correspond to
the function of an underlying large-scale neural network.
The component production systems are highly interactive
with each other, operate in parallel, and have a task
allocation regimen based on graded specialization and
resource availability.




Mechanisms and Implications of Pervasive Episodic
Memory

Erik M. Altmann
Psychology Department and Krasnow Institute
George Mason University
Fairfax, VA 22030 USA
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altmann@gmu.edu

ABSTRACT

This paper investigates the memory phenomena
underlying directed access to hidden objects. A
computational cognitive model is described that encodes
long-term episodic traces automatically whenever it
attends to an object in its environment. Later, if an object
of interest is hidden from view, the model can try to
remember seeing it. This involves generating appropriate
cues from memory to try to trigger episodic traces encoded
while attending to that object. The underlying cognitive
architecture (Soar) constrains the nature of these cues and
the processes required to generate them. These constraints
lead to a theory of episodic indexing, which is that people
store simple information about attention events in large
amounts, but make use of it only to the extent that they
are able to generate appropriate images from memory.
Episodic indexing helps characterize the cognitive cost of
a cluttered interface.

Keywords
Cognitive simulation, episodic memory, human-computer
interaction, Soar

INTRODUCTION

Our surroundings are filled with information. Most of this
is hidden to us at any given time, being out of our field of
view, yet we manage to gain access to it when we need
to. For example, we might recall seeing a figure in a
book, or a key phrase, and then return to that area in the
book to refresh our memory, or to examine the context
more carefully.

This paper investigates the memory phenomena
underlying such access to external information. What do
people encode about something they see, such that they
can remember later that it exists? We would like to know
both what information is stored, and under what
circumstances. Second, what causes the retrieval of these
memories? People typically navigate their environment
for a purpose rather than haphazardly, implying some
knowledge of a target to be visited. We would like to
understand the role of domain knowledge in mediating
access to what we know exists in our environment,

Our approach to these questions is to represent the
phenomena explicitly using a cognitive architecture, Soar
(Newell, 1990; Rosenbloom, Laird, & Newell, 1992).
Soar includes mechanisms grounded in psychological
theory and data that impose constraints on the
representation of behavior. Applied to hidden-object
access, these constraints imply that people store large
amounts of information about their environment, but
retrieve it only occasionally and with requisite knowledge
and cognitive effort.

The paper is organized as follows. We first characterize
the kind of task that requires the fine-grain episodic
memory for efficient performance, and introduce the model
using simple hypothetical examples to illustrate its
encoding and retrieval processes. We then offer an
accounting of the memory bandwidth implied by
pervasive episodic encoding. Finally, we examine the
theory for consistency with other findings on episodic
memory, and for design of interfaces to extensive
information environments.

THE MODEL

The kind of hidden-information access we are interested in
studying is illustrated by the following scenario. A
computer user is working with an application that
generates much more information than fits on the screen
at once. Most of this information is hidden, scrolled out
of the way by the application to make room for the new
information that it generates continually. This old
information remains accessible, and the user occasionally
scrolls some of it back into view. Thus, the user appears
to have a memory that functions as an index to the
environment. Much as the index in a book supports
looking up a term of interest, the episodic index stored in
memory supports “looking up” objects of interest in the
environment. We are interested in how this index is
created in memory, and how it is later accessed. In the
following, we use examples from a hypothetical database
programming task. The real task simulated by the model
is described elsewhere (Altmann & John, in press;
Altmann, 1996; Altmann, Larkin, & John, 1995).

The model's main mode of performance is a kind of
comprehension in which it tries to gather information
about objects in its environment. This is a generalized and
simplified representation of interaction with an
information-rich environment. In particular, it is
simplified in that the model does not construct the
complex mental structures generally associated with
comprehension of text (e.g., Lewis, 1993; Kintsch,
1998).

The model selects goals to comprehend objects and issues
commands to change the display. Some commands
generate new information, and some scroll to old
information. The model uses this external information as
it tries to comprehend objects.

To comprehend a particular object, the model selects
subgoals that retrieve information about that object.
Information can come either from the display (an external
source) or from LTM (an internal source). For example,
suppose the model is comprehending a data structure that
represents a student record. The student record contains a



field for the student's Social Security Number (SSN),
which is displayed on the screen. To retrieve information
about this field, the model selects an attend subgoal.
Suppose (for simplicity) that the model attends only to
the field and not to the actual number stored there. This
act of attention would add the following attribute-value
pair to WM.

(~field ssn) From attending to SSN field.

Alternatively, if this information is not available
externally but the model has the appropriate domain
knowledge, the same information can be recalled from
LTM. To do this, the model selects a probe subgoal. For
example, the model might probe with the SSN field,
perhaps to see if this activates any other information
relevant to the student record. Probing and attention are
symmetrical in that a probe can look exactly like the
output of attention.

(~field ssn) From probing with SSN field.

Under episodic indexing, attention and probing process
another kind of element, one which represents the actual
event of attending to an object. Attention automatically
adds this element to WM as a side effect of attending to an
object. Thus the full outcome of attending to an SSN
field would be the following.

(~field ssn)
(~attended-to ssn)

From attending to SSN field.
From attending to SSN field.

The same representation could also be produced by a
probe, consistent with the attention-probing symmetry
noted above. The probe below represents the model asking
itself, “What do I know about the event of attending to an
SSN field?”

(~field ssn)
(~attended-to ssn)

From probing with SSN field.
From probing with SSN field.

We refer to an attribute-value pair like attended-to ssn,
when generated by a probe, as an image of attending to an
object. The term image is meant to suggest a code like
that produced by attention, namely more like a percept
than an abstraction or a concept. Beyond this, we do not
attempt  to  interpret the  model's  images
phenomenologically, or psychologically in terms other
than how they function in the model. For example, their
symbolic nature reflects Soar's representation language
and is not intended as a statement in the debate over
propositional vs. analog spatial codes. In general, LTM
contains many kinds of codes (Bower, 1975), and in
particular expert programmers often use vivid imagery to
understand programs, including color, sound, and dancing
symbols (Petre & Blackwell, 1997). Amidst this diversity
it seems reasonable to posit a code representing the event
of attending to an object.

Thus the model can imagine attending to an object,
providing it has the knowledge to do so. Such imagining,
and hence the requisite store of images, is the basis of the
retrieval processes of episodic indexing.

Learning in Soar

Encoding information about the environment is a form of
learning, and requires that the mode! modify its long-term
knowledge representation. In Soar, all long-term
knowledge is represented productions. These are condition-
action rules like the one below. If the condition part

(above the arrow) matches a structure in WM, then the
action part (below the arrow) adds new elements to WM.
The production below acts as a declarative memory,
because it associates an object (a student record) with facts
about that object (that it has an SSN field). In general, all
the model's operations, like attending to objects,
generating probes, and recalling facts, depend on
knowledge represented as productions.

("structure student-record) Condition:
Student record in WM.

-—>
(~field ssn) Action: Put SSN field in

WM.

The model learns by acquiring new productions. The
learning mechanism is part of Soar. It is unified with
Soar’s knowledge-representation language (productions)
and control structure (goals) in that Soar acquires new
productions in response to achieving goals (Laird,
Rosenbloom, & Newell, 1986). A new production, or
chunk, represents an inference that may have taken several
steps to make. The chunk is added to LTM, making the
inference available in a single step from then on.

For example, suppose the model’s goal were to find the
sum of two numbers (4 and 7) and that although it could
not retrieve the sum directly from memory, it knew a
procedure for adding by counting up from one of the
addends. The goal to find the sum would be implemented
by subgoals that might involve initializing a running
sum to the value of one addend, invoking the counting
procedure, and recognizing when the count equaled the
other addend. The result (11) would represent achieving
the goal, and Soar would encode a chunk associating the
relevant inputs to the counting procedure with the new
result. In the future, this chunk will compute 4 + 7 = 11
without subgoals, bypassing the counting procedure.

In general terms, a chunk encodes an association between
an inferred result (e.g., the sum) and the WM elements
on which the inference is based, which we refer to here as
premises (e.g., the addends). The premises have either
already contributed to achieving the current goal or were
in WM when the goal was selected. The result is inferred
from the premises through a sequence of intermediate
production firings. A chunk will fire immediately in the
future if WM contains the same premises.

The chunking process does very little induction or
generalization. The result essentially becomes the chunk's
action and the premises become the chunk's conditions,
though there is some variabilization (Laird, Rosenbloom,
& Newell, 1986). This makes a chunk specific to its
encoding context, consistent with the encoding specificity
principle (Tulving, 1983). This specificity acts as a hard
constraint on the nature of the process for retrieving
learned knowledge.(Howes & Young, 1997).

Encoding the Episodic Index

The model contains two key assumptions about the
process of attending to an object. Both assumptions are
related to the event of attending. The first assumption is
that the event itself is worth representing in WM, apart
from the object of attention. The second assumption is
that all attention events are goal-directed. This assumption
says that the model is always looking for new
information about the object it is trying to comprehend,




and therefore automatically takes any attention event to
contribute to the current goal. The two assumptions
together operationalize what we might think of informally
as “paying attention to” or “‘concentrating on” what we are
doing. The important implication is that if the model
“pays attention” to an event, this enables remembering
the event because it causes chunks to be acquired.

The first assumption (that attention events are
noteworthy) is implemented as follows. When the model
attends to an object, it records the event using its internal
clock. That is, it associates the WM code for the attention
event with the current value of an internal variable that is
updated periodically. For example, when the model attends
to the SSN field of a student record, the complete
representation created in WM is something like the
following.

(*attended-to ssn)
field.

("event ssn “time t42)
field.

The model’s internal clock ticks when it selects a new
object to comprehend (meaning that the model’s sense of
time is keyed to its train of thought). All objects attended
while comprehending that object are encoded in LTM with
the current time symbol.

From attending to SSN

From attending to SSN

The second assumption (that episodic processing
contributes to the current goal) is implemented by
associating the time symbol with the current goal in
WM. This causes Soar to build a chunk, as described in
the previous section. The premise of the chunk is the
attribute-value pair representing attention to the SSN
field, and the result is the time symbol. The two are
linked by the inference that the SSN field was attended
now. The chunk is shown below (named attended-ssn for
reference later).

chunk: attended-ssn  Chunk for an attention event.

(~attended-to ssn)
-—>
(“event ssn “time t42)

Attended-ssn represents an attention event. This makes it
an episodic trace, as distinct from a semantic trace with
no temporal content (Tulving, 1983). It functions as one
entry in an index of objects encountered in the
environment. In the future, if no SSN field is visible, the
model can look up the SSN field in this index by
attempting to cause this chunk to’ fire. If the lookup is
successful, then the model can infer that it attended to an
SSN field in the past, even though no such field is
currently visible. The lookup and inference processes are
described in the next section.

Retrieval from the Episodic Endex

The episodic index consists of a set of chunks, each of
which associates an attention event with a time symbol.
Suppose that a particular attention event occurred long
enough in the past that it is no longer active in WM and
that the corresponding object is no longer in view. The
model can use its episodic index to see if the object exists
somewhere in the environment. This requires two steps.
The first is to generate the cue necessary to get an
episodic chunk to fire. We can think of this as “looking
up” the object. The second is to make the appropriate

inferences based on any recalled time symbols. We can
think of this as acting on the information retrieved from
the lookup.

To look up an object, the model must add to WM an
image of attending to that object, as a cue for triggering
episodic chunks. As discussed previously, an image can
appear in WM either through attention, which generates
the image from an external stimulus, or through probing,
which generates the image from memory. In either case,
an image appearing in WM will activate all episodic
chunks acquired whenever the corresponding object was
attended in the past. Production imagine-ssn, below,
generates the necessary probe for the SSN field.

production: imagine-ssn
Conditions testing that it's relevant to know that
an SSN field was seen.

-—>
(~attended-to ssn) Al
(“imagined ssn) A2

Imagine-ssn will fire in a situation in which it would be
useful to remember seeing an SSN field. For instance,
suppose (as we did previously) that the model were asked
whether a given database record contained confidential
information. The model might try to recall seeing an SSN
field by firing imagine-ssn. When imagine-ssn fires, Al
adds to WM an image of attending to the SSN field,
providing an opportunity for a chunk like attended-ssn to
fire. A2 tags this image as generated from memory rather
than from a stimulus. In general, there could be many
situations in which it might be useful to imagine an SSN
field. Each would be represented in a production like
imagine-ssn (with different conditions).

If we suppose that attended-ssn fires in response to
imagine-ssn, then WM will contain the following
elements.

From imagine-ssn.
From imagine-ssn.
From attended-ssn.

(~attended-to ssn)

(~imagined ssn)

("event ssn “time t42)
From these elements the model can infer that an SSN
field exists in the environment. The production that
makes this inference is recall-seeing-object, below. This
production belongs to the set of generic mechanisms that
form part of the model's static knowledge.

production: recall-seeing-cbject

(“attended-to <o>) Cl
(~imagined <o>) C2
(~event <o> “time <then>) C3
(“time <now> != <then>) C4
-—>

(“recall-seeing <o>)

Recall-seeing-object's conditions, numbered on the right,
are as follows. Conditions C1 and C2 test that there is an
image in WM that was generated internally rather than
from an external stimulus.! C3 and C4 test that the image
was attended in the past. The single action summarizes

' Angle brackets around a letter (e.g., “<o>*) indicate a
variable. If the same variable occurs in multiple conditions,
it must have the same value in each condition for the
production to fire. Thus, for example, C1 and C2 test that the
object bound to <o> is both attended-to and imagined.



what is expressed by the conditions. It adds to WM the
recollection of having seen the object.

The identity comparison in C4 is the only operation
afforded by time symbols. Thus time is categorical,
rather than ordinal or interval, and the only categories are
present (the current comprehension goal) and past (any
previous goal). The model cannot compute, for exampte,
the interval between two events. This information-
leanness is consistent with qualitative aspects of the rapid
decay of unelaborated temporal codes in people
(Underwood, 1977).

The nature and use of the episodic index is shaped by
Soar's constraints on learning. Because Soar makes a
chunk specific to its encoding context, attended-ssn's
conditions are tied to the object code that appeared in WM
during the attending event. This specificity implies that
recalling the existence of an object must be preceded by
imagery involving the object.

Summary of Assumptions

There are four theoretical assumptions that shape how the
model acquires and retrieves memories for attention
events. The first assumption is that the attention event
itself is worth symbolizing in WM, in addition to the
attended object. The second assumption is that attention is
an integral part of comprehension and thus contributes to
every comprehension goal. These two assumptions are
hypotheses that we have embodied in the model.

The third and fourth assumptions come with Soar. The
third is that all knowledge that contributes to achieving a
goal is stored permanently in chunks. The fourth is that
chunks are specific to their encoding context.

Together, these assumptions imply that chunk acquisition
in the model will be pervasive and automatic, and that
retrieval will be effortful. Learning will be pervasive
because the model will encode a new episodic chunk for
every object it attends to. This learning is automatic, in
that the model exercises no control over whether or not to
learn, and in that learning is a side effect of attentional
processing rather than an end in itself. Retrieval will be
effortful because learning involves little induction. To get
chunks to fire, cues describing the original encoding
context will have to be generated from memory.

Knowledge Distinguished by Dperation

Episodic indexing encodes information about dynamic
information arising during task performance. It also
allows us to make distinctions among the different

operations facilitated by the domain knowledge that one
brings to a task. Domain knowledge is involved in three
operations:

o Attention. During the acquisition episode, the
model must know what to attend to in the first place.
Thus the model must be able to identify objects and
understand them to be relevant to the task at hand.

o Retrieval. During the retrieval episode, the model
must (a) be able to generate an image, and (b) do this
when the results of a successful probe on that image
would be useful. Thus retrieval depends on both
visual familiarity and semantic understanding specific
to the particular domain.

¢ Action. The decision to revisit a hidden object is
distinct from recalling that it exists. There might be
other means for acquiring the information that the
object could provide, and there might be no reason to
act on the recollection.

Thus the model points to several operations by which
relatively static domain knowledge helps us gain access to
the relatively dynamic information around us.

PRODUCTIONS ENCODED AND FIRED

The model simulates 10.5 continuous minutes of problem
solving, spanning the encoding and retrieval episodes of a
number of scrolling events (Altmann, 1996). This
extended lifetime served as a form of methodological
control during our analysis. A sufficiently close
examination of the data to construct the model was the
best way to avoid missing events between acquisition and
retrieval that might have recoded or otherwise affected the
nature of the participant’s episodic index. This extended
lifetime also serves to illustrate the implications of
pervasive episodic encoding for the bandwidth of the
model’s memory system in terms of the number of
chunks acquired and fired.

Figure 1 tabulates productions and firing counts according
to four categories of knowledge (arrayed horizontally). The
top bar indicates the number of productions in each
category when the model stops, including all preloaded
productions and all chunks acquired as the model runs.
The bottom bar indicates the total number of production
firings in each category during the model's run.
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Figure 1: Production and firing counts.

The right half of the picture (shaded) shows that most of
the model's productions are acquired by learning, but fire
seldom because they are specific to their encoding context.
The large number of chunks at the end of the run (1320)
indicates the extent to which learning is pervasive. In
terms of real time, the model is encoding roughly two
chunks per second.

Few of these chunks fire, but some do. In particular,
chunks encoding some aspect of the display account for
8% of firings. Thus the model's behavior depends in part
on a memory for specific external situations that arise
during task performance.

The left half of the picture (unshaded) shows that the
model begins with a small number of preloaded
productions that account for most of its processing.
Preloaded productions number 194 (13%), of which 126
(8%) represent domain knowledge that we attribute to the
programmer. This knowledge lets the model attend to
external objects, generate cues, and recall facts about
objects. It also tells the model what commands it can
issue and what objects are important to comprehend and
therefore select as comprehension goals.

Expertise should be flexible, in that it should guide
behavior under a variety of appropriate circumstances. In
our model, a large number of static domain-knowledge
productions (93 out of the 126 indicated in Figure 1)
represent either comprehension goals or attend or probe
subgoals. These 93 productions account for all 499 goal
and subgoal selections that occur as the model runs, for a
mean of 5.4 goals per production. They also account for
2,518 out of the 2,848 firings of domain-knowledge
productions. These measures indicate that to a large extent
the model's goal and subgoal productions transfer among
situations rather than being hardwired to a particular one.

The category of preloaded productions labeled generic
mechanisms accounts for 75% of total production firings,
despite being only 5% of the total number of productions.
These are domain-independent productions like recall-

seeing-object, discussed earlier, which infers the existence
of a hidden object from an episodic trace. The high firing
rate of mechanistic productions is consistent with their
being the most general productions in the model and
potentially general across many domains.

The production and firing counts over the model's lifetime
illustrate the implications of pervasive episodic learning.
In a few minutes of simulated time, the model acquires a
great deal of dynamic information about its environment
and stores it permanently in LTM. Some of these chunks
transfer in the near term, firing seconds to minutes (of
simulated time) after being created. The fast rate of
learning -- 1,320 productions over 10.5 minutes -
suggests that Brooks's (1977) estimate of tens or hundreds
of thousands of rules making up a programmer's static
domain knowledge may account for only part of what
generates expert performance. There may in addition be a
vast and constantly growing store of rules capturing
dynamic knowledge.

DISCUSSION

Below we discuss the relationship of episodic indexing to
previous conceptions of episodic memory in Soar and to a
related theory advanced to account for expanded working
memory for domain experts. We then speculate on
episodic indexing and the cognitive cost of clutter.

Episodic Memory in Soar

Episodic memory is a natural construct to study in Soar.
Learning is closely integrated with performance, meaning
that events are easy to capture and store in LTM.
Moreover, chunk conditions are determined by a process
that gives chunks an inherently episodic quality. The
chunking mechanism traces from a result back to the WM
elements from which the result was generated, encoding
an association between the result and important elements
of context in which it was encoded. Thus the simple
existence of a chunk represents some episodic
information. A model can gain access to this information
by generating cues that would cause the chunk to fire if it



existed, then by monitoring WM for the appearance of the
chunk's result. Several Soar models have addressed
episodic memory in these terms (e.g., Rieman, Young &
Howes, 1996; Rosenbloom, Newell, & Laird 1991).

However, episodic indexing requires richer information to
decide whether an object was actually attended at some
time in the past. Below we examine the constraints met
by the model's time symbols, and how these constraints
arise from the interaction of pervasive episodic encoding
(an assumption in our model) with encoding specificity
(an architectural constraint inherited from Soar).

Episodic encoding extends to probe events as well as
attention events -- that is, the model encodes episodic
chunks for both. This follows from assuming that
attention is integral to comprehension and thus
contributes to every comprehension goal. Probing
contributes equally to comprehension, and thus with
respect to episodic learning the model treats probing and
attention symmetrically.

This symmetry could lead to confusion should the model
probe repeatedly with the same image. A particular probe
will trigger episodic chunks from all previous probes,
potentially leading the model to mistake these past probes
as attention events. A kind of reality monitoring (Johnson
& Raye, 1981) is necessary to avoid this mistake (and
hence to avoid scrolling to imaginary objects). To support
this reality monitoring, episodic chunks must contain
enough information about the source of a memory
(attention vs. probing) to let the model discriminate past
attention events from past probe events.

Identifying past attention events must be done indirectly
because source information cannot be represented
explicitly in episodic chunks, when the source is the
environment. This seems a surprising constraint, but it
follows from encoding specificity. When building a
chunk, Soar traces from the result back to premises
existing before the result was generated, and encodes these
premises as conditions. Therefore, if source information is
a result, it also becomes a condition. Thus if a chunk has
an action identifying an object as real, its conditions can
never be met by an image alone. However, by the same
logic, a chunk can have an action identifying an object as
imagined and still be triggered by an image. Thus the
model includes an probe tag with each chunk built during
a probe event (see Appendix).

At retrieval time, these probe tags provide part of the
information necessary to decide if the object of interest
was ever attended. To make this decision, the model must
identify all episodic chunks triggered by the current probe
but built during past probes, and subtract them from the
total set of episodic chunks triggered by the current probe.
If the resulting set is non-empty, then the object was
attended in the past. In terms of predicate calculus, the
model tests an existential quantifier (“Did I recall an
attention event?”’) by testing a negated universal quantifier
(“Did I recall any event that was not a probe?”). This
requires that each episodic chunk be uniquely identifiable.
Because chunks are identifiable only by their results, this
in turn requires that each episodic chunk have a uniquely
identifiable result. This requirement cannot be met by a
fixed set of symbols because at most one instance of any
particular symbol can be represented in WM at any given
time whereas the number of distinct events to represent is

effectively unbounded. The requirement is met by the
model's time symbols (as illustrated in the Appendix),
because each is unique and they are generated anew at
regular intervals.

Thus episodic indexing contrasts with previous Soar
formulations of episodic memory in which multiple
chunks may have the same result (e.g., Rieman, Young
& Howes, 1996; Rosenbloom, Newell & Laird 1990).
The episodic representation in our model is implied by
theoretical assumptions interacting with task requirements
in a way that does not constrain these other models. Our
assumptions specify an indiscriminate encoding of
episodic chunks, and the task requires that chunks from
attention events transfer to probe events. However, this
transfer requirement combined with encoding specificity
restricts the source information that episodic chunks can
represent. To compensate they are made discriminable by
their results, allowing the model to partition past events
into probe events and all the rest. This shaping of a
representation by a complex interaction of constraints
illustrates the benefit of taking a comprehensive and
integrated approach to modeling cognitive phenomena
(Newell, 1973).

A Form of Long-Term Working Memory

Episodic indexing posits that access to dynamic
information depends on static information that one brings
to the task. In this it is congruent with long-term
working memory (LT-WM; Ericsson & Kintsch, 1995),
of which a central claim is that long-term knowledge (as
opposed to inherent WM capacity; e.g., Just, Carpenter &
Hemphill, 1996) accounts for functionally expanded WM
in domains in which one has expertise. Episodic indexing
and LT-WM both propose that people store information
rapidly in LTM, using domain knowledge to organize it
and gain access to it later.

Episodic indexing extends LT-WM in the direction of
leaner and more ubiquitous memory structures acquired at
encoding time. The most routine application of LT-WM
reviewed by Ericsson and Kintsch (1995) is text
comprehension, but even this involves online encoding of
memory structures that represent potentially intricate
semantic mappings. For example, in referent resolution
the comprehender must represent the connection between a
pronoun and what it stands for, which is a semantic
association that is not always straightforward to establish.
By contrast, the episodic index is a one-way mapping
from semantic to episodic codes which lacks the network
structure that typically characterizes semantic memory.

The Cost of Clutter

Episodic indexing suggests that clutter has a cognitive
cost, due to the paucity of information encoded with
episodic traces and the effect this has at retrieval time. An
episodic retrieval indicates the existence of an object of
interest but not its whereabouts. This is consistent with
the difficulty that even experienced users have in recalling
features of interfaces (Mayes, Draper, McGregor, &
Oatley, 1988; Payne, 1991), and with findings that spatial
and location knowledge is not automatically encoded in
real-world task environments (Lansdale, 1991). It is also
consistent with the generally reconstructive nature of
memory for the source of an item (Johnson, Hashtroudi,
& Lindsay, 1993).




One possible strategy for dealing with clutter might be to
add spatial information to the episodic information
encoded during attention. However, encoding specificity as
implemented in Soar predicts that any such information
would place a heavy burden on the retrieval process.
Location information encoded in the actions of a chunk
would also be present in the conditions, thus requiring
that location cues be generated at retrieval time. This
would not completely defeat the purpose, because the
model could use the same kind process it now uses to
generate and recognize images at retrieval time. However,
more cues would have to be generated, requiring both
more cognitive effort and more knowledge from which to
generate them.

This shifts the emphasis to alternative strategies. One
alternative might be to infer location from the nature of
the target item. For example, applications often deposit
different kinds of output into different windows. In such
environments a reliable and easily-retained mapping from
content to location should reduce the cost of clutter.
Another strategy might be search, implying that reliable,
easily-retained, and flexible searching tools also reduce the
cost of clutter. More generally, the implication of
episodic indexing is that access to hidden objects requires
a reconstructive memory process that becomes more
costly the more source information is stored with the
target item. Thus users are likely to mitigate clutter by
inferring location as needed, implying that interfaces to
extensive information environments should support such
inferences with direct, structured and learnable item-
location mappings.

CONCLUSIONS

We propose that people store simple dynamic information
in long-term memory as a matter of course, and use this
information to index their environment. Our theory of
episodic indexing makes two main claims:

e Pervasive and automatic encoding. People acquire
large amounts of recognitional, episodic information
about attention events, as a side effect of attention.

e Semantic, image-based retrieval. People retrieve
this episodic information as a function of pre-existing
knowledge that generates image cues when
semantically appropriate.

The generality of these claims rest on the generality of
their theoretical ~underpinnings. Soar's  chunking
mechanism (which predicts goal-based learning and
encoding specificity) has been offered as a universal
account of learning (Laird, Rosenbloom, & Newell, 1986;
Newell, 1990), and our additional assumptions about the
integration of episodic processing, attention, and
comprehension are domain-independent. Thus episodic
indexing may operate whenever people pay attention to
what they are doing, and know the domain well enough to
generate the right cues at the right time.
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APPENDIX

Below we present a complete picture of the processing
that occurs when the model probes with an image and
retrieves episodic chunks. (This elaborates on the process
described in the section, Encoding the Episodic Index.) In
the general case, the episodic chunks retrieved by a probe
will be of two kinds: those encoded during attention
events and those encoded during (past) probe events. Only
those acquired during probe events will contain source
information in their actions (as discussed in the section,
Episodic Memory in Soar). To determine whether the
object of interest was actually attended in the past, the
model computes the difference between the total set of
episodic chunks retrieved and those representing probe
events. The scenario below supposes that the model first
probes for information about the SSN field, then actually
attends to the field, then probes again.

At time t42, the model probes by placing an image in
WM (A1) together with source information identifying
the image as an image (A2).

production: imagine-ssn
Conditions testing that it's relevant to know that
an SSN field was seen.

-—
(~attended-to ssn) Al
(~imagined ssn) A2

The model encodes an episodic chunk during the probe
event, under the assumption of pervasive episodic
encoding. Source information is included as a chunk
action (A2) and hence also as a chunk condition (C2).

chunk: imagined-ssn Chunk capturing a probe

event.
(~attended-to ssn) Cl1
(*imagined ssn) C2
-
(“event ssn “time t42) Al

]

(“probe t42) A2

At time t43, the model actually attends to the SSN
object, resulting in another episodic chunk.

chunk: attended-ssn  Chunk capturing attention
event.

(~attended-to ssn)

—

(“event ssn “time t43)

Finally, at time t44, the model probes a second time (by
firing imagine-ssn). This triggers the two episodic chunks
described above, causing the following elements to enter
WM. '

(~attended-to ssn)
(~imagined ssn)
(“event ssn “time t42)
("probe t42)

(“event ssn “time t43)

From imagine-ssn.
From imagine-ssn.
From imagined-ssn.
From imagined-ssn.
From attended-ssn.

From these elements the model can infer that an SSN
field exists in the environment. The production that
makes this inference is recall-seeing-object, below.
Condition C5 (not reported in the section, Using the
Episodic Index) effectively subtracts the set of probe
events (containing t42) from the set of probe plus
attention events (containing t42 and t43). The leading
minus sign (“-”) negates the subsequent condition,
meaning that WM cannot contain an element matching
that condition. In our scenario, this negated condition
holds for at least one past event (t43). Thus the
production matches, inferring that SSN was attended at
some point in the past (Al).

production: recall-seeing-cbject
(~attended-to <o>) Cl, <o> = ssn

(~imagined <o>) c2

("event <o> “time <then>) C3, <then>=t43
(“time <now> != <then>) C4, <now>=t44
-(“probe <then>) C5

-—>

(“recall-seeing <o>) Al
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ABSTRACT

Operators’ models, or equivalent end-user models, have
became a standard prerequisite for most man-machine
system design. Nowadays, the designer can chose among
a great variety of models: behavioral models of
performance, running competence models, and cognitive
models are available in a large range of granularity from
quasi-neuropsychological models of memory to
framework models of dynamic cognition. However,
despite -- or maybe because of -- that variety, modelling
the operator is still an area of uncertainty within the
industry, with multiple forms and meanings, and with a
persistent feeling that these models, whereas they should
be useful, are hard to incorporate into the design process.

This paper focuses on the development and use of
cognitive models of human reliability for the design of
complex systems, and tries to understand biases and
limitations of their use within the industry. In that
sense, the paper is more industry-oriented than research
oriented. It is divided into three sections. The first
section details the range of existing cognitive models of
human reliability and proposes a classification of these
models into four main categories: error production
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models, error detection and recovery models, systemic
models, and integrated safety ecological models. The
example of the Aviation Industry shows how difficult it
has been in the recent past to incorporate the most
advanced of these models into design, whereas the same
Industry had long complained about the lack of
availabilily of cognitive operators’ models.

The second section tries to explain the reason for the
relative failure. It shows the inter-dependency existing
between the category of cognitive model, the safety
paradigm, and the strategy for design. Severe drawbacks
may occur each time a model is used with the wrong
safety paradigm or the wrong strategy for design. It also
shows that the more cognitively-based the model is, the
less it is incorporated into design. The lack of education
in psychology of designers, as well as the lack of a clear
procedure for incorporating such models into design, are
among the most important factors explaining this lack of
success.

The third and last section points to new directions in
cognitive modelling to improve the fit between operator
modelling and design requirements.
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ABSTRACT

Recent results in cognitive skill acquisition suggest that

task speed-up can be due to either speed-up of procedural
knowledge or speed-up of the retrieval of declarative
knowledge. This paper presents a single Act-R model that
closely fits the data of two learning and transfer
experiments conducted by Rabinowitz and Goldberg
(1995). These experiments test three main hypotheses: 1)
access to procedural and declarative knowledge speeds
up as separate power laws of practice; 2) training on a
large variety of problems leads to strengthening of
procedural knowledge, whereas training on a small set of
problems leads to the acquisition and strengthening of
declarative knowledge; and 3) procedural knowledge
operates in one direction only—from condition to
action—whereas declarative knowledge can be cued by
any of its elements. The model provides a good fit to the
data, further validating Act-R as a model of the human
cognitive architecture

Keywords
Declarative memory, procedural memory, learning,
transfer, knowledge compilation, Act-R, Soar.

INTRODUCTION

One common view of cognitive skill acquisition is that it
progresses from an interpretive stage .to a procedural
stage using some kind of knowledge compilation
mechanism (Stillings et al., 1995; VanLehn, 1989). Such
a mechanism produces procedural knowledge from the
results of more deliberate, interpretive problem solving.
This view has received a lot of empirical support. Several
researchers have shown that knowledge compilation can
model the transition from novice to expert behavior
(Larkin, 1981; Newell & Rosenbloom, 1981). One major
research effort, the Soar architecture, even asserts that
knowledge compilation is the only mechanism required
to account for all human learning (Newell, 1990).
Researchers using Soar have been able to model a wide
range of learning strategies (Miller, 1993; Rosenbloom &
Aasman, 1990; Steier et al., 1987). Knowledge
compilation mechanisms can also sometimes account for
the ubiquitous power law of learning (Newell &
Rosenbloom, 1981).

Recent results on the characteristics of declarative and
procedural knowledge, however, threaten the simplicity
of this view of skill acquisition, because they suggest that
cognitive skill can also improve through the acquisition
and strengthening of declarative memory elements (for a
review see (VanLehn, 1996)). A number of experiments
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have suggested that the retrieval of declarative
knowledge and the application of procedural knowledge
speed up as separate power laws of practice. In other
words, the time to retrieve a declarative memory speeds
up as a power function of the number of retrievals,
whereas the time to apply a procedure speeds up as a
power function of the number of applications. This
implies that cognitive skill can improve by acquiring and
strengthening procedural or declarative knowledge, or
some combination of the two.

Despite the intuitive nature of the distinction between
declarative and procedural knowledge, the hypothesis
that there are separate long-term memory stores for
declarative and procedural knowledge remains a
controversial issue in cognitive science. The controversy
arises because, in theory, anything that can be modeled
with two distinct long-term stores can also be modeled
using only a procedural long-term store. For example,
long-term procedural knowledge might add “Washington,
DC” to working memory whenever working memory
encodes a goal to determine the capitol of the United
States. Working memory is widely thought to be a
declarative store, so the declarative-procedural distinction
applies only to long-term memory.

There is, however, mounting evidence in favor of the
distinction. Cognitive neuroscientists have found a
double dissociation between declarative and procedural
knowledge—some patients can acquire new declarative
knowledge, but not procedural, whereas other patients
can acquire procedural, but not declarative. There is also
evidence that the two kinds of knowledge have different
retrieval characteristics: declarative knowledge can be
primed by any of its components, but procedural
knowledge only works in one direction: from a specific
set of cues to an action. A review of these issues can be
found in (Anderson, 1993).

Rabinowitz and Goldberg (1995) conducted two
experiments that nicely illustrate many of the recent
phenomena concerning skill acquisition and the
distinction  between declarative and  procedural
knowledge. These experiments use a learning and transfer
paradigm to examine learning of declarative and
procedural knowledge, and their different retrieval
characteristics.

This paper presents a single Act-R model that accounts
for the data in the two Rabinowitz and Goldberg
experiments. In addition, the paper presents protocol
results from a newly conducted experiment designed to
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Figure 1: Mean response times during alphabet arithmetic training as a function of training group and
practice block. Data plotted from original data by Rabinowitz and Goldberg (1995).

further test the assumptions of the experiments and the
model.

THE RABINOWITZ AND GOLDBERG EXPERIMENTS
Both experiments used an alphabet arithmetic task, which
consists of problems of the form letter] + number =
letter2, where letter2 is number letters after letter]. For
example, A+2=C, because C is 2 letters after A.

In Experiment 1, one group of participants (the consistent
group) received training on 36 blocks of problems, where
each block consisted of the same 12 problems. Another
group of participants (the varied group) received training
on 6 blocks of problems, where each block consisted of
the same 72 problems. Thus, both groups received 432
training trials, but the consistent group practiced each
problem 36 times, whereas the varied group practiced
each problem only 6 times. The problems used addends
from 1 to 6. Consistent problems had two occurrences of
each addend, whereas varied problems had 12
occurrences.

In the transfer phase, both groups received 12 new
addition problems, repeated 3 times. Rabinowitz and
Goldberg reasoned that during training the consistent
group would quickly acquire declarative knowledge of
the answers and switch to retrieval, whereas the varied
group would continue to count up the alphabet. Thus the
consistent group would get a lot of practice at retrieving
the answers to the same 12 problems, but relatively little
practice on the procedural knowledge needed to count up
the alphabet. In contrast, the varied group would receive
little or no practice retrieving declarative knowledge, but
a great deal of practice counting up the alphabet. When
transferred to the 12 new addition problems, the
consistent group should revert to counting up the
alphabet, resulting in a dramatic decrease in speed.
However, the varied group should show perfect transfer
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from the training problems to the new problems.

The training results are shown in Figure 1. Each point on
the graph is the mean of the median response times for all
subjects on a block of 12 problems. The different
asymptotes support the assertion that varied participants
practice procedural knowledge, while consistent
participants switch to and then practice retrieval.

The transfer results, shown in Figure 2, support the
predictions: the varied group shows perfect transfer, but
the consistent group shows considerable slow-down.

Although Experiment 1 supports the predictions, it is also
consistent with a procedural-only long-term store. The
consistent subjects might have acquired problem-specific
procedural knowledge that directly produces the answer
to each problem. For example, knowledge of the form “If
problem is A+2, then type C.” Since this knowledge is
specific to the 12 training problems, it would not have
helped the participants during the transfer phase. This
issue is examined in Rabinowitz and Goldberg’s second
experiment.

The second experiment attempts to determine whether
consistent training leads to specific procedural
knowledge, or to declarative knowledge. It is based on
the hypothesis that declarative and procedural knowledge
have different retrieval characteristics. Declarative
knowledge is thought to be subject to symmetric
retrieval, meaning that any part of a declarative memory
element can act as a cue for the retrieval of that element.
Procedural knowledge is thought to be subject to
symmetric access, meaning that a procedure operates in
only one direction: from condition to action.

Training in Experiment 2 was identical to Experiment 1,
however, in the transfer phase, both groups were given 12
subtraction problems repeated 3 times. A subtraction
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Figure 2: Mean response times for Experiment 1 as a
function of task and group.

problem is of the form letter! - number = letter2. For
example, C-2=A. The 12 subtraction problems were
inverted versions of the addition problems that both
groups had seen during training. If the consistent group
acquires declarative knowledge of the addition problems,
the participants in this group should be able to solve the
subtraction problems by retrieving and inverting addition
problems. However, if this group has acquired problem-
specific procedural knowledge, they will need to develop
a new procedural for counting down the alphabet, as will
the varied participants—who presumably strengthen their
procedural knowledge during training.

Training results are similar to those for Experiment 1, so
they are not reproduced here. Figure 3 shows that the
transfer results are consistent with the predictions: the
varied group requires considerably more time than the
consistent group. ‘

Taken together, Experiments 1 and 2 support the speed-
up of both declarative knowledge retrieval and procedural
knowledge application, as well as symmetric access to
declarative knowledge and asymmetric access to
procedural knowledge.

AN ACT-R MODEL

Act-R (Anderson, 1993) seems well suited for modeling
these results, because it contains procedural and
declarative long-term stores, along with learning
mechanisms that alter the speed of elements in the two
stores as a function of experience. Trafton (1996) has
described an Act-R model for Experiment 1, but a bigger
challenge is to construct a single Act-R model that can
account for the results from both experiments. Such a
model will serve three purposes. First, it will act as an
additional test for several of Act-R’s theoretical
assumptions. Second, although each of Act-R’s
mechanisms has been tested in isolation, this model will
test the interaction of several mechanisms. Third, the
model will provide an explicit account of declarative and
procedural learning and transfer that might then be used
to analyze a wide range of more complex cognitive tasks.
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Figure 3: Mean response time for Experiment 2 as a
function of task and group.

The model presented here uses Act-R 4.0 (Anderson &
Lebiere, in press).

Act-R is a parallel matching, serial firing rule-based
system. It contains two long-term stores: procedural
memory, represented by production rules, and declarative
memory, represented by an associative network of
declarative memory elements (DMEs). Working memory
is viewed as the highly active portion of long-term
declarative memory.

The alphabet arithmetic model has six production rules
for the main goal. These are described in Table 1. READ-
DISPLAY and ENCODE-DISPLAY simply read and
look up the meaning of the textual symbols in the
problem. REPORT-ANSWER reports the answer and
signals that the goal has been achieved. ‘

The remaining three  rules—RETRIEVE-PLUS-
RESULT, RETRIEVE-MINUS-RESULT, AND
SUBGOAL-COUNT—are the most important rules in the
model. RETRIEVE-PLUS-RESULT attempts to solve an
addition problem by retrieving a fact from declarative
memory that matches the problem, but also contains the
answer. If successful, it uses the retrieved answer as the
solution. RETRIEVE-MINUS-RESULT attempts to
solve a subtraction problem by retrieving an addition
DME that is the inverse of the subtraction problem. In
other words, if the current problem is C-2=?, this rule will
attempt to retrieve a fact of the form letter + 2 = C.
SUBGOAL-COUNT creates a subgoal to solve the
current problem by counting up or down the alphabet.

The model is designed so that Act-R will first try to
retrieve an answer by using one of the retrieve rules. If
the retrieval fails, then SUBGOAL-COUNT will fire to
create the computation subgoal.

The model switches from computation to retrieval by
acquiring declarative representations of problems that it
has solved. When the model begins to solve problems it
does not have any DMEs of past problems to retrieve, so
it always uses SUBGOAL-COUNT. However, each time
it solves a problem, it automatically remembers the




problem and solution as a DME. These DMEs are then
available for recall in future trials. Details of this
memorization process are given below following the
description of the computation subgoal.

The computation subgoal works by counting either up or
down the alphabet. It uses a set of declarative memory
elements that represent the alphabet using chunks thought
to be common to people raised in United States:

ABCD EFG HIJK LMNOP QRS TUV WXYZ

Each chunk is a DME containing up to five letters and a
pointer to the next chunk. For example, the second chunk
in the alphabet (named alpha2) is represented as:

alpha?2

ISA item

FIRST e

SECOND £

THIRD g

NEXT alpha3
The subgoal contains 26 rules that implement counting
forward and backward through the alphabet. To do this, it
must first retrieve the alphabet chunk that contains the
starting letter. Next it steps forward along the chunk until
it finds the starting letter. Finally, it counts along the
alphabet (either forward or backward) the required
number of letters. If it reaches a chunk boundary, it must
retrieve either the next or previous chunk before
continuing the count.

The subgoal automatically produces a declarative
memory trace of the problem and its solution. Goals in
Act-R are DMEs that have been pushed onto the goal
stack. You can think of a goal as a kind of goal-specific
working memory, because it encodes the problem, the
solution, and any partial results. When the subgoal has
computed an answer, a rule pops the goal off of Act-R’s
goal stack. This removes the goal from the stack, but it
remains in declarative memory as a DME representing
the problem and its solution. For example, the DME
representing A+2=C is:

Add-fact-10

ISA problem

ARGl a

OP plus

ARG2 2

COUNT 2

RESULT c¢
Here, Add-fact-10 is an arbitrary name for the DME, and
COUNT is used during processing to keep track of how
many letters were counted.

Every time the subgoal solves a new problem, it leads to
a new DME representing the problem and its solution.
These DMEs are then available for retrieval by the two
retrieval rules described above.

The model accounts for the experimental data by using
three of Act-R’s mechanisms: base-level learning, which
speeds up access to commonly retrieved DMEs, strength
learning, which speeds up rules that are commonly used,
and the memory retrieval threshold, which prevents the
retrieval of DMEs below a specified activation.

To understand how these mechanisms produce the speed-
up and transfer shown in the data, you must first
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understand how Act-R predicts latencies. The total time
for a trial in Act-R is the sum of the times needed to fire
each production rule during that trial. The time to fire a
rule is the sum of the time needed to retrieve the DMEs it
matches plus the time to execute the rule’s action. The
time to retrieve a DME depends on its activation and the
strength of the production rule that is retrieving it.
Intuitively, latency of retrieval is inversely proportional
to production strength and DME activation. The time to
match DME i is given by Equation 1:

—f(A+S .
t;=Fe S5y Equation 1

Here, F and f are constants. Ai is the activation of DME i,
and Sp is the strength of production p.

The activation of a DME is the sum of its base level
activation and the spreading activation from other DMEs:

A,, = Bi + ZWJ Sﬁ Equation 2
j

where Bi is the base level activation, Wj is the source
activation of DME j, and Sji is the strength of association
from j to i. A single unit of source activation is divided
among all DMEs that fill slots of the current goal. For the
present model, this means that elements of the current
problem (i.e., the letter, operator, and number) will
spread activation to DMEs representing past solutions.

Read-Display

IF the goal is to do an alphabet arithmetic problem, but
the problem text has not yet been read

THEN read the problem text from the display

Encode-Display

IF the goal is to do an alphabet arithmetic problem, and
the problem text has been read, but its meaning has not
been determined

THEN encode the meaning of each textual symbol

Retrieve-Plus-Result

IF the goal is to do an alphabet ADDITION arithmetic
problem of the form letter] + number =, but the answer
has not been determined, and there is a fact in memory
stating that letter1 + number = letter2

THEN note letter2 as the answer

Retrieve-Minus-Result

IF the goal is to do an alphabet SUBTRACTION
arithmetic problem of the form letter! - number =, but
the answer has not been determined, and there is a fact
in memory stating that letter2 + number = letter1

THEN note letter2 as the answer

Subgoal-Count

IF the goal is to do an alphabet arithmetic problem, but
the answer has not been determined

THEN set a subgoal to compute the answer by counting

Report-Answer

IF the goal is to do an alphabet arithmetic problem, and
the answer has been determined
THEN report the answer and pop the goal

Table 1: The English version of the model's main
production rules




For example, if the current goal is to solve A+2, then A
will spread activation to all traces of previous problems
that contain A either as the first letter or as the answer.
The same is true for the operator and the number. Hence,
the DME that represents the past solution to the current
problem will receive activation from all three elements
and will, most likely, be the most active DME.

The base level activation of a DME reflects the log prior
odds that the DME will be matched by a production rule.
Act-R assumes that these odds increase as a function of
use and decrease as a function of delay. This is given by
the optimized base-level learning equation.

-d
B, =1In nk
1-d

+f Equation 3

where B represents the initial base-level, d is the decay
rate, L is the time since the DME was created, and n is
the number of times the DME has been used. This
equation assumes that the uses of the DME are evenly
spaced in time. This is a reasonable assumption for the
present model, because each trial occurs only once in a
given block. Act-R’s exact base-level learning equation
does not make this assumption, but is much more
expensive to compute.

A use count of a DME is incremented whenever the DME
is retrieved by a rule or when a duplicate DME is created.
As noted above, when a goal is popped from the stack it
remains in declarative memory. However, if Act-R
detects that a newly created DME is identical to an
existing DME, then it destroys the new DME and
increments the use count of the old DME. This is
important during initial skill acquisition, because a newly
created DME might be too inactive to recall after a brief
delay. When this happens, the model must recompute the
answer. Since the subgoal creates a duplicate DME, the
original DME is strengthened, increasing the chances of
recall in future trials.

A DME that matches a rule’s condition will be
successfully retrieved whenever its activation exceeds the
global retrieval threshold. Act-R assumes that DME
activation contains permanent noise with mean 0 and

variance O 12 . When a DME is first created, its base-level

activation is set to a base level constant plus the
permanent activation noise.

We can now see how the model might learn to retrieve
declarative traces in the consistent training condition, but

not in the varied training condition. In the consistent
- condition, the model is exposed to each problem 36

times. These frequent exposures boost the base-level
activation of the memory traces, allowing the retrieval
rules to directly recall the solutions. In contrast, in the
varied condition the model is exposed to each problem
only six times. In addition, the varied condition takes
longer because the first 72 trials can only be solved by
counting. In the consistent condition there is a chance of
recalling one or more answers after the first 12 trials,

The speed-up of participants in the consistent condition is
predicted by Equation 1, which governs retrieval latency.
It predicts that retrieval latency is inversely proportional

to activation and rule strength. Without considering rule
strength we can see that an increase in DME activation
will lead to lower predicted retrieval times and hence
lower trial times in the consistent condition.

The model predicts that speed-up in the varied condition
and part of the speed up in the consistent condition is due
to speed-up of procedural knowledge. As discussed
earlier in this section, Act-R assumes that the latency of a
rule application is inversely proportional to its strength
and the activation of the DMEs that it matches (see the
discussion surrounding Equations 1 and 2). Rule strength
is governed by the same equation that governs base-level
learning (Equation 3) except that L is the time since the
rule was created, d is a separate strength decay constant,
and n is the number of times the rule has been fired.

Strength learning, combined with the latency equations
(Equations 1 and 2), predict the speed-up in the varied
condition and why varied training produces perfect
transfer to new addition problems, whereas consistent
training shows no transfer. In the varied condition, the
model receives a lot of practice counting up the alphabet.
Thus, the rules for counting, which are not specific to a
single problem, are strengthened throughout training, and
this strengthening continues during the transfer phase. In
contrast, when the model is given consistent training, it
learns to retrieye the answers to the 12 problems, so it
rarely uses the counting rules. Once the model reaches
the transfer phase it must begin to use the counting rules
again, but their strengths will be either at or below their
initial values, producing the dramatic slowdown observed
in the data.

The model also accounts for the subtraction transfer
results. In the consistent condition, the model acquires
and strengthens DMEs representing each problem and its
solution. When transferred to subtraction, these DMEs
have a high enough activation to be retrieved and
inverted by RETRIEVE-MINUS-RESULT. The model
predicts that performance will be slower than at the end
of training, because it has not yet strengthened
RETRIEVE-MINUS-RESULT. In contrast, when the
model is in the varied training condition, the DMEs rarely
become active enough to retrieve, so they are not
available during transfer. Although the model has
strengthened its rules for counting up the alphabet, very
few of these rules are used to count down, so the model
must use counting down rules that have not yet been
used, and hence are much slower to fire. '

Four parameters were estimated to fit the model to the
data. These were the base-level learning decay parameter
(d in Equation 3), production strength decay parameter,
retrieval threshold, and permanent activation noise.
Transient noise was not used. These four parameters are
critical to fitting the data. The rule strength decay
parameter affects the learning rate of procedural
knowledge. The interaction of the retrieval threshold with
the three other parameters determines the amount of
practice needed before the model can switch from
computation to retrieval. To fit the data, these parameters
must be set so that consistent training leads the model to
retrieve the answers, whereas varied training leads the
model to continue to compute the answers. In addition,
the parameters must also produce the right learning
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Figure 4: Observed and predicted mean response times during alphabet arithmetic training as a function of training
group and practice block. Observed data replotted from Rabinowitz and Goldberg (1995).

curves for the two conditions.

The best fit was obtained with base-level learning decay
set to .7, strength decay set to .5, retrieval threshold set to
.55, and permanent activation noise variance set to .15. In
addition, the total time to read the problem and type a
letter was estimated at a constant 1.25 sec. This defines
the lower bound of the model’s response times. To reflect
familiarity with the alphabet, all alphabet DMEs were
given initial base-level activations of .974, reflecting 100
uses in the last 1000 seconds. Production rule strengths
were initially set to .486, reflecting 25 uses in the past
1000 seconds. All other parameters used the default Act-
R 4.0 values.

The model’s predictions for the training phase in
Experiment 1 are shown in Figure 4 along with the
observed data. The model predictions were produced by
simulating 15 subjects in each condition. The same model
and parameter values were used for both conditions. The
R? for the consistent condition was .89 and for the varied
condition .78. This is pretty good considering that two
different groups of subjects were modeled using the same
parameters. In addition, the model captures the
qualitative trends in the data—consistent simulations get
much faster than varied simulations.

The transfer results are shown in Figures 5 and 6. The
model closely fits the quantitative and qualitative results
for alphabet addition transfer: consistent training leads to
a large slow down in the transfer phase, whereas varied
training results in perfect transfer. The subtraction
transfer simulation matches the qualitative results, but not
the quantitative ones: consistent training leads to better
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performance on subtraction than does varied training, but
the model underestimates the latency of subtraction
problems. Overall though, the fit is quite impressive,
considering that four groups of subjects in four different
conditions are fit using the same model and parameter
values.

The modeling results raise several issues that will be
addressed in the next section. The poor fit of the model to
the quantitative subtraction data for the varied condition
is easy to fix. It is possible to increase the time to
compute a subtraction problem answer by either
decreasing the strength of the subtraction counting rules
or by switching to a different technique to solve the
problems. A decrease in the rules’ strengths is justifiable
because most people rarely need to recite the alphabet
backwards. However, it is also possible that people use a
different strategy, such as guessing an answer and then
counting forward to see if it is the right one.

The poor match to the subtraction latency in the
consistent condition is much more puzzling. Specifically,
why do the participants need over 4 seconds to solve each
problem? If they are really recalling an alphabet addition
problem and inverting it, then they should be closer to the
predicted times, but instead their times are more than
double the predictions. One possibility is that only a
subset of wvaried participants actually switched to
retrieval, whereas the remainder used computation.

The model’s good fit to the data shows that active
declarative knowledge is not needed to account for the
results. Thus, the two experiments do not discriminate
between declarative knowledge being inert or active.
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Figure 5: Mean predicted response times for Experiment 1
as a function of task and group.

However, it is possible that protocol data might provide
evidence concerning this issue.

PROTOCOL ANALYSIS

To better understand the strategies that people use for
alphabet arithmetic, particularly with respect to
subtraction, a variant of Experiment 2 was run at The
Ohio  State  University.  Participants were 42
undergraduate students at The Ohio State University who
received course credit for their effort. This experiment
was similar to Rabinowitz and Goldberg’s except that
participants answered a questionnaire halfway through
training and immediately after the transfer phase. Part 1
of the questionnaire contained the question: “Please
describe all strategies that you used to solve the alphabet
addition problems. If you used multiple strategies (or
changed strategies), be as specific as possible about
where and when you used them.” Part 2 (completed at the
end of the experiment) contained two questions: 1)
“Please describe all strategies that you used to solve the
alphabet ADDITION problems since the break. If you
used multiple strategies (or changed strategies), be as
specific as possible about where and when you used
them.” and 2) Please describe all strategies that you used
to solve the alphabet SUBTRACTION problems. If you
used multiple strategies (or changed strategies), be as
specific as possible about where and when you used
them.”

Three main strategies were mentioned during the training
phase: counting only, counting plus recall, and computing
(in an unspecified way) plus recall. Many more strategies
were mentioned in the transfer phase: counting
backwards, recall plus inversion only, computing initially
then switching to recall and inversion, and generate and
test. Table 2 shows the results in terms of the percentage
of participants in each category. For this analysis,
responses to both training questions were coded together.
The results clearly support the assumption that varied
training leads to faster counting, whereas consistent
training leads to direct retrieval. 95% of the participants
in the consistent group reported using recall during
training, versus only 32% of those in the varied
condition. Most participants in the varied group (68%)
reported that they used only counting throughout the
entire training phase, in contrast to only 5% of
participants in the consistent group.
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Figure 6: Mean predicted response times for Experiment
2 as a function of task and group.

The transfer protocol results are consistent with the
hypothesis that varied training leads to strengthened
asymmetrically accessible procedural knowledge for
counting up, whereas consistent training leads to
symmetrically accessible declarative knowledge. 70% of
the consistent group reported recalling and inverting the
addition problems, versus only 5% of the varied group.
Likewise, only 15% of the consistent group reported
counting back only, versus 36% of the varied group.
Another 18% of the varied group used the generate and
test strategy.

These results help clarify the model’s problems of
underestimating the difficulty of subtraction. First, they
show that at least 15% of the consistent group used
computation instead of recall, offering a possible
explanation for the higher than predicted response times
for this group on the transfer task. Second, the results
indicate that the model’s strategy of counting backward is
consistent with the majority of participants in the varied
group, but that the model is simply underestimating the
time required to count back. In fact, two participants who
used generate and test, mentioned that they switched to
this method because counting back was too difficult. In
contrast, counting back in the model within an alphabet
chunk is just as fast as counting forward. The model’s
slower subtraction times are due only to the increased
time needed to retrieve the previous chunk, thus
subtraction problems that do not cross a chunk boundary
are just as fast as addition problems. Resolving this
problem should bring the model’s predictions closer to
the observed data.

The protocol data provides little evidence of whether
declarative knowledge is inert or active. Only 10% of the
consistent group mentioned computing the answers to a
few subtraction problems before recognizing them as
inverted addition problems.

CONCLUSION

This paper has three main results. The first is that the
successful fit of the model to the alphabet arithmetic
results shows that the two experiments fail to
discriminate between active or inert declarative memory.
Declarative memory in Act-R is inert—it can only be
retrieved in the service of a production rule. Although the
protocol data provided little insight into this issue, it does




Table 2: Reported strategy use based on training group
and task.

Condition
Consistent Varied
(n=20) n=22)
Training
Counting only 5 % (1) 68% (15)
Count + Recall 80% (16) 32% (7)
Compute + Recall 15% (3) 0%
Transfer
Counting back only 15% (3) 36% (8)
Recall and Invert 60% (12) 5% (1)
Count back then 5% (1) 0%
recall and invert
Compute then Recall 5% (1) 0%
and Invert
Generate and Test 5% (1) 18% (4)
Count back + 0% 9% (2)
Generate and Test
Other 5% (1) 5% (1)
Not codable 5% (1) 27% (6)

suggest that some kind of recognition process is needed
before a participant can switch to recall and inversion.
Recent work on feeling-of-knowing (i.e., the feeling that
you know an answer to a problem) provides some support
for this claim. Schunn, et al. (1997) have shown that
feeling-of-knowing is based on similarity of the problem
to previously seen problems, not on the availability of an
answer to the problem. Since subtraction problems are so
different from the inverted addition problems, it seems
likely that solving one or two subtraction problems might
lead to a feeling of knowing based on similarity between
the solved subtraction problem and previously seen
addition problems. This feeling-of-knowing might then
prompt a person to consciously explore the similarities.

Second, the model’s successful fit to the data and the
protocol results provide additional support for separate
declarative and procedural long-term memory stores. In
addition, the model also shows that the separate
strengthening of procedural and declarative knowledge
can produce the observed results.

Finally, the paper shows that Act-R is sufficient to
capture both the qualitative and quantitative details of the
acquisition and transfer of procedural and declarative
memory. Even more importantly, the model shows that
several Act-R mechanisms working together can predict
whether training will lead to procedural strengthening or
the recall of declarative knowledge.
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Abstract

This paper presents a skill learning model
CLARION. Different from existing models
of mostly high-level skill learning that use a
top-down approach (that is, turning declar-
ative knowledge into procedural knowledge),
we adopt a bottom-up approach toward low-
level skill learning, where procedural knowl-
edge develops first and declarative knowledge
develops from it. CLARION which follows this
approach is formed by integrating connec-
tionist, reinforcement, and symbolic learn-
ing methods to perform on-line learning. We
compare the model with human data in a
minefield navigation task. A match between
the model and human data is observed in sev-
eral comparisons.

1 Introduction

Skills vary in complexity and the degree of cognitive in-
volvement. They range from simple motor movements
and other routine tasks in everyday activities to high-
level intellectual skills. We want to study “lower-level”
cognitive skills, which have not received sufficient re-
search attention. One type of task that exemplifies
what we call low-level cognitive skill is reactive se-
quential decision making (Sun and Peterson 1995). It
involves an agent selecting and performing a sequence
of actions to accomplish an objective on the basis of
moment-to-moment information (hence the term “re-
active”). An example of this kind of task is the mine-
field navigation task developed at The Naval Research
Lab (see Gordon et al. 1994). This kind of task setting
appears to tap into real-world skills associated with
decision making under conditions of time pressure and
limited information. Thus, the results we obtain from
human experiments will likely be transferable to real-
world skill learning situations. Yet this kind of task is
suitable for computational modeling given the recent
development of machine learning techniques (Sun et al
1996, Watkins 1989).

The distinction between procedural knowledge and
declarative knowledge has been made in many theo-
ries of learning and cognition (for example, Ander-
son 1982, 1993, Keil 1989, Damasio et al. 1994, and
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Figure 1: Navigating Through Mines

‘Sun 1995). It is believed that both procedural and

declarative knowledge are essential to cognitive agents
in complex environments. Anderson (1982) originally
proposed the distinction based on data from a vari-
ety of skill learning studies, ranging from arithmetic
to geometric theorem proving, to account for changes
resulting from extensive practice. Similar distinctions
have been made by other researchers based on differ-
ent sets of data, in the areas of skill learning, concept
formation, and verbal informal reasoning (e.g., Fitts
and Posner, 1967; Keil, 1989; Sun, 1995).

Most of the work in skill learning that makes the
declarative/procedural distinction assumes a top-down
approach; that is, learners first acquire a great deal of
explicit declarative knowledge in a domain and then
through practice, turn this knowledge into a procedu-
ral form (“proceduralization”), which leads to skilled
performance. However, these models were not devel-
oped to account for skill learning in the absence of, or
independent from, prexisting explicit domain knowl-
edge. Several lines of research demonstrate that in-
dividuals can learn to perform complex skills without
first obtaining a large amount of explicit declarative
knowledge (e.g., Berry and Broadbent 1988, Stanley
et al 1989, Lewicki et al 1992, Willingham et al 1992,
Reber 1989, Karmiloff-Smith 1986, Schacter 1987, and
Schraagen 1993). In research on implicit learning,
Berry and Broadbent (1988), Willingham et al (1992),
and Reber (1989) expressly demonstrate a dissociation
between explicit knowledge and skilled performance
in a variety of tasks including dynamic decision tasks
(Berry and Broadbent 1988), artificial grammar learn-
ing tasks (Reber 1989), and serial reaction tasks (Will-
ingham et al 1992). Berry and Broadbent (1988) argue
that the psychological data in dynamic decision tasks
are not consistent with exclusively top-down learning




models, because subjects can learn to perform the task
without being provided a priori declarative knowledge
and without being able to verbalize the rules they
used to perform the task. This indicates that pro-
cedural skills are not necessarily accompanied by ex-
plicit declarative knowledge, which would not be the
case if top-down learning is the only way to acquire
skill. Willingham et al (1989) similarly demonstrate
that procedural knowledge is not elways preceded by
declarative knowledge in human learning, and show
that declarative and procedural learning are not nec-
essarily correlated. There are even indications that
explicit knowledge may arise from procedural skills in
some circumstances (see Stanley et al 1989). Using
a dynamic decision task, Stanley et al. (1989) found
that the development of declarative knowledge paral-
leled but lagged behind the development of procedural
knowledge.

Similar claims concerning the development of pro-
cedural knowledge prior to the development of declar-
ative knowledge have surfaced in a number of research
areas outside the skill learning literature and provided
additional support for the bottom-up approach. Im-
plicit memory research (e.g., Schacter 1987) demon-
strates a dissociation between explicit and implicit
knowledge/memories in that an individual’s perfor-
mance can improve by virtue of implicit “retrieval”
from memory and the individual can be unaware of
the process. This is not amenable to the exclu-
sively top-down approach. Instrumental condition-
ing also reflects a learning process that differs from
the top-down approach, because the process is typi-
cally non-verbal and involves the formation of action
sequences without requiring a priori explicit knowl-
edge. It may be applied to simple organisms as well
as humans (Gluck and Bower 1988). In developmen-
tal psychology, Karmiloff-Smith (1986) proposed the
idea of “representational redescription”. During de-
velopment, low-level implicit representations are trans-
formed into more abstract and explicit representations
and thereby made more accessible. This process is not
top-down either, but in the opposite direction..

2 The Model

The difference between declarative and procedural
knowledge leads naturally to “two-level” architectures
(Sun 1995). We thus developed the model CLARION,
which stands for Connectionist Learning with Adaptive
Rule Induction ON-line (Sun et al 1996). It embodies
the distinction of declarative and procedural knowl-
edge (or, conceptual and subconceptual knowledge),
and it performs learning in a bottom-up direction. It
consists of two main components: the top level encodes
explicit declarative knowledge in the form of propo-
sitional rules, and the bottom level encodes implicit
procedural knowledge in neural networks. In addition,
there is an episodic memory, which stores recent ex-
periences in the form of “input, output, result” (i.e.,
stimulus, response, and consequence).

Zh

A high-level pseudo-code algorithm that describes
CLARION is as follows:

1. Observe the current state z.

2. Compute in the bottom level the Q-value
of each of the possible actions (ai's) associ-
ated with the perceptual state z: Q(z,a1),
Q(z,az), ...... , Qz,an).

3. Find out all the possible actions (b1, b2, ....,
bm) at the top level, based on the the per-
ceptual information = and other available in-
formation (which goes up from the bottom
level) and the rules in place at the top level.

4. Compare the values of a;’s with those of b;’s
(which are sent down from the top level), and
choose an appropriate action a.

5. Perform the action a, and observe the next
state y and (possibly) the reinforcement r.

6. Update the bottom level in accordance with
the @-Learning-Backpropagation algorithm,
based on the feedback information.

7. Update the top level using the Rule-
Eztraction-Refinement algorithm.

8. Go back to Step 1.

In the bottom level, a Q-value is an evaluation of
the “quality” of an action in a given state: Q(z,a)
indicates how desirable action a is in state z. We
can choose an action based on Q-values. To acquire
the Q-values, supervised and/or reinforcement learn-
ing methods may be applied. A widely applicable op-
tion is the @-learning algorithm (Watkins 1989), a
reinforcement learning algorithm. In the algorithm,
Q(z,a) estimates the maximum discounted cumula-
tive reinforcement that the agent will receive from the
current state x on. The updating of Q(z,a) is based
on minimizing r+ye(y) - Q(z, a), where v is a discount
factor and e(y) = max, Q(y,a). Thus, the updating
is based on the temporal difference in evaluating the
current state and the action chosen: In the above for-
mula, Q(z,a) estimates, before action a is performed,
the (discounted) cumulative reinforcement to be re-
ceived if action a is performed, and r + ye(y) esti-
mates the (discounted) cumulative reinforcement that
the agent will receive, after action a is performed; so
their difference (the temporal difference in evaluating
an action) enables the learning of Q-values that ap-
proximate the (discounted) cumulative reinforcement.
Using Q-learning allows sequential behavior to emerge
in an agent. Through successive updates of the Q func-
tion, the agent can learn to take into account future
steps in longer and longer sequences.

To implement Q functions, we chose to use a four-
layered network (see Figure 2), in which the first three
layers form a (either recurrent or feedforward) back-
propagation network for computing Q-values and the
fourth layer (with only one node) performs stochastic
decision making. The output of the third layer (i.e.,
the output layer of the backpropagation network) in-
dicates the Q-value of each action (represented by an
individual node), and the node in the fourth layer de-
termines probabilistically the action to be performed
based on a Boltzmann distribution (i.e., Luce’s choice
axiom; Watkins 1989). This learning process performs
both structural credit assignment (with backpropaga-



tion), so that the agent knows which element in a state
should be assigned credit/blame, as well as temporal
credit assignment, so that the agent knows which ac-
tion leads to success or failure. This learning process
enables the development of procedural skills poten-
tially solely based on the agent independently explor-
ing a particular world on a continuous and on-going
basis.

In the top level, declarative knowledge is captured
in a simple propositional rule form. To facilitate corre-
spondence with the bottom level and to encourage uni-
formity and integration (Clark and Karmiloff-Smith
1993), we chose to use a localist connectionist model
for implementing these rules (e.g., Sun 1992, Towell
and Shavlik 1993). Basically, we translate the struc-
ture of a set of rules into that of a network. For each
rule, a set of links are established, each of which con-
nects a node representing a concept in the condition
of a rule to the node representing the conclusion of the
rule. For more complex rule forms including predicate
rules and variable binding, see Sun (1992).

To fully capture bottom-up learning processes, we
devised an algorithm for learning declarative knowl-
edge (rules) using information in the bottom level
(the Rule-Extraction-Refinement algorithm). The ba-
sic idea is as follows: if an action decided by the bot-
tom level is successful then the agent extracts a rule
(with its action corresponding to that selected by the
bottom level and with its conditions corresponding to
the current sensory state), and adds the rule to the
top-level rule network. Then, in subsequent interac-
tions with the world, the agent refines the extracted
rule by considering the outcome of applying the rule: if
the outcome is successful, the agent may try to general-
ize the conditions of the rule to make it more universal;
if the outcome is not successful, then the conditions of
the rule should be made more specific and exclusive of
the current case.

We perform rule extraction at each step, based on
the following information: (z,y,r,a), where z is the
state before action a is performed, y is the new state
entered after an action a is performed, and r is the
reinforcement received after action a. Rules are in the
following form: conditions — action, where the left-
hand side is a conjunction of individual conditions each
of which refers to the value of an element in the (sen-
sory) input state. Three different criteria can be used
for rule learning at each step: (1) direct reinforcement
received at a step, (2) temporal difference (as used in
updating Q-values), and (3) maximum Q-values in a
state. We adopt a three-phase approach, with each
phase lasting for a certain number of episodes. Phase
transition can be automatically determined based on
the current performance level of the model. At each
step, we apply the current-phase criterion to deter-
mine whether we should construct a rule. If so, a rule
is wired up in the rule network. After rules are ex-
tracted, at each step, the algorithm reexamines the
rules matching the current step-to decide if each of

15

Figure 2: The implementation of CLARION.

them should be kept, revised, or discarded. See Sun
et al. 1996 for the full details of rule learning.

Step 4 is for making the final decision on which ac-
tion to take by incorporating outcomes from both lev-
els. We combine the corresponding values for an action
from the two levels by a weighted sum; that is, if the
top level indicates that action a has an activation value
v (which should be 0 or 1 as rules are binary) and the
bottom level indicates that a has an activation value ¢q
(the Q-value), then the final outcome is w; *v +wq *q.
Stochastic decision making with Boltzmann distribu-
tion (based on the weighted sums) is then performed.
Figure 2 shows the two levels of the model.

3 Experiments

In all of the human experiments, subjects were seated
in front of a computer monitor that displayed an in-
strument panel containing several gauges that pro-
vided current information (see Figure 3). The follow-
ing instruction was given to explain the setting:

I. Imagine yourself navigating an underwater
submarine that has to go through a minefield to
reach a target location. The readings from the
following instruments are available:

(1) Sonar gauges show you how close the mines
are to the submarine. This information is pre-
sented in 8 equal areas that range from 45 de-
grees to your left, to directly in front of you and
then to 45 degrees to your right. Mines are de-
tected by the sonars and the sonar readings in
each of these directions are shown as circles in
these boxes. A circle becomes larger as you ap-
proach mines in that direction.

(2) A fuel gauge shows you how much time you
have left before you run out fuels. Obviously, you
must reach the target before you run out of fuel
to successfully complete the task.

(3) A bearing gauge shows you the direction of
the target from your present direction; that is,
the angle from your current direction of motion
to the direction of the target.

(4) A range gauge shows you how far your current
location is from the target.

II. At the beginning of each episode you are lo-
cated on one side of the minefield and the target
is on the other side of the minefield. You task is
to navigate through the minefield to get to the
target before you run out of fuel. An episode
ends when: (a) you get to the goal (success); (b)




you hit a mine (failure); (c) you run out of fuel
(failure).

A random mine layout was generated for each
episode. This setting is stochastic and non-Markovian.
Five training conditions were used:

o The standard training condition. Subjects re-
ceived five blocks of 20 episodes on each of five
consecutive days (100 episodes per day). In each
episode the minefield contained 60 mines. The
subjects were allowed 200 steps.

e The verbalization training condition. This condi-
tion was identical to the standard training con-
dition except that subjects were asked to step
through slow replays of selected episodes and
to verbalize what they were thinking during the
episode. Subjects received replays on the first,
third, and fifth days of training. The subjects
were replayed five episodes after the first block of
20 episodes and five episodes after the fifth block
of 20 episodes on these days.

o The over-verbalization training condition. In this
condition subjects were presented replays of 15
of their first 25 episodes, and asked to verbalize
during the slow playback. Replay of an episode
occurred immediately after the subject finished
the episode.

e The 30-t0-60 transfer condition. This condition
was also identical to the standard training condi-
tion except that subjects performed the task with
30 mines on the first two days of training and
switched to 60 mines starting the third day.

o The mixed training condition. “Mixed” refers to
the fact that mine density was manipulated dur-
ing training. Subjects performed the task with
30, 50, 70, or 90 mines. Subjects received eight
blocks of 10 episodes per day over five days, two
at each mine density. Order of presentation was
randomized.

In CLARION each gauge was represented by a set
of nodes that corresponded to what human subjects
would see on screen. This input setup yielded a total of
43 primary perceptual inputs. Thus, there were more
than 102 possible input states. Thus the model had
to deal with the problem of high dimensionality. As a
result, a lookup table implementation for Q-learning
at the bottom level was not possible (Tesauro 1992,
Lin 1992). To deal with the situation. a functional
approximator such as backpropagation networks must
be used. Also in correspondence to the human exper-
imental setting, the action outputs consisted of two
clusters of nodes representing turn and speed.

The model started out with no more a priori knowl-
edge about the task than a typical human subject,
so that bottom-up learning can be captured. The
bottom level contained randomly initialized weights
(with a pre-chosen, fixed topology). The top level
started empty and contained no-a priori knowledge
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Figure 3: The Navigation Input
The display at the upper left corner is the fuel gauge; the
vertical one at the upper right corner is the range gauge;
the round one in the middle is the bearing gauge; the 7
sonar gauges are at the bottom.

about the task, either in the form of instructions or
instances. The episodic memory was empty at the be-
ginning. There was no supervised learning (i.e., no
teacher input). The reinforcement signals embodied
some a priori notions regarding getting close to tar-
get and avoiding explosion that were also provided to
human subjects through instructions. The learning al-
gorithm with all the requisite parameters was pre-set,
presumably reflecting the learning mechanisms in hu-
mans.

The results of the experiments are analyzed as fol-
lows.

The standard training condition. We obtained
performance data over 500 episodes per subject. We
averaged the data over 10 human subjects. We did
the same with the model: Each model run was ini-
tialized with different random number sequences and
thus produced different results; we averaged 10 such
runs in exact correspondence with human experiments
(i-e., we did not tune the random number sequences to
generate a match, but randomly set seeds for random
number generators, analogous to random selection of
human subjects in this experiment). We compared
average success rates because in this way we can elim-
inate the uninteresting impact of individual differences
and instead focus on essential features of learning in
this task. These data are presented in Figure 4. Both
sets of data were best fit by power functions (for fail-
ure rate). The degree of similarity is evident. A Pear-
son product moment correlation coefficient was calcu-
lated (treating blocks as individuals and human ver-
sus model as the X and Y variables). The analysis
yielded a high positive correlation (r = .82), indicat-
ing a high degree of similarity between human subjects
and model runs.

The verbalization training condition. Obvi-
ously, we could not require verbalization from the
model. However, we posited that much of the effect of
verbalization on learning was associated with rehears-
ing previous steps and episodes (although there may
be additional factors involved). Thus for the model,
we used episode memory playback (Lin 1992) in a first
attempt to capture this effect. Episode memory play-
back involves training the model with previously per-
formed episodes between blocks of actual trial episodes
in exactly the same manner as in human experiments.
In this case, the data from 5 human subjects was com-
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Figure 4: The learning curves in terms of success rates
in the standard condition. The right side is the human
data and the left side is the model data.
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Figure 5: The learning curves in terms of success rates
in the verbalization condition.

pared to that of 5 model runs. Data was averaged
for each of 25 blocks (see Figure 5). Again, both sets
of data were highly similar and both were best fit by
power functions. We also calculated a Pearson product
moment correlation coefficient, which yielded a high
positive correlation (r = .84).

We subsequently compared the changes in perfor-
mance due to verbalization for the human subjects and
the model runs. This was done by averaging failure
rates across blocks separately for each human subject
and for each model run and subjecting that data to
a 2 x 2 ANOVA. The analysis of these data indicated
the both groups exhibited a significant increase in per-
formance due to verbalization (p < .01), and that the
changes due to verbalization for the two groups were
not significantly different (52 to 25 percent failure rate
for the human subjects versus 53 to 38 percent fail-
ure rate for the model runs). The effect of explication
of implicit knowledge which likely results from verbal-
ization was captured through the usual rule learning
process, which was also at work during episode replay.

The 30-to-60 transfer condition. Subjects were
first trained on 30-mine minefields, and then trans-
ferred to 60-mine minefields. The model was tested
under the same condition. Both human and model
data were averaged over 10 subjects. Comparing the
human and model data (see Figure 6), we noticed that
both learned well at 30 mines, although human data
was slightly better. When transferred to 60 mines,
both exhibited a significant drop in performance, al-
though the model exhibited a deeper drop. Specifi-
cally, we compared performance of the last block be-
fore the change in mine density and the first block after
the change. Success rates were 98% and 79% for the
human subjects and 83% and 26% for the model runs

Figure 6: The 30-to-60 transfer data in terms of suc-
cess rates.

Figure 7: Average success rates for each mine densities
in the mixed condition.

respectively. The drops were both statistically signif-
icant. At first look, it might appear that the drop in
performance for the model runs was much greater than
that for the human subjects. However, this might not
be a fair assessment in that we did not allow the model
runs to reach the same performance as the human sub-
jects before changing the mine density. Indeed, the 5
highest performing of the model runs before the change
performed 8 times better after the change than did the
5 lowest performing ones.

The mixed training condition. We plotted
learning curves in terms of success rates for each mine
density separately. The data were averaged over 8 hu-
man subjects and 8 model runs, respectively. The av-
erage curves are shown in Figure 7. We calculated
overall success rates for each of the mine densities.
Both the human subjects and model runs performed
best with the lowest mine density and performance
decreased with each increase in the number of mines.
Thus, we observed a similar pattern. The drop in per-
formance was roughly the same for human subjects
and model runs between the 30 and 50 mine densi-
ties (16% versus 13%, respectively). We do not know
for sure what accounts for the failure of the model at
the 70 and 90 mine densities. However, questionnaires
completed by the human subjects indicated that they
treated the higher density conditions as different from
the lower density conditions. Because the model runs
did not “start over” at each density, they were ap-
plying what was learned to conditions in which it did
not work. In contrast, human subjects could sense the
change in conditions and discard their old strategies.

The over-verbalization condition. Human sub-
jects under the over-verbalization condition failed to
learned. During the 25 episodes of training, their suc-
cess rates were well below 10%, compared with the
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33% performance for the subjects under the (sparse)
verbalization condition. If we eliminate one subject
who performed at 60%, the remaining subjects only
achieved approximately 3% success rate. CLARION ac-
counts for this phenomenon by positing that too much
verbalization (e.g., verbalizing for more than half of
the training episodes) caused the learner to switch to
a completely explicit mode of learning; they tended to
rely completely on the top-level learning mechanism
and shut down the bottom level. This is consistent
with the similar hypothesis by Stanley et al (1989), for
explaining their findings regarding the difficulty their
subjects had in learning a dynamic decision task after
being given instructions that encouraged them to be
explicit. Schooler et al (1993) also reported that re-
quiring verbalization impaired subjects’ ability to solve
problems that require “insight”, by forcing them to be
overly explicit. CLARION explains the findings readily
with the shut-down mechanism. The top-level learning
mechanism when disconnected from the bottom level,
clearly has trouble learning this kind of sequential task,
because of its lack of a temporal credit assignment pro-
cess (comparable in power to Q-learning) and its all-or-
nothing learning process. On the other hand, in the
bottom level, the distributed network representation
and learning process that incorporates gradedness and
temporal information handle complex sequences well.

Verbalization segments indicating bottom-up
learning. The verbalization data we collected from
the subjects (under the verbalization training condi-
tion) were consistent, in an informal sense, with our
assumption of bottom-up learning being prominent in
this task setting, as exemplified by the following seg-
ments.

S: I thought about it after I started doing it.
I said, look at me .... look what I’'m doing. I
didn’t start thinking about it until I started
doing it. I figured out that it started helping
me and that’s when I started doing it myself.
(subj.38)

S: When I started off ...... I didn’t understand
at all .... I couldn’t grasp the whole sonar
concept at all. (subj.38)

S: So, basically what I do - not thinking
about driving a submarine or mine. (subj.38)

S: When you get in a situation like this,
where there are gaps, it’s purely instinctual.
(subj.37)

S: That’s pretty much I've done the whole
game [being instinctual], with the exception
of a couple of patterns I've started to recog-
nize. (subj.37)

In sum, the verbalization by the subjects suggested
that some degree of bottom-level (implicit) learn-
ing/decision making and gradual bottom-up learning
existed. This is the kind of learning CLARION was
meant to capture.
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We also compared the verbalizations of good per-
formers (subjects) vs. poor performers. Our anal-
ysis indicated a lack of difference: we failed to no-
tice any significant difference across a variety of mea-
sures (such as length of verbalization, detailedness,
and types of statements uttered). We suggest that this
is one more piece of evidence that indicates the impor-
tance/prominence of bottom-level (implicit) learning:
The performance is mostly determined by implicit pro-
cedural learning, which cannot be easily verbalized,
while verbalized explicit knowledge is nonspecific and
has relatively minor impact during learning.

4 Conclusions

In sum, we discussed a hybrid connectionist model
CLARION as a demonstration of the approach of
bottom-up skill learning, which consists of two levels
for capturing both procedural and declarative knowl-
edge and performing bottom-up learning. Some degree
of match with human data was found across a number
of different experimental conditions.
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ABSTRACT

In this paper a memory perspective on young children's
performance at a particular false belief task, the Smarties
task, is described. The theoretical analysis focuses on the
computational conditions that are required to resolve the
Smarties task, on the possible limitation in the developing
memory system that may lead to a computational break-
down resulting in a failure to resolve, and on ways of
bypassing such limitations to ensure correct resolution. A
symbolic model of this analysis implemented using the
COGENT modelling environment is described, and its fit to
the data considered.

Keywords
Developmental modelling, false belief, memory updating,
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INTRODUCTION

One of the many constraints identified by Newell (1990) on
any form of cognitive architecture which attempts to model
human cognition is that it should be capable of arising from
earlier forms by a process of developmental maturation.
Developmental constraints, and discrete developmental
stages, have received surprisingly little attention from
symbolic modellers, although questions of how a mature
system might develop from a relatively simple template are
now being considered within the connectionist research
program (e.g., Elman et al, 1996). The present study
considers a developmental stage believed to be crucial to the
maturation of memory processes, and aims to demonstrate
how the failure of 3- and 4-year olds at a task which adults
find trivially easy (the Smarties task; Perner, Leekam &
Wimmer, 1987) can be modelled using a destructive-
updating process. A subtle alteration of the memory
encoding characteristics of this task enables 3- and 4-year
olds to perform the task correctly. The patterns of children's
performances are modelled as discrete developmental stages
using the COGENT (Cognitive Objects in a Graphical
EnvironmeNT) modelling environment of Cooper and Fox
(in press).

The Smarties Task
The basic procedure for the Smarties task is as follows. The
subjects are shown a tube of Smarties (a popular brand of
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sweet) and asked what the tube contains. Children of around
the age of four are usually both able and willing to provide
an answer to this question. The top is then taken off the tube,
and its contents are shown to the child. The contents of the
tube are pencils rather than the anticipated Smarties. The top
is then replaced on the tube, and the child is asked two
questions, the reality question (what is in the tube?) and the
belief question (when you first saw the tube, what did you
think was in the tube?). Typically, 70% of 3-year-old
children who are able to answer the first question correctly
(pencils) now also give the same answer to the second
question.

A Memory-Updating Explanation

The original form of the Smarties task implies some peculiar
memory characteristics. Children who fail this task are
incorrectly reporting a belief which they had held, and told
to the experimenter, only seconds previously. Although a
conceptual deficit, an inability to comprehend false belief,
can be put forward to explain these results, it seems strange
to suppose that this deficit manifests itself in the child's
inability to correctly recall the contents of this belief, even
though they were able to report to the experimenter what the
contents of this belief were immediately before it was shown
to be false. Instead, it is argued (Barreau, 1997; Morton,
1997) that the child's inability is centred around a memory
updating system, such that the false belief (that the tube
contains Smarties) is never encoded as a stable, long-term
representation, and so is immediately supplanted by the
incoming information that the tube contains pencils. Thus,
when such children are asked the belief question, the only
source of information available to them is the representation
of the current state of reality: in(tube, pencils).

The Bag Experiment.

A variation on this experimental procedure designed to
maximise the possibility that the contents of the tube are
translated into a long-term format is described by Barreau
(1997). Immediately after showing the tube to the child, and
asking the child what they believed the tube to contain, the
contents of the tube were emptied into a bag. Although the
child witnessed this operation, at no time were they able to
see the contents of the tube either at first or during the
transfer. The tube was then shown to the child to
demonstrate that it was empty, and then ostentatiously



hidden from view. The child is then asked what they believe
to be in the bag. All children replied "Smarties". The
contents of the bag were then shown to the child. In this
case, the bag contained marbles, rather than Smarties. The
child was then asked five questions concerning the contents
of the bag and the tube:

1. Before I opened the bag, what did you think was in the
bag? (BAG:BELIEF: PAST)

2. What is really in the bag? (BAG:REALITY: PRESENT)
3. When I first showed you the tube, what did you think was
in the tube? (TUBE: BELIEF: PAST)

4. What is inside the tube now? (TUBE: REALITY:
PRESENT)

5. What was really inside the tube? (TUBE: REALITY:
PAST)

In Barreau's (1997) experiment, twenty-four children were
questioned in this manner, the results of this experiment are

shown in the table below:

TABLI 1: Table of answers to the tube and bag questions.

Questions | Correct Reversed | Double
BAG 8 8 8
TUBE 15 3 6

In order to be scored correct, both the bag questions, (belief
and reality) had to be correctly answered. To be scored
correct in the tube condition, the belief questions and at least
one of the reality questions had to be correctly answered. A
"double" score refers to a repeat amswer, ie. a reality
response to a belief question. This category also includes
one child who gave belief answers to reality questions. The
reversed response indicates a reversal between the belief and
reality answers in the bag questions, and the belief and one
of the reality answers in the tube questions.

The assumptions underlying this experiment were that when
the tube was removed from view, the tube— bag transferral
episode would be coded as ended, and details of the whole
episode would be translated into long-term memory. Thus,
when the current representation of the bag's contents is
updated, the representation of the tube's contents will be
invulnerable.

The data has also been analysed as suggesting that three
qualitatively ~ different developmental processes are
occurring amongst the children tested (Barreau, 1997).The
children were divided into three groups on the basis of the
scores they were given for the bag questions. Of the 8
children who were scored as correct for the bag questions,
7 were also correct for the tube question, and 1 gave a
"double" response. Of the 8 children who gave reversed
responses for the bag question, 6 were scored as correct on
the tube question, there was 1 reversed response, and 1
double response, and for the 8 children who scored "double”
responses for the bag questions, 2 were correct on the tube
questions, 2 gave reversed responses, and 4 gave double
responses. This pattern of data was considered to be a little
too complex to be easily handled by a traditional verbal
theory.

A COGENT IMPLEMENTATION

To properly test the theory against the data, a family of
models were produced using the COGENT modelling
environment. The basic architecture used in this approach is
reproduced below: In this figure, hexagons represent
processes, rounded rectangles represent buffers, and
diamonds represent data boxes. Square boxes represent
compounds, which may contain buffers and processes.
Arrows with standard heads indicate message sending.
Arrows with black triangular tails indicate buffer reading.
Compound arrows (which are denoted by triangular and
standard heads) allow both functions.

Experiment

>_—>

Current
State

Integration

Long-Term Interpreter
Memory Buffer

figure 1 - the COGENT object-level representation of the simulation
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For the purposes of this paper, the "Experiment" compound
is used only as a means of feeding information to the system
simulating the child's mental processes, and will not be
discussed in any great detail. Note that for the bag
experiment, the simulation must include the correct
answering of three “belief establishing” questions prior to
the five questions of main interest within the experiment.
The belief establishing questions were included within the
experiment to ensure that the child had formed the correct
representations of the state of the world prior to being tested
on their memory for the sequence of events. These questions
include the initial question of the Smarties task (What do
you think is in the tube?), a repeat of the question to
ascertain that the child believes the tube is empty (What is
in the tube now?) once the transfer operation has taken
place, and a question to ensure that the child has tracked the
transferral of the supposed Smarties (What do you think is
in the bag?). In the experiment, after asking one of the
belief establishing questions, the experimenter waited until
the child had answered before continuing with the
procedure. Accordingly, in the simulation, no further input
was fed to the system until the cycle after the system had
output the answer to the previous question. This protocol
was observed throughout all the simulations.

The Smarties Simulation.

We assume that the 30% of 3- and 4-year olds who pass the
Smarties test do so by accessing a long-term memory (LTM)
representation of the likely contents of a Smarties tube, so
we do not attempt to deal with this question in any detail
here. This is consistent with the developmental literature,
which has focused only upon those children who fail. The
initial simulation then, must be one that gives a "reality”
answer to a "belief" question under the circumstances of the
Smarties experiment. The experimental procedure is
modelled by adding propositions about the current state of
the. environment a cycle at a time to an "environment"
buffer, within the Experiment compound, which is read by
the updating process. The Current State Buffer is a
representation of current environmental contingencies. This
is kept up-to-date by destructive updating which occurs by
the operation of the following rules:

RULE 1.

IF: A is in Experiment: Environment
not A is in Current State

THEN: add A to Current State

RULE 2.

IF: in(X,Y) is in Experiment: Environment
in(X,Z) is in Current State

THEN: delete in(X,Z) from Current State

Thus, if in(tube,smarties) is in the Current State and
in(tube,pencils)  appears in the  Environment,
in(tube,smarties) is deleted from the Current State by the
second of the above rules and is replaced by
in(tube,pencils).

The basic workings of the model of the Smarties task are as
follows:
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In LTM there is a generic representation of past experience
of Smarties tubes,

g(in(tube,smarties)),

and a further rule in the integration process that states the
contents can be matched to their containers on the basis of
such past experience:

RULE 3.
IF: g(in(X,Y)) is in Long-Term Memory
object(X) is in Current State

not in(X,Z) is in Current State
THEN: add in(X,Y) to Current State

This rule is refracted, so that it only fires the first time its
conditions are satisfied within a COGENT run. When a tube
representation is added to the Current State Buffer, this rule
fires and the inference is made that the tube contains
Smarties. This information is overwritten, however, when
the further information is added from the environment that
the tube contains pencils. Thus, when the question regarding
the contents of the tube is presented to the system

question(present(in(tube, What))),

the present representation of the current contents of the tube
in the Current State Buffer instantiates the unknown variable
in the question, and provides the only possible answer:
in(tube, pencils).

Questions are dealt with by being passed immediately over
from the Current State Buffer to the Interpreter Buffer. Once
a question is received in the Interpreter Buffer, it activates
the relevant search processes according to the following
rules:

RULE 4.

IF: question(present(X)) is in Interpreter Buffer
X is in Current State

THEN: clear Interpreter Buffer
add answer(X) to Interpreter Buffer

RULESS.
IF: question(past(X)) is in Interpreter Buffer
record(Y) is in Long-Term Memory
X is a member of Y
not X is in Current State
THEN: clear Interpreter Buffer
add record (Y) to Interpreter Buffer
add answer (X) to Interpreter Buffer

Thus, the unknown variables within the question are
instantiated either in the Current State Buffer or in LTM,
and translated into an answer format. All answers within the
Interpreter Buffer are immediately sent to the output
processes represented in the diagram by the triangular
"Answers" block.

The Bag Simulation.
In the case of the bag experiment, the simulation is a little
more complex. In particular, we have to tackle the creation



of event records. To do this, a rule must fire when an event
is perceived to end. This rule translates all information
currently being processed (the contents of the Interpreter
Buffer), together with the current representation of the
environment (the contents of the Current State Buffer) into
an LTM format. In the hypothesis underlying the
experimental procedure, the event was signalled to be at an
end by a contextual change, the removal of the tube. In the
simulation, a record is closed if there are more objects
represented in the Current State Buffer than are present in
the environment. This is captured formally by the updating
rule:

RULE 6.
IF: Objects is the list of all object(X) such that
object(X) is in Experiment: Environment
Representations is the list of all object(X)
such that object(X) is in Current State
A is the length of Objects
B is the length of Representations
B>A
THEN: send close_record to Integration

Upon receiving the close_record trigger, a further rule fires
within the integration process which transforms the
information within the Current State Buffer and the
Interpreter Buffer into a list structure in LTM. The
Interpreter Buffer is then cleared.

Simulation Results.

The basic simulation can easily handle the results of the first
group of children, those who were scored correct on the bag
question (group A). When asked the bag questions, the
simulation of this group of children has a record available
containing the previous belief concerning the bag's contents,

in(tube,smarties)

which it can use to answer the first question (BAG:
BELIEF; PAST), in accordance with rule 5. When asked the
second bag question (BAG: REALITY: PRESENT), a
Current State representation of the bag's current contents is
employed to answer this question in accordance with rule 4.

Seven out of eight of this group of children were also scored
as correct for the tube question. In the model, the tube
question is handled by the existence of a record available in
LTM which can be retrieved to answer the question. The
creation of this record was triggered by the removal of the
tube. Note that the record does not contain a verbatim
representation that the tube contained marbles. Instead, the
record contains the representation that the contents of the
tube were emptied into the bag:

action(empty(tube,bag)),
that the tube is now empty:
in(tube,[]) (where [] denotes the empty set),

and that the bag contained marbles. To correctly answer
questions regarding the initial contents of the tube (questions
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3 and 5, TUBE: BELIEF: PAST and TUBE: REALITY:
PAST) a further rule is necessary to allow the inference that
the tube's contents can be ascertained by backwards
reasoning from the bag's contents, and the fact that the
contents of the tube were entered into the bag. Formally, this
rule is:

RULE7.

IF record(Y) is in Interpreter Buffer
question(past(in(A,B))) is in Interpreter Buffer
action(empty(A,C)) is a member of record(Y)
in(C,D) is a member of record(Y)

THEN: clear Interpreter Buffer
add answer(in(A,D)) to Interpreter Buffer

This rule is triggered if the current representation of the
tube's contents is identical to the retrieved LTM
representation. Since the child is presumably not expecting
to answer a "present" question at this point, the rule allows
the search, via inference, for an alternative "past" answer.
Note that the simulation demonstrates that Morton's (1997,
p. 938) comment that "the conditions are the same" for the
tube questions of the bag experiment and for the same
questions in the Smarties experiment is not strictly necessary
when analysed in terms of the underlying theory. In this
simulation, when the inference rule regarding the transferral
operation is manually prevented from firing the default
answer from the system to the tube questions is that the tube
was empty. Since the child was shown the empty tube
during the bag episode this forms part of the same record.
The full contents of this record are displayed below:

record([[in(bag,smarties), in(tube,[]), object(bag),
action(empty(tube,bag)), object(tube)]
action(remove(tube))]).

With this set of rules, the simulation therefore produces the
same answers in the bag experiment as seven out of eight of
the children in group A.

The initial results of those children who were scored as
giving "reversed" answers (group B) to the bag question
need to be explained differently. Recall that these children
gave reality answers to belief questions and vice versa. The
simulation of this situation uses the same basic structure as
the simulation of group A (the "corrects"). However, it is
assumed that the group B children attempt to answer all
questions initially from their current state representation of
the world. Arguably this is less effortful than retrieving
information from LTM (see Morton, Hammersley &
Bekerian, 1985 for a discussion of the complexities of
retrieval from LTM). In effect, we assume that the tagging
of questions as referring to past and present is not as well
established in this group as in group A. The group B
children, then, are not forced to search LTM in response to
a PAST question. Rather, they only look in LTM when the
Current State search has failed. Since the Current State
Buffer representation is one of reality rather than belief,
these children's default strategy results in a reversal of belief
and reality answers.




Briefly, the simulation of this state of affairs works as
follows. The "past" and "present” modifiers in the input are
ignored in the integration process by rules 4 and 5, and,
instead, all questions are followed by an initial search in CS.
This leads to the initial mistake. The reversal of the situation
with the next question is simply implemented by making
that the look-up rule for information in Current State into a
refracted rule so that it cannot be used as a default when the
next question is asked. This is the ‘"present" reality
question, and the only way the child can answer the question
is by searching for a long-term memory representation with
information about the contents of the bag. This is found in
the record which specifies

in(bag,smarties)
resulting in a reversed pattern of results.

This simulation works well when only the bag question is
considered, but runs into problems when the tube questions
are also added to the simulation's input, since it produces a
further "reversed" pattern of results for these questions. In
fact only one child in this group was scored as giving
"reversed” responses to the tube question, and six were
scored as correct. This failing will be considered in more
detail later.

The final group of children to be considered (group C) gave
the "reality" answers to "belief" questions. Working on the
logic employed in the simulation of group B's results it is
assumed that these children also ignore the past/present
modifiers and attempt to answer the question in the simplest
way possible, by retrieving an answer from the Current State
Buffer representation. However, for these children the
assumption is that the search rule for the Current State
Buffer is not refracted. Accordingly, the simulation
produces repeated answers from the Current State Buffer,
which are identical to the "double" responses given by this
group. Of the eight children who were scored as "doubles"
on the bag questions, this simulation matches the repeated
"double" scores of four of these children on the tube
questions.

GENERAL DISCUSSION

Successes and Failings

The memory-updating explanation of the Smarties task is
outlined by Morton (1997), and the 3-buffer architecture
used here to simulate this theory was derived from Barreau
(1997), (see Barreau, 1997 for an account of why a 3-buffer
system is necessary). The resulting simulation, however,
differs in significant ways from either of these accounts. It
is intended to be a forerunner of a number of such
simulations, building up a set of mutual constraints on later
models of on-line processing by this age group (c.f
Barnard, 1985). As such, it has a number of distinct
successes and flaws. Not least amongst its successes is that
it is - to our knowledge - the only fully specified
computational theory of 3- and 4- year olds failings at "false
belief" tasks. Other accounts of these phenomena rely upon
the assumption that children of this age suffer from a
conceptual deficit in representing the beliefs of others, and
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their own earlier beliefs if inconsistent with current reality
(e.g., Hogrefe, Wimmer & Perner, 1986; Perner, Leekam &
Wimmer 1987), or else are in other ways not as completely
specified as the account given here (Halford, Wilson &
Phillips, in press).

Viewed as a modelling project in its own right, a number of
flaws become evident with the current account. Firstly, if it
is considered to be a straightforward account of the current
data independent of theoretical statements put forward
elsewhere (Barreau, 1997, Morton, 1997), then it suffers
from a rather poor fit to the data in the case of group B, the
"reversed" response children. The mechanism which allows
for a reversed response to the bag questions should also
produce reversed responses for the tube questions. However,
the majority of children in this group (six out of eight) were
scored as correct in this case.

Elsewhere, the fit to the data is better. The account given by
the basic bag simulation is also able to account for the
failure of children at the Smarties task with no change to the
model, merely altering the input to simulate the change in
task. This simulation correctly produces the same results as
the "correct" group (A) on all the questions. The modified
simulations for groups B and C also give the identical
patterns of results to the children they were intended to
model for the bag questions, and in the case of group C (the
"double" responses) this success is repeated with the
simulation giving the same results as the largest subset of
these children.

The conclusion to be drawn from this pattern of success and
failure is that although there is a large degree of agreement
between the performance of the children and that of the
underlying model, there is a flaw in the manner in which the
model operates. In particular, it should not function in the
same way in response to the tube questions as it did to the
bag questions. There are two broad ways of accomplishing
this. The first is to add other rules which would interpret the
material in the record in response to questions concerning
the tube. A backwards inference using rule 7 concerning
belief could take

action(empty(tube,bag))
in(bag,smarties)

and come up with
in(tube,smarties)

to go along with the in(tube,[]) already available in the
record. The ordering of these two contradictory options in
the buffers could give rise to the differences in responding
to the tube questions among the children in group B.

The second general approach to the mismatch is to change
the way in which the Group A children solve the questions.
One approach is to create records of questions and answers.
This would make the answer to the initial belief question
available, even though the primary representation
in(tube,smarties) has been deleted. Use of the record



record([[in(bag,smarties), in(tube,[]), object(bag),
action(empty(tube,bag)), object(tube)]
action(remove(tube))]).

would then be restricted to questions about the tube. This
resembles the account given by Barreau (1997). To achieve
all this, we will have to characterise the differences among
the three groups of children somewhat differently. Both
these options will be explored in the next phase of
simulation.
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ABSTRACT

In this paper, we describe a cognitive modelling fra-
mework for common-sense psychology. We’ll show a
number of comparable cognitive models for different
theories of common-sense psychology, and show that
these models can help to illuminate some of similari-
ties and differences between the differing theories.
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INTRODUCTION

Common-sense psychology — or people’s common
sense ability to think about our own and other
people’s minds — is currently being researched active-
ly in several different disciplines. While this interdis-
ciplinary collaboration can be very productive, it can
lead to its own problems. This is exacerbated by com-
plexity, both methodological and theoretical, of com-
mon-sense psychology itself.

Much of the problem is that nobody is really sure
what common-sense psychology is, theoretically. As-
tington and Gopnik (1991), for example, distinguish
between six different possible interpretations, all of
which are subtly different. There are many different
theories of common-sense psychology. Unfortunate-
ly, there is no common ground which allows these dif-
ferent theories to be compared and contrasted. In
this paper, we’ll introduce a cognitive model that can
begin to play that role.

To compare the different theories, we’ll use a stan-
dard tool from common-sense psychology, Baron-
Cohen et al’s (1985) false belief test. We’ll begin by
introducing and describing this test, and one of the
theories of common-sense psychology, Leslie’s (1987)
‘decoupler’ model. Although common-sense psycho-
logy is hugely complex, and can only be modelled in
the most sketchy form, we’ll show how Leslie’s theory
can be implemented as a cognitive model. Finally,
we’ll show how alternative theories of common-sense
psychology can be represented as small variations on
this model, and that we can draw some conclusions
about the similarities and differences between the the-
ories with this modelling framework.
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MODELS OF COMMON-SENSE PSYCHOLOGY

While common-sense psychology has been a focus for
recent research, most work in this either has either
been experimental or purely theoretical; there are few
cognitive models in this area, even though it is preci-
sely the kind of area that modelling has proved so
helpful for in the past (Samet, 1993). The exception is
the work of Shultz (1988, 1991). All the models
which have been developed, though, focus on small
parts of the problem; for example, studying how
people assess whether or not planned actions were in-
tentional (Shultz, 1988).

We propose a different strategy. Instead of a narrow
but deep model, we propose using a broad but shal-
low one; one which can be used to compare theories
on a grand scale. With this level of modelling, we be-
lieve that even in the limited false belief test, we can
help to clarify the similarities and differences between
some of the grand scale theories in the field.

THE FALSE BELIEF TEST

The false belief test has its origins in Premack and
Woodruff’s (1978) experiment to determine whether
or not chimpanzees could reason about one another’s
mental states — whether or not they had a “theory of
mind”, another term for common-sense psychology.
Unfortunately, there was a methodological problem
with this experiment; their chimpanzee subject, Sarah,
could use her own beliefs rather than reasoning about
another’s, because the two were identical. To prove
that Sarah was really able to reason about another’s
beliefs, they had to show that Sarah could still predict
another’s behaviour when her beliefs were different
from that other’s — that is, when the other had be-
liefs which Sarah believed to be false.

Following these problems with Premack and Woo-
druff’s experiment, Wimmer and Perner (1983) de-
vised a false belief test, which evaluated a (human)
subject’s to ascribe definite but false beliefs to an-
other. Baron-Cohen et al. (1985) later simplified
Wimmer and Perner’s test so they could compare au-
tistic, Down’s syndrome, and normal children at dif-
ferent ages. Baron-Cohen et al’s simplified false be-
lief test is shown in figure 1.



Baron-Cohen et al.’s false belief test is presented as a
simple story. There are two puppets, Sally and Anne.
Sally has a marble, which she keeps in a basket. Then
Sally leaves the room, and while she is away Anne
takes the marble out of the basket and hides it in the
box. Sally comes back into the room.. The child sub-
ject is then asked the question: “where will Sally look
for her marble?” Older children say that she will look
in the basket, because although they know the marble
is in the box, they know that Sally doesn’t know it has
been moved from the basket, and they can distinguish
Sally’s (false) belief from their own (true) belief.
Younger children, on the other hand, and autistic
children, do not distinguish between the two They
simply say that Sally will look in the box. The false
belief test, therefore, explores the change that hap-
pens as common-sense psychology develops.

Baron-Cohen et al.’s theory was that a failure in the
development of common-sense psychology might be
responsible for autism, and the results from their ex-
periment (and others which followed) certainly
seemed to bear that out. As a result, there has been a
focus of interdisciplinary research which has led to a
number of different hypotheses about the nature and
development processes involved in common-sense
psychology.

Figure 2 shows a model for one possible theory of
common-sense psychology, Leslie’s ‘decoupler’
model. At the heart of Leslie’s model is a manipula-
tor that is capable of pretence — of decoupling beliefs
from one context and applying them in another. It is
this that makes reasoning about false beliefs possible,
because a child can use this decoupling mechanism to
separate someone else’s beliefs into a different context
from their own.

Given this simple theory of common-sense psycho-
logy, we will now turn to the cognitive model, and
show how Leslie’s ‘decoupler’ model can be represen-
ted in a model. But first, a few words on the model-
ling environment that we’ll be using.
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THE MODELLING ENVIRONMENT

Before we can build the models adequately, we need a
representation language that is strong enough to do
the physical and psychological reasoning required. In
practice, the psychological parts of the model require
the ability to reason about different contexts, distin-
guishing one agent’s false beliefs from another agent’s
true beliefs. Something like a modal logic, therefore,
is going to be required (Leslie, 1988, makes a direct
comparison between the requirements for common-
sense psychology and the properties of modal logics).

The model we present borrows this from McCarthy’s
(McCarthy & Hayes, 1969) ‘situation calculus’, where
the effects of an event are described as a consequence
relation between one state and another. At the core
of McCarthy’s calculus is a special function result,
which represents the effects of an action on a situa-
tion by returning a new, modified, situation. The
function result(p, ©, 5), where p is a person, 6 is an ac-
tion, and s is a situation, has a value which is a new si-
tuation representing the effects of p doing 6 in s. For
example:

inside(marble, X, s) A - inside(marble, box, s) =
inside(marble, box, £) A ™ inside(marble, X, 1)

where t = result(alison, putin(marble, box), s)

This says that if marble is inside something that isn’t
box in situation s, the effect of alison putting marble
in box is a new situation ¢ such that marble is no long-
er where it was (in X), but is now inside box.

The full situation calculus is more powerful and more
complicated than this implies, but this subset of it is
sufficient for the purposes of this model, and further,
it doesn’t need the heavy inference machinery that a
complete modal logic would. The situation calculus,
then, is strong enough for the model, fairly easy to use
computationally, yet it retains the referential proper-
ties of modal logics (McCarthy & Hayes, 1969).
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"7 Sally’s F {
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Figure 1. Baron-Cohen et al.’s (1985) false belief test
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Figure 2. Leslie’s (1987) ‘decoupler’ model




The model implements a modified subset of the situa-
tion calculus in a Prolog-like language embedded in
Common Lisp. Apart from the Lisp-like syntax,
there is only one significant difference from standard
Prolog — variables are normally prefixed with a 2
question mark, but output variables in a clause head
are prefixed with a ~caret. 2valueand “value refer to
the same variable.

MODELLING LESLIE’S ‘DECOUPLER’
The base model for the false belief test comprises a
number of separate modules. There include;

* a physical environment model,

» a basic physical reasoning module,

» a basic psychological reasoning module, and
* a script for the false belief test.

The Physical Environment Model

The first part of the modelling environment is a physi-
cal environment model which implements an event-
driven simulation environment. As objects are phy-
sically moved from one place to another events are
generated and passed to all objects equipped with suf-
ficient perceptual apparatus to be aware of them.

The Physical Reasoning Module

Even in the false belief test, physical reasoning is nee-
ded. The basic physical reasoning module is shown in
figure 3. This implements the rules that Alison (as

35; If we see 2object in a place 2container, then we find out
;;; where it was in the situation, and return a new situation
;5 so that it is now in 2container.

((result yes ?stance-to (place ?object ?container)
?situation “new-situation) :-
(member (inside ?object ?outer) ?situation)
(difference ?situation
((inside 7object ?outer)) ?situationl)
(append ?situationl
((inside ?object ?container)) ?new-situation))

;»» If we see an object being put into a new place, 2container,
;;; then again we find out where it was before in the situation,
;»; and return a new situation so that it is now in 2container.

((result yes ?stance-to (put-in ?object ?container)
?situation “new-situation) :-
(member (inside ?object ?outer) ?situation)
(difference ?situation
((inside ?object ?outer)) ?situationl)
(append ?situationl
((inside ?object ?container)) ?new-situation))

;»; If we see an object being taken out of a place 2container,
;3 We return a new situation so that it is no longer in
5 fcontainer, but is now outside it, in 2outer-container.

({result yes ?stance-to

(take-out ?object ?container)

?situation “new-situation) :-
(member (inside ?container ?outer) ?situation)
(difference ?situation

((inside ?object ?container)) ?situationl)
(append ?situationl

((inside ?object ?outer)) ?new-situation))

Figure 3. The basic physical reasoning module
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we’ll call the subject in the false belief test) uses to
make predictions about what happens as a result of
physical actions and events.

As far as physical reasoning is concerned, only three
result actions are of interest. First, people can see an
object being put into a container. Second, people can
see an object being taken out of a container. And
third, if a person enters a room, they can see all the
objects (but not contained, or hidden, objects) within
that room. All three of these actions serve to keep a
person’s model of the physical

The Psychological Reasoning Module

At the core of the model is a representation of one
person’s ability to reason about other people’s mental
states. This basic psychological reasoning module,
corresponding to Leslie’s theory of mind mechanism,
is shown in figure 4. There are three result rules. The
first rule is associated with perceived events; this is
where the essence of psychological reasoning hap-
pens. The other two rules are associated with believes
events, and are used for modelling the answering of
questions; for this reason they print out an answer.

The first result rule uses the ascribe rule to keep all the
notional worlds up to date with the perceived event.
The ascribe rule implements the decoupler model in
figure 2. It works like this. First, the those procedure
is used to get all of 2selfs beliefs out of the situation;
this corresponds to 2selfs notional world. Next, the
requote procedure is used to raise all the expressions
in the notional world, to create a new situation,
?situation2. Then, the rule passes this new situation
to the interpreter, through the manipulator. The
manipulator is played by the in-stance procedure,
which ‘pretends’ to be in the right context to handle
the given event. The interpreter is called by the nested
call to the result procedure. Finally, the nested call to
result returns a new situation, Zsituation3, which is
passed to requote again to restore its expression status
in 2new-self-notional-world. This is then used to re-
place the old notional world in the situation, and the
modified situation is returned.

Perhaps this will be clearer with a more concrete ex-
ample. Imagine that we ask (result 2response sally
(perceived sally (put-in marble box) 2S, 2NewS), in a
situation 25. Because this is a perceived event, the first
result rule will be applied, calling ascribe. The those
and require procedures are used to go through the si-
tuation 25, decoupling all the relations (believes sally
2X) and generating a new situation 25’ Then the
model applies the physical reasoning rules in this new
situation 25 to generate an updated physical situa-
tion 2R’ The second requote call goes through 2R'to
restore its quotation status to normal, and returns 2R.
Finally, 2R is used to replace all Sally’s beliefs in 25,
and the final situation returned in 2NewS.

The Script for the False Belief Test
The final component of the model is a script for the



false belief test. This is shown in figure 5. There are
two parts to this script. First, there are a serious ac-
tions which corresponds more or less to the move-

ments of the characters in Baron-Cohen et al’s story,

shown in figure 1. Second, there are a number of
questions; these are the kind of questions that an ex-
perimenter might ask a subject after acting out the
scenario. It is the answers to these questions which
reveal whether or not, or how, the child passes the
false belief test.

So far, we have described a basic version of the theory
of mind mechanism, a version which successfully
models the passing of the false belief test. With this in
place, we can now begin to compare this with some of
the alternatives. In this paper, we will only look at
three alternative theories of common-sense psycho-
logy, the simulation theory, the copy theory, and the

;»» The rules for handling perceived events. When you
;»; perceive something and see that 2someone, sees the
;> same thing, get 2someone’s notional world into 2self-
53; notional-world, and then, in that world, predict its

;> physical effects. Then map these physical effects into
;»; changes to 2someone’s notional world.

;3; Rule perceive
((result “response ?someone
(perceived ?object (?action ?other-object ?event))
?situation “new-situation) :-
(ascribe ?someone “response ?someone
(perceived ?object (?action ?other-object ?event))
?situation “new-situation))

;5 Rule ascribe
((ascribe ?someone “response ?other
(perceived ?object (?action ?other-object ?event))
?situation “new-situation) :-
(those (believes ?someone ?something) ?situation
notional-world)
(requote (believes ?someone ?something)
?notional-world ?something ?situation2)
(in-stance ?other-object ?action
(result ?response 7other-object
(?action ?other-object ?7event)
?situation2 ?situation3))
(requote ?something ?situation3
(believes ?someone ?something) ?new-notional-world)
(difference ?situation ?notional-world ?situationl)
(append ?new-notional-world ?situationl
new-situation))

;3> These are the rules for answering questions about

;> people’s beliefs. In effect, all that happens is that we
55 ook for the truth of the question in 2object’s notional
55 world.

53» Rule answer-yes

((result yes ?someone (believes ?object ?something)
?situation Asituation) :-

(member (believes ?object ?something) ?situation)

(write-1ist (yes ?object believes ?something)))

;3; Rule answer-no
({result no ?someone (believes ?object ?something)
?situation “situation) :-
(not (member (believes ?object ?something)
?situation))

(write-1ist (no ?object does not believe ?something)))

Figure 4. The basic psychological reasoning module
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situation theory.

COMPARING MODELS 1: THE SIMULATION THEORY

The first alternative theory to be compared against
Leslie’s is the ‘simulation theory’, which is typified by
a ‘role taking’ or ‘perspective taking’ approach. Gor-
don illustrates this by saying that “Smith believes that
Dewey won the election” should be read as “let’s do a
Smith simulation. Ready? Dewey won the election”
(Gordon, 1986, original emphasis).

According to the simulation theory, young children
are simply unable to take other people’s points of
view. This can be modelled by dividing the main per-
ceive rule into two — one for self, and one for others.
In young children, the perceive rule for self functions
as before, but the perceive rule for others does noth-
ing. This is shown in figure 6.

When run, this seems to fail the false belief test cor-
rectly in that Alison doesn’t give answers at all for ei-
ther Sally or Anne; before Alison can pass the test she
needs to acquire the ability to simulate, or take the
role of, other people. This corresponds to the deve-
lopment of a simulation ability: “before internalising
this system, the child would simply be unable to pre-
dict or explain human action [but] after internalising
the system the child could deal indifferently with ac-

;»; Start by introducing the characters. The order doesn’t
;;; matter much. Alison will become aware of all the other
;;; objects as soon as she enters the room.

(tell-model (put-in basket room))
(tell-model (put-in box room))
(tell-model (put-in marble room))

(tel1-model (put-in sally room))
(tell-model (put-in anne room))

(tell-model (put-in alison room))

;;; Put the marble in the basket
(tell-model (put-in marble basket))

55> Sally leaves the room
(tell-model (take-out sally room))

;3» Move the marble from the basket into the box

(tell-model (take-out marble basket))
(tell-model (put-in marble box))

535 Sally comes back into the room
(tell-model (put-in sally room))

55> Where does Alison think that the marble is?

(ask-object-if alison
(believes alison (inside marble ?where)))

;;» Where does Alison think that Sally thinks the marble is?

(ask-object-if alison
(believes sally (inside marble ?where)))

;5» Where does Alison think that Anne thinks the marble is?
(ask-object-if alison
(believes anne (inside marble ?where)))

Figure 5. Actions and questions for the false belief test




tions caused by true beliefs and actions caused by
false beliefs” (Gordon, 1986). This is why the kind of
failure in the simulation theory is interesting; Alison
simply fails to give answers for either Sally or Anne,
because she failed to take their roles properly.

The second stage in the model, then, is the complete
simulation rule, which implements a role taking strat-
egy through the in-self primitive. This primitive has
the effect of temporarily pretending to be a different
self, and then handling the whole event in that context
instead. It is this replacement second rule that allows
Alison to pass the false belief test. The replacement
rule which models this strategy is shown in figure 7.

There are a number of important conclusions to be
drawn from this idea. First, in the simulation theory
the behaviour involved in ascribing mentality to one-
self is different from that involved in ascribing men-
tality to others. This contrasts with the theory of
mind mechanism described earlier, where there is no
difference between first person and third person
ascription. This is shown by the rules’ sensitivity to
the self relation, which shows that there is an egocen-
tricity involved in the simulation theory. The second
point to note is that, in practice, the behaviour of this
system is the same as that of the basic psychological

;»; Here are the rules for the simulation theory. Initially, if
5> we are seeing something ourselves, then we do the right
;s ascription, otherwise we leave the situation alone. These
;5 two rules, together, replace the perceive rule in figure 4.

;3> Rule perceive-self, compare to perceive in figure 4
((result “response ?someone
(perceived ?object (?action ?other-object ?event))
?situation “new-situation) :-
(self ?someone)
(ascribe ?someone ?response ?someone
(perceived ?object (?action ?other-object ?event))
?situation ?new-situation))

;;; Rule perceive-other, compare to perceive in figure 4
((result “response ?someone
(perceived ?object (?action ?other-object ?event))
?situation *situation) :-
(not (self ?someone)))

Figure 6. Rules for the simulation theory (first version)

»»; The replacement second rule for the simulation theory. If
;»; we are not seeing something for ourselves, then we

;3 “pretend” to be someone else through the in-self primitive,
;»; and process the event as if we were that person. This rule
;5; replaces the perceive-other rule in figure 6.

5> Rule perceive-other, compare to perceive-otherin
55, figure 6.
({result “response ?someone
(perceived ?object (?action ?other-object ?%event))
?situation “new-situation) :-
(not (self 7someone))
(in-self ?someone
(result ?response ?someone
(perceived ?object (?action ?other-object ?event))
?situation ?new-situation)))

Figure 7. Replacement rule for the simulation theory
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reasoning module shown in figure 4, because the re-
placement second rule combines with the first to be-
have just as if there was a single rule using the ascribe
action, a rule identical to the first result rule in figure
4. This is in accord with Perner’s (1994) suggestion
that, in practice, the difference between a theory and
a simulation may be at worst one of emphasis.

COMPARING MODELS 2: THE COPY THEORY

The second model I'll compare against Leslie’s theory
of mind mechanism is Chandler’s ‘copy theory’.
Chandler and Boyes describe younger children as be-
having “as though they believe objects to transmit, in
a direct-line-of-sight fashion, faint copies of them-
selves which actively assault and impress themselves
upon anyone who happens in the path of such
‘objective’ knowledge” (Chandler and Boyes, 1982).
They argue that this is the precursor to a complete
theory of mind such as Leslie’s, and therefore I'll only
show the version which fails the false belief test — a
version which passed the test would be identical to the
complete model in figure 4.

From the complete model of the theory of mind
mechanism corresponding to an adult theory of mind,

;;; Here are the ascription rules for the copy theory. Initially,
;5; if we are seeing something ourselves, then we do the right
;» ascription, otherwise we leave the situation alone. These
;5 two rules, together, replace the perceive rule in figure 4.
;;; Note that these replacement rules are identical to those
35 in figure 6.

;5 Rule perceive-self, compare to perceive in figure 4
((result “response ?someone
(perceived ?object (?action ?other-object ?event))
?situation *new-situation) :-
(self ?someone)
(ascribe ?someone ?response ?someone
(perceived ?object (?action ?other-object ?event))
?situation ?new-situation))

;5 Rule perceive—other, compare to perceive in figure 4
((result “response ?someone
(perceived ?object (?action ?other-object 7event))
?situation *situation) :-
(not (self ?someone)))

;»; Here are the answering rules for the copy theory. They
;5> have the effect of considering the target’s notional world
;»; to be a ‘copy’ of the ascriber’s. These rules replace the
;5 Tules answer-yes and answer-no in figure 4.

;3> Rule answer-yes-self, compare to answer-yes in

55, figure 4

((result yes ?someone (betieves ?object ?something)
?situation “situation) :-

(self ?self)

(member (believes ?self ?something) ?situation)

(write-1ist (yes ?object believes ?something)))

;;» Rule answer-no-self, compare to answer-no in figure 4

((result no ?someone (believes ?object ?something)
?situation “situation) :-

(self ?self)

(not (member (believes ?self ?something) ?situation))

(write-1ist (no ?object does not believe ?something)))

Figure 8. Rules for the copy theory



we can modify the psychological reasoning module
slightly to represent a child with a copy theory of be-
lief. The main point of the copy theory is, in effect,
that instead of ascribing beliefs to others, a ‘copy’ of
one’s own beliefs is used instéad. Instead of building
different notional worlds for Sally and Anne, both use
the same, a copy of Alison’s.

According to the copy theory, children simply do not
ascribe real beliefs to others. This is shown by the
modified result rules in figure 8, which replace the re-
sultrule in figure 4 so that beliefs are only ascribed to
oneself. Note that these result rules are identical to
the first (before full theory of mind) version of the si-
mulation theory in figure 6. This is to be expected —
Chandler’s theory is an account of how children es-
cape the kind of egocentricity that marks a simulation
theory. But this is not the whole story in the copy
theory; when children are asked about other people’s
beliefs, they answer by drawing on their own. For
this, we also need to change the result rules for the be-
lieves relation; these are the rules which model how
the child answers the kind of questions used in the
false belief test. These changes are also shown in fig-
ure 8. Both the question rules are changed from fig-
ure 3 by using the self relation to find and use one’s
own beliefs, rather than anybody else’s, to answer the
given question. Because of this dependence on the
self relation, this model shows that the copy theory,
like the simulation theory, has an implicit (if rather
better hidden) egocentricity.

There are more complex variations on the copy the-
ory; for instance, Wellman (1990) argues that younger
children have a copy theory of belief, but not of de-
sires. This is outside the scope of this model because
desire psychology isn’t yet part of the modelling en-
vironment — this is an area for future work. But
while the copy theory works to the extent that, when
run, it correctly fails the false belief test, the model is
quite radically different from an adult theory of mind,
and it does seem to require a developmental jump of
significant magnitude. All the egocentricity of the
rules in figure 8 must be lost, and the child needs to
learn to extend notional worlds to other people. This
matches all the empirical evidence that is against a
copy theory; Perner (1991) has argued convincingly
that experiments involving inference from parts to
wholes show that the evidence is against children hav-
ing a copy theory at any age. Even so, this is some-
thing which could, in principle, be investigated further
quite easily with this modelling approach.

COMPARING MODELS 3: THE SITUATION THEORY

The third reference comparison I’ll make against the
theory of mind mechanism is Perner’s (1991)
‘situation theory’. Perner’s theory is substantially dif-
ferent from those presented so far because he draws a
hard distinction between real and non-real situations,
or contexts. The notional world an agent has of itself

Wl

has a unique status. This is not mirrored in the basic
psychological reasoning module in figure 3.

Perner argues that the reason younger children don’t
pass the false belief test is because the child subject
applies the verbal form of questions incorrectly to the
situation corresponding to reality, not to the non-real
situation which has been played out by the puppets.
According to the situation theory, unlike the copy
theory, young children do have notional worlds, but
they are not so good at understanding that a real
question can apply to a non-real situation. Perner
uses this distinction to explain why children who fail
the false belief test are still capable of sophisticated
notional world reasoning, such as that required by
Zaitchik’s (1990) ‘false photograph’ test.

Figure 9 shows the rules for the first version of the si-
tuation theory model — the version which models a
child who cannot yet pass the false belief test. Note

;5; The key to Perner’s model is a clear distinction between
;3 the status of one’s own notional world, and those of others.
;» This is represented in these models by adding a status flag
;5 to the rules which ascribe those notional worlds. This
;5; status value is knows for one’s own notiona! world, and
;5 believes for other people’s. These two rules, together,

;5; replace the perceive rule in figure 4.

;3> Rule perceive-self, compare to perceivein figure 4

((result “response ?someone
(perceived ?someone (?action ?other-object ?event))
?situation “new-situation) :-

(self ?someone)

(ascribe ?someone knows ?response ?someone
(perceived ?someone (%action ?other-object ?event))
?situation ?new-situation))

e - Rule perceive-other, compare to perceivein figure 4

((result “response ?someone
(perceived ?object (?action ?other-object ?event))
?situation “new-situation) :-

(not (self ?someone))

(ascribe ?someone believes ?response ?someone
(perceived ?someone (?action ?other-object ?event))
?situation ?new-situation))

;5 The ascription rule is extended to take the additional

;5; status value. This vatue is used, instead of the fixed status
;5; value believes, to distinguish between one’s own notional
;»; worlds and other people’s. This rule replaces the ascribe
;5 rule in figure 3.

;3> Rule ascribe; compare to ascribe in figure 4
((ascr1be ?someone ?status “response ?other
(perceived ?object (?action ?other-object ?event))
?situation “new-situation) :-
(those (?status ?someone ?something)
?situation notional-world)
(requote (?status ?someone ?something)
notional-world ?something ?situation2)
(in-stance ?other-object ?action
(result ?response ?other-object
(?action ?other-object ?event)
?situation2 ?situation3))
(requote ?something ?situation3
(?status ?someone ?something) ?new-notional-worlid)
(difference ?situation ?notional-world ?situationl)
(append ?new-notional-world ?situationl
new-situation))

Figure 9. Ascription rules for the situation theory




that the main result rule has been split into two: one
for self and one for others. Superficially, this might
look like egocentricity again, but this time the only
difference between them is in the status they assign to
different notional worlds, knows for self, and believes
for others. Initially, as shown by the modified answer
rules in figure 10, children can only link verbal ques-
tions to the world for self beliefs — the notional
world with the status knows. Other notional worlds
can and do exist, though; it is just that they cannot be
accessed through verbal questions.

Perner claims that the principal change in children be-
tween the ages of two and a half and four is the acqui-
sition of a representation theory, which allows them
to recognise that questions can refer not to reality,
but to worlds or situations that are represented —
that is, worlds or theories with the believes predicate.
This corresponds to the child’s development from a
situation theorist into a representation theorist,
shown in the modified rules in figure 11.

Perner argues that this change isn’t a radical over-
turning of the existing theory — the kind of radical
change that makes the copy theory implausible. In-

;»; These are the rules for answering questions about one’s
;3 own beliefs. In this group, the “believes” question is

;;; coupled to the knows predicate of a notional world. These
;»; implement the ‘self” half of the answer rules in figure 4.

;» Rule answer-;yes-selﬁ compare to answer-yes in figure 4.

(({result yes ?someone (believes ?self ?something)
?situation *situation) :-

(self ?self)

(member (knows ?self ?7something) ?situation)

(write-1ist (yes ?self believes ?something)))

;3» Rule answer-no-self, compare to answer-no in figure 4.

((result no ?someone (believes ?self ?something)
?situation Asituation) :-

(self ?self)

(not (member (knows ?self 2?something) ?situation))

(write-list (no ?self does not believe ?something)))

;»» These are the rules for answering questions about other
33; people’s beliefs. This is a model of what happens before
;;; the representation theory is acquired, where the effect is
;5; to link into the knows predicate instead of the believes

;5 predicate. These implement the ‘other’ half of the answer
53, rules in figure 4.

5;; Rule answer-yes-other, compare to answer-yes in

5 figure 4.

((result yes ?someone {(believes ?7object ?something)
?situation “situation) :-

(not (self ?object))

(member (knows ?self ?something) ?sjtuation)

(write-1ist (yes ?object believes ?something)))

;: Rule answer-no-other, compare to answer-no in

;5 figure 4,

((result no ?someone (believes ?object ?something)
?situation *situation) :-

(not (self ?object))

(not (member (knows ?self ?something) ?situation))

(write-1ist (no ?object does not believe ?something)))

Figure 10. Answer rules for the situation theory

stead, he suggests that the change that happens is a
“theory extension” (Perner, 1991), a relatively minor
change to the existing theory. This character if theory
extension is important to any developmental account
of common-sense psychology, because the empirical
evidence is that common-sense psychology develops
gradually, not in big jumps (Carey, 1985).

DISCUSSION

These models highlight several of the most important
features of the common-sense psychology that under-
lies the false belief test, and show that these features
can be emphasised by models that represent the dif-
ferent and competing theories in this field. Of the
models presented, the one that seems to work best in
this modelling framework is Perner’s ‘situation the-
ory’ model. The principal reason for this is that the
apparent distance between passing and failing the
false belief test is much smaller. For both the simula-
tion theory and for Chandler’s ‘copy theory’ there
must be a radical development to the ascription of no-
tional worlds. Perner’s model clearly shows the char-
acter of theory extension which he suggests should be
expected of a theory which matches the empirical psy-
chological data on the development of these theories
(Carey, 1985).

The simulation theory is quite similar to the version
of Leslie’s theory of mind mechanism that we have
used as a base model — but both it and Chandler’s
copy theory show an apparent egocentricity. In prac-
tice, as I’ve argued, there are good reasons for sup-
posing that in any real common-sense psychology,
both theory and simulation aspects will be required
and, therefore, a simulation theory will actually be
complementary to, rather than alternative to, the
models presented here (Perner, 1994). However, most
of the people who have argued for a simulation the-
ory have argued for it as an alternative to something

;;; These are the rules for answering questions about other
;3; people’s beliefs. In this group, the “believes” question is
;»; correctly coupled to the believes predicate of a notional
;s world. These rules override the default which gives the
;;; wrong answer in the first version of the situation theory.

;3 Rule answer-yes—other, compare to answer-yes-ather

55, in figure 10.

((result yes ?someone (believes ?object ?something)
?situation *situation) :- :

(not (self object))

(member (believes ?object ?something) ?situation)

(write-1ist (yes ?object believes ?something)))

;13 Rule answer-no-other, compare to answer-no-other

55, in figure 10.

((result no ?someone (believes ?object ?something)
?situation “situation) :-

(not (self ?object))

(not (member (believes ?object ?something)

?situation))
(write-1ist (no %object does not believe ?something)))

Figure 11. Changes from the situation theory to the re-
presentation theory
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like Leslie’s ‘decoupler’ theory of mind mechanism,

and therefore don’t give much thought to how a simu-
lation theory and a theory of mind mechanism might

be combined in practice. But there is a twist to the si-
mulation model; although it shows an apparent ego-
centricity, it can actually be functionally identical to
Leslie’s ‘decoupler’ model. This further backs up the
arguments that the distinction between a theory and a
simulation is one of interpretation rather than a real
difference in behaviour (Perner, 1994).

It is, of course, possible to pursue this strategy still
further developing models of some of the other mod-
els of common-sense psychology. Unfortunately, for
an accurate model many of these require more com-
plex models of perceptual apparatus (e.g. Baron-
Cohen’s, 1995, shared attention mechanism), or more
complete models of common-sense psychology (e.g.
Wellman’s, 1990, simple-desire psychology) than have
yet been developed within this framework. Even so,
as a first attempt at the problem, the technique does
seem to back up the existing points and arguments re-
markably well, and to clarify the distinctions between
the models which have been developed so far. And
apart from anything else, at least within this limited
scenario, it seems to work!

The ‘usefulness of the modelling approach as a tool
for studying common-sense psychology is a topic
which deserves fuller discussion than is possible here.
Even so, we believe that these models show cognitive
modelling can help in this area.
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;»; Trace output for Leslie’s ‘decoupler’ model, simulation
;> theory (final version), and situation theory (final

;5; version). Compare to the results of Baron-Cohen et al.’s
535 (1985) false belief test.

yes alison believes (inside marble box)
yes sally believes (inside marble basket)
yes anne believes (inside marble box)

;»» Trace output for simulation theory (first version).

yes alison believes (inside marble box)
no sally does not believe (inside marble ?where)
no anne does not believe (inside marble ?where)

;5 Trace output for copy theory and situation theory (first
;3 version).

yes alison believes (inside marble box)
yes sally believes (inside marble box)
yes anne believes (inside marble box)

Figure 12. Trace output from the different models
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ABSTRACT

We modified a cognitive architecture (ACT-R) and an
attached interaction architecture (the Nottingham
interaction architecture) to simulate developmental
changes in problem solving. We started with an exist-
ing model that fits adult data on a blocks world task
used to study the development of problem solving in
children. We modified the model and architectures in
three, independent ways to simulate a younger problem
solver: (a) reduced the working memory, (b) deleted a
piece of knowledge, and (c) reduced the accuracy of
vision. We found that our modifications allowed the
model to fit 7 year old's data better but not perfectly.
These results suggest that cognitive models and their
architectures can help answer the question of "What
develops?"

Keywords
Cognitive architectures, development, problem solving,
working memory, vision, ACT-R, interaction.

INTRODUCTION

As children grow older, they tend to be more able to
learn new strategies and tasks, and be more efficient at
those strategies and tasks that they knew previously
(e.g. Siegler, 1986). What changes are occurring in
order for this to happen? It would be useful to be able
to specify in information processing terms how the
behaviour seen at each age is achieved, and therefore
what the differences are between ages (Simon, 1962).

The solving of physical puzzles is a good area in which
to examine differences in behaviour. A detailed analysis
of the task behaviour is possible via videotape. Many
strategies will be readily visible, reducing the need for
the experimenter to infer what mental structures and
strategies are being used. For this reason, a physical
problem solving puzzle, the “Tower of Nottingham”, is
used to study differences in children’s behaviour and the
factors influencing them.

The Tower of Nottingham

The Tower of Nottingham task involves building a
pyramid from 21 wooden blocks (see Figure 1). There
- are six layers to the pyramid, the lower five consisting
of four blocks each, with a single block as the top
layer. The blocks in the lower five layers all share the
same characteristics, differing only in size. Each layer
is normally formed via two sets of paired blocks. For
example, placing the peg of block A into the hole of
block B brings the two half holes together to form a
pair having a hole (a hole-pair). Similarly, placing
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Figure 1. The blocks, on the left, that make up each
layer, which are then stacked to create a tower, shown
on the right.

block C and block D together forms a pair with a peg (a
peg-pair).

Other strategies for creating a layer also exist, however,
such as forming a pair having two pegs (blocks A and
C) and a pair having two holes (blocks B and D).

There are two other features that may give rise to addi-
tional construction strategies. Each block has a quarter
circle indent on top and a quarter circle depression under-
neath. When a layer is created, the quarter circles form
circles in the centre such that layers can be stacked on
top of each other by placing the circular depression of
the upper layer onto the circular indentation of the lower
layer. Constructions can be created by aligning the
quarter circles so that they form a semi-circle.

Behaviour on the Task Varies with Age
Children of three are able to complete the Tower of
Nottingham, yet performance improves with age all the
way up to adulthood. For example, older children on
the task accomplish more correct operations, produce
less errors and take less time than their younger
counterparts (Murphy & Wood, 1981; Wood &
Middleton, 1975). Studying performance across ages on
this task allows us to examine problem solving
behaviour at each age and the differences in problem
solving between ages.

The Use of Cognitive Models and Cognitive
Architectures

Computational modelling across ages requires defining
the behaviours that occur at each age (or performance
level), because the model will require the knowledge and
procedures that children may be using at each age.
Where the behaviour cannot be defined in these terms,
the model makes predictions about the missing ele-
ments. Therefore modelling task behaviour can help
provide a means of defining how the different
behaviours are generated.



This enables a method for examining to what extent
changes in task performance can be attributed to differ-
ences in knowledge and to what extent changes in task
performance can be attributed to developmental pro-
cesses. Existing models of development have only
really considered differences in knowledge as the reason
for changes in task performance, and have largely ig-
nored the developmental processes that various devel-
opmental theories put forward (e.g. changes in working
memory).

Early production system models of development, such
as that of Young (1973), model differences in task
performance by altering the rule set (i.e. the knowledge)
within the production system. Klahr and Wallace (1976)
implement possible developmental factors in their
production system model of development (such as
visual memory), but do not explore their effects.

Modelling techniques which have not used the produc-
tion system style view development as being experience
with the task, which can be seen as implicit knowledge.
In the connectionist model of McClelland and Jenkins
(1991), improved performance is attained by further
training of the network on the task. In Siegler and
Shipley's (1995) Adaptive Strategy Choice Model,
improved performance is achieved by the model learning
through experience of the task which strategies to
employ for which sums.

All of these models have had success when they have
been compared to subject data. However, developmental
theory suggests that there are further changes occurring
that also influence development. To what extent are
these changes able to influence performance?

Two approaches stand out for creating a model of our
task. One method is to model a lower performance
level and see if that model can then progress to the
higher performance levels that we see on the task. The
other method is to begin at the highest performance
level (that of adults), and then see if reduced versions of
this model show behaviour that looks like lower

performance levels. We have chosen to start with the

simpler (adult) behaviour and work towards the more
chaotic (child-like) behaviour.

We wish to examine how changes in both knowledge
and development can influence task performance. To do
this, we will begin with an adult model of our task and
then impair it in theoretically motivated ways. By
examining performance of the model after these
changes, we hope to see to what extent the impairment
can account for lower performance levels (those of
children).

Cognitive architectures are important here as well, for
they should also guide us (together with developmental
theory) as to what are the sensible changes to make to
the architecture. However, the role of change in
architectures, with particular reference to development,
has been rarely studied. The first definitions and
implementations of cognitive architectures stressed that
architectures do not change across tasks (Newell, 1990,
p. 81). Newell (1990) argues that within Soar,
development is just learning, and the architecture
remains the same. Development is not mentioned with
respect to ACT-R (Anderson, 1993). For these reasons
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we will look towards developmental theory as to what
changes to make to the architecture.

Overview of the Paper

In the remainder of this paper, we will first describe the
adult model upon which we base the other models. We
describe its structure and the set of blocks that it inter-
acts with. The model has been improved since it was
last reported (in Jones & Ritter, 1997), and although the
fit to the data is not improved substantially, it does
enable the model to be broken in more theoretically
motivated ways. We therefore describe the model in
detail here. The stage is thus set for describing the three
changes we make to the architecture. Each of the
changes is described in terms of why they are suggested
by developmental data, how they have been
implemented, either in ACT-R or the Nottingham
interaction architecture, and the effect they have on the
model's behaviour. We conclude with a summary of
these changes and the implications they have for the
disentangling of what changes in cognitive
development.

THE ADULT MODEL

The adult model is based on the ACT-R cognitive
architecture (Anderson, 1993). In the development of
the adult model the architecture has in part been used as
a vehicle for the development of our own theories of
performance on the task, although the model is
consistent with most of the principles of ACT-R such
as being goal driven, giving activation to memory
elements, subjecting activation to both decay and noise,
being rule based, and so on.

A simulation of the task also exists (see Figure 2),
which is written in Garnet (Myers, et al., 1990). The
simulation contains a full graphical representation of
the task (all blocks and features), which is 2 1/2
dimensional—blocks cannot be turned on their side or
held in mid-air, but can be face-up or face-down.

The simulation also represents an eye and two hands.
The eye and hands are designed to meet a set of
requirements identified for creating a psychologically
plausible architecture for interacting with an external
task (Baxter & Ritter, 1996).
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interface.




The eye is able to saccade and fixate, and passes to the
model what it sees with regard to blocks and construc-
tions (e.g. a peg-pair will be represented as a construc-
tion having two blocks that are flush on their outer
edges and have their quarter circles and halfpegs aligned).

The visual information passed to the model is based
upon where blocks are positioned in relation to the
fovea. Three areas are defined: fovea, parafovea and
periphery. Full information is passed for blocks or
features in the fovea and parafovea, though the parafovea
subjects features and block sizes to noise. For items in
the periphery, the eye only returns to cognition a block
ID. The hands are able to pick up, drop, rotate, turn
over, fit, and disassemble blocks.

The model contains 226 rules which allow it to
complete the task. The rules also interact with the
simulation of the task, directing the eye and the hands.
Within the model, all blocks and block features have an
associated activation level. When several rules are
instantiated, the one with the highest activation is
selected. Therefore, in general, rules fire whose
conditions have the most active blocks and block
features in them. The activation levels are subject to
decay each cycle, such that when they fall below a
specified level (the retrieval threshold) they can no
longer be matched in conditions of rules. Activation is
raised based on what the goals of the model currently
are, and by what blocks the fovea is looking at.

The learning mechanism that we included in the
architecture is a simple method of increasing the
chances of fitting blocks by specific features if a
previous fit using the same features was deemed a
success. Success is determined by the blocks in the
construction being flush on their outer edges and having
their quarter circles aligned (this is consistent with adult
data on the task). Therefore, on some occasions the
model may believe a successful construction has been
made when in fact it has not (e.g. aligning the quarter
circles of blocks A and B such that the blocks are not
connected via a peg/hole). This learning mechanism
approximates adult learning on the task (Jones & Ritter,
1997).

The model contains working memory and visual
memory. Working memory contains all blocks and
block features that are active enough to be matched in
the conditions of rules (i.e. their activation is above
retrieval threshold). Therefore, working memory is
variable based on how active blocks and block features
are in the model. Visual memory means we can
remember some of the blocks that have been looked at
previously even though they are now in the periphery.
Visual memory is static (it is set at seven items), and
compliments working memory since blocks in visual
memory that are not in working memory can also be
matched in conditions of rules.

Comparing the models with the data

Tt would be useful to compare subject performance on
the Tower of Nottingham with the performance of
models of the task using a metric that cannot be set as a
parameter of the architecture. One such metric is the
proportion of productions fired in the construction of
each layer compared to the proportion of time subjects
take in the construction of each layer. However, the task
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involves interaction with an external world, so timings
for subjects include their perceptual and motor actions
whereas the model production firings do not. This
means timing estimates for interaction must be used in
part of our model/subject comparisons.

We use the ACT-R default timing of 50 ms per
production firing, which increases to 250 ms (Baxter &
Ritter, 1996) for productions involving perceptual
actions (eye movements and fixations), and 550 ms
(Jones & Ritter, 1997) for productions involving motor
actions (fitting and disassembling blocks). This enables
a more complete comparison between model and subject
timings. Production firing latencies in ACT-R also
take into account activation of memory elements. In
order for the influence of memory elements on
production firing latencies to be negligible, the base
level activation of memory elements was set to 10.0.
Where other ACT-R parameters were used (decay,
retrieval threshold), we adhered to the suggested default
settings. The models begin with the initial knowledge
of the task that subjects had, such as blocks of the same
size go together, pegs go in holes, etc.

For every run of the model, the activation noise
parameter within ACT-R was set to 0.005. This causes
the activation of constructions and features in the model
to differ, making the model's behaviour variable.

For comparisons between the model and subjects,
measurements are given on an overall and layer-by-layer
basis. The reason for reporting times and errors per layer
is that subjects learn throughout the task. Since the
model includes a learning mechanism, we want to see
not only the effect that impairment to the model has
upon overall behaviour, but also the impact it has upon
the learning of the task.

We provide r-squared estimates for correlations between
the model and subjects on a layer-by-layer basis, and t-
test comparisons for summary data. These should only
be taken as initial guides to the quality of the fit
between the model and the subject data.

Comparison of the mode! with adult subjects
The adult subjects (N=5; taken from Jones & Ritter,
1997) had completed the task once. We compare 5 runs
of the model to the 5 adult subjects.

The comparison of the adult model to the adult subject
data is favourable. On the measures we will be using
when we break the adult model, it fits the adult subjects
reasonably well (see Table 1), although the model
makes more incorrect constructions than subjects.

If we compare the times to complete each layer for the
adult model and the adult subjects (see Figure 3), the
trend of the model is the same as subjects—the time to
complete each layer decreases until the final layer where
the time increases slightly (12 = 0.92). The model takes
more time to complete the task because it makes

slightly more errors (see Figure 4; r2 = 0.67).
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Figure 4: Construction attempts to complete each layer
for adult subjects and the adult model.

The model provides a reasonable fit to the adult subject
data in most of the behaviours that we are presently
interested in. An exact fit on every measure is not
essential because we will be examining the relative
increases and decreases of these measures that result
from the alterations that we carry out. The model fits
- the data well enough that it is fruitful to start exploring
how problem solving changes when the architecture is
changed to reflect that of younger problem solvers.

CHANGES TO THE ADULT MODEL

In order to examine how problem solving could change
with development, we created three changed versions of
the adult model. These changes are the most plausible
based on the developmental literature and our knowledge
of children’s performance on the task. (a) We reduced
the working memory capacity. (b) We removed a piece
of knowledge. (c) We altered the accuracy of the
parafovea. There are further changes that should be
explored as well, such as basic processing speed, fovea
size, and further changes to knowledge.

In this initial exploration we made each of these
changes independently in order to keep the first order

effects clear. For each change we explain its
implementation, its rational, and its effect on problem
solving.

The seven year olds we use to compare the altered
models against were assisted on their first attempt at
completing the Tower (contingently tutored, Wood &
Middleton, 1975), and so we compared the model with
their second attempt where they received no help in
completing the Tower.

Reduced Working memory capacity model
Why

Several developmental theories suggest working
memory capacity may influence task performance (e.g.
Case, 1985; Halford, 1993). On the Tower of
Nottingham, children have been noted to search with
replacement (D.Wood, personal correspondence), a
characteristic which may well be linked to working
memory in that the children forget which blocks they
have tried fitting together. On the Tower of
Nottingham, seven year old children fit the same blocks
together an average of 3.68 times, whereas this
behaviour never occurs for adults completing the task.

How

Our model provides an easy way to manipulate working
memory capacity to see what effect it has upon
performance. In order to get a large, initial effect, we
implemented this change to the model in three ways
(the first two are parameters in ACT-R and the third is a
parameter in the Nottingham interaction architecture).
First, raising the retrieval threshold (from 0.0 to 2.5)
means that constructions need to be higher in activation
than in the adult model in order to be matched in rules.
Second, raising decay (from 0.05 to 0.15) means
constructions are forgotten more quickly than in the
adult model. Third, reducing the number of items in
visual memory (from 7 to 3) means that visual memory
provides less support to working memory. The ACT-R
parameters and mechanisms that we manipulate have
also been used by Lovett, Reder and Lebiere (1997) in
their ACT-R model of working memory differences,
although they kept the parameter values constant and
manipulated a third parameter. In this way they were
able to model individual differences in working
memory.

Measure Adult Adult Model t-score
Sub J ects
Total time taken to complete the Tower 80.6 s (13.3) 92.2 s (9.47) t(8)=1.59
p>0.05

Total number of errors (incorrect constructions) 0.2 (0.45) 2.4 (1.14) t(8)=4.017
made p<0.05
Errors where the blocks involved are of the same 0.2 (0.45) 2.4 (1.14) t(8)=4.017
size p<0.05
Errors where the blocks involved are of different 0 0 N/A
sizes
Number of times a construction attempt is made 0 0 N/A
using the same blocks

Table 1: Mean (standard deviation) and t-scores for adult model and adult subject comparisons.
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Measure 7yo Reduced WM t-score
Subjects Model

Total time taken to complete the Tower 2144 s (95.81) | 134.0s (24.1) t(8)=1.82
, p>0.05

Total number of errors made 7.6 (2.41) 5.4 (2.88) t(8)=1.31
p>0.05

Number of times the same blocks are fitted together 1.75 (0.96) 2.0(141) t(4)=0.27
p>0.05

Table 2: Comparison between seven year old subjects and the reduced working memory model. Standard deviations, where
appropriate, are given in parentheses.
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Figure 5: Time taken (seconds) to complete each layer.
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Figure 6: Construction attempts to complete each layer.

Predicted effect

Less working memory should lead to more search with
replacement—the same pairs of blocks should be fitted
together more often. A side-effect of searching with
replacement is that the task should take longer and
involve more errors.

Effect

Table 2 shows the summary statistics for the seven year
old subjects and the reduced WM model. Figures 5 and 6
show comparisons on a layer by layer basis.

As predicted, reducing the working memory capacity in
the adult model leads to fitting the same blocks together
more often (from O in the adult model to 2.0 in the
reduced WM Model). Increases are seen in both the time
to complete the task (from 92.2 s in the adult model to
134.0 s in the reduced WM Model) and the number of
errors (from 2.4 in the adult model! to 5.4 in the reduced
‘WM Model). This increase is not enough for the reduced
WM Model to appear like a seven year old on the task.
Although there are no reliable differences between the
reduced WM Model and seven year olds in the total time
taken and total number of errors, there are clear
differences in the magnitude of these totals.

On a layer by layer basis, the reduced WM Model can be
seen to not differ greatly from the adult model in terms
of time and construction attempts made. However, the
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learning mechanism seems to be affected by the
reduction in working memory capacity, because the
original adult model provides a better fit to the seven

year old subject data (times r2 = 0.85; constructions
r2 = 0.74) than the reduced WM Model does (times

12 = 0.24; constructions 12 = 0.63). The original adult
model and the reduced WM Model do not correlate at all

(times r2 = 0.07; constructions 2 = 0.05).

Reducing the working memory capacity has allowed the
model to fit the seven year old data a lot better than the
adult model for overall times and errors, but at the cost
of impeding the learning mechanism. This is probably
because of the type of learning mechanism we use: there
are less block features to be raised in activation upon
success because working memory capacity is smaller.
This suggests that further learning mechanisms must be
used in order to fit the seven year old subject data better.

Less Knowledgeable model

Why

Children have a much smaller knowledge base to draw
upon than do adults (e.g. Siegler, 1986). It is quite
possible that children's knowledge of the Tower of
Nottingham is less than that of adults. Examination of
how seven year olds produce correct constructions
compared to how adults produce correct constructions
reveals that the children fit pegs into holes to produce a
pair on 37 occasions yet only fit a halfpeg into a
halfhole on 6 occasions. Adults fit via a peg and hole
on 26 occasions as compared to fitting by halfpeg and
halfhole 14 times. It is a possibility that children only
learn about halfpegs and halfholes fitting together
whilst they are completing the task.

How
Previously the model knew that halfpegs could fit into
halfholes. This knowledge was deleted from the model.

Predicted Effect

The effect this will have upon performance is unclear.
The number of constructions made via a peg and hole
will rise sharply; however, the current learning
mechanism offers no opportunity for learning that
halfpegs and halfholes can fit together, and therefore it
is expected that fitting by halfpegs and halfholes will be
dramatically reduced. It will not be eradicated because
there are other ways in which constructions can
indirectly be made via a halfpeg/halfhole (e.g. quarter




Measure 7yo Subjects Less t-score
Knowledge-
able Model
Total time taken to complete the Tower 214.4 s (95.81) | 164.8 s (40.4) t(8)=1.07
o p>0.05
Total number of errors made - 7.6 2.41) 5.6 (3.36) t(8)=1.08
p>0.05
Ratio of correct constructions fitted via 37:6 31:6 N/A
peg/hole:halfpeg/halfhole

Table 3: Comparison between seven year old subjects and the less knowledgeable inodel. Standard deviations, where
appropriate, are given in parentheses.
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circles can be aligned in such a way that the halfpeg and
halfhole fit together). We predict that the number of
errors will remain the same. This is because fitting
random blocks of the same size by a peg/hole
arrangement and by a halfpeg/halfhole arrangement offer
the same chances of success. The time to complete the
task should not change, because no more errors are
expected.

Effect

Table 3 shows the summary statistics for the seven year
old subjects and the less knowledgeable (Less K) model.
Figures 7 and 8 show comparisons on a layer by layer
basis.

As predicted, deleting the knowledge that halfpegs fit
into halfholes meant that fitting by pegs and holes rose
sharply (from 14 in the original adult model to 31 in
the less K Model), and fitting by halfpegs and halfholes
dropped but was not eradicated (from 15 in the original
adult model to 6 in the less K Modetl). The ratio of 31:6
compares favourably with the 37:6 ratio of seven year
olds. ‘

There were increases in both the total time taken to
complete the task (from 92.2s in the original adult
model to 164.8s in the less K Model), and the number
of errors produced in completing the task (from 2.4 in
the original adult model to 5.6 in the less K Model).
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This helps the less K model to fit the seven year old
data (there are no reliable differences between the
summary measures for the less K model and seven year
old subjects, although there are clear differences on the
layer-by-layer plots). Part of the increase in time can be
attributed to more search being required (as we now have
a reduced feature set because we no longer know that
halfpegs fit into halfholes). However, most of the
increase in time is because more errors are made. We do
not yet have a valid reason for why this occurs.

As with the reduced WM model, we again see that the
original adult model correlates better with the seven year
old data on a layer by layer basis (original model and
seven year olds: r2 = 0.85 for times and 12 =0.73 for

constructions; less K model: r2 =0.73 and 2 = 0.44
respectively). This again suggests that the learning
mechanism is impeded by the removal of knowledge.
The type of knowledge removed means that learning
must now occur over a reduced feature set. However,
the reduced feature set still has the same chance of
success as the old set, and it is therefore difficult to
explain why the less K model does not learn as well as
the original adult model.

Reduced Parafovea accuracy model

Why

Children find it more difficult to select blocks by size in
the Tower of Nottingham task (Murphy & Wood,
1981). Although this is more pronounced for children of
five years of age and below, seven year olds still average
1.8 constructions involving different sized blocks; the
adults do not make any constructions involving blocks
of different sizes.

How

We set the parafovea noise parameter for size to be 30
percent, representing a 30 percent chance that a block in
the parafovea will be perceived as being a different size
than it actually is (there are other possible mechanisms
to implement this).

Predicted Effect

The increased size noise should mean that more
incorrect constructions are produced involving blocks of
different sizes. This increase in error should also lead to
an increase in the time taken to construct each layer.

Effect : :
Table 4 shows the summary statistics for the seven year
old subjects and the parafovea accuracy model. Figures 9
and 10 show comparisons on a layer by layer basis.




Measure 7yo Subjects Reduced t-score
Parafovea
Accuracy
Model
Total time taken to complete the Tower 214.4 s (95.81) | 126.2 s (24.6) t(8)=1.99
p>0.05
Number of errors involving blocks of the same size 5.8 (2.59) 3.4 (1.34) t(8)=1.84
p>0.05
Number of errors involving blocks of a different 1.8 (2.68) 0 () N/A
size

Table 4: Comparison between seven year old subjects and the reduced parafovea accuracy model. Standard deviations,
where appropriate, are given in parentheses.
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Figure 9: Time taken (seconds) to complete each layer.
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The results found go against our main prediction that
there will be a greater number of constructions made
which involve blocks of different sizes (neither the
original adult model or the reduced parafovea accuracy
model produce any). In hindsight, the reason for this is
that when picking up a block, the model fixates upon
it. Since at this point the block is in the fovea, the
correct size is returned, and therefore if the block is the
wrong size it is replaced. This provides an interesting
result because it indicates that seven year olds either do
not examine the block again once they have decided to
pick it up, or their fovea vision is not as accurate as
adults.

As predicted, there is an increase in the overall time
taken (from 92.2 s for the original adult model to
126.2 s for the reduced parafovea accuracy model) and
the number of errors produced (from 2.4 for the original
adult model to 3.4 for the reduced parafovea accuracy
model). This increase is not sufficient enough to make
the reduced parafovea accuracy model appear to be like
seven year old subjects on the task, although there are
no reliable differences for either measure.

The reduced parafovea accuracy model does not correlate
well with either the original adult model (12 = 0.05 for
times; r2 = 0.03 for constructions) or the seven year
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old subjects (r2=0.13 and 12=0.29 respectively).
The increase in overall timings is probably due to the
increase in visual search that is required due to the
parafovea being less accurate. There should be no reason
other than chance that there is an increase in
construction attempts over the original adult model.

SUMMARY

We took an initial adult model and broke it in three
ways to simulate a younger problem solver: cognitively
(reducing working memory capacity), via knowledge
(removing knowledge), and perceptually (reducing
parafovea accuracy). All of these impaired the
performance of the model to differing degrees and in
different ways. None of the alterations was sufficient to
produce behaviour similar to seven year old subjects,
and all of the alterations indicated that more than one
learning mechanism is required to fit the seven year old
data properly. However, in breaking the adult model, we
were able to show that changes that have been
hypothesised to exist in younger problem solvers (i.e.
developmental factors) do lead to different problem
solving behaviour.

Further work must modify the model and its architecture
in additional ways, motivated by developmental theory.
There are several other ways to degrade the model's
performance that we have not yet explored, such as
changes in processing speed. These explorations will
allow us to see how much each factor influences
performance. The extent to which each factor
contributes toward the observed behaviour indicates
where our attention must lie in creating a complete
model of seven year olds that is comparable and related
to adult behaviour on the Tower.

However, we cannot simply consider each influencing
factor independently because we have shown that this is
not sufficient to produce the behaviour of seven year old
subjects. The adult model will need several interacting
changes to its architecture before its behaviour appears
realistically to be like a younger problem solver.
Therefore, not only will we be breaking the model in
additional, independent ways, we will also be looking at
combinations of modifications that interact. We expect
the interactive effects to reveal more about performance
at different ages, but simple changes are still required for
our understanding and initial explorations.

This work indicates that the role of change in
architectures, which has been little studied since the first



definition, can be a fruitful way to use architectures.
ACT-R includes many parameters. Before these
parameters can be easily used for modelling
development and abnormal problem solving, they need
to be explored (or explained) to the extent that ranges
for normal individual differences are known (e.g. Lovett,
Reder, & Lebiere, 1997), and then that the interactions
of these parameters are understood. A way to predict the
performance of ACT-R models without running them in
this area would be useful.

This work will eventually lead to models of five year
o0ld’s and seven year old’s behaviour solving the Tower
that are based on modifying the adult model. We hope
that these models will be able to explain individual
differences within age groups as well as to explain the
progression between ages (in terms of differences
between the models rather than transition mechanisms).
In both cases, we should be able to highlight the
knowledge differences or architectural changes that lead
to the differences in behaviour. Further learning
mechanisms are also required in order that each model
can learn from the task in order to perform to the
standard of the older models. Explaining how and why
problem solving changes with development is difficult,
so further work will have to ook at more than just this
task.

We are now in a position to look at how problem
solving changes across development. We have a
cognitive model that performs the task. We can add and
remove knowledge from the cognitive model and we can
modify the architecture to represent developmental
changes in cognition (the cognitive model based in
ACT-R) and perception (the Nottingham interaction
architecture). In the future we may be able to more
directly answer “What develops?”
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ABSTRACT

In this paper, an ACT-R model of mental fatigue is
presented. This model is loosely based on Hockey’s state
. regulation model of compensatory effort (Hockey, 1997).
It appears that when spreading of activation is reduced,
the ACT-R model can predict the performance changes
Hockey describes, and furthermore, show how these may
depend on the motivation of the participant. In a model
of the Sternberg memory-search task, a reduction of the
spreading of activation results in a change in strategy.

Keywords
mental fatigue, strategy use, cognitive control, ACT-R

INTRODUCTION

This paper describes a computational approach towards
the investigation of mental fatigue. Mental fatigue is
defined as the deterioration of mental performance due to
preceding exercise of mental or physical activity
(Meijman, 1997). As Meijman explains, it can be
conceived of as a problem of keeping attention focused
on task goals, or as a deficit in the cognitive-energetic
control mechanisms. From his research it appeared that
in some task conditions fatigued participants could
protect their performance by means of compensatory
effort, but in the most unfavourable conditions of the
experiment (after 8 hours of work combined with sleep
loss) people were no longer able to prevent deterioration
of their performance. According to Shiffrin & Schneider
(1977) there are two types of information processing:
automatic and controlled. It appears that tasks that require
more controlled processing are more sensitive to mental
fatigue (Meijman, 1997). However, which cognitive
processes are responsible for the changes in behaviour
which are observed when people have to perform tasks
for an extending period of time is a question that has not
been answered yet. Bartlett (1943) hypothesised that the
processes involved in planning, which is often ascribed
to prefrontal functioning, are the ones responsible for
these changes in behaviour. West (1996) subdivides the
functioning of the prefrontal cortex into three processes.
The first one is the inhibition of interfering processes and
stimuli. The second process is a working memory
process which enables the retrieval of information. The
third process involves the preparation of responses.

52

Summarising, there is some evidence that indicates
mental fatigue is related to problems with cognitive
control.

From many previous studies we already know
that people seldom show a total breakdown of
performance when they become mentally fatigued. A
possible explanation for maintaining adequate task
performance is that people change their strategy. More
than 20 years ago, Shingledecker and Holding already
hypothesised that when people become mentally fatigued
they will shift their strategy of task performance towards
a strategy that requires less mental effort (Shingledecker
& Holding, 1974). In 1997, this hypothesis was brought
out again by Hockey (1997). So, some people have
hypothesised that mental fatigue involves a change in
choice. However, a controlled study that investigates the
details of this possible relation between mental fatigue
and strategy use, still has to be done.

In order to predict and explain the role of
cognitive control and strategy choice on the performance
changes associated with mental fatigue, it is necessary to
construct a detailed model of how these processes take
place, and how they are influenced when people become
fatigued. As the models mostly used in this field are
mainly descriptive, the main purpose of this paper is to
show how the valuable aspects of one of these models
can be used to construct a computational model of mental
fatigue, from which it will be possible to derive useful
predictions of participants’ behaviour. To this end, the
next paragraphs will describe Hockey’s compensatory
control model (Hockey, 1997), which is a commonly
known descriptive model of mental fatigue, and a
cognitive architecture, ACT-R (Anderson, 1983; 1993).
Together these components will be the basis for a
computational model of mental fatigue.

A DESCRIPTIVE MODEL OF MENTAL FATIGUE

A model currently used for the investigation of mental
fatigue is the state regulation model of compensatory
control (Hockey, 1997). It is based on the concept of
resources, which is described as "the availability of one
or more pools of general-purpose processing units,
capable of performing elementary operations across a
range of tasks, and drawing upon common energy"
(Gopher, 1986; Kahneman, 1973; Wickens, 1984). The
model makes three assumptions. Firstly, it assumes that



behaviour is goal-directed. Further it is assumed that the
control process is normally self-regulating. And, thirdly,
the model assumes this regulation has costs (expressed in
use of mental resources, levels of subjective strain, and
physiological changes). An overview of the model is
presented in figure 1.
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task goals
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Figure 1. The state regulation model of compensatory
control (Hockey, 1997)

The model distinguishes between two levels of
control: a lower level, representing routine regulation
(loop A), and an upper level, representing effort-based
regulation (loop B). The effort-monitor monitors the
level of demands in the lower loop. When the demands of
the situation change, control will shift to the higher level
(here called the supervisory controller) where several
options for regulation are available. The model requires
two levels for the effort monitor: a lower setpoint and an
upper setpoint. This is the part of the model in which
resources play an important role, for the upper setpoint
represents the maximum level of effort that can be
mobilised, which is dependent on motivation. Referring
to Holding (1983), Hockey argues that this upper
setpoint can be influenced by fatigue. When the perceived
demands are too high, the maximum level of effort that
can be mobilised should be increased, or the performance
will decrease. Hockey describes four kinds of changes that
can happen when people protect their performance. The
first change he mentions is subsidiary task failure, for
example the neglect of subsidiary activities or narrowing
of attention. Second, people can make strategic
adjustments as less use of working memory and greater
use of closed-loop control. Third, maintaining
performance could require compensatory costs. People
would have to increase mental effort to attain the same
performance. Finally, if no changes during task
performance are observed, it is possible that people will
show after-effects, for example express feelings of
fatigue, or show a post-task preference for low-effort
strategies. ‘

To summarise, according to this model, task
performance normally relies on routine regulation. In
situations with high demands (e.g., stressful situations,
situations in which the operator is mentally fatigued),
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task performance requires effort-based regulation (loop B).
Thus, the model would predict that when people become
mentally fatigued they would need a more effortful
manner of control for the same task as before. However,
it is not clear how that would lead to the four kinds of
change Hockey predicts. It could be the case that when
people become fatigued, they invest more effort in the
task, change their strategy of performance, neglect
subsidiary activities, or show after-effects. The model
does not provide predictions about what people will
actually do in these situations that require higher level
control. A computational model is needed to refine these
processes and deliver useful predictions for different
situations. To this end, a rather brief explanation will be
given of ACT-R (Anderson, 1993), an architecture of
cognition, from which it is possible to construct a
computational model of fatigue.

ACT-R

The reason for choosing the ACT-R architecture for the
construction of a model of mental fatigue is twofold. For
the investigation of mental fatigue the measurements of
performance that are used most often are the reaction
times for completing tasks, the (strategic) choices made
during task performance, and the number of errors made
by participants. A very attractive aspect of ACT-R is that
it can make very detailed predictions about these three
kinds of measurements. Furthermore, ACT-R is equipped
with global parameters which, when changed, can cause
qualitative, task-specific, changes in behaviour. These
global parameters make ACT-R suitable for the
construction of a model of mental fatigue.

The ACT-R Architecture

The ACT-R architecture distinguishes between two kinds
of memory: production memory (memory for procedural
knowledge, represented with production rules) and
declarative memory (memory for fact knowledge,
represented with chunks). Strategies are represented with
(a number of) production rules, and additional declarative
facts. The conflict resolution process selects production
rules according their expected gain, as calculated by
equation 1.

Expected gain ;= P, G - C; @

In this equation P represents the probability of success
when using this production rule, G the value of the goal,
and C the cost to reach the goal, using this production
rule. The preliminary assumption of ACT-R is that cost
is the time needed to reach the goal. From the production
rules that match the current goal, the production rule that
has the highest expected gain is tried first, which means
that ACT-R tries to retrieve the declarative memory
chunks necessary for the production to fire. Whether
ACT-R succeeds in retrieving the chunks depends on the
activation level of these chunks. When the activation of a




chunk drops below a certain threshold, the retrieval
threshold, it cannot be retrieved anymore. The activation
level of a declarative memory chunk is determined by
equation 2.

Activation; = base level activation ; +
3, source-activation ; * associative strength ;; (2)

In this equation base-level activation represents how
recently and frequently the chunk has been used before.
The second half of the equation represents spreading
activation. Source activation represents the attention
given to the elements of the goal and association strength
represents the likelihood that fact i is needed if fact j is
part of the current goal. If all retrievals succeed, the
production will fire, if not, the second-best production is
tried. Furthermore it must be mentioned that ACT-R can
learn the parameters of the model itself (e.g., the base-
level activation, the associative strengths, the probability
of success of a production and its cost).

A COMPUTATIONAL
FATIGUE

MODEL OF MENTAL

In the introduction two aspects of mental fatigue were
mentioned: mental fatigue as a cognitive control
problem, and mental fatigue as a process involving a
shift in choice, a more motivational aspect. How can
these aspects be represented in a computational model of
mental fatigue? Therefore we have to determine how
global parameters can interact with knowledge-specific
parameters. In ACT-R two global parameters can be
related to these aspects of mental fatigue. In the next two
subsections these two parameters will be explained and
the third section illustrates the influence of the values of
these two parameters on the performance on a Sternberg
memory-search task.

Mental Fatigue
Cognitive Control

as a Problem Concerning

As already mentioned in the introduction, West (1996)
distinguishes  three cognitive control  functions:
inhibition of interfering processes and stimuli, and two
memory functions. A global parameter in ACT-R related
to these functions is the source activation, which was
described as a part of equation (2). Source activation
spreads from the goal to related chunks, thereby creating
more contrast between chunks which are relevant and
irrelevant to the current goal. When source activation is
low, the contrast between relevant and irrelevant chunks
is low. As such, source activation has the same function
as inhibition of interfering stimuli, which was described
as one of the cognitive control functions possibly harmed
by mental fatigue. When source activation is high, the
probability of interference is low. When source activation
is low, however, interfering stimuli can become
problematic. It is also possible that due to low source-
activation, the activation level of relevant chunks drops
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below the retrieval threshold, which means that relevant
facts cannot be retrieved at all. Furthermore, there are
already some indications that source activation is related
to working memory. Lovett, Reder & Lebiére (1997), for
example, found that individual differences in working
memory capacity can be simulated by changing the
source activation. Therefore, it can be hypothesised that
when people are fatigued, their source activation is lower.

Mental Fatigue as a Motivational Problem

Shingledecker & Holding (1974) and Hockey (1997)
hypothesise that mental fatigue may also involve a shift
in choice, more specifically, a shift toward strategies
requiring less mental effort. This can be related to the
motivation of the participants. The parameter closest to
the concept motivation is the G parameter described
before in equation (1), which represents the value of the
goal. Literally, the G parameter represents how much
time you are willing to invest in reaching the current
goal. When the task does not involve time pressure, the
value of the G parameter is partly determined by the
motivation of the participant (Taatgen, 1997). So, it can
be predicted that a highly motivated participant will
favour strategies with a high probability of success,
while participants with low motivation will favour
strategies with less costs.

An Example: a Model of the
Memory-Search Task

Sternberg

The model described in this subsection is adapted from
Anderson & Lebiere (in preparation). The task the model
performs is a modified version of the Sternberg memory-
search task (Sternberg, 1969). In this task three letters are
shown on a computer screen, which the participant has to
keep in memory. These three letters are referred to as the
memory set. The time the memory set is shown is long
enough to read the letters, but not long enough to
rehearse them. After that, an attention dot is shown,
followed by a set of four letters, called the display set.
The participant has to decide whether one of the letters
from the display set was part of the memory set. The
probability that this is the case is 50 percent. A new
memory set is presented on each trial, which immediately
starts after the participant has given a response, making
the task self-paced.

The two strategies which can be used to perform
the task are described in Anderson & Lebiere (in
preparation). The strategy that generally has the best
speed-accuracy properties will here be referred to as
retrieve-and-check. When the display set is shown, the
participant focuses on the first letter in the set. He then
retrieves the letter from the memory set with the highest
activation. If this retrieved letter equals the attended letter
in the display set the participant responds with a yes, else
he moves on to the next letter in the display set. If there
is a letter in the memory set corresponding with the
attended letter, this letter will have the highest activation.



The main production rules for retrieve-and-check are
given below. This strategy will produce fast responses,
since the retrieve-trace production will always succeed.

Retrieve-trace

IF the goal is to check if item x is in the memory set
and there is some item y in the memory set

THEN the target is item y

Retrieve-yes

IF the goal is to check if item x is in the memory set
and the target is item x

THEN say-yes

Retrieve-no

IF the goal is to check if item x is in the memory set
and target is not equal to item x

THEN move on to the next item of the display set

The second strategy focuses on accuracy, but is less
efficient. It is called specific-retrieval, since the
participant specifically has to retrieve the memory set
item that matches the current display set item. This will
result in a higher accuracy, since it is impossible to
retrieve a wrong item from the memory set. Another
consequence, however, is that the retrieve-trace
production will fail most of the time. This results in a
longer reaction time, since failing production rules use
the time it takes to retrieve items whose activation equals
the retrieval threshold. The main production rules for this
strategy are given below.

Retrieve-trace

IF the goal is to check if item x is in the memory set
and item x is in the memory set

THEN the target is item x

Retrieve-yes

IF the goal is to check if item x is in the memory set
and the target is item x

THEN say-yes

Retrieve-no
IF the goal is to check if item x is in the memory set
THEN move on to the next item of the display set

The retrieve-no rule has a lower expected gain than
retrieve-trace, so it will only fire when retrieve-trace fails.

Source activation, which was proposed as a
global parameter concerning mental fatigue, effects the
retrieve-trace rule, since that rule tries to retrieve an item
from the memory set. In the retrieve-and-check strategy
the source activation ensures the right item is retrieved.
Lowering the source activation will increase the
probability of retrieving the wrong item, thereby
producing more errors. In the specific-retrieval strategy
lowering the source activation hardly influences the
number of errors that will be made. This can be seen in
figure 3 which presents some simulated data from the
model. The figure also shows that for the retrieve-and-
check strategy reaction times become slower when source
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activation is lowered. The reason for this is that the
activation of the items in the memory set is lower,
because they receive less source activation (see equation
2). In ACT-R it takes more time to retrieve an item
when its activation is low.
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Figure 3. The changes in reaction times and proportion
of errors for both strategies, as a result from lowering the
source activation.

As already explained before, expected gain determines
which strategy will be chosen in a particular situation.
When people are fit, and thus have a high source
activation, the expected gain of the retrieve-and-check
strategy will be highest. However, according to figure 3,
when source activation becomes lower, it can be predicted
that at some point in time the expected gain of the
specific-retrieval strategy will become the highest, and
therefore a shift in strategy will be made. The exact
timing of this strategy change is dependent on the
motivation of the participant. Figure 4 illustrates the
effect of motivation and source activation on the expected
gain of the two strategies. The expected gain is calculated
according to equation 1 using reaction time (from figure
3) as cost, and one minus the proportion of errors as
probability of success. ACT-R’s conflict resolution
mechanism will choose the strategy with the highest
expected gain. As can be seen from the figure, when the
motivation of the participant is low (represented by a low
value of the G parameter) and source activation is
lowered, people still maintain the retrieve-and-check
strategy, although this results in a great number of
errors. However, when the motivation is higher and
source activation is lowered, the participant will shift
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Figure 4. The expected gain of both strategies as a function of the source activation and the motivation (represented by
the value of G) of the participant. R&C = retrieve-and-check, SR = specific retrieval.

towards the specific-retrieval strategy. Furthermore, the
higher the motivation of the subject, the sooner this
strategy shift will take place.

A shift in strategy, or strategic adjustment in
Hockey’s terms, is one change Hockey describes that can
happen when people become mentally fatigued. The
ACT-R model, however, can also predict such a change
and show how this depends on the participant’s
motivation. Hockey’s model describes that performance
normally relies on routine regulation. When people
become fatigued two situations can arise: either
performance will decrease, or control will be shifted to a
higher level (loop B in Hockey’s model). What this shift
in control involves is not completely clear from the
model. The ACT-R model does show what a shift in
control involves. When people become fatigued and
routine-regulation is not adequate for task performance,
the conflict resolution process in ACT-R will select a
strategy that is less sensitive to fatigue. So, in this
model, the change in cognitive control can be directly
derived from the basic processes of the ACT-R theory.

Although an experiment to validate this model
has not been done yet, some studies support the
outcomes of the model. In two studies (Kerstholt, van
Orden & Gaillard, 1994; van Orden, Gaillard &
Langefeld, 1996) in which task instructions for the
memory-search task focused on accuracy, mental fatigue
manifested itself by increasing reaction times, which
could indicate the use of the specific-retrieval strategy. In
another study (Schellekens, Sijtsma & Vegter, in
preparation) in which both accuracy and speed were
emphasised, participants only had a fixed time to
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respond. In this experiment mental fatigue was
accompanied by an increase in the number of errors. This
decrease of accuracy can be explained by the fact that the
time subjects had to respond was too short for the
application of the specific-retrieval strategy, so
participants had to stick to the retrieve-and-check
strategy.

CONCLUSIONS AND RECOMMENDATIONS

As was shown in the previous section, the model
provides detailed predictions of performance changes
when people become mentally fatigued. Furthermore, the
changes it predicts can be directly derived from the
ACT-R theory, which allows for generalisation. Given
an ACT-R model of a certain task, it is easy to predict
the role of mental fatigue in task performance. It will be
especially interesting to study the effects of manipulation
of source activation on models of more complex tasks
that allow participants more strategic freedom, since
several authors have argued that these tasks are most
influenced when people become fatigued (e.g., Bartlett,
1943; Meijman, 1997). The model also predicts that
some tasks will hardly be sensitive to mental fatigue, for
example, if the strategy used does not rely on source
activation. However, the model has not been validated
yet, so future experiments have to be carried out to
support it.
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ABSTRACT

This paper discusses agent architectures which are
describable in terms of the “higher level” mental
concepts applicable to human beings, e.g. “believes”,
“desires”, “intends” and “feels”. We conjecture that
such concepts are grounded in a type of information
processing architecture, and not simply in observable
behaviour nor in Newell’s knowledge-level concepts, nor
Dennett’s “intentional stance.” A strategy for conceptual
exploration of architectures in design-space and niche-
space is outlined, including an analysis of design trade-
offs. The SIM_AGENT toolkit, developed to support such
exploration, including hybrid architectures, is described
briefly.
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MENTALISTIC DESCRIPTIONS

The usual motivation for studying architectures is to
explain or replicate performance. Another, less common
reason, is to account for concepts. This paper
discusses “high level” architectures which can provide
a systematic non-behavioural conceptual framework for
mentality (including emotional states). This provides a
new kind of semantics for mentalistic descriptions. We
illustrate this using multi-layered architectures based in
part on evolutionary considerations. We show briefly how
different layers support different sorts of emotion concepts.
This complements work by McCarthy(1979, 1995) on
descriptive and notational requirements for intelligent
robots with self-consciousness.

We provide pointers to an uncommitted software toolkit
that supports exploration of hybrid architectures of
various sorts, and we illustrate some of the architectural
complexity it needs to support.

WHY USE MENTALISTIC LANGUAGE?

We shall need mentalistic descriptions for artificial agents
for the same reasons as we need them for biological agents,
e.g. (a) because such descriptions will (in some cases)
be found irresistible and (b) because no other vocabulary
will be as useful for describing, explaining, predicting
capabilities and behaviour. ((b) provides part of the
explanation for (a).) So, instead of the self-defeating
strategy of trying to avoid mentalistic language, we need a
disciplined approach to its use, basic mentalistic concepts
on information-level architectural concepts.

The “Information level” design stance
Dennett (1978) recommends the “intentional stance” in
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describing sophisticated robots, as well as human beings.
That restricts mentalistic language to descriptions of whole
agents, and presupposes that the agents are largely rational.
Similarly, Newell (1982) recommends the use of the
“knowledge level”, which also presupposes rationality. By
contrast, we claim that mentality is primarily concerned
with an “information level” architecture, close to the
requirements specified by software engineers. This
extends Dennett’s “design stance” by using a level of
description between physical levels (including physical
design levels) and “holistic” intentional descriptions.

“Information level” design descriptions allow us to refer
to various internal semantically rich short term and
long term information structures and processes. This
includes short term sensory buffers, longer term stored
associations, generalisations about the environment and
the agent, stored information about the local environment,
currently active motives, motive generators that can
produce motives under various conditions, mechanisms
and rules for detecting and resolving conflicts, learnt
automatic responses, mechanisms for constructing new
plans, previously constructed plans or plan schemata, high
level control states which can modulate the behaviour of
other mechanisms, and many more.

Some mentalistic concepts refer to the information
processing and control functions of the architecture. These
functions include having and using information about
things. E.g. an operating system has and uses information
about the processes it is running. Here semantic content
is present without full-blown intentionality or rationality.
Restricting semantic notions to global states of a rational
agent, or banning them altogether from explanatory
theories, would be as crippling in the study of intelligent
agents as it would be in the engineering design of complex
control systems. (However, not all semantic states can
be fully characterised in terms of internal functions, for
instance those that refer to particular external objects, such
as Buckingham Palace, a point beyond the scope of this
paper.)

Many of the mechanisms in such an architecture are
neither rational nor irrational: even though they acquire
information, evaluate it, use it, store it, etc. (Sloman
1994b). They are neither rational nor irrational because
they are automatic. Even a deliberative architecture
at some level needs reactive mechanisms to drive the
processing. If everything had to be based on prior goals
and justifications nothing would ever happen.

ARCHITECTURAL ANALYSIS
Different architectures can correspond to different views



of a system, e.g. a physical architecture, composed of
the major physical parts, a physiological architecture,
corresponding to the major functional roles of physical

parts, and an information processing architecture
composed of mechanisms involved in acquiring,
transforming, storing, transmitting, and using information.

There need not be a one to one correspondence between
components in different views. A physical component may
be shared between several physiological functions: e.g. the
circulatory system is involved in distribution of energy,
waste disposal, temperature control, and information
transfer.

There is a huge space of possible designs. We make
no presumption that information processing mechanisms
must all be computational (whatever that means). Nor
is there a commitment regarding forms used to encode
or express information. They may include logical
databases, procedures encoding practical know-how,
image structures, neural nets or even direct physical
representations, as in thermostats and speed governors.

Biological plausibility requires evolvability as well as
consistency with experimental data and brain physiology.
The capabilities and neural structures of different sorts
of animals (e.g. insects, rodents, apes, humans) suggest
that different types of architectures evolved at different
times, with newer architectures building new sorts of
functionality on older ones. We suggest that human mental
states and processes depend on interactions between
old and new layers in a biologically plausible control
architecture producing various kinds of internal and
external behaviour, including “internal” processes such as
motive generation, attention switching, global redirection
in emergencies, problem solving, information storage, skill
acquisition, self-evaluation and even modification of the
architecture.

Besides the multi-layered central information processing
architecture there are sensors and effectors of various
kinds. These involve more than just transduction of energy
or information into or out of the system. We suggest
that both have evolved multiple layers interacting with the
different layers in the central system as in Figure 1. Such
an architecture can generate a huge variety of concepts
relevant to describing its states and processes. It also
supports a wide variety of types of learning, yet to be
analysed.

Indeterminacy of architecture

Often boundaries between sub-mechanisms and levels
of description are unclear, including the boundary
between the control architecture and mere physiological
infrastructure. In brains, chemical processes provide
energy and other resources, along with damage repair
and resistance to infections. However, effects of drugs,
diseases and genetic defects involving brain chemicals
suggest that chemistry forms more than a physiological
infrastructure: chemically controlled mood changes may
be an important part of an organism’s intelligent reaction
to changing circumstances, and alcohol can change “no”
into “yes”! But we don’t know how far chemical reactions
play a direct role in information processing or high level
control,

In both perception and action the “hardware/software”

boundary is blurred. E.g. visual attention can be
switched with or without redirection of gaze, and fine-
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grained manipulation can be shared between software
and hardware, e.g. in compliant wrists, which reduce the
control problem in pushing a close fitting cylinder into
a hole. Simon (1969) pointed out long ago that there
can be information sharing between internal and external
structures. ‘

It is too early for clear definitions of the boundaries of
architectures or their components. However, important
ideas are beginning to emerge including contrasts
between:

(a) reactive vs deliberative functions,

(b) symbolic vs neural mechanisms,

(c) logical vs other sorts of information manipulation,

(d) continuous vs discrete control,

(e) using continuously available environmental
information vs using information stored in memory,

(f) hierarchical vs distributed control,

(g) serial vs concurrent processing,

(h) synchronised vs asynchronous processing,

(i) genetically determined capabilities, those produced
by adaptive mechanisms within individuals, and those
absorbed from a culture (e.g. learnt poems and equations).

Instead of viewing these contrasts as specifying rival
options, we should allow combinations of these
alternatives to have roles in multifunctional architectures.
Work on hybrid mechanisms (e.g. combinations of
neural and symbolic systems) is now commonplace,
but in order to explore agents rivalling human or even
chimpanzee sophistication we need to understand far
more complex combinations of subsystems, including
complex sub-architectures within perceptual and motor
control mechanisms, and a deep integration of cognitive
and affective functions and mechanisms (Wright, Sloman
& Beaudoin 1996, Sloman 1998 (forthcoming)). However,
there is no unique “correct” architecture: different
designs have different trade-offs, as biological evolution
shows. We need to understand the trade-offs and possible
trajectories. This includes finding good concepts for
describing systems with different designs.

ARCHITECTURES AND EMERGENT CONCEPTS

A deep conceptual framework takes account of the range of
possible states and processes supported in an architecture,
generating a system of high-level descriptive concepts for
describing an organism, software agent, or robot, just as
a knowledge of molecular architecture provides a basis
for labelling chemical compounds and describing chemical
processes.

A control architecture can support a collection of states and
processes, often indefinitely large. Concepts derived in this
way from the architecture are “deep concepts”. “Shallow”
concepts, based entirely on observed behavioural patterns
bearing no relationship to the architecture, are likely
to have reduced predictive and explanatory power, like
concepts of physical matter based on visible properties
rather than atomic and molecular structure.

Not all states require specific mechanisms in the
architecture. A computing system that is “overloaded”
does not have an “overloading” mechanism, since
overloading results from interaction of many different
mechanisms whose functions is not to produce overload.
Similarly many mental states, e.g. some debilitating
emotions, may emerge from interactions within an
architecture, rather than from an emotion module.




If there are several coexisting, interacting sub-architectures
(e.g. reactive and deliberative sub-architectures) then
higher order concepts are needed to describe the variety of
possible relationships between them. For instance, states
in one subsystem can modulate processes in others. Such
relationships can change over time: sometimes one part
is dominant and sometimes the other. Moreover, when
training increases fluency in a cognitive skill this may shift
responsibility for a task from a general purpose module to
a dedicated module.

Familiar prescientific concepts, e.g. “emotion”, can be
ambiguous if they sometimes refer to processes in a
component of the architecture (e.g. being startled, or
terrified by a fast approaching menace, may result from
a specific module, perhaps part of the limbic system) and
sometimes to emergent interactions between subsystems
(e.g. guilt and self-reproach).

Unlike emotions which we share with rats, e.g. being
startled, which use this old global alarm system, many
human emotions involve a partial loss of control of thought
processes, (e.g. extreme grief, ecstasy or hysteria). This
presupposes the possibility of being in control. That,
in turn, depends on the existence of an architecture that
supports certain kinds of self monitoring, self evaluation,
and self modulation. Being careful or careless requires an
architecture able to control which checks are made during
planning, deciding and acting.

Which animal architectures can support control of thought
processes is not clear. Systems lacking such underpinnings
may not be usefully describable as “restrained”, “resisting
temptation”, etc. Can a rat sometimes control and
sometimes lose control of its thought processes? Can
a rat be careless in its deliberations? Over-simple
architectures in software agents will also make such
concepts inappropriate to them,

EVOLUTION AND MODULARITY

Our discussion has presupposed that architectures are
to some extent intelligible.  Will naturally evolved
systems be modular and intelligible? In principle,
any required finite behaviour could be produced by
a genetically determined, unstructured, non-modular
architecture, including myriad shallow condition-action
rules with very specific conditions and actions providing
flexibility. However, as the diversity of contexts grows
and the need to cope with unexpected situations, including
interactions with other other agents, increases, memory
requirements for such a system can grow explosively, and
it becomes more difficult find a design which anticipates
all the conditions and actions in advance. Thus the time
required to evolve all the shallow capabilities is far greater
and the required diversity of evolutionary contexts far
greater than for a system with planning abilities.

A shallow non-modular system would not only be hard to
design, describe and explain: it would be hard to control
or modify, whether controlled from outside or controlling
itself, whether modified by a designer, or modified by
evolution. (Contrast the use of bit-strings in genetic
algorithms with the use of trees in genetic programming.)

All this suggests that for complex organisms there would
be pressure towards more modular architectures with
generic mechanisms that can be combined by a planner
to handle new situations, and adaptive architectures that
can change themselves to improve performance. Both
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the normal evolutionary pressures for modularity and
reuse, and the need for economy in high level self-
control mechanisms could have increased the pressure
towards evolution of modular control architectures, in
some organisms. So the existence of self-monitoring,
self-evaluation and self-control processes could influence
the further evolution of control architectures. Apparently
insects found a different solution.

It may eventually be possible to investigate this issue in
simulated evolution.

THE EMERGENCE OF “QUALIA”

If a system has the ability to monitor its own states
and processes, a new variety of descriptions becomes
applicable, labelling new forms of self control, including
its own discovery of concepts for self-description. The
objects of such self-monitoring processes may be virtual
machine states as well as internal physical or physiological
states.

Many of the spatial, temporal and causal categories used
in perceiving the environment have evolved to support
biological functions of organisms in those environments,
even though precise details can vary widely between
species and between individuals in a species. Likewise,
it is possible that the basic and most general mentalistic
categories that humans use in describing and thinking
about themselves and other agents are not reinvented
by different individuals (or cultures) but generated by
evolutionary processes driving development of self-
monitoring capabilities.

Phenomena described by philosophers as “qualia” may
be explained in terms of high level control mechanisms
with the ability to switch attention from things in the
environment to internal states and processes, including
intermediate sensory datastructures in layered perceptual
systems. These introspective mechanisms may explain a
child’s ability to describe the location and quality of its
pain to its mother, or an artist’s ability to depict how things
look (as opposed to how they are). Software agents able
to inform us (or other artificial agents) about their own
internal states and processes may need similar architectural
underpinnings for qualia.

From this standpoint, the evolution of qualia would not
be a single event, but would involve a number of steps
as more kinds of internal states and processes became
accessible to more and more kinds of self-monitoring
processes with different functions, e.g. requesting help
from others or discovering useful generalisations about
oneself. Such step-wise development may also occur
within an individual.

HOW TO MAKE PROGRESS

There are several ways in which we might try to explore
the relationship between architecture and mentality. One
approach is to push the approach based on “shallow”
behaviour-based concepts as far as possible, and analyse
where it breaks down, or where patching it is very
difficult (e.g. dealing with new unexpected combinations
of conditions where applicable rules conflict, or where no
rule applies).

Another approach is to attempt a theoretical analysis
of the types of situations that will make development
increasingly difficult and to produce increasingly general
architectures to cope with the difficulties, using any ideas



that work, and then conducting experiments to find out

where they break down. This approach need not be
constrained by theories of how human minds work: there
may be alternative architectures capable of producing
extremely useful or even “believable” performances.
Initially the constraints on this type of theorising will be
very ill-defined because of paucity of relevant knowledge
and the shallowness of current theories. - However, it
is likely that as the work progresses more and more
constraints can come from advances in other fields, and
more and more tests can be generated to help us choose
between alternative hypotheses. (Compare the ancient
Greek atomic theory with modern atomic theory.)

Yet another approach is to use whatever direct or
indirect evidence is available from brain science,
experimental psychology, forms of mental disorder,
patterns of development in infancy and decay in old age,
evolution, folklore, introspection, common observation,
or conceptual analysis of everyday mental concepts.
Plausible architectures based on such evidence can then
be tested by running experimental implementations, or
by analysing their consequences and performing empirical
research. '

Our work is based on the second and third approaches. The
architectural ideas in this paper come from a wide range of
sources.

ARCHITECTURAL LAYERS

Part of the task is to find increasingly accurate and
explicit theories of the types of architecture to be found
in various sorts of human minds (and others) to be used as
frameworks for generating families of descriptive concepts
applicable to different sorts of humans (including infants
and people with various kinds of brain damage) and
different sorts of animals and artificial agents.

We conjecture that human-like agents with powers of self-
control need a type of architecture with at least three
distinct classes of mechanisms which evolved at different
times (Sloman 1998(forthcoming)):

(1) Very old reactive mechanisms, found in various forms
in all animals, including insects — this includes “routine”
reactive mechanisms and “global alarm” mechanisms (the
limbic system). .
(2) More recently evolved deliberative mechanisms,
found in varying degrees of sophistication in some other
animals (e.g. cats, monkeys);

(3) An even more recent meta-management (reflective)
layer providing self-monitoring self-evaluation, and self-

control, using in part deliberative mechanisms of type (2), -

and perhaps found only in humans and other primates (in
simpler forms).

Such an architecture is shown schematically (without
alarms) in Figure 1 and each of the layers is described in
more detail below. Note that the layers occur in perceptual
and motor subsystems as well as centrally.

This is one among many possible designs. Some animals
or artefacts may have only one or two layers, and different
kinds of reactive, deliberative and meta-management
mechanisms are possible.

We are not claiming that these mechanisms are alike in all
humans. Deliberative capabilities seem very primitive in
new born infants, and the third layer may be non-existent
at birth. Moreover a culture can influence development
of these layers, as can effects of brain damage, disease
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Figure 1: A three layered agent Architecture
(Note: global ‘alarm’ mechanisms not shown.) -

or aging. Some architectures may be possible for
synthetic agents that are never found in organisms (e.g.
solely deliberative architectures, or hybrid systems without
global alarms).

Categories and strategies in all layers may be influenced
by physical and social environments. A meta-management
layer may use both categories and values absorbed
from a culture as well as some genetically determined
categories and strategies. For instance, certain motives for
acting promote negative self-assessment and guilt in some
cultures and not in others.

Within an individual, it is also possible for different modes
of meta-management to take control in different contexts,
e.g. in a family context, in a football game, and in the
office. Individual variations might lead, at one extreme
to multiple-personality disorder, and at another extreme to
excessively rigid personalities.

Concurrent mechanisms

The layers are not assumed to form a rigidly hierarchical
control architecture. Rather the three layers operate
concurrently, with mutual influences. The reactive
mechanisms will perform routine tasks using genetically
determined or previously learnt strategies. When they
cannot cope, deliberative mechanisms may be invoked, by
the explicit generation of goals to be achieved. This can
trigger various kinds of deliberative processes including
considering whether to adopt the goal, evaluating its
importance or urgency, working out how to achieve it,
comparing it with other goals, deciding when to achieve
it, deciding whether this requires reconsideration of other
goals and plans, etc. (See chapter 6 of Sloman (1978).)

At other times the deliberative mechanisms may either
attend to long term unfinished business or run in a “free-
wheeling” mode, nudged by reactive processes which
normally have low priority, including attention-diverting
mechanisms in the perceptual subsystems. To allow




direct communication with “higher” cognitive functions,
perceptual systems may also have layered architectures
in which different levels of processing occur in parallel,
with a mixture of top-down and bottom-up processing.
(Compare seeing a face as a face and as happy.)

If the internal layers operate concurrently, fed in part by
sensory mechanisms which are also layered, they may
also benefit from a layered architecture in motor systems.
For example, reactive mechanisms may directly control
some external behaviour, such as running, while the other
mechanisms are capable of modulating that behaviour (e.g.
changing the speed or style of running, or in extreme cases
turning running into dancing). Likewise proprioceptive
feedback of different sorts may go to different layers.
Where there is a global alarm system, there may be
variations as regards which components provide its inputs
and which can be modified by it. In humans connections
to and from the limbic system seem to exist everywhere
(Goleman 1996).

We now describe in a little more detail the differences
between the layers (Figure 1) before discussing their
implications for emotions. (The figure is much simplified,
to reduce clutter).

Reactive agents
It is possible for an agent to have a purely reactive
architecture, where:

e Mechanisms and space are permanently dedicated to
specific functions, and can run concurrently, more or less
independently, with consequent speed benefits. Some may
be digital, some continuous.

¢ Conflicts may be handled by vector addition, voting, or
winner-takes-all nets.

o Some learning is possible: e.g. tunable control loops,
change of weights by reinforcement learning. Such
learning merely alters links between pre-existing structures
and behaviours.

e There is no explicit construction of new plans
or structural descriptions or other complex internal
objects, and therefore no explicit evaluation of alternative
structures.

¢ Concurrent processing at different abstraction levels can
encourage the evolution of different levels of processing in
sensory and motor subsystems.

o Some of the reactions to external or internal conditions
may be internal, e.g. various kinds of internal feedback
control loops.

o If “routine” reactions are too slow a fast “global alarm”
system taking control in emergencies may be useful.

As explained above, if all the main possible behaviours
need to be built in by evolutionary adaptation or direct
programming the space requirements may explode as
combinations increase. Likewise the time required to
evolve all relevant combinations. A partial solution is to
provide “chaining” mechanisms so that simpler behaviours
can be re-used in different longer sequences. Simple sub-
goaling may achieve this, changing internal conditions that
launch behaviours. This may be a precursor to deliberative
mechanisms.

It appears that insects have purely reactive architectures,
and cannot reflect on possible future actions. Yet the
reactive behaviours can produce and maintain amazing
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construction, e.g. termites’ “cathedrals”.

There is no form of externally observable behaviour that
cannot, in principle, be implemented in a purely reactive
system, without any deliberative capabilities, though it
seems that in some organisms the evolutionary pressures
mentioned above have led towards a different solution —
which may coexist with the old one.

Combining reactive and deliberative layers

The ability to construct new complex behaviours as
required reduces the amount of genetic information that
needs to be transmitted as well as the storage requirements
for each individual. It also reduces the number of
generations of evolution required to reach a certain range
of competence. In a deliberative mechanism:

e Evaluating and comparing options for novel
combinations before selecting them requires a new
ability to build internal descriptions of internal structures.
It also needs a long term associative memory.

o Using re-usable storage space for new plans and other
temporary structures, and use of a single associative
memory (even if based on neural nets), makes processes
inherently serial.

e New behaviours developed by the deliberative system
can be transferred to the reactive layer (e.g. learning new
fluent skills).

o Sensory and action mechanisms may develop new, more
abstract, processing layers, which communicate directly
with deliberative mechanisms. This could explain high
level sensory experiences (e.g. seeing a face as happy).

o Even if neural nets are used, operation may be resource-
limited because learning from consequences becomes
explosive if too many things are done in parallel. Limiting
concurrent processes may also simplify integrated control.

o Deliberative resource limits may mean that a fast-
changing environment can cause too many interrupts and
re-directions. Filtering new interrupts via dynamically
varying thresholds (see Figure 1) helps but does not solve
all problems.

e A global alarm system may include inputs from and
outputs to deliberative layers.

The need for self-monitoring (meta-management)
Deliberative mechanisms may be implemented in
specialised reactive mechanisms which react to internal
structures, and can interpret explicit rules and plans.

However, evolutionarily determined deliberative strategies
for planning, problem solving, decision making,
evaluating options, can be too rigid. Internal monitoring
mechanisms may help to overcome this e.g. by recording
deliberative processes and noticing which planning
strategies or attention switching strategies work well in
which conditions. This could include detecting when one
goal is about to interfere with other goals, or noticing that
a problem solving process is “stuck”, e.g. in a loop, or
noticing that a solution to one problem helps with another.

Internal monitoring combined with learning mechanisms
may allow discovery of new ways of categorising internal
states and processes and better ways of organising
deliberation. Meta-management and deliberative
mechanisms permit cultural influences via the absorption
of new concepts and rules for self-categorisation,
evaluation and control.



Attending to intermediate perceptual structures can also
allow more effective communication about external
objects, e.g. by using viewpoint-centred appearances to
help direct attention, or using drawings and paintings to
communicate about how things look.

The meta-management layer may share mechanisms with
the other two, including the global alarm mechanism
(limbic system?) but also needs new mechanisms that can
access states and processes in various parts of the whole
system, categorise what is going on internally, evaluate it,
and in some cases modify it. This can help with proper
management of limited deliberative resources.

ARCHITECTURAL LAYERS & EMOTION CONCEPTS
We conjecture that different layers account for different
sorts of mental states and processes, including emotional
states.  Disagreements about the nature of emotions
can arise from failure to see how different concepts of
emotionality depend on different architectural features,
not all shared by all the animals studied.

(1) The old reactive layer, with the global alarm system,
produces rapid automatically stimulated emotional states
found in many animals (being startled, terrified, sexually
excited).

(2) A deliberative layer, in which plans can be created
and executed, supports cognitively rich emotional states
linked to current desires plans and beliefs (like being
anxious, apprehensive, relieved, pleasantly surprised).

(3) Characteristically human emotional states (e.g.
humiliation, guilt, infatuation, excited anticipation) can
involve reduced ability to focus attention on important
tasks because of reactive processes (including alarm
processes) interrupting and diverting deliberative
mechanisms, sometimes conflicting with meta-
management decisions (Wright et al. 1996).

The second class of states depends on abilities possessed
by fewer animals than those that have reactive capabilities.
The architectural underpinnings for the third class are
relatively rare: perhaps only a few primates have them.

Many theories of emotion postulate a system that operates
in parallel with normal function and can react to abnormal
occurrences by generating some kind of interrupt, like
the global alarm mechanism. Consider an insect-like
organism with a purely reactive architecture, which
processes sensory input and engages in a variety of routine
tasks (hunting, feeding, nest building, mating, etc.). It
may be useful to detect certain patterns which imply
an wurgent need to react to danger or opportunity by
freezing, or fleeing, or attacking, or protecting young, or
increasing general alertness. Aspects of the limbic system
in vertebrate brains seem to have this sort of function
(Goleman 1996).

In architectures combining reactive and deliberative layers,
the alarm mechanism can be extended to cause sudden
changes also in internal behaviour, such as aborting
planning or plan execution, switching attention to a new
task, generating high priority goals (e.g. to escape, or to
check source of a noise). Likewise processing patterns
in the deliberative layer may be detected and fed into the
alarm system, so that noticing a risk in a planned action
can trigger an alarm,

Where a meta-management layer exists, data from it could

also feed into the alarm system, and it too could be affected
by global alarm signals. One meta-management function

could involve learning which alarm signals to ignore or
suppress. Another would extend the alarm system to react
to new patterns, both internal and external. Another would
be development of more effective and more focused (less
global) high speed reactions, e.g. replacing a general startle
reaction with the reactions of a highly trained tennis player.

This, admittedly still sketchy, architecture, explains how
much argumentation about emotions is at cross-purposes,
because people unwittingly refer to different sorts of
mechanisms which are not mutually exclusive. An
architecture-based set of concepts can be made far less
ambiguous.

Familiar categories for describing mental states and
processes (e.g. believes, desires, perceives, attends,
decides, feels, etc.) may not survive unchanged as
our knowledge of the underlying architecture deepens,
just as our categories of kinds of physical stuff were
refined after the development of a new theory of the
architecture of matter. Researchers need to be sensitive to
the relationships between pre-theoretical and architecture-
based concepts as illustrated in (Wright et al. 1996).

THE SIM_AGENT TOOLKIT

We still have much to learn about different agent
architectures. The properties of complex systems cannot
all be determined by logical and mathematical analysis:
there is a need for a great deal more exploration of various
types of architectures, both in physical robots and in
simulated systems.

Many robot laboratories are doing the former. We work on
simulated systems so that we can focus on the issues that
are of most interest to us, involving the kind of architecture
sketched above including alarm systems, leaving details of
sensory devices and motors till later. When simulations
are well designed they can sometimes provide cheaper
and faster forms of experimentation, though care is always
necessary in extrapolating from simulations.

Many toolkits exist to support such exploration, usually
based on a particular architecture or class of architectures
(e.g. neural net architectures, or SOAR, or PRS).
We wished to investigate diverse and increasingly
complex architectures, including coexisting reactive and
deliberative sub-architectures, along with self-monitoring
and self-modifying capabilities, and including layered
perceptual and action subsystems. We also wished
to explore varying resource-limits imposed on different
components of the architecture, so that, for example, we
could compare the effects of speeding up or slowing
down planning mechanisms relative to the remaining
components of an architecture (e.g. in order to investigate
various deliberation management strategies, such as
“anytime” planning).

To support this exploration we designed and implemented
(in the language Pop-11 (Sloman 1996)) the SIM_AGENT
toolkit. It is being used at Birmingham for teaching and
research, including research on evolutionary experiments,
and also at DERA Malvern for designing simulated agents
that could be used in training software. An early version
of the toolkit developed jointly with Riccardo Poli, was
described at ATAL95 (Sloman & Poli 1996). Since then
development has continued in response to comments and
suggestions from users (Baxter, Hepplewhite, Logan &
Sloman. 1998).

The toolkit supports a collection of interacting agents
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and inanimate objects, where each agent has an internal
architecture involving different sorts of coexisting
interacting components, including deliberative and
reactive components. Not all agents need have the same
architecture.

The key idea is that each component within an agent
is connected to other components in that agent via
a forward-chaining condition-action rulesystem. Each
agent’s rulesystem is divided into a collection of different
rulesets, where each ruleset is concerned with a specific
function, e.g. analysing a type of sensory data, interpreting
linguistic messages, creating, checking or executing plans,
generating motives, etc. Rulesets can be concurrently
active, and may be dynamically switched on and off. They
may be assigned different resource limits.

Conditions and actions of rules within an agent can refer to
databases in that agent. Thus one form of communication
between sub-mechanisms is through the databases in the
agent. It is possible for an agent to have some global
databases accessed by all components of an agent and
others which are used only by specific sub-groups. One
agent cannot normally inspect another’s databases.

An architecture for an agent class is defined by specifying
a collection of rulesets and other mechanisms, along
with the types of databases, sensor methods, action
methods, communication methods and possibly tracing
and debugging methods. It is hoped that users will
develop re-usable libraries defining different mechanisms
and architectures.

The rulesets are implemented in Poprulebase, a flexible
and extendable forward-chaining rule-interpreter. Rulesets
can be turned on and off dynamically, modelling one
aspect of attention shift, and new ones added, modelling
some forms of cognitive development. Although the main
conditions and actions use patterns matching database
components, some conditions and some actions can invoke
sub-mechanisms directly implemented in Pop-11, e.g. low
level vision or motor-control mechanisms. Other Poplog
languages (e.g. Prolog) or external languages (e.g. C,
Fortran) can also be invoked in conditions and actions. For
example, a rule condition could in principle interrogate
physical sensors and a rule action could send signals to
motors. Sockets can run sub-systems on other machines,
and unix pipes can communicate with processes on the
same machine.

To illustrate the power, a Pop-11 rule action can run the
rule interpreter recursively on a specialised rule system.

The rule-based formalism is easily extendable, allowing
different sorts of condition-action rules to be defined. For
example, one of the extensions designed by Riccardo Poli
allows a set of conditions matched against a database to
provide a set of input values for a neural net, whose output
is a boolean vector which can be used to select a subset of
actions to be run. A recent extension was a new class of
ADD and DELETE actions for automatically maintaining
sets of dependency information between database items,
so that if an item is deleted then everything recorded
as directly or indirectly depending on it, is also deleted.
A Pop-11 condition can be used to perform backward
chaining if desired.

The interpreter can be run with various control strategies,
including the following options for each active ruleset on
each cycle: (a) all runnable rules (those with all conditions
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satisfied) are run, (b) only the first runnable rule found is
run, (c) the set of runnable rule instances is sorted and
pruned (using a user-defined procedure) before the actions
are run.

When the rule interpreter is applied to a ruleset, it can be
allowed to run to completion (e.g. until no more rules have
all conditions satisfied, or a “STOP” action is executed.)
Alternatively it can be run with a cycle limit N, specifying
that it should be suspended after N cycles even if there are
still rules with satisfied conditions. Another possibility is
to set a timer and halt it after a fixed time interval. Either
of these mechanisms can be used to impose resource limits
on one ruleset relative to others, within an agent.

The design of the toolkit supports multi-agent scenarios,
using a time-sliced scheduler which in each time slice
allows each agent to run its sensory methods, its internal
rulesets, and, in a second pass at the end of the time slice,
its external action methods.

The object oriented design uses Pop-11’s Objectclass
system, which supports multiple inheritance and generic
functions. This makes it easy for users to extend
the ontology by defining new sub-classes, with their
own sensing, acting and internal processing methods,
without any editing of the core toolkit code. A default
class provides a default set of methods, including the
simrun_agent method used to run each the agent’s
rulesets, along with various tracing methods.

The object oriented approach allows a Pop-11 graphical
library to be connected to the toolkit by re-defining
tracing and other methods (e.g. move methods) to invoke
graphical procedures. The graphical facilities support not
only displays of agent actions but also asynchronous user
intervention: e.g. using the mouse to move objects in
an agent’s environment, or turning tracing and profiling
mechanisms on or off while the toolkit is running.

Scenarios implemented so far using the toolkit include a
simulated robot using a hybrid modular architecture to
propel a boat to follow the walls of an irregular room,
evolution of a primitive language for cooperation between
a blind and an immobile agent, a user controlled sheepdog
and sheep to be penned, two purely reactive “teams” of
agents able to move past each other and static obstacles
to get to their target locations, a simulated nursemaid
looking after troublesome infants while performing a
construction task, a distributed minder (Davis 1996), one
agent tracking another subject to path constraints in 3-D
undulating terrain, and, at DERA Malvern, simulated tank
commanders and tank drivers engaging in battle scenarios
(Baxter 1996). We expect to continue developing the
toolkit and building increasingly sophisticated simulations,
moving towards the architecture depicted in Figure 1 and
subsequently extended in various ways.

In particular we have plans for improving the self
modifying and self monitoring capabilities by replacing
the rulesystem, currently a list of rulesets and rulefamilies,
with database entries. Thus rule actions can then change
the processing architecture.

The toolkit is applicable to a wide range of agent
development tasks, including simplified software agents
which require only-a small subset of beliefs, goals,
plans, decisions, reactions to unexpected situations, etc.
These might be web search agents, or “believable”
entertainment agents whose observed behaviour invites



mentalistic description whether or not the descriptions are

justified by internal mechanisms, states and processes, e.g,
the OZ project at CMU (Bates, Loyall & Reilly 1991).
The toolkit could also be used to implement teaching and
demonstration libraries, e.g. for students in psychology
or the helping professions, where students can manipulate
the architectures of simplified human-like agents, to gain a
deeper understanding of the multiple ways in which things
can go wrong.

CONCLUSION

Like software engineers, and unlike Dennett and Newell,
we assume semantically competent sub-systems, but not
rationality. Using this information-level design stance,
we have sketched a framework accommodating multi-
disciplinary investigation of many types of architecture
of varying degrees of sophistication, with varying
mixtures of information-processing capability, based
on Al, Alife, Biology, Neuroscience, Psychology,
Psychiatry, Anthropology, Linguistics and Philosophy.
This framework can extend our understanding of both
natural and artificial agents. Above all it generates systems
of concepts for characterising various types of mentality.
Information-based control architectures provide a new
framework for analysing, justifying and extending familiar
mentalistic concepts.

There is no uniquely “right” architecture.  Types
of architectures that are relevant, and dimensions of
possible variation, are not yet well understood. More
exploration and analysis is required, replacing premature
(sometimes confrontational) commitment to particular
mechanisms and strategies. We need to understand the
structure of design space and niche space, and trajectories
that are possible within those spaces (Sloman 1994a,
Sloman 1994b, Sloman 1998 (forthcoming)). This requires
collaborative philosophical analysis, psychological and
neurophysiological research, experiments with diverse
working models of agents, and evolutionary investigations.
Some of this exploration can be based in part on powerful
new software tools.

Such work is likely to throw up types of architectures that
we would not otherwise think of, which will force us to
invent new concepts for describing synthetic minds which
are not like our own, and help us understand our own by
contrast.
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ABSTRACT

In this article we describe a theory aiming at the inte-
gration of cognitive processes, emotion and motivati-
on. The theory describes the informational structure of
an intelligent, motivated, emotional agent which is able
to survive in arbitrary domains of reality. This agent is
~energized” by six motives (needs for energy, water,
pain-avoidance, affiliation, certainty and competence).
The cognitive processes of this agent are modulated by
emotional states and processes. By comparing the be-
haviour of Psi with human behaviour in a complex
computer scenario, the model was tested against reali-
ty. Subjects were asked to regulate a dynamic system
structural identical to the environment of the autono-
mous agent. First results show striking similarities
between artificial and human behaviour as well as
differences.

Keywords
Artificial Life, Cognition, Emotion, Motivation, Action
Regulation.

INTRODUCTION

In cognitive science there is a focus on cognition when
considering action regulation. Emotional and motiva-
tional processes, however, play a considerable role in
human behaviour triggering cognitive processes. In a
state of anger thinking and reasoning differs from
processes under ,normal“ conditions. Different emo-
tional states even influence perception in a specific
manner. — In a long lasting process of action regulati-
on, when humans have to tackle difficult problems,
neither emotions nor motives remain constant. Forese-
eing that an important problem cannot be solved an
individual will feel helpless and this feeling of
helplessness will trigger other feelings and can change

66

the current motive. The motive to find a solution for an
intellectual task will be replaced by a motive to de-
monstrate ,competence“ as the inability to solve the
problem threatens the self-confidence of the individual.

THE PSI THEORY OF ACTION-REGULATION

A single theory of cognitive processes does not suc-
ceed in explaining human behaviour. Furthermore it is
necessary to include assumptions about the dynamics
of emotions and motivations. During the last years we
developed a theory — the Psi theory — concerning the
interaction of cognitive, emotional and motivational
processes. A computer program was constructed to
simulate the theoretical assumptions (see Domer &
Hille, 1995; Hille, 1997; Schaub, 1997). The Psi theory
is completely formulated in terms of the theory of
neuronal networks, but going into details about the
inner structure would exeed the aim of this paper

Fig. 1: Psi as an ,,autonomous steam engine*.

The Psi theory includes more than assumptions about
single cognitive processes. It aims at a description of



the interaction of different cognitive and non-cognitive
processes. It is a theory in the tradition of artificial
life“ - research (Steels, 1993). It exists a computer
program simulating the theory. The actual version of
this computer program is available in internet on page
http://141.13.7049. Fig. 1 shows a possible
»materialization“ of Psi as an autonomous steem engi-
ne which should care for its existential needs (water
and energy). The architecture of the model will be
explained below.

Motivation

Fig. 2 shows a rough sketch of Psi’s internal structure.
At the bottom of fig. 2 the motivational system of Psi is
symbolized by a number of ,watertanks“. These tanks
are mechanical models of ,motivators“, ,Motivator”
means a system which is sensible for the level of a
variable. This should be kept within certain borders
(within a setpoint region) by the system. Such variables
could be water or energy resources of a system, tempe-
rature of a body or any other variable important for life
or welfare of a system. When a variable deviates from
its set point, a motivator becomes active. In this case
there is a need and the motivator will try to launch
activities to restore the set point value of the respective
variable.

Which motivators are necessary? First of all Psi has to
care for its existence. This means that Psi needs (for
instance) water and energy. And Psi should preserve its
structure; it should avoid pain. Additionally to these
»existential“ needs Psi has informational“ needs,
namely a need for certainty, a need for competence and
a need for affiliation.

The need for certainty is satisfied by ,certainty si-
gnals“. An important certainty signal is for example a
correct prediction. Acting in a certain domain of reality
Psi will learn regularities of its environment. Therefore
it will be able to predict the outcomes of its actions and
progress of events. If these predictions are correct they
will be certainty signals and will fill the ,certainty
tank“. If the predictions are wrong or if the chain of
events does not develop in the predicted way, however
this means uncertainty and will decrease the level of
the ,certainty tank“,

The need for competence is a need for ,competence
signals“. Each satisfaction of a need, for instance the
satisfaction of the need for water, is a signal of com-
petence for Psi. Satisfaction of a need signifies that Psi
is able to care for itself. On the other hand a longer
lasting period of non-satisfaction signifies inability and
therefore is an incompetence signal which empties the
competence tank.
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Fig. 2: The internal structure of Psi. SeeText.

An empty competence- and an empty certainty-tank
launch specific activities. The need for certainty for
instance can activate exploration or — depending on the
competence (level in the competence tank) — flight. A
low level of competence (it shouldn’t be too low) will
activate ,adventure-seeking®, looking for problems the
solution of which proves ones own competence.

Group integration is symbolized by the level of the
saffiliation tank®. This tank will be filled up by
,signals of legitimacy“ (Boulding, 1978) as for instan-
ce a smile or a clap on the shoulder. Reports of disap-
proval serve as signals for nonaffiliation and will
empty the ,affiliation tank“. — The needs for certainty
and for competence are very important for the emotio-
nal regulations of Psis behaviour.

Psi’s architecture of motivation allows several needs to
be active at the same moment. It is therefore vitally
important to equip Psi with a selection device, the
Motive Selector of fig. 1. This selection device has to
select one of the active motives for execution. The
motive selected will become the actual intention. An
intention is a data structure consisting of informations
about the goal, about the present state and normally of
more or less complete plans for achieving the goal.

The selection device works according to an expectancy
- value principle; i.e. it selects the motive with the
largest expectancy of success and the largest under-
lying need. (We call the product of expectancy of ef-
fect and amount of the underlying need the strength of
a motive. So the selection device looks for the motive
with the greatest strength.)




Action regulation, memory and cognitive processes

After an intention has been formed, Psi will ,run the
intention“ to achieve the respective goal. ,,Running the
intention“ can mean different processes. When Psi has
a lot of experience with the respective domain of rea-
lity its memory will often provide a complete course of
action as a chain of operations or locomotions leading
from the actual situation to the goal. If this however
fails an inbuilt planning procedure will try to construct
a course of actions by putting together single pieces of
knowledge about operators and event chains. (At the
moment this planning procedure is a forward-planning,
hillclimbing procedure.)

If planning is impossible due to a lack of information
or if planning proves to be not successfull, Psi will use
trial-and-error procedures to collect information about
its respective environment. Generally Psi organizes its
activities according to the Rasmussen - system
(Rasmussen, 1983). If possible first of all it tries its
highly automatized skills, then it changes to
»knowledge-based behaviour and the ,ultima ratio“
are the trial-and-error procedures.

Psi learns by experience, learns the effects of operators
in a specific domain of reality, learns goals and learns
chains of events and therefore is able to predict what
will happen in the future. But additionally we installed
forgetting in the memory of Psi. Forgetting simply is a
decay process which continuously diminuishes the
strengths of the memory traces. Traces which are rather
strong lose less of their strength in time than weak
traces which will be destroyed rather quickly. Forget-
ting has a important function for Psi’s cognitive
processes. ,,Punching holes“ into sensory and motor
schemata of Psi’s memory makes them ,abstract®,
»hollow*, so that the schemata do not represent con-
crete images any more, but equivalence classes.

The memory system of Psi is extremely simple and
(therefore) powerful. All perceptions and activities are
continously recorded. This record is a kind of log of
the changing environment, Psis activities and the cur-
rent intentions. The memory chains representing the
immediate past are very dense. Due to forgetting
however, memory will consist of single episodes and
activities. Memory traces combined with need satis-
faction or generation (for instance pain) will be rather
strong. Others are weaker and therefore more exposed
to decay. Psi has a short term memory which is simply
the ,head“ of the record. This short term memory
without any rupture continues into an episodic memo-
ry. Remnants of this eventually form the long term
memory. If parts of the longterm memory are reused
(in planning for instance), the strength of the respective
memory trace is enhanced.
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Emotions

The information processing of Psi is ,,modulated®. This
means that all cognitive processes of Psi are ,shaped”
according to certain conditions. Such conditions are for
instance the strength of the actual intention, the overall
amount of all the different needs, the amount of com-
petence and others. These conditions set specific
»modulators“. One of these modulators is ,activation®
which depends on the strengths of the needs (roughly
spoken the amount of activation mirrors, the sum of the
strengths of the needs). Activation triggers some other
modulators, for instance ,resolution level“ and
,selection threshold”. Resolution level (RL) is the
degree of exactness of comparisons between sensory
schemata. As most of the cognitive processes of Psi
comprise comparisons between schemata this modula-
tor is very important. Comparisons take a long time at
a high level level of resolution, but they will be relia-
ble. Under high pressure (when activation is high) the
resolution level is low, comparisons don’t need a long
time, but the risk of ,,overinclusiveness is high. A low
level of exactness will automatically produce the ten-
dency to consider unequal objects and situations as
equal. (This is due to certain mathematical reasons
which will not be considered here.) Quick planning
processes and a high readiness for action will be the
result of a low resolution level, but the plans will be
rather risky.
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Fig. 3: Emotional modulations. See text.

Selection Threshold (ST) could also be called ,level of
concentration”. ST is the strength of the defence of the
actual intention against competitors, against other in-
tentions having the tendency to take over the com-
mand. The strength of the different motives is not at all



constant in the life of Psi, but changes continuously.
Because of consumption the needs for energy and for
water continuously increase. But a motive can gain
strength by external factors too. If for instance Psi
notices in a certain situation that it is easily possible to
get water, a tendency to shift to the water-intention will
result as now the expectancy value for the water —
motive increased. Or if an unexpected event will occur
the ,need for certainty“ might increase and Psi will
exhibit the tendency to explore the (uncertain) envi-
ronment or will have the tendency to run away and to
hide. Or if for instance planning proves to be unsuc-
cessfull, Psi’s ,self-confidence” (level of competence)
is endangered and Psi will exhibit the tendency to , try
its strength®, to prove its competence to itself, for in-
stance by looking for a task which is difficult enough
that mastery proves competence, but not so difficult
that the risk of failure is high.

If ST is high ,behavioural oscillations®, i.e. a rapid
change between different intentions will be hindered to
a certain degree (Atkinson & Birch, 1970). A high ST
prevents Psi on the other hand from using unex-
pectedly arising opportunities or from reacting to
unexpected dangers. Is ST high, the field of Psi’s per-
ception will narrow down.

Fig. 3 gives a general impression of the emotional
regulations of Psi. We describe these regulations in
terms of neuronal networks (as it is realized in Psi).
White circles represent activating neurons, whereas
gray circles represent inhibiting neurons. The compe-
tence and the certainty - level are now represented as
the activation state of neurons. Certainty signals en-
hance the activity of the ,certainty-neuron“, whereas
uncertainty - signals diminuish this activity. — Satis-
faction of a need serves as competence signal and en-
hances the activity of the ,competence-neuron®, whe-
reas non-satisfaction decreases this activity. When the
uncertainty level is low (high uncertainty) a tendency
for flight or aggressive activities will be observable,
depending on the competence level. With a high level
of competence Psi will exhibit a tendency for aggressi-
on in uncertain situations, whereas with a low level of
competence it will exhibit flight tendencies.

Activation triggers the ,,general unspecific sympathicus
syndrome®; i.e. high vigilance and a high degree of
readiness to react. Additionally it triggers RL and ST,
which modulate cognitive processes, perception, plan-
ning activities, memory search. It is obvious that Psis
emotions are the result of a rather complex interaction
of motivational and cognitive processes together with
the modulation of RL and ST.

These modulators (RL and ST) together with the need
for certainty and the need for competence produce a lot
of ,emotional“ forms of behaviour. Psi exhibits fear
(expectation of an uneasy event), anxiety (,need for
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certainty“), anger (when unexpectedly Psi is hindered
to reach a goal), surprise (unexpected event). This
theory of modulations together with the specific moti-
vational structure of Psi constitute a ,subaffective”
theory of emotion. A theory, which defines emotions in
non-emotional terms. To be able to monitor Psis emo-
tions we gave a human face to Psi which alters accor-
ding to Psis emotional states. Fig. 4 shows some of the
facial expression of Psi in different situations.
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Fig. 4: Psi’s emotions. See text.

In the upper left corner a resolute Psi can be observed.
Psi has a goal and is willing to achieve it against all
obstacles. In the upper right corner Psi is seized with
horror, helplessly anticipating uneasy events. The
middle one face shows Psi in a state of pure joy. The
face in the bottom line right shows a joyfull Psi too.
You will notice, however, a slight surprise-emotion in
this face comparing it with the middle one face. The
middle one face in the bottom line shows pain, whereas
the face on the right side in the medium line exhibits a
state of caution and hesitation. — All these emotions
are observable not only in Psis facial expressions, but
in its behaviour too'.

Fig.4 shows what will happen, if you put Psi to a new
environment. First the feeling of competence and the
feeling of certainty decrease, as Psi is not able to pre-
dict what will happen and is not able to care for ist
existential needs. But after some learning the respecti-
ve schemata for appropriate behaviour will be establis-
hed and Psi is able to cope with its ,,world“.

! The procedure for the facial expressions was pro-
grammed by Jiirgen Gerdes.
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Fig. 4: An example of the ,,world* of Psi and a single
pSituation®,

This ,,world“ is a maze-like environment composed of
single ,situations“. Fig. 4 shows an example of such a
sworld“, Psi has to learn how to move from one situa-
tion to an other one to arrive at ,water® or ,energy* -
situations to satisfy its basic needs. Additionally Psi
should learn to avoid dangerous situations. The
,Situations“ are composed of elements like houses,
trees, bushes etc. In the upper right corner of fig. 4 an
example of a ,situation“ is visible. ,,To behave“ in such
an environment means to manipulate the respective
parts of a given situation or to move from one situation
to the other one by applying the appropriate operators.
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Fig. 5: Psi’s ,fate® in a new environment.

In fig. 5 some of the internal parameters of Psi when
exposed to a new environment are visible. You may
observe that first Psi cannot avoid painfull situations
and is not able to care for its existential needs (,,thirst®
for instance increases from cycle 1 to cycle 100 conti-
nually as Psi is not able to find water within this time
period). But after some learning Psi becomes able to
avoid painfull situations and has acquired the capabili-
ties to care for itself.
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A COMPARISON BETWEEN HUMAN BEHAVIOUR
ANDTHE BEHAVIOUR OF PSI IN THE BIOLAB-
GAME

The capability of understanding, explicating and pre-
dicting empirical phenomena might help to estimate
the value of a theory. The study presented is examining
whether the Psi-model succeeds in replicating human
behaviour in a complex task.

For that aim we used the scenario BioLab to compare
the behaviour of Psi with the behaviour of experimen-
tal subjects. We were interested in the similarities and
differences between ,artificial“ and human behaviour.
Differences would possibly point out that basical as-
sumptions of the theory have to be revised. Furthermo-
re the comparison helps to detect the limits of the mo-
del explaining human behaviour.

In summary the behavioural test has two objectives:
first the results may contribute to the evaluation of the
Psi model and the underlying theoretical assumptions.
Second the results can give hints to the improvement
and the completition of the model of action regulation.
By confronting the model with reality necessary
modifications and elaborations might be detected.

The scenario BioLab

In the ,Biological Laboratory for sugar-based Energy
Production® (,,BioLab“ factory) subjects are asked to
produce certain types of molasses to generate electri-
city or heat. To modify the molecular structure of the
molasses they can use different kinds of catalysts.
Under certain conditions, however, the adding of cata-
lysts may cause contaminations. As a result a cleaning
of the reactors is necessary. Neither electricity nor heat
can be produced until this work has finished. Therefore
it is useful to avoid such situations.

The BioLab-system corresponds a maze formally.
Subjects can move from one situation to another by
using catalysts as operators. They change the structure
of the molasses respectively to their actual position in
the maze. The amount of operators consists of ten
catalysts, some of them needing specific conditions to
work. The situations consist of a combination of six
dimensions each of them having two valences: either
zero or one. This will lead to 64 different situations
each represented by a specific combination of these
digits.

It is possible to divide the structure of the maze into
eight circles, each of them having the valences of the
first three dimensions in common. As the eight situati-
ons within the circles are highly combined with each
other, it is rather simple to move from one situation to
another (see fig. 6). In order to leave a circle, it is
however essential to have one specific combination of
the dimensions four to six. Only this specific situation
allows changing between the circles.



Fig. 6: The structure of the maze consisting of eight
circles, built up by eight situations (figure shows one
of eight sections).

The subjects do not know the formal structure of the
maze. They have to explore the BioLab. The situations
are visualized by pictures showing the molecular
structure of the molasses on the screen. The situation is
shown by the characteristics of the molasses in two
tanks: they vary with respect to amount, colour and
bubbles (see fig. 7).

Fig. 7: The situations of BioLab represented by the
different structure of molasses in two tanks.

To produce energy, it’s inevitable to find a way from
electricity to heat production and vice versa. Their
need for energy is represented by two bars: one sho-
wing the actual need for electricity and the other one
showing the system’s need for heat. The urgency of
producing electricity and heat is symbolized by the
length of the bar. For example when a subject reaches a
situation which provides electricity, the bar will be
filled up, no matter how empty it was before. Until the
reload is going to happen the electricity resources will
be decremented over time.

Electricity as well as heat can be produced in each of
the eight circles of the maze. To gain energy a specific
combination of the dimensions four to six is essential.
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As a consequence of getting to situations of satisfaction
several times, they will be exhausted. Therefore it is
important to find alternatives and to adapt the
behaviour to environmental changes.

In summary, handling the BioLab requires capacities
of complex problem-solving. Subjects have to explore
and regulate a dynamic system with two appetetive and
one aversive aims. While they are working on the
BioLab game they are coping with a problem identical
to the environment of the autonomous agent Psi. Now
let’s have a look how efficient the laboratory is con-
ducted and how the subjects in contrast to the Psi-
model learn to use the catalysts in an effective manner.

The comparison of human and artificial behaviour:
efficacy of need satisfaction and of catalysts use
The results presented rely on an experiment conducted
with 12 subjects each of them playing the BioLab ga-
me for one hour. Each of the subjects had to play under
two experimental conditions: first they had to think
aloud, second they had to keep tacit. After half an hour
of playing the experimental condition changed. Variing
the sequence of the two instructions, the subjects were
randomly divided into two groups. Most of the subjects
were students of psychology from the University of
Bamberg. ‘

In general the task was neither too easy nor too dif-
ficult for the subjects. All of them succeeded in finding
situations where energy production is possible, at least
by chance. One subject succeeded in exploring the
whole structure of the maze. He/she could intentionally
change from one circle to another and has found a
efficient way to move from electricity to heat producti-
on within the circles.

For a useful comparison between the behaviour of Psi
with the behaviour of the subjects we had to parallelize
parameters of environment as well as of action time.
Whereas the subjects carried out about six actions per
minute, Psi conducted more than sixty at the same
time. For this reason only the first 360 actions of the
model’s behaviour protocol were evaluated.

Let us have a look upon the efficiency of managing the
BioLab problem: One value representing the
performance is the score achieved at the end of the run.
Starting with zero, the account increases with a
hundred points whenever electricity or heat is
produced. Whenever the lab is contaminated, the
account decreases by fifty points. Every thirty minutes
the account is lowered by one point and finally every
use of a catalyst costs one point either.

These statistical results illustrate that human subjects
are capable of managing the lab rather good. The mean
account is 1314 points after 60 minutes. The variance
between the subjects, however, is huge. The subject
with the best perfomance gained 2108 points, whereas
the worst performance achieved 217 points. The effi-




ciency of the model run is even lower: Psi could only
manage to get 120 points in the game. The rather bad
performance does not rely on a greater number of
contaminations (see tab. 1). Moreover the results of the
Psi model show a less effective use of catalysts and
therefore a lower rate of needs satisfaction.

Subjects Psi
mean mini- maxi- value
mum mum
account of | 1314.58 217 2108 120
points
number of 10 2 16 8
contami-
nations

Tab. 1: Statistic values representing the effeciency of
needs satisfaction.

One value representing the successful use of the ope-
rators is the percentage of effective catalyses. Psi used
as much catalysts as the average subjects. In contrast to
the subjects, however, only 15% out of these caused
the molasses to change its characteristics.

The following figure shows a boxplot about the results
of the subjects and Psi. The subjects were subdivided
in two groups: one of them starting with the instruction
»thinking aloud®, the other one tacit. The bar in the box
indicates the median, within the box there are 50% of
the subjects represented. The ,whiskers* of the box
mark the 25th and the 75th percentile of the distributi-
on. Remarkably the performance of the Psi model
would be placed within the area marked by the whis-
kers in the tacit group. Compared to the subjects thin-
king aloud Psi’s performance is significantly low. Its
performance is contrasted by the subject ,,Ellobo* who
achieved the best efficacy of the whole sample.

6 *ELLOBO
5

A I
3

2

: PSI

' tacit thinking aloud

Fig. 3: The percentage of effective catalyst use bet-
ween PSI and the subjects. See text.
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First results of single-case studies

Comparing human and artificial behaviour with respect
to statistical values will not be sufficient to evaluate a
model. Furthermore we tried to replicate the behaviour
of each individual by varing the starting parameters of
the simulation. By this we created different personali-
ties.

As long as emotional reactions and their impact on
information processing are concerned, first results
reveal similarities between the model’s and the sub-
jects’ behaviour.

According to the assumptions of the Psi model subjects
show a specific way of action organization: at the be-
ginning they mainly apply a strategy which can be
described as ,trial-and-error“. In the following stage,
catalysts are used with respect to success or failure in
the past. As a consequence catalysts leading to need
satisfaction will be used more frequently in the future,
whereas catalysts leading to neutral situations or
without any effect will be taken less frequently. Finally
catalysts producing contamination will be used more
carefully.

As soon as environmental conditions are explored
sufficiently, the subjects as well as Psi start making
plans. Single action sequences are combined to chains.
After gaining a high competence in managing the lab,
people as well as our artificial system have an amount
of automatisms available. The Rasmussen-system
(1983) can be discovered in both: human and artificial
behaviour.

Remarkably when trying to replicate the behaviour of
single subjects we suceeded in modelling subjects with
a rather poor performance, p.e. a quite anxious person
producing contamination by the first action he/she
made. As a result the subject avoided the catalyst for
more than half an hour and as a consequence was not
able to produce electricity.

In contrast to more successful subjects the PSI-
simulation lacks the capability to reflect on its own
behaviour. For this reason strategic flexibility and
analogies (i.. the adoption of learned behavioural
sequences on similar situations) can not be found in the
simulation runs of out artificial system but in human
behaviour.

CONCLUSION

Exploring the similarities and differences of the beha-
viour of Psi and human behaviour, we found remar-
kably parallels between the behaviour of Psi and the
behaviour of humans. Similar situations provide dif-
ficulities for both: humans and Psi. Moreover in com-
parable situations the model’s emotional expression
resembles to the expression of the subjects.



There are striking differences as well as similarities.
For instance though the planning procedure of Psi is
sometimes rather close to what is observable in human
behaviour, shows striking differences to human thin-
king.

Mainly self-reflection is missing. Humans more or less
frequently change their thinking and planning procedu-
res by considering the records of their own thinking,
analyzing the structure of these records and altering it.
Psi is not able to do this. We believe that this is due to
the fact that Psi is not able to speak. This ,,inner dialo-
gue“ is one important aspect of higher cognitive
functioning in humans. Therefore Psi should be provi-
ded with natural language too in order to get the ability
of an inner dialogue.
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ABSTRACT

In this paper we address the issue of how initial menu
search experiences are encoded and then used to guide
subsequent search. We report empirical data from
participants searching in a menu structure in which they
cannot use spatial strategies and are therefore required to
use just the labels to guide themselves. We then describe
two cognitive models of menu search: the AYN model
which encodes recognition chunks for tried options and
gradually acquires positive and negative control
knowledge; and an activation-based model which
increases the activation of seen and tried options and then
uses these activation levels on subsequent trials to guide
its search. The data from the activation-based model
provides the better fit to the empirical data.

Keywords
Interactive Search, Cognitive Models, Memory, Learning,
Computer Menus

INTRODUCTION

Searching through menu structures is a common method
of interacting with computers: using software packages,
browsing the world-wide web and searching databases
are just some of the tasks that require menu search (or
interactive search). The task of interactive search can be
specified in basic terms as requiring a person to make
selections in order to find a particular goal. They can
either select an option! to move forward down a branch
of the menu structure, or select an operator to move back
up the menu structure (either back just one step or back to
the initial starting point). The task of interactive search is
therefore different from other problem solving tasks in
that people initially do not know what the outcome of
operators (moves) will be until they are tried.

In this paper we summarise an empirical investigation of
interactive search (for a full report see Howes,
Richardson and Payne, in preparation), together with two
possible cognitive models of interactive search which are
then assessed against the empirical data. We are
especially interested in understanding how memories
encoded during the initial search experience shape
behaviour on subsequent searches for the same goal. In
particular, how does a user learn the sequence of choices
that leads to a particular goal? The delay between the
time when a menu option is selected and the time when
that option can be evaluated as correct or not (when the

1 We use the terms "options", "selections", "choices"

and "items" interchangeably to refer to the labels at a
menu node.
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goal is achieved) makes this task more difficult than it
might first appear. In many instances, incorrect paths
will be explored before the correct route to the goal is
found. The user must learn to distinguish those options
which were tried and found to be incorrect from those
which eventually led to the goal.

One of the most obvious guides as to which options to
select during initial search in an unfamiliar menu is the
semantics of the labels: labels which are closely related to
the current goal should be better choices than those which
are more distantly related to the goal (Franzke, 1994;
Franzke, 1995). For example, given the goal of checking
the spelling of a document in Microsoft Word, the menu
header "Tools" seems like a better choice then "Insert" or
"Font". However, the label semantics are rarely a
sufficient guide to the correct route to a goal. In the
above spell-check example, both "Tools" and "Format"
might seem equally good choices to a novice user.

There have been several previous cognitive models of
how people search in menu structures where the
semantics are not sufficient, such as, the IDXL model
developed by Rieman, Young and Howes (1996) and the
model of expert search behaviour developed by Kitajima
and Polson (1995). However, these have tended to focus
on the initial search process and the question of how to
decide which options to select. Whilst such models are
candidate models of how experts and novices search
during initial exploration of a menu structure they do not
address the problem of how memories of that search are
encoded and subsequently used: they leave open the
question of how people perform a menu search task for
the second, third or fourth time, or how performance
improves with experience. A start has been made at
addressing these questions with the AYN model (Howes,
1994).

One of the first questions that we can ask is how the
initial search is encoded. The experience could be
encoded just in terms of the menu labels. For example,
the spell-check task might be encoded as selecting
"Tools" followed by "Spelling". We term this a lexical
encoding. In addition or alternatively, people might
exploit the spatial structure of the menu tree and encode
their search experience in terms of some spatial
representation of the menu structure and the spatial
location of the goal within that representation. For
example, the spell-check task might be encoded as
selecting an item towards the right of the menu bar and
then selecting the first item under it.

In addition, it is also possible that users rehearse their
choices during the initial search process. For example, at



any one time, users could attempt to rehearse the
sequence of choices leading to their current position in
the menu structure. Upon reaching the goal, the most
recently rehearsed sequence would be the correct route.
We would expect rehearsal of this type during search to
give rise to a primacy effect (improved performance for
the first items in the sequence as they will have been
rehearsed for a longer time than the later items).

Alternatively, a recency effect (improved performance for
the last items in the sequence) might emerge if users
reflect on the actions that they have just performed when
they reach the goal (e.g. Howes, 1994).

Therefore, one way to investigate the question of how
initial search experiences affect subsequent learning is to
look at the order in which the sequence of options leading
to the goal are learnt. We use the term "effect of levels”
to refer to this differential learning of options at different
levels.

EMPIRICAL INVESTIGATION

In this experiment (described in full in Howes,
Richardson and Payne, in preparation), we wished to
investigate the order in which the choices leading to the
goal were learnt, independent of factors such as semantics
which may differentially affect different decisions. For
example, if one choice was between two semantically
plausible options and a second choice was between one
highly plausible option and one that was implausible, we
would expect the second choice to be learnt more readily
than the first. In order to avoid potentially confusing
effects of semantics such as this in our experimental data,
we used menu trees constructed entirely from labels
which had no semantic relationship to the goals. Thus, at
each node in these menu trees the level of semantic
guidance to the correct choices was the same and there
should be no differential effects.

Such semantically unhelpful menu trees are not entirely
unrealistic. As pointed out above, semantics are a far
from perfect guide in many real-life menus and users are
often faced with selecting between two (or more) equally
plausible or implausible options.

In addition, we also wished to investigate how people's
performance is affected if all possibility of forming
spatial encodings is removed and they are forced to just
use the labels. In order to achieve this we used two
groups of participants. The first group performed the
menu search task with randomised positioning of the
labels at each node (each time a participant visited a
node, the label positions might or might not be swapped
around). This manipulation should prevent these
participants from encoding their experience spatially.
The second group of participants performed the search
task in "normal"” menu trees where the positioning of the
labels at each node was kept constant over time. This
should allow us to see what the effect is on learning and
performance when participants are forming only a lexical
representation of the menu tree in terms of just the labels
as compared with when they can also encode spatial
aspects of their experiences.

Method

Thirty-two undergraduate students from the Psychology
Department at the University of Wales, Cardiff took part
in this study for course credits. The experiment consisted
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Figure 1: Ilustration of the design of the trees used in
the experiment.

of seven trials. On each trial the participant was asked to
search for the first target in the first menu tree, followed
by the second target in the second menu tree, the third
target in the third menu tree and the fourth target in the
fourth menu tree. In order to produce a balanced design
the order of presentation of the four menu trees was
manipulated in order to ensure that each menu tree was
presented equally often first, second, third and fourth.
The experiment was presented on an Apple Macintosh
computer using a program written in MacProlog32. This
program automatically recorded the choices made by
participants and the time taken to make them.

Each menu tree consisted of five levels with binary
choices between a top and a bottom label at each node, as
illustrated in Figure 1. The target was one of the choices
at a leaf node. At each node there were two options that
could be selected to move forward down the tree and a
backup option to move back up the tree (except at the
top-level root node, where backup is not possible, and in
the target node, where backup would allow the participant
to review the choices leading to that target). Pairs of
semantically related words (e.g. "Carbon" and
"Charcoal") were used for the option labels at nodes in
these menu trees. These label pairs were placed in
different random positions for each participant. There
were no close semantic relationships between the label
pairs both within and between trees as determined by the
experimenters' judgement.

One between-participants factor was manipulated in this
experiments. Participants were randomly allocated to one
of two equally sized groups. For one group, at each node,
the two options were positioned randomly in the top and
bottom positions on each visit. For the other group, the
two options at each node appeared consistently in the
same positions throughout the experiment.




Results

The main results that we are interested in modelling are
the order in which participants learnt the sequence of
choices leading to the target (effect of levels), and the
improvement in performance over trials. Therefore, we
shall only consider those analyses. (The full set of
analyses can be found in Howes, Richardson and Payne,
in preparation).

The effects of levels were investigated by seeing whether
participants selected the correct or the incorrect option at
the nodes leading to the target. For each target, there was
a correct sequence of five actions that would lead directly
to that target. For each of the nodes on this correct path,
the percentage of correct options chosen by participants
on their first visit to that node on each trial was
calculated. The action taken on the first visit to each
node on each trial was used because this should reflect
the effects of long term memory, rather than any effects
of temporary memory for recent local search sequences.
This measure should therefore show how participants’
memory for the correct actions developed with
experience.

The data for the trial 2 levels effect are summarised in
Table 1. These data were subjected to an Anova to check
for main effects of level and node label positioning and
for any interaction between these factors. There were no
significant main effects of node positioning: F(1, 30) =
0.756, p = 0.39, nor of level F(3, 90)=0.959, p = 0.42.
There was not a significant interaction between these
variables F(3, 90) = 2.15, p = 0.099. However, t-tests
revealed that there were significant differences between
levels 1 and 3 for the consistent condition, but that there
were no significant differences between any levels in the
randomised condition.

The same analysis was carried out for all trials except the
first. The data are summarised in Table 2 and were
subjected to an Anova to test for main effects of main
effects of trial, node option positioning and level and for
interactions between these factors.

There was no significant main effect of level, F(3, 90) =
0.58, p = 0.63 on the total number of correct actions.
However, there was a significant interaction between the
positioning of node options and level, F(3, 90) =2.72, p <
0.05. There was a significant effect of levels when the
positioning of the node options was consistent: the
percentage of correct choices made at levels 1 and 2 was
higher than at levels 3 and 4. This primacy effect was
most pronounced on trials 2 and 3. There was no effect
of levels when the label positioning was random: on all

Table 1: The mean percentage of correct choices made
by participants on the first visit to nodes at levels 1, 2, 3
and 4 on the correct path on trial 2.

Node option positioning

Randomised Consistent
Level M S.D M S.D.
1 52% 35% 2% 22%
2 58% 26% 67% 27%
3 58% 26% 48% 27%
4 61% 23% 61% 21%
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Table 2: The mean percentage of correct choices made
by participants on the first visit to nodes at levels I, 2, 3
and 4 on the correct path averaged over trials 2 to 7.

Node option positioning

Randomised Consistent
Level M S.D M S.D.
1 3%  28% 9%  20%
2 76%  22% 79%  23%
3 8%  22% 0%  26%
4 9%  24% 2%  22%

trials there were no significant differences between
performance at different levels.

In addition, there was a significant main effect of trial,
F(5, 150) = 35.26, p < 0.05 on the total number of correct
choices made. Correct choices increased over trials 2 to 4
but not thereafter. There was no significant main effect
of node option positioning, F(1, 30) = 0.07, p = 0.79 on
the total number of correct choices. There were no other
significant interactions.

Performance over trials was calculated in terms of the
average number of actions taken to reach the goal on each
trial. These data are summarised in Table 3. These data
were subjected to an Anova to check for main effects of
trial and node label positioning and for any interaction
between these factors. There was no significant main
effect of positioning of node options, F(1, 30) =2.09, p =
0.16. There was a significant main effect of trial, F(6,
180) = 52.99, p < 0.01. The number of actions taken to
reach the goal decreased significantly over the first four
trials but not thereafter. There was no significant
interaction between positioning and trial, F(6, 180) =
0.84, p=0.54.

Conclusions

When spatial consistency was removed the correct
choices at all levels within the menu structure were learnt
at the same rate. In comparison, when the menu structure
was spatially consistent, participants learnt the choices at
the top levels first (primacy effect). This result suggests
that participants in the spatially consistent condition
might have been carrying out some form of spatial
rehearsal whilst performing the initial search. The lack of

Table 3: The mean number of actions taken by
participants to reach the goal on each trial.

Node option positioning

Randomised Consistent
Trial M SD M SD
1 60.2 20.6 52.5 20.6
2 39.6 31.8 243 12.7
3 269 24.7 20.8 14.4
4 18.1 13.6 12.8 9.3
5 14.8 17.7 11.5 11.4
6 11.0 13.5 8.1 44
7 14.6 26.9 7.5 33




either a primacy or a recency effect when participants
were forced to rely just on the labels to guide their search
suggests that no lexical rehearsal took place.

However, even when participants had to rely just on
using the labels, they could still learn to perform the task
as quickly (in terms of the total number of actions taken
to reach the goal) as when the label positions were left
constant over time. Therefore, even though participants
in the random positioning condition did not appear to be
using lexical rehearsal, they were still able to learn the
correct choices with practice. Possible accounts of how
this might occur are discussed below in the context of
two possible cognitive models of the data.

COGNITIVE MODELLING

The initial goal was to develop a cognitive model of
learning in menu trees without spatial consistency (i.e.
label-based learning only). Such a model can then be
used as a starting point for a model of learning in the
spatially consistent menu trees, where participants
appeared to be using spatial rehearsal.

The main test of the model will obviously be its degree of
fit to the experimental data described above. The model
should therefore show a flat effect of levels (i.e. equal
rate of learning of the choices on the path leading to the
goal), together with improvement in performance over
trials. Ideally the model should not only show the same
pattern of data as the empirical participants, but also the
same values. For example, its performance (in terms of
the number of actions taken to reach the goal) should
improve over the first four trials only but not thereafter.

Two models of label-based interactive search are: (1)
The AYN model (Howes, 1994) which encodes chunks
for tried items, uses this knowledge to limit the search
space on subsequent trials and learns that the most
recently selected item is correct when it finds that it is on
the right path. (2) An activation-based model which
boosts the activation levels of the representations of tried
and seen items and then makes decisions based on the
relative activation levels to guide its selections.

COGNITIVE MODEL 1: AYN

The first model of interactive search that we describe is
the AYN model (Howes, 1994). AYN acquires two types
of knowledge as it interacts with a menu structure:
recognition knowledge and control knowledge.

The recognition knowledge consists of episodic chunks
that are encoded for every combination of goal, menu and
action that the model experiences, regardless of whether
the action in question leads to the goal or not. AYN also
acquires recognition knowledge that the goal has been
achieved. This recognition knowledge. supports
identification of the menu trees that have been previously
visited, which selections made and which goals visited.

AYN uses its recognition knowledge to help guide search
in the menu structure during both initial exploration and
subsequent searches. A set of rules determines how the
model applies this knowledge: (1) if the goal has not yet
been achieved then avoid recognised selections; (2) if the
goal has been achieved and there is a recognised selection
then it should be applied; (3) if there are no recognised
selections and the goal has been achieved then a backup
operator should be applied. These rules help limit the
size of the search space.

7%

AYN also acquires both positive and negative control
knowledge through its exploration of the menu structure.
This knowledge determines which menu selections lead

to the goal and which lead to dead-ends. In AYN
working memory is bounded to store only the previous
action. Thus, when the goal is achieved AYN only learns
positive control knowledge for the selection immediately
preceding the goal. On the next trial, when AYN reaches
the selection known to be right (i.e. the one before the
goal), it learns positive control knowledge for the
immediately preceding selection that led to it. In this way
positive knowledge is passed back up the structure in a
final-first way until positive knowledge has been learnt
for all the selections leading to the goal.

AYN acquires negative control knowledge in a similar
way for selections that lead to dead-ends. In fact, the
AYN model was altered slightly from the version
reported by Howes (1994) in order to get it to learn
negative knowledge from backing up, rather than from
cancelling and returning to the start state. AYN was
altered so that it learnt that a particular move was "bad"
either if that move led directly to a dead-end or if that
move led to a node where both options were rated as
"bad".

The AYN model was run fifty times (for seven trials on
each run) over a five-level binary menu tree (i.e. the same
structure as that used in the experiments) to generate the
data. The data generated from the model should therefore
be in a form that is comparable with that obtained
empirically.

Results

The effect of levels on each trial was calculated in terms
of percent correct selections made on the first visit to
each of the nodes on the correct path. The data for trial 2
only are summarised in Table 4 and Figure 2. The 95%
confidence interval was calculated for the empirical mean
obtained at each level in the menu (see Grant, 1962, for a
discussion of this type of analysis). These confidence
intervals are shown in Figure 2. None of the means
generated by the AYN model fell inside the confidence
interval at any level. At each level, the means generated
by the AYN model were higher than those of the
experimental participants.

The data for the effect of levels averaged over all trials
are summarised in Table 5. The correlation between the
percentage of correct choices made at each level on each
trial by the AYN model and by the experimental
participants was calculated. The correlation was fairly
poor, r = 0.747, 12 =0.559.

Table 4: The mean percentage of correct choices made
by AYN and the activation-based model on the first visit
to nodes on the correct path on trial 2.

Activation-
AYN based model
Level M S.D. M S.D.
1 72% 45% 52% 50%
2 76% 43% 56% 50%
3 68% 47% 54% 50%
4 100% 0% 48% 50%
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Figure 2: The percentage of correct selections made on
the first visits to nodes on the correct path on trial 2 by
the empirical participants, the AYN model and the
activation-based model

The number of actions taken by the AYN model to reach
the goal on each trial was calculated. These data are
summarised in Table 6 and Figure 3. The 95%
confidence interval was calculated for the empirical mean
obtained on each trial, as shown in Figure 3. The means
generated by the AYN model fell outside the confidence
interval on trials 1, 3, 4 and 5. On each of these trials, the
means generated by the AYN model were lower than
those of the experimental participants. The correlation
between the data generated by the AYN model and the
empirical data was calculated. The correlation was very
good, r = 0.991, r2 =0.982.

Table 5: The mean percentage of correct choices made by
AYN and the activation-based model on the first visit to
nodes on the correct path averaged over trials 2 to 7.

Activation-
AYN based model
Level M S.D. M S.D.
1 0%  20% 83%  29%
2 93% 14% 87%  26%
3 95% 8% 84%  31%
4 100% 0% 84%  29%
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Figure 3: The number of actions taken to reach the goal
on each trial by the empirical participants, the AYN
model and the activation-based model

COGNITIVE MODEL 2: ACTIVATION-BASED MODEL
The second cognitive model of interactive search that we
consider is a simple activation-based model which makes
more refined judgements than the AYN model. This
model does not just distinguish tried from untried options,
but makes four classifications of options: untried; seen
and possibly tried; definitely tried; and very recently
tried. Most importantly, this model does not acquire any
form of AYN-like control knowledge. Instead it simply
uses the relative activation levels to determine which
choices are correct and which are incorrect.

Table 6: The mean number of actions taken by AYN and
the activation-based model to reach the goal on each trial.

Activation-based

AYN model
Trial M SD M SD
1 433 26.4 56.4 389
2 23.6 21.6 38.0 32.8
3 13.2 15.8 30.2 35.7
4 52 0.6 23.1 31.5
5 5 0 12.5 21.2
6 5 0 5.6 2.7
7 5 0 5.1 0.9




In this activation-based cognitive model, when an option
is seen its activation is boosted by 10 units, and when an
option is selected its activation level is boosted by a
further 40 units (unseen options have an activation level
of zero). Every time a move is made (selection of an
option or selecting backup) the activation of all other
options decays by 1%. Therefore with time the activation
levels of previously tried and seen options decrease.
There are 110 decay cycles between trials (to simulate the
intervening tasks in the experiments).

The model assesses the activation levels of the options
that it encounters in order to infer whether options have
been seen or tried before. It then uses these inferences to
determine which action to select. If the activation level
of an option is less than 1 unit, then the model infers that
that option has never been seen before (= untried). If the
activation level is between 1 and 20 units then it infers
that the option has definitely been seen before and could
possibly have been tried some time ago as well (= seen-
and-possibly-tried). If the activation level is between 20
and 40 then it infers that the option has definitely been
tried before (= definitely-tried), and if the activation level
is above 40 then it assumes that the option was tried very
recently (= very-recently-tried). The model uses its
assessments of the activation of the possible options at a
node, together with knowledge of whether the goal has
already been achieved or not, in order to decide which
action to take.

If the goal has not yet been achieved, the model uses a
simple search algorithm similar to that of the AYN
model. It avoids options that are assessed as being
definitely-tried or very-recently-tried and selects those
that are assessed as being untried or seen-and-possibly-
tried. At a node with two options which are untried or
seen-and-possibly-tried, it prefers to select the untried
option. At a node with one option that is definitely-tried
or very-recently-tried and one that is untried or seen-and-
possibly-tried, it selects the untried or seen-and-possibly-
tried option. At a node with only definitely-tried or very-
recently tried options, or at a node that is a dead-end, it
selects backup. In this way the model searches efficiently
through the menu structure to reach the goal.

Once the goal has been achieved, the model again uses a
search algorithm based on that of the AYN model. It
prefers to select an option that has been assessed as being
definitely-tried before, but not very-recently-tried. If not
it will select an option that is assessed as seen-and-
possibly-tried. It does not select untried options or very-
recently-tried options. It also backs up from deadends.

The model was run fifty times over a five-level binary
menu tree, for seven trials on each run, to generate the
data.

Results

As before, the effect of levels on all trials was calculated
in terms of the percentage of correct choices made on the
first visit to each of the nodes on the correct path. The
data for trial 2 only are summarised in Table 4 and Figure
2. For this model, the means for the percentage of correct
choices made at levels 1 and 2 on trial 2 fell within the
95% confidence intervals for the empirical means. The
mean percentage correct choices for levels 3 and 4 fell
below the confidence interval: the model made fewer
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correct choices at these levels, on average, that the
experimental participants.

The data for the effect of levels averaged over all trials
are summarised in Table 5. The correlation between the
percentage of correct choices made at each level on each
trial by the model and by the experimental participants
was calculated. The correlation was good, r = 0.917, r?
=0.840.

The number of actions taken to reach the goal on each
trial was calculated. These data are summarised in Table
6 and Figure 3. The means generated by the model fell
within the 95% confidence interval for the empirical
means on all trials. The correlation between the data
generated by the model and the empirical data was
calculated. The correlation was very good, r = 0.964, r?
=0.930.

CONCLUSIONS

The data generated by the AYN model provided a good
fit to the shape of the empirical practice data, although its
performance was higher, as would be expected given its
100% accurate all-or-nothing recognition. However, for
the effect of levels, the correlation of the AYN data to the
empirical data was not as good: AYN showed a recency
effect in the learning of the choices on the correct path
(i.e. better performance for the last item), whereas no
such effect was seen in the empirical data. In addition,
the overall level of correct selections made by AYN at
the nodes on the correct path was much higher than that
of the empirical participants.

The activation-based model gave a very good fit to the
empirical data for learning based on labels alone. The
correlation between its data and the empirical practice
effect data was similar to that seen for AYN. However,
unlike the AYN model, the curve that it generated did not
differ in absolute value from the empirical data. The data
from the activation-based model also provided a
reasonable fit to the empirical levels effect data. Its
correlation to this data was much higher than the AYN
model. In addition, although the curve that it generated
had a slightly different shape to the empirical data, the
absolute values were not different for two of the four
means.

The activation-based model is therefore able to learn the
correct menu choices at the same speed and in
approximately the same pattern as empirical participants
without recourse to either rehearsal or the use of AYN-
like control knowledge. Learning occurs simply through
the gradual increase in activation of the correct choices
relative to other choices.

A slight, but important difference between the activation-

‘based model and the empirical data is that the

experimental participants showed a slight (but non-
significant) recency effect whereas the model showed an
almost completely flat levels effect. However, further
trials of the model showed that when the delay between
trials is reduced, the model begins to show a recency
effect similar to that of the experimental participants. It
would be interesting to see whether the small recency
effect exhibited by the participants alters with the delay
between tasks in a similar way. There is some evidence
in straightforward recognition tasks that delay affects




recency effects in this way (Wright, Santiago, Sands,
Kendrick and Cook, 1985).

GENERAL DISCUSSION

The simple activation-based model provided a better fit to
the empirical data for searching a spatially inconsistent
menu structure than the AYN model. Importantly, the
activation-based model learns the correct path without
manifesting a recency effect. This is due to the fact that it
doesn't acquire explicit control knowledge. Instead the
activation levels of each of the correct choices gradually
increases relative to the other choices. On average this
rate of relative increase is the same for all of the choices
leading to the goal and so a flat effect of levels was
observed.

In addition, this result showed that making a simple all-
or-none distinction between tried and untried options (as
AYN does) led to better performance than was seen
empirically. Instead it seems likely that in reality menu
users might occasionally be unsure as to whether a
particular item has been selected before or merely seen.
Errors will therefore arise when users select items that
have merely been seen before and not tried. Such
uncertainty is akin to a feeling of mere familiarity for a
menu item and can be contrasted with definite
recollection that an item has been tried before (see
Jacoby, 1991, and Mandler, 1980, for an account of the
distinction between familiarity and recollection and
Payne, Richardson & Howes, in preparation, for an
account of the role of familiarity in guiding menu search
behaviour). There is currently some debate as to whether
familiarity and recollection are indeed separate processes
or just end-points on a continuum (see for example,
Dodson & Johnson, 1996; Jacoby, 1991). However a
simplified version of the single-process model of
recognition can be seen as analogous to the decision
process underlying the activation-based model. This
simplified model assumes that there is a single quantity
(activation levels, in our case) underlying different
recognition judgements. If the activation level is above a
certain criterion, an item will seem merely familiar,
whereas if the activation level is above another, higher,
criterion the item will be recollected. The activation-
based model can therefore be thought of as preferring
"recollected” selections over "familiar" ones. It
occasionally makes errors by selecting, on the basis of
their familiarity, items that had only been seen before and
not actually tried. This model therefore had a lower
overall level of performance that was not significantly
different from that of the empirical participants.

However, this activation-based model only accounts for
the data obtained in the situation where participants had
to rely on the labels alone and could not exploit the
spatial consistencies within the environment. In other
words, this model only simulates the possible lexical
encodings that a person might form whilst navigating
through a menu structure, it does not account for any
spatial representations that might be constructed. As
shown in the experiment reported earlier, when spatial
consistency was provided, people seemed to perform
some form of spatially-based rehearsal. The activation-
based model should therefore be extended to model this
type of performance, perhaps by adding another "layer"

which rehearses spatial location whilst searching through
the menu structure.

There are several other possible avenues of development
for the activation-based model. One of the first changes
to explore might be the effect of different functions for
the rate of decay. For example, research shows that the
rate of forgetting might be governed by a power law (see
Anderson, 1995, for an account). Another possibility is
to explore the effects of adding in features such as
associations and spreading activation between the
activated representations. However, the evolution of this
model to date has been driven largely by the goal of
modelling empirical data, and any future architectural
developments will therefore be made only in response to
empirical data that challenge the model.

Finally, both the AYN model and the activation-based
model as described here do not use the semantic
plausibility of the menu items to guide their search.
Other experiments that we have carried out suggest that
people do use semantic plausibility, in conjunction with
recognition memory, to determine which choices to select
in a menu (Payne, Richardson & Howes, in preparation).
Both models have, in other versions, been altered to use
the semantics of the labels to guide their choices. For
both models the effect of this is effectively to limit the
search space to just the subset of the menu labels that are
judged to be semantically plausible.
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ABSTRACT

This paper presents a model of occasional use of
functions of an application by an experienced user of an
environment like Windows 95 or the MacOS. We have
developed a simulation model, LICAI+, that assumes that
users store episodic records of correct steps discovered by
exploration or told to them during training. They then use
the application display and their goal as retrieval cues in
attempts to recall these episodes later. The model predicts,
and supporting data show, that tasks that violate the
label-following strategy are not only hard to learn by
exploration but also difficult to remember even if the
correct steps have been previously presented.

Keywords
cognitive model, learning by exploration, label-following
strategy, LICAI+

INTRODUCTION

Experienced users of an environment like Windows 95 or
the MacOS are occasional users of many applications
(e.g., a graphics package). Furthermore, many functions
of a frequently used application like a word processor are
only used occasionally (e.g., constructing and editing a
table). Thus, a large majority of the different tasks
undertaken by skilled users are performed infrequently
(Santhanam & Wiedenbeck, 1993).

Such patterns of occasional use should constrain the
design of usable computer systems. Ideally, such systems
should consistently support learning by exploration. At a
minimum, they should facilitate memory for action
sequences learned by demonstration or by being looked up
in a manual. The ease of recalling infrequently performed
functions can be a major determinate of usability. This is
not a novel claim. For example, the designers of the
Xerox Star had very similar insights (Bewley, Roberts,
Schroit, & Verplank, 1983; Smith, Irby, Kimball,
Verplank, & Harslem, 1982). This paper presents a
theoretical model of recall of tasks that have been done
once or a few times and data supporting the model.

LICAI+ is a model of recall of occasionally used action
sequences. LICAI+ assumes that users store episodic
records of correct steps discovered by exploration or told
to them during training. They then use the application
display and their goal as retrieval cues in attempts to later
recall these episodes. The resulting model of the recall
process is similar to models of text recall (Wolfe &
Kintsch, submitted).
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LICAI+ is an extension of LICAI' (Kitajima & Polson,
1996; 1997) which is a model of the processes involved
in comprehending task instructions and using the
resulting goals to guide successful exploration. Both
LICAI and LICAI+ are based on Kintsch’s (1986; in
press)  construction-integration  theory  of  text
comprehension. LICAI+ adds to LICAI the processes
involved in encoding and successfully retrieving
encodings of correct actions. LICAI+ assumes that
successful performance of occasionally performed tasks
involves a mixture of recall of episodes of correct actions
and problem solving if recall fails. The model is related to
Ross’ (1984) and Rickard’s (1997) models of skill
acquisition.

Following a general description of the LICAI+ model, we
present a theoretically motivated analysis of recall of
occasionally performed action sequences. Readers
interested in a more detailed descriptions of the LICAI
model should consult (Kitajima & Polson, 1995; 1996;
1997). In support of the LICAI+ model and our
theoretical analysis we compare our simulation results
with data reported by Franzke (1994; 1995) and Soto
(1997). In conclusion, we describe design implications of
our results. We demonstrate that both ease of learning by
exploration and good recall are supported by similar
attributes of an interface.

DESCRIPTION OF LICAI+

LICAI+ simulates skilled Mac users in an experiment
where they are taught novel tasks using a new
application, Cricket Graph III. The task instructions are
very explicit but do not contain any information about
how to perform the task. Then, at some later time
ranging from several minutes to a week, they are tested
for retention of these skills when given the task
descriptions and the displays generated by the application
as retrieval cues. Users attempt to perform each task by
exploration and/or recalling an action sequence. However,
hints are given by the experimenter if users cannot
discover correct actions by themselves.

' LICAI is an acronym of the Llnked model of
Comprehension-based Action planning and Instruction
taking. When LICAI is pronounced [li kai], the
pronunciation represents a two-kanji Japanese word,

H# % | meaning ‘comprehension.’



LICAI simulates comprehension of task instructions and
hints, the generation of goals, and the use of these goals
to discover correct actions by exploration. LICAI+ adds to
LICAI processes that encode successful actions and
retrieve them after a delay.

Goal Formation

LICAI’s action planning processes contain limited
capabilities to discover correct actions by exploration.
These processes are controlled by goals generated by
comprehending task instructions and hints. LICAI
assumes that goal-formation is a specialized form of the
normal reading process in which task specific strategies
generate inferences required to guide goal formation.
LICAI’s goal-formation process is derived from Kintsch’s
(1988; in press, Chapter 10) model of word problem
solving.

Kintsch’s model takes as input a low-level semantic
representation of problem text, the fextbase, and processes
it sentence by sentence. The result is a problem model.
Construction of the problem model makes extensive use
of comprehension schemata which elaborate the original

text representation with problem domain specific
inferences.
LICAI incorporates comprehension schemata that

transform relevant parts of the textbase for the task
instructions and hints into goals that control the action
planning process. Propositions that describe actions on
task objects in the textbase are recognized and further
elaborated by specialized task domain schemata to
generate a more complete description of a task. For
example, consider a graphing task in which the user was
given the instruction, Plot a variable named ‘Observed’ as
a function of a variable named ‘Serial Position.” LICAI
transforms this task description into the propositional
representations of two sentences. 1) Put ‘Observed’ on the
y-axis, and 2) Put ‘Serial Position’ on the x-axis. The
representations of the last two sentences are then
transformed into task goals that control the action
planning process. Terwilliger and Polson (1997)
demonstrated that users actually perform this
transformation.

In the studies described in this paper, experimenters gave
hints of the form ‘perform a specific action on a specified
screen object’ (e.g., pull-down the Options menu).
LICAI requires that these text or verbal descriptions of an
action on an object have to be transformed into a goal, a
do-it goal, that specifies a specific object on the screen
and/or legal actions on that object. Specialized
comprehension schemata carry this transformation. See
Kitajima and Polson (1997) for extensive descriptions of
comprehension schemata.

Action Planning

The heart of LICAI is the action planning processes.
LICAI assumes that successful action planning involves
linking propositional representations of a goal (e.g.,
create a new graph), the screen object to be acted on (e.g.,
the Graph menu), and an action to be performed on that
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object (e.g., press and hold). The most critical of the three
links is the link between the goal and the correct screen
object. This link can be retrieved from memory or
generated by an exploration process.

Skilled Users

Kitajima and Polson (1995) developed a version of the
action planning process used by skilled users of an
application. This model represents an arbitrary sequence
of actions required to perform a task as hierarchical goal
structure that is retrieved from long-term memory and
used to generate the actions. A task is decomposed into a
sequence of task goals. Task goals refer to actions (e.g.,
edit) on a task object (e.g., graph title). Each task goal is
linked to an ordered sequence of one or more device goals.
Each device goal specifies a unique object on the screen
(e.g., the Options menu, the graph title) and the state of
the object (e.g., highlighted) after it has been acted on.
Thus, skilled users retrieve the critical links between goal
and screen object from memory. However, Kitajima and
Polson (1995) did not describe how such goal sequences
are learned or how they are retrieved from memory.

New Users

When a new user of an application attempts to perform a
task for the first time, Kitajima and Polson (1997)
assumed that they have a task goal but not the device
goals. LICAI can simulate exploration by generating the
correct actions for a novel task without the device goals if
the task goal can be linked to correct screen objects by
LICAT’s action planning processes.

A task goal is a proposition with two arguments
describing a task action and a task object (e.g., hide
legend). If a correct object on the screen has a label
representing either one of these concepts (e.g., a menu
labeled “hide”), the representation of the object will be
linked to the task goal. LICAI will retrieve the correct
actions (e.g., move the cursor to the object and press-and-
hold) on this object from long-term memory, completing
the necessary links to generate actions. We and numerous
other researchers have called this linking process the
label-following strategy (Franzke, 1994; Franzke, 1995;
Kitajima & Polson, 1997; Polson & Lewis, 1990;.
Rieman, Young, & Howes, 1996). Thus, the critical
links can be generated to mediate successful exploration.
The label-following strategy is the only method that
LICALI has for learning by exploration. If there is no
direct link between the task goal and the correct object,
users must be given a hint.

LICAI+'s Encoding and Recall Processes

LICAI already incorporates a model of encoding and recall
of goals based on the Kintsch and Welsch (1991) model
of text recall. They assumed that the textbase is stored in
episodic memory during the comprehension process. The
strength in episodic memory of a given element of the
textbase is determined by the number of cycles it stays in
working memory and the activation levels it achieves
during each cycle. LICAI+ generalizes this model to the
encoding and recall of successful actions. LICAI+ also
incorporates assumptions from the Wolfe and Kintsch




(submitted) model of story recall that enables us to
compute predicted recall probabilities.

Encoding Process

LICAI+ assumes that encoding and storage of a successful
action is just a special case of the comprehension process.
The model “comprehends” the results of a successful
action during training. A comprehension schema creates a
representation of the successful action which is stored in
memory during the comprehension process.

There are two forms of this encoding. The first includes
the task goal, the object acted on, and results of the action
if the label-following strategy can discover the correct
action. The second case is defined by the failure of the
label-following strategy. The experimenter gives a hint
which is transformed into a do-it goal by the instruction
comprehension processes. A do-it goal specifies an action
on a screen object (e.g., Pull-down the Options menu).
The do-it goal is included in the encoding of the
successful action in this second case.

LICAI+’s goal formation, action planning, encoding, and
retrieval processes are implemented as special cases of
Kintsch’s (1988; in press) construction-integration theory
of text comprehension. Each process is modeled by one or
more iterations of a general construction-integration
cycle.

The following is a description of the encoding and recall
cycles. See Kitajima and Polson (1997) for detailed
descriptions of the remaining processes.

The construction phase of the encoding process generates
a network of propositions that contains the following
representations:

1) the task goal,

2) the do-it goal (if a hint was given),

3) the acted-on object,

4) its label (if the acted-on object is labeled),

5) salient changes in the display state caused by the
action (e.g., menu dropped),

6) the display caused by the action (e.g., a pull-down
menu),

7) aspecial encoding node that links the nodes 1, 2, 3, 4,
and 5 with the strengths defined by an analyst.

In addition, the fundamental linking mechanism assumed
by the construction-integration theory, the argument
overlap mechanism, is applied to connect any two
propositions in the network sharing arguments. Figure 1
illustrates a network generated for encoding a step of
pulling down the Legend menu. This action caused a
pull-down menu to appear with menu items, Hide,
Show, Move, and Arrange.

The integration phase of the encoding process is
performed using a spreading activation process. The nodes
in the network can be partitioned into sources of
activation, targets of activation, and links between
sources and targets. In the encoding process, the
representations of screen objects, the task goal, and the
do-it goal serve as sources of activation. In Figure 1,
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Figure 1. A diagram showing the propositional network
generated by the construction subprocess in the encoding
process. The dotted lines represent the argument overlap
links. The solid lines connecting nodes, 1 through 5, with the
encoding node, 7, are special links defining the encoding
process.

these nodes are shaded. The encoding node is the target.

The results of the integration of the network are stored in

episodic memory.

At the end of training, episodic memory contains the
nodes representing the textbase for the task instructions
and hints, and the nodes participated in encoding processes
for the correct steps. The strengths of links between these
nodes are determined by the pattern of activation levels
achieved in respective integration processes for text
comprehension and encoding.

Recall Process

The recall process of LICAI+ assumes that users employ
the task goal and the current display representation as
retrieval cues. The recall process retrieves nodes in
episodic memory that are linked to these cues. Nodes
from episodic memory are sampled with replacement until
the model retrieves an encoding of a step or retrieves a do-
it goal (i.e., the action planning representation of a hint).

The predicted sampling distribution for retrieving nodes
from episodic memory for a given set of retrieval cues is
calculated by using a sampling probability matrix. This
matrix is a fully interconnected matrix generated from the
original episodic memory network. Following Wolfe and
Kintsch (submitted), the sampling probability matrix is
generated by two steps: 1) dividing each link strength in
the episodic memory network by the maximum link
strength, 2) for any two nodes linked by an indirect path,
assigning the product of the strength values of the link
segments in the path to their link strength.
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Any nodes that are directly linked with the retrieval cues
in the sampling probability matrix are retrievable. The
probability of retrieving a retrievable node in a single
memory sampling trial is proportional to its relative link
strengths with the retrieval cues.

Sampling is with replacement, and sampling terminates
on retrieval of one of the step encodings or a do-it goal.
These assumptions enable us to calculate the recall
probability distribution for step encodings and do-it goals
(recall targets).

Action Planning After Recall

LICAI+ attempts to act using the retrieved step encoding
or the hint. If the step encoding or the hint generates the
correct action, the model successfully recalls the current
step. However, there are no explicit order cues in the
encoding of each step, so the model can retrieve steps out
of order or retrieve hints that don’t apply to the current
display. In this case, the retrieval process fails, and the
model has to explore the interface again as on the training
trial. The exploration will succeed in performing the
correct action if the label-following strategy works for
this step.

AN ANALYSIS OF RECALL OF OCCASIONALLY
PERFORMED TASKS

The basic claim of LICAI+ is that how a step in a task is
learned, by exploration or with hints, determines how that
step is encoded and retrieved. Thus, we distinguish
between label-following (LF) steps or tasks, and non-
label-following (NLF) steps or tasks where the label-
following strategy fails for lack of linking shared
concepts.

Franzke (1994; 1995) and many others have shown that
LF steps are rapidly discovered and “accurately” recalled.
However, it is hard to distinguish between rediscovery and
recall of a step after one training trial because both recall
and discovery processes can have similar latency
distributions.

Soto (1997), in an analysis of a large number of different
graphing tasks using Cricket Graph III, showed that NLF
tasks have some LF steps, usually toward the end of their
action sequences. The task ‘hide legend’ is a good
example. The first two steps (pull-down the Options
menu, and select Show Graph Items...) are NLF
steps. No menu label matches the task goal. The third
step (clear the check box labeled by Legend) is an LF
step. The last step (click OK) is a highly over-learned
action that closes a dialog box and terminates the action
sequence.

Rodriguez (1997) and Soto (1997) found that the first
NLF step in the hide legend task is the source of the
difficulties that users have with this task. Almost all
users required a hint to complete the first step. Franzke
(1994; 1995) found a highly significant interaction for
number of hints between number of targets (screen
objects) for possible actions on the screen and LF versus
NLF steps. There are many targets for possible actions on
the first step of any task. Thus, we would expect first
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steps to be especially problematic. Once users are given
the hint “pull-down the Options menu” in the hide
legend task, there are only 7 menu items on that menu.

We have used two versions of the hide legend task in the
simulation described in the following sections. The first
version was a simulation of performing the hide legend
task using Cricket Graph III, Version 1.5.3 described
above. We will refer to this as the NLF scenario. The
other version of the simulated task used a hypothetical
version of Cricket Graph III that added a Legend menu
to the menu bar. The items on this menu were Show,
Hide, Move, and Arrange. This version of the hide
legend task requires two steps (select Hide from the
Legend menu) using this hypothetical interface. We will
refer to this simulation as the LF scenario. Our
discussion will focus on recall of the first step for each of
the two versions.

SIMULATION

A Mathematica program was developed implementing
processes incorporated in LICAI+ and simulating
responses from Cricket Graph III for correct actions in the -
hide legend task. Training was simulated by assuming
that each step was performed correctly with hints given
for the first NLF step. The following processes are
simulated for the training: the comprehension process that
generates goals and comprehends hints, storage in
episodic memory during comprehension, retrieval of goals
from episodic memory, and action planning, encoding of
successful actions, and storage in episodic memory.

Representations of the task instructions, hints, and

interface displays were coded and input to the simulation.

The simulation also incorporated extensive knowledge
about the basic Macintosh interface conventions for each
screen object. For example, the Options menu item
affords pull-down, and the Options menu item causes
menu-selection, and so on. Other knowledge about
actions, including moving and dragging the mouse
pointer, and single- and double-clicking the mouse
button, etc., was incorporated into the model.

Simulation of Training

Training on each of the scenarios for the hide legend task
was simulated in several encoding conditions as described
below. At the end of training, episodic memory included
nodes representing the task instructions, the hint (for the
NLF scenario), the acted-on object and its label for each
step, and the display generated by the application. The
link strengths of nodes in episodic memory are
proportional to the activation level of these nodes
obtained in the encoding cycle.

Encoding Bias

In encoding cycles, we manipulated the relative strengths
of the links between the rest of the network and the links
between the network and the task and do-it goals. The
motivation for such manipulations is a fundamental
property of the action planning process. The action
planning process will not work unless the links between
the current task, or do-it goal, and the rest of the network




are much stronger than the rest of the links in the
network. These strong links cause a goal to dominate the
integration subprocess. This subprocess selects the object
to be acted on and the action to be performed on each step
of the task. Manipulating relative strengths of the links
between the goal and the rest of the network enables us to
explore the hypothesis that the goal may dominate both
action planning and encoding processes.

Encoding processes have been simulated under three
conditions. In task goal biased encoding condition (TG),
we generated a network by multiplying by a factor of 4
the strengths of links from the task goal. The strengths of
the links from the do-it goal were not changed. In Figure
1, three links from the task goal (hide legend) are
strengthend by a factor of 4. In do-it goal biased encoding
condition (DIG), the strengths of the links from the do-it
goal were multiplied by a factor of 4, and those from the
task goal remained unchanged. In the neutral encoding
condition (N), no multiplication factor was applied. The
NLF scenario was simulated using the TG, DIG, and N
conditions. The LF scenario was simulated for the TG and
N conditions since hints are not required and there is no
do-it goal for the LF scenario.

Simulation of Recall

The recall cues are the task instruction and the
representation of task goals used in the action planning
process in training trial, and the initial display for the
first step. In each simulation, nodes in the episodic
memory that match the representations of the cues were
identified, and then the probability distribution of
retrieving the recall targets were calculated. The recall
targets were two encoding nodes for the LF scenario, and
the do-it goal and four encoding nodes for the NLF
scenario.

Recall after LF training

The probabilities of recalling the encoding of the first
step for the LF scenario for TG and N bias conditions are
given in Table 1. In the LF scenario, the encodings of the
first and second steps are linked to the task goal. In the
TG condition, the probabilities of recalling the encoding
for each of the two steps was nearly equal since the task
goal dominated the encoding process, reducing the
influence of the application display. Thus, the model
retrieved the representation of the first step a little more
than 50% of the time. In the remainder, the model
retrieved representation of the second step blocking the
successful retrieval of the first step.

Correct performance of both steps is mediated by the
same task goal, and the encodings are linked strongly to
the common task goal in the TG condition. One
implication of these results is that the encoding of a
multi-step LF task will not reliably be retrieved by the
combinations of task goal and display cues on each step.
Thus, correct performance will depend on a mixture of
successful recall and the label-following strategy.
However, by lessening the biasing on the task goal in the
N encoding condition, the display cues made a much
stronger contribution to the encoding process and

Table 1. Probabilities of recalling the do-it goal or the
encoding of first step for the LF and NLF scenarios. TG,
N, and DIG stand for task goal biased, neutral, and do-it
goal biased encoding condition, respectively.

LF Scenario NLF Scenario
G N e N | DIG
Probability of recalling | N/A | N/A | .027 | .253| .618
the do-it goal
Probability of recalling | .551] .736| .251 | .446| .177
first step encoding
Total .551| .736 | .278 | .698] .795
Predicted Hints N/A | NA |.7221.302] .205
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significantly increased the probability of correctly
recalling the encoding of each step.

Recall after NLF training

The probabilities of recalling the encoding for the first
step and the do-it goal for the NLF scenario in the TG,
DIG, and N bias conditions are given in Table 1. For the
NLF scenario, the row labeled Total gives the probability
of correctly performing the first step. LICAI+ cannot
perform the first step without recalling the encoding or
the do-it goal. The entries for Predicted Hints are, 1-
Total.

Manipulation in the NLF scenario of the bias has a huge
impact on recall performance. In the TG biasing
condition, the probability of recalling the do-it goal is
small. The task goal dominates the encoding process and
the do-it goal has very weak, indirect links to the task
goal. The task goal does have links to all four encodings
of each step. The probabilities of recalling each step
encoding are almost equal, .251, .227, .180, and .315,
respectively.

In the N encoding condition, both the recall probabilities
for the do-it goal and the first step encoding increased
compared with the TG encoding condition. The reason is
the same as the LF case. The display cues become more
effective in recall process. Included in these cues is the
label for the Options menu which is directly linked to
the do-it goal. Thus, the initial display is a more effective
retrieval cue for both the encoding of the first step and the
do-it goal.

On the other hand, in the DIG condition, all links
involving the concept Option are very strong. This
enhances the effectiveness of the representation of the
Options menu as a retrieval cue and strengthens the
representation of the do-it goal in episodic memory,
making it easier to retrieve.

COMPARISONS WITH USER PERFORMANCE

Franzke (1994) and Soto (1997) have done studies
relevant to evaluating LICAI+’s recall predictions. For
NLF steps, the model predicts that users will require a
hint to successfully perform the step if they fail to recall
the correct step encoding or hint. We used the best
available measure of recall, proportion of subject



Table 2. Proportion of times at least one hint was
required for steps categorized by link type, training
(exploration) and recall trial (short or long delay). From
Franzke (1994).

Link Type Training | Short Delay | Long Delay
Exact Match .07 .00 .14
Synonym .08 .02 .18
Inference 42 .07 .29
No Link .88 .05 .60

Table 3. Observed proportions of tasks requiring at least
one hint as a function of task type and training and delay.
From Soto (1997).

Session 1 Session 2
Task Type| Training | Short Delay|Long Delay{Short Delay
LF/C .01 .00 .00 .00
LF/U .19 NA .12 N/A
PL/C .84 .26 .46 .11
PL/U 58 | NA .29 N/A

requiring a hint on a task or step. However, this variable
does not provide an unambiguous measure for evaluating
the recall predictions for LF steps and tasks. Both
successful recall and the label-following strategy can
generate correct actions within 10 seconds.

For LF steps and tasks, LICAI+ predicts that no hints
should be required during training or on recall trials.
However, Rieman (1996) and Rieman, Young, and
Howes (1996) found that users will explore an interface
before taking the initial correct action predicted by the
label-following strategy. This initial exploratory behavior
can lead to long latencies and hints on LF steps that are
outside the scope of LICAI+.

Description of Available Experimental Data
We first present experimental data from Franzke (1994)
and Soto (1997) focusing on the proportion of hints
required on training and recall trials.

Description of Franzke (1994)

Franzke (1994) had four groups of 20 participants create a
graph and then perform 9 editing tasks on the graph using
one of four graphics applications, Cricket Graph I or III,
or one of two versions of EXCEL. During training,
participants did the task by exploration, receiving hints
when necessary. Half the participants in each group were
tested for retention after a 5 minute delay (short delay),
and the remainder were tested after a 7 day delay (long
delay).

Franzke classified each step in each task into one of four
categories according to the relationship between the task
goal for each step given in her instructions and the label
of the object to be acted on for that step. Her exact match
and synonym categories are examples of LF steps. In her
third category an inference is required to link the correct
object and the task goal. In the fourth category (no link)
there is no meaningful link between the screen object and
task goal. The latter two categories are both examples of
NLF steps.

The results relevant to LICAI+ from Franzke’s (1994)
experiment are shown in Table 2. The table shows the
proportion of times that at least one hint was required on
a step, with the steps categorized by link type, training
(exploration) and recall trial (short or long delay).

Description of Soto (1997)
Soto (1997) performed a study replicating and extending
Franzke’s results. Soto’s 19 participants were trained on a

series of 33 graph editing tasks using Cricket Graph III
and were tested for retention after a 2 or a 7 day delay. All
participants were experienced Macintosh users who had
not used a graphing application. Editing tasks were carried
out on three types of graphs: histograms, pie charts, and
bar charts. The 11 histogram editing tasks and the first of
the 11 bar and pie chart editing tasks were used as warm-
up tasks, and these data are not included in the results
described below.

Four out of the 10 experimental pie and bar chart editing
tasks were unique (U) to that graph type and occurred once
during training and testing. An example is “stand out a
pie slice.” Six of the tasks were common (C) to both
graph types and occurred twice during training and recall
sessions. An example is ‘hide legend.” The delay between
the two presentations of the common tasks averaged
about 7 minutes. In Soto’s data analysis, the second
occurrence of a common task was treated as a recall trial
with a short delay. His participants had no trouble
recognizing the second occurrence even with a change in
graph type.

Soto classified his editing tasks into three categories.
Label-following (LF) tasks required acting on objects
whose labels were semantically related to the goal. Thus,
all steps in these tasks were equivalent to Franzke’s direct
match and synonym step types. Direct-manipulation
(DM) tasks required acting on the task object (e.g. pie
slice) mentioned in the task goal. These data are not
discussed as it is beyond the scope of this version of
LICAI+. Poorly-labeled (PL) tasks did not support either
label-following or direct-manipulation violating the label-
following strategy. Occasionally, a task supported label
following as well as direct manipulation (e.g., ‘Change
the graph title to “Year of Production™). For this reason,
the tasks were classified based on the method used by the
subject, rather than on a priori criteria.

Soto’s analysis is by task rather than by the step level.
The typical PL task has one or two initial NLF steps.
Soto’s findings and Franzke’s (1994) results suggest that
the initial NLF step has the largest impact on users’
performance. Previously, we summarized Franzke’s result
showing that there is an interaction for the number of
hints needed between LF versus NLF and the number of
possible targets for action on a screen. The difficulty of
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NLF steps increases dramatically as a function of the
number of targets.

Comparison With LICAl+'s Predictions

Training Performance

LICAI+ predicts perfect performance for both training and
recall trials at all delays for LF steps. If we use the
proportion of users requiring hints as our measure, a large
majority of Franzke’s (1994) results (shown in Table 2)
and Soto’s (1997) findings (shown in Table 3) support
this prediction. The largest deviation that we know of is
in the data from LF/U, Soto’s condition where 19% of
the participants required hints on the training trial.

The model makes equally strong training performance
predictions for tasks and steps that do not support the
label-following strategy (NLF tasks). LICAI+ predicts
that these tasks and steps cannot be learned by exploration
without hints or information looked up in a manual or
help system. However, this prediction for NLF tasks is
not sound. The observed proportions of tasks or steps
requiring at least one hint ranges from less than .5 to .9
in different conditions of the Franzke and the Soto data.

However, the pattern of deviations in both the Franzke
and the Soto data is instructive and supports the claim
that the LF-NLF distinction is a useful design heuristic.
LICAI+ makes incorrect predictions for learning by
exploration in NLF tasks because of the model’s simple
exploration process. First, the model cannot perform
exploratory activities like pulling down a menu to see if
any items on that menu link to the tasks goal.
Experienced Macintosh users carefully explore menus
(Rieman, 1996) and act upon matching labels uncovered
during such explorations.

Second, users seem to be able to use elimination
strategies when dealing with a small number of screen
objects like the items on a menu. For example, when
participants are given the hint to pull down the Options
menu in the hide legend task, they correctly select Show
Graph Items... by a process of elimination. The other
items on this menu are more specific and clearly have
nothing to do with the hide legend task. LICAI+ can
perform this step if it is given the knowledge that ‘show
is the opposite of hide’ and that ‘the legend is a graph
item.’

The above arguments suggest that an interesting test of
the model would be to consider NLF tasks in which the
first two steps violate the label-following strategy. ‘Hide
legend’ is such a task. Rodriguez (1997) shows that 100%
of his subjects required hints to be able to perform this
task. Franzke (1994) found that approximately 90% of the
participants required hints for steps where there was no
link between the task goal and the correct object’s label.

Recall at Short Delays for NLF Tasks

LICAI+ predicts that successful performance on recall
trials is possible only when users retrieve a hint or an
encoding of a step from episodic memory. However, the
model does not make predictions about the effects of
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delay. We have assumed that LICAI+’s recall predictions
apply to delays of one or more days.

Franzke’s (1994) and Soto’s (1997) results show that
immediate recall of NLF steps is quite good. Franzke
(1994) found that about 90% of NLF steps can be recalled
after a 5 minute delay (see Table 2). About 75% of Soto’s
PL tasks were performed correctly, without a hint, after a
short delay (See Table 3).

Recall at Long Delays for NLF Tasks and Steps

LICAI+ predicts that successful recall performance can
vary from .722, to .205 as a function of the encoding bias
for NLF tasks and steps. Franzke’s and Soto’s results at
long delays are hard to interpret because of the results
from training trials for NLF tasks. Users’ learning by
exploration is better than that predicted by LICAI+. Thus,
contrary to the predictions of the model, users will be
able to discover the correct action on a recall trial even if
they fail to recall a hint or encoding of the step.

We reanalyzed both Franzke’s no link and inference steps
at the long delay shown in Table 2 and Soto’s recall data
from his PL conditions shown in Table 3 at the long
delay. We made the assumption that the probability of
requiring hints on recall trials, P, s » iS just the
probability of failing to recall a hint or step encoding,
P it recan » times the probability of failing to discover the
correct action by exploration, P cxpiorarions @SSUming that
the two events are independent. If we assume that
Ppuit_explorarion €Stimated by the probability of requiring
hints on the training trial, Py, ,...; can be estimated by
P Jail_recall = P reqm're_him/ P Jail_exploration®

The estimated values of Py ...; for Franzke’s no link
steps is .68, and .69 for the inference steps. These values
are close to the predicted value for the TG condition
shown in Table 1.

The estimated values of Py, ... for Soto’s poorly labeled
tasks at a long delay is .50 for the unique tasks and .55
for the common tasks. These results suggest that the task
goal has a strong influence on the encoding process but
that it is not as strong as the 4:1 bias assumed in
computing the predictions for the TG conditions shown
in Table 1.

CONCLUSIONS
PRACTICE

We have asserted that most users are occasional users of
many applications, and they routinely use only a small
fraction of the functionality of their frequently used
applications. A model of routine cognitive skill is not a
good description of users’ actual patterns of use. The
action sequences for occasionally performed tasks are
generated by a mixture of recall of previous episodes of
use and of problem solving processes that attempt to
reconstruct missing action knowledge. Performance of
these tasks is more like the reconstructive processes
involved in recalling a story rather than the execution of a
rule-based representation of a routine cognitive skill.

AND IMPLICATIONS FOR

LICAI+ is a model of occasional users. This model
suggests the partitioning of all steps executed in



performing a task into two categories: steps that support
the label-following strategy and those that do not. Steps
and tasks that support the label-following strategy can be
performed by exploration. We know that users have
strong preferences for learning by exploration (Carroll,
1990; Rieman, 1996), which the label-following strategy
supports.

Experienced users can make effective use of manuals
(Rieman, 1996) to perform tasks that are not supported
by the label-following strategy. However, users will have
continued trouble with steps not supported by label
following (NLF steps). These steps once correctly
performed with the assistance of hints are difficult to
remember over long delays (2 or more days). We estimate
that the probability of recall failure is at least .5.

The data from the short delay recall conditions also
suggests a possible limitation of empirical usability
tests. Test users will have trouble with the initial
versions of common tasks that don’t support the label-
following strategy. Second and third versions of these
tasks that are given to test-takers later in a session will be
performed correctly, and evaluators may incorrectly infer
that there are no problems with the interface for these
later versions.

In summary, the theoretical and empirical results
presented in this paper and in numerous other studies
demonstrate the wide applicability of the label-following
strategy. It supports rapid learning of all kinds of
applications, not just walk-up-and-use applications like
automated teller machines. We have shown in this paper
that label following is also a major contributor to the
usability of occasionally performed tasks.
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ABSTRACT

Current cognitive user models enable interface designers
to describe, analyze and predict aspects of user cognition.
However, none of the major cognitive user models such
as ICS, MHP, or CCT tackle the human error aspect of
cognition explicitly. The represented operator perfor-
mangce is constrained to be error-free, expert performance.
This paper argues that usability and design analysis will
greatly benefit from representing a cognition-based error
model within a cognitive architecture, such as ICS. The
Netscape Internet browser acts as a case study throughout.
The resulting approach is shown to aid the analysis of
human error. Reasoning about potential error causes as
well as the generation of design recommendations can
thus be grounded in cognitive theory.

Keywords

Human Error, Netscape, Cognitive User Modeling, ICS
INTRODUCTION

Integrating Error Models and Cognitive Architectures

Cognitive 'architectures seek to represent the building
blocks of human cognition. They provide the basis for
cognitive user models, which strive to represent some
aspects of the user’s understanding, knowledge, or
cognitive processing. These models can then contribute to
our understanding of the cognitive limitations of an
operator performing a task, for example the effects of
cognitive load on user performance (Barnard and May,
1993; Ashcraft, 1994).

Erroneous task performance highlights precisely these
limitations of human cognition. It is surprising, therefore,
that the major cognitive user models do not explicitly
tackle issues associated with erroneous performance
based on cognition. They strive to represent error-free
performance, assuming expert performance in some
perfect context (see for instance Simon, 1988; Grant and
Mayes, 1991; Booth, 1991). This idealizes real-life
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conditions of task performance.

User error can point to problems in human-system
interaction that need to be resolved in order to enhance
the system’s usability. Human error taxonomies aid the
prediction and detection of error classes. They can thus be
exploited for error prevention and recovery mechanisms
(Reason, 1990; Taylor, 1988). Those can then be
incorporated into the interface design.

On the other hand, stand-alone human error theories
highlight possible sources of erroneous performance
without providing a language in which to express these
error tendencies when applied to human cognitive task
performance. This paper will use a cognitive architecture
as a vehicle for expressing not only expert task
performance but also the more realistic error-prone
thought and action sequences processed by the human
operator. By doing this, the error modeling capability
implicit in the comprehensive ICS cognitive architecture
is made the focus of inquiry into the underlying cognition
of user performance. Such explicit modeling of erroneous
performance can thus help to communicate user cognition
analyses, and to ground design decisions in a cognitive
theoretical framework.

As a running example, error modeling will be applied to
tasks concerning the use of Netscape Navigator™., This
example is appropriate because it represents a mass-
market application where errors frequently lead to high
levels of frustration during common tasks (Johnson, C.,

1997).

Interacting Cognitive Subsystems (ICS) and Reason’s
Model of Human Error

We will use Interacting Cognitive Subsystems (ICS)
(Barnard and May, 1993) to illustrate the modeling of
human error within a cognitive architecture. ICS provides
a comprehensive account of human cognition. It has



proved powerful in explaining cognitive phenomena such
as the stability of users’ mental models during dual task
interference effects (Duke, et al. 1995). It has been
applied to real-life systems and tasks, such as
cinematography (May and Barnard, 1995). Alternative
cognitive user models, such as Task Analysis for
Knowledge based Descriptions (TAKD) (Johnson, P. et
al., 1994), User Action Notation (UAN) (Hartson et al.,
1990), or Soar (Newell, 1990) might have been used.
However, they lack the level of detail in ICS’s
representation of cognitive processes, or, in the case of
Soar, the inherent constraints these have to satisfy
(Wilson et al., 1988; Kjaer-Hansen, 1995). ICS was
designed to provide a theoretical framework within which
to place user cognition. It attempts to "satisfy the need for
applicable theory" (Barnard, 1987). ICS, therefore,
bridges the gap between theory-oriented cognitive
architectures and task-oriented cognitive user models
(Grant and Mayes, 1991; Simon, 1988).

Reason’s taxonomy of human error (Reason, 1990)
represents a conceptual classification of error, as opposed
to a contextual or a behavioural one. The latter,
exemplified for instance by Hollnagel’'s (1991)
classification of error phenotypes, does not lend itself to
the in-depth analysis of the underlying cognitive sources
of error. For instance, a behavioural error category might
include errors that exhibit the same surface characteristics
without sharing the same cognitive basis.

An Interactive System: Netscape Navigator

According to user population estimates, the Internet is
gaining roughly 150,000 new users per month, joining 20
million existing Internet users (Pitkow and Recker, 1994).
Internet browsers facilitate global communication by
providing supporting hypertext navigation. Familiarity
with such browsers, and therefore their usability
constitutes a prerequisite for taking part in this novel
information exchange. Maximizing this usability
therefore represents a continuous concern for designers of
successively modified versions of Internet browsers. The
Netscape Interface (see Figure 1) will be used for
illustration throughout this paper.

Content and Structure of this Paper

The following section will take a closer look at the ICS
architecture and Reason’s theory of human error. The
modeling capacities of ICS will be illustrated by a
representation of an error-free user performance.
Reason’s error classification scheme will then be
introduced. Readers familiar with ICS and Reason can
move straight to the third section, where the benefits of
this combined modeling approach are pointed out. ICS is
used as a framework within which Reason’s classification
of human error can be expressed.
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A COGNITIVE ARCHITECTURE AND A HUMAN ERROR
MODEL

Netsearch Facility

Navigation

Prompt for URL
Bar

Scroll
Bar

. The City of
Glasgow .

* Maps of the
University

A User Provided
Navigation Button

Figure 1. The Netscape Internet Browser

This section describes Barnard’s ICS model and Reason’s
human error taxonomy. This provides the framework in
which the representation of erroneous operator interaction
can be placed.

Interactive Cognitive Subsystems (ICS)

Cognition is represented in ICS as the flow of information
between a number of different subsystems, and the
processing performed on this data. Each of the
subsystems has associated with it a unique mental code in
which it represents the information it receives and
processes. It will transform its data output into the
corresponding mental code of the subsequently receiving
subsystems. Each subsystem can receive several input
streams and achieve a blending of these data streams
under certain circumstances as described below (May and
Barnard, 1995). Each subsystem also has at its disposal a
local image store. This serves as an episodic memory
buffer of infinite size. A copy of any input the subsystem
receives will automatically be copied to the local image
store, before being further processed.

The nine subsystems can be grouped into four categories.
Figure 2 presents an overview.

Modeling a Netscape Task in ICS

Figure 3 illustrates how the error-free performance of a

task of locating an object (an Up-Arrow, such as shown in
the visual subsystem) is modeled in ICS in terms of




Sensory subsystems:

VIS visual: hue, contour etc. from the eyes
AC acoustic: pitch, rhythm etc. from the ears
BS body-state: proprioceptive feedback

Effector subsystems:
ART articulatory: subvocal rehearsal & speech
LIM limb: motion of limbs, eyes etc.

Structural subsystems:
OBJ object: mental imagery, shapes etc.
MPL morphonolexical: words, lexical forms

Meaning subsystems:
PROP  propositional: semantic relationships
IMPLIC _implicational: holistic meaning

Figure 2. The Cognitive Subsystems

information flow between the subsystems, and thus the
different resources that are employed. Visual information
concerning the target arrives at the visual subsystem and
is copied into the local store. It is then transformed into
object code (1). The propositional subsystem has
generated a representation of the target of the location
task (by conferring with its local buffer) and transforms
this into object code (2). This is sent to the object sub-
system, and can there be blended with the incoming struc-
turally encoded visual information (3). The matching rep-
resentation can be sent back to the propositional sub-
system — the target has been located.

Thus, Figure 3 illustrates how human mental processing
underlying error-free performance can be represented
within ICS. In the case of erroneous performance,
however, usability designers might resort to an error
classification scheme in order to analyse this particular
instance of user behaviour. The following section will
introduce one such taxonomy. We will then go on to show
how a more detailed, cognitive analysis can be based on
initial error classification, and thus provide a further
perspective on user behaviour.

Reason’s Classification of Human Error

Reason (1990) investigated the more general underlying
error production mechanisms within human cognition and
produced a conceptual classification of error types which
is widely referred to in research into error modeling
(Green, 1985, Rasmussen, 1983; Rouse and Morris, 1987;
De Keyser, 1989). He bases his error classification skill-
based slips and lapses on the one hand, and rule- and
knowledge- based mistakes on the other (see also
Norman, 1981, and Rasmussen, 1983).

Reason furthermore asserts that instances of his three
basic error types are indirect results of what he calls the
‘underspecification’ of cognitive operations. In case of an
ambiguity of the situational requirements, the cognitive
system defaults to contextually appropriate, high frequ-

ency responses. This idea of default assignments features
in most other cognitive theories, such as Bartlett’s (1932)
theory of schemata, and is well backed up by empirical
evidence.

This scenario particularly lends itself to being expressed
in the ‘cognitive language’ provided by ICS. The
limitations of human cognition in the face of information
overload, or cognitive strain, is built into ICS as the
architectural constraint of subsystems not being able to
process simultaneously inputs which belong to distinct
configurations. Using ICS might help expressing the
details of Reason's 'underspecification' more precisely.

Skill-based Slips and Lapses

Slips and lapses are error types that these manifest them-
selves as actions or states that deviate from the current
intention due to execution failures (slips) and/or storage
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Figure 3. Processing associated with the task of locating
an icon on Netscape

failures (lapses). Slips and lapses are observed at the skill-
based level of performance, and originate from either the
omission of attentional checks (inattention) during the
routine action sequence or making an attentional check at
an inappropriate moment (overattention).

A slip caused by inattention occurs in particular when
current intention is to deviate from common practice. For
instance, entering a well-known URL of a website cons-
titutes a routine task. If the URL is changed and the user,
although aware of that change, still happens to enter the
old URL, then this is a typical example of an action slip.
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A lapse might arise from what Reason calls Reduced
Intentionality’. For instance, if selecting a link on the
current site results in a considerable delay for this site to
be loaded, the users might become distracted, and then
experience disorientation upon facing the loading site.
This can be seen as one of Reason’s described reduced
intentionality states, such as a ‘what-am-I-doing-here’
experience (see below).

Skill based errors such as these contribute to the sources
of user frustration when accessing the World Wide Web
(as described in more detail in Johnson, C., 1997). These
errors need to be taken into account in future design
decisions. Applying Reason's categorization of error helps
to identify error classes and presents a step towards
dealing with the underlying usability problems of the
system. :

However, error taxonomies such as Reason’s typically
confine themselves to broad error categories such as slips
and lapses. A more detailed, lower level description of
such classes might aid the further investigation of its
instances. Thus, the design process might be tuned more
finely to the usability needs pointed to by the user error.

Cognitive modeling techniques such as ICS can provide a
more precise vocabulary to augment the general descrip-
tions of error taxonomies. Examples of this lower level
modeling of classes of human error are given below,

Rule-based Mistakes

Mistakes are apparent in actions that may run according
to plan, but where the plan is inadequate to achieve its
desired outcome. For any task, rules must be selected by
the cognitive system which describes methods to reach a
given (sub)goal. The selection occurs according to certain
criteria. These include best match, specificity, and rule
strength. Rule strength is defined to be the number of
times a rule has performed successfully in the past.
Occasionally, rule strength might override the other
factors resulting in misapplications of otherwise ‘good’
rules to inappropriate situations.

As an example, an animated icon at the bottom of a page,
near the contact information is quite often the mail-me
icon (commonly found are self-folding envelopes, self-
writing letters, or moving mailboxes). A corresponding
rule will be formed and strengthened over several
successful applications. In the case of a home-page icon
being animated and located at a similar position in the
screen layout, this rule might be applied and could lead to
non-intended actions such as clicking on the icon when
intending to mail the author of the page.

Such error classes can be predicted as increasingly adding
to usability deficiencies as the use of animated icons
accelerates in web page design (Nielsen, 1997). By being
able to predict these errors, preventative measures can be

taken and further user frustration (Johnson, C., 1997;
Ramsay et al., 1998) can be curbed.

USING ICS TO EXPRESS REASON’S ERROR TYPES

In this section, we will examine more closely the
modeling of errors as identified by Reason’s taxonomy
within the ICS architecture.

Commonly occurring errors and usability problems when
interacting with Internet browsers’ interfaces gave rise to
numerous design guidelines and principles'. Interface
design issues such as the use of counter-intuitive icons
and download delays are all well known to aggravate
usability problems (see for instance Nielsen, 1996; John-
son, C., 1997; Ramsay et al., 1998). Rarely, however, are
the errors resulting from those usability problems
described in detail, or even analyzed in terms of
underlying psychological factors (Johnson, C., 1998).
Expressing such errors within a cognitive model will
allow us to investigate and reason about their underlying
psychological causes. The model is thus used as a tool for
reasoning about user error on a further, more detailed
level.

Analysis of Errors and their Underlying Cognition

High download latency of web pages was identified as
major source of frustration and decreased satisfaction
with the downloading site and also as attenuating user
performance (Ramsay, Barabesi and Preece, 1998;
Johnson, C., 1997). For instance, as introduced above, if
selecting a link on the current site results in a
considerable delay for this site to be loaded, the users
might become distracted, and then experience
disorientation upon facing the loading site.

This disorientation can be classed as the effect of a
phenomenon  which  Reason termed  ‘Reduced
Intentionality’. If a delay occurs between the formulation
of an intention to do something and the time for this
activity to be executed, the intention needs to be
periodically refreshed. Other cognitive processes such as
secondary intentions will otherwise claim the workspace
resources. This mechanism can lead to lapses in the form
of reduced intentionality states, the above described
surprise and disorientation.

The cognitive processes underlying this scenario can be
represented in ICS as shown in Figure 4.

! See for instance Yale C/AIM WWW Style Manual (URL:
"http://info.med.yale.edu/caim/manual/index.html" current at
08.12.1997) or The Ten Commandments of HTML
(URL:"http://www.visdesigns.com/design/commandments.ht
ml" current at 08.12.1997
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Figure 4. Reduced Intentionality: A Lapse

After processing the goal hierarchy for selecting a link,
the cognitive system shifts its focus back onto the current
page (3 and 4). If novel external (1) and the current inter-
nal input are not coherent, and thus cannot be blended (2),
a decision must be made as to which of those to accept as
valid input. The longer the delay, the stronger the influ-
ence of the novel input grows, with it eventually replacing
the internal propositionally influenced representation (3).
The recognition of this mismatch will lead to a lapse as
described above.

By modeling the underlying mechanisms of
manifestations of attenuated performance, such as user
error, and the causes of decreased satisfaction within ICS
we can shed some light on the processes fundamental to
the production of the user error as mediated by the
described usability problems.

Reasoning about Alternative Analyses of Error Causes

Misinterpreting user interface icons is a common source
for user error in interactive systems (Norman, 1988,
1993). However, the mistake might be grounded in
varying cognitive processes, and not stem from one kind
of cognitive mechanism alone.

Typically, user interface design manuals and textbooks
stress the importance of intuitiveness of the icons chosen
(Preece, 1994) and thus identify ‘counter-intuitiveness’ as
a source of faulty identification of icons. However, further
insight into the source of such user error can be obtained
by investigating it in greater detail. As will be shown

below, mistaking for instance a mail-me button with a
homepage icon can be modeled in respect to two differing
underlying cognitive mechanism:s.

Unless these two different causes are considered these
designs might misdiagnose an important problem in user
utilization of icons. Using a cognitive architecture to
reason about the potential underlying cognitive error
production processes allows designers to investigate the
detected usability problem in a systematic way.

The above described user error could according to
Reason’s scheme be classified as a slip termed
‘Perceptual  Confusion’. In perceptual confusion,
something that looks like the proper object, is in the
expected location, or does a similar job is accepted as a
match for the proper object. These slips could arise
because, in a routine set of actions, it is unnecessary to
invest the same amount of attention in the matching
process. Thus acceptance criteria concerning the expected
input might degrade, and result in rough and ready
matches.

The processing carried out can be modeled in ICS as
shown in Figure 5.
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Figure 5. Perceptual Confusion: A Slip

The visual data is received at the visual subsystem (1),
sent to the object subsystem for the recovery of a
structural description (2), and finally interpreted by the
propositional subsystem (3). A loop is entered in order to
maintain a stable cognition. The resulting interpretation
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on the propositional level influences the further view of
the object. If, however, the object subsystem receives
ambiguous visual information, it will make use of its local
image record and fill in the assumed missing information.
This principle of ICS resembles closely what Reason
describes as the cognitive system's reaction to
underspecification of a mental operation as described
above.

The data thus acquired from the image record of the
object subsystem might also fit in with the propositional
interpretation of what is perceived, and thus stabilize in
the cognitive system. If the assumption underlying the
choice of what data is used to eliminate the
underspecification is wrong, however, the representation
of what is thought to be perceived will also be incorrect.
The wrong icon will be chosen, and the information
necessary for a mouse click sent to limb subsystem (4).

This represents one possible underlying cause of the
described error. However, the same manifestation of user
behaviour might also point towards a second, different
underlying cognitive mechanism. Employing Reason's
taxonomy, the mistaking of an icon can be classed as a
perceptual slip as modeled above. On the other hand, it
could also be classed as a rule based mistake. Using ICS
to model the underlying cognition of the error provides a
means to further investigate the behaviour trace and its
associated usability problem.

Thus, the error described above could be classed as a rule-
based mistake as opposed to a slip. Identifying the home-
icon might well be based on rules that are utilized by the
cognitive system in order to discriminate different sets of
icons. Features which positively discriminate icons
fulfilling one function from those fulfilling another might
be listed in the set of conditions which when matched
cause to fire the rule. Indiscriminative features in icons
might thus lead to a rule wrongly being fired.

This can be modeled in ICS (see Figure 6) similar to the
modeling approach applied to the perceptual confusion
approach, but this time with the implicational subsystem
playing the major role in accepting information
augmented wrongly by the propositional subsystem and
its local image store. Thus for the goal ‘press home
button’, a subgoal hierarchy can be formulated as ‘if
locate home button, move cursor to click on it’, and ‘if
object has X features, it is the home button’. By mistaking
the icons on a propositional level, the mail-me button
might be clicked instead.

The examples elaborated above show clearly how one
overt form of user error can stem from several different
‘errors’ within the cognitive processing taking place. This
M:N relationship between cause and error might have
gone undetected if systematic error modeling within a
cognitive architecture had not taken place, this helps

analysts to explicitly consider the detailed causes of
usability problems.

Generating Design Recommendations

Since underspecification proved the major source of error
in the above example, once for perceptually and then for
semantically discriminative features of the icon, this
should be targeted by designers to remedy misidentifica-
tion of icons. Thus, two functionally dissociated sets of
icons should not share the same superficial perceptual
features.
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Features commonly used to discriminate one set of icons
from another should be taken into account when
designing future sets (Moyes, 1995). These feature
considerations should not limit themselves to ambiguity
concerning structural characteristics of icons, but also to
features such as those mentioned in the examples earlier.
This included as discriminative features of mail-me
buttons not only their shape and internal composition, but
also for instance the location of the icon on the screen,
and characteristics commonly unique to mail-me buttons
such as animation as present in self-folding envelopes,
self-writing letters, or moving mailboxes.

The important point to highlight here is that the modeling
approach described does present a method for providing a
grounded rationale for design decisions, and can guide the
designer in making informed choices when faced with
design alternatives.

Another example of how this modeling technique can aid
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the generation of design decisions is introduced as this
section progresses.

Johnson (C., 1997) describes how download latency of
web pages affects the usability of the World Wide Web.
The effects range from user dissatisfaction with time
investment to the psychological devaluation of the
anticipated page (Ramsay et al., 1998). Consider the
following scenario of user error resulting from download
latency: After having selecting a link on the current site, a
delay in downloading might lead to attention being
focused on reading the current page. An intention to scroll
down the page just before the new page is downloaded
might lead to the scrolling action being carried out on the
new page instead.

This scenario fits Reason’s description of ‘behavioural
spoonerisms’, namely slips based on interference errors.
As defined above, a slip is an action that deviates from
intention due to failure in the execution stage of
processing operations. An interference error occurs, when
two concurrent actions compete for control over cognitive
processing and a transposition of actions within the same
sequence takes place. For instance, intending to speak and
perform an action at the same time can lead to
inappropriate blends of speech and action. In our
example, waiting for the new page to load, and scrolling
the old page can be seen as two concurrent actions
interfering and leading to an execution failure, the
scrolling of the new page.

This can be modeled in ICS very similarly to the skill-
based example of reduced intentionality. Only this time
the focus is not on the delay but on the shift of focus back
to the current page. A ‘mental model’ of the current page
will be constructed (or reactivated). The unexpected
appearance of the new page might lead to a blending of
representation and the action included in one cognitive
configuration carried out as part of a secondary one.

As' a consequence, future browser designers should
beware of the error-inducing character of non-interrupted
browser functionality when downloading a site.
Alternatively, browser functionality should only be
available to the current site accessed. A clear distinction
should be made when transferring functionality to the
downloading site to alert users to the new context. This
design flaw in Internet Browsers has not received much
attention. We hypothesize that it may become
increasingly important as the interweaving of the user
population of the Internet grows and the World Wide
Web becomes an increasingly common tool for
communication and information exchange. Detailed,
error-oriented cognitive analysis of such design problems
can help to predict future generations of interface
problems.

CONCLUSION AND FURTHER WORK

Cognitive user modeling enables engineers to gain a
deeper understanding of the complexities of human task
performance. Current techniques typically constrain this
performance to be idealized, error-free and often at an
expert level. However, human error during performance
represents a major source of insights into the workings
and limitations of operator cognition, and therefore into
usability problems. By being based on cognitive models,
the possibility of representing erroneous performance is
inherent in these techniques. Few modeling techniques to
date explicitly represent human error precisely, as
embedded in cognitive theory. This paper showed the
adoption of Reason’s error taxonomy and Barnard’s ICS
for the systematic representation of operator error within a
theoretical cognitive framework. The utilization of such a
combined approach was illustrated to benefit several areas
of application. User error can be described more precisely
by linking it to its underlying cognition. Analysis can
reach beyond surface categorization, and it is made
possible to reason about the actual causes of error. As a
consequence, an informed choice concerning competing
design options is facilitated. This paves the way for
usability design that takes full advantage of the insights
expressed in cognitive theory.

Embedding human error modeling into a cognitive
theoretical framework helps to express designers'
understanding of the error sources. Communication of
their reasoning, based on expertise and experience, is
illustrated in this paper by using Reason's taxonomy and
ICS. Further work might also take issues such as 'learn-
ability’ and level of complexity into account in the choice
of the cognitive architecture employed. More easily
learnable cognitive modeling techniques will further lend
themselves for integration into the design process.
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ABSTRACT

We have recorded the behaviour of several users solving
the same tasks with an interactive database program and
were able to identify several distinct strategies. Since the
number of users exceeds the number of strategies,
multiple users will have a strategy in common. Our aim
was to find groups of users sharing the same strategy.
Following each of the three methods (correlation, inter-
section, and exclusion) we define a metric among task
solving sequences. For multiple users, we represent these
measures by a matrix system, in order to find groups of
users with common behaviour. Direct interpretation or
multi dimensional scaling of such matrices indicates
distinct user groups. The common denominator for each
group can be interpreted as a strategy. A few distinctive
solution strategies were found to exist.

Keywords
Mental models, observable behaviour, plan recognition,
user strategies, statistical analysis, repetitive behaviour

1 MODELLING APPROACH

Humans express themselves in many ways. One of these
ways is everyday problem solving. We will focus on
problem solving in the domain of human computer inter-
action. In particular, we will examine how multiple users
solve various tasks with a relational database application.

-

“\ode\\"“g

Human problem
solver (HPS)
REALITY

authenticity

Mental model
MODELS OF REALITY

User mental model
(UMM)

\ a\'\da{\o(\

complexity

Fig. 1: A scheme showing the differences between models of
reality and real humans (HPSs). Models are meant to
represent objects and processes existing in reality.
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It is hard to grasp how human problem solvers (HPS)
really express themselves, since the persons we study are
live beings. Nevertheless, a mental model (see Fig. 1)
may give us an idea of the real HPS. Since we are
interested in computer mediated, everyday task solving,
we introduce a special case of mental models, called user
mental model (Tauber, 1985) (UMM,; see Fig. 1). UMMs
can bring understanding about the strategies people use
when solving specific problems. UMMs can be represen-
ted in many ways, using plain text, Petri nets or state-
transition vectors. We choose the latter representation to
elaborate UMMs based on observable task solving
behaviour.

In general, we observe a lot of task solving behaviour
that is not strictly task related. If we study one user
solving a task, we are hardly able to single out the
successful strategy from the remaining behaviour. One
approach may be to study many users solving the same
task. Since they all solve the same problem, we suppose
that their common behaviour is what was required to
solve the task. If there are several successful strategies,
some users may have one strategy in common, other
users a second one.

Successful strategies are most often defined by the given
task-system combination. For users to accomplish a task,
they must follow one of these strategies. As soon as a
successful strategy has been accomplished, user behaviour
is finished.

Which strategy a user prefers, as well as other kinds of
user behaviour can tell us something about the particular
HPS; for instance how the successful strategy was
acquired. Given a behavioural task solving sequence, we
want to separate the strategy (which is more related to the
task-system combination) from the remaining behaviour
(which is more related to the HPS). In the rest of this
paper, strategy will mean one (of many), possibly error
free, task solving behavioural sequences.

The aim of our work is to find which strategies are needed
to solve a given task. We are looking for automatic
methods to find these strategies. Under certain conditions,
strategies may also be obtained by protocol analysis
(Ericsson and Simon, 1984). Protocol analysis implies
manual inspection of video and verbal utterances in
addition to logfiles. With simple tasks, this work can be
overcome. For more complex tasks, protocol analysis be-
comes cumbersome. Semi-automatic generation of



process models was studied by Ritter and Larkin (1994).
Motivated by their work, we wish to suggest further prin-
ciples for automatic recognition of user strategies and
plans.

In this paper, human perception and verbalisation will not
be considered as part of the problem solving. Hence,
purely based on observable task solving behaviour, we set
out for automatic methods, applicable with simple as
well as with complex tasks. We only consider protocol
analysis as a mean to validate the automatic methods we
elaborate.

2 SYSTEM DESCRIPTION

The system we study is a relational database program
with 153 different dialogue states. The possible
transitions of the system are represented by a state-
transition vector space. A state-transition-vector (STV)
summarises a subject's task solving behaviour for one
task. It has length n, where n is the total number of
transitions (n=978) for the complete database program.
Each STV element tells how many times a certain
transition was activated to solve the task.

Since the order of activated transitions is not contained in
the STV, the order of user behaviour is only partly
conserved. It is stored in an implicit form, given by the
system dialogue structure and is embedded in the structure
of the STV.

To reduce complexity, it is possible to replace each STV
element >1, by 1. We call the result binary-state-transi-
tion-vector (B-STV). It tells us which transitions were
activated, but nothing about repetition.

3 TASK DOMAIN

An empirical investigation was carried out to compare
different types of expertise (Rauterberg, 1992). For the
reconstruction of UMMs we used logfiles of six novice
and six expert users, all solving the same task. The task
was to find out how many data records there are in a given
database consisting of three file. An example UMM of a
task solving process, based on one of the experts, is
presented in Rauterberg et al. (1997). In that example, 15
different transitions (number of positive STV elements)
were activated to solve the task. However, since some of
them were activated repeatedly, the fotal number of
activated transitions (the sum of STV elements) is 25.

4 INTERPRETING BEHAVIOURAL SEQUENCES
Studying an STV of one user can tell us which system
states the user passed by, which transitions that were
triggered in those states and how many times that
happened. Different users working with the same system
are directly comparable, since their behavioural sequences
only differ by the value of the vector elements.

5 BASIC QUESTIONS AND METHODOLOGY

First, we want to find out how the behavioural sequences
of two users can be related. A classical method is that of
correlation. An alternative is to look for analytical
methods. The user STVs can be represented by ellipses as
in Fig. 2. The area of an ellipse corresponds to the sum
of the STV element values. Intersection area can be
understood as symmetric similarity between two user

STVs. Exclusion areas can be understood as the
asymmetric difference between two user STVs.

Based on such considerations, we raise the following
questions and suggest corresponding methods as answer:

1) What is the proximity between two behavioural
sequences? Method suggested: correlation.

2) What do two behavioural sequences have in common

+ (similarity)? Method suggested: intersection (Fig. 2).
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3) What do two behavioural sequences not have in
common (difference)? Method suggested: exclusion (Fig.
2).

user1 STV

Area of
useri STV

excluded from
user2 STV

Fig. 2: Intersection area and exclusion areas between userl
and user2 STV.

For each method, we elaborate a metric (Table 1). The
order of the metric may be symmetrical (the metric
applied from userl STV to user2 STV is the same as the
metric applied from user2 STV to userl STV) or asym-
metric (the metric applied from userl STV to user2 STV
is not the same as the metric applied from user2 STV to
userl STV). Based on the metrics applied between all the
user STVs, we then apply a grouping algorithm.

With each group suggested by the grouping algorithm, a
strategy may be approximated. The procedure is to create
a STV with a maximum number of non-zero elements
common to all the users of the group.

In the following presentation, we will proceed from more
statistically based to more analytically based methods.

Table 1: The three suggested methods and their characteris-
tics. CORR means a standard correlation method, the other
metrics are defined by Formula 1,2 and 3.

Method Metric Metric Grouping
" |name nature algorithm
Correlation | CORR Statistical | Statistical
Intersection | M ;sq M ;"qs Analytical | Statistical
Exclusion | M f}fl ' "] Analytical Analytical

5.1 CORRELATION METHOD

In this method the metric between user STVs is the
degree of proximity. The metric values are analysed by
multi-dimensional-scaling (MDS, Systat, 1989) to
indicate groups of users.




5.1.1 METRIC

Correlation is one way to measure the proximity between
behavioural sequences. We apply Pearson correlation as a
measure for proximity between two STVs. By this
procedure, we get an mxm (m=12) diagonal dominant
symmetrical matrix with possible values between minus
one, via zero (no proximity) and one (equality). For Fig.
3 the observed values are between -0.003 and 0.948
(without considering the diagonal elements).

5.1.2 GROUPING ALGORITHM

The correlation matrix is interpret by MDS, giving the
plot of Fig. 3. We have chosen to apply two dimensional
MDS to allow visual interpretation of the plots.
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Fig. 3: MDS (r=1, Kruskal, Mono) plot with a Pearson corre-
lation matrix gives RSQ=0.870.

5.1.3 OUTCOME

From the plot in Fig. 3 we see how the users may be
grouped: {N1, N4, N6, E4}, {N2, N3, El, E2, E3, E6)
and {N5, E5}. Some of these user STVs may well con-
sists of parts of several strategies in addition to the suc-
cessful one.

According to the proportion of variance (RSQ=0.870),
MDS explains some of the variance of the user data, but a
significant part remains unexplained.

5.2 INTERSECTION METHOD

This method is based on the observation that if two users
followed the same strategy, that strategy will belong to
the intersection of the two users STVs. The order of the
an intersection metric is symmetric, since both user
STVs have the same in common. These metric values are
analysed by MDS to indicate groups of users.

5.2.1 METRIC
Similar behaviour is measured by summing up the
smaller STV elements of the two user STVs, thus
considering the number of activated transitions common
to both users.

It is reasonable to normalise the degree of intersection by
the smaller of the sums of the STVs elements (which
would be the maximum possible value for the
intersection).

Formula 1:
n
me(ep,,.,eq,,.)
IS _ =l
MM -

n n
min 2 ep,i ’ z ep.i
i=1

i=1

where
MIS . .
g Intersection metric between user p and q
i : Summing Index STV elements
n : STV length, upper summing limit
ep i : STV element i for user p
e 0 : STV element i for user q

We may ignore repetitive behaviour, using B-STVs in-
stead of STV. Results based on B-STVs are called binary.

Formula 2:
n
z mm(ep,i "€qis 1)
BIS i=1
M, = - -
min Z min(e i 1), rmn(e s 1)
i=1 ‘ i=1

where:

M ; '; : Binary intersection metric between user p and q

i : Summing Index B-STV elements

n : B-STV length, upper summing limit

e i : B-STV element i for user p

eq, i : B-STV element i for user q

By this procedure, we get an mxm (m=12) symmetrical
matrix with elements based on STVs (Formula 1) or
B-STVs (Formula 2). The elements take possible values
between zero (no similarity) and one (equality). For Fig.
4, based on STVs, the observed values are between 0.078
and 0.929 (without considering the diagonal elements).
For Fig. 5, based on B-STVs, the observed values are
between 0.182 and 0.882 (without considering the
diagonal elements).

5.2.2 GROUPING ALGORITHM

We interpret the symmetrical exclusion matrix by MDS,
obtaining plots like Figs. 4 and 5. The users seem to re-
present three groups, {N1, N4, N5, N6, E4}, {N2, N3,
El, E2, E5} and {E3, E6}. E3 and E6 may as well be
combinations of several strategies.
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Fig. 4: MDS (r=1, Kruskal, Mono) plot with a normalised
intersection matrix gives RSQ=0.975.
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Fig. 5. MDS (r=1, Kruskal, Mono) plot with a binary
normalised intersection matrix gives RSQ=0.995.

5.2.3 OUTCOME

According to the RSQ of Fig. 4 (RSQ=0.975) and of Fig.
5 (RSQ=0.995), we can explain most of the variance
among user data. However, the binary based plot of Fig.
5 (RSQ=0.995) is slightly better than that of Fig. 4
(RSQ=0.975). That is surprising, since the method
ignores information about repetitive behaviour. Maybe
such information is redundant in the context of this
method.

5.3 EXCLUSION METHOD

This method is based on the exclusion as a metric of
difference. Exclusion among two users is always given by
two areas. The area of one user STV (user 1, Fig. 2)
excluded from the area of a second user STV (user 2, Fig.
2), is not the same as the area of the second user STV
excluded from the area of the first one. Since the two
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exclusion areas are asymmetric, the method does not
allow for MDS as grouping algorithm.

5.3.1 METRIC
This method measures the difference between two STVs
by estimating how much of one user STV (column index

in Table 2) is excluded from a second one (row index,
Table 2).

Formula 3:
n
EX _ . _
M, = zlmm(ep,i eq’i,O)‘
i=1
where:

EX . .
M rg Exclusion metric between user p and q

i : Summing Index STV elements
n : STV length, upper summing limit
e p.i : STV element i for user p

e 0 : STV element i for user q

Following this procedure for all users, we get an mxm
asymmetrical matrix (Table 2), where each element is a
measure of exclusion (Formula 3). Since there were six
novices (N1-N6) and six experts (E1-E6), m is 6+6=12.

Table 2: Numerical representation of exclusion matrix.

E6 [ 6 43 47 51 70 s0] 4 35 1 5 111 0
E5 17 15 14 69 48 67 23 7 64 21 0 24
E4 9 44 47 56 70 55 47 35 73 ¢ 1M 8
E3 17 41 41 68 ki 62 28 28 [1] 21 162 24
E2 17 15 16 68 81 67 19 0 66 21 143 24
E1l 20 16 19 73 85 72 0 7 54 21 147 24
N6 3 41 44 28 48 0 47 30 63 4 166 2
N§ 3 39 42 41 0 33 45 29 63 4 132 7
N4 2 41 42 0 55 27 47 30 68 4 167 2
N3 16 11 0 68 82 69 19 4 67 21 138 24
N2 18 0 15 71 83 70 20 7 71 22 143 24
N1 0 41 43 55 70 55 47 32 70 10 168 10

"Nl N2 N3 N4 N5 N6 EI EZ E3 E4 EF FE¢

5.3.2 GROUPING ALGORITHM

The grayscale representation (Fig. 6) of the exclusion
matrix (Table 2) is generated by Mathematica (Wolfram,
1991) ListDensityPlot with the negative, inverted
exclusion matrix as input. We use the negative matrix to
obtain a consistent plot. Fig. 6 is only meant as a visua-
lisation of Table 2, and is not an exact mapping. Since
division by zero is not defined, the diagonal elements of
Table 2 were directly mapped to the darkest graytone. Fig.
6 shows to what degree a column user STV is excluded
from a row user STV. Darker matrix elements correspond
to lower degree of exclusion.

To interpret the degrees of exclusion in Table 2, we
suggest an iterative predictor-corrector algorithm. The
corrector is an estimator for the threshold value so that
only considering exclusion measures between that value
and zero will give the predicted number (predictor) of user
groups. The stop criterion for the iteration method is that
the number of user groups given by the corrector, equals




the value of the predictor. Research on converge criteria is
part of our future work, so now we simply assume
convergence. For each iteration the corrector is modified
in order to meet the stop criterion, according to the
following rules: If we consider too few exclusion
relations (i.e. the corrector is too close to zero), the
number of groups will be higher than the predictor. If we
consider too many exclusion (i.e. the corrector is too far
from zero), many or all of the users will be related by
exclusion statements, and the number of groups will be
lower than the predictor. We give our predictor the value
predictor=3. By visual inspection of Fig. 6 it appears
reasonable to consider the darkest matrix elements only.
Since these elements have numerical values equal to or
below 8 (Table 2), we choose the initial value of the
corrector to be 8.

N4 N5 N6 E1

N1 N2 N3 E2 E3 E4 E5 E6

Fig. 6: Grayscale representation of exclusion matrix. Darker
elements mean higher exclusion of column user STV from
row user STV.

Diagonal elements are ignored, since each STV is fully
similar to itself.

Since small differences indicate similarity, we can derive
(based on Table 2) four similarity relations (Table 3).

Table 3: We can derive these four similarity relations.

5.3.3 OUTCOME

Hence, the algorithm gives the following groups: {NI1,
N4, N5, N6, E4, E6}, {N2, N3, El, E2, E5} and {E3).
We assumed that the number of groups should be three,
so the stop criterion has already been met. If our predic-
tion had not been met, we would have to try with a
higher or lower corrector (according to the above men-
tioned rules) and go back to the start of the predictor- cor-
rector algorithm. This algorithm is repeated until the stop
criterion is met (convergence).

6 DISCUSSION

In order to validate the outcome of these three automatic
methods, we performed a protocol analysis (Ericsson and
Simon, 1984) of the task. This is manual work, based on
analysis of video and verbal utterances in addition to
logfiles. This is mostly feasible for simple tasks, where
users basically follow one or a few strategies. This
analysis showed that there are three distinct strategies
solving the task. We call these strategies S1, S2 and S3.
Table 4 shows the users according to their successful
strategy.

Table 4: Manual protocol analysis of the task shows three
distinct strategies and gives information about which user
succeeded by which strategy.

Strategy | Users according to strategy

S1 N1, N4, N5, N6, E4, E6
S2 N2, N3, El, E2, ES
S3 E3

Similarity | User STVs of each relation
relation

1 NI € N4, N5, N6, E6
E4 € N4, N5, N6, E6
E6 e N4, N5, N6, B4
E2 e N2, N3, El, E5

A W

All users that are related by an similarity relation are
defined to belong to one group. Since the three first
similarity relations (Table 3) are interrelated, this gives
one group. The remaining, fourth similarity relation
(Table 3) gives a second group. Users not appearing in
any similarity relation define a separate group.

The strategies are represented as STVs and have the same
qualitative interpretation as the STVs of the users (N1-
N6) and (E1-E6). We see that the correlation method and
intersection method do not correspond fully with the
outcome of the protocol analysis. The exclusion method,
however, gives exactly the same results. So, the
exclusion method is the best one with our combination of
system, task and users behaviour. In the future, we want
to find out how the different methods, especially the
exclusion method, perform with other, more complex
tasks.

We have seen that for a relatively simple task, the method
which is purely analytical (exclusion method) is the best
one. Measured by the RSQ-values, the intersection
method is better than the correlation method, which is
purely statistical. This indicates that in our context, sta-
tistical methods offer less explaining power than the
analytical methods for strategy and plan recognition.

7 CONCLUSION AND FUTURE PERSPECTIVES
We have acquired results for one task only. To make our
methods more reliable, we need to evaluate several tasks.
For each task, we will validate our methods by manual
protocol analysis.

We also plan to study learning experiments, in order to
recognise the acquisition process of strategies.
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ABSTRACT

In this paper, we describe a model of en-route air traffic
controllers' cognitive activities in a dynamic man-machine
system. The implementation of the model MoFl (Modell
der Fluglotsenleistungen) is based on a production system
in the programming language ACT-R (Adaptive Control of
Thought - Rational, Anderson, 1993).
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INTRODUCTION

For various reasons, it can be useful to have a computer
model of the operator's cognitive skills (see e.g., Opwis &
Spada, 1994). The implementation of complex
psychological assumptions

. can provide a more detailed and explicit description

of every cognitive process involved than a verbal
description,

. can test a theoretical framework by showing if the
anticipated effects can be reproduced,

. can serve as a framework for generating hypotheses
that support the empirical work, and

. can be used to analyse and predict the effects of
future technological changes on the operator's
cognitive activities in complex man-machine
systems. These insights into the consequences
affecting cognitve performance can be helpful for
future system design or training concepts.

On the basis of a broad empirical work - interviews,
simulation experiments, memory tests, and a card sorting
task with experienced and less experienced en-route air
traffic controllers and of theoretical considerations, the
interdisciplinary research group “En-route Controller's
Representation” (EnCoRe) constructed a model MoFl
(Modell der Fluglotsenleistungen) of the cognitive
activities of experienced en-route air traffic controllers.
The air traffic control domain serves here as an example to
model cognitive processing during control of complex and
dynamic situations. The focus has been on issues
concerning problems inherent to dynamic situations:
mental representation of the changing situations, and the
context-dependent flexible coordination of concurrent

cognitive tasks. In comparison to other research (Freed &
Johnston, 1995, Bass et al., 1995) in our approach we
concentrated on modelling the cognitive abilities of air
traffic controllers rather than perceptual and motor skills.
According to the rate at which traffic situations changes,
and the cognitive task of air traffic controllers, perceptual
and motor skills were only treated in order to ensure a
realistic model - environment interaction.

The implementation of the model is based on a production
system in the programming language ACT-R 3.0 (Adaptive
Control of Thought - Rational, Anderson, 1993). As
programming environment, ACT-R includes a broad and
detailed theoretical framework of human cognition. For the
most part, ACT-R is suitable for modelling the cognitive
performance of en-route air traffic controllers. But, for
some aspects of dynamic situations ACT-R does not
provide convincing solutions.

The aim of this paper is to present the construction and the
implementation of the model. This includes the principles
of construction and implementation of our model, and the
discussion of two special issues concerning the cognitive
architecture of ACT-R: “dynamic representation” and
“executive control”. This paper is divided into three
sections:

. short description of the air traffic control task

. the framework for the implementation: the cognitive
architecture ACT-R

. description of the psychological assumptions of the
model and its implementation

THE AIR TRAFFIC CONTROL TASK

On the basis of different sources of information (e.g.,
radarscreen, flight strips, head-phone communication with
pilots), air traffic controllers have to control complex,
dynamic, and time-constraint traffic situations in order to
diagnose risky relationships between aircraft and to solve
potential conflicts. Therefore, they have to perceive,
comprehend, and anticipate multiple characteristics of
many aircraft while new incoming aircraft create new
traffic relationships for evaluation. It’s a common
assumption, that in complex technological systems of a
dynamic nature operators develop a mental representation
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‘of the task environment with which they interact.

Diagnosis, decisions on future cognitive activities and
actions are based on these insights into current and
anticipated structures of the changing situation. Air traffic
controllers express with the term picture (e.g., Whitfield &
Jackson, 1982; Falzon, 1982) what is often described as
situation awareness (e.g., Endsley, 1995; Flach, 1995): a
mental representation of the current and future traffic
situation. '

By modifying the framework of cognitive task analysis
(the “decision ladder”, Rasmussen, 1986), extensive
interviews with seven experienced controllers provided a
first explorative functional analysis of main tasks used to
build up and maintain this mental picture of the traffic

" situation.

According to verbal reports of the air traffic controllers,
the diagnosis of potential conflicts between aircraft
contains stages, which are characterized by an increasing
restriction and specification of the problem space. These
stages are: observing the whole situation, analysing the
parameters of selected aircraft, and anticipation. In the
first step (observation) the operator monitors the whole
situation in order to get a quick overview of the whole
traffic situation. The goal of conflict detection demands
selection strategies during radar-screening to structure the
representation (see e.g. Amaldi & Leroux, 1995).
According to the verbal reports, experienced controllers
classify  the aircraft on the basis of these signals
(proximity, vertical movement, etc.) into two groups: those
aircraft which have to be further analyzed (analysing the
parameters) and anticipated (anticipation) in order to
check for future conflicts, and those which are separated
safely -during that moment. The initial steps towards
intervention and conflict resolution could be described
according to Rasmussen’s stages (define task, fomulate
procedures, and execute).

In order to model the air traffic controller's picture and the
processes used to build up and to maintain this mental
representation of the changing traffic situation,
experiments provided a more detailed analysis of the
following topics:

. information selection and recall,
. relational structure of the representation, and
. anticipation and conflict management.

“The experimental work with real time simulation was

based on a realistic simulation system of the control task
called “En-route Controllers Representation - - Pro-
grammable Airspace Simulation” (EnCoRe-PLuS)
(Bierwagen, 1996). This system simulates air traffic
control scenarios providing radar screen runs, electronic
flight strips, and head-phone communication with a ghost-
pilot; it also allows the user to set up -experimental
procedures and to keep logfiles of all system activities,

The results of this empirical work led to the
conceptualization and the implementation of a model that
describes the cognitive activities of air traffic controllers.

The implementation of the model is connected with a
modified version of EnCoRe-PLuS. EnCoRe-PLuS
provides a real-time simulation environment. Predefined
traffic builds up a simulation scenario that interacts with
the model:

. The model can actively access new information
- about the changing traffic situation and can integrate
it to its representation of the current situation.
. The model is informed about events within the task
environment (e.g., incoming aircraft)
. The model- can intervene with the traffic
environment in order to solve conflicts.

MODELLING MENTAL PROCESSES OF EXPERIENCED
OPERATORS DURING CONTROL OF A DYNAMIC MAN-
MACHINE SYSTEM

For modelling mental processes of experienced air traffic
controllers during control we have used the production
system ACT-R 3.0. ACT-R provides a suitable framework:
1. as a psychological framework of human cognition, it
also describes an environment for implementation, 2.
ACT-R is based on explicit and very detailed assumptions
about the cognitive architecture, and 3. as an environment
for implementation, it is available in the public domain at
no costs. In addition ACT-R has been applied to modelling
a great number of problem solving tasks and is still in
progress (e.g., ACT-R Perceptual - Motor Layer, RPM).

Even within such a framework, the conceptualization and
implementation of mental processes in dynamic
environments, as in the case of air traffic control, demand
additional assumptions about three aspects of the dynamic
task environment. 1. The continous changes of the
situation. These changes do not allow fixed sequences of
cognitive processing, they rather call in a cyclic update of
varying relations as a basis of situational awareness. 2. The
necessity to predict future states of the situation in order to
predict potential conflicts. Such predictions alter the goals
of ongoing control activities. 3. The demands to coordinate
and to sequence simultanious requirements of the control
task. :

Widely used concepts for adaptive control of complex task
enviroments (e.g., Anderson, 1993; Rasmussen, 1986;
Hacker, 1978) concentrate on rather static tasks and on
invariant goal structures. For example the cognitive
architecture of Anderson's ACT-R does not take into
account that in dynamic situations the operator has to
continuously update her or his mental representation. In
addition, such production systems are directed by a fixed
goal hierarchy. But in the case of the changing and
complex situation requirements, the controller has to
coordinate the cognitive activities. This coordination is
context-dependent: it does not follow a pre-defined goal
hierarchy.

Recently there are some promising attempts to formulate
cognitive architectures that deal with the specific demands
of a dynamic task environment. For example, as a
conceptual neighbor to ACT-R and SOAR, a new
computational framework, the executive - process
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interactive control (EPIC), is proposed for this kind of
human performance (Meyer & Kieras, 1997a,b; Meyer et
al., 1995). Perceptual, cognitive, and motor processors
have been built up for modelling cognitive processes
during the performance of multiple concurrent tasks. The
perceptual processor provides a continously update of the
task environment. Within the cognitive processor,
concurrent tasks can be scheduled by flexible executive
processes that control relative task priorities. Also the
architecture for human representation in complex system,
“Man Machine Interactive Design and Analysis System”
(MIDAS), promises a modelling environment that provides
an updateable mental representation of the task
environment and flexible scheduling of multiple task
performance (Corker & Smith, 1993).

The implementation of the model “MoFI” (Modell der
Fluglotsenleistungen) is based on ACT-R 3.0. The basic
assumption is that cognitive skills are composed of
production rules. A production rule is a modular piece of
knowledge. Combining these rules into a sequence
represents complex cognitive processes. ACT-R includes
two kinds of knowledge representation: declarative and
procedural knowledge. The basic units in declarative
memory are so-called working memory elements (WMEs).
A WME is an object with identity. It has named slots that
can be filled with Lisp objects or references to other
WME:s. References to other WMEs can be interpreted as
relations, so that a semantic net with WMEs as nodes and
references for relations is spread out. ACT-R defines an
object-oriented structure for declarative memory. Every
node in the net is an object of a certain class. A class is
declared by naming all slots an object of this class will
have. Subclassing is possible. Every WME has an
activation level. It is manipulated by the programming
environment. A special structure within the declarative part
of the memory is the goal-stack. WMEs can be pushed
onto and popped from this structure. The topmost WME is
the current goal.

Production rules are the procedural part of memory. They
consist of a condition and an action part. Conditions and
actions refer to WMESs. The application of a production
rule is realized by a simple pattern-matching mechanism.
In order to support goal-directed performance, the first
condition of every production rule must match the current
goal. If all conditions of a production rule are true, then the
action part is executed. Possible actions are: manipulation
of the goalstack (push and pop), creation and deletion of
WMEs, and modification of the slots of already retrieved
WMEs. An ACT-R run consists of the continous
application of production rules.

The prioritizing of processing is controlled by the
activation parameter in ACT-R as well as by the current
goal. A production is applied if it fires. A rule can fire if
all conditions are fulfilled. Typically the fastest production
will fire. The speed of application is mainly computed by
the time it takes to retrieve the condition WMEs.

Activation signifies the current relevance of a WME for
the processing of information. Sources of activation are the

encoding process, execution of a production (addition of
new WME:s), and creation of a goal node. The more
activated a WME is, the faster it is retrieved. This means
that if various WMEs match the pattern of a production
rule, the most activated WME is retrieved. If various
production rules can be applied, that production rule fires
that retrieves the most activated WMEs. A WME can only
get retrieved if its activation is above a certain level. But in
the case of air traffic control there are three cases in which
an inactive WME also has to be retrieved. In the first case,
the controller has to update his mental representation
continuously. Empirical work showed that controllers
reduce the problem space by paying attention to
meaningful signals for conflict detection during radar-
screening. Because of these signal features, aircraft
become focal. That means that they are attention
demanding objects, therefore highly activated. Aircraft
without these features are extrafocal (less activated). For
these extrafocal aircraft there is no further demand for
processing and they become inactive. But, in contrast to
ACT-R, these inactive WMEs have to be retrieved in order
to update them. Second, activation is increased not only by
the encoding process. It is also guided by the encoding of
signal features of aircraft. The third case concerns the
context-dependend coordination of a goal. The high
activation level of a goal that targets the solution of a
detected conflict between aircraft can be decreased, it may
be put aside for a while if there is enough time remaining
for the solution. But at a certain point, activation has to
increase suddenly in order to retrieve this WME and to
apply the appropriate production rule in order to solve the
conflict. Otherwise the both inactive aircraft will collide.

Additional features of ACT-R are learning mechanisms to
adjust WME and production parameters, partial matching,
and the aggregation of production rules. These features are
not used in our model.

THE MODEL

In this section, the psychological assumptions, based on
experimental work and theoretical considerations, and the
implementation of the main components and functions of
the model MoF! are summarized.

MoF! describes three main cycles of information
processing, (i.e., monitoring, anticipation, problem
resolution) operating on different parts of the situation
representation, called the picture (see Figure 1). The
coordination of these processes is driven by control
procedures. Monitoring and anticipation are diagnostic
processes (conflict detection), problem resolution is the
preparatory step for intervention by the controller.

The Monitoring Cycle: Data Selection and Update

The monitoring cycle includes data selection procedures
and the regular update of aircraft features. In an
experiment on data selection, 36 en route controllers had
to control familiar and unfamiliar dynamic airspace
situations. In order to investigate information selection,
data of aircraft on the radar screen and the flight-strip-
system were masked, but could be unmasked by moving
the pointer of the mouse to the respective location.
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Figure 1: The structure of the air traffic controller's model of cognitive activities

Frequencies and durations of the unmasking were
recorded. The data showed, that the representation of the
current traffic situation was build up under considerable
reduction of information. The controller selects relevant
features of aircraft, especially identification codes, the
horizontal and - vertical positions of objects, and flight
directions. In addition, our interviews and the literature
indicate that the controller searches for meaningful signals
in order to detect conflicts during radar-screening. These
are aircraft features like vertical movements, proximity to
other aircraft or to points in airspace where conflicts
frequently occur (e.g., Niessen et al., 1997; Amaldi &
Leroux 1995).

According to these signal features, aircraft become focal
(highly activated), that means that they are attention
demanding objects. Aircraft without such features are

‘extrafocal (less activated). In the dynamic environment of

air traffic control, objects have to be updated continuously.
There is a relationship between the semantics of objects
and the frequency of updating: focal, attention-demanding
objects demand a higher monitoring frequency than
extrafocal objects. This assumption has been supported by
results of a memory test: positions of extrafocal
(inrelevant) aircraft were reproduced back in time, whereas
positions of attention demanding objects (e.g., conflictions,
and climb or decend) were reproduced correctly (for
similar results, see Boudes et al., 1995). This bias
indicates, that there is an interaction between the semantics
of objects and the updating frequency: the more the current
position of aircraft demands attention the better they were
reproduced.
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The communication between the controller and the task
environment, and the data selection were implemented as
follows: Communication between MoFl and EnCoRe-
PLuS is realized by socket communication. Two ways of
communication are provided:

. asynchronous communication: Special events in the
task -environment, like pilot-initiated radio
communication or signals suddenly appearing on the
radar-screen, are announced to MoFl by EnCoRe-
PLuS. After every application of a production rule,
a Lisp function hooked to the ACT-R specific
production-cycle-hook, checks for new messages and
triggers appropriate Lisp call-back functions that
create new WME:s for further processing.

. synchronous communication: MoFl identifies an
internal demand for new information about a
specific object within the task environment or the
internal control-flow suggests to update aircraft
information. This demand is fulfilled by an active
request to the simulation environment. The response
is integrated into the picture by call-back functions.

If the data selection procedures are triggered, appropriate
goals are put onto the goal-stack to enable the following
processing sequence: '

1. - choose aircraft: according to aircraft focality and
state of the picture, decide which aircraft has to be
updated.

2.  make an information request. according to the state
of the object which is going to be updated, choose
which information has to be requested, and trigger




the appropriate Lisp function. The response of
EnCoRe-PLuS is handled by a call-back function
that generates a goal.

3. take new information into the picture: This goal is
processed by a production that modifies the WME
representing this information.

4. test new data for signal features: the updated WME
is tested for changes of signal features such as
changing flightlevel (vertical movement), or
proximity to other aircraft.

Anticipation

The next step in diagnosis consists of an anticipation cycle
which operates on the focal objects. For each
attention-demanding  (focal) aircraft or aircraft
relationships, a future state is anticipated seperately. The
goal of the anticipation cycle is to create new cognitive
processing information about aircraft. Depending on the
results of anticipation, aircraft with signal features can then
be represented as events. An event reflects the type of
relation between aircraft or relations between aircraft and
airspace features in future time and space. The anticipation
allows to decide (decision) if the future trajectories of
aircraft result either in a conflict, in a safe separation, or
the demand for more monitoring. In an experiment on
conflict-management, different types of clearcut and
potential conflicts were varied in a 70 minutes traffic
scenario according to the Eurocontrol Air Space Model
(EUROCONTROI, 1994). The EUROCONTROL classification
has two dimensions: 1. different tracks (same, opposite,
crossing), and 2. level- or climb/ decend-flight. 36
controllers had to detect and to solve the conflicts. The
data showed that controllers did not differentiate between
conflicts (separation minimum: 5 nautical miles) and
potential conflicts (10 nautical miles): they intervened in
all cases. This indicates that conflict detection is not based
on a calculation but on fuzzy estimation. The controllers
always chose the safer way by overestimating the risk.

We assume that, if a conflict is detected, the event conflict
includes an estimation of the time remaining for conflict
solution (timestamp). Relations which have proved to be
safe, are no longer in the focal part of the picture and
become extrafocal at this time. This indicates that there is
almost no demand for cognitive processing, except for
updating. If the operator is not sure about the potential
conflict, the event monitoring becomes focal, indicating
both a higher frequency of monitoring and also a high
demand for further anticipation. This distinction of aircraft
relationship has been supported by the results of a card
sorting task with 18 air traffic controllers. As expected the
controller showed a tendency to classify traffic scenarios
on the basis of anticipation.

The anticipation cycle is implemented by sequenced

production rules testing four questions:

1. Are aircraft on the same airway, or on crossing
airways?

2. Have aircraft the same altitude or is at least one in
climb or descend?

3. Simulation of the future movement of aircraft using
velocity leaders. A velocity leader is an graphical
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arrow element on the radar screen showing the
estimated movement of aircraft for a certain lapse of
time. Will there be a violation of the separation
criterion (anticipation)?

4. How certain was this simulation? Certainty is
measured by the time remaining for the violation of
the separation criteria. In addition the latest time for
conflict solution is calculated (timestamp).

According to this sequence focality of aircraft-WMEs is
modified, or events are created.

The Picture

The resulting picture is characterized as a representation of
objects, events, and objects with reference to other objects,
and / or airspace structure. Objects with signal features are
represented focally, objects without these features
extrafocally. In addition, events which indicate the
meaning of aircraft relations in future time and space are
represented focally. Within the air traffic control domain,
the term picture describes the idea of a global mental
representation of the current and future traffic situation in
working memory. From a psychological perspective, we
assume the picture as an analogous non-symbolic mental
representation of the situation. There is some empirical
evidence that experienced controllers anticipate future
states of aircraft without calculating the trajectories. This
indicates that they build up a non-metric, analogous
representation of the situation. In assuming such an
analogous representation, we follow Craik's (1943) and
Johnson-Laird's (1983) basic ideas of a functional internal
model that parallels processes of the external world.

The picture

. is understood as an active knowledge-based
construction of meaningful relations between
elements of a situation, and not as an addition of
perceptions,

. is incomplete with regard to the content of
information and is temporary. The representation is
build up by schemata in order to serve current
functions, and is not stored in long term memory.

. can be manipulated by drawing inferences, by
making predictions, by understanding phenomena,
by deciding what further processing or action to
take, and by controlling the execution.

The implementation emulates the picture as the totality of
the cognitively available objects at a given time, their
features, and their perceived and infered relations in actual
and future time and space in terms of WMEs. Since it is
not possible to model an analogous representation of space
on digital computers, the implementation's picture is a
semantic net of airspace objects, anticipated events, and
inferenced actions that are represented as WMEs. Some of
these objects have spatial positions that make it possible to
define them by positions. More sophisticated operations
such as retrieval by distance to other airspace objects have
to be emulated.



We used the object-oriented features of ACT-R to define
the structure of the picture (see, Figure 2). Every airspace
object has a position on the radar screen. Derived classes
are airways, sector boundaries, and aircraft which have
additional slots including callsign, speed, and altitude.
Aircraft are specialized to incoming, changing altitude,
and near to another airspace object (proximity). For every
class, instances are

generated and modified

anticipation, conflict resolution, and action) is driven by
control procedures. We assume that the different
processing components cannot be interrupted. The
controller has to switch between them: for example,
between the solution of a conflict and further monitoring
(update including data selection). On the basis of the state
of the picture, control procedures select the most important
and most urgent
processing  de-
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Figure 2: Simplified class hierarchy for the working memory elements
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Conflict Resolution

If conflicts are detected, the problem resolution cycle
initiates several steps to prevent an impending conflict.
The controller has to select the most urgent conflict in
order to generate or recall solutions (alternative solutions).
Next, the operator has to check that the solution does not
generate new follow up conflicts (decision). We assume
that the controller checks by running a mental simulation
of the solution (as in the anticipation cycle). The results of
this model are executed (action).

The implementation uses a predefined set of standard
solutions fitting certain types of conflicts. To use this set
the class of the conflict is determined by production-rules.
According to this classification some solutions are
generated from the standard solution set. The production
rules of the simulation in the anticipation cycle are
triggered by goals indicating the solutions that have to be
taken into account. If a solution does not produce follow-
up conflicts a solution-WME is generated. A solution
consists of a sequence of actions that have to be executed
by the model. The time remaining for the first intervention
of the sequence is stored in the solution-WME. To execute
an intervention sequence Lisp functions interact with the
task environment EnCoRe-PLuS.

Control Procedures

The multitude of represented objects, relations, and
features within the picture demands that the controllers
prioritize the processing at any one time. The coordination
of the above describes modules (data selection and update,
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within working
memory.
Processing is controlled by the current goal, which is the
first element of the goalstack. The current goal spreads
activation among its neighbors in the semantic net. The
system focusses only on this top goal at this time. But,
because of the dynamic task environment of air traffic
control, there is no fixed hierarchical goal structure.
Therefore, the continuously changing situation demands
another prioritizing of the processing of simultaneously
on-going events at any particular time. In addition, time
contraints in this context force a flexible and appropriate
selection of the most relevant demand for processing. In
order to model this contextualized scheduling of
processing, we had to postulate a different concept. Our
assumption is that the scheduling of processing is
determined by the state of the whole mental representation
of the traffic situation.

Several tasks are active at every moment. Every task is
done by one of the modules data selection, anticipation, or
conflict resolution. The superior control procedures
module has to build up an ad hoc process flow depending
on the current structure of the picture. To achieve this, we
assume that the modules cannot be interrupted and are
exclusive. The process flow is done by meta productions in
the control procedures module that trigger a module with
an object or event as parameter. In order to trigger a
module and make it not interruptible, we introduced a new
class of WMESs. These control-WMEs are the only ones
that get onto the goalstack.

The start of every module is a top level production. 1t is
triggered by a top level goal. This kind of production will
push new subgoals onto the goalstack that will trigger



other productions of that module. Every production has to
clean the goalstack by popping its trigger-WME. When a
module is finished the goalstack should then be clean. The
productions of the control procedures are triggered by the
controlflow-goal, which has no parameter. This goal is
never popped. Thus when the goalstack is “clean” it is on
top of the goalstack and thus the current goal triggers the

control procedures-module again. Processing radio
communication when a plane announces that it is going to
enter the sector, is the only reason to interupt a module,
make a mark in the working memory, and continue the
module. The mark has a high priority so that it will be
processed soon.

The meta production rules of the control-flow-module for

the air traffic controller model use this prioritizing rules:

1. if a solution-WME exists in the picture and it is
time to solve, then do action on this solution, else

2. if a conflict- WME exists ‘and it is time to do, then
conflict resolution, else

3. if a monitoring-event or an aircraft-WME with a
signal (incoming, changing altitude, or proximity)
exists in the picture, then do update and anticipation
on this WME, else

4.  if an aircraft-WME exists, then do monitoring on it.

Every solution-WME and every conflict-WME has a slot,
where it represents when it is supposed to happen. The
control productions use a function, that compares this ideal
time with the current time. It fires the appropriate action
according to a predefined bias.

If the current goal is controlflow, only the
meta-productions are able to fire. They match patterns
against the picture according to the prioritization scheme
listed above. The chosen action will generate a new
control-WME (CF) of the appropriate subclass. It refers to
the detected aircraft-WME or event-WME. The goalstack
consists now of (controlflow,CF). This triggers the
toplevel production for CF. It will produce new
control-WMESs probably refering to the detected WME,
pop CF, and put the new control-WMEs onto the
goalstack. They trigger new sublevel productions that all
pop their trigger. When the module for CF is finished, the
goalstack is (controlflow), meaning that only the
meta-productions are able to fire.

The model deals well with the dynamic environment by
using this control scheme. If another task needed
interruptible modules, the control procedures would have
to be triggeted after every production cycle within the
module, and the controlflow WMEs would have to be
stored in the picture, when they are inactive. The meta
productions would then trigger the most 1mportant
controlflow-WME or generate a new one.

CONCLUDING REMARKS: EVALUATION OF THE
MODEL

The construction and implementation of the above
described model is based on a broad experimental work.
Early in 1998 we will evaluate our model with empirical
data. Three simulation experiments with experienced air

traffic controllers are planned in order to investigate time
parameters of conflict detection, the content of the picture,
and the distribution of activation within the controller's
picture. These data will be compared to the results of
model simulation runs using the same task environment.
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ABSTRACT

This paper describes a computational model of spatial
learning and localization. The model is based on the
suggestion (based on a large body of experimental data) that
rodents learn metric spatial representations of their environ-
ments by associating sensory inputs with dead-reckoning
based position estimates in the hippocampal place cells.
Both these sources of information have some uncertainty
associated with them because of errors in sensing, range
estimation, and path integration. The proposed model in-
corporates explicit mechanisms for information fusion from
uncertain sources. We demonstrate that the proposed model
adequately reproduces several key results of behavioral
experiments with animals.

Keywords: cognitive modeling, cognitive maps, Hip-
pocampus, probabilistic localization.

INTRODUCTION

Animals display a wide range of complex spatial learning
and navigation abilities (Schone, 1984; Gallistel, 1990),
far more impressive than the capabilities of contempo-
rary robots. Considerable research effort has been de-
voted to understanding different aspects of these spatial
behaviors through cognitive, behavioral, neurophysiolog-
ical, and neuropharmacological studies. This has resulted
in a large corpus of experimental data, a number of the-
ories and models of animal spatial learning, and several
implementations of such models in robots and other arti-
ficial automata (Mataric, 1992; Kuipers and Byun, 1991;
Kortenkamp, 1993; Bachelder and Waxman, 1994; Recce
and Harris, 1996). However, animal spatial learning is still
far from being completely understood or successfully imi-
tated.

Based on a large body of experimental data it has been
suggested that rodents learn cognitive maps of their spa-
tial environments (Tolman, 1948). These cognitive maps
have been postulated to contain metric information, i.e.,
the places in the environment are represented in a met-
ric coordinate system, allowing the animal to take novel
short-cuts and measured detours. In addition, there is also
a vast body of experimental data from lesion studies of hip-
pocampal regions and cellular recordings of hippocampal
cells that directly implicate the hippocampal formation in
rodent spatial learning (O’Keefe and Nadel, 1978). Based
on this data, O’Keefe and Nadel proposed the locale sys-
tem hypothesis, suggesting that the hippocampal place cells
learn metric cognitive maps by associating sensory inputs

with dead-reckoning' position estimates generated by the
animal.

In the two decades since the locale hypothesis was
first proposed, a number of computational models of hip-
pocampal spatial learning have been developed (Trullier
et al., 1997). Surprisingly, only a few of the models sup-
port metric spatial representations. Furthermore, the few
models that are based on the locale hypothesis make the
unrealistic assumption that the two information streams,
namely, sensory inputs and dead-reckoning, are largely
error-free. However, sensory and dead-reckoning systems
of animals are prone to several sources of errors (e.g., errors
in place recognition, distance estimation, dead-reckoning
drifts, etc.), and any computational model of hippocampal
spatial learning and localization must therefore be capable
of satisfactorily dealing with these associated uncertainties.

In this paper we develop a computational model of hip-
pocampal spatial learning that allows the animal to learn
a metric place map (or a cognitive map) and that explic-
itly addresses information fusion from uncertain sources.
Following a brief discussion of experimental data support-
ing the model, we present the key features of the model and
simulation results that demonstrate that the proposed model
satisfactorily reproduces the results of behavioral experi-
ments on gerbils reported by Collett et al., (1986). We
also discuss the relationship between this neuro-cognitive
model and some approaches to spatial learning that have
been employed in contemporary robotics.

HIPPOCAMPAL SPATIAL LEARNING

The hippocampal formation is one of the highest levels of
association in the brain and receives highly processed sen-
sory information from the major associational areas of the
cerebral cortex (Churchland and Sejnowski, 1992). It is
composed of the dentate gyrus (Dg), and areas CA3 and
CAI of Ammon'’s horn as shown in Figure 1. It receives
input primarily from the entorhinal cortex (EC), which is a
part of a larger convergence area called the parahippocam-
pal cortical area, and outputs to the Subiculum (Sb) and
back to the EC (Churchland and Sejnowski, 1992). (For
other anatomical and physiological details the reader is re-
ferred to (Churchland and Sejnowski, 1992).)

The hippocampal formation has been strongly impli-
cated in animal spatial learning and localization based on
evidence from hippocampal lesion studies and cellular

'Dead-reckoning or path-integration refers to the process of -

updating an estimate of one’s position based on self-knowledge
of time, speed, and direction of self-motion.
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Figure 1: Anatomy of the hippocampal formation.

recordings. While hippocampal lesions have been found to
produce severe deficits in learning spatial tasks such as the
object-place task (Churchland and Sejnowski, 1992), and
the ability of rodents to traverse complex mazes (cf. ap-
pendix of O’Keefe and Nadel, (1978)), cellular recordings
have led to the discovery of place cells and head-direction
cells which demonstrate highly correlated firings during
the execution of such tasks. Pyramidal cells in regions
CA3 and CA1 of the rat hippocampus have been found
to fire selectively when the rat visits particular regions of
its environment. These cells thus appear to code for spe-
cific places and have been labeled place cells (O’ Keefe and
Dostrovsky, 1971). Cells with such location-specific firing
have been found in almost every major region of the hip-
pocampal system, including the EC, the Dg, regions CA3
and CAl, the Sb, and the postsubiculum.

In addition to place cells, head-direction cells have also
been discovered in the hippocampal region (Taube et al.,
1990). These cells respond to particular orientations of the
animal’s head irrespective of its location in the environment
and fire only when the animal faces some particular direc-
tion (over an approximately 90 degree range) in the hori-
zontal plane. These cells thus appear to function as some
sort of an in built compass.

A number of experiments have served to identify cru-
cial properties of place cells and head-direction cells (see
McNaughton et al., (1996) for a detailed exposition of the
properties). In brief, these cells have been found to re-
spond to sensory as well as path-integration inputs, Fur-
ther, places appear to be represented by an ensemble of cell
firings, with the cells being active in multiple environments
and often at multiple places in the same environment. The
firing of these cells is conserved in darkness, provided the
animal is first allowed to orient itself under lighted condi-
tions. Further, any restraint on active motion ceases the cell
firings.

HIPPOCAMPAL COGNITIVE MAP

Based on extensive experimental evidence it has been sug-
gested that rodents learn cognitive maps of their environ-
ments (Tolman, 1948). These cognitive maps are metric
in nature, i.e., the spatial representation encodes distances
and directions between the environmental cues. Against

this background, (O’Keefe and Nadel, 1978) forwarded
the locale system hypothesis (based on an immense corpus
of neurophysiological and behavioral data) suggesting that
the cognitive map resides in the hippocampus and that the
place cells use sensory and dead-reckoning inputs to en-
code the metric map. A computational implementation of
this locale system hypothesis of hippocampal spatial learn-
ing has been developed which allows the animal to learn
its environment in terms of distinct places, with the center
of each place also being labeled with a metric position es-
timate derived from dead-reckoning. A detailed treatment
of this model can be found in (Balakrishnan et al., 1997);
here we will only present a brief summary.

As the animal explores its environment the model creates
new EC units that respond to landmarks located at partic-
ular positions relative to the animal. Concurrent activity
of EC units defines a place and CA3 place cells are cre-
ated to represent them. These sensory input-driven CA3
place cells are then associated with position estimates de-
rived from the dead-reckoning system to produce place fir-
ings in the CA1 layer. Thus, the firing of CAl cells is de-
pendent on two information streams: sensory inputs from
CA3 and the animal’s dead-reckoning position estimates.
The dead-reckoning input is used to learn the center of the
place in terms of metric coordinates. '

When the animal revisits familiar places, incoming sen-
sory inputs activate a place code in the CA3 layer that cor-
responds to a familiar place. Since multiple places in the
environment can produce the same sensory input (called
perceptual aliasing in robotics), the CA1 layer uses dead-
reckoning estimates to disambiguate between such places
and produces a unique place code that corresponds to the
current place. The hippocampal system then performs spa-
tial localization by matching the predicted position of the
animal (its current dead-reckoning estimate) with the ob-
served position of the place field center (dead-reckoning es-
timate previously associated with the activated CA1 place
code). Based on this match, the dead-reckoning estimate
as well as the place field center are updated as shown in
Figure 2.

Prediction

Predicted
measurement

State
estimate

/

Sensor mode!
or Measurement function

Match

State estimate
Actual \ Observed Update
state ™ measurement

Observation

Figure 2: A schematic of hippocampal localization.

Thus, not only does the hippocampal model learn a met-
ric cognitive map of the environment, but it also permits
the metric estimates to be updated when the animal revisits
familiar places. Further details of the model may be found
in (Balakrishnan et al., 1997).
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Hippocampal Kalman Filtering

In the locale system hypothesis of hippocampal spatial
learning, information is integrated from two streams: the
sensory inputs and the dead-reckoning system (O’Keefe
and Nadel, 1978). It should be noted that information pro-
vided by both these streams is uncertain because of errors
in object recognition, distance estimation, and path inte-
gration. For instance, the firing of place cells and head-
direction cells drift in darkness, suggesting errors in path-
integration. Thus, in order for the hippocampus to perform
robust spatial localization using these uncertain informa-
tion sources, it must have adequate mechanisms for han-
dling uncertain information sources. Although several hip-
pocampal models of spatial learning have been proposed,
including some that are closely related to the model de-
scribed above, none of the models are capable of explicitly
handling such uncertainties.

As with animals, mobile robots too have to deal with
uncertainties in sensing and action. This has led to many
probabilistic localization approaches for mobile robots.
One such localization tool is the Kalman filter (KF) (Gelb,
1974) (or some extension or generalization of it), which al-
lows the robot to build and maintain a stochastic spatial
map, propagate sensory and motion uncertainties, and lo-
calize in optimal ways (Ayache and Faugeras, 1987). A
schematic for a KF is shown in Figure 3.
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Figure 3: A schematic of Kalman filtering.

As can be observed from Figures 2 and 3, the computa-
tional model of hippocampal function and KF both embody
the same predict-observe-match-update principle. Further,
KF provides a framework for performing stochastically op-
timal updates even in the presence of prediction and obser-
vation errors. Based on the similarities between the two,
Balakrishnan et al. (1997) developed a KF framework for
uncertain information fusion in the hippocampal localiza-
tion model described above. In this framework, KF helps
the animal in maintaining and updating an estimate of its
own position as well as the estimates of the place field cen-
ters. These estimates, referred to as the state, include:

]T

Xk =[1¢0,k,$1,---,1‘n

where zo ; denotes the position of the animal at time in-
stant k, z; denotes the center of place field i, and n is the
number of distinct places that have been visited by the ani-
mal. Without loss of generality, these position estimates are
assumed to be specified in 2D Cartesian coordinates, i.e.,

z; = (Zi,,;,). The animal also computes and updates the
covariance matrix associated with this state vector, denoted
by P, which is given by:

Coo Co Con
Cio Cun Cin
P, = . . .
CnO Cnl Cnn
where
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Ci= ( Cii. Ciyiy

denotes the covariance between the 2D Cartesian represen-
tations of the state elements z; = (z;,,7;,) and z; =
(z5.,25,)-

When a new place is visited, the state vector is aug-
mented by the center of this new place and the state esti-
mate and its covariance matrix are modified accordingly. If
the animal motions are assumed to be linear and the mea-
surement function in Figure 3 is also a linear function of the
state, a framework for hippocampal Kalman filtering can
be developed that updates the place field centers and the
animal’s position estimate in stochastically optimal ways.
These details can be found in Balakrishnan et al., (1997).

Frame Merging

The procedure described above allows the animat® to learn
a metric place map. However, it does not allow the animat
to learn and integrate independent local metric maps corre-
sponding to different regions of the environment, or to learn
and integrate a new map into an existing one. We have de-
veloped an extension of the computational model described
above that permits the animat to learn separate place maps
in different frames and to merge frames together in a well-
defined manner.

Suppose the animat has learned a place map, labeling the
places with metric position estimates derived from its dead-
reckoning system. Let us refer to this frame as fy;4. Sup-
pose the animat is now reintroduced at another place. The
animat stores away fo;4 in its memory, and begins a new
frame f,e, at the point of reintroduction. It also resets
its dead-reckoning estimates to zero, thereby making the
point of reintroduction the origin of its new dead-reckoning
frame. Now it proceeds as before, learning places and cre-
ating EC, CA3, and CA1 cells using the algorithms detailed
in (Balakrishnan et al., 1997). At each step it also checks
to see if sensory inputs excite CA1 cells residing in fo1q. If
this happens, the animat is at a place it has seen earlier in
the older frame (fo14). It then merges the two frames, la-
beling the places in the two frames in a uniform coordinate
system as follows.

Suppose CA1 unit ¢ fires in fpeq and mfiresin foq. The
goal is to merge f,iq int0 fpew. We do this by changing the
position labels of all CA1 units in foq to equivalent labels
in freyw. Let &fnew and %fe1¢ denote the estimated center of
the animat’s current place in the two frames fpew and forq.
Since %f~<w and %fs'¢ correspond to the center of the same

2 A simulated animal
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place field, albeit in different frames, Ax = &fot4 — gfnew
denotes the amount by which frame f,;4 has to be trans-
formed to coincide with fp.,,. Assuming a metric coordi-
nate represeéntation, we can update the place field centers
of ford 10 frew Vvia the transformation:

)"({new — i{old — Ax

Vi € foua N

The covariances between units in fy;g and fpey can
be updated using the following expressions (details of the
derivations can be found in (Balakrishnan et al., 1998)):
Case I: i and j were both units in f,1q

f'ﬂew — .fO fO fU o new
Cipew =0 = Coit = Gt + Clelt + Cf;
Case II: i was a unit in fpe,, and j was in fo1q

fnew —— fnew
Cij =Cj¢

where C,.fj refers to the covariance between units  and j
in a particular frame f.

Once these updates have been carried out, frame f,;4 has
been effectively merged into fr.,. However, it must be
borne in mind that this frame merge procedure is currently
blind to perceptual aliasing. Consequently, the animat lo-
calizes to the first place that sensorily matches a place it has
seen before. If multiple places in the environment produce
similar sensory inputs, this procedure will lead to localiza-
tion problems.

Goal Representation

Since the computational model of (Balakrishnan et al.,
1997) allows the animat to learn places in a metric frame-
work, goals encountered by the animat can also be rerhem-
bered in terms of their metric positions. Thus, when an
animat visits a goal location, it computes an estimate of
the goal position based on its current dead-reckoning esti-
mate. However, since dead-reckoning is error prone, the
remembered (or computed) position of the goal is also er-
roneous. We need a procedure that explicitly handles this
uncertainty, much like the KF for updating place field cen-
ters. We have developed a mechanism that maintains and
updates the goal location estimate and its variance using the
expressions in equation 2

2 2

- 09 - e
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where %¢ is the estimated goal position and 0% its vari-
ance, Xg is the current dead-reckoning estimate with asso-
ciated variance 3. It can be shown that this update expres-
sion minimizes the variance of the goal position estimate
(Balakrishnan et al., 1998). These update expressions are
applied each time the animat reaches the goal. If the ani-
mat has never encountered the goal before, the goal vari-
ance a% is set to oo. Thus, when the animat encounters
the goal for the first time, the above expressions result in
the setting of the goal position estimate to the value of the
dead-reckoning estimates.

The animats in our experiments navigate to goal loca-
tions through two means. If the goal is visible, the animats
directly move towards the goal (goal approaching). How-
ever, if the goal is not visible but the animat has previously
visited the goal location and thus remembers its position,
it simply moves in a fashion that reduces the discrepancy
between its current position estimate and the remembered
position of the goal. We call this the goal seeking behavior.
The goal seek behavior takes the animat along the shortest
path to the goal. It is possible that the direct short-cut to
the goal is blocked or has obstacles that the animat must
then avoid. However, for the purposes of the experiments
described in this paper the environments are assumed to be
largely open and obstacle-free.

SIMULATION DETAILS

In this paper we attempt to simulate the behavioral experi-
ments of Collett et al.(1986) using the computational model
of hippocampal spatial learning described earlier. The ex-
perimental setup of Collett et al. consisted of a circular
arena of diameter 3.5 meters placed inside a light-tight
black painted room. Gerbils were trained to locate a sun-
flower seed placed in different geometric relationships to a
set of visible landmarks. The floor of the arena was cov-
ered with black painted granite chips to prevent the gerbil
from spotting the seed until it was very close to it (Collett
et al., 1986).

In our simulations, we used a square arena of size 20 x 20
units. The walls of the arena were assumed to be impen-
etrable and devoid of any distinguishing sensory stimuli.
This is in keeping with the original experiment in which
the walls were in complete darkness and presumably not
visible to the animal. The landmarks, on the other hand,
were assumed to be visible to the animat from all points in
the arena. The animats could also estimate landmark posi-
tions relative to themselves, but this estimate was assumed
to be corrupted by a zero-mean Gaussian sensing error with
standard deviation og = 0.01 units per unit distance. Sen-
sory inputs obtained in this fashion were used to generate
the activations of the EC layer as well as the place firings
of the CA3 and CAl layers, using the algorithms described
in (Balakrishnan et al., 1997). The animat motions were
also error-prone, with motion error modeled by zero-mean
Gaussians with o = 0.5. The animats possessed means
for fairly accurate dead-reckoning with errors being mod-
eled as zero-mean Gaussians with op = 0.05 units. Ani-
mats could approach a visible goal and were said to have
consumed the goal if they entered a circular region of ra-
dius 0.33 units around it.

The experiments of Collett et al. were simulated by first
setting up the arena with the landmark(s) in the appropriate
positions. The animat was then introduced into the arena
at a random position and allowed to perform 500 steps of
sensing, processing, and moving. In this mode the animats
learned places by inducting EC, CA3, and CAl1 units in ap-
propriate ways, and updating the position estimates using
the Kalman filtering mechanism described in (Balakrish-
nan et al.,, 1997). If the animat happened to see the goal
during these sessions, it was made to approach and con-
sume it. This constituted one training trial. Once a trial
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was complete, the animat was removed from the environ-
ment and reintroduced at another random position for the
next trial. Each animat was subjected to five such training
trials. In each trial the animat learned places in a new frame
and merged frames if they lead to the same place. The firing
threshold of CA3 units (CA3Threshold), which signals
place recognition based on sensory inputs, was set to 0.75
during training.

Once training was complete, the animat was subjected to
ten testing trials in which the landmarks in the arena were
manipulated in specific ways and, importantly, the goal was
absent. During these tests the animat was released at pre-
determined positions in the arena with its dead-reckoning
variance set to co. Further, spatial learning was turned off
in these animats and they were only capable of localizing.
The animats had a maximum of 150 steps within which to
localize by visiting a familiar place. Un-localized animats
were removed from the environment, with that testing trial
being dubbed a failure, and the process continued with the
next testing trial. During testing, CA3Threshold was
lowered to 0.25 to enable the animats to localize even if
the landmark arrangements had been changed in critical
ways. A localized animat was allowed a maximum of 300
timesteps to navigate to the goal using the goal seek behav-
ior described earlier. Since the goals were absent during
testing, the animats searched in the region of the remem-
bered goal location. If the animat reached a circular region
of radius 0.5 units around the predicted goal location, it was
allowed to spend 25 timesteps searching for the goal. Af-
ter this, the variance of the position estimate of the animat
was once again set to oo and the animat was permitted to
re-localize to enable it to correct its localization if it had
wrongly localized earlier. This had interesting behavioral
consequences as will be explained later.

For the training as well as testing trials, the trajectories
followed by the animats were recorded. Also, the 20 x
20 arena was decomposed into cells of size 0.33 x 0.33
and a count of the amount of time spent by the animats in
each cell was kept. These statistics for training and testing
were computed for five different animats. The cell with the
largest value (amount of time spent by the five animats)
was used to normalize the values in the other cells, and was
plotted in the form of a search histogram. Thus, darker
cells in the histogram indicate that the animats spent more
time in that region of the arena compared to the regions
corresponding to the lighter ones. It must be mentioned
that the arena size, the histogram cell size, as well as the
goal visibility range were roughly chosen to correspond to
actual values used by Collett et al.

EXPERIMENTS AND RESULTS

In this section we present simulations of Collett et al.’s
behavioral experiments, using the computational model of
spatial learning and localization detailed in (Balakrishnan
et al., 1997; Balakrishnan et al., 1998).

One Landmark Experiment

In this experiment, Collett et al. placed the seed at a con-
stant distance and orientation from a single landmark and
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trained gerbils to reliably approach the goal position. They
found that well-trained gerbils run directly to the seed when
introduced into the environment. Further, in testing trials
the gerbils were found to concentrate their search efforts at
the expected location of the seed even though the seed was
absent (Figure 1 in (Collett et al., 1986)). In our simula-
tion of this experiment, the goal location was 4 units to the
south of a single landmark, as shown by the search distri-
bution concentrated in that region (Figure 4, Left). In these
figures, filled squares represent landmarks. This compares
rather well with the observations of (Collett et al., 1986).

Figure 4: Left: One landmark experiment. Middle: Two
landmarks experiment. Right: Two landmarks experiment
with one landmark removed.

Two Landmark Experiments

In the next set of experiments, Collett et al. trained gerbils
to locate a sunflower seed placed to the south of a line con-
necting two identical landmarks. In this case, the goal was
equidistant from the two landmarks. In our simulations, the
goal was placed 4 units to the south of the line connecting
two landmarks placed 4 units apart. As seen in Figure 4
(Middle), the search effort of the animats is reliably con-
centrated in a region rather close to the position of the goal
in the training trials. This figure compares well with Figure
7b in (Collett et al., 1986).

Collett et al. also trained gerbils on the two landmark
task and tested them with one landmark removed. They
found that the gerbils searched on both sides of the sole
landmark apparently matching the landmark either to the
left or the right landmark of the original configuration (Fig-
ure 7c in (Collett et al., 1986). Our animats demonstrated a
similar behavior as seen in Figure 4 (Right).

Figure 5: Left: Two landmarks experiment with landmark
distance doubled. Middle: Three landmarks experiment.
Right: Three landmarks with one removed.

Also, when the gerbils were trained with two landmarks
and tested with the landmark distance doubled, Collett
et al. found that the gerbils searched predominantly at
the two interior locations each at the correct distance and
orientation from one of the landmarks (Figure 7d). We
observed similar search histograms in our experiments,



as seen in Figure 5 (Left). We also found that all the
animats that first searched at the outer locations later
searched in one of the interior two locations, when asked
to relocalize. Further, most animats that first searched at
the interior locations, did not search at the outer locations
upon relocalization.

Three Landmark Experiments

In this experiment, three identical landmarks were arranged
to form the vertices of an equilateral triangle with the goal
located at the centroid of the triangle. Animats trained in
this environment produce search histograms concentrated
reliably at the correct position of the goal, i.e., the centroid
of the triangle as shown in Figure 5 (Middle). This com-
pares favorably with Figure 6b in (Collett et al., 1986).
Collett et al. also trained the gerbils on the three land-
mark task and tested them in environments with one or two
of the landmarks removed. With one landmark removed
they found that the gerbils searched at a location at the cor-
rect distance and orientation from the two remaining land-
marks (Figure 6¢). As can be seen from Figure 5 (Right),
our animats demonstrate largely similar search behaviors.

Figure 6: Left: Three landmarks with two removed. Mid-
dle: Three landmarks with one distance doubled. Right:
Three landmarks with an extra landmark added.

With two of the three landmarks removed, Collett et al.
found that the gerbils distributed their search time between
three sites, one for each of the three possible matches of the
sole landmark (Figure 6d). This can be compared directly
with our simulation results in Figure 6 (Left). Similarly,
when the gerbils were trained on the three landmark task
but tested with one landmark distance doubled they were
found to search at a goal location at the correct distance
and bearing from the two unmoved landmarks (Figure 8 in
(Collett et al., 1986)). Our animats display similar behav-
iors (Figure 6 (Middle)).

When gerbils were trained on the three landmark task,
but tested in an environment with an additional landmark
placed so as to create another equilateral triangle with a
different orientation, Collett et al. found that the gerbils
reliably searched at the goal location within the correctly
oriented triangle. Our simulation of this experiment pro-
duced similar results as shown in Figure 6 (Right).

DISCUSSION

In this paper we have extended the spatial learning and lo-
calization model developed in (Balakrishnan et al., 1997)
along several significant directions. We have developed
mechanisms to learn local place maps in disjoint frames,
and to merge these frames to produce global place maps.
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We have also incorporated a mechanism for learmning and
remembering goals in terms of their metric positions, with
an associated mechanism for updating goal positions in a
stochastically consistent manner. With these additions, an-
imats can not only learn maps of environments in a piece-
meal fashion but also learn and reliably navigate to goals in
the environment.

This allowed us to simulate the behavioral experiments
of (Collett et al., 1986). The primary goal was to test
whether our computational model of hippocampal spatial
learning and localization was capable of explaining their
behavioral data with gerbils. We simulated a number of

~ their experiments and the search histograms generated by

our animats were found to be very similar to those pro-
duced by the gerbils in their experiments. This is especially
interesting because our animats did not remember goals in
terms of independent vectors to individual landmarks, as
suggested by (Collett et al., 1986). Our results indicate that
if goals are remembered in terms of metric position esti-
mates, localization errors are enough to explain the search
distributions of the gerbils observed in environments with
landmark configurations changed.

To the best of our knowledge, the only computational
simulation of the (Collett et al., 1986) experiments, apart
from the work presented in this paper, is that of (Redish
and Touretzky, 1996). In their simulations, the animat was
placed at different random positions in the arena and was
given its position relative to the goal (which was assumed
to coincide with the origin). The animat then created place
cells using a combination of this position estimate and sen-
sory inputs from the visible landmarks. Ego-centric angles
between landmarks were also encoded in the place cells,
which allowed the animat to initialize its head-direction if
it happened to be disoriented. In test trials they introduced
the animat at a random position and allowed it to localize,
i.e., the animats performed head-direction and position esti-
mate resets. Once the animat had localized, it could predict
the goal location which was simply the origin of the coor-
dinate frame with respect to its current localized position.
They repeated this process a number times and calculated a
histogram of predicted goal positions (Redish and Touret-
zky, 1996).

Our computational model of hippocampal spatial learn-
ing is closely related to that of (Redish and Touretzky,
1996) (referred to hereafter as the RT model) since both
models are based on the cognitive map concept of (Tol-
man, 1948) and its implicated substrate in the hippocam-
pus (O’Keefe and Nadel, 1978). Further, both these mod-
els make use of the locale system hypothesis of (O’Keefe
and Nadel, 1978) with places being learned using a combi-
nation of sensory inputs and dead-reckoning information.
Finally, both simulations represent goals in terms of metric
position estimates derived from dead-reckoning.

Despite these similarities, there are some significant dif-
ferences between the two models and the behavioral re-
sults generated by them. Our model assumes that errors
exist in the sensory and dead-reckoning input streams and
our computational framework explicitly addresses the is-
sue of information fusion from erroneous (or uncertain)




sources. By formulating the the place learning and local-
ization problem within the framework of Kalman filtering,
we have been able to derive update expressions that can
be proven to be stochastically optimal. The RT model in-
corporates a mechanism for initializing the head direction.
However, doing so makes the place cells directional, which
appears to be at odds with experimental results that sug-
gest the non-directionality of the CA3 and CAl pyrami-
dal cell firings. Our model assumes that the place cells are
non-directional and this requires that the animats have re-
liable head-direction information, i.e., we assume that the
animals have not been disoriented. Further, animals learn
and remember multiple goal locations, and plan and exe-
cute multi-destination routes. Extending our model to han-
dle learning and representation of multiple goal locations
is rather straightforward. However, it is not clear how one
could represent multiple goals in the RT model consider-
ing that goals in their model correspond to the origin of
the dead-reckoning system. Finally, animats in our simu-
lations were capable of actually moving in their environ-
ment, whereas the animats used in the RT simulations do
not move. Consequently, the histograms reported in (Re-
dish and Touretzky, 1996) correspond to predictions of the
goal position rather than the time spent by the animat in dif-
ferent regions of the environment. Thus, a dark histogram
cell that is far from the goal in the RT model implies that
the animat has a completely wrong estimate of the goal po-
sition and hence a completely wrong localization, while a
similar cell in the histograms of Collett et al. simply means
that the animal spent some time in that region localizing (or
moving slowly on its way to the goal), and does not neces-
sarily imply that the animal’s localization or its prediction
of the goal position is wrong. Since the animats in our sim-
ulations were capable of navigating, the search histograms
generated in our experiments correspond more closely to
those reported by Collett et al. (1986).

Other Robot Localization Approaches

Owing to the Kalman filtering framework, our computa-
tional model of hippocampal spatial learning is directly
related to KF approaches for robot localization (Crowley,
1995; Leonard and Durrant-Whyte, 1992). However, these
KF based approaches require a sensor model of the envi-
ronment (as shown in Figure 3) and often run into match-
ing problems in environments with multiple identical land-
marks and limited sensor ranges. The hippocampal model,
on the other hand, provides a place-based extension of KF
and easily addresses these problems (Balakrishnan et al.,
1997). A number of robot localization approaches based
on cognitive mapping theories (or multi-level space repre-
sentations) have also been developed (Levitt and Lawton,
1990; Kuipers and Byun, 1991; Kortenkamp, 1993). Al-
though closely related to the hippocampal spatial learning
model, they are not formulated to computationally charac-
terize a specific brain region and differ in this regard. Fi-
nally, a number of neurobiological models of robot nav-
igation have been developed (Mataric, 1992; Bachelder
and Waxman, 1994; Recce and Harris, 1996). However,
these models deal with fopological space representations
(not metric ones), and are thus at discord with the cognitive

map theory of (Tolman, 1948) and the locale hypothesis of
(O’Keefe and Nadel, 1978). These differences are treated
at length in (Balakrishnan et al., 1997).

Future Work

As we mentioned earlier, our computational model as-
sumes that the animat has an accurate head-direction es-
timate. This may not be the case if the animal has been
disoriented. We are currently exploring the possibility of
such a head-direction reset mechanism being implemented
by place cells in the subiculum with the correction being
performed by the head-direction cells in the post-subicular
region. We have also developed a method to incorporate
multiple goal locations in the model (Balakrishnan et al.,

©1998).

Given the fact that Kalman filter based models of place
learning and localization satisfactorily reproduce an inter-
esting collection of results from behavioral experiments in
animals, it is natural to ask: Can the hippocampus per-
form the Kalman filter computations? If so, how? Some
suggestions have been forwarded for the neural basis of
these computations in the hippocampus, including the role
of CA3 recurrent collaterals in the propagation and update
of estimates and covariances of the places, sharp waves in
the consolidation of position and covariance estimates, and
the CA1 region in the computation of matrix inversions re-
quired for KF (Balakrishnan et al., 1997). These issues
remain to be explored and explained, both through compu-
tational modeling efforts of neuro-physiological and behav-
ioral phenomena, and through biological studies in living,
behaving animals.
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ABSTRACT

We present a connectionist architecture to model
perceptual-motor processing of subjects engaged in the
task of drawing a reproduction of a previously observed
point on a white paper sheet. Such a task was designed to
investigate the structure of perceptual field. Computer
simulations showed a satisfactory agreement between
model’s forecastings and the experimental data obtained
from an experiment performed on human subjects.
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INTRODUCTION

Every model of human visual perception must take into
account the evidence, given by Gestalt psychologists
(see, e.g., Koffka, 1935), for global factors of wholistic
nature. In most cases, however, the study of such factors
was done only in a qualitative way. For this reason
Gestalt psychologists were unable to build a formalized
theoretical model of visual perceptual processing,
designed to do quantitative forecastings of experimental
data. Notwithstanding they introduced a fundamental
concept, the one of perceptual field, viewed as similar to
a vector field of forces acting within perceptual space.
The lines of force of such a perceptual field should
coincide, on one hand, with the paths followed in
apparent movement phenomena, whereas, on the other
hand, they should be orthogonal to perceived figural
contours. A semi-quantitative investigation of perceptual
field was undertaken already by Brown & Voth (1937),
and by Orbison (1939). Such a task, however, requires to
face strong theoretical and experimental difficulties in
the case of nonhomogeneous stimulus areas, due to the
great number of possible different situations, and of
factors to be controlled. :

In more recent times some authors (Stadler & Kruse,
1990; Stadler et al, 1991) proposed an experimental
procedure to investigate in a quantitative way the
perceptual field structure in the case of homogeneous
stimulus areas. Such a procedure was, in some way,
inspired by Bartlett’s early observation of the wandering

point phenomenon (Bartlett, 1951). The experimental
paradigm used to detect this latter can be described as
follows. To a first subject is shown a white paper sheet

on which, in a particular position, a black point was
drawn. After the sheet has been removed, the subject is
asked to draw, on a second white paper sheet, a point
exactly in the same position in which was placed the
point previously observed on the first sheet. After the
first subject has drawn the point, the second paper sheet
is shown to a second subject which, subsequently, is
asked to do, on a third paper sheet, the same task as the
first subject. Then the third paper sheet is shown to a
thirs subject, and so on. In this way it is possible to
obtain an ordered sequence of reproduced points, starting
from the first presented one. Such a sequence, once
transferred on a single sheet, evidences a wandering path,
starting from the first point, which can be considered as a
visnalization of the line of force of perceptual field
passing through this point.

Bartlett’s idea appears as very appealing, mainly because
the drawn point behaves like a probe, useful to
investigate a perceptual field - the one created by sheet
boundaries - in an homogeneous stimulation condition,

without influencing in an essential way the field itself.
However, such a procedure is practically unsuitable to
study perceptual field structure in all locations belonging
to paper sheet, as it would require a too great number of
experimental subjects. A more easily implementable
method is the one which makes use of a previous suitable
sampling of locations, and, for each sampled location,
ask the same subject to reproduce the point drawn in this
location. In this way the data coming from a single
subject let us obtain the displacements (of the

reproduced point with respect to the observed point)
associated to all sampled locations. These displacements,
in turn, are proportional to the vector forces acting in
each one of sampled points. We can thus obtain a
quantitative representation of perceptual field structure
and of its lines of force.

Such a representation, once obtained,, should be
considered as a remarkable result, because it lets us
characterize in a quantitative way the perceptual field
postulated by Gestalt psychologists. However it raises an
important problem, concerning the origin of observed
perceptual field structure. Does this latter derive from
some general Maximum (or Minimum) Principle, such as
the one of goodness of form? Or it is a byproduct of
sensorimotor processing, required by experimental task
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described above, and of principles ruling the operation of
neural architectures involved? In order to support the
evidence for the latter alternative we built a connectionist
model designed to represent perceptual-motor processing
by the experimental subject engaged in such a task, and
to forecast the displacements observed in an experiment
we performed, according to the paradigm presented
above, on 10 subjects. Such a model was implemented
through an architecture constituted by several different
neural networks reciprocally interconnected, each one
designed to do a particular task. Such a choice was
dictated by the complexity of the experimental situation
to be modelled. Namely this latter involves, first of all,
an acquisition system, to grant for input of stimulation
patterns, both of the sheet with the drawn point, and of
the empty sheet where the point has to be reproduced,
together with the instantaneous position of the point of
pencil used to draw the reproduction. Moreover, we need
a spatial memory , to store the information relative to the
observed point, and a motor system, able to command
hand motion in order to move pencil point up to the
location where the point should be reproduced. Such a
model was implemented through a computer program,
and the ontcomes of simulations we did were compared
with the mean displacements observed in experiment
with human subjects. We found a satisfactory agreement
between computer simulation results and experimental
data. Such an effect was essentially a consequence of
general principles underlying the operation of single
neural networks belonging to the architecture we
described, rather than a consequence of ad hoc
mechanisms already embodied within our model.
Notwithstanding we feel that, in order to obtain a better
agreement, some further experimental and theoretical
problems remain to be solved.

Before undertaking a detailed illustration of proposed
model, we will describe, in the second section, the
experiment done on human subjects. The third section
will contain a description of the component of our model
we consider as the most critical one: the spatial memory.
The other networks belonging to model architecture will
be presented in a fourth section. The fifth section, then,
will be devoted to a description of simulations done, and
to a comparison between the results so obtained and
experimental data coming from human subjects. The
conclusion will be the object of sixth section.

THE EXPERIMENT

The experiment was designed with a procedure similar
to the one described, e.g., in Stadler et al: (1991), but
with a systematic control of experimental variables.

Subjects

The experiment was performed on 10 subjects, all
students of Psychology, 5 males and 5 females, all with
normal vision, or correct to normal.

Stimuli

The stimuli were constituted by 609 Ad4-sized paper
sheets, each one with a single point in a particular
location. Each point had a circular form, whose radius
was lmm. The set of all locations filled a lattice with 29
rows and 21 columns, in which the distance between two
neighbouring points, both along the horizontal and the
vertical direction, was 1 cm.

Procedure

To each subject were presented, once at time and each
one for a duration of 1 s, all 609 stimulus sheets. The
subject was sitting in a dark room, before a suitably built
device, constituted by a box, with an upper opening to
look inside and a lateral opening to insert subject’s hand
holding a pencil. Only the inner box was enlightened, so
that the subject was forced to focus histher attention
only on stimulus sheet. After 1 s the sheet was removed
through a suitable opening, existing in the box, by an

“experimenter , located in the dark , which substituted the

stimulus sheet with an A4-sized blank sheet. The subject
was asked to draw on this sheet a point exactly in the
same location occuped by the point contained within the
stimulus sheet presented before. The experimenter
controlled that the initial position of subject’s hand was
always the same across all trials. Once the subject drew
the reproduction of the observed stimulus point, the sheet
was removed a new stimulation sheet was presented. The
presentation order was randomized, and different from
subject to subject. Each experimental session was
preceded by a training period, to ensure the
understanding of the task by the subject.

Results

For each stimulus point and for each subject we measured
the difference between the position of the reproduced
point and the one of the stimulus point. Such a
difference led us individuate the vector field acting in the
location of stimulus point, and whence the tangent vector
to the line of force of perceptual field passing through
this point. Afterwards, we computed for each point a
mean tangent vector, by averaging the results relative to
the different subjects. The spatial distribution of mean
tangent vectors thus obtained evidenced a regular trend
(see Fig. 1). More precisely, the majority of straight lines
individuated by each tangent vector were crossing in a
small number of points, which Stadleret al. (1991)

identified with the attractors of perceptual field. We
found a strong evidence for the presence of two attractors
located near the two corners on the upper part of the
sheet (here the attribute “upper” refers to -the

observational point of view of experimental subject), in
agreement with the findings by Stadler et al On the

contrary, we found only a weak evidence for the presence
of other two attractors located near the two corners on the
lower part of the sheet , differently from what found by
the Authors quoted above.
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Fig.1
Observed distribution of tangent vectors to lines of force
of perceptual field (averaged on all subjects).

MODELLING SPATIAL MEMORY

The general architecture of the model we proposed, to
describe perceptual-motor processing by a subject within
the experiment described above, consists of the following
interconnected neural networks: 1) a retina designed to
receive input patterns, 2) a spatial memory , designed to
process retinal output values, and to store the location of
the point to be reproduced, 3) two filtering networks,
designed to detect, respectively, the position of the point
to be reproduced (determined as output of spatial
memory), and the one of pencil point during
reproduction, 4) a motor network, designed to give the
right motor commands to the hand holding the pencil, as
a function of the location of the point to be reproduced,
and of the instantaneous position of pencil point.

The choice of implementing the above described
subsystems through neural networks was dictated by the
following reasons:

a) neural networks algorithms appear as more suitable to
model, by using only a small number of rules of
interaction between network units, behaviours such as the
ones implied by perceptual or motor processing, which,
stated in terms of traditional symbolic rule systems (such
as the ones expressed through usnal Predicate Calculus),
would be too difficult to describe; such a circumstance is
proved by fast diffusion, in recent times, of neural-
network-based systems which do in a very efficient way
artificial vision tasks, such as pattern recognition, visual
scene analysis, object identification, and motor control
tasks;

b) neural network structures appear as closer than usual
symbolic rule systems to biological structures involved
in visual and motor tasks, so that an interrelation between
neurophysiological study and cognitive modelling
becomes easier;

c) a parallel hardware implementation of neural network
models can be faster than any serial processing of
symbolic rules; such an argument would become crucial
if our model would be used to command in real time an
autonomous robot;

d) neural network algorithms appear as more robust,
with respect to traditional symbolic rule systems, with
respect to errors, variations of input patterns, variations
of model parameter values.

We underline that the previous arguments, within this
paper, have nothing to do with the traditional
contraposition  between symbolic and subsymbolic
approach. Our mneural network algorithms are symbolic,
in the same way as usual symbolic rule systems. We feel
only they are more convenient.

Within our model architecture the retina is modelled as a
planar lattice of units, each one of which can be, at a
given instant of time (henceforth we will suppose the
time be discretized: ¢t = 1, 2, 3, ...), in one of two states:
activated or non-activated (corresponding to the
activation levels 1 and 0, respectively). As regards neural
network representing spatial memory many different
modelling possibilities exist. They can be grouped
within two fundamental categories: models which make
use of correlation matrices, and are based on long-range
connections, and models implemented through cellular

neural networks, based on short-range connections. The
prototype of models belonging to the first category is the
celebrated Hopfield’s associative memory model
(Hopfield, 1982). There exist, however, memory models
belonging to this category, but not directly implemented
under the form of neural networks (see, e.g., Pike, 1984,
Humphreys, Bain & Pike, 1989). A more recent neural
network model of spatial memory of this type is the one
proposed by Fukushima et al (1997). A feature

common to all these models is that spatial patterns are
stored as contributions to a matrix of connection weights,
each element of which captures the correlation between
two elements of a pattern lying in different locations.
This implies that the neural network implementing
spatial memory must be constituted by a number of units
equal to the one of pattern elements, with connection
lines linking every pair of units, independently from the
spatial distance between the elements corresponding to
the units. The presence of such long-range connections
not only is biologically implausible, but can give rise to
strong interference effects between stored patterns, if we
need to memorize more than one pattern. Such effects can
worsen in a dramatic way network performance in recall
phase. Moreover, this kind of neural networks appear as
particularly suitable to memorize complex patterns,
rather than very simple ones, as it is the case in our
experiment, where the pattern is constituted by a single
point.

The second category of neural network models of spatial
memory, the one based on Cellular Neural Networks
(CNN), derives from the fundamental paper by Chua &
Yang (1988). Shortly, a CNN is constituted by a spatial
lattice of units, each one endowed with a particular
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activation fuction (of neural-like nature), and with a
neighbourhood function, stating what units can send
their output signals to the input lines of the unit itself.
Each line connecting a given unit to its neighbouring
units is characterized by a suitable connection weight. In
practical applications CNN showed very good
performances in artificial vision tasks relative to
processing of simple spatial patterns. For this reason we
choose this category of models to implement our spatial
memory.

Within our model spatial memory was represented as a
planar lattice whose dimensions and number of units
were identical to the ones of the retina. Each spatial
memory unit received input signals both from the retinal
unit lying immediately under it, and from its
neighbouring units within spatial memory. To this
regard, we choose as neighbourhood of a given unit the
classical 8-neighbourhood. This means that the
neighbouting units of the unit with coordinates (i, j) were
the ones with coordinates (i-1,/-1), (i-1,7), (i-1,j+1), (i,

J-1), G, j+1D), (i+1,j-1), (i+1,)), (i+1,j+1). If we denote

by xjj(?) the activation level of the unit with coordinates
(i, /) at the time ¢, we can write the activation law we
choose under the form:

(V) xjj (t+1) = a Qjf tgh [Py(t)] - d xii(t),
where:
@) Pij(t) = ZrseD wijrs xrs() + g xij(®) + Iij(9) - s

and D denotes the neighbourhood of the unit (iy), /j(?)

is the input signal coming from the retina, whereas is a
suitable threshold parameter. The quantities a, d, g
denote other parameters to be fixed by the experimenter.

Moreover Qjj denotes a factor, depending on xj;(t) , we

varied, in order to investigate the effect of different
choices of activation function on spatial memory

performance. The forms of Qij we used within our
computer simulations were the following:

(3.2) Qij =1

Bb)  Qjj=1-x;1)

3o)  Qj=1-/x/1/3

3d)  Qjj=0.5+xy(t) - 1.5 [xyy9)13

The connection weights wjjys associated to the lateral

connections were varying with time according to a Hebb-
like law of the form:

(4) wijrs(t+1) = wijrs(t) + b Mijps xij(1) xps(t-1) +
- d wijrs(t),

where b and d are other parameters, whereas Mjjpg is

another factor, depending on x;j(t) and x;j(t+1), which

we modified in order to investigate the effect of different
forms of the Hebbian law on spatial memory
performance. The explicit forms of Mjjps we used

within our computer simulations were the following:

(53) My'rs =1
(b))  Mijrs =1 -xjj(t+1) Xps(1)

(5.)  Mijps =1 -l xjj(t+1) xps(t) 12

In all simulations we performed the operation of spatial
memory was observed for a number of time steps,
previously fixed by the experimenter. At the end of this
period, the activation levels of the units were filtered in
the following way. First of all, we searched for the units
whose activation level was the maximum one. Once
found these units, their activation level was set to 1,
whereas the activation level of all other units was set to
0. The units whose activation level was 1 were
considered as representing what was stored within spatial
memory. In other words, they specified the locations
where should be placed the point to be reproduced. Of
course, in all computer simulations, only one unit of
spatial memory was characterized by an activation level
equal to 1. We underline that, apart from specific choices
of the factors Qij and Mijrs , the laws (1) and (4) are
nothing but an expression of very general principles
ruling neural activation and synaptic facilitation. Thus,
the effects of spatial memory operation are to be viewed,
essentially, as a consequence of the adoption of such
principles.

FILTERING AND MOTOR NETWORKS

When applying our general architecture to modelling
human subjects performance in point reproduction task,
we needed two filtering networks: one to detect the
position of the point to be reproduced, as deriving from
spatial memory processing, and another to detect the
actual position of the point of the pencil used to draw the
reproduction of the point itself. The former network
received as input the pattern of activation levels of spatial
memory, whereas the latter received as inputs the
activation levels of retinal units in presence of the pencil.
To do our simulations, we were forced to introduce a
particular schematic representation of the pencil together
with the hand holding it (as it is perceived by human
subjects in the real laboratory experiment). More
precisely, we choose to represent the hand through a
rectangular array of 3x2 units, to which was attached, in
the middle of the longest side, a line of 3 wunits
representing the pencil. We underline that both choices
of filtering networks, and of pencil representation, were
dictated by the need for proving that a neural-like, and
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somehow realistic, representation of the information flow
from spatial memory to motor network is possible. We
acknowledge that other different representations would
be possible without changing the operation principles of
the neural architecture we proposed. However, we feel
that the representation we adopted should be particularly
suitable if we would implement our architecture through
a particular hardware to be installed within an artificial
device, such as a robot able to draw a reproduction of a
visually observed pattern.

The filtering network receiving inputs from spatial
memory was designed in such a way as to let survive
only patterns consisting of a single activated unit. It was
implemented through a 2-dimensional array of units
(essentially a time-discrete CNN), of slightly greater
dimensions with respect to the ones of the retina, in such
a way as to include the representation of the hand holding
the pencil. Each unit had a 8-neighbourhood and its
activation potential was given by:

©)  Pij) = xij(1) - Zr,seD wijrs xrs(t) + Lij(1)

where D denotes the neighbourhood, all other symbols
have the meaning defined in the previuous paragraph,
and the connection weights wjjrs were all positive. The

activation law had the form:
(1) xjje+1) = 1if Pyjt) > 0.5, otherwise xjj(t+1) = 0.

In our simulations the operation time of this network was
limited to only one time step.

As regards the second filtering network, the one
receiving inputs from the retina and devoted to detect the
position of the point of the pencil, we designed it in such
a way as to let survive only the unit corresponding to the
position of this latter. To this end, we adopted a 2-
dimensional array of units, whose dimensions were
identical to the ones of the first filtering network.
Moreover, by taking again a 8-neighbourhood, we
defined the activation potential as:

(8) Pij(t) =Zr,s D wijrs Xrs(t) - WOFF Xij(t) + 1 jj(t),

where wQFF and  wjjs were all positive. In our
simulations we choose all Wwijrs values as identical to a
common value wg. The activation law had the form:

(9) xij(t+1) = 1i£ 0 < Pyj(y) < (2wE - wOFF)/2
otherwise xjj(t+1) =0.

Also in this case the network operation lasted only for
one time step.

As regards the motor network, it was designed to
transform the knowledge of the actual position of the
point to be reproduced, and of the point of the pencil, in a
motor command able to induce a displacement of the
hand, and whence of the point of the pencil. To this end

the coordinates of the point to be reproduced (as deriving
from the first filtering network), and of the point of the
pencil (as deriving from the second filtering network),
were first transformed into a binary form, by using 5
binary digits for each coordinate. Thus, all knowledge
relative to the actual positions of the points quoted above
was coded through a 20-components binary vector. This
latter was used as input for a 3-layer Perceptron, whose
output layer contained two units, one devoted to code the
motor activation along the horizontal direction, and
another to code this activation along the vertical
direction. As the allowed motions along these directions
could be both positive and negative, we choose, as
activation function of the Perceptron units, the
hyperbolic tangent one (with a suitable amplification
factor).

The Perceptron was trained on a sample of input patterns,
containing different relative positions of the point to be
reproduced and of the point of the pencil. The desired
output to each input pattern was obtained by putting the
wanted motor activation along a given direction as
directly proportional to the difference between the
coordinates of the points quoted above along the same
direction. Such a chojce was made in conformity with
neurophysiological  findings (cfr. Schwartz &
Georgopoulos, 1987), which evidenced a direct
proportionality between the electrical activity of motor
cortex neurons and perceived target distance. Of course,
the proportionality factor had to be considered as a
parameter to be chosen by the experimenter. The training
was done through usual error-backpropagation rule. To
avoid computational problems, the wanted outputs were
divided by a suitable scale factor.

Once trained, the Perceptron was used as a simple input-
output device, giving motor activation as a response to
the 20-component binary input vector. To compute the
effective displacement of the point of the pencil, we set
the velocity component of this latter along a given
direction as directly proportional to the