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Preface 

This document is a record of the papers and other material presented at the Second European 
Conference on Cognitive Modelling (ECCM-98), which was held on the campus of the 
University of Nottingham from 1st to 4th April 1998. The conference attempted to build on the 
success of the first meeting in the series, which had been held in Berlin in November 1996. As 
well as presented papers, the conference included tutorials (on ACT-R, Soar, and COGENT), 
invited addresses, symposia, posters, and demonstrations of models and modelling software. 

In the call for papers, we tried to encourage the submission of papers which report both a 
running (i.e. implemented) computer model and some empirical data against which the model 
can be compared. We were pleased with the results. Almost all the papers submitted included 
both those components, the only real exceptions being papers where such a criterion was not 
appropriate, such as those dealing with tools or methodology. 

We were also pleased by the quality of the papers submitted. The quantity and the quality were 
high enough that we were able to be selective, while still having enough papers for a full 
conference programme. Within the constraints of preparing for a conference — where a large 
number of papers have to be assessed in a short interval of time, and where decisions about 
acceptance or rejection have to be made on the basis of a paper as it stands — we attempted 
some serious refereeing. Of course, the review process could not be as thorough as it is for 
journal publication, but each paper was read and commented on by at least two members of the 
programme committee, and we tried hard to make the feedback given to authors clear and 
informative, especially in cases where changes were suggested or where reasons for rejecting a 
paper (or accepting it as a poster) were offered. 

Of the 40 papers submitted, we accepted 20, and invited a further 10 to be presented as posters 
(6 of which took up the invitation). We also accepted 5 of the 6 contributions submitted as 
posters. Our main criterion for posters was that they should be of relevance to the cognitive 
modelling research community, but possibly reporting work that is too preliminary to be 
presented as a main paper, or possibly focused on a model without as yet including the 
comparison to data. 

As well as having representation from a wide range of areas of cognitive modelling, the 
conference is a truly international event. Contributions to the programme came from 14 
different countries: the UK (11), USA (9), France (8), Germany (7), Italy (3), Belgium (2), 
Finland (2), The Netherlands (2), Australia, Bulgaria, Greece, Japan, Sweden, and 
Switzerland (1 each). It should be noted that the author index to these Proceedings lists no 
fewer than 80 authors who have contributed to the conference. 

It is appropriate to end this introduction with some thoughts about the nature of the ECCMs and 
how they relate to other meetings. Many of us tend to think of cognitive modelling as a 
research activity dominated by the USA. Yet even in the USA, the publication of descriptions 
of running computer models and their detailed comparison with empirical data is comparatively 
rare, and there seem to be no meetings attempting what ECCM is trying to do. The closest that 
comes to mind is the annual meeting of the Cognitive Science Society. Yet the feel of that 
meeting is entirely different to ECCM, in part because it is indeed a meeting of a particular 
scientific society (which ECCM is not), and in part because Cognitive Science (as viewed by 
the Society) is a broad field, of which cognitive modelling is seen as just a small part. Mainly, 
what makes ECCM distinctive is the point we stressed above, namely our emphasis on the 
presentation of both an implemented model and its comparison against empirical data, and on 
keeping a reasonable balance between the two. 

VI 



At the time of writing, nothing has been decided about the location and timing of any third 
ECCM. There are some uncertainties about future meetings, and especially about our 
relationship to the ongoing series of European Conferences on Cognitive Science (ECCS: St 
Malo, 1995; Manchester, 1997; Sienna, 1999). These matters are to be discussed at a special 
session during the conference. We certainly hope that something recognisably similar to the 
first two ECCMs continues, though perhaps still more international in flavour. To judge from 
the papers at this conference, cognitive modelling in Europe is in a comparatively healthy state. 

Richard M Young and Frank E Ritter 
Hatfield and Nottingham 
March 1998 
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ABSTRACT 
Recent brain imaging findings suggest several new 
assumptions concerning the architectural properties of the 
neural systems that underlie high level cognition, such as 
language, comprehension, visual cognition, and problem 
solving. Some of these assumptions have to do with 

1. resource-constrained processing and task assignment; 

2. dynamic configuration and resource recruitment; 

3. functional embedding, self-similarity, and 
interaction among the components of the cognitive 
system; 

4. a preference ordering for the types of processing that 
each cognitive component can perform (graded 
specialization). 

The 4CAPS computational modeling system implements 
these assumptions, with the goal of accounting not only 
for processing times and error probabilities, but also for 
the amount of brain activation observed in each of the 
activated component neural systems. 4CAPS consists of 
several component processing modules, each of which is 
a parallel production system with some connectionist 
properties, and each of which is intended to correspond to 
the function of an underlying large-scale neural network. 
The component production systems are highly interactive 
with each other, operate in parallel, and have a task 
allocation regimen based on graded specialization and 
resource availability. 



Mechanisms and Implications of Pervasive Episodic 
Memory 

Erik M. Altmann 
Psychology Department and Krasnow Institute 

George Mason University 
Fairfax, VA 22030 USA 

+1 703-993-1326 
altmann @ gmu .edu 

ABSTRACT 
This paper investigates the memory phenomena 
underlying directed access to hidden objects. A 
computational cognitive model is described that encodes 
long-term episodic traces automatically whenever it 
attends to an object in its environment. Later, if an object 
of interest is hidden from view, the model can try to 
remember seeing it. This involves generating appropriate 
cues from memory to try to trigger episodic traces encoded 
while attending to that object. The underlying cognitive 
architecture (Soar) constrains the nature of these cues and 
the processes required to generate them. These constraints 
lead to a theory of episodic indexing, which is that people 
store simple information about attention events in large 
amounts, but make use of it only to the extent that they 
are able to generate appropriate images from memory. 
Episodic indexing helps characterize the cognitive cost of 
a cluttered interface. 

Keywords 
Cognitive simulation, episodic memory, human-computer 
interaction, Soar 

INTRODUCTION 
Our surroundings are filled with information. Most of this 
is hidden to us at any given time, being out of our field of 
view, yet we manage to gain access to it when we need 
to. For example, we might recall seeing a figure in a 
book, or a key phrase, and then return to that area in the 
book to refresh our memory, or to examine the context 
more carefully. 

This paper investigates the memory phenomena 
underlying such access to external information. What do 
people encode about something they see, such that they 
can remember later that it exists? We would like to know 
both what information is stored, and under what 
circumstances. Second, what causes the retrieval of these 
memories? People typically navigate their environment 
for a purpose rather than haphazardly, implying some 
knowledge of a target to be visited. We would like to 
understand the role of domain knowledge in mediating 
access to what we know exists in our environment. 

Our approach to these questions is to represent the 
phenomena explicitly using a cognitive architecture, Soar 
(Newell, 1990; Rosenbloom, Laird, & Newell, 1992). 
Soar includes mechanisms grounded in psychological 
theory and data that impose constraints on the 
representation of behavior. Applied to hidden-object 
access, these constraints imply that people store large 
amounts of information about their environment, but 
retrieve it only occasionally and with requisite knowledge 
and cognitive effort. 

The paper is organized as follows. We first characterize 
the kind of task that requires the fine-grain episodic 
memory for efficient performance, and introduce the model 
using simple hypothetical examples to illustrate its 
encoding and retrieval processes. We then offer an 
accounting of the memory bandwidth implied by 
pervasive episodic encoding. Finally, we examine the 
theory for consistency with other findings on episodic 
memory, and for design of interfaces to extensive 
information environments. 

THE  MODEL 
The kind of hidden-information access we are interested in 
studying is illustrated by the following scenario. A 
computer user is working with an application that 
generates much more information than fits on the screen 
at once. Most of this information is hidden, scrolled out 
of the way by the application to make room for the new 
information that it generates continually. This old 
information remains accessible, and the user occasionally 
scrolls some of it back into view. Thus, the user appears 
to have a memory that functions as an index to the 
environment. Much as the index in a book supports 
looking up a term of interest, the episodic index stored in 
memory supports "looking up" objects of interest in the 
environment. We are interested in how this index is 
created in memory, and how it is later accessed. In the 
following, we use examples from a hypothetical database 
programming task. The real task simulated by the model 
is described elsewhere (Altmann & John, in press; 
Altmann, 1996; Altmann, Larkin, & John, 1995). 
The model's main mode of performance is a kind of 
comprehension in which it tries to gather information 
about objects in its environment. This is a generalized and 
simplified representation of interaction with an 
information-rich environment. In particular, it is 
simplified in that the model does not construct the 
complex mental structures generally associated with 
comprehension of text (e.g., Lewis, 1993; Kintsch, 
1998). 
The model selects goals to comprehend objects and issues 
commands to change the display. Some commands 
generate new information, and some scroll to old 
information. The model uses this external information as 
it tries to comprehend objects. 

To comprehend a particular object, the model selects 
subgoals that retrieve information about that object. 
Information can come either from the display (an external 
source) or from LTM (an internal source). For example, 
suppose the model is comprehending a data structure that 
represents a student record. The student record contains a 



field for the student's Social Security Number (SSN), 
which is displayed on the screen. To retrieve information 
about this field, the model selects an attend subgoal. 
Suppose (for simplicity) that the model attends only to 
the field and not to the actual number stored there. This 
act of attention would add the following attribute-value 
pair to WM. 

(Afield ssn) From attending to SSN field. 

Alternatively, if this information is not available 
externally but the model has the appropriate domain 
knowledge, the same information can be recalled from 
LTM. To do this, the model selects a probe subgoal. For 
example, the model might probe with the SSN field, 
perhaps to see if this activates any other information 
relevant to the student record. Probing and attention are 
symmetrical in that a probe can look exactly like the 
output of attention. 

(Afield ssn) From probing with SSN field. 

Under episodic indexing, attention and probing process 
another kind of element, one which represents the actual 
event of attending to an object. Attention automatically 
adds this element to WM as a side effect of attending to an 
object. Thus the full outcome of attending to an SSN 
field would be the following. 

(Afield ssn) 
(Aattended-to ssn) 

From attending to SSN field. 
From attending to SSN field. 

The same representation could also be produced by a 
probe, consistent with the attention-probing symmetry 
noted above. The probe below represents the model asking 
itself, "What do I know about the event of attending to an 
SSN field?" 

(Afield ssn) 
(Aattended-to ssn) 

From probing with SSN field. 
From probing with SSN field. 

We refer to an attribute-value pair like attended-to ssn. 
when generated by a probe, as an image of attending to an 
object. The term image is meant to suggest a code like 
that produced by attention, namely more like a percept 
than an abstraction or a concept. Beyond this, we do not 
attempt to interpret the model's images 
phenomenologically, or psychologically in terms other 
than how they function in the model. For example, their 
symbolic nature reflects Soar's representation language 
and is not intended as a statement in the debate over 
prepositional vs. analog spatial codes. In general, LTM 
contains many kinds of codes (Bower, 1975), and in 
particular expert programmers often use vivid imagery to 
understand programs, including color, sound, and dancing 
symbols (Petre & Blackwell, 1997). Amidst this diversity 
it seems reasonable to posit a code representing the event 
of attending to an object. 

Thus the model can imagine attending to an object, 
providing it has the knowledge to do so. Such imagining, 
and hence the requisite store of images, is the basis of the 
retrieval processes of episodic indexing. 

Learning in Soar 
Encoding information about the environment is a form of 
learning, and requires that the model modify its long-term 
knowledge representation. In Soar, all long-term 
knowledge is represented productions. These are condition- 
action rules like the one below. If the condition part 

(above the arrow) matches a structure in WM, then the 
action part (below the arrow) adds new elements to WM. 
The production below acts as a declarative memory, 
because it associates an object (a student record) with facts 
about that object (that it has an SSN field). In general, all 
the model's operations, like attending to objects, 
generating probes, and recalling facts, depend on 
knowledge represented as productions. 

(Astructure student-record) Condition: 
Student record in WM. 

(Afield ssn) Action: Put SSN field in 
WM. 

The model learns by acquiring new productions. The 
learning mechanism is part of Soar. It is unified with 
Soar's knowledge-representation language (productions) 
and control structure (goals) in that Soar acquires new 
productions in response to achieving goals (Laird, 
Rosenbloom, & Newell, 1986). A new production, or 
chunk, represents an inference that may have taken several 
steps to make. The chunk is added to LTM, making the 
inference available in a single step from then on. 

For example, suppose the model's goal were to find the 
sum of two numbers (4 and 7) and that although it could 
not retrieve the sum directly from memory, it knew a 
procedure for adding by counting up from one of the 
addends. The goal to find the sum would be implemented 
by subgoals that might involve initializing a running 
sum to the value of one addend, invoking the counting 
procedure, and recognizing when the count equaled the 
other addend. The result (11) would represent achieving 
the goal, and Soar would encode a chunk associating the 
relevant inputs to the counting procedure with the new 
result. In the future, this chunk will compute 4 + 7 = 11 
without subgoals, bypassing the counting procedure. 
In general terms, a chunk encodes an association between 
an inferred result (e.g., the sum) and the WM elements 
on which the inference is based, which we refer to here as 
premises (e.g., the addends). The premises have either 
already contributed to achieving the current goal or were 
in WM when the goal was selected. The result is inferred 
from the premises through a sequence of intermediate 
production firings. A chunk will fire immediately in the 
future if WM contains the same premises. 

The chunking process does very little induction or 
generalization. The result essentially becomes the chunk's 
action and the premises become the chunk's conditions, 
though there is some variabilization (Laird, Rosenbloom, 
& Newell, 1986). This makes a chunk specific to its 
encoding context, consistent with the encoding specificity 
principle (Tulving, 1983). This specificity acts as a hard 
constraint on the nature of the process for retrieving 
learned knowledge (Howes & Young, 1997). 

Encoding the Episodic Index 
The model contains two key assumptions about the 
process of attending to an object. Both assumptions are 
related to the event of attending. The first assumption is 
that the event itself is worth representing in WM, apart 
from the object of attention. The second assumption is 
that all attention events are goal-directed. This assumption 
says that the model is always looking for new 
information about the object it is trying to comprehend, 



and therefore automatically takes any attention event to 
contribute to the current goal. The two assumptions 
together operationalize what we might think of informally 
as "paying attention to" or "concentrating on" what we are 
doing. The important implication is that if the model 
"pays attention" to an event, this enables remembering 
the event because it causes chunks to be acquired. 

The first assumption (that attention events are 
noteworthy) is implemented as follows. When the model 
attends to an object, it records the event using its internal 
clock. That is, it associates the WM code for the attention 
event with the current value of an internal variable that is 
updated periodically. For example, when the model attends 
to the SSN field of a student record, the complete 
representation created in WM is something like the 
following. 

(Aattended-to ssn) From attending to SSN 
field. 

(Aevent ssn Atime t42) From attending to SSN 
field. 

The model's internal clock ticks when it selects a new 
object to comprehend (meaning that the model's sense of 
time is keyed to its train of thought). All objects attended 
while comprehending that object are encoded in LTM with 
the current time symbol. 

The second assumption (that episodic processing 
contributes to the current goal) is implemented by 
associating the time symbol with the current goal in 
WM. This causes Soar to build a chunk, as described in 
the previous section. The premise of the chunk is the 
attribute-value pair representing attention to the SSN 
field, and the result is the time symbol. The two are 
linked by the inference that the SSN field was attended 
now. The chunk is shown below (named attended-ssn for 
reference later).   . 

chunk:  attended-ssn      Chunk for an attention event. 
(Aattended-to ssn) 
—> 
(Aevent ssn Atime t42) 

Attended-ssn represents an attention event. This makes it 
an episodic trace, as distinct from a semantic trace with 
no temporal content (Tulving, 1983). It functions as one 
entry in an index of objects encountered in the 
environment. In the future, if no SSN field is visible, the 
model can look up the SSN field in this index by 
attempting to cause this chunk to' fire. If the lookup is 
successful, then the model can infer that it attended to an 
SSN field in the past, even though no such field is 
currently visible. The lookup and inference processes are 
described in the next section. 

Retrieval from the Episodic Endex 
The episodic index consists of a set of chunks, each of 
which associates an attention event with a time symbol. 
Suppose that a particular attention event occurred long 
enough in the past that it is no longer active in WM and 
that the corresponding object is no longer in view. The 
model can use its episodic index to see if the object exists 
somewhere in the environment. This requires two steps. 
The first is to generate the cue necessary to get an 
episodic chunk to fire. We can think of this as "looking 
up" the object. The second is to make the appropriate 

inferences based on any recalled time symbols. We can 
think of this as acting on the information retrieved from 
the lookup. 

To look up an object, the model must add to WM an 
image of attending to that object, as a cue for triggering 
episodic chunks. As discussed previously, an image can 
appear in WM either through attention, which generates 
the image from an external stimulus, or through probing, 
which generates the image from memory. In either case, 
an image appearing in WM will activate all episodic 
chunks acquired whenever the corresponding object was 
attended in the past. Production imagine-ssn, below, 
generates the necessary probe for the SSN field. 

production: imagine-ssn 
Conditions testing that it's relevant to know that 
an SSN field was seen. 

—> 
(Aattended-to ssn) Al 
(Aimagined ssn) A2 

Imagine-ssn will fire in a situation in which it would be 
useful to remember seeing an SSN field. For instance, 
suppose (as we did previously) that the model were asked 
whether a given database record contained confidential 
information. The model might try to recall seeing an SSN 
field by firing imagine-ssn. When imagine-ssn fires, Al 
adds to WM an image of attending to the SSN field, 
providing an opportunity for a chunk like attended-ssn to 
fire. A2 tags this image as generated from memory rather 
than from a stimulus. In general, there could be many 
situations in which it might be useful to imagine an SSN 
field. Each would be represented in a production like 
imagine-ssn (with different conditions). 

If we suppose that attended-ssn fires in response to 
imagine-ssn, then WM will contain the following 
elements. 

(Aattended-to ssn) 
(Aimagined ssn) 
(Aevent ssn Atime t42) 

From imagine-ssn. 
From imagine-ssn. 
From attended-ssn. 

From these elements the model can infer that an SSN 
field exists in the environment. The production that 
makes this inference is recall-seeing-object, below. This 
production belongs to the set of generic mechanisms that 
form part of the model's static knowledge. 

production:  recall-seeing-object 
(Aattended-to <o>) Cl 
("imagined <o>) C2 
(Aevent <o> Atime <then>) C3 
(Atime <now>  != <then>) C4 
—> 
(•""recall-seeing <o>) 

Recall-seeing-object's conditions, numbered on the right, 
are as follows. Conditions Cl and C2 test that there is an 
image in WM that was generated internally rather than 
from an external stimulus.1 C3 and C4 test that the image 
was attended in the past. The single action summarizes 

1 Angle brackets around a letter (e.g., "<o>") indicate a 
variable. If the same variable occurs in multiple conditions, 
it must have the same value in each condition for the 
production to fire. Thus, for example, Cl and C2 test that the 
object bound to <o> is both attended-to and imagined. 



what is expressed by the conditions. It adds to WM the 
recollection of having seen the object. 

The identity comparison in C4 is the only operation 
afforded by time symbols. Thus time is categorical, 
rather than ordinal or interval, and the only categories are 
present (the current comprehension goal) and past (any 
previous goal). The model cannot compute, for example, 
the interval between two events. This information- 
leanness is consistent with qualitative aspects of the rapid 
decay of unelaborated temporal codes in people 
(Underwood, 1977). 

The nature and use of the episodic index is shaped by 
Soar's constraints on learning. Because Soar makes a 
chunk specific to its encoding context, attended-ssn's 
conditions are tied to the object code that appeared in WM 
during the attending event. This specificity implies that 
recalling the existence of an object must be preceded by 
imagery involving the object. 

Summary of Assumptions 
There are four theoretical assumptions that shape how the 
model acquires and retrieves memories for attention 
events. The first assumption is that the attention event 
itself is worth symbolizing in WM, in addition to the 
attended object. The second assumption is that attention is 
an integral part of comprehension and thus contributes to 
every comprehension goal. These two assumptions are 
hypotheses that we have embodied in the model. 

The third and fourth assumptions come with Soar. The 
third is that all knowledge that contributes to achieving a 
goal is stored permanently in chunks. The fourth is that 
chunks are specific to their encoding context. 
Together, these assumptions imply that chunk acquisition 
in the model will be pervasive and automatic, and that 
retrieval will be effortful. Learning will be pervasive 
because the model will encode a new episodic chunk for 
every object it attends to. This learning is automatic, in 
that the model exercises no control over whether or not to 
learn, and in that learning is a side effect of attentional 
processing rather than an end in itself. Retrieval will be 
effortful because learning involves little induction. To get 
chunks to fire, cues describing the original encoding 
context will have to be generated from memory. 

Knowledge  Distinguished  by Operation 
Episodic indexing encodes information  about dynamic 
information  arising  during   task   performance. It   also 
allows  us  to  make   distinctions   among   the different 

operations facilitated by the domain knowledge that one 
brings to a task. Domain knowledge is involved in three 
operations: 

• Attention. During the acquisition episode, the 
model must know what to attend to in the first place. 
Thus the model must be able to identify objects and 
understand them to be relevant to the task at hand. 

• Retrieval. During the retrieval episode, the model 
must (a) be able to generate an image, and (b) do this 
when the results of a successful probe on that image 
would be useful. Thus retrieval depends on both 
visual familiarity and semantic understanding specific 
to the particular domain. 

• Action. The decision to revisit a hidden object is 
distinct from recalling that it exists. There might be 
other means for acquiring the information that the 
object could provide, and there might be no reason to 
act on the recollection. 

Thus the model points to several operations by which 
relatively static domain knowledge helps us gain access to 
the relatively dynamic information around us. 

PRODUCTIONS   ENCODED   AND   FIRED 
The model simulates 10.5 continuous minutes of problem 
solving, spanning the encoding and retrieval episodes of a 
number of scrolling events (Altmann, 1996). This 
extended lifetime served as a form of methodological 
control during our analysis. A sufficiently close 
examination of the data to construct the model was the 
best way to avoid missing events between acquisition and 
retrieval that might have recoded or otherwise affected the 
nature of the participant's episodic index. This extended 
lifetime also serves to illustrate the implications of 
pervasive episodic encoding for the bandwidth of the 
model's memory system in terms of the number of 
chunks acquired and fired. 
Figure 1 tabulates productions and firing counts according 
to four categories of knowledge (arrayed horizontally). The 
top bar indicates the number of productions in each 
category when the model stops, including all preloaded 
productions and all chunks acquired as the model runs. 
The bottom bar indicates the total number of production 
firings in each category during the model's run. 
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Figure 1: Production and firing counts. 

The right half of the picture (shaded) shows that most of 
the model's productions are acquired by learning, but fire 
seldom because they are specific to their encoding context. 
The large number of chunks at the end of the run (1320) 
indicates the extent to which learning is pervasive. In 
terms of real time, the model is encoding roughly two 
chunks per second. 

Few of these chunks fire, but some do. In particular, 
chunks encoding some aspect of the display account for 
8% of firings. Thus the model's behavior depends in part 
on a memory for specific external situations that arise 
during task performance. 

The left half of the picture (unshaded) shows that the 
model begins with a small number of preloaded 
productions that account for most of its processing. 
Preloaded productions number 194 (13%), of which 126 
(8%) represent domain knowledge that we attribute to the 
programmer. This knowledge lets the model attend to 
external objects, generate cues, and recall facts about 
objects. It also tells the model what commands it can 
issue and what objects are important to comprehend and 
therefore select as comprehension goals. 

Expertise should be flexible, in that it should guide 
behavior under a variety of appropriate circumstances. In 
our model, a large number of static domain-knowledge 
productions (93 out of the 126 indicated in Figure 1) 
represent either comprehension goals or attend or probe 
subgoals. These 93 productions account for all 499 goal 
and subgoal selections that occur as the model runs, for a 
mean of 5.4 goals per production. They also account for 
2,518 out of the 2,848 firings of domain-knowledge 
productions. These measures indicate that to a large extent 
the model's goal and subgoal productions transfer among 
situations rather than being hardwired to a particular one. 

The category of preloaded productions labeled generic 
mechanisms accounts for 75% of total production firings, 
despite being only 5% of the total number of productions. 
These are domain-independent productions  like   recall- 

seeing-object, discussed earlier, which infers the existence 
of a hidden object from an episodic trace. The high firing 
rate of mechanistic productions is consistent with their 
being the most general productions in the model and 
potentially general across many domains. 

The production and firing counts over the model's lifetime 
illustrate the implications of pervasive episodic learning. 
In a few minutes of simulated time, the model acquires a 
great deal of dynamic information about its environment 
and stores it permanently in LTM. Some of these chunks 
transfer in the near term, firing seconds to minutes (of 
simulated time) after being created. The fast rate of 
learning - 1,320 productions over 10.5 minutes - 
suggests that Brooks's (1977) estimate of tens or hundreds 
of thousands of rules making up a programmer's static 
domain knowledge may account for only part of what 
generates expert performance. There may in addition be a 
vast and constantly growing store of rules capturing 
dynamic knowledge. 

DISCUSSION 
Below we discuss the relationship of episodic indexing to 
previous conceptions of episodic memory in Soar and to a 
related theory advanced to account for expanded working 
memory for domain experts. We then speculate on 
episodic indexing and the cognitive cost of clutter. 

Episodic Memory in Soar 
Episodic memory is a natural construct to study in Soar. 
Learning is closely integrated with performance, meaning 
that events are easy to capture and store in LTM. 
Moreover, chunk conditions are determined by a process 
that gives chunks an inherently episodic quality. The 
chunking mechanism traces from a result back to the WM 
elements from which the result was generated, encoding 
an association between the result and important elements 
of context in which it was encoded. Thus the simple 
existence of a chunk represents some episodic 
information. A model can gain access to this information 
by generating cues that would cause the chunk to fire if it 
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existed, then by monitoring WM for the appearance of the 
chunk's result. Several Soar models have addressed 
episodic memory in these terms (e.g., Rieman, Young & 
Howes, 1996; Rosenbloom, Newell, & Laird 1991). 

However, episodic indexing requires richer information to 
decide whether an object was actually attended at some 
time in the past. Below we examine the constraints met 
by the model's time symbols, and how these constraints 
arise from the interaction of pervasive episodic encoding 
(an assumption in our model) with encoding specificity 
(an architectural constraint inherited from Soar). 

Episodic encoding extends to probe events as well as 
attention events ~ that is, the model encodes episodic 
chunks for both. This follows from assuming that 
attention is integral to comprehension and thus 
contributes to every comprehension goal. Probing 
contributes equally to comprehension, and thus with 
respect to episodic learning the model treats probing and 
attention symmetrically. 
This symmetry could lead to confusion should the model 
probe repeatedly with the same image. A particular probe 
will trigger episodic chunks from all previous probes, 
potentially leading the model to mistake these past probes 
as attention events. A kind of reality monitoring (Johnson 
& Raye, 1981) is necessary to avoid this mistake (and 
hence to avoid scrolling to imaginary objects). To support 
this reality monitoring, episodic chunks must contain 
enough information about the source of a memory 
(attention vs. probing) to let the model discriminate past 
attention events from past probe events. 

Identifying past attention events must be done indirectly 
because source information cannot be represented 
explicitly in episodic chunks, when the source is the 
environment. This seems a surprising constraint, but it 
follows from encoding specificity. When building a 
chunk, Soar traces from the result back to premises 
existing before the result was generated, and encodes these 
premises as conditions. Therefore, if source information is 
a result, it also becomes a condition. Thus if a chunk has 
an action identifying an object as real, its conditions can 
never be met by an image alone. However, by the same 
logic, a chunk can have an action identifying an object as 
imagined and still be triggered by an image. Thus the 
model includes an probe tag with each chunk built during 
a probe event (see Appendix). 

At retrieval time, these probe tags provide part of the 
information necessary to decide if the object of interest 
was ever attended. To make this decision, the model must 
identify all episodic chunks triggered by the current probe 
but built during past probes, and subtract them from the 
total set of episodic chunks triggered by the current probe. 
If the resulting set is non-empty, then the object was 
attended in the past. In terms of predicate calculus, the 
model tests an existential quantifier ("Did I recall an 
attention event?") by testing a negated universal quantifier 
("Did I recall any event that was not a probe?"). This 
requires that each episodic chunk be uniquely identifiable. 
Because chunks are identifiable only by their results, this 
in turn requires that each episodic chunk have a uniquely 
identifiable result. This requirement cannot be met by a 
fixed set of symbols because at most one instance of any 
particular symbol can be represented in WM at any given 
time whereas the number of distinct events to represent is 

effectively unbounded. The requirement is met by the 
model's time symbols (as illustrated in the Appendix), 
because each is unique and they are generated anew at 
regular intervals. 
Thus episodic indexing contrasts with previous Soar 
formulations of episodic memory in which multiple 
chunks may have the same result (e.g., Rieman, Young 
& Howes, 1996; Rosenbloom, Newell & Laird 1990). 
The episodic representation in our model is implied by 
theoretical assumptions interacting with task requirements 
in a way that does not constrain these other models. Our 
assumptions specify an indiscriminate encoding of 
episodic chunks, and the task requires that chunks from 
attention events transfer to probe events. However, this 
transfer requirement combined with encoding specificity 
restricts the source information that episodic chunks can 
represent. To compensate they are made discriminable by 
their results, allowing the model to partition past events 
into probe events and all the rest. This shaping of a 
representation by a complex interaction of constraints 
illustrates the benefit of taking a comprehensive and 
integrated approach to modeling cognitive phenomena 
(Newell, 1973). 

A Form of Long-Term Working Memory 
Episodic indexing posits that access to dynamic 
information depends on static information that one brings 
to the task. In this it is congruent with long-term 
working memory (LT-WM; Ericsson & Kintsch, 1995), 
of which a central claim is that long-term knowledge (as 
opposed to inherent WM capacity; e.g., Just, Carpenter & 
Hemphill, 1996) accounts for functionally expanded WM 
in domains in which one has expertise. Episodic indexing 
and LT-WM both propose that people store information 
rapidly in LTM, using domain knowledge to organize it 
and gain access to it later. 

Episodic indexing extends LT-WM in the direction of 
leaner and more ubiquitous memory structures acquired at 
encoding time. The most routine application of LT-WM 
reviewed by Ericsson and Kintsch (1995) is text 
comprehension, but even this involves online encoding of 
memory structures that represent potentially intricate 
semantic mappings. For example, in referent resolution 
the comprehender must represent the connection between a 
pronoun and what it stands for, which is a semantic 
association that is not always straightforward to establish. 
By contrast, the episodic index is a one-way mapping 
from semantic to episodic codes which lacks the network 
structure that typically characterizes semantic memory. 

The Cost of Clutter 
Episodic indexing suggests that clutter has a cognitive 
cost, due to the paucity of information encoded with 
episodic traces and the effect this has at retrieval time. An 
episodic retrieval indicates the existence of an object of 
interest but not its whereabouts. This is consistent with 
the difficulty that even experienced users have in recalling 
features of interfaces (Mayes, Draper, McGregor, & 
Oatley, 1988; Payne, 1991), and with findings that spatial 
and location knowledge is not automatically encoded in 
real-world task environments (Lansdale, 1991). It is also 
consistent with the generally reconstructive nature of 
memory for the source of an item (Johnson, Hashtroudi, 
& Lindsay, 1993). 
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One possible strategy for dealing with clutter might be to 
add spatial information to the episodic information 
encoded during attention. However, encoding specificity as 
implemented in Soar predicts that any such information 
would place a heavy burden on the retrieval process. 
Location information encoded in the actions of a chunk 
would also be present in the conditions, thus requiring 
that location cues be generated at retrieval time. This 
would not completely defeat the purpose, because the 
model could use the same kind process it now uses to 
generate and recognize images at retrieval time. However, 
more cues would have to be generated, requiring both 
more cognitive effort and more knowledge from which to 
generate them. 

This shifts the emphasis to alternative strategies. One 
alternative might be to infer location from the nature of 
the target item. For example, applications often deposit 
different kinds of output into different windows. In such 
environments a reliable and easily-retained mapping from 
content to location should reduce the cost of clutter. 
Another strategy might be search, implying that reliable, 
easily-retained, and flexible searching tools also reduce the 
cost of clutter. More generally, the implication of 
episodic indexing is that access to hidden objects requires 
a reconstructive memory process that becomes more 
costly the more source information is stored with the 
target item. Thus users are likely to mitigate clutter by 
inferring location as needed, implying that interfaces to 
extensive information environments should support such 
inferences with direct, structured and learnable item- 
location mappings. 

CONCLUSIONS 
We propose that people store simple dynamic information 
in long-term memory as a matter of course, and use this 
information to index their environment. Our theory of 
episodic indexing makes two main claims: 

• Pervasive and automatic encoding. People acquire 
large amounts of recognitional, episodic information 
about attention events, as a side effect of attention. 

• Semantic, image-based retrieval. People retrieve 
this episodic information as a function of pre-existing 
knowledge that generates image cues when 
semantically appropriate. 

The generality of these claims rest on the generality of 
their theoretical underpinnings. Soar's chunking 
mechanism (which predicts goal-based learning and 
encoding specificity) has been offered as a universal 
account of learning (Laird, Rosenbloom, & Newell, 1986; 
Newell, 1990), and our additional assumptions about the 
integration of episodic processing, attention, and 
comprehension are domain-independent. Thus episodic 
indexing may operate whenever people pay attention to 
what they are doing, and know the domain well enough to 
generate the right cues at the right time. 
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APPENDIX 
Below we present a complete picture of the processing 
that occurs when the model probes with an image and 
retrieves episodic chunks. (This elaborates on the process 
described in the section, Encoding the Episodic Index.) In 
the general case, the episodic chunks retrieved by a probe 
will be of two kinds: those encoded during attention 
events and those encoded during (past) probe events. Only 
those acquired during probe events will contain source 
information in their actions (as discussed in the section, 
Episodic Memory in Soar). To determine whether the 
object of interest was actually attended in the past, the 
model computes the difference between the total set of 
episodic chunks retrieved and those representing probe 
events. The scenario below supposes that the model first 
probes for information about the SSN field, then actually 
attends to the field, then probes again. 

At time t42, the model probes by placing an image in 
WM (Al) together with source information identifying 
the image as an image (A2). 

production:  imagine-ssn 
Conditions testing that it's relevant to know that 
an SSN field was seen. 

—> 
("attended-to ssn) Al 
("imagined ssn) A2 

The model encodes an episodic chunk during the probe 
event, under the assumption of pervasive episodic 
encoding. Source information is included as a chunk 
action (A2) and hence also as a chunk condition (C2). 

chunk:    imagined-ssn Chunk capturing a probe 
event. 

("attended-to ssn) Cl 
("imagined ssn) C2 
—> 
("event ssn "time t42) Al 

("probe t42) A2 

At time t43, the model actually attends to the SSN 
object, resulting in another episodic chunk. 

chunk:   attended-ssn      Chunk  capturing attention 
event. 

("attended-to ssn) 
—> 
("event ssn "time t43) 

Finally, at time t44, the model probes a second time (by 
firing imagine-ssn). This triggers the two episodic chunks 
described above, causing the following elements to enter 
WM. 

("attended-to ssn) 
("imagined ssn) 
("event ssn "time t42) 
("probe t42) 
("event ssn "time t43) 

From imagine-ssn. 
From imagine-ssn. 
From imagined-ssn. 
From imagined-ssn. 
From attended-ssn. 

From these elements the model can infer that an SSN 
field exists in the environment. The production that 
makes this inference is recall-seeing-object, below. 
Condition C5 (not reported in the section, Using the 
Episodic Index) effectively subtracts the set of probe 
events (containing t42) from the set of probe plus 
attention events (containing t42 and t43). The leading 
minus sign ("-") negates the subsequent condition, 
meaning that WM cannot contain an element matching 
that condition. In our scenario, this negated condition 
holds for at least one past event (t43). Thus the 
production matches, inferring that SSN was attended at 
some point in the past (Al). 

production: recall-seeing-object 

("attended-to <o>) 
("imagined <o>) 
("event <o> "time <then>) 
("time <now> != <then>) 

-("probe <then>) 
—> 
("recall-seeing <o>) 

Cl, <o> = ssn 
C2 
C3, <then>=t43 
C4, <now>=t44 
C5 

Al 
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ABSTRACT 
Operators' models, or equivalent end-user models, have 
became a standard prerequisite for most man-machine 
system design. Nowadays, the designer can chose among 
a great variety of models: behavioral models of 
performance, running competence models, and cognitive 
models are available in a large range of granularity from 
quasi-neuropsychological models of memory to 
framework models of dynamic cognition. However, 
despite ~ or maybe because of ~ that variety, modelling 
the operator is still an area of uncertainty within the 
industry, with multiple forms and meanings, and with a 
persistent feeling that these models, whereas they should 
be useful, are hard to incorporate into the design process. 
This paper focuses on the development and use of 
cognitive models of human reliability for the design of 
complex systems, and tries to understand biases and 
limitations of their use within the industry. In that 
sense, the paper is more industry-oriented than research 
oriented. It is divided into three sections. The first 
section details the range of existing cognitive models of 
human reliability and proposes a classification of these 
models into four main categories: error production 

models, error detection and recovery models, systemic 
models, and integrated safety ecological models. The 
example of the Aviation Industry shows how difficult it 
has been in the recent past to incorporate the most 
advanced of these models into design, whereas the same 
Industry had long complained about the lack of 
availabilily of cognitive operators' models. 

The second section tries to explain the reason for the 
relative failure. It shows the inter-dependency existing 
between the category of cognitive model, the safety 
paradigm, and the strategy for design. Severe drawbacks 
may occur each time a model is used with the wrong 
safety paradigm or the wrong strategy for design. It also 
shows that the more cognitively-based the model is, the 
less it is incorporated into design. The lack of education 
in psychology of designers, as well as the lack of a clear 
procedure for incorporating such models into design, are 
among the most important factors explaining this lack of 
success. 

The third and last section points to new directions in 
cognitive modelling to improve the fit between operator 
modelling and design requirements. 
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ABSTRACT 
Recent results in cognitive skill acquisition suggest that 
task speed-up can be due to either speed-up of procedural 
knowledge or speed-up of the retrieval of declarative 
knowledge. This paper presents a single Act-R model that 
closely fits the data of two learning and transfer 
experiments conducted by Rabinowitz and Goldberg 
(1995). These experiments test three main hypotheses: 1) 
access to procedural and declarative knowledge speeds 
up as separate power laws of practice; 2) training on a 
large variety of problems leads to strengthening of 
procedural knowledge, whereas training on a small set of 
problems leads to the acquisition and strengthening of 
declarative knowledge; and 3) procedural knowledge 
operates in one direction only—from condition to 
action—whereas declarative knowledge can be cued by 
any of its elements. The model provides a good fit to the 
data, further validating Act-R as a model of the human 
cognitive architecture 

Keywords 
Declarative memory, procedural memory, learning, 
transfer, knowledge compilation, Act-R, Soar. 

INTRODUCTION 
One common view of cognitive skill acquisition is that it 
progresses from an interpretive stage to a procedural 
stage using some kind of knowledge compilation 
mechanism (Stillings et al., 1995; VanLehn, 1989). Such 
a mechanism produces procedural knowledge from the 
results of more deliberate, interpretive problem solving. 
This view has received a lot of empirical support. Several 
researchers have shown that knowledge compilation can 
model the transition from novice to expert behavior 
(Larkin, 1981; Newell & Rosenbloom, 1981). One major 
research effort, the Soar architecture, even asserts that 
knowledge compilation is the only mechanism required 
to account for all human learning (Newell, 1990). 
Researchers using Soar have been able to model a wide 
range of learning strategies (Miller, 1993; Rosenbloom & 
Aasman, 1990; Steier et al., 1987). Knowledge 
compilation mechanisms can also sometimes account for 
the ubiquitous power law of learning (Newell & 
Rosenbloom, 1981). 

Recent results on the characteristics of declarative and 
procedural knowledge, however, threaten the simplicity 
of this view of skill acquisition, because they suggest that 
cognitive skill can also improve through the acquisition 
and strengthening of declarative memory elements (for a 
review see (VanLehn, 1996)). A number of experiments 

have suggested that the retrieval of declarative 
knowledge and the application of procedural knowledge 
speed up as separate power laws of practice. In other 
words, the time to retrieve a declarative memory speeds 
up as a power function of the number of retrievals, 
whereas the time to apply a procedure speeds up as a 
power function of the number of applications. This 
implies that cognitive skill can improve by acquiring and 
strengthening procedural or declarative knowledge, or 
some combination of the two. 

Despite the intuitive nature of the distinction between 
declarative and procedural knowledge, the hypothesis 
that there are separate long-term memory stores for 
declarative and procedural knowledge remains a 
controversial issue in cognitive science. The controversy 
arises because, in theory, anything that can be modeled 
with two distinct long-term stores can also be modeled 
using only a procedural long-term store. For example, 
long-term procedural knowledge might add "Washington, 
DC" to working memory whenever working memory 
encodes a goal to determine the capitol of the United 
States. Working memory is widely thought to be a 
declarative store, so the declarative-procedural distinction 
applies only to long-term memory. 
There is, however, mounting evidence in favor of the 
distinction. Cognitive neuroscientists have found a 
double dissociation between declarative and procedural 
knowledge—some patients can acquire new declarative 
knowledge, but not procedural, whereas other patients 
can acquire procedural, but not declarative. There is also 
evidence that the two kinds of knowledge have different 
retrieval characteristics: declarative knowledge can be 
primed by any of its components, but procedural 
knowledge only works in one direction: from a specific 
set of cues to an action. A review of these issues can be 
found in (Anderson, 1993). 

Rabinowitz and Goldberg (1995) conducted two 
experiments that nicely illustrate many of the recent 
phenomena concerning skill acquisition and the 
distinction between declarative and procedural 
knowledge. These experiments use a learning and transfer 
paradigm to examine learning of declarative and 
procedural knowledge, and their different retrieval 
characteristics. 

This paper presents a single Act-R model that accounts 
for the data in the two Rabinowitz and Goldberg 
experiments. In addition, the paper presents protocol 
results from a newly conducted experiment designed to 
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Figure 1: Mean response times during alphabet arithmetic training as a function of training group and 
practice block. Data plotted from original data by Rabinowitz and Goldberg (1995). 

further test the assumptions of the experiments and the 
model. 

THE RABINOWITZ AND GOLDBERG EXPERIMENTS 
Both experiments used an alphabet arithmetic task, which 
consists of problems of the form letterl + number = 
letter!, where letterl is number letters after letterl. For 
example, A+2=C, because C is 2 letters after A. 

In Experiment 1, one group of participants (the consistent 
group) received training on 36 blocks of problems, where 
each block consisted of the same 12 problems. Another 
group of participants (the varied group) received training 
on 6 blocks of problems, where each block consisted of 
the same 72 problems. Thus, both groups received 432 
training trials, but the consistent group practiced each 
problem 36 times, whereas the varied group practiced 
each problem only 6 times. The problems used addends 
from 1 to 6. Consistent problems had two occurrences of 
each addend, whereas varied problems had 12 
occurrences. 

In the transfer phase, both groups received 12 new 
addition problems, repeated 3 times. Rabinowitz and 
Goldberg reasoned that during training the consistent 
group would quickly acquire declarative knowledge of 
the answers and switch to retrieval, whereas the varied 
group would continue to count up the alphabet. Thus the 
consistent group would get a lot of practice at retrieving 
the answers to the same 12 problems, but relatively little 
practice on the procedural knowledge needed to count up 
the alphabet. In contrast, the varied group would receive 
little or no practice retrieving declarative knowledge, but 
a great deal of practice counting up the alphabet. When 
transferred to the 12 new addition problems, the 
consistent group should revert to counting up the 
alphabet, resulting in a dramatic decrease in speed. 
However, the varied group should show perfect transfer 

from the training problems to the new problems. 

The training results are shown in Figure 1. Each point on 
the graph is the mean of the median response times for all 
subjects on a block of 12 problems. The different 
asymptotes support the assertion that varied participants 
practice procedural knowledge, while consistent 
participants switch to and then practice retrieval. 

The transfer results, shown in Figure 2, support the 
predictions: the varied group shows perfect transfer, but 
the consistent group shows considerable slow-down. 

Although Experiment 1 supports the predictions, it is also 
consistent with a procedural-only long-term store. The 
consistent subjects might have acquired problem-specific 
procedural knowledge that directly produces the answer 
to each problem. For example, knowledge of the form "If 
problem is A+2, then type C." Since this knowledge is 
specific to the 12 training problems, it would not have 
helped the participants during the transfer phase. This 
issue is examined in Rabinowitz and Goldberg's second 
experiment. 

The second experiment attempts to determine whether 
consistent training leads to specific procedural 
knowledge, or to declarative knowledge. It is based on 
the hypothesis that declarative and procedural knowledge 
have different retrieval characteristics. Declarative 
knowledge is thought to be subject to symmetric 
retrieval, meaning that any part of a declarative memory 
element can act as a cue for the retrieval of that element. 
Procedural knowledge is thought to be subject to 
symmetric access, meaning that a procedure operates in 
only one direction: from condition to action. 

Training in Experiment 2 was identical to Experiment 1, 
however, in the transfer phase, both groups were given 12 
subtraction problems repeated 3 times. A subtraction 
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Figure 2: Mean response times for Experiment 1 as a 
function of task and group. 

Figure 3: Mean response time for Experiment 2 
function of task and group. 

as a 

problem is of the form letter 1 - number = letter!. For 
example, C-2=A. The 12 subtraction problems were 
inverted versions of the addition problems that both 
groups had seen during training. If the consistent group 
acquires declarative knowledge of the addition problems, 
the participants in this group should be able to solve the 
subtraction problems by retrieving and inverting addition 
problems. However, if this group has acquired problem- 
specific procedural knowledge, they will need to develop 
a new procedural for counting down the alphabet, as will 
the varied participants—who presumably strengthen their 
procedural knowledge during training. 

Training results are similar to those for Experiment 1, so 
they are not reproduced here. Figure 3 shows that the 
transfer results are consistent with the predictions: the 
varied group requires considerably more time than the 
consistent group. 

Taken together, Experiments 1 and 2 support the speed- 
up of both declarative knowledge retrieval and procedural 
knowledge application, as well as symmetric access to 
declarative knowledge and asymmetric access to 
procedural knowledge. 

AN ACT-R MODEL 
Act-R (Anderson, 1993) seems well suited for modeling 
these results, because it contains procedural and 
declarative long-term stores, along with learning 
mechanisms that alter the speed of elements in the two 
stores as a function of experience. Trafton (1996) has 
described an Act-R model for Experiment 1, but a bigger 
challenge is to construct a single Act-R model that can 
account for the results from both experiments. Such a 
model will serve three purposes. First, it will act as an 
additional test for several of Act-R's theoretical 
assumptions. Second, although each of Act-R's 
mechanisms has been tested in isolation, this model will 
test the interaction of several mechanisms. Third, the 
model will provide an explicit account of declarative and 
procedural learning and transfer that might then be used 
to analyze a wide range of more complex cognitive tasks. 

The model presented here uses Act-R 4.0 (Anderson & 
Lebiere, in press). 

Act-R is a parallel matching, serial firing rule-based 
system. It contains two long-term stores: procedural 
memory, represented by production rules, and declarative 
memory, represented by an associative network of 
declarative memory elements (DMEs). Working memory 
is viewed as the highly active portion of long-term 
declarative memory. 

The alphabet arithmetic model has six production rules 
for the main goal. These are described in Table 1. READ- 
DISPLAY and ENCODE-DISPLAY simply read and 
look up the meaning of the textual symbols in the 
problem. REPORT-ANSWER reports the answer and 
signals that the goal has been achieved. 

The remaining three rules—RETRIEVE-PLUS- 
RESULT, RETRIEVE-MINUS-RESULT, AND 
SUBGOAL-COUNT—are the most important rules in the 
model. RETRIEVE-PLUS-RESULT attempts to solve an 
addition problem by retrieving a fact from declarative 
memory that matches the problem, but also contains the 
answer. If successful, it uses the retrieved answer as the 
solution. RETRIEVE-MINUS-RESULT attempts to 
solve a subtraction problem by retrieving an addition 
DME that is the inverse of the subtraction problem. In 
other words, if the current problem is C-2=?, this rule will 
attempt to retrieve a fact of the form letter + 2 = C. 
SUBGOAL-COUNT creates a subgoal to solve the 
current problem by counting up or down the alphabet. 

The model is designed so that Act-R will first try to 
retrieve an answer by using one of the retrieve rules. If 
the retrieval fails, then SUBGOAL-COUNT will fire to 
create the computation subgoal. 

The model switches from computation to retrieval by 
acquiring declarative representations of problems that it 
has solved. When the model begins to solve problems it 
does not have any DMEs of past problems to retrieve, so 
it always uses SUBGOAL-COUNT. However, each time 
it solves a problem,  it automatically remembers the 
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problem and solution as a DME. These DMEs are then 
available for recall in future trials. Details of this 
memorization process are given below following the 
description of the computation subgoal. 

The computation subgoal works by counting either up or 
down the alphabet. It uses a set of declarative memory 
elements that represent the alphabet using chunks thought 
to be common to people raised in United States: 

ABCD EFG HIJK LMNOP QRS TUV WXYZ 

Each chunk is a DME containing up to five letters and a 
pointer to the next chunk. For example, the second chunk 
in the alphabet (named alpha2) is represented as: 

alpha2 
ISA item 
FIRST e 
SECOND f 
THIRD g 
NEXT alpha3 

The subgoal contains 26 rules that implement counting 
forward and backward through the alphabet. To do this, it 
must first retrieve the alphabet chunk that contains the 
starting letter. Next it steps forward along the chunk until 
it finds the starting letter. Finally, it counts along the 
alphabet (either forward or backward) the required 
number of letters. If it reaches a chunk boundary, it must 
retrieve either the next or previous chunk before 
continuing the count. 

The subgoal automatically produces a declarative 
memory trace of the problem and its solution. Goals in 
Act-R are DMEs that have been pushed onto the goal 
stack. You can think of a goal as a kind of goal-specific 
working memory, because it encodes the problem, the 
solution, and any partial results. When the subgoal has 
computed an answer, a rule pops the goal off of Act-R's 
goal stack. This removes the goal from the stack, but it 
remains in declarative memory as a DME representing 
the problem and its solution. For example, the DME 
representing A+2=C is: 

Add-fact-10 
ISA problem 
ARG1 a 
OP plus 
ARG2 2 
COUNT 2 
RESULT  c 

Here, Add-fact-10 is an arbitrary name for the DME, and 
COUNT is used during processing to keep track of how 
many letters were counted. 

Every time the subgoal solves a new problem, it leads to 
a new DME representing the problem and its solution. 
These DMEs are then available for retrieval by the two 
retrieval rules described above. 

The model accounts for the experimental data by using 
three of Act-R's mechanisms: base-level learning, which 
speeds up access to commonly retrieved DMEs, strength 
learning, which speeds up rules that are commonly used, 
and the memory retrieval threshold, which prevents the 
retrieval of DMEs below a specified activation. 

To understand how these mechanisms produce the speed- 
up and transfer shown  in the data,  you  must first 

understand how Act-R predicts latencies. The total time 
for a trial in Act-R is the sum of the times needed to fire 
each production rule during that trial. The time to fire a 
rule is the sum of the time needed to retrieve the DMEs it 
matches plus the time to execute the rule's action. The 
time to retrieve a DME depends on its activation and the 
strength of the production rule that is retrieving it. 
Intuitively, latency of retrieval is inversely proportional 
to production strength and DME activation. The time to 
match DME i is given by Equation 1: 

- F„-/<4+V t. = Fe Equation 1 

Here, F and f are constants. Ai is the activation of DME i, 
and Sp is the strength of production p. 

The activation of a DME is the sum of its base level 
activation and the spreading activation from other DMEs: 

4=£,+2X.s.. Equation 2 

where Bi is the base level activation, Wj is the source 
activation of DME j, and Sji is the strength of association 
from j to i. A single unit of source activation is divided 
among all DMEs that fill slots of the current goal. For the 
present model, this means that elements of the current 
problem (i.e., the letter, operator, and number) will 
spread activation to DMEs representing past solutions. 

Read-Display 
IF the goal is to do an alphabet arithmetic problem, but 

the problem text has not yet been read 
THEN read the problem text from the display 
Encode-Display 

IF the goal is to do an alphabet arithmetic problem, and 
the problem text has been read, but its meaning has not 
been determined 

THEN encode the meaning of each textual symbol 
Retrieve-Plus-Result 

IF the goal is to do an alphabet ADDITION arithmetic 
problem of the form letterl + number =, but the answer 
has not been determined, and there is a fact in memory 
stating that letterl + number = letter2 

THEN note letter2 as the answer 
Retrieve-Minus-Result 

IF the goal is to do an alphabet SUBTRACTION 
arithmetic problem of the form letterl - number =, but 
the answer has not been determined, and there is a fact 
in memory stating that letter2 + number = letterl 

THEN note letter2 as the answer 
Subgoal-Count 

IF the goal is to do an alphabet arithmetic problem, but 
the answer has not been determined 

THEN set a subgoal to compute the answer by counting 
Report-Answer 
IF the goal is to do an alphabet arithmetic problem, and 

the answer has been determined 
THEN report the answer and pop the goal 

Table   1:  The  English  version  of the  model's  main 
production rules 
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For example, if the current goal is to solve A+2, then A 
will spread activation to all traces of previous problems 
that contain A either as the first letter or as the answer. 
The same is true for the operator and the number. Hence, 
the DME that represents the past solution to the current 
problem will receive activation from all three elements 
and will, most likely, be the most active DME. 

The base level activation of a DME reflects the log prior 
odds that the DME will be matched by a production rule. 
Act-R assumes that these odds increase as a function of 
use and decrease as a function of delay. This is given by 
the optimized base-level learning equation. 

ß;=ln 
(nL-d ^ 
\-d + ß Equation 3 

where ß represents the initial base-level, d is the decay 
rate, L is the time since the DME was created, and n is 
the number of times the DME has been used. This 
equation assumes that the uses of the DME are evenly 
spaced in time. This is a reasonable assumption for the 
present model, because each trial occurs only once in a 
given block. Act-R's exact base-level learning equation 
does not make this assumption, but is much more 
expensive to compute. 

A use count of a DME is incremented whenever the DME 
is retrieved by a rule or when a duplicate DME is created. 
As noted above, when a goal is popped from the stack it 
remains in declarative memory. However, if Act-R 
detects that a newly created DME is identical to an 
existing DME, then it destroys the new DME and 
increments the use count of the old DME. This is 
important during initial skill acquisition, because a newly 
created DME might be too inactive to recall after a brief 
delay. When this happens, the model must recompute the 
answer. Since the subgoal creates a duplicate DME, the 
original DME is strengthened, increasing the chances of 
recall in future trials. 

A DME that matches a rule's condition will be 
successfully retrieved whenever its activation exceeds the 
global retrieval threshold. Act-R assumes that DME 
activation contains permanent noise with mean 0 and 

2 
variance <7l . When a DME is first created, its base-level 
activation is set to a base level constant plus the 
permanent activation noise. 

We can now see how the model might learn to retrieve 
declarative traces in the consistent training condition, but 
not in the varied training condition. In the consistent 
condition, the model is exposed to each problem 36 
times. These frequent exposures boost the base-level 
activation of the memory traces, allowing the retrieval 
rules to directly recall the solutions. In contrast, in the 
varied condition the model is exposed to each problem 
only six times. In addition, the varied condition takes 
longer because the first 72 trials can only be solved by 
counting. In the consistent condition there is a chance of 
recalling one or more answers after the first 12 trials. 

The speed-up of participants in the consistent condition is 
predicted by Equation 1, which governs retrieval latency. 
It predicts that retrieval latency is inversely proportional 

to activation and rule strength. Without considering rule 
strength we can see that an increase in DME activation 
will lead to lower predicted retrieval times and hence 
lower trial times in the consistent condition. 

The model predicts that speed-up in the varied condition 
and part of the speed up in the consistent condition is due 
to speed-up of procedural knowledge. As discussed 
earlier in this section, Act-R assumes that the latency of a 
rule application is inversely proportional to its strength 
and the activation of the DMEs that it matches (see the 
discussion surrounding Equations 1 and 2). Rule strength 
is governed by the same equation that governs base-level 
learning (Equation 3) except that L is the time since the 
rule was created, d is a separate strength decay constant, 
and n is the number of times the rule has been fired. 

Strength learning, combined with the latency equations 
(Equations 1 and 2), predict the speed-up in the varied 
condition and why varied training produces perfect 
transfer to new addition problems, whereas consistent 
training shows no transfer. In the varied condition, the 
model receives a lot of practice counting up the alphabet. 
Thus, the rules for counting, which are not specific to a 
single problem, are strengthened throughout training, and 
this strengthening continues during the transfer phase. In 
contrast, when the model is given consistent training, it 
learns to retrieve the answers to the 12 problems, so it 
rarely uses the counting rules. Once the model reaches 
the transfer phase it must begin to use the counting rules 
again, but their strengths will be either at or below their 
initial values, producing the dramatic slowdown observed 
in the data. 

The model also accounts for the subtraction transfer 
results. In the consistent condition, the model acquires 
and strengthens DMEs representing each problem and its 
solution. When transferred to subtraction, these DMEs 
have a high enough activation to be retrieved and 
inverted by RETRIEVE-MINUS-RESULT. The model 
predicts that performance will be slower than at the end 
of training, because it has not yet strengthened 
RETRIEVE-MINUS-RESULT. In contrast, when the 
model is in the varied training condition, the DMEs rarely 
become active enough to retrieve, so they are not 
available during transfer. Although the model has 
strengthened its rules for counting up the alphabet, very 
few of these rules are used to count down, so the model 
must use counting down rules that have not yet been 
used, and hence are much slower to fire. 

Four parameters were estimated to fit the model to the 
data. These were the base-level learning decay parameter 
(d in Equation 3), production strength decay parameter, 
retrieval threshold, and permanent activation noise. 
Transient noise was not used. These four parameters are 
critical to fitting the data. The rule strength decay 
parameter affects the learning rate of procedural 
knowledge. The interaction of the retrieval threshold with 
the three other parameters determines the amount of 
practice needed before the model can switch from 
computation to retrieval. To fit the data, these parameters 
must be set so that consistent training leads the model to 
retrieve the answers, whereas varied training leads the 
model to continue to compute the answers. In addition, 
the parameters must also produce the right learning 
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Figure 4: Observed and predicted mean response times during alphabet arithmetic training as a function of training 
group and practice block. Observed data replotted from Rabinowitz and Goldberg (1995). 

curves for the two conditions. 

The best fit was obtained with base-level learning decay 
set to .7, strength decay set to .5, retrieval threshold set to 
.55, and permanent activation noise variance set to .15. In 
addition, the total time to read the problem and type a 
letter was estimated at a constant 1.25 sec. This defines 
the lower bound of the model's response times. To reflect 
familiarity with the alphabet, all alphabet DMEs were 
given initial base-level activations of .974, reflecting 100 
uses in the last 1000 seconds. Production rule strengths 
were initially set to .486, reflecting 25 uses in the past 
1000 seconds. All other parameters used the default Act- 
R 4.0 values. 

The model's predictions for the training phase in 
Experiment 1 are shown in Figure 4 along with the 
observed data. The model predictions were produced by 
simulating 15 subjects in each condition. The same model 
and parameter values were used for both conditions. The 
R2 for the consistent condition was .89 and for the varied 
condition .78. This is pretty good considering that two 
different groups of subjects were modeled using the same 
parameters. In addition, the model captures the 
qualitative trends in the data—consistent simulations get 
much faster than varied simulations. 

The transfer results are shown in Figures 5 and 6. The 
model closely fits the quantitative and qualitative results 
for alphabet addition transfer: consistent training leads to 
a large slow down in the transfer phase, whereas varied 
training results in perfect transfer. The subtraction 
transfer simulation matches the qualitative results, but not 
the quantitative ones: consistent training leads to better 

performance on subtraction than does varied training, but 
the model underestimates the latency of subtraction 
problems. Overall though, the fit is quite impressive, 
considering that four groups of subjects in four different 
conditions are fit using the same model and parameter 
values. 

The modeling results raise several issues that will be 
addressed in the next section. The poor fit of the model to 
the quantitative subtraction data for the varied condition 
is easy to fix. It is possible to increase the time to 
compute a subtraction problem answer by either 
decreasing the strength of the subtraction counting rules 
or by switching to a different technique to solve the 
problems. A decrease in the rules' strengths is justifiable 
because most people rarely need to recite the alphabet 
backwards. However, it is also possible that people use a 
different strategy, such as guessing an answer and then 
counting forward to see if it is the right one. 

The poor match to the subtraction latency in the 
consistent condition is much more puzzling. Specifically, 
why do the participants need over 4 seconds to solve each 
problem? If they are really recalling an alphabet addition 
problem and inverting it, then they should be closer to the 
predicted times, but instead their times are more than 
double the predictions. One possibility is that only a 
subset of varied participants actually switched to 
retrieval, whereas the remainder used computation. 

The model's good fit to the data shows that active 
declarative knowledge is not needed to account for the 
results. Thus, the two experiments do not discriminate 
between declarative knowledge being inert or active. 
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Figure 5: Mean predicted response times for Experiment 1 
as a function of task and group. 

However, it is possible that protocol data might provide 
evidence concerning this issue. 

PROTOCOL ANALYSIS 
To better understand the strategies that people use for 
alphabet arithmetic, particularly with respect to 
subtraction, a variant of Experiment 2 was run at The 
Ohio State University. Participants were 42 
undergraduate students at The Ohio State University who 
received course credit for their effort. This experiment 
was similar to Rabinowitz and Goldberg's except that 
participants answered a questionnaire halfway through 
training and immediately after the transfer phase. Part 1 
of the questionnaire contained the question: "Please 
describe all strategies that you used to solve the alphabet 
addition problems. If you used multiple strategies (or 
changed strategies), be as specific as possible about 
where and when you used them." Part 2 (completed at the 
end of the experiment) contained two questions: 1) 
"Please describe all strategies that you used to solve the 
alphabet ADDITION problems since the break. If you 
used multiple strategies (or changed strategies), be as 
specific as possible about where and when you used 
them." and 2) Please describe all strategies that you used 
to solve the alphabet SUBTRACTION problems. If you 
used multiple strategies (or changed strategies), be as 
specific as possible about where and when you used 
them." 

Three main strategies were mentioned during the training 
phase: counting only, counting plus recall, and computing 
(in an unspecified way) plus recall. Many more strategies 
were mentioned in the transfer phase: counting 
backwards, recall plus inversion only, computing initially 
then switching to recall and inversion, and generate and 
test. Table 2 shows the results in terms of the percentage 
of participants in each category. For this analysis, 
responses to both training questions were coded together. 
The results clearly support the assumption that varied 
training leads to faster counting, whereas consistent 
training leads to direct retrieval. 95% of the participants 
in the consistent group reported using recall during 
training, versus only 32% of those in the varied 
condition. Most participants in the varied group (68%) 
reported that they used only counting throughout the 
entire training phase, in contrast to only 5% of 
participants in the consistent group. 

Figure 6: Mean predicted response times for Experiment 
2 as a function of task and group. 

The transfer protocol results are consistent with the 
hypothesis that varied training leads to strengthened 
asymmetrically accessible procedural knowledge for 
counting up, whereas consistent training leads to 
symmetrically accessible declarative knowledge. 70% of 
the consistent group reported recalling and inverting the 
addition problems, versus only 5% of the varied group. 
Likewise, only 15% of the consistent group reported 
counting back only, versus 36% of the varied group. 
Another 18% of the varied group used the generate and 
test strategy. 

These results help clarify the model's problems of 
underestimating the difficulty of subtraction. First, they 
show that at least 15% of the consistent group used 
computation instead of recall, offering a possible 
explanation for the higher than predicted response times 
for this group on the transfer task. Second, the results 
indicate that the model's strategy of counting backward is 
consistent with the majority of participants in the varied 
group, but that the model is simply underestimating the 
time required to count back. In fact, two participants who 
used generate and test, mentioned that they switched to 
this method because counting back was too difficult. In 
contrast, counting back in the model within an alphabet 
chunk is just as fast as counting forward. The model's 
slower subtraction times are due only to the increased 
time needed to retrieve the previous chunk, thus 
subtraction problems that do not cross a chunk boundary 
are just as fast as addition problems. Resolving this 
problem should bring the model's predictions closer to 
the observed data. 

The protocol data provides little evidence of whether 
declarative knowledge is inert or active. Only 10% of the 
consistent group mentioned computing the answers to a 
few subtraction problems before recognizing them as 
inverted addition problems. 

CONCLUSION 
This paper has three main results. The first is that the 
successful fit of the model to the alphabet arithmetic 
results shows that the two experiments fail to 
discriminate between active or inert declarative memory. 
Declarative memory in Act-R is inert—it can only be 
retrieved in the service of a production rule. Although the 
protocol data provided little insight into this issue, it does 
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Table 2: Reported strategy use based on training group 
and task. 

Condition 

Consistent Varied 
(n = 20) (n = 22) 

Training 

Counting only 5 % (1) 68% (15) 
Count + Recall 80% (16) 32% (7) 

Compute + Recall 15% (3) 0% 

Transfer 

Counting back only 15% (3) 36% (8) 
Recall and Invert 60% (12) 5% (1) 
Count back then 5% (1) 0% 
recall and invert 

Compute then Recall 5% (1) 0% 
and Invert 

Generate and Test 5% (1) 18% (4) 
Count back + 0% 9% (2) 

Generate and Test 
Other 5% (1) 5% (1) 

Not codable 5% (1) 27% (6) 

suggest that some kind of recognition process is needed 
before a participant can switch to recall and inversion. 
Recent work on feeling-of-knowing (i.e., the feeling that 
you know an answer to a problem) provides some support 
for this claim. Schunn, et al. (1997) have shown that 
feeling-of-knowing is based on similarity of the problem 
to previously seen problems, not on the availability of an 
answer to the problem. Since subtraction problems are so 
different from the inverted addition problems, it seems 
likely that solving one or two subtraction problems might 
lead to a feeling of knowing based on similarity between 
the solved subtraction problem and previously seen 
addition problems. This feeling-of-knowing might then 
prompt a person to consciously explore the similarities. 

Second, the model's successful fit to the data and the 
protocol results provide additional support for separate 
declarative and procedural long-term memory stores. In 
addition, the model also shows that the separate 
strengthening of procedural and declarative knowledge 
can produce the observed results. 

Finally, the paper shows that Act-R is sufficient to 
capture both the qualitative and quantitative details of the 
acquisition and transfer of procedural and declarative 
memory. Even more importantly, the model shows that 
several Act-R mechanisms working together can predict 
whether training will lead to procedural strengthening or 
the recall of declarative knowledge. 
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Abstract 

This paper presents a skill learning model 
CLARION. Different from existing models 
of mostly high-level skill learning that use a 
top-down approach (that is, turning declar- 
ative knowledge into procedural knowledge), 
we adopt a bottom-up approach toward low- 
level skill learning, where procedural knowl- 
edge develops first and declarative knowledge 
develops from it. CLARION which follows this 
approach is formed by integrating connec- 
tionist, reinforcement, and symbolic learn- 
ing methods to perform on-line learning. We 
compare the model with human data in a 
minefield navigation task. A match between 
the model and human data is observed in sev- 
eral comparisons. 

1    Introduction 
Skills vary in complexity and the degree of cognitive in- 
volvement. They range from simple motor movements 
and other routine tasks in everyday activities to high- 
level intellectual skills. We want to study "lower-level" 
cognitive skills, which have not received sufficient re- 
search attention. One type of task that exemplifies 
what we call low-level cognitive skill is reactive se- 
quential decision making (Sun and Peterson 1995). It 
involves an agent selecting and performing a sequence 
of actions to accomplish an objective on the basis of 
moment-to-moment information (hence the term "re- 
active" ). An example of this kind of task is the mine- 
field navigation task developed at The Naval Research 
Lab (see Gordon et al. 1994). This kind of task setting 
appears to tap into real-world skills associated with 
decision making under conditions of time pressure and 
limited information. Thus, the results we obtain from 
human experiments will likely be transferable to real- 
world skill learning situations. Yet this kind of task is 
suitable for computational modeling given the recent 
development of machine learning techniques (Sun et al 
1996, Watkins 1989). 

The distinction between procedural knowledge and 
declarative knowledge has been made in many theo- 
ries of learning and cognition (for example, Ander- 
son 1982, 1993, Keil 1989, Damasio et al. 1994, and 
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Figure 1: Navigating Through Mines 

Sun 1995). It is believed that both procedural and 
declarative knowledge are essential to cognitive agents 
in complex environments. Anderson (1982) originally 
proposed the distinction based on data from a vari- 
ety of skill learning studies, ranging from arithmetic 
to geometric theorem proving, to account for changes 
resulting from extensive practice. Similar distinctions 
have been made by other researchers based on differ- 
ent sets of data, in the areas of skill learning, concept 
formation, and verbal informal reasoning (e.g., Fitts 
and Posner, 1967; Keil, 1989; Sun, 1995). 

Most of the work in skill learning that makes the 
declarative/procedural distinction assumes a top-down 
approach; that is, learners first acquire a great deal of 
explicit declarative knowledge in a domain and then 
through practice, turn this knowledge into a procedu- 
ral form ("proceduralization"), which leads to skilled 
performance. However, these models were not devel- 
oped to account for skill learning in the absence of, or 
independent from, prexisting explicit domain knowl- 
edge. Several lines of research demonstrate that in- 
dividuals can learn to perform complex skills without 
first obtaining a large amount of explicit declarative 
knowledge (e.g., Berry and Broadbent 1988, Stanley 
et al 1989, Lewicki et al 1992, Willingham et al 1992, 
Reber 1989, Karmiloff-Smith 1986, Schacter 1987, and 
Schraagen 1993). In research on implicit learning, 
Berry and Broadbent (1988), Willingham et al (1992), 
and Reber (1989) expressly demonstrate a dissociation 
between explicit knowledge and skilled performance 
in a variety of tasks including dynamic decision tasks 
(Berry and Broadbent 1988), artificial grammar learn- 
ing tasks (Reber 1989), and serial reaction tasks (Will- 
ingham et al 1992). Berry and Broadbent (1988) argue 
that the psychological data in dynamic decision tasks 
are not consistent with exclusively top-down learning 
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models, because subjects can learn to perform the task 
without being provided a priori declarative knowledge 
and without being able to verbalize the rules they 
used to perform the task. This indicates that pro- 
cedural skills are not necessarily accompanied by ex- 
plicit declarative knowledge, which would not be the 
case if top-down learning is the only way to acquire 
skill. Willingham et al (1989) similarly demonstrate 
that procedural knowledge is not always preceded by 
declarative knowledge in human learning, and show 
that declarative and procedural learning are not nec- 
essarily correlated. There are even indications that 
explicit knowledge may arise from procedural skills in 
some circumstances (see Stanley et al 1989). Using 
a dynamic decision task, Stanley et al. (1989) found 
that the development of declarative knowledge paral- 
leled but lagged behind the development of procedural 
knowledge. 

Similar claims concerning the development of pro- 
cedural knowledge prior to the development of declar- 
ative knowledge have surfaced in a number of research 
areas outside the skill learning literature and provided 
additional support for the bottom-up approach. Im- 
plicit memory research (e.g., Schacter 1987) demon- 
strates a dissociation between explicit and implicit 
knowledge/memories in that an individual's perfor- 
mance can improve by virtue of implicit "retrieval" 
from memory and the individual can be unaware of 
the process. This is not amenable to the exclu- 
sively top-down approach. Instrumental condition- 
ing also reflects a learning process that differs from 
the top-down approach, because the process is typi- 
cally non-verbal and involves the formation of action 
sequences without requiring a priori explicit knowl- 
edge. It may be applied to simple organisms as well 
as humans (Gluck and Bower 1988). In developmen- 
tal psychology, Karmiloff-Smith (1986) proposed the 
idea of "representational redescription". During de- 
velopment, low-level implicit representations are trans- 
formed into more abstract and explicit representations 
and thereby made more accessible. This process is not 
top-down either, but in the opposite direction. 

2    The Model 

The difference between declarative and procedural 
knowledge leads naturally to "two-level" architectures 
(Sun 1995). We thus developed the model CLARION, 

which stands for Connectionist Learning with Adaptive 
Rule Induction ON-line (Sun et al 1996). It embodies 
the distinction of declarative and procedural knowl- 
edge (or, conceptual and subconceptual knowledge), 
and it performs learning in a bottom-up direction. It 
consists of two main components: the top level encodes 
explicit declarative knowledge in the form of prepo- 
sitional rules, and the bottom level encodes implicit 
procedural knowledge in neural networks. In addition, 
there is an episodic memory, which stores recent ex- 
periences in the form of "input, output, result" (i.e., 
stimulus, response, and consequence). 

A high-level pseudo-code algorithm that describes 
CLARION is as follows: 

1. Observe the current state x. 
2. Compute in the bottom level the Q-value 

of each of the possible actions (a;'s) associ- 
ated with the perceptual state x: Q(x,ai), 
Q(x,a2),  , Q{x,an). 

3. Find out all the possible actions (bi, 62, .-.., 
6m) at the top level, based on the the per- 
ceptual information x and other available in- 
formation (which goes up from the bottom 
level) and the rules in place at the top level. 

4. Compare the values of a,'s with those of 6,-'s 
(which are sent down from the top level), and 
choose an appropriate action a. 

5. Perform the action a, and observe the next 
state y and (possibly) the reinforcement r. 

6. Update the bottom level in accordance with 
the Q-Learning-Backpropagation algorithm, 
based on the feedback information. 

7. Update the top level using the Rule- 
Extraction-Refinement algorithm. 

8. Go back to Step 1. 

In the bottom level, a Q-value is an evaluation of 
the "quality" of an action in a given state: Q(x, a) 
indicates how desirable action o is in state x. We 
can choose an action based on Q-values. To acquire 
the Q-values, supervised and/or reinforcement learn- 
ing methods may be applied. A widely applicable op- 
tion is the Q-learning algorithm (Watkins 1989), a 
reinforcement learning algorithm. In the algorithm, 
Q(x,a) estimates the maximum discounted cumula- 
tive reinforcement that the agent will receive from the 
current state x on. The updating of Q(x,a) is based 
on minimizing r+'ye(y) — Q(x, a), where 7 is a discount 
factor and e(y) = maxaQ(j/,a). Thus, the updating 
is based on the temporal difference in evaluating the 
current state and the action chosen: In the above for- 
mula, Q(x,a) estimates, before action a is performed, 
the (discounted) cumulative reinforcement to be re- 
ceived if action a is performed, and r + -ye(y) esti- 
mates the (discounted) cumulative reinforcement that 
the agent will receive, after action a is performed; so 
their difference (the temporal difference in evaluating 
an action) enables the learning of Q-values that ap- 
proximate the (discounted) cumulative reinforcement. 
Using Q-learning allows sequential behavior to emerge 
in an agent. Through successive updates of the Q func- 
tion, the agent can learn to take into account future 
steps in longer and longer sequences. 

To implement Q functions, we chose to use a four- 
layered network (see Figure 2), in which the first three 
layers form a (either recurrent or feedforward) back- 
propagation network for computing Q-values and the 
fourth layer (with only one node) performs stochastic 
decision making. The output of the third layer (i.e., 
the output layer of the backpropagation network) in- 
dicates the Q-value of each action (represented by an 
individual node), and the node in the fourth layer de- 
termines probabilistically the action to be performed 
based on a Boltzmann distribution (i.e., Luce's choice 
axiom; Watkins 1989). This learning process performs 
both structural credit assignment (with backpropaga- 
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tion), so that the agent knows which element in a state 
should be assigned credit/blame, as well as temporal 
credit assignment, so that the agent knows which ac- 
tion leads to success or failure. This learning process 
enables the development of procedural skills poten- 
tially solely based on the agent independently explor- 
ing a particular world on a continuous and on-going 
basis. 

In the top level, declarative knowledge is captured 
in a simple propositional rule form. To facilitate corre- 
spondence with the bottom level and to encourage uni- 
formity and integration (Clark and Karmiloff-Smith 
1993), we chose to use a localist connectionist model 
for implementing these rules (e.g., Sun 1992, Towell 
and Shavlik 1993). Basically, we translate the struc- 
ture of a set of rules into that of a network. For each 
rule, a set of links are established, each of which con- 
nects a node representing a concept in the condition 
of a rule to the node representing the conclusion of the 
rule. For more complex rule forms including predicate 
rules and variable binding, see Sun (1992). 

To fully capture bottom-up learning processes, we 
devised an algorithm for learning declarative knowl- 
edge (rules) using information in the bottom level 
(the Rule-Extraction-Refinement algorithm). The ba- 
sic idea is as follows: if an action decided by the bot- 
tom level is successful then the agent extracts a rule 
(with its action corresponding to that selected by the 
bottom level and with its conditions corresponding to 
the current sensory state), and adds the rule to the 
top-level rule network. Then, in subsequent interac- 
tions with the world, the agent refines the extracted 
rule by considering the outcome of applying the rule: if 
the outcome is successful, the agent may try to general- 
ize the conditions of the rule to make it more universal; 
if the outcome is not successful, then the conditions of 
the rule should be made more specific and exclusive of 
the current case. 

We perform rule extraction at each step, based on 
the following information: (x,y,r,a), where x is the 
state before action a is performed, y is the new state 
entered after an action a is performed, and r is the 
reinforcement received after action a. Rules are in the 
following form: conditions —> action, where the left- 
hand side is a conjunction of individual conditions each 
of which refers to the value of an element in the (sen- 
sory) input state. Three different criteria can be used 
for rule learning at each step: (1) direct reinforcement 
received at a step, (2) temporal difference (as used in 
updating Q-values), and (3) maximum Q-values in a 
state. We adopt a three-phase approach, with each 
phase lasting for a certain number of episodes. Phase 
transition can be automatically determined based on 
the current performance level of the model. At each 
step, we apply the current-phase criterion to deter- 
mine whether we should construct a rule. If so, a rule 
is wired up in the rule network. After rules are ex- 
tracted, at each step, the algorithm reexamines the 
rules matching the current step to decide if each of 
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Figure 2: The implementation of CLARION. 

them should be kept, revised, or discarded. See Sun 
et al. 1996 for the full details of rule learning. 

Step 4 is for making the final decision on which ac- 
tion to take by incorporating outcomes from both lev- 
els. We combine the corresponding values for an action 
from the two levels by a weighted sum; that is, if the 
top level indicates that action a has an activation value 
v (which should be 0 or 1 as rules are binary) and the 
bottom level indicates that o has an activation value q 
(the Q-value), then the final outcome is w\ *v + W2 *q- 
Stochastic decision making with Boltzmann distribu- 
tion (based on the weighted sums) is then performed. 
Figure 2 shows the two levels of the model. 

3    Experiments 
In all of the, human experiments, subjects were seated 
in front of a computer monitor that displayed an in- 
strument panel containing several gauges that pro- 
vided current information (see Figure 3). The follow- 
ing instruction was given to explain the setting: 

I. Imagine yourself navigating an underwater 
submarine that has to go through a minefield to 
reach a target location. The readings from the 
following instruments are available: 
(1) Sonar gauges show you how close the mines 
are to the submarine. This information is pre- 
sented in 8 equal areas that range from 45 de- 
grees to your left, to directly in front of you and 
then to 45 degrees to your right. Mines are de- 
tected by the sonars and the sonar readings in 
each of these directions are shown as circles in 
these boxes. A circle becomes larger as you ap- 
proach mines in that direction. 
(2) A fuel gauge shows you how much time you 
have left before you run out fuels. Obviously, you 
must reach the target before you run out of fuel 
to successfully complete the task. 
(3) A bearing gauge shows you the direction of 
the target from your present direction; that is, 
the angle from your current direction of motion 
to the direction of the target. 
(4) A range gauge shows you how far your current 
location is from the target. 
II. At the beginning of each episode you are lo- 
cated on one side of the minefield and the target 
is on the other side of the minefield. You task is 
to navigate through the minefield to get to the 
target before you run out of fuel. An episode 
ends when: (a) you get to the goal (success); (b) 
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you hit a mine (failure); (c) you run out of fuel 
(failure). 

A random mine layout was generated for each 
episode. This setting is stochastic and non-Markovian. 
Five training conditions were used: 

• The standard training condition. Subjects re- 
ceived five blocks of 20 episodes on each of five 
consecutive days (100 episodes per day). In each 
episode the minefield contained 60 mines. The 
subjects were allowed 200 steps. 

• The verbalization training condition. This condi- 
tion was identical to the standard training con- 
dition except that subjects were asked to step 
through slow replays of selected episodes and 
to verbalize what they were thinking during the 
episode. Subjects received replays on the first, 
third, and fifth days of training. The subjects 
were replayed five episodes after the first block of 
20 episodes and five episodes after the fifth block 
of 20 episodes on these days. 

• The over-verbalization training condition. In this 
condition subjects were presented replays of 15 
of their first 25 episodes, and asked to verbalize 
during the slow playback. Replay of an episode 
occurred immediately after the subject finished 
the episode. 

• The 30-to-60 transfer condition. This condition 
was also identical to the standard training condi- 
tion except that subjects performed the task with 
30 mines on the first two days of training and 
switched to 60 mines starting the third day. 

• The mixed training condition. "Mixed" refers to 
the fact that mine density was manipulated dur- 
ing training. Subjects performed the task with 
30, 50, 70, or 90 mines. Subjects received eight 
blocks of 10 episodes per day over five days, two 
at each mine density. Order of presentation was 
randomized. 

In CLARION each gauge was represented by a set 
of nodes that corresponded to what human subjects 
would see on screen. This input setup yielded a total of 
43 primary perceptual inputs. Thus, there were more 
than 1012 possible input states. Thus the model had 
to deal with the problem of high dimensionality. As a 
result, a lookup table implementation for Q-learning 
at the bottom level was not possible (Tesauro 1992, 
Lin 1992). To deal with the situation, a functional 
approximator such as backpropagation networks must 
be used. Also in correspondence to the human exper- 
imental setting, the action outputs consisted of two 
clusters of nodes representing turn and speed. 

The model started out with no more a priori knowl- 
edge about the task than a typical human subject, 
so that bottom-up learning can be captured. The 
bottom level contained randomly initialized weights 
(with a pre-chosen, fixed topology). The top level 
started empty and contained no a priori knowledge 

Figure 3: The Navigation Input 
The display at the upper left corner is the fuel gauge; the 
vertical one at the upper right corner is the range gauge; 
the round one in the middle is the bearing gauge; the 7 
sonar gauges are at the bottom. 

about the task, either in the form of instructions or 
instances. The episodic memory was empty at the be- 
ginning. There was no supervised learning (i.e., no 
teacher input). The reinforcement signals embodied 
some a priori notions regarding getting close to tar- 
get and avoiding explosion that were also provided to 
human subjects through instructions. The learning al- 
gorithm with all the requisite parameters was pre-set, 
presumably reflecting the learning mechanisms in hu- 
mans. 

The results of the experiments are analyzed as fol- 
lows. 

The standard training condition. We obtained 
performance data over 500 episodes per subject. We 
averaged the data over 10 human subjects. We did 
the same with the model: Each model run was ini- 
tialized with different random number sequences and 
thus produced different results; we averaged 10 such 
runs in exact correspondence with human experiments 
(i.e., we did not tune the random number sequences to 
generate a match, but randomly set seeds for random 
number generators, analogous to random selection of 
human subjects in this experiment). We compared 
average success rates because in this way we can elim- 
inate the uninteresting impact of individual differences 
and instead focus on essential features of learning in 
this task. These data are presented in Figure 4. Both 
sets of data were best fit by power functions (for fail- 
ure rate). The degree of similarity is evident. A Pear- 
son product moment correlation coefficient was calcu- 
lated (treating blocks as individuals and human ver- 
sus model as the X and Y variables). The analysis 
yielded a high positive correlation (r = .82), indicat- 
ing a high degree of similarity between human subjects 
and model runs. 

The verbalization training condition. Obvi- 
ously, we could not require verbalization from the 
model. However, we posited that much of the effect of 
verbalization on learning was associated with rehears- 
ing previous steps and episodes (although there may 
be additional factors involved). Thus for the model, 
we used episode memory playback (Lin 1992) in a first 
attempt to capture this effect. Episode memory play- 
back involves training the model with previously per- 
formed episodes between blocks of actual trial episodes 
in exactly the same manner as in human experiments. 
In this case, the data from 5 human subjects was com- 
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Figure 4: The learning curves in terms of success rates 
in the standard condition. The right side is the human 
data and the left side is the model data. 

Figure 6: The 30-to-60 transfer data in terms of suc- 
cess rates. 

Figure 5: The learning curves in terms of success rates 
in the verbalization condition. 

pared to that of 5 model runs. Data was averaged 
for each of 25 blocks (see Figure 5). Again, both sets 
of data were highly similar and both were best fit by 
power functions. We also calculated a Pearson product 
moment correlation coefficient, which yielded a high 
positive correlation (r = .84). 

We subsequently compared the changes in perfor- 
mance due to verbalization for the human subjects and 
the model runs. This was done by averaging failure 
rates across blocks separately for each human subject 
and for each model run and subjecting that data to 
a 2 x 2 ANOVA. The analysis of these data indicated 
the both groups exhibited a significant increase in per- 
formance due to verbalization (p < .01), and that the 
changes due to verbalization for the two groups were 
not significantly different (52 to 25 percent failure rate 
for the human subjects versus 53 to 38 percent fail- 
ure rate for the model runs). The effect of explication 
of implicit knowledge which likely results from verbal- 
ization was captured through the usual rule learning 
process, which was also at work during episode replay. 

The 30-to-60 transfer condition. Subjects were 
first trained on 30-mine minefields, and then trans- 
ferred to 60-mine minefields. The model was tested 
under the same condition. Both human and model 
data were averaged over 10 subjects. Comparing the 
human and model data (see Figure 6), we noticed that 
both learned well at 30 mines, although human data 
was slightly better. When transferred to 60 mines, 
both exhibited a significant drop in performance, al- 
though the model exhibited a deeper drop. Specifi- 
cally, we compared performance of the last block be- 
fore the change in mine density and the first block after 
the change. Success rates were 98% and 79% for the 
human subjects and 83% and 26% for the model runs 

1   M^,, 
A                                  *'£Z~~j 

\ /\ /\/i- 

^/xixl 
// 

A/  \j  V 
//... ,/\ 

Jr   -^-"S. ■   //\ ^     s^"'-. 

s"' ■ • 

Figure 7: Average success rates for each mine densities 
in the mixed condition. 

respectively. The drops were both statistically signif- 
icant. At first look, it might appear that the drop in 
performance for the model runs was much greater than 
that for the human subjects. However, this might not 
be a fair assessment in that we did not allow the model 
runs to reach the same performance as the human sub- 
jects before changing the mine density. Indeed, the 5 
highest performing of the model runs before the change 
performed 8 times better after the change than did the 
5 lowest performing ones. 

The mixed training condition. We plotted 
learning curves in terms of success rates for each mine 
density separately. The data were averaged over 8 hu- 
man subjects and 8 model runs, respectively. The av- 
erage curves are shown in Figure 7. We calculated 
overall success rates for each of the mine densities. 
Both the human subjects and model runs performed 
best with the lowest mine density and performance 
decreased with each increase in the number of mines. 
Thus, we observed a similar pattern. The drop in per- 
formance was roughly the same for human subjects 
and model runs between the 30 and 50 mine densi- 
ties (16% versus 13%, respectively). We do not know 
for sure what accounts for the failure of the model at 
the 70 and 90 mine densities. However, questionnaires 
completed by the human subjects indicated that they 
treated the higher density conditions as different from 
the lower density conditions. Because the model runs 
did not "start over" at each density, they were ap- 
plying what was learned to conditions in which it did 
not work. In contrast, human subjects could sense the 
change in conditions and discard their old strategies. 

The over-verbalization condition. Human sub- 
jects under the over-verbalization condition failed to 
learned. During the 25 episodes of training, their suc- 
cess rates were well below 10%, compared with the 
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33% performance for the subjects under the (sparse) 
verbalization condition. If we eliminate one subject 
who performed at 60%, the remaining subjects only 
achieved approximately 3% success rate. CLARION ac- 
counts for this phenomenon by positing that too much 
verbalization (e.g., verbalizing for more than half of 
the training episodes) caused the learner to switch to 
a completely explicit mode of learning; they tended to 
rely completely on the top-level learning mechanism 
and shut down the bottom level. This is consistent 
with the similar hypothesis by Stanley et al (1989), for 
explaining their findings regarding the difficulty their 
subjects had in learning a dynamic decision task after 
being given instructions that encouraged them to be 
explicit. Schooler et al (1993) also reported that re- 
quiring verbalization impaired subjects' ability to solve 
problems that require "insight", by forcing them to be 
overly explicit. CLARION explains the findings readily 
with the shut-down mechanism. The top-level learning 
mechanism when disconnected from the bottom level, 
clearly has trouble learning this kind of sequential task, 
because of its lack of a temporal credit assignment pro- 
cess (comparable in power to Q-learning) and its all-or- 
nothing learning process. On the other hand, in the 
bottom level, the distributed network representation 
and learning process that incorporates gradedness and 
temporal information handle complex sequences well. 

Verbalization segments indicating bottom-up 
learning. The verbalization data we collected from 
the subjects (under the verbalization training condi- 
tion) were consistent, in an informal sense, with our 
assumption of bottom-up learning being prominent in 
this task setting, as exemplified by the following seg- 
ments. 

S: I thought about it after I started doing it. 
I said, look at me .... look what I'm doing. I 
didn't start thinking about it until I started 
doing it. I figured out that it started helping 
me and that's when I started doing it myself. 
(subj.38) 

S: When I started off  I didn't understand 
at all ....   I couldn't grasp the whole sonar 
concept at all. (subj.38) 

S: So, basically what I do - not thinking 
about driving a submarine or mine, (subj.38) 

S: When you get in a situation like this, 
where there are gaps, it's purely instinctual. 
(subj.37) 

S: That's pretty much I've done the whole 
game [being instinctual], with the exception 
of a couple of patterns I've started to recog- 
nize. (subj.37) 

In sum, the verbalization by the subjects suggested 
that some degree of bottom-level (implicit) learn- 
ing/decision making and gradual bottom-up learning 
existed. This is the kind of learning CLARION was 
meant to capture. 

We also compared the verbalizations of good per- 
formers (subjects) vs. poor performers. Our anal- 
ysis indicated a lack of difference: we failed to no- 
tice any significant difference across a variety of mea- 
sures (such as length of verbalization, detailedness, 
and types of statements uttered). We suggest that this 
is one more piece of evidence that indicates the impor- 
tance/prominence of bottom-level (implicit) learning: 
The performance is mostly determined by implicit pro- 
cedural learning, which cannot be easily verbalized, 
while verbalized explicit knowledge is nonspecific and 
has relatively minor impact during learning. 

4    Conclusions 
In sum, we discussed a hybrid connectionist model 
CLARION as a demonstration of the approach of 
bottom-up skill learning, which consists of two levels 
for capturing both procedural and declarative knowl- 
edge and performing bottom-up learning. Some degree 
of match with human data was found across a number 
of different experimental conditions. 
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ABSTRACT 
In this paper a memory perspective on young children's 
performance at a particular false belief task, the Smarties 
task, is described. The theoretical analysis focuses on the 
computational conditions that are required to resolve the 
Smarties task, on the possible limitation in the developing 
memory system that may lead to a computational break- 
down resulting in a failure to resolve, and on ways of 
bypassing such limitations to ensure correct resolution. A 
symbolic model of this analysis implemented using the 
COGENT modelling environment is described, and its fit to 
the data considered. 

Keywords 
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INTRODUCTION 
One of the many constraints identified by Newell (1990) on 
any form of cognitive architecture which attempts to model 
human cognition is that it should be capable of arising from 
earlier forms by a process of developmental maturation. 
Developmental constraints, and discrete developmental 
stages, have received surprisingly little attention from 
symbolic modellers, although questions of how a mature 
system might develop from a relatively simple template are 
now being considered within the connectionist research 
program (e.g., Elman et al., 1996). The present study 
considers a developmental stage believed to be crucial to the 
maturation of memory processes, and aims to demonstrate 
how the failure of 3- and 4-year olds at a task which adults 
find trivially easy (the Smarties task; Perner, Leekam & 
Wimmer, 1987) can be modelled using a destructive- 
updating process. A subtle alteration of the memory 
encoding characteristics of this task enables 3- and 4-year 
olds to perform the task correctly. The patterns of children's 
performances are modelled as discrete developmental stages 
using the COGENT (Cognitive Objects in a Graphical 
EnvironmeNT) modelling environment of Cooper and Fox 
(in press). 

The Smarties Task 
The basic procedure for the Smarties task is as follows. The 
subjects are shown a tube of Smarties (a popular brand of 

sweet) and asked what the tube contains. Children of around 
the age of four are usually both able and willing to provide 
an answer to this question. The top is then taken off the tube, 
and its contents are shown to the child. The contents of the 
tube are pencils rather than the anticipated Smarties. The top 
is then replaced on the tube, and the child is asked two 
questions, the reality question (what is in the tube?) and the 
belief question (when you first saw the tube, what did you 
think was in the tube?). Typically, 70% of 3-year-old 
children who are able to answer the first question correctly 
(pencils) now also give the same answer to the second 
question. 

A Memory-Updating Explanation 
The original form of the Smarties task implies some peculiar 
memory characteristics. Children who fail this task are 
incorrectly reporting a belief which they had held, and told 
to the experimenter, only seconds previously. Although a 
conceptual deficit, an inability to comprehend false belief, 
can be put forward to explain these results, it seems strange 
to suppose that this deficit manifests itself in the child's 
inability to correctly recall the contents of this belief, even 
though they were able to report to the experimenter what the 
contents of this belief were immediately before it was shown 
to be false. Instead, it is argued (Barreau, 1997; Morton, 
1997) that the child's inability is centred around a memory 
updating system, such that the false belief (that the tube 
contains Smarties) is never encoded as a stable, long-term 
representation, and so is immediately supplanted by the 
incoming information that the tube contains pencils. Thus, 
when such children are asked the belief question, the only 
source of information available to them is the representation 
of the current state of reality: inftube, pencils). 

The Bag Experiment. 
A variation on this experimental procedure designed to 
maximise the possibility that the contents of the tube are 
translated into a long-term format is described by Barreau 
(1997). Immediately after showing the tube to the child, and 
asking the child what they believed the tube to contain, the 
contents of the tube were emptied into a bag. Although the 
child witnessed this operation, at no time were they able to 
see the contents of the tube either at first or during the 
transfer. The tube was then shown to the child to 
demonstrate that it was empty, and then ostentatiously 

so 



hidden from view. The child is then asked what they believe 
to be in the bag. All children replied "Smarties". The 
contents of the bag were then shown to the child. In this 
case, the bag contained marbles, rather than Smarties. The 
child was then asked five questions concerning the contents 
of the bag and the tube: 
1. Before I opened the bag, what did you think was in the 
bag? (BAG:BELIEF: PAST) 
2. What is really in the bag? (BAG:REALITY: PRESENT) 
3. When I first showed you the tube, what did you think was 
in the tube? (TUBE: BELIEF: PAST) 
4. What is inside the tube now? (TUBE: REALITY: 
PRESENT) 
5. What was really inside the tube? (TUBE: REALITY: 
PAST) 

In Barreau's (1997) experiment, twenty-four children were 
questioned in this manner, the results of this experiment are 
shown in the table below: 

ABLE 1: Table of answers to the tube and bag questions. 

Questions Correct Reversed Double 

BAG 8 8 8 

TUBE 15 3 6 

In order to be scored correct, both the bag questions, (belief 
and reality) had to be correctly answered. To be scored 
correct in the tube condition, the belief questions and at least 
one of the reality questions had to be correctly answered. A 
"double" score refers to a repeat answer, i.e. a reality 
response to a belief question. This category also includes 
one child who gave belief answers to reality questions. The 
reversed response indicates a reversal between the belief and 
reality answers in the bag questions, and the belief and one 
of the reality answers in the tube questions. 

The assumptions underlying this experiment were that when 
the tube was removed from view, the tube-* bag transferral 
episode would be coded as ended, and details of the whole 
episode would be translated into long-term memory. Thus, 
when the current representation of the bag's contents is 
updated, the representation of the tube's contents will be 
invulnerable. 

The data has also been analysed as suggesting that three 
qualitatively different developmental processes are 
occurring amongst the children tested (Barreau, 1997).The 
children were divided into three groups on the basis of the 
scores they were given for the bag questions. Of the 8 
children who were scored as correct for the bag questions, 
7 were also correct for the tube question, and 1 gave a 
"double" response. Of the 8 children who gave reversed 
responses for the bag question, 6 were scored as correct on 
the tube question, there was 1 reversed response, and 1 
double response, and for the 8 children who scored "double" 
responses for the bag questions, 2 were correct on the tube 
questions, 2 gave reversed responses, and 4 gave double 
responses. This pattern of data was considered to be a little 
too complex to be easily handled by a traditional verbal 
theory. 

A COGENT IMPLEMENTATION 
To properly test the theory against the data, a family of 
models were produced using the COGENT modelling 
environment. The basic architecture used in this approach is 
reproduced below: In this figure, hexagons represent 
processes, rounded rectangles represent buffers, and 
diamonds represent data boxes. Square boxes represent 
compounds, which may contain buffers and processes. 
Arrows with standard heads indicate message sending. 
Arrows with black triangular tails indicate buffer reading. 
Compound arrows (which are denoted by triangular and 
standard heads) allow both functions. 

Experiment 

Current 
State D 
T 

Integration 

1 
Long-Term 

Memory 
Interpreter 

Buffer D 

figure 1  - the COGENT object-level representation of the simulation 
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For the purposes of this paper, the "Experiment" compound 
is used only as a means of feeding information to the system 
simulating the child's mental processes, and will not be 
discussed in any great detail. Note that for the bag 
experiment, the simulation must include the correct 
answering of three "belief establishing" questions prior to 
the five questions of main interest within the experiment. 
The belief establishing questions were included within the 
experiment to ensure that the child had formed the correct 
representations of the state of the world prior to being tested 
on their memory for the sequence of events. These questions 
include the initial question of the Smarties task (What do 
you think is in the tube?), a repeat of the question to 
ascertain that the child believes the tube is empty (What is 
in the tube now?) once the transfer operation has taken 
place, and a question to ensure that the child has tracked the 
transferral of the supposed Smarties (What do you think is 
in the bag?). In the experiment, after asking one of the 
belief establishing questions, the experimenter waited until 
the child had answered before continuing with the 
procedure. Accordingly, in the simulation, no further input 
was fed to the system until the cycle after the system had 
output the answer to the previous question. This protocol 
was observed throughout all the simulations. 

The Smarties Simulation. 
We assume that the 30% of 3- and 4-year olds who pass the 
Smarties test do so by accessing a long-term memory (LTM) 
representation of the likely contents of a Smarties tube, so 
we do not attempt to deal with this question in any detail 
here. This is consistent with the developmental literature, 
which has focused only upon those children who fail. The 
initial simulation then, must be one that gives a "reality" 
answer to a "belief question under the circumstances of the 
Smarties experiment. The experimental procedure is 
modelled by adding propositions about the current state of 
the environment a cycle at a time to an "environment" 
buffer, within the Experiment compound, which is read by 
the updating process. The Current State Buffer is a 
representation of current environmental contingencies. This 
is kept up-to-date by destructive updating which occurs by 
the operation of the following rules: 

In LTM there is a generic representation of past experience 
of Smarties tubes, 

g(in(tube,smarties)), 

and a further rule in the integration process that states the 
contents can be matched to their containers on the basis of 
such past experience: 

RULE 3. 
IF:        g(in(X,Y)) is in Long-Term Memory 

object(X) is in Current State 
not in(X,Z) is in Current State 

THEN: add in(X,Y) to Current State 

This rule is refracted, so that it only fires the first time its 
conditions are satisfied within a COGENT run. When a tube 
representation is added to the Current State Buffer, this rule 
fires and the inference is made that the tube contains 
Smarties. This information is overwritten, however, when 
the further information is added from the environment that 
the tube contains pencils. Thus, when the question regarding 
the contents of the tube is presented to the system 

question(present(in(tube, What))), 

the present representation of the current contents of the tube 
in the Current State Buffer instantiates the unknown variable 
in the question, and provides the only possible answer: 
inftube, pencils). 

Questions are dealt with by being passed immediately over 
from the Current State Buffer to the Interpreter Buffer. Once 
a question is received in the Interpreter Buffer, it activates 
the relevant search processes according to the following 
rules: 

RULE 4. 
IF:        question(present(X)) is in Interpreter Buffer 

X is in Current State 
THEN: clear Interpreter Buffer 

add answer(X) to Interpreter Buffer 

RULE1. 
IF:        A is in Experiment: Environment 

not A is in Current State 
THEN: add A to Current State 

RULE 2. 
IF:        in(X,Y) is in Experiment: Environment 

in(X,Z) is in Current State 
THEN: delete in(X,Z) from Current State 

Thus,  if in(tube,smarties) is in the Current State and 
inftube,pencils)       appears      in      the      Environment, 
in(tube,smarties) is deleted from the Current State by the 
second    of   the    above    rules    and    is    replaced   by 
inftube,pencils). 
The basic workings of the model of the Smarties task are as 
follows: 

RULE 5. 
IF:        question(past(X)) is in Interpreter Buffer 

record(Y) is in Long-Term Memory 
X is a member of Y 
not X is in Current State 

THEN: clear Interpreter Buffer 
add record (Y) to Interpreter Buffer 
add answer (X) to Interpreter Buffer 

Thus, the unknown variables within the question are 
instantiated either in the Current State Buffer or in LTM, 
and translated into an answer format. All answers within the 
Interpreter Buffer are immediately sent to the output 
processes represented in the diagram by the triangular 
"Answers" block. 

The Bag Simulation. 
In the case of the bag experiment, the simulation is a little 
more complex. In particular, we have to tackle the creation 
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of event records. To do this, a rule must fire when an event 
is perceived to end. This rule translates all information 
currently being processed (the contents of the Interpreter 
Buffer), together with the current representation of the 
environment (the contents of the Current State Buffer) into 
an LTM format. In the hypothesis underlying the 
experimental procedure, the event was signalled to be at an 
end by a contextual change, the removal of the tube. In the 
simulation, a record is closed if there are more objects 
represented in the Current State Buffer than are present in 
the environment. This is captured formally by the updating 
rule: 

RULE 6. 
IF:        Objects is the list of all object(X) such that 

object(X) is in Experiment: Environment 
Representations is the list of all object(X) 

such that object(X) is in Current State 
A is the length of Objects 
B is the length of Representations 
B>A 

THEN: send closejrecord to Integration 

Upon receiving the close_record trigger, a further rule fires 
within the integration process which transforms the 
information within the Current State Buffer and the 
Interpreter Buffer into a list structure in LTM. The 
Interpreter Buffer is then cleared. 

Simulation Results. 
The basic simulation can easily handle the results of the first 
group of children, those who were scored correct on the bag 
question (group A). When asked the bag questions, the 
simulation of this group of children has a record available 
containing the previous belief concerning the bag's contents, 

in(tube,smarties) 

which it can use to answer the first question (BAG: 
BELIEF: PAST), in accordance with rule 5. When asked the 
second bag question (BAG: REALITY: PRESENT), a 
Current State representation of the bag's current contents is 
employed to answer this question in accordance with rule 4. 

Seven out of eight of this group of children were also scored 
as correct for the tube question. In the model, the tube 
question is handled by the existence of a record available in 
LTM which can be retrieved to answer the question. The 
creation of this record was triggered by the removal of the 
tube. Note that the record does not contain a verbatim 
representation that the tube contained marbles. Instead, the 
record contains the representation that the contents of the 
tube were emptied into the bag: 

action(empty(tube,bag)), 

that the tube is now empty: 

in(tube,[]) (where [] denotes the empty set), 

and that the bag contained marbles. To correctly answer 
questions regarding the initial contents of the tube (questions 

3 and 5, TUBE: BELIEF: PAST and TUBE: REALITY: 
PAST) a further rule is necessary to allow the inference that 
the tube's contents can be ascertained by backwards 
reasoning from the bag's contents, and the fact that the 
contents of the tube were entered into the bag. Formally, this 
rule is: 

RULE 7. 
IF record(Y) is in Interpreter Buffer 

question(past(in(A,B))) is in Interpreter Buffer 
action(empty(A,C)) is a member of record(Y) 
in(C,D) is a member of record(Y) 

THEN: clear Interpreter Buffer 
add answer(in(A,D)) to Interpreter Buffer 

This rule is triggered if the current representation of the 
tube's contents is identical to the retrieved LTM 
representation. Since the child is presumably not expecting 
to answer a "present" question at this point, the rule allows 
the search, via inference, for an alternative "past" answer. 
Note that the simulation demonstrates that Morton's (1997, 
p. 938) comment that "the conditions are the same" for the 
tube questions of the bag experiment and for the same 
questions in the Smarties experiment is not strictly necessary 
when analysed in terms of the underlying theory. In this 
simulation, when the inference rule regarding the transferral 
operation is manually prevented from firing the default 
answer from the system to the tube questions is that the tube 
was empty. Since the child was shown the empty tube 
during the bag episode this forms part of the same record. 
The full contents of this record are displayed below: 

record([[m(bag,smarties), in(tube,[]), object(bag), 
action(empty(tube,bag)), objectftube)] 
action(remove(tube))]). 

With this set of rules, the simulation therefore produces the 
same answers in the bag experiment as seven out of eight of 
the children in group A. 

The initial results of those children who were scored as 
giving "reversed" answers (group B) to the bag question 
need to be explained differently. Recall that these children 
gave reality answers to belief questions and vice versa. The 
simulation of this situation uses the same basic structure as 
the simulation of group A (the "corrects"). However, it is 
assumed that the group B children attempt to answer all 
questions initially from their current state representation of 
the world. Arguably this is less effortful than retrieving 
information from LTM (see Morton, Hammersley & 
Bekerian, 1985 for a discussion of the complexities of 
retrieval from LTM). In effect, we assume that the tagging 
of questions as referring to past and present is not as well 
established in this group as in group A. The group B 
children, then, are not forced to search LTM in response to 
a PAST question. Rather, they only look in LTM when the 
Current State search has failed. Since the Current State 
Buffer representation is one of reality rather than belief, 
these children's default strategy results in a reversal of belief 
and reality answers. 
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Briefly, the simulation of this state of affairs works as 
follows. The "past" and "present" modifiers in the input are 
ignored in the integration process by rules 4 and 5, and, 
instead, all questions are followed by an initial search in CS. 
This leads to the initial mistake. The reversal of the situation 
with the next question is simply implemented by making 
that the look-up rule for information in Current State into a 
refracted rule so that it cannot be used as a default when the 
next question is asked. This is the "present" reality 
question, and the only way the child can answer the question 
is by searching for a long-term memory representation with 
information about the contents of the bag. This is found in 
the record which specifies 

in(bag,smarties) 

resulting in a reversed pattern of results. 

This simulation works well when only the bag question is 
considered, but runs into problems when the tube questions 
are also added to the simulation's input, since it produces a 
further "reversed" pattern of results for these questions. In 
fact only one child in this group was scored as giving 
"reversed" responses to the tube question, and six were 
scored as correct. This failing will be considered in more 
detail later. 

The final group of children to be considered (group C) gave 
the "reality" answers to "belief questions. Working on the 
logic employed in the simulation of group B's results it is 
assumed that these children also ignore the past/present 
modifiers and attempt to answer the question in the simplest 
way possible, by retrieving an answer from the Current State 
Buffer representation. However, for these children the 
assumption is that the search rule for the Current State 
Buffer is not refracted. Accordingly, the simulation 
produces repeated answers from the Current State Buffer, 
which are identical to the "double" responses given by this 
group. Of the eight children who were scored as "doubles" 
on the bag questions, this simulation matches the repeated 
"double" scores of four of these children on the tube 
questions. 

their own earlier beliefs if inconsistent with current reality 
(e.g., Hogrefe, Wimmer & Perner, 1986; Perner, Leekam & 
Wimmer 1987), or else are in other ways not as completely 
specified as the account given here (Halford, Wilson & 
Phillips, in press). 

Viewed as a modelling project in its own right, a number of 
flaws become evident with the current account. Firstly, if it 
is considered to be a straightforward account of the current 
data independent of theoretical statements put forward 
elsewhere (Barreau, 1997; Morton, 1997), then it suffers 
from a rather poor fit to the data in the case of group B, the 
"reversed" response children. The mechanism which allows 
for a reversed response to the bag questions should also 
produce reversed responses for the tube questions. However, 
the majority of children in this group (six out of eight) were 
scored as correct in this case. 

Elsewhere, the fit to the data is better. The account given by 
the basic bag simulation is also able to account for the 
failure of children at the Smarties task with no change to the 
model, merely altering the input to simulate the change in 
task. This simulation correctly produces the same results as 
the "correct" group (A) on all the questions. The modified 
simulations for groups B and C also give the identical 
patterns of results to the children they were intended to 
model for the bag questions, and in the case of group C (the 
"double" responses) this success is repeated with the 
simulation giving the same results as the largest subset of 
these children. 

The conclusion to be drawn from this pattern of success and 
failure is that although there is a large degree of agreement 
between the performance of the children and that of the 
underlying model, there is a flaw in the manner in which the 
model operates. In particular, it should not function in the 
same way in response to the tube questions as it did to the 
bag questions. There are two broad ways of accomplishing 
this. The first is to add other rules which would interpret the 
material in the record in response to questions concerning 
the tube. A backwards inference using rule 7 concerning 
belief could take 

GENERAL DISCUSSION 

Successes and Failings 
The memory-updating explanation of the Smarties task is 
outlined by Morton (1997), and the 3-buffer architecture 
used here to simulate this theory was derived from Barreau 
(1997), (see Barreau, 1997 for an account of why a 3-buffer 
system is necessary). The resulting simulation, however, 
differs in significant ways from either of these accounts. It 
is intended to be a forerunner of a number of such 
simulations, building up a set of mutual constraints on later 
models of on-line processing by this age group (c.f. 
Barnard, 1985). As such, it has a number of distinct 
successes and flaws. Not least amongst its successes is that 
it is - to our knowledge - the only fully specified 
computational theory of 3- and 4- year olds failings at "false 
belief tasks. Other accounts of these phenomena rely upon 
the assumption that children of this age suffer from a 
conceptual deficit in representing the beliefs of others, and 

action(empty(tube,bag)) 
in(bag,smarties) 

and come up with 

in(tube,smarties) 

to go along with the in(tube,[]) already available in the 
record. The ordering of these two contradictory options in 
the buffers could give rise to the differences in responding 
to the tube questions among the children in group B. 

The second general approach to the mismatch is to change 
the way in which the Group A children solve the questions. 
One approach is to create records of questions and answers. 
This would make the answer to the initial belief question 
available, even though the primary representation 
in(tube, smarties) has been deleted. Use of the record 
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record([[in(bag,smarties), in(tube,[]), object(bag), 
action(empty(tube,bag)), object(tube)] 
action(remove(tube))]). 

would then be restricted to questions about the tube. This 
resembles the account given by Barreau (1997). To achieve 
all this, we will have to characterise the differences among 
the three groups of children somewhat differently. Both 
these options will be explored in the next phase of 
simulation. 
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ABSTRACT 
In this paper, we describe a cognitive modelling fra- 
mework for common-sense psychology. We'll show a 
number of comparable cognitive models for different 
theories of common-sense psychology, and show that 
these models can help to illuminate some of similari- 
ties and differences between the differing theories. 

Keywords 
Common-sense psychology, theory of mind, false be- 
lief test, cognitive model 

INTRODUCTION 
Common-sense psychology — or people's common 
sense ability to think about our own and other 
people's minds — is currently being researched active- 
ly in several different disciplines. While this interdis- 
ciplinary collaboration can be very productive, it can 
lead to its own problems. This is exacerbated by com- 
plexity, both methodological and theoretical, of com- 
mon-sense psychology itself. 

Much of the problem is that nobody is really sure 
what common-sense psychology is, theoretically. As- 
tington and Gopnik (1991), for example, distinguish 
between six different possible interpretations, all of 
which are subtly different. There are many different 
theories of common-sense psychology. Unfortunate- 
ly, there is no common ground which allows these dif- 
ferent theories to be compared and contrasted. In 
this paper, we'll introduce a cognitive model that can 
begin to play that role. 

To compare the different theories, we'll use a stan- 
dard tool from common-sense psychology, Baron- 
Cohen et al.'s (1985) false belief test. We'll begin by 
introducing and describing this test, and one of the 
theories of common-sense psychology, Leslie's (1987) 
'decoupler' model. Although common-sense psycho- 
logy is hugely complex, and can only be modelled in 
the most sketchy form, we'll show how Leslie's theory 
can be implemented as a cognitive model. Finally, 
we'll show how alternative theories of common-sense 
psychology can be represented as small variations on 
this model, and that we can draw some conclusions 
about the similarities and differences between the the- 
ories with this modelling framework. 

MODELS OF COMMON-SENSE PSYCHOLOGY 
While common-sense psychology has been a focus for 
recent research, most work in this either has either 
been experimental or purely theoretical; there are few 
cognitive models in this area, even though it is preci- 
sely the kind of area that modelling has proved so 
helpful for in the past (Samet, 1993). The exception is 
the work of Shultz (1988, 1991). All the models 
which have been developed, though, focus on small 
parts of the problem; for example, studying how 
people assess whether or not planned actions were in- 
tentional (Shultz, 1988). 

We propose a different strategy. Instead of a narrow 
but deep model, we propose using a broad but shal- 
low one; one which can be used to compare theories 
on a grand scale. With this level of modelling, we be- 
lieve that even in the limited false belief test, we can 
help to clarify the similarities and differences between 
some of the grand scale theories in the field. 

THE FALSE BELIEF TEST 
The false belief test has its origins in Premack and 
Woodruffs (1978) experiment to determine whether 
or not chimpanzees could reason about one another's 
mental states — whether or not they had a "theory of 
mind", another term for common-sense psychology. 
Unfortunately, there was a methodological problem 
with this experiment; their chimpanzee subject, Sarah, 
could use her own beliefs rather than reasoning about 
another's, because the two were identical. To prove 
that Sarah was really able to reason about another's 
beliefs, they had to show that Sarah could still predict 
another's behaviour when her beliefs were different 
from that other's — that is, when the other had be- 
liefs which Sarah believed to be false. 

Following these problems with Premack and Woo- 
druffs experiment, Wimmer and Perner (1983) de- 
vised a false belief test, which evaluated a (human) 
subject's to ascribe definite but false beliefs to an- 
other. Baron-Cohen et al. (1985) later simplified 
Wimmer and Perner's test so they could compare au- 
tistic, Down's syndrome, and normal children at dif- 
ferent ages. Baron-Cohen et al.'s simplified false be- 
lief test is shown in figure 1. 
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Baron-Cohen et al. 's false belief test is presented as a 
simple story. There are two puppets, Sally and Anne. 
Sally has a marble, which she keeps in a basket. Then 
Sally leaves the room, and while she is away Anne 
takes the marble out of the basket and hides it in the 
box. Sally comes back into the room.. The child sub- 
ject is then asked the question: "where will Sally look 
for her marble?" Older children say that she will look 
in the basket, because although they know the marble 
is in the box, they know that Sally doesn't know it has 
been moved from the basket, and they can distinguish 
Sally's (false) belief from their own (true) belief. 
Younger children, on the other hand, and autistic 
children, do not distinguish between the two They 
simply say that Sally will look in the box. The false 
belief test, therefore, explores the change that hap- 
pens as common-sense psychology develops. 

Baron-Cohen et al. 's theory was that a failure in the 
development of common-sense psychology might be 
responsible for autism, and the results from their ex- 
periment (and others which followed) certainly 
seemed to bear that out. As a result, there has been a 
focus of interdisciplinary research which has led to a 
number of different hypotheses about the nature and 
development processes involved in common-sense 
psychology. 

Figure 2 shows a model for one possible theory of 
common-sense psychology, Leslie's 'decoupler' 
model. At the heart of Leslie's model is a manipula- 
tor that is capable of pretence — of decoupling beliefs 
from one context and applying them in another. It is 
this that makes reasoning about false beliefs possible, 
because a child can use this decoupling mechanism to 
separate someone else's beliefs into a different context 
from their own. 

Given this simple theory of common-sense psycho- 
logy, we will now turn to the cognitive model, and 
show how Leslie's 'decoupler' model can be represen- 
ted in a model. But first, a few words on the model- 
ling environment that we'll be using. 
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basket 

Sally © Anne 

D 
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THE MODELLING ENVIRONMENT 
Before we can build the models adequately, we need a 
representation language that is strong enough to do 
the physical and psychological reasoning required. In 
practice, the psychological parts of the model require 
the ability to reason about different contexts, distin- 
guishing one agent's false beliefs from another agent's 
true beliefs. Something like a modal logic, therefore, 
is going to be required (Leslie, 1988, makes a direct 
comparison between the requirements for common- 
sense psychology and the properties of modal logics). 

The model we present borrows this from McCarthy's 
(McCarthy & Hayes, 1969) 'situation calculus', where 
the effects of an event are described as a consequence 
relation between one state and another. At the core 
of McCarthy's calculus is a special function result, 
which represents the effects of an action on a situa- 
tion by returning a new, modified, situation. The 
function result(p, a, s), where p is a person, a is an ac- 
tion, and s is a situation, has a value which is a new si- 
tuation representing the effects of p doing a in s. For 
example: 

inside(marble, X, s) A -1 inside(marble, box, s) =» 
inside{marble, box, f) A ~> insideQnarble, X, t) 

where t = result(alison, putinQnarble, box), s) 

This says that if marble is inside something that isn't 
box in situation s, the effect of alison putting marble 
in box is a new situation t such that marble is no long- 
er where it was (in X), but is now inside box. 

The full situation calculus is more powerful and more 
complicated than this implies, but this subset of it is 
sufficient for the purposes of this model, and further, 
it doesn't need the heavy inference machinery that a 
complete modal logic would. The situation calculus, 
then, is strong enough for the model, fairly easy to use 
computationally, yet it retains the referential proper- 
ties of modal logics (McCarthy & Hayes, 1969). 

PERCEPTUAL 
PROCESSES 

ACTION 

DECOUPLER 

EXPRESSION- 
RAISER 

INTERPRETER 
MANIPULATOR 

I PRETEND 

Figure 1. Baron-Cohen et al\ (1985) false belief test Figure 2. Leslie's (1987) 'decoupler' model 
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The model implements a modified subset of the situa- 
tion calculus in a Prolog-like language embedded in 
Common Lisp. Apart from the Lisp-like syntax, 
there is only one significant difference from standard 
Prolog — variables are normally prefixed with a ? 
question mark, but output variables in a clause head 
are prefixed with a A caret. ?vctlue and \a\ue refer to 
the same variable. 

MODELLING LESLIE'S 'DECOUPLER' 
The base model for the false belief test comprises a 
number of separate modules. There include; 

• a physical environment model, 
• a basic physical reasoning module, 
• a basic psychological reasoning module, and 
• a script for the false belief test. 

The Physical Environment Model 
The first part of the modelling environment is a physi- 
cal environment model which implements an event- 
driven simulation environment. As objects are phy- 
sically moved from one place to another events are 
generated and passed to all objects equipped with suf- 
ficient perceptual apparatus to be aware of them. 

The Physical Reasoning Module 
Even in the false belief test, physical reasoning is nee- 
ded. The basic physical reasoning module is shown in 
figure 3.   This implements the rules that Alison (as 

;;; If we see ?ot>ject in a place Container, then we find out 
;;; where it was in the situation, and return a new situation 
;;; so that it is now in ^container. 

((result yes ?stance-to (place ?object ?container) 
?situatlon Anew-situation)  :- 

(member (inside ?object ?outer) ?situation) 
(difference ?situation 

((inside ?object ?outer)) ?situationl) 
(append ?situationl 

((inside ?object ?container)) ?new-situation)) 

;;; If we see an object being put into a new place, ?container, 
;;; then again we find out where it was before in the situation, 
;;; and return a new situation so that it is now in ^container. 

((result yes ?stance-to (put-in ?object ?container) 
?situation Anew-situation)  :- 

(member (inside ?object ?outer) ?situation) 
(difference ?situation 

((inside ?object ?outer)) ?situationl) 
(append ?situationl 

((inside ?object ?container)) ?new-situation)) 

;;; If we see an object being taken out of a place ?contctiner, 
;;; we return a new situation so that it is no longer in 
;;; ?container, but is now outside it, in ?outer-container. 

((result yes ?stance-to 
(take-out ?object ?container) 
?situation Anew-situation)   :- 

(member (inside ?container ?outer) ?situation) 
(difference ?situation 

((inside ?object ?container)) ?situationl) 
(append ?situationl 

((inside ?object ?outer)) ?new-situation)) 

Figure 3. The basic physical reasoning module 

we'll call the subject in the false belief test) uses to 
make predictions about what happens as a result of 
physical actions and events. 

As far as physical reasoning is concerned, only three 
result actions are of interest. First, people can see an 
object being put into a container. Second, people can 
see an object being taken out of a container. And 
third, if a person enters a room, they can see all the 
objects (but not contained, or hidden, objects) within 
that room. All three of these actions serve to keep a 
person's model of the physical 

The Psychological Reasoning Module 
At the core of the model is a representation of one 
person's ability to reason about other people's mental 
states. This basic psychological reasoning module, 
corresponding to Leslie's theory of mind mechanism, 
is shown in figure 4. There are three result rules. The 
first rule is associated with perceived events; this is 
where the essence of psychological reasoning hap- 
pens. The other two rules are associated with believes 
events, and are used for modelling the answering of 
questions; for this reason they print out an answer. 

The first result rule uses the ascribe rule to keep all the 
notional worlds up to date with the perceived event. 
The ascribe rule implements the decoupler model in 
figure 2. It works like this. First, the those procedure 
is used to get all of ?selfs beliefs out of the situation; 
this corresponds to ?selfs notional world. Next, the 
requote procedure is used to raise all the expressions 
in the notional world, to create a new situation, 
?situation2. Then, the rule passes this new situation 
to the interpreter, through the manipulator. The 
manipulator is played by the instance procedure, 
which 'pretends' to be in the right context to handle 
the given event. The interpreter is called by the nested 
call to the result procedure. Finally, the nested call to 
result returns a new situation, ?situation3, which is 
passed to requote again to restore its expression status 
in ?new-self-notional-world. This is then used to re- 
place the old notional world in the situation, and the 
modified situation is returned. 

Perhaps this will be clearer with a more concrete ex- 
ample. Imagine that we ask (result ^response sally 
(perceived sally (put-in marble box) ?S, ?New5), in a 
situation ?S. Because this is a perceived event, the first 
result rule will be applied, calling ascribe. The those 
and require procedures are used to go through the si- 
tuation ?S, decoupling all the relations (believes sally 
?X) and generating a new situation ?S'. Then the 
model applies the physical reasoning rules in this new 
situation ?S', to generate an updated physical situa- 
tion ?R'. The second requote call goes through ?R'to 
restore its quotation status to normal, and returns ?R. 
Finally, ?R is used to replace all Sally's beliefs in ?S, 
and the final situation returned in ?NewS. 

The Script for the False Belief Test 
The final component of the model is a script for the 
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false belief test. This is shown in figure 5. There are 
two parts to this script. First, there are a serious ac- 
tions which corresponds more or less to the move- 
ments of the characters in Baron-Cohen et al. 's story, 
shown in figure 1. Second, there are a number of 
questions; these are the kind of questions that an ex- 
perimenter might ask a subject after acting out the 
scenario. It is the answers to these questions which 
reveal whether or not, or how, the child passes the 
false belief test. 

So far, we have described a basic version of the theory 
of mind mechanism, a version which successfully 
models the passing of the false belief test. With this in 
place, we can now begin to compare this with some of 
the alternatives. In this paper, we will only look at 
three alternative theories of common-sense psycho- 
logy, the simulation theory, the copy theory, and the 

;;; The rules for handling perceived events. When you 
;;; perceive something and see that ?someone, sees the 
;;; same thing, get ?someone's notional world into helf- 
;;; notional-world, and then, in that world, predict its 
;;; physical effects. Then map these physical effects into 
;;; changes to hormone's notional world. 

;;; Rule perceive 
((result "response ?someone 

(perceived 'object (?action ?other-object ?event)) 
?situation Anew-situation)  :- 

(ascribe ?someone "response 'someone 
(perceived ?object (?action ?other-object ?event)) 
?situation "new-situation)) 

;;; Rule ascribe 
((ascribe ?someone "response ?other 

(perceived ?object (?action ?other-object ?event)) 
?situation "new-situation)  :- 

(those (believes ?someone ?something) ?situation 
?notional-world) 

(requote (believes 'someone ?something) 
?notional-world ?something ?situation2) 

(in-stance ?other-object ?action 
(result ?response ?other-object 

(?action ?other-object ?event) 
?situation2 ?situation3)) 

(requote ?something ?situation3 
(believes ?someone ?something) ?new-notional-world) 

(difference ?situation ?notional-world ?situationl) 
(append ?new-notional-world ?situationl 

?new-situation)) 

;;; These are the rules for answering questions about 
;;; people's beliefs. In effect, all that happens is that we 
;;; look for the truth of the question in ?objetfs notional 
;;; world. 

;;; Rule answer-yes 
((result yes ?someone (believes ?object ?something) 

?situation "situation)  :- 
(member (believes ?object ?something) ?si tuati on) 
(write-list (yes ?object believes 'something))) 

;;; Rule answer-no 
((result no ?someone (believes ?object ?something) 

?situation "situation)  :- 
(not (member (believes ?object ?something) 

?situation)) 
(write-list (no ?object does not believe ?something))) 

situation theory. 

COMPARING MODELS 1: THE SIMULATION THEORY 
The first alternative theory to be compared against 
Leslie's is the 'simulation theory', which is typified by 
a 'role taking' or 'perspective taking' approach. Gor- 
don illustrates this by saying that "Smith believes that 
Dewey won the election" should be read as "let's do a 
Smith simulation. Ready? Dewey won the election" 
(Gordon, 1986, original emphasis). 

According to the simulation theory, young children 
are simply unable to take other people's points of 
view. This can be modelled by dividing the main per- 
ceive rule into two — one for self, and one for others. 
In young children, the perceive rule for self functions 
as before, but the perceive rule for others does noth- 
ing. This is shown in figure 6. 

When run, this seems to fail the false belief test cor- 
rectly in that Alison doesn't give answers at all for ei- 
ther Sally or Anne; before Alison can pass the test she 
needs to acquire the ability to simulate, or take the 
role of, other people. This corresponds to the deve- 
lopment of a simulation ability: "before internalising 
this system, the child would simply be unable to pre- 
dict or explain human action [but] after internalising 
the system the child could deal indifferently with ac- 

;;; Start by introducing the characters. The order doesn't 
;;; matter much. Alison will become aware of all the other 
;;; objects as soon as she enters the room. 

(tell-model  (put-in basket room)) 
(tell-model  (put-in box room)) 
(tell-model  (put-in marble room)) 

(tell-model  (put-in sally room)) 
(tell-model  (put-in anne room)) 

(tell-model  (put-in all"son room)) 

;;; Put the marble in the basket 
(tell-model  (put-in marble basket)) 

;;; Sally leaves the room 
(tell-model  (take-out sally room)) 

;;; Move the marble from the basket into the box 
(tell-model  (take-out marble basket)) 
(tell-model  (put-in marble box)) 

;;; Sally comes back into the room 
(tell-model  (put-in sally room)) 

;;; Where does Alison think that the marble is? 
(ask-object-if alison 

(believes alison (inside marble ?where))) 

;;; Where does Alison think that Sally thinks the marble is? 
(ask-object-if alison 

(believes sally (inside marble ?where))) 

;;; Where does Alison think that Anne thinks the marble is? 
(ask-object-if alison 

(believes anne (inside marble ?where))) 

Figure 4. The basic psychological reasoning module Figure 5. Actions and questions for the false belief test 
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tions caused by true beliefs and actions caused by 
false beliefs" (Gordon, 1986). This is why the kind of 
failure in the simulation theory is interesting; Alison 
simply fails to give answers for either Sally or Anne, 
because she failed to take their roles properly. 

The second stage in the model, then, is the complete 
simulation rule, which implements a role taking strat- 
egy through the /n-se//'primitive. This primitive has 
the effect of temporarily pretending to be a different 
self, and then handling the whole event in that context 
instead. It is this replacement second rule that allows 
Alison to pass the false belief test. The replacement 
rule which models this strategy is shown in figure 7. 

There are a number of important conclusions to be 
drawn from this idea. First, in the simulation theory 
the behaviour involved in ascribing mentality to one- 
self is different from that involved in ascribing men- 
tality to others. This contrasts with the theory of 
mind mechanism described earlier, where there is no 
difference between first person and third person 
ascription. This is shown by the rules' sensitivity to 
the self relation, which shows that there is an egocen- 
tricity involved in the simulation theory. The second 
point to note is that, in practice, the behaviour of this 
system is the same as that of the basic psychological 

;;; Here are the rules for the simulation theory. Initially, if 
;;; we are seeing something ourselves, then we do the right 
;;; ascription, otherwise we leave the situation alone. These 
;;; two rules, together, replace the perceive rule in figure 4. 

;;; Rule perceive-self, compare to perceive in figure 4 
((result "response ?someone 

(perceived ?object (?action ?other-object ?event)) 
?situation "new-situation)  :- 

(self ?someone) 
(ascribe ?someone ?response ?soneone 

(perceived ?object (?action ?other-object ?event)) 
?situation ?new-situation)) 

;;; Rule perceive-other, compare to perceive in figure 4 
((result "response ?someone 

(perceived ?object (?action ?other-object ?event)) 
?situation "situation)  :- 

(not (self ?someone))) 

Figure 6. Rules for the simulation theory (first version) 

;;; The replacement second rule for the simulation theory. If 
;;; we are not seeing something for ourselves, then we 
;;; "pretend" to be someone else through the /n-se//'primitive, 
;;; and process the event as if we were that person. This rule 
;;; replaces the perceive-other rule; in figure 6. 

(( 

Rule perceive-other, compare to perceive-otherin 
figure 6. 
result "response ?someone 
(perceived ?object (?action ?other-object ?event)) 
?situation "new-situation)  :- 

not (self ?someone)) 
in-self ?someone 
(result ?response ?someone 

(perceived ?object (?action ?other-object ?event)) 
?situation ?new-situation))) 

reasoning module shown in figure 4, because the re- 
placement second rule combines with the first to be- 
have just as if there was a single rule using the ascribe 
action, a rule identical to the first result rule in figure 
4. This is in accord with Perner's (1994) suggestion 
that, in practice, the difference between a theory and 
a simulation may be at worst one of emphasis. 

COMPARING MODELS 2: THE COPY THEORY 
The second model I'll compare against Leslie's theory 
of mind mechanism is Chandler's 'copy theory'. 
Chandler and Boyes describe younger children as be- 
having "as though they believe objects to transmit, in 
a direct-line-of-sight fashion, faint copies of them- 
selves which actively assault and impress themselves 
upon anyone who happens in the path of such 
'objective' knowledge" (Chandler and Boyes, 1982). 
They argue that this is the precursor to a complete 
theory of mind such as Leslie's, and therefore I'll only 
show the version which fails the false belief test — a 
version which passed the test would be identical to the 
complete model in figure 4. 

From the complete model of the theory of mind 
mechanism corresponding to an adult theory of mind, 

;; Here are the ascription rules for the copy theory. Initially, 
;; if we are seeing something ourselves, then we do the right 
;; ascription, otherwise we leave the situation alone. These 
;; two rules, together, replace the perceive rule in figure 4. 
;; Note that these replacement rules are identical to those 
;; in figure 6. 

;;; Rule perceive-self, compare to perceive in figure 4 
((result "response ?someone 

(perceived 'object (?action ?other-object ?event)) 
?situation "new-situation)  :- 

(self ?someone) 
(ascribe ?someone ?response ?someone 

(perceived ?object (?action ?other-object ?event)) 
?situation ?new-situation)) 

;;; Rule perceive-other, compare to perceive in figure 4 
((result "response ?someone 

(perceived ?object (?action ?other-object ?event)) 
?situation "situation)  :- 

(not (self ?someone))) 

;; Here are the answering rules for the copy theory. They 
;; have the effect of considering the target's notional world 
;; to be a 'copy' of the ascriber's. These rules replace the 
;; rules answer-yes and answer-no in figure 4. 

;;; Rule answer-yes-self compare to answer-yes in 
;;; figure 4 
((result yes ?someone (believes ?object ?something) 

?situation "situation)  :- 
(self ?self) 
(member (believes ?self ?something) ?situation) 
(write-list (yes ?object believes ?something))) 

;;; Rule answer-no-self, compare to answer-no in figure 4 
((result no ?someone (believes ?object ?something) 

?situation "situation)  :- 
(self ?self) 
(not (member (believes ?self ?something) ?situation)) 
(write-list (no ?object does not believe ?something))) 

Figure 7. Replacement rule for the simulation theory Figure 8. Rules for the copy theory 
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we can modify the psychological reasoning module 
slightly to represent a child with a copy theory of be- 
lief. The main point of the copy theory is, in effect, 
that instead of ascribing beliefs to others, a 'copy' of 
one's own beliefs is used instead. Instead of building 
different notional worlds for Sally and Anne, both use 
the same, a copy of Alison's. 

According to the copy theory, children simply do not 
ascribe real beliefs to others. This is shown by the 
modified result rules in figure 8, which replace the re- 
sw/t rule in figure 4 so that beliefs are only ascribed to 
oneself. Note that these result rules are identical to 
the first (before full theory of mind) version of the si- 
mulation theory in figure 6. This is to be expected — 
Chandler's theory is an account of how children es- 
cape the kind of egocentricity that marks a simulation 
theory. But this is not the whole story in the copy 
theory; when children are asked about other people's 
beliefs, they answer by drawing on their own. For 
this, we also need to change the result rules for the be- 
lieves relation; these are the rules which model how 
the child answers the kind of questions used in the 
false belief test. These changes are also shown in fig- 
ure 8. Both the question rules are changed from fig- 
ure 3 by using the self relation to find and use one's 
own beliefs, rather than anybody else's, to answer the 
given question. Because of this dependence on the 
self relation, this model shows that the copy theory, 
like the simulation theory, has an implicit (if rather 
better hidden) egocentricity. 

There are more complex variations on the copy the- 
ory; for instance, Wellman (1990) argues that younger 
children have a copy theory of belief, but not of de- 
sires. This is outside the scope of this model because 
desire psychology isn't yet part of the modelling en- 
vironment — this is an area for future work. But 
while the copy theory works to the extent that, when 
run, it correctly fails the false belief test, the model is 
quite radically different from an adult theory of mind, 
and it does seem to require a developmental jump of 
significant magnitude. All the egocentricity of the 
rules in figure 8 must be lost, and the child needs to 
learn to extend notional worlds to other people. This 
matches all the empirical evidence that is against a 
copy theory; Perner (1991) has argued convincingly 
that experiments involving inference from parts to 
wholes show that the evidence is against children hav- 
ing a copy theory at any age. Even so, this is some- 
thing which could, in principle, be investigated further 
quite easily with this modelling approach. 

COMPARING MODELS 3: THE SITUATION THEORY 
The third reference comparison I'll make against the 
theory of mind mechanism is Perner's (1991) 
'situation theory'. Perner's theory is substantially dif- 
ferent from those presented so far because he draws a 
hard distinction between real and non-real situations, 
or contexts. The notional world an agent has of itself 

has a unique status. This is not mirrored in the basic 
psychological reasoning module in figure 3. 

Perner argues that the reason younger children don't 
pass the false belief test is because the child subject 
applies the verbal form of questions incorrectly to the 
situation corresponding to reality, not to the non-real 
situation which has been played out by the puppets. 
According to the situation theory, unlike the copy 
theory, young children do have notional worlds, but 
they are not so good at understanding that a real 
question can apply to a non-real situation. Perner 
uses this distinction to explain why children who fail 
the false belief test are still capable of sophisticated 
notional world reasoning, such as that required by 
Zaitchik's (1990) 'false photograph' test. 

Figure 9 shows the rules for the first version of the si- 
tuation theory model — the version which models a 
child who cannot yet pass the false belief test. Note 

;;; The key to Perner's model is a clear distinction between 
;;; the status of one's own notional world, and those of others. 
;;; This is represented in these models by adding a status flag 
;;; to the rules which ascribe those notional worlds. This 
;;; status value is knows for one's own notional world, and 
;;; believes for other people's. These two rules, together, 
;;; replace the perceive rule in figure 4. 

;;; Rule perceive-self, compare to perceive in figure 4 
((result Aresponse ?someone 

(perceived ?someone Uaction ?other-object ?event)) 
?situation Anew-situation)  :- 

(self ?someone) 
(ascribe ?someone knows ?response ?someone 

(perceived ?someone (?action ?other-object ?event)) 
?situation ?new-situation)) 

;;; Rule perceive-other, compare to perceive in figure 4 
((result "response ?someone 

(perceived ?object Uaction 'other-object ?event)) 
?situation "new-situation)  :- 

(not (self ?someone)) 
(ascribe ?someone believes ?response ?someone 

(perceived ?someone (?action ?other-object ?event)) 
?situation ?new-situation)) 

;;; The ascription rule is extended to take the additional 
;;; status value. This value is used, instead of the fixed status 
;;; value believes, to distinguish between one's own notional 
;;; worlds and other people's. This rule replaces the ascribe 
;;; rule in figure 3. 

;;; Rule ascribe, compare to ascribe in figure 4 
((ascribe ?someone ?status "response ?other 

(perceived ?object Uaction ?other-object ?event)) 
?situation "new-situation)  :- 

(those Ustatus ?someone 'something) 
?situation ?notional-world) 

(requote Ustatus ?someone ?something) 
?notional-world ?something ?situation2) 

(in-stance ?other-object ?action 
(result ?response ?other-object 

Uaction ?other-object ?event) 
?situation2 ?situation3)) 

(requote ?something ?situation3 
(?status ?someone ?something) ?new-notional-world) 

(difference ?situation ?notional-world ?situationl) 
(append ?new-notional-world ?situationl 

?new-situation)) 

Figure 9. Ascription rules for the situation theory 
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that the main result rule has been split into two: one 
for self and one for others. Superficially, this might 
look like egocentricity again, but this time the only 
difference between them is in the status they assign to 
different notional worlds, knows for self, and believes 
for others. Initially, as shown by the modified answer 
rules in figure 10, children can only link verbal ques- 
tions to the world for self beliefs — the notional 
world with the status knows. Other notional worlds 
can and do exist, though; it is just that they cannot be 
accessed through verbal questions. 

Perner claims that the principal change in children be- 
tween the ages of two and a half and four is the acqui- 
sition of a representation theory, which allows them 
to recognise that questions can refer not to reality, 
but to worlds or situations that are represented — 
that is, worlds or theories with the believes predicate. 
This corresponds to the child's development from a 
situation theorist into a representation theorist, 
shown in the modified rules in figure 11. 

Perner argues that this change isn't a radical over- 
turning of the existing theory — the kind of radical 
change that makes the copy theory implausible. In- 

;;; These are the rules for answering questions about one's 
;;; own beliefs. In this group, the "believes" question is 
;;; coupled to the knows predicate of a notional world. These 
;;; implement the 'self half of the answer rules in figure 4. 

;;; Rule answer-yes-self, compare to answer-yes in figure 4. 
((result yes ?someone (believes ?self 'something) 

?situation "situation)  :- 
(self ?self) 
(member (knows ?self ?something) ?situation) 
(write-list (yes ?self believes ?something))) 

;;; Rule answer-no-self, compare to answer-no in figure 4. 
((result no ?someone (believes ?self ?something) 

?situation "situation)  :- 
(self ?self) 
(not (member (knows ?self ?something) ?situation)) 
(write-list (no ?self does not believe ?something))) 

;;; These are the rules for answering questions about other 
;;; people's beliefs. This is a model of what happens before 
;;; the representation theory is acquired, where the effect is 
;;; to link into the knows predicate instead of the believes 
;;; predicate. These implement the 'other' half of the answer 
;;; rules in figure 4. 

;;; Rule answer-yes-other, compare to answer-yes in 
;;; figure 4. 
((result yes ?someone (believes ?object ?something) 

?situation "situation)  :- 
(not (self ?object)) 
(member (knows ?self ?something) ?situation) 
(write-list (yes ?object believes ?something))) 

;;; Rule answer-no-other, compare to answer-no in 
;;; figure 4. 
((result no ?someone (believes ?object ?something) 

?situation "situation)  :- 
(not (self ?object)) 
(not (member (knows ?self ?something) ?situation)) 
(write-list (no ?object does not believe ?something))) 

stead, he suggests that the change that happens is a 
"theory extension" (Perner, 1991), a relatively minor 
change to the existing theory. This character if theory 
extension is important to any developmental account 
of common-sense psychology, because the empirical 
evidence is that common-sense psychology develops 
gradually, not in big jumps (Carey, 1985). 

DISCUSSION 
These models highlight several of the most important 
features of the common-sense psychology that under- 
lies the false belief test, and show that these features 
can be emphasised by models that represent the dif- 
ferent and competing theories in this field. Of the 
models presented, the one that seems to work best in 
this modelling framework is Perner's 'situation the- 
ory' model. The principal reason for this is that the 
apparent distance between passing and failing the 
false belief test is much smaller. For both the simula- 
tion theory and for Chandler's 'copy theory' there 
must be a radical development to the ascription of no- 
tional worlds. Perner's model clearly shows the char- 
acter of theory extension which he suggests should be 
expected of a theory which matches the empirical psy- 
chological data on the development of these theories 
(Carey, 1985). 

The simulation theory is quite similar to the version 
of Leslie's theory of mind mechanism that we have 
used as a base model — but both it and Chandler's 
copy theory show an apparent egocentricity. In prac- 
tice, as I've argued, there are good reasons for sup- 
posing that in any real common-sense psychology, 
both theory and simulation aspects will be required 
and, therefore, a simulation theory will actually be 
complementary to, rather than alternative to, the 
models presented here (Perner, 1994). However, most 
of the people who have argued for a simulation the- 
ory have argued for it as an alternative to something 

;;; These are the rules for answering questions about other 
;;; people's beliefs. In this group, the "believes" question is 
;;; correctly coupled to the believes predicate of a notional 
;;; world. These rules override the default which gives the 
;;; wrong answer in the first version of the situation theory. 

;;; Rule answer-yes-other, compare to answer-yes-other 
;;; in figure 10. 
((result yes ?someone (believes ?object ?something) 

?situation "situation)  :- 
(not (self ?object)) 
(member (believes ?object ?something) ?situation) 
(write-list (yes ?object believes ?something))) 

;;; Rule answer-no-other, compare to answer-no-other 
;;; in figure 10. 
((result no ?someone (believes ?object ?something) 

?situation "situation)  :- 
(not (self ?object)) 
(not (member (believes ?object ?something) 

?situation)) 
(write-list (no ?object does not believe 'something))) 

Figure 10. Answer rules for the situation theory 
Figure 11. Changes from the situation theory to the re- 
presentation theory 
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like Leslie's 'decoupler' theory of mind mechanism, 
and therefore don't give much thought to how a simu- 
lation theory and a theory of mind mechanism might 
be combined in practice. But there is a twist to the si- 
mulation model; although it shows an apparent ego- 
centricity, it can actually be functionally identical to 
Leslie's 'decoupler' model. This further backs up the 
arguments that the distinction between a theory and a 
simulation is one of interpretation rather than a real 
difference in behaviour (Perner, 1994). 

It is, of course, possible to pursue this strategy still 
further developing models of some of the other mod- 
els of common-sense psychology. Unfortunately, for 
an accurate model many of these require more com- 
plex models of perceptual apparatus (e.g. Baron- 
Cohen's, 1995, shared attention mechanism), or more 
complete models of common-sense psychology (e.g. 
Wellman's, 1990, simple-desire psychology) than have 
yet been developed within this framework. Even so, 
as a first attempt at the problem, the technique does 
seem to back up the existing points and arguments re- 
markably well, and to clarify the distinctions between 
the models which have been developed so far. And 
apart from anything else, at least within this limited 
scenario, it seems to work! 

The usefulness of the modelling approach as a tool 
for studying common-sense psychology is a topic 
which deserves fuller discussion than is possible here. 
Even so, we believe that these models show cognitive 
modelling can help in this area. 
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;; Trace output for Leslie's 'decoupler' model, simulation 
;; theory (final version), and situation theory (final 
;; version). Compare to the results of Baron-Cohen et al.'s 
;; (1985) false belief test. 

yes alison believes (inside marble box) 
yes sally believes (inside marble basket) 
yes anne believes (inside marble box) 

;;; Trace output for simulation theory (first version). 

yes alison believes (inside marble box) 
no sally does not believe (inside marble ?where) 
no anne does not believe (inside marble ?where) 

;;; Trace output for copy theory and situation theory (first 
;;; version). 

yes alison believes (inside marble box) 
yes sally believes (inside marble box) 
yes anne believes (inside marble box) 

Figure 12. Trace output from the different models 
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ABSTRACT 
We modified a cognitive architecture (ACT-R) and an 
attached interaction architecture (the Nottingham 
interaction architecture) to simulate developmental 
changes in problem solving. We started with an exist- 
ing model that fits adult data on a blocks world task 
used to study the development of problem solving in 
children. We modified the model and architectures in 
three, independent ways to simulate a younger problem 
solver: (a) reduced the working memory, (b) deleted a 
piece of knowledge, and (c) reduced the accuracy of 
vision. We found that our modifications allowed the 
model to fit 7 year old's data better but not perfectly. 
These results suggest that cognitive models and their 
architectures can help answer the question of "What 
develops?" 

Keywords 
Cognitive architectures, development, problem solving, 
working memory, vision, ACT-R, interaction. 

INTRODUCTION 
As children grow older, they tend to be more able to 
learn new strategies and tasks, and be more efficient at 
those strategies and tasks that they knew previously 
(e.g. Siegler, 1986). What changes are occurring in 
order for this to happen? It would be useful to be able 
to specify in information processing terms how the 
behaviour seen at each age is achieved, and therefore 
what the differences are between ages (Simon, 1962). 
The solving of physical puzzles is a good area in which 
to examine differences in behaviour. A detailed analysis 
of the task behaviour is possible via videotape. Many 
strategies will be readily visible, reducing the need for 
the experimenter to infer what mental structures and 
strategies are being used. For this reason, a physical 
problem solving puzzle, the "Tower of Nottingham", is 
used to study differences in children's behaviour and the 
factors influencing them. 

The Tower of Nottingham 
The Tower of Nottingham task involves building a 
pyramid from 21 wooden blocks (see Figure 1). There 
are six layers to the pyramid, the lower five consisting 
of four blocks each, with a single block as the top 
layer. The blocks in the lower five layers all share the 
same characteristics, differing only in size. Each layer 
is normally formed via two sets of paired blocks. For 
example, placing the peg of block A into the hole of 
block B brings the two half holes together to form a 
pair having a hole (a hole-pair). Similarly, placing 

^^, 

Figure 1. The blocks, on the left, that make up each 
layer, which are then stacked to create a tower, shown 

on the right. 

block C and block D together forms a pair with a peg (a 
peg-pair). 
Other strategies for creating a layer also exist, however, 
such as forming a pair having two pegs (blocks A and 
C) and a pair having two holes (blocks B and D). 
There are two other features that may give rise to addi- 
tional construction strategies. Each block has a quarter 
circle indent on top and a quarter circle depression under- 
neath. When a layer is created, the quarter circles form 
circles in the centre such that layers can be stacked on 
top of each other by placing the circular depression of 
the upper layer onto the circular indentation of the lower 
layer. Constructions can be created by aligning the 
quarter circles so that they form a semi-circle. 

Behaviour on the Task Varies with Age 
Children of three are able to complete the Tower of 
Nottingham, yet performance improves with age all the 
way up to adulthood. For example, older children on 
the task accomplish more correct operations, produce 
less errors and take less time than their younger 
counterparts (Murphy & Wood, 1981; Wood & 
Middleton, 1975). Studying performance across ages on 
this task allows us to examine problem solving 
behaviour at each age and the differences in problem 
solving between ages. 

The Use of Cognitive Models and Cognitive 
Architectures 
Computational modelling across ages requires defining 
the behaviours that occur at each age (or performance 
level), because the model will require the knowledge and 
procedures that children may be using at each age. 
Where the behaviour cannot be defined in these terms, 
the model makes predictions about the missing ele- 
ments. Therefore modelling task behaviour can help 
provide a means of defining how the different 
behaviours are generated. 
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This enables a method for examining to what extent 
changes in task performance can be attributed to differ- 
ences in knowledge and to what extent changes in task 
performance can be attributed to developmental pro- 
cesses. Existing models of development have only 
really considered differences in knowledge as the reason 
for changes in task performance, and have largely ig- 
nored the developmental processes that various devel- 
opmental theories put forward (e.g. changes in working 
memory). 

Early production system models of development, such 
as that of Young (1973), model differences in task 
performance by altering the rule set (i.e. the knowledge) 
within the production system. Klahr and Wallace (1976) 
implement possible developmental factors in their 
production system model of development (such as 
visual memory), but do not explore their effects. 

Modelling techniques which have not used the produc- 
tion system style view development as being experience 
with the task, which can be seen as implicit knowledge. 
In the connectionist model of McClelland and Jenkins 
(1991), improved performance is attained by further 
training of the network on the task. In Siegler and 
Shipley's (1995) Adaptive Strategy Choice Model, 
improved performance is achieved by the model learning 
through experience of the task which strategies to 
employ for which sums. 

All of these models have had success when they have 
been compared to subject data. However, developmental 
theory suggests that there are further changes occurring 
that also influence development. To what extent are 
these changes able to influence performance? 
Two approaches stand out for creating a model of our 
task. One method is to model a lower performance 
level and see if that model can then progress to the 
higher performance levels that we see on the task. The 
other method is to begin at the highest performance 
level (that of adults), and then see if reduced versions of 
this model show behaviour that looks like lower 
performance levels. We have chosen to start with the 
simpler (adult) behaviour and work towards the more 
chaotic (child-like) behaviour. 

We wish to examine how changes in both knowledge 
and development can influence task performance. To do 
this, we will begin with an adult model of our task and 
then impair it in theoretically motivated ways. By 
examining performance of the model after these 
changes, we hope to see to what extent the impairment 
can account for lower performance levels (those of 
children). 

Cognitive architectures are important here as well, for 
they should also guide us (together with developmental 
theory) as to what are the sensible changes to make to 
the architecture. However, the role of change in 
architectures, with particular reference to development, 
has been rarely studied. The first definitions and 
implementations of cognitive architectures stressed that 
architectures do not change across tasks (Newell, 1990, 
p. 81). Newell (1990) argues that within Soar, 
development is just learning, and the architecture 
remains the same. Development is not mentioned with 
respect to ACT-R (Anderson, 1993). For these reasons 

we will look towards developmental theory as to what 
changes to make to the architecture. 

Overview of the Paper 
In the remainder of this paper, we will first describe the 
adult model upon which we base the other models. We 
describe its structure and the set of blocks that it inter- 
acts with. The model has been improved since it was 
last reported (in Jones & Ritter, 1997), and although the 
fit to the data is not improved substantially, it does 
enable the model to be broken in more theoretically 
motivated ways. We therefore describe the model in 
detail here. The stage is thus set for describing the three 
changes we make to the architecture. Each of the 
changes is described in terms of why they are suggested 
by developmental data, how they have been 
implemented, either in ACT-R or the Nottingham 
interaction architecture, and the effect they have on the 
model's behaviour. We conclude with a summary of 
these changes and the implications they have for the 
disentangling of what changes in cognitive 
development. 

THE ADULT MODEL 
The adult model is based on the ACT-R cognitive 
architecture (Anderson, 1993). In the development of 
the adult model the architecture has in part been used as 
a vehicle for the development of our own theories of 
performance on the task, although the model is 
consistent with most of the principles of ACT-R such 
as being goal driven, giving activation to memory 
elements, subjecting activation to both decay and noise, 
being rule based, and so on. 

A simulation of the task also exists (see Figure 2), 
which is written in Garnet (Myers, et al., 1990). The 
simulation contains a full graphical representation of 
the task (all blocks and features), which is 2 1/2 
dimensional—blocks cannot be turned on their side or 
held in mid-air, but can be face-up or face-down. 

The simulation also represents an eye and two hands. 
The eye and hands are designed to meet a set of 
requirements identified for creating a psychologically 
plausible architecture for interacting with an external 
task (Baxter & Ritter, 1996). 
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The eye is able to saccade and fixate, and passes to the 
model what it sees with regard to blocks and construc- 
tions (e.g. a peg-pair will be represented as a construc- 
tion having two blocks that are flush on their outer 
edges and have their quarter circles and halfpegs aligned). 

The visual information passed to the model is based 
upon where blocks are positioned in relation to the 
fovea. Three areas are defined: fovea, parafovea and 
periphery. Full information is passed for blocks or 
features in the fovea and parafovea, though the parafovea 
subjects features and block sizes to noise. For items in 
the periphery, the eye only returns to cognition a block 
ID. The hands are able to pick up, drop, rotate, turn 
over, fit, and disassemble blocks. 

The model contains 226 rules which allow it to 
complete the task. The rules also interact with the 
simulation of the task, directing the eye and the hands. 
Within the model, all blocks and block features have an 
associated activation level. When several rules are 
instantiated, the one with the highest activation is 
selected. Therefore, in general, rules fire whose 
conditions have the most active blocks and block 
features in them. The activation levels are subject to 
decay each cycle, such that when they fall below a 
specified level (the retrieval threshold) they can no 
longer be matched in conditions of rules. Activation is 
raised based on what the goals of the model currently 
are, and by what blocks the fovea is looking at. 
The learning mechanism that we included in the 
architecture is a simple method of increasing the 
chances of fitting blocks by specific features if a 
previous fit using the same features was deemed a 
success. Success is determined by the blocks in the 
construction being flush on their outer edges and having 
their quarter circles aligned (this is consistent with adult 
data on the task). Therefore, on some occasions the 
model may believe a successful construction has been 
made when in fact it has not (e.g. aligning the quarter 
circles of blocks A and B such that the blocks are not 
connected via a peg/hole). This learning mechanism 
approximates adult learning on the task (Jones & Ritter, 
1997). 
The model contains working memory and visual 
memory. Working memory contains all blocks and 
block features that are active enough to be matched in 
the conditions of rules (i.e. their activation is above 
retrieval threshold). Therefore, working memory is 
variable based on how active blocks and block features 
are in the model. Visual memory means we can 
remember some of the blocks that have been looked at 
previously even though they are now in the periphery. 
Visual memory is static (it is set at seven items), and 
compliments working memory since blocks in visual 
memory that are not in working memory can also be 
matched in conditions of rules. 

Comparing the models with the data 
It would be useful to compare subject performance on 
the Tower of Nottingham with the performance of 
models of the task using a metric that cannot be set as a 
parameter of the architecture. One such metric is the 
proportion of productions fired in the construction of 
each layer compared to the proportion of time subjects 
take in the construction of each layer. However, the task 

involves interaction with an external world, so timings 
for subjects include their perceptual and motor actions 
whereas the model production firings do not. This 
means timing estimates for interaction must be used in 
part of our model/subject comparisons. 

We use the ACT-R default timing of 50 ms per 
production firing, which increases to 250 ms (Baxter & 
Ritter, 1996) for productions involving perceptual 
actions (eye movements and fixations), and 550 ms 
(Jones & Ritter, 1997) for productions involving motor 
actions (fitting and disassembling blocks). This enables 
a more complete comparison between model and subject 
timings. Production firing latencies in ACT-R also 
take into account activation of memory elements. In 
order for the influence of memory elements on 
production firing latencies to be negligible, the base 
level activation of memory elements was set to 10.0. 
Where other ACT-R parameters were used (decay, 
retrieval threshold), we adhered to the suggested default 
settings. The models begin with the initial knowledge 
of the task that subjects had, such as blocks of the same 
size go together, pegs go in holes, etc. 

For every run of the model, the activation noise 
parameter within ACT-R was set to 0.005. This causes 
the activation of constructions and features in the model 
to differ, making the model's behaviour variable. 

For comparisons between the model and subjects, 
measurements are given on an overall and layer-by-layer 
basis. The reason for reporting times and errors per layer 
is that subjects learn throughout the task. Since the 
model includes a learning mechanism, we want to see 
not only the effect that impairment to the model has 
upon overall behaviour, but also the impact it has upon 
the learning of the task. 
We provide r-squared estimates for correlations between 
the model and subjects on a layer-by-layer basis, and t- 
test comparisons for summary data. These should only 
be taken as initial guides to the quality of the fit 
between the model and the subject data. 

Comparison of the model with adult subjects 
The adult subjects (N=5; taken from Jones & Ritter, 
1997) had completed the task once. We compare 5 runs 
of the model to the 5 adult subjects. 
The comparison of the adult model to the adult subject 
data is favourable. On the measures we will be using 
when we break the adult model, it fits the adult subjects 
reasonably well (see Table 1), although the model 
makes more incorrect constructions than subjects. 
If we compare the times to complete each layer for the 
adult model and the adult subjects (see Figure 3), the 
trend of the model is the same as subjects—the time to 
complete each layer decreases until the final layer where 
the time increases slightly (r2 = 0.92). The model takes 
more time to complete the task because it makes 
slightly more errors (see Figure 4; r2 = 0.67). 
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Figure 3: Time taken (seconds) to complete each layer 
for adult subjects and the adult model. 
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gure 4: Construction attempts to complete each layer 
for adult subjects and the adult model. 

The model provides a reasonable fit to the adult subject 
data in most of the behaviours that we are presently 
interested in. An exact fit on every measure is not 
essential because we will be examining the relative 
increases and decreases of these measures that result 
from the alterations that we carry out. The model fits 
the data well enough that it is fruitful to start exploring 
how problem solving changes when the architecture is 
changed to reflect that of younger problem solvers. 

CHANGES TO THE ADULT MODEL 
In order to examine how problem solving could change 
with development, we created three changed versions of 
the adult model. These changes are the most plausible 
based on the developmental literature and our knowledge 
of children's performance on the task, (a) We reduced 
the working memory capacity, (b) We removed a piece 
of knowledge, (c) We altered the accuracy of the 
parafovea. There are further changes that should be 
explored as well, such as basic processing speed, fovea 
size, and further changes to knowledge. 
In this initial exploration we made each of these 
changes independently in order to keep the first order 

effects clear. For each change we explain its 
implementation, its rational, and its effect on problem 
solving. 

The seven year olds we use to compare the altered 
models against were assisted on their first attempt at 
completing the Tower (contingently tutored, Wood & 
Middleton, 1975), and so we compared the model with 
their second attempt where they received no help in 
completing the Tower. 

Reduced Working memory capacity model 
Why 
Several developmental theories suggest working 
memory capacity may influence task performance (e.g. 
Case, 1985; Halford, 1993). On the Tower of 
Nottingham, children have been noted to search with 
replacement (D.Wood, personal correspondence), a 
characteristic which may well be linked to working 
memory in that the children forget which blocks they 
have tried fitting together. On the Tower of 
Nottingham, seven year old children fit the same blocks 
together an average of 3.68 times, whereas this 
behaviour never occurs for adults completing the task. 

How 
Our model provides an easy way to manipulate working 
memory capacity to see what effect it has upon 
performance. In order to get a large, initial effect, we 
implemented this change to the model in three ways 
(the first two are parameters in ACT-R and the third is a 
parameter in the Nottingham interaction architecture). 
First, raising the retrieval threshold (from 0.0 to 2.5) 
means that constructions need to be higher in activation 
than in the adult model in order to be matched in rules. 
Second, raising decay (from 0.05 to 0.15) means 
constructions are forgotten more quickly than in the 
adult model. Third, reducing the number of items in 
visual memory (from 7 to 3) means that visual memory 
provides less support to working memory. The ACT-R 
parameters and mechanisms that we manipulate have 
also been used by Lovett, Reder and Lebiere (1997) in 
their ACT-R model of working memory differences, 
although they kept the parameter values constant and 
manipulated a third parameter. In this way they were 
able to model individual differences in working 
memory. 

Measure Adult 
Subjects 

Adult Model t-score 

Total time taken to complete the Tower 80.6 s (13.3) 92.2 s (9.47) t(8)=1.59 
p>0.05 

Total number of errors (incorrect constructions) 
made 

0.2 (0.45) 2.4(1.14) t(8)=4.017 
p<0.05 

Errors where the blocks involved are of the same 
size 

0.2 (0.45) 2.4(1.14) t(8)=4.017 
p<0.05 

Errors where the blocks involved are of different 
sizes 

0 0 N/A 

Number of times a construction attempt is made 
using the same blocks 

0 0 N/A 

Table 1: Mean (standard deviation) and t-scores for adult model and adult subject comparisons. 
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Measure 7yo 
Subjects 

Reduced WM 
Model 

t-score 

Total time taken to complete the Tower 214.4 s (95.81) 134.0 s (24.1) t(8)=1.82 
p>0.05 

Total number of errors made 7.6 (2.41) 5.4 (2.88) t(8)=1.31 
p>0.05 

Number of times the same blocks are fitted together 1.75 (0.96) 2.0(1.41) t(4)=0.27 
p>0.05 

Table 2: Comparison between seven year old subjects and the reduced working memory model. Standard deviations, where 
appropriate, are given in parentheses. 
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Figure 5: Time taken (seconds) to complete each layer. 
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Figure 6: Construction attempts to complete each layer. 

Predicted effect 
Less working memory should lead to more search with 
replacement—the same pairs of blocks should be fitted 
together more often. A side-effect of searching with 
replacement is that the task should take longer and 
involve more errors. 

Effect 
Table 2 shows the summary statistics for the seven year 
old subjects and the reduced WM model. Figures 5 and 6 
show comparisons on a layer by layer basis. 
As predicted, reducing the working memory capacity in 
the adult model leads to fitting the same blocks together 
more often (from 0 in the adult model to 2.0 in the 
reduced WM Model). Increases are seen in both the time 
to complete the task (from 92.2 s in the adult model to 
134.0 s in the reduced WM Model) and the number of 
errors (from 2.4 in the adult model to 5.4 in the reduced 
WM Model). This increase is not enough for the reduced 
WM Model to appear like a seven year old on the task. 
Although there are no reliable differences between the 
reduced WM Model and seven year olds in the total time 
taken and total number of errors, there are clear 
differences in the magnitude of these totals. 
On a layer by layer basis, the reduced WM Model can be 
seen to not differ greatly from the adult model in terms 
of time and construction attempts made. However, the 

reduction in working memory capacity, because the 
original adult model provides a better fit to the seven 
year old subject data (times r2 = 0.85; constructions 
r2 = 0.74) than the reduced WM Model does (times 
r2 = 0.24; constructions r2 = 0.63). The original adult 
model and the reduced WM Model do not correlate at all 
(times r2 = 0.07; constructions r2 = 0.05). 

Reducing the working memory capacity has allowed the 
model to fit the seven year old data a lot better than the 
adult model for overall times and errors, but at the cost 
of impeding the learning mechanism. This is probably 
because of the type of learning mechanism we use: there 
are less block features to be raised in activation upon 
success because working memory capacity is smaller. 
This suggests that further learning mechanisms must be 
used in order to fit the seven year old subject data better. 

Less  Knowledgeable model 
Why 
Children have a much smaller knowledge base to draw 
upon than do adults (e.g. Siegler, 1986). It is quite 
possible that children's knowledge of the Tower of 
Nottingham is less than that of adults. Examination of 
how seven year olds produce correct constructions 
compared to how adults produce correct constructions 
reveals that the children fit pegs into holes to produce a 
pair on 37 occasions yet only fit a halfpeg into a 
halfhole on 6 occasions. Adults fit via a peg and hole 
on 26 occasions as compared to fitting by halfpeg and 
halfhole 14 times. It is a possibility that children only 
learn about halfpegs and halfholes fitting together 
whilst they are completing the task. 

How 
Previously the model knew that halfpegs could fit into 
halfholes. This knowledge was deleted from the model. 

Predicted Effect 
The effect this will have upon performance is unclear. 
The number of constructions made via a peg and hole 
will rise sharply; however, the current learning 
mechanism offers no opportunity for learning that 
halfpegs and halfholes can fit together, and therefore it 
is expected that fitting by halfpegs and halfholes will be 
dramatically reduced. It will not be eradicated because 
there are other ways in which constructions can 
indirectly be made via a halfpeg/halfhole (e.g. quarter 
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Measure 7yo   Subjects Less 
Knowledge- 
able Model 

t-score 

Total time taken to complete the Tower 214.4 s (95.81) 164.8 s (40.4) t(8)=1.07 
p>0.05 

Total number of errors made 7.6 (2.41) 5.6 (3.36) t(8)=1.08 
p>0.05 

Ratio   of   correct   constructions   fitted   via 
peg/hole:halfpeg/halfhole 

37:6 31:6 N/A 

Table 3: Comparison between seven year old subjects and the 
appropriate, are given 
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Figure 7: Time taken (seconds) to complete each layer. 
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Figure 8: Construction attempts to complete each layer. 
circles can be aligned in such a way that the halfpeg and 
halfhole fit together). We predict that the number of 
errors will remain the same. This is because fitting 
random blocks of the same size by a peg/hole 
arrangement and by a halfpeg/halfhole arrangement offer 
the same chances of success. The time to complete the 
task should not change, because no more errors are 
expected. 

Effect 
Table 3 shows the summary statistics for the seven year 
old subjects and the less knowledgeable (Less K) model. 
Figures 7 and 8 show comparisons on a layer by layer 
basis. 
As predicted, deleting the knowledge that halfpegs fit 
into halfholes meant that fitting by pegs and holes rose 
sharply (from 14 in the original adult model to 31 in 
the less K Model), and fitting by halfpegs and halfholes 
dropped but was not eradicated (from 15 in the original 
adult model to 6 in the less K Model). The ratio of 31:6 
compares favourably with the 37:6 ratio of seven year 
olds. 
There were increases in both the total time taken to 
complete the task (from 92.2s in the original adult 
model to 164.8s in the less K Model), and the number 
of errors produced in completing the task (from 2.4 in 
the original adult model to 5.6 in the less K Model). 

less knowledgeable model. Standard deviations, where 
in parentheses. 
This helps the less K model to fit the seven year old 
data (there are no reliable differences between the 
summary measures for the less K model and seven year 
old subjects, although there are clear differences on the 
layer-by-layer plots). Part of the increase in time can be 
attributed to more search being required (as we now have 
a reduced feature set because we no longer know that 
halfpegs fit into halfholes). However, most of the 
increase in time is because more errors are made. We do 
not yet have a valid reason for why this occurs. 
As with the reduced WM model, we again see that the 
original adult model correlates better with the seven year 
old data on a layer by layer basis (original model and 
seven year olds: r2 = 0.85 for times and r2 = 0.73 for 
constructions; less K model: r2 = 0.73 and r2 = 0.44 
respectively). This again suggests that the learning 
mechanism is impeded by the removal of knowledge. 
The type of knowledge removed means that learning 
must now occur over a reduced feature set. However, 
the reduced feature set still has the same chance of 
success as the old set, and it is therefore difficult to 
explain why the less K model does not learn as well as 
the original adult model. 

Reduced   Parafovea  accuracy  model 
Why 
Children find it more difficult to select blocks by size in 
the Tower of Nottingham task (Murphy & Wood, 
1981). Although this is more pronounced for children of 
five years of age and below, seven year olds still average 
1.8 constructions involving different sized blocks; the 
adults do not make any constructions involving blocks 
of different sizes. 

How 
We set the parafovea noise parameter for size to be 30 
percent, representing a 30 percent chance that a block in 
the parafovea will be perceived as being a different size 
than it actually is (there are other possible mechanisms 
to implement this). 

Predicted Effect 
The increased size noise should mean that more 
incorrect constructions are produced involving blocks of 
different sizes. This increase in error should also lead to 
an increase in the time taken to construct each layer. 

Effect 
Table 4 shows the summary statistics for the seven year 
old subjects and the parafovea accuracy model. Figures 9 
and 10 show comparisons on a layer by layer basis. 
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Measure 7yo   Subjects Reduced 
Parafovea 
Accuracy 

Model 

t-score 

Total time taken to complete the Tower 214.4 s (95.81) 126.2 s (24.6) t(8)=1.99 
p>0.05 

Number of errors involving blocks of the same size 5.8 (2.59) 3.4 (1.34) t(8)=1.84 
p>0.05 

Number of errors involving blocks of a different 
size 

1.8 (2.68) 0(0) N/A 

Table 4: Comparison between seven year old subjects and the reduced parafovea accuracy model. Standard deviations, 
where appropriate, are given in parentheses. 
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Figure 9: Time taken (seconds) to complete each layer. 
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Figure 10: Construction attempts to complete each 
layer. 

The results found go against our main prediction that 
there will be a greater number of constructions made 
which involve blocks of different sizes (neither the 
original adult model or the reduced parafovea accuracy 
model produce any). In hindsight, the reason for this is 
that when picking up a block, the model fixates upon 
it. Since at this point the block is in the fovea, the 
correct size is returned, and therefore if the block is the 
wrong size it is replaced. This provides an interesting 
result because it indicates that seven year olds either do 
not examine the block again once they have decided to 
pick it up, or their fovea vision is not as accurate as 
adults. 
As predicted, there is an increase in the overall time 
taken (from 92.2 s for the original adult model to 
126.2 s for the reduced parafovea accuracy model) and 
the number of errors produced (from 2.4 for the original 
adult model to 3.4 for the reduced parafovea accuracy 
model). This increase is not sufficient enough to make 
the reduced parafovea accuracy model appear to be like 
seven year old subjects on the task, although there are 
no reliable differences for either measure. 

The reduced parafovea accuracy model does not correlate 
well with either the original adult model (r2 = 0.05 for 
times; r2 = 0.03 for constructions) or the seven year 

old subjects (r2=0.13 and r2 = 0.29 respectively). 
The increase in overall timings is probably due to the 
increase in visual search that is required due to the 
parafovea being less accurate. There should be no reason 
other than chance that there is an increase in 
construction attempts over the original adult model. 

SUMMARY 
We took an initial adult model and broke it in three 
ways to simulate a younger problem solver: cognitively 
(reducing working memory capacity), via knowledge 
(removing knowledge), and perceptually (reducing 
parafovea accuracy). All of these impaired the 
performance of the model to differing degrees and in 
different ways. None of the alterations was sufficient to 
produce behaviour similar to seven year old subjects, 
and all of the alterations indicated that more than one 
learning mechanism is required to fit the seven year old 
data properly. However, in breaking the adult model, we 
were able to show that changes that have been 
hypothesised to exist in younger problem solvers (i.e. 
developmental factors) do lead to different problem 
solving behaviour. 
Further work must modify the model and its architecture 
in additional ways, motivated by developmental theory. 
There are several other ways to degrade the model's 
performance that we have not yet explored, such as 
changes in processing speed. These explorations will 
allow us to see how much each factor influences 
performance. The extent to which each factor 
contributes toward the observed behaviour indicates 
where our attention must lie in creating a complete 
model of seven year olds that is comparable and related 
to adult behaviour on the Tower. 
However, we cannot simply consider each influencing 
factor independently because we have shown that this is 
not sufficient to produce the behaviour of seven year old 
subjects. The adult model will need several interacting 
changes to its architecture before its behaviour appears 
realistically to be like a younger problem solver. 
Therefore, not only will we be breaking the model in 
additional, independent ways, we will also be looking at 
combinations of modifications that interact. We expect 
the interactive effects to reveal more about performance 
at different ages, but simple changes are still required for 
our understanding and initial explorations. 

This work indicates that the role of change in 
architectures, which has been little studied since the first 
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definition, can be a fruitful way to use architectures. 
ACT-R includes many parameters. Before these 
parameters can be easily used for modelling 
development and abnormal problem solving, they need 
to be explored (or explained) to the extent that ranges 
for normal individual differences are known (e.g. Lovett, 
Reder, & Lebiere, 1997), and then that the interactions 
of these parameters are understood. A way to predict the 
performance of ACT-R models without running them in 
this area would be useful. 

This work will eventually lead to models of five year 
old's and seven year old's behaviour solving the Tower 
that are based on modifying the adult model. We hope 
that these models will be able to explain individual 
differences within age groups as well as to explain the 
progression between ages (in terms of differences 
between the models rather than transition mechanisms). 
In both cases, we should be able to highlight the 
knowledge differences or architectural changes that lead 
to the differences in behaviour. Further learning 
mechanisms are also required in order that each model 
can learn from the task in order to perform to the 
standard of the older models. Explaining how and why 
problem solving changes with development is difficult, 
so further work will have to look at more than just this 
task. 

We are now in a position to look at how problem 
solving changes across development. We have a 
cognitive model that performs the task. We can add and 
remove knowledge from the cognitive model and we can 
modify the architecture to represent developmental 
changes in cognition (the cognitive model based in 
ACT-R) and perception (the Nottingham interaction 
architecture). In the future we may be able to more 
directly answer "What develops?" 
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ABSTRACT 

In this paper, an ACT-R model of mental fatigue is 
presented. This model is loosely based on Hockey's state 
regulation model of compensatory effort (Hockey, 1997). 
It appears that when spreading of activation is reduced, 
the ACT-R model can predict the performance changes 
Hockey describes, and furthermore, show how these may 
depend on the motivation of the participant. In a model 
of the Sternberg memory-search task, a reduction of the 
spreading of activation results in a change in strategy. 

Keywords 
mental fatigue, strategy use, cognitive control, ACT-R 

INTRODUCTION 

This paper describes a computational approach towards 
the investigation of mental fatigue. Mental fatigue is 
defined as the deterioration of mental performance due to 
preceding exercise of mental or physical activity 
(Meijman, 1997). As Meijman explains, it can be 
conceived of as a problem of keeping attention focused 
on task goals, or as a deficit in the cognitive-energetic 
control mechanisms. From his research it appeared that 
in some task conditions fatigued participants could 
protect their performance by means of compensatory 
effort, but in the most unfavourable conditions of the 
experiment (after 8 hours of work combined with sleep 
loss) people were no longer able to prevent deterioration 
of their performance. According to Shiffrin & Schneider 
(1977) there are two types of information processing: 
automatic and controlled. It appears that tasks that require 
more controlled processing are more sensitive to mental 
fatigue (Meijman, 1997). However, which cognitive 
processes are responsible for the changes in behaviour 
which are observed when people have to perform tasks 
for an extending period of time is a question that has not 
been answered yet. Bartlett (1943) hypothesised that the 
processes involved in planning, which is often ascribed 
to prefrontal functioning, are the ones responsible for 
these changes in behaviour. West (1996) subdivides the 
functioning of the prefrontal cortex into three processes. 
The first one is the inhibition of interfering processes and 
stimuli. The second process is a working memory 
process which enables the retrieval of information. The 
third process involves  the preparation  of responses. 

Summarising, there is some evidence that indicates 
mental fatigue is related to problems with cognitive 
control. 

From many previous studies we already know 
that people seldom show a total breakdown of 
performance when they become mentally fatigued. A 
possible explanation for maintaining adequate task 
performance is that people change their strategy. More 
than 20 years ago, Shingledecker and Holding already 
hypothesised that when people become mentally fatigued 
they will shift their strategy of task performance towards 
a strategy that requires less mental effort (Shingledecker 
& Holding, 1974). In 1997, this hypothesis was brought 
out again by Hockey (1997). So, some people have 
hypothesised that mental fatigue involves a change in 
choice. However, a controlled study that investigates the 
details of this possible relation between mental fatigue 
and strategy use, still has to be done. 

In order to predict and explain the role of 
cognitive control and strategy choice on the performance 
changes associated with mental fatigue, it is necessary to 
construct a detailed model of how these processes take 
place, and how they are influenced when people become 
fatigued. As the models mostly used in this field are 
mainly descriptive, the main purpose of this paper is to 
show how the valuable aspects of one of these models 
can be used to construct a computational model of mental 
fatigue, from which it will be possible to derive useful 
predictions of participants' behaviour. To this end, the 
next paragraphs will describe Hockey's compensatory 
control model (Hockey, 1997), which is a commonly 
known descriptive model of mental fatigue, and a 
cognitive architecture, ACT-R (Anderson, 1983; 1993). 
Together these components will be the basis for a 
computational model of mental fatigue. 

A DESCRIPTIVE  MODEL OF MENTAL FATIGUE 

A model currently used for the investigation of mental 
fatigue is the state regulation model of compensatory 
control (Hockey, 1997). It is based on the concept of 
resources, which is described as "the availability of one 
or more pools of general-purpose processing units, 
capable of performing elementary operations across a 
range of tasks, and drawing upon common energy" 
(Gopher, 1986; Kahneman, 1973; Wickens, 1984). The 
model makes three assumptions. Firstly, it assumes that 
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behaviour is goal-directed. Further it is assumed that the 
control process is normally self-regulating. And, thirdly, 
the model assumes this regulation has costs (expressed in 
use of mental resources, levels of subjective strain, and 
physiological changes). An overview of the model is 
presented in figure 1. 

Figure 1. The state regulation model of compensatory 
control (Hockey, 1997) 

The model distinguishes between two levels of 
control: a lower level, representing routine regulation 
(loop A), and an upper level, representing effort-based 
regulation (loop B). The effort-monitor monitors the 
level of demands in the lower loop. When the demands of 
the situation change, control will shift to the higher level 
(here called the supervisory controller) where several 
options for regulation are available. The model requires 
two levels for the effort monitor: a lower setpoint and an 
upper setpoint. This is the part of the model in which 
resources play an important role, for the upper setpoint 
represents the maximum level of effort that can be 
mobilised, which is dependent on motivation. Referring 
to Holding (1983), Hockey argues that this upper 
setpoint can be influenced by fatigue. When the perceived 
demands are too high, the maximum level of effort that 
can be mobilised should be increased, or the performance 
will decrease. Hockey describes four kinds of changes that 
can happen when people protect their performance. The 
first change he mentions is subsidiary task failure, for 
example the neglect of subsidiary activities or narrowing 
of attention. Second, people can make strategic 
adjustments as less use of working memory and greater 
use of closed-loop control. Third, maintaining 
performance could require compensatory costs. People 
would have to increase mental effort to attain the same 
performance. Finally, if no changes during task 
performance are observed, it is possible that people will 
show after-effects, for example express feelings of 
fatigue, or show a post-task preference for low-effort 
strategies. 

To summarise, according to this model, task 
performance normally relies on routine regulation. In 
situations with high demands (e.g., stressful situations, 
situations in which the operator is mentally fatigued), 

task performance requires effort-based regulation (loop B). 
Thus, the model would predict that when people become 
mentally fatigued they would need a more effortful 
manner of control for the same task as before. However, 
it is not clear how that would lead to the four kinds of 
change Hockey predicts. It could be the case that when 
people become fatigued, they invest more effort in the 
task, change their strategy of performance, neglect 
subsidiary activities, or show after-effects. The model 
does not provide predictions about what people will 
actually do in these situations that require higher level 
control. A computational model is needed to refine these 
processes and deliver useful predictions for different 
situations. To this end, a rather brief explanation will be 
given of ACT-R (Anderson, 1993), an architecture of 
cognition, from which it is possible to construct a 
computational model of fatigue. 

ACT-R 

The reason for choosing the ACT-R architecture for the 
construction of a model of mental fatigue is twofold. For 
the investigation of mental fatigue the measurements of 
performance that are used most often are the reaction 
times for completing tasks, the (strategic) choices made 
during task performance, and the number of errors made 
by participants. A very attractive aspect of ACT-R is that 
it can make very detailed predictions about these three 
kinds of measurements. Furthermore, ACT-R is equipped 
with global parameters which, when changed, can cause 
qualitative, task-specific, changes in behaviour. These 
global parameters make ACT-R suitable for the 
construction of a model of mental fatigue. 

The ACT-R Architecture 

The ACT-R architecture distinguishes between two kinds 
of memory: production memory (memory for procedural 
knowledge, represented with production rules) and 
declarative memory (memory for fact knowledge, 
represented with chunks). Strategies are represented with 
(a number of) production rules, and additional declarative 
facts. The conflict resolution process selects production 
rules according their expected gain, as calculated by 
equation 1. 

Expected gain { = P; G - Q (1) 

In this equation P represents the probability of success 
when using this production rule, G the value of the goal, 
and C the cost to reach the goal, using this production 
rule. The preliminary assumption of ACT-R is that cost 
is the time needed to reach the goal. From the production 
rules that match the current goal, the production rule that 
has the highest expected gain is tried first, which means 
that ACT-R tries to retrieve the declarative memory 
chunks necessary for the production to fire. Whether 
ACT-R succeeds in retrieving the chunks depends on the 
activation level of these chunks. When the activation of a 
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chunk drops below a certain threshold, the retrieval 
threshold, it cannot be retrieved anymore. The activation 
level of a declarative memory chunk is determined by 
equation 2. 

Activation s = base level activation j + 
Ej source-activationj * associative strength^ (2) 

In this equation base-level activation represents how 
recently and frequently the chunk has been used before. 
The second half of the equation represents spreading 
activation. Source activation represents the attention 
given to the elements of the goal and association strength 
represents the likelihood that fact i is needed if fact j is 
part of the current goal. If all retrievals succeed, the 
production will fire, if not, the second-best production is 
tried. Furthermore it must be mentioned that ACT-R can 
learn the parameters of the model itself (e.g., the base- 
level activation, the associative strengths, the probability 
of success of a production and its cost). 

A COMPUTATIONAL MODEL OF MENTAL 
FATIGUE 

In the introduction two aspects of mental fatigue were 
mentioned: mental fatigue as a cognitive control 
problem, and mental fatigue as a process involving a 
shift in choice, a more motivational aspect. How can 
these aspects be represented in a computational model of 
mental fatigue? Therefore we have to determine how 
global parameters can interact with knowledge-specific 
parameters. In ACT-R two global parameters can be 
related to these aspects of mental fatigue. In the next two 
subsections these two parameters will be explained and 
the third section illustrates the influence of the values of 
these two parameters on the performance on a Sternberg 
memory-search task. 

Mental Fatigue as a Problem Concerning 
Cognitive  Control 

As already mentioned in the introduction, West (1996) 
distinguishes three cognitive control functions: 
inhibition of interfering processes and stimuli, and two 
memory functions. A global parameter in ACT-R related 
to these functions is the source activation, which was 
described as a part of equation (2). Source activation 
spreads from the goal to related chunks, thereby creating 
more contrast between chunks which are relevant and 
irrelevant to the current goal. When source activation is 
low, the contrast between relevant and irrelevant chunks 
is low. As such, source activation has the same function 
as inhibition of interfering stimuli, which was described 
as one of the cognitive control functions possibly harmed 
by mental fatigue. When source activation is high, the 
probability of interference is low. When source activation 
is low, however, interfering stimuli can become 
problematic. It is also possible that due to low source- 
activation, the activation level of relevant chunks drops 

below the retrieval threshold, which means that relevant 
facts cannot be retrieved at all. Furthermore, there are 
already some indications that source activation is related 
to working memory. Lovett, Reder & Lebiere (1997), for 
example, found that individual differences in working 
memory capacity can be simulated by changing the 
source activation. Therefore, it can be hypothesised that 
when people are fatigued, their source activation is lower. 

Mental Fatigue as a Motivational Problem 

Shingledecker & Holding (1974) and Hockey (1997) 
hypothesise that mental fatigue may also involve a shift 
in choice, more specifically, a shift toward strategies 
requiring less mental effort. This can be related to the 
motivation of the participants. The parameter closest to 
the concept motivation is the G parameter described 
before in equation (1), which represents the value of the 
goal. Literally, the G parameter represents how much 
time you are willing to invest in reaching the current 
goal. When the task does not involve time pressure, the 
value of the G parameter is partly determined by the 
motivation of the participant (Taatgen, 1997). So, it can 
be predicted that a highly motivated participant will 
favour strategies with a high probability of success, 
while participants with low motivation will favour 
strategies with less costs. 

An Example: a Model of the Sternberg 
Memory-Search   Task 

The model described in this subsection is adapted from 
Anderson & Lebiere (in preparation). The task the model 
performs is a modified version of the Sternberg memory- 
search task (Sternberg, 1969). In this task three letters are 
shown on a computer screen, which the participant has to 
keep in memory. These three letters are referred to as the 
memory set. The time the memory set is shown is long 
enough to read the letters, but not long enough to 
rehearse them. After that, an attention dot is shown, 
followed by a set of four letters, called the display set. 
The participant has to decide whether one of the letters 
from the display set was part of the memory set. The 
probability that this is the case is 50 percent. A new 
memory set is presented on each trial, which immediately 
starts after the participant has given a response, making 
the task self-paced. 

The two strategies which can be used to perform 
the task are described in Anderson & Lebiere (in 
preparation). The strategy that generally has the best 
speed-accuracy properties will here be referred to as 
retrieve-and-check. When the display set is shown, the 
participant focuses on the first letter in the set. He then 
retrieves the letter from the memory set with the highest 
activation. If this retrieved letter equals the attended letter 
in the display set the participant responds with a yes, else 
he moves on to the next letter in the display set. If there 
is a letter in the memory set corresponding with the 
attended letter, this letter will have the highest activation. 
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The main production rules for retrieve-and-check are 
given below. This strategy will produce fast responses, 
since the retrieve-trace production will always succeed. 

Retrieve-trace 
IF the goal is to check if item x is in the memory set 

and there is some item y in the memory set 
THEN the target is item y 

Retrieve-yes 
IF the goal is to check if item x is in the memory set 

and the target is item x 
THEN say-yes 

Retrieve-no 
IF the goal is to check if item x is in the memory set 

and target is not equal to item x 
THEN move on to the next item of the display set 

The second strategy focuses on accuracy, but is less 
efficient. It is called specific-retrieval, since the 
participant specifically has to retrieve the memory set 
item that matches the current display set item. This will 
result in a higher accuracy, since it is impossible to 
retrieve a wrong item from the memory set. Another 
consequence, however, is that the retrieve-trace 
production will fail most of the time. This results in a 
longer reaction time, since failing production rules use 
the time it takes to retrieve items whose activation equals 
the retrieval threshold. The main production rules for this 
strategy are given below. 

Retrieve-trace 
IF the goal is to check if item x is in the memory set 

and item x is in the memory set 
THEN the target is item x 

Retrieve-yes 
IF the goal is to check if item x is in the memory set 

and the target is item x 
THEN say-yes 

Retrieve-no 
IF the goal is to check if item x is in the memory set 
THEN move on to the next item of the display set 

The retrieve-no rule has a lower expected gain than 
retrieve-trace, so it will only fire when retrieve-trace fails. 

Source activation, which was proposed as a 
global parameter concerning mental fatigue, effects the 
retrieve-trace rule, since that rule tries to retrieve an item 
from the memory set. In the retrieve-and-check strategy 
the source activation ensures the right item is retrieved. 
Lowering the source activation will increase the 
probability of retrieving the wrong item, thereby 
producing more errors. In the specific-retrieval strategy 
lowering the source activation hardly influences the 
number of errors that will be made. This can be seen in 
figure 3 which presents some simulated data from the 
model. The figure also shows that for the retrieve-and- 
check strategy reaction times become slower when source 

activation is lowered. The reason for this is that the 
activation of the items in the memory set is lower, 
because they receive less source activation (see equation 
2). In ACT-R it takes more time to retrieve an item 
when its activation is low. 

—D—retrieve and 
check 

1.2     1.1       1       0.9     0.8     0.7     0.6     0.5     0.4 
Source activation 

0.25 

1       0.9     0.8     0.7 
Source activation 

Figure 3. The changes in reaction times and proportion 
of errors for both strategies, as a result from lowering the 
source activation. 

As already explained before, expected gain determines 
which strategy will be chosen in a particular situation. 
When people are fit, and thus have a high source 
activation, the expected gain of the retrieve-and-check 
strategy will be highest. However, according to figure 3, 
when source activation becomes lower, it can be predicted 
that at some point in time the expected gain of the 
specific-retrieval strategy will become the highest, and 
therefore a shift in strategy will be made. The exact 
timing of this strategy change is dependent on the 
motivation of the participant. Figure 4 illustrates the 
effect of motivation and source activation on the expected 
gain of the two strategies. The expected gain is calculated 
according to equation 1 using reaction time (from figure 
3) as cost, and one minus the proportion of errors as 
probability of success. ACT-R's conflict resolution 
mechanism will choose the strategy with the highest 
expected gain. As can be seen from the figure, when the 
motivation of the participant is low (represented by a low 
value of the G parameter) and source activation is 
lowered, people still maintain the retrieve-and-check 
strategy, although this results in a great number of 
errors. However, when the motivation is higher and 
source activation is lowered, the participant will shift 
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source activation 

Figure 4. The expected gain of both strategies as a function of the source activation and the motivation (represented by 
the value of G) of the participant. R&C = retrieve-and-check, SR = specific retrieval. 

towards the specific-retrieval strategy. Furthermore, the 
higher the motivation of the subject, the sooner this 
strategy shift will take place. 

A shift in strategy, or strategic adjustment in 
Hockey's terms, is one change Hockey describes that can 
happen when people become mentally fatigued. The 
ACT-R model, however, can also predict such a change 
and show how this depends on the participant's 
motivation. Hockey's model describes that performance 
normally relies on routine regulation. When people 
become fatigued two situations can arise: either 
performance will decrease, or control will be shifted to a 
higher level (loop B in Hockey's model). What this shift 
in control involves is not completely clear from the 
model. The ACT-R model does show what a shift in 
control involves. When people become fatigued and 
routine-regulation is not adequate for task performance, 
the conflict resolution process in ACT-R will select a 
strategy that is less sensitive to fatigue. So, in this 
model, the change in cognitive control can be directly 
derived from the basic processes of the ACT-R theory. 

Although an experiment to validate this model 
has not been done yet, some studies support the 
outcomes of the model. In two studies (Kerstholt, van 
Orden & Gaillard, 1994; van Orden, Gaillard & 
Langefeld, 1996) in which task instructions for the 
memory-search task focused on accuracy, mental fatigue 
manifested itself by increasing reaction times, which 
could indicate the use of the specific-retrieval strategy. In 
another study (Schellekens, Sijtsma & Vegter, in 
preparation) in which both accuracy and speed were 
emphasised,  participants  only   had  a  fixed  time  to 

respond. In this experiment mental fatigue was 
accompanied by an increase in the number of errors. This 
decrease of accuracy can be explained by the fact that the 
time subjects had to respond was too short for the 
application of the specific-retrieval strategy, so 
participants had to stick to the retrieve-and-check 
strategy. 

CONCLUSIONS   AND   RECOMMENDATIONS 

As was shown in the previous section, the model 
provides detailed predictions of performance changes 
when people become mentally fatigued. Furthermore, the 
changes it predicts can be directly derived from the 
ACT-R theory, which allows for generalisation. Given 
an ACT-R model of a certain task, it is easy to predict 
the role of mental fatigue in task performance. It will be 
especially interesting to study the effects of manipulation 
of source activation on models of more complex tasks 
that allow participants more strategic freedom, since 
several authors have argued that these tasks are most 
influenced when people become fatigued (e.g., Bartlett, 
1943; Meijman, 1997). The model also predicts that 
some tasks will hardly be sensitive to mental fatigue, for 
example, if the strategy used does not rely on source 
activation. However, the model has not been validated 
yet, so future experiments have to be carried out to 
support it. 
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ABSTRACT 
This paper discusses agent architectures which are 
describable in terms of the "higher level" mental 
concepts applicable to human beings, e.g. "believes", 
"desires", "intends" and "feels". We conjecture that 
such concepts are grounded in a type of information 
processing architecture, and not simply in observable 
behaviour nor in Newell's knowledge-level concepts, nor 
Dennett's "intentional stance." A strategy for conceptual 
exploration of architectures in design-space and niche- 
space is outlined, including an analysis of design trade- 
offs. The SIM-AGENT toolkit, developed to support such 
exploration, including hybrid architectures, is described 
briefly. 

Keywords 
Architecture, hybrid, mind, emotion, evolution, toolkit. 

MENTALISTIC DESCRIPTIONS 
The usual motivation for studying architectures is to 
explain or replicate performance. Another, less common 
reason, is to account for concepts. This paper 
discusses "high level" architectures which can provide 
a systematic non-behavioural conceptual framework for 
mentality (including emotional states). This provides a 
new kind of semantics for mentalistic descriptions. We 
illustrate this using multi-layered architectures based in 
part on evolutionary considerations. We show briefly how 
different layers support different sorts of emotion concepts. 
This complements work by McCarthy(1979, 1995) on 
descriptive and notational requirements for intelligent 
robots with self-consciousness. 
We provide pointers to an uncommitted software toolkit 
that supports exploration of hybrid architectures of 
various sorts, and we illustrate some of the architectural 
complexity it needs to support. 

WHY USE MENTALISTIC LANGUAGE? 
We shall need mentalistic descriptions for artificial agents 
for the same reasons as we need them for biological agents, 
e.g. (a) because such descriptions will (in some cases) 
be found irresistible and (b) because no other vocabulary 
will be as useful for describing, explaining, predicting 
capabilities and behaviour, ((b) provides part of the 
explanation for (a).) So, instead of the self-defeating 
strategy of trying to avoid mentalistic language, we need a 
disciplined approach to its use, basic mentalistic concepts 
on information-level architectural concepts. 

The "Information level" design stance 
Dennett (1978) recommends the "intentional stance" in 

describing sophisticated robots, as well as human beings. 
That restricts mentalistic language to descriptions of whole 
agents, and presupposes that the agents are largely rational. 
Similarly, Newell (1982) recommends the use of the 
"knowledge level", which also presupposes rationality. By 
contrast, we claim that mentality is primarily concerned 
with an "information level" architecture, close to the 
requirements specified by software engineers. This 
extends Dennett's "design stance" by using a level of 
description between physical levels (including physical 
design levels) and "holistic" intentional descriptions. 
"Information level" design descriptions allow us to refer 
to various internal semantically rich short term and 
long term information structures and processes. This 
includes short term sensory buffers, longer term stored 
associations, generalisations about the environment and 
the agent, stored information about the local environment, 
currently active motives, motive generators that can 
produce motives under various conditions, mechanisms 
and rules for detecting and resolving conflicts, learnt 
automatic responses, mechanisms for constructing new 
plans, previously constructed plans or plan schemata, high 
level control states which can modulate the behaviour of 
other mechanisms, and many more. 
Some mentalistic concepts refer to the information 
processing and control functions of the architecture. These 
functions include having and using information about 
things. E.g. an operating system has and uses information 
about the processes it is running. Here semantic content 
is present without full-blown intentionality or rationality. 
Restricting semantic notions to global states of a rational 
agent, or banning them altogether from explanatory 
theories, would be as crippling in the study of intelligent 
agents as it would be in the engineering design of complex 
control systems. (However, not all semantic states can 
be fully characterised in terms of internal functions, for 
instance those that refer to particular external objects, such 
as Buckingham Palace, a point beyond the scope of this 
paper.) 
Many of the mechanisms in such an architecture are 
neither rational nor irrational: even though they acquire 
information, evaluate it, use it, store it, etc. (Sloman 
1994&). They are neither rational nor irrational because 
they are automatic. Even a deliberative architecture 
at some level needs reactive mechanisms to drive the 
processing. If everything had to be based on prior goals 
and justifications nothing would ever happen. 

ARCHITECTURAL ANALYSIS 
Different architectures can correspond to different views 
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of a system, e.g. a physical architecture, composed of 
the major physical parts, a physiological architecture, 
corresponding to the major functional roles of physical 
parts, and an information processing architecture 
composed of mechanisms involved in acquiring, 
transforming, storing, transmitting, and using information. 
There need not be a one to one correspondence between 
components in different views. A physical component may 
be shared between several physiological functions: e.g. the 
circulatory system is involved in distribution of energy, 
waste disposal, temperature control, and information 
transfer. 
There is a huge space of possible designs. We make 
no presumption that information processing mechanisms 
must all be computational (whatever that means). Nor 
is there a commitment regarding forms used to encode 
or express information. They may include logical 
databases, procedures encoding practical know-how, 
image structures, neural nets or even direct physical 
representations, as in thermostats and speed governors. 
Biological plausibility requires evolvability as well as 
consistency with experimental data and brain physiology. 
The capabilities and neural structures of different sorts 
of animals (e.g. insects, rodents, apes, humans) suggest 
that different types of architectures evolved at different 
times, with newer architectures building new sorts of 
functionality on older ones. We suggest that human mental 
states and processes depend on interactions between 
old and new layers in a biologically plausible control 
architecture producing various kinds of internal and 
external behaviour, including "internal" processes such as 
motive generation, attention switching, global redirection 
in emergencies, problem solving, information storage, skill 
acquisition, self-evaluation and even modification of the 
architecture. 
Besides the multi-layered central information processing 
architecture there are sensors and effectors of various 
kinds. These involve more than just transduction of energy 
or information into or out of the system. We suggest 
that both have evolved multiple layers interacting with the 
different layers in the central system as in Figure 1. Such 
an architecture can generate a huge variety of concepts 
relevant to describing its states and processes. It also 
supports a wide variety of types of learning, yet to be 
analysed. 

Indeterminacy of architecture 
Often boundaries between sub-mechanisms and levels 
of description are unclear, including the boundary 
between the control architecture and mere physiological 
infrastructure. In brains, chemical processes provide 
energy and other resources, along with damage repair 
and resistance to infections. However, effects of drugs, 
diseases and genetic defects involving brain chemicals 
suggest that chemistry forms more than a physiological 
infrastructure: chemically controlled mood changes may 
be an important part of an organism's intelligent reaction 
to changing circumstances, and alcohol can change "no" 
into "yes"! But we don't know how far chemical reactions 
play a direct role in information processing or high level 
control, 
In both perception and action the "hardware/software" 
boundary is blurred. E.g. visual attention can be 
switched with or without redirection of gaze, and fine- 

grained manipulation can be shared between software 
and hardware, e.g. in compliant wrists, which reduce the 
control problem in pushing a close fitting cylinder into 
a hole. Simon (1969) pointed out long ago that there 
can be information sharing between internal and external 
structures. 
It is too early for clear definitions of the boundaries of 
architectures or their components. However, important 
ideas are beginning to emerge including contrasts 
between: 
(a) reactive vs deliberative functions, 
(b) symbolic vs neural mechanisms, 
(c) logical vs other sorts of information manipulation, 
(d) continuous vs discrete control, 
(e) using continuously available environmental 
information vs using information stored in memory, 
(f) hierarchical vs distributed control, 
(g) serial vs concurrent processing, 
(h) synchronised vs asynchronous processing, 
(i) genetically determined capabilities, those produced 
by adaptive mechanisms within individuals, and those 
absorbed from a culture (e.g. learnt poems and equations). 
Instead of viewing these contrasts as specifying rival 
options, we should allow combinations of these 
alternatives to have roles in multifunctional architectures. 
Work on hybrid mechanisms (e.g. combinations of 
neural and symbolic systems) is now commonplace, 
but in order to explore agents rivalling human or even 
chimpanzee sophistication we need to understand far 
more complex combinations of subsystems, including 
complex sub-architectures within perceptual and motor 
control mechanisms, and a deep integration of cognitive 
and affective functions and mechanisms (Wright, Sloman 
& Beaudoin 1996, Sloman 1998(forthcoming)). However, 
there is no unique "correct" architecture: different 
designs have different trade-offs, as biological evolution 
shows. We need to understand the trade-offs and possible 
trajectories. This includes finding good concepts for 
describing systems with different designs. 

ARCHITECTURES AND EMERGENT CONCEPTS 
A deep conceptual framework takes account of the range of 
possible states and processes supported in an architecture, 
generating a system of high-level descriptive concepts for 
describing an organism, software agent, or robot, just as 
a knowledge of molecular architecture provides a basis 
for labelling chemical compounds and describing chemical 
processes. 
A control architecture can support a collection of states and 
processes, often indefinitely large. Concepts derived in this 
way from the architecture are "deep concepts". "Shallow" 
concepts, based entirely on observed behavioural patterns 
bearing no relationship to the architecture, are likely 
to have reduced predictive and explanatory power, like 
concepts of physical matter based on visible properties 
rather than atomic and molecular structure. 
Not all states require specific mechanisms in the 
architecture. A computing system that is "overloaded" 
does not have an "overloading" mechanism, since 
overloading results from interaction of many different 
mechanisms whose functions is not to produce overload. 
Similarly many mental states, e.g. some debilitating 
emotions, may emerge from interactions within an 
architecture, rather than from an emotion module. 
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If there are several coexisting, interacting sub-architectures 
(e.g. reactive and deliberative sub-architectures) then 
higher order concepts are needed to describe the variety of 
possible relationships between them. For instance, states 
in one subsystem can modulate processes in others. Such 
relationships can change over time: sometimes one part 
is dominant and sometimes the other. Moreover, when 
training increases fluency in a cognitive skill this may shift 
responsibility for a task from a general purpose module to 
a dedicated module. 
Familiar prescientific concepts, e.g. "emotion", can be 
ambiguous if they sometimes refer to processes in a 
component of the architecture (e.g. being startled, or 
terrified by a fast approaching menace, may result from 
a specific module, perhaps part of the limbic system) and 
sometimes to emergent interactions between subsystems 
(e.g. guilt and self-reproach). 
Unlike emotions which we share with rats, e.g. being 
startled, which use this old global alarm system, many 
human emotions involve a partial loss of control of thought 
processes, (e.g. extreme grief, ecstasy or hysteria). This 
presupposes the possibility of being in control. That, 
in turn, depends on the existence of an architecture that 
supports certain kinds of self monitoring, self evaluation, 
and self modulation. Being careful or careless requires an 
architecture able to control which checks are made during 
planning, deciding and acting. 
Which animal architectures can support control of thought 
processes is not clear. Systems lacking such underpinnings 
may not be usefully describable as "restrained", "resisting 
temptation", etc. Can a rat sometimes control and 
sometimes lose control of its thought processes? Can 
a rat be careless in its deliberations? Over-simple 
architectures in software agents will also make such 
concepts inappropriate to them. 

EVOLUTION AND MODULARITY 
Our discussion has presupposed that architectures are 
to some extent intelligible. Will naturally evolved 
systems be modular and intelligible? In principle, 
any required finite behaviour could be produced by 
a genetically determined, unstructured, non-modular 
architecture, including myriad shallow condition-action 
rules with very specific conditions and actions providing 
flexibility. However, as the diversity of contexts grows 
and the need to cope with unexpected situations, including 
interactions with other other agents, increases, memory 
requirements for such a system can grow explosively, and 
it becomes more difficult find a design which anticipates 
all the conditions and actions in advance. Thus the time 
required to evolve all the shallow capabilities is far greater 
and the required diversity of evolutionary contexts far 
greater than for a system with planning abilities. 
A shallow non-modular system would not only be hard to 
design, describe and explain: it would be hard to control 
or modify, whether controlled from outside or controlling 
itself, whether modified by a designer, or modified by 
evolution. (Contrast the use of bit-strings in genetic 
algorithms with the use of trees in genetic programming.) 
All this suggests that for complex organisms there would 
be pressure towards more modular architectures with 
generic mechanisms that can be combined by a planner 
to handle new situations, and adaptive architectures that 
can change themselves to improve performance.   Both 

the normal evolutionary pressures for modularity and 
reuse, and the need for economy in high level self- 
control mechanisms could have increased the pressure 
towards evolution of modular control architectures, in 
some organisms. So the existence of self-monitoring, 
self-evaluation and self-control processes could influence 
the further evolution of control architectures. Apparently 
insects found a different solution. 
It may eventually be possible to investigate this issue in 
simulated evolution. 

THE EMERGENCE OF "QUALIA" 
If a system has the ability to monitor its own states 
and processes, a new variety of descriptions becomes 
applicable, labelling new forms of self control, including 
its own discovery of concepts for self-description. The 
objects of such self-monitoring processes may be virtual 
machine states as well as internal physical or physiological 
states. 
Many of the spatial, temporal and causal categories used 
in perceiving the environment have evolved to support 
biological functions of organisms in those environments, 
even though precise details can vary widely between 
species and between individuals in a species. Likewise, 
it is possible that the basic and most general mentalistic 
categories that humans use in describing and thinking 
about themselves and other agents are not reinvented 
by different individuals (or cultures) but generated by 
evolutionary processes driving development of self- 
monitoring capabilities. 
Phenomena described by philosophers as "qualia" may 
be explained in terms of high level control mechanisms 
with the ability to switch attention from things in the 
environment to internal states and processes, including 
intermediate sensory datastructures in layered perceptual 
systems. These introspective mechanisms may explain a 
child's ability to describe the location and quality of its 
pain to its mother, or an artist's ability to depict how things 
look (as opposed to how they are). Software agents able 
to inform us (or other artificial agents) about their own 
internal states and processes may need similar architectural 
underpinnings for qualia. 
From this standpoint, the evolution of qualia would not 
be a single event, but would involve a number of steps 
as more kinds of internal states and processes became 
accessible to more and more kinds of self-monitoring 
processes with different functions, e.g. requesting help 
from others or discovering useful generalisations about 
oneself. Such step-wise development may also occur 
within an individual. 

HOW TO MAKE PROGRESS 
There are several ways in which we might try to explore 
the relationship between architecture and mentality. One 
approach is to push the approach based on "shallow" 
behaviour-based concepts as far as possible, and analyse 
where it breaks down, or where patching it is very 
difficult (e.g. dealing with new unexpected combinations 
of conditions where applicable rules conflict, or where no 
rule applies). 
Another approach is to attempt a theoretical analysis 
of the types of situations that will make development 
increasingly difficult and to produce increasingly general 
architectures to cope with the difficulties, using any ideas 
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that work, and then conducting experiments to find out 
where they break down. This approach need not be 
constrained by theories of how human minds work: there 
may be alternative architectures capable of producing 
extremely useful or even "believable" performances. 
Initially the constraints on this type of theorising will be 
very ill-defined because of paucity of relevant knowledge 
and the shallowness of current theories. However, it 
is likely that as the work progresses more and more 
constraints can come from advances in other fields, and 
more and more tests can be generated to help us choose 
between alternative hypotheses. (Compare the ancient 
Greek atomic theory with modern atomic theory.) 
Yet another approach is to use whatever direct or 
indirect evidence is available from brain science, 
experimental psychology, forms of mental disorder, 
patterns of development in infancy and decay in old age, 
evolution, folklore, introspection, common observation, 
or conceptual analysis of everyday mental concepts. 
Plausible architectures based on such evidence can then 
be tested by running experimental implementations, or 
by analysing their consequences and performing empirical 
research. 
Our work is based on the second and third approaches. The 
architectural ideas in this paper come from a wide range of 
sources. 

ARCHITECTURAL LAYERS 
Part of the task is to find increasingly accurate and 
explicit theories of the types of architecture to be found 
in various sorts of human minds (and others) to be used as 
frameworks for generating families of descriptive concepts 
applicable to different sorts of humans (including infants 
and people with various kinds of brain damage) and 
different sorts of animals and artificial agents. 
We conjecture that human-like agents with powers of self- 
control need a type of architecture with at least three 
distinct classes of mechanisms which evolved at different 
times (Sloman 1998(forthcoming)): 
(1) Very old reactive mechanisms, found in various forms 
in all animals, including insects — this includes "routine" 
reactive mechanisms and "global alarm" mechanisms (the 
limbic system). 
(2) More recently evolved deliberative mechanisms, 
found in varying degrees of sophistication in some other 
animals (e.g. cats, monkeys); 
(3) An even more recent meta-management (reflective) 
layer providing self-monitoring self-evaluation, and self- 
control, using in part deliberative mechanisms of type (2), 
and perhaps found only in humans and other primates (in 
simpler forms). 
Such an architecture is shown schematically (without 
alarms) in Figure 1 and each of the layers is described in 
more detail below. Note that the layers occur in perceptual 
and motor subsystems as well as centrally. 
This is one among many possible designs. Some animals 
or artefacts may have only one or two layers, and different 
kinds of reactive, deliberative and meta-management 
mechanisms are possible. 
We are not claiming that these mechanisms are alike in all 
humans. Deliberative capabilities seem very primitive in 
new born infants, and the third layer may be non-existent 
at birth. Moreover a culture can influence development 
of these layers, as can effects of brain damage, disease 
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Figure 1: A three layered agent Architecture 
(Note: global 'alarm' mechanisms not shown.) 

or aging. Some architectures may be possible for 
synthetic agents that are never found in organisms (e.g. 
solely deliberative architectures, or hybrid systems without 
global alarms). 
Categories and strategies in all layers may be influenced 
by physical and social environments. A meta-management 
layer may use both categories and values absorbed 
from a culture as well as some genetically determined 
categories and strategies. For instance, certain motives for 
acting promote negative self-assessment and guilt in some 
cultures and not in others. 
Within an individual, it is also possible for different modes 
of meta-management to take control in different contexts, 
e.g. in a family context, in a football game, and in the 
office. Individual variations might lead, at one extreme 
to multiple-personality disorder, and at another extreme to 
excessively rigid personalities. 

Concurrent mechanisms 
The layers are not assumed to form a rigidly hierarchical 
control architecture. Rather the three layers operate 
concurrently, with mutual influences. The reactive 
mechanisms will perform routine tasks using genetically 
determined or previously learnt strategies. When they 
cannot cope, deliberative mechanisms may be invoked, by 
the explicit generation of goals to be achieved. This can 
trigger various kinds of deliberative processes including 
considering whether to adopt the goal, evaluating its 
importance or urgency, working out how to achieve it, 
comparing it with other goals, deciding when to achieve 
it, deciding whether this requires reconsideration of other 
goals and plans, etc. (See chapter 6 of Sloman (1978).) 
At other times the deliberative mechanisms may either 
attend to long term unfinished business or run in a "free- 
wheeling" mode, nudged by reactive processes which 
normally have low priority, including attention-diverting 
mechanisms in the perceptual subsystems.    To allow 
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direct communication with "higher" cognitive functions, 
perceptual systems may also have layered architectures 
in which different levels of processing occur in parallel, 
with a mixture of top-down and bottom-up processing. 
(Compare seeing a face as a face and as happy.) 
If the internal layers operate concurrently, fed in part by 
sensory mechanisms which are also layered, they may 
also benefit from a layered architecture in motor systems. 
For example, reactive mechanisms may directly control 
some external behaviour, such as running, while the other 
mechanisms are capable of modulating that behaviour (e.g. 
changing the speed or style of running, or in extreme cases 
turning running into dancing). Likewise proprioceptive 
feedback of different sorts may go to different layers. 
Where there is a global alarm system, there may be 
variations as regards which components provide its inputs 
and which can be modified by it. In humans connections 
to and from the limbic system seem to exist everywhere 
(Goleman 1996). 
We now describe in a little more detail the differences 
between the layers (Figure 1) before discussing their 
implications for emotions. (The figure is much simplified, 
to reduce clutter). 

Reactive agents 
It is possible for an agent to have a purely reactive 
architecture, where: 
• Mechanisms and space are permanently dedicated to 
specific functions, and can run concurrently, more or less 
independently, with consequent speed benefits. Some may 
be digital, some continuous. 
• Conflicts may be handled by vector addition, voting, or 
winner-takes-all nets. 
• Some learning is possible: e.g. tunable control loops, 
change of weights by reinforcement learning. Such 
learning merely alters links between pre-existing structures 
and behaviours. 
• There is no explicit construction of new plans 
or structural descriptions or other complex internal 
objects, and therefore no explicit evaluation of alternative 
structures. 
• Concurrent processing at different abstraction levels can 
encourage the evolution of different levels of processing in 
sensory and motor subsystems. 
• Some of the reactions to external or internal conditions 
may be internal, e.g. various kinds of internal feedback 
control loops. 
• If "routine" reactions are too slow a fast "global alarm" 
system taking control in emergencies may be useful. 
As explained above, if all the main possible behaviours 
need to be built in by evolutionary adaptation or direct 
programming the space requirements may explode as 
combinations increase. Likewise the time required to 
evolve all relevant combinations. A partial solution is to 
provide "chaining" mechanisms so that simpler behaviours 
can be re-used in different longer sequences. Simple sub- 
goaling may achieve this, changing internal conditions that 
launch behaviours. This may be a precursor to deliberative 
mechanisms. 
It appears that insects have purely reactive architectures, 
and cannot reflect on possible future actions. Yet the 
reactive behaviours can produce and maintain amazing 

construction, e.g. termites' "cathedrals". 
There is no form of externally observable behaviour that 
cannot, in principle, be implemented in a purely reactive 
system, without any deliberative capabilities, though it 
seems that in some organisms the evolutionary pressures 
mentioned above have led towards a different solution — 
which may coexist with the old one. 

Combining reactive and deliberative layers 
The ability to construct new complex behaviours as 
required reduces the amount of genetic information that 
needs to be transmitted as well as the storage requirements 
for each individual. It also reduces the number of 
generations of evolution required to reach a certain range 
of competence. In a deliberative mechanism: 
• Evaluating and comparing options for novel 
combinations before selecting them requires a new 
ability to build internal descriptions of internal structures. 
It also needs a long term associative memory. 
• Using re-usable storage space for new plans and other 
temporary structures, and use of a single associative 
memory (even if based on neural nets), makes processes 
inherently serial. 
• New behaviours developed by the deliberative system 
can be transferred to the reactive layer (e.g. learning new 
fluent skills). 
• Sensory and action mechanisms may develop new, more 
abstract, processing layers, which communicate directly 
with deliberative mechanisms. This could explain high 
level sensory experiences (e.g. seeing a face as happy). 
• Even if neural nets are used, operation may be resource- 
limited because learning from consequences becomes 
explosive if too many things are done in parallel. Limiting 
concurrent processes may also simplify integrated control. 
• Deliberative resource limits may mean that a fast- 
changing environment can cause too many interrupts and 
re-directions. Filtering new interrupts via dynamically 
varying thresholds (see Figure 1) helps but does not solve 
all problems. 
• A global alarm system may include inputs from and 
outputs to deliberative layers. 

The need for self-monitoring (meta-management) 
Deliberative mechanisms may be implemented in 
specialised reactive mechanisms which react to internal 
structures, and can interpret explicit rules and plans. 
However, evolutionarily determined deliberative strategies 
for planning, problem solving, decision making, 
evaluating options, can be too rigid. Internal monitoring 
mechanisms may help to overcome this e.g. by recording 
deliberative processes and noticing which planning 
strategies or attention switching strategies work well in 
which conditions. This could include detecting when one 
goal is about to interfere with other goals, or noticing that 
a problem solving process is "stuck", e.g. in a loop, or 
noticing that a solution to one problem helps with another. 
Internal monitoring combined with learning mechanisms 
may allow discovery of new ways of categorising internal 
states and processes and better ways of organising 
deliberation. Meta-management   and   deliberative 
mechanisms permit cultural influences via the absorption 
of new concepts and rules for self-categorisation, 
evaluation and control. 
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Attending to intermediate perceptual structures can also 
allow more effective communication about external 
objects, e.g. by using viewpoint-centred appearances to 
help direct attention, or using drawings and paintings to 
communicate about how things look. 
The meta-management layer may share mechanisms with 
the other two, including the global alarm mechanism 
(limbic system?) but also needs new mechanisms that can 
access states and processes in various parts of the whole 
system, categorise what is going on internally, evaluate it, 
and in some cases modify it. This can help with proper 
management of limited deliberative resources. 

ARCHITECTURAL LAYERS & EMOTION CONCEPTS 
We conjecture that different layers account for different 
sorts of mental states and processes, including emotional 
states. Disagreements about the nature of emotions 
can arise from failure to see how different concepts of 
emotionality depend on different architectural features, 
not all shared by all the animals studied. 
(1) The old reactive layer, with the global alarm system, 
produces rapid automatically stimulated emotional states 
found in many animals (being startled, terrified, sexually 
excited). 
(2) A deliberative layer, in which plans can be created 
and executed, supports cognitively rich emotional states 
linked to current desires plans and beliefs (like being 
anxious, apprehensive, relieved, pleasantly surprised). 
(3) Characteristically human emotional states (e.g. 
humiliation, guilt, infatuation, excited anticipation) can 
involve reduced ability to focus attention on important 
tasks because of reactive processes (including alarm 
processes) interrupting and diverting deliberative 
mechanisms, sometimes conflicting with meta- 
management decisions (Wright et al. 1996). 
The second class of states depends on abilities possessed 
by fewer animals than those that have reactive capabilities. 
The architectural underpinnings for the third class are 
relatively rare: perhaps only a few primates have them. 
Many theories of emotion postulate a system that operates 
in parallel with normal function and can react to abnormal 
occurrences by generating some kind of interrupt, like 
the global alarm mechanism. Consider an insect-like 
organism with a purely reactive architecture, which 
processes sensory input and engages in a variety of routine 
tasks (hunting, feeding, nest building, mating, etc.). It 
may be useful to detect certain patterns which imply 
an urgent need to react to danger or opportunity by 
freezing, or fleeing, or attacking, or protecting young, or 
increasing general alertness. Aspects of the limbic system 
in vertebrate brains seem to have this sort of function 
(Goleman 1996). 
In architectures combining reactive and deliberative layers, 
the alarm mechanism can be extended to cause sudden 
changes also in internal behaviour, such as aborting 
planning or plan execution, switching attention to a new 
task, generating high priority goals (e.g. to escape, or to 
check source of a noise). Likewise processing patterns 
in the deliberative layer may be detected and fed into the 
alarm system, so that noticing a risk in a planned action 
can trigger an alarm. 
Where a meta-management layer exists, data from it could 
also feed into the alarm system, and it too could be affected 
by global alarm signals. One meta-management function 

could involve learning which alarm signals to ignore or 
suppress. Another would extend the alarm system to react 
to new patterns, both internal and external. Another would 
be development of more effective and more focused (less 
global) high speed reactions, e.g. replacing a general startle 
reaction with the reactions of a highly trained tennis player. 
This, admittedly still sketchy, architecture, explains how 
much argumentation about emotions is at cross-purposes, 
because people unwittingly refer to different sorts of 
mechanisms which are not mutually exclusive. An 
architecture-based set of concepts can be made far less 
ambiguous. 
Familiar categories for describing mental states and 
processes (e.g. believes, desires, perceives, attends, 
decides, feels, etc.) may not survive unchanged as 
our knowledge of the underlying architecture deepens, 
just as our categories of kinds of physical stuff were 
refined after the development of a new theory of the 
architecture of matter. Researchers need to be sensitive to 
the relationships between pre-theoretical and architecture- 
based concepts as illustrated in (Wright et al. 1996). 

THE SIM.AGENT TOOLKIT 
We still have much to learn about different agent 
architectures. The properties of complex systems cannot 
all be determined by logical and mathematical analysis: 
there is a need for a great deal more exploration of various 
types of architectures, both in physical robots and in 
simulated systems. 
Many robot laboratories are doing the former. We work on 
simulated systems so that we can focus on the issues that 
are of most interest to us, involving the kind of architecture 
sketched above including alarm systems, leaving details of 
sensory devices and motors till later. When simulations 
are well designed they can sometimes provide cheaper 
and faster forms of experimentation, though care is always 
necessary in extrapolating from simulations. 
Many toolkits exist to support such exploration, usually 
based on a particular architecture or class of architectures 
(e.g. neural net architectures, or SOAR, or PRS). 
We wished to investigate diverse and increasingly 
complex architectures, including coexisting reactive and 
deliberative sub-architectures, along with self-monitoring 
and self-modifying capabilities, and including layered 
perceptual and action subsystems. We also wished 
to explore varying resource-limits imposed on different 
components of the architecture, so that, for example, we 
could compare the effects of speeding up or slowing 
down planning mechanisms relative to the remaining 
components of an architecture (e.g. in order to investigate 
various deliberation management strategies, such as 
"anytime" planning). 
To support this exploration we designed and implemented 
(in the language Pop-11 (Sloman 1996)) the SIM-AGENT 
toolkit. It is being used at Birmingham for teaching and 
research, including research on evolutionary experiments, 
and also at DERA Malvern for designing simulated agents 
that could be used in training software. An early version 
of the toolkit developed jointly with Riccardo Poli, was 
described at ATAL95 (Sloman & Poli 1996). Since then 
development has continued in response to comments and 
suggestions from users (Baxter, Hepplewhite, Logan & 
Sloman. 1998). 
The toolkit supports a collection of interacting agents 
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and inanimate objects, where each agent has an internal 
architecture involving different sorts of coexisting 
interacting components, including deliberative and 
reactive components. Not all agents need have the same 
architecture. 
The key idea is that each component within an agent 
is connected to other components in that agent via 
a forward-chaining condition-action rulesystem. Each 
agent's rulesystem is divided into a collection of different 
rulesets, where each ruleset is concerned with a specific 
function, e.g. analysing a type of sensory data, interpreting 
linguistic messages, creating, checking or executing plans, 
generating motives, etc. Rulesets can be concurrently 
active, and may be dynamically switched on and off. They 
may be assigned different resource limits. 
Conditions and actions of rules within an agent can refer to 
databases in that agent. Thus one form of communication 
between sub-mechanisms is through the databases in the 
agent. It is possible for an agent to have some global 
databases accessed by all components of an agent and 
others which are used only by specific sub-groups. One 
agent cannot normally inspect another's databases. 
An architecture for an agent class is defined by specifying 
a collection of rulesets and other mechanisms, along 
with the types of databases, sensor methods, action 
methods, communication methods and possibly tracing 
and debugging methods. It is hoped that users will 
develop re-usable libraries defining different mechanisms 
and architectures. 
The rulesets are implemented in Poprulebase, a flexible 
and extendable forward-chaining rule-interpreter. Rulesets 
can be turned on and off dynamically, modelling one 
aspect of attention shift, and new ones added, modelling 
some forms of cognitive development. Although the main 
conditions and actions use patterns matching database 
components, some conditions and some actions can invoke 
sub-mechanisms directly implemented in Pop-11, e.g. low 
level vision or motor-control mechanisms. Other Poplog 
languages (e.g. Prolog) or external languages (e.g. C, 
Fortran) can also be invoked in conditions and actions. For 
example, a rule condition could in principle interrogate 
physical sensors and a rule action could send signals to 
motors. Sockets can run sub-systems on other machines, 
and unix pipes can communicate with processes on the 
same machine. 
To illustrate the power, a Pop-11 rule action can run the 
rule interpreter recursively on a specialised rule system. 
The rule-based formalism is easily extendable, allowing 
different sorts of condition-action rules to be defined. For 
example, one of the extensions designed by Riccardo Poli 
allows a set of conditions matched against a database to 
provide a set of input values for a neural net, whose output 
is a boolean vector which can be used to select a subset of 
actions to be run. A recent extension was a new class of 
ADD and DELETE actions for automatically maintaining 
sets of dependency information between database items, 
so that if an item is deleted then everything recorded 
as directly or indirectly depending on it, is also deleted. 
A Pop-11 condition can be used to perform backward 
chaining if desired. 
The interpreter can be run with various control strategies, 
including the following options for each active ruleset on 
each cycle: (a) all runnable rules (those with all conditions 

satisfied) are run, (b) only the first runnable rule found is 
run, (c) the set of runnable rule instances is sorted and 
pruned (using a user-defined procedure) before the actions 
are run. 
When the rule interpreter is applied to a ruleset, it can be 
allowed to run to completion (e.g. until no more rules have 
all conditions satisfied, or a "STOP" action is executed.) 
Alternatively it can be run with a cycle limit N, specifying 
that it should be suspended after N cycles even if there are 
still rules with satisfied conditions. Another possibility is 
to set a timer and halt it after a fixed time interval. Either 
of these mechanisms can be used to impose resource limits 
on one ruleset relative to others, within an agent. 
The design of the toolkit supports multi-agent scenarios, 
using a time-sliced scheduler which in each time slice 
allows each agent to run its sensory methods, its internal 
rulesets, and, in a second pass at the end of the time slice, 
its external action methods. 
The object oriented design uses Pop-1 l's Objectclass 
system, which supports multiple inheritance and generic 
functions. This makes it easy for users to extend 
the ontology by defining new sub-classes, with their 
own sensing, acting and internal processing methods, 
without any editing of the core toolkit code. A default 
class provides a default set of methods, including the 
sim_run.agent method used to run each the agent's 
rulesets, along with various tracing methods. 
The object oriented approach allows a Pop-11 graphical 
library to be connected to the toolkit by re-defining 
tracing and other methods (e.g. move methods) to invoke 
graphical procedures. The graphical facilities support not 
only displays of agent actions but also asynchronous user 
intervention: e.g. using the mouse to move objects in 
an agent's environment, or turning tracing and profiling 
mechanisms on or off while the toolkit is running. 
Scenarios implemented so far using the toolkit include a 
simulated robot using a hybrid modular architecture to 
propel a boat to follow the walls of an irregular room, 
evolution of a primitive language for cooperation between 
a blind and an immobile agent, a user controlled sheepdog 
and sheep to be penned, two purely reactive "teams" of 
agents able to move past each other and static obstacles 
to get to their target locations, a simulated nursemaid 
looking after troublesome infants while performing a 
construction task, a distributed minder (Davis 1996), one 
agent tracking another subject to path constraints in 3-D 
undulating terrain, and, at DERA Malvern, simulated tank 
commanders and tank drivers engaging in battle scenarios 
(Baxter 1996). We expect to continue developing the 
toolkit and building increasingly sophisticated simulations, 
moving towards the architecture depicted in Figure 1 and 
subsequently extended in various ways. 
In particular we have plans for improving the self 
modifying and self monitoring capabilities by replacing 
the rulesystem, currently a list of rulesets and rulefamilies, 
with database entries. Thus rule actions can then change 
the processing architecture. 
The toolkit is applicable to a wide range of agent 
development tasks, including simplified software agents 
which require only a small subset of beliefs, goals, 
plans, decisions, reactions to unexpected situations, etc. 
These might be web search agents, or "believable" 
entertainment agents whose observed behaviour invites 
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mentalistic description whether or not the descriptions are 
justified by internal mechanisms, states and processes, e.g. 
the OZ project at CMU (Bates, Loyall & Reilly 1991). 
The toolkit could also be used to implement teaching and 
demonstration libraries, e.g. for students in psychology 
or the helping professions, where students can manipulate 
the architectures of simplified human-like agents, to gain a 
deeper understanding of the multiple ways in which things 
can go wrong. 

CONCLUSION 
Like software engineers, and unlike Dennett and Newell, 
we assume semantically competent sub-systems, but not 
rationality. Using this information-level design stance, 
we have sketched a framework accommodating multi- 
disciplinary investigation of many types of architecture 
of varying degrees of sophistication, with varying 
mixtures of information-processing capability, based 
on AI, Alife, Biology, Neuroscience, Psychology, 
Psychiatry, Anthropology, Linguistics and Philosophy. 
This framework can extend our understanding of both 
natural and artificial agents. Above all it generates systems 
of concepts for characterising various types of mentality. 
Information-based control architectures provide a new 
framework for analysing, justifying and extending familiar 
mentalistic concepts. 
There is no uniquely "right" architecture. Types 
of architectures that are relevant, and dimensions of 
possible variation, are not yet well understood. More 
exploration and analysis is required, replacing premature 
(sometimes confrontational) commitment to particular 
mechanisms and strategies. We need to understand the 
structure of design space and niche space, and trajectories 
that are possible within those spaces (Sloman 1994a, 
Sloman 1994£>, Sloman 1998(forthcoming)). This requires 
collaborative philosophical analysis, psychological and 
neurophysiological research, experiments with diverse 
working models of agents, and evolutionary investigations. 
Some of this exploration can be based in part on powerful 
new software tools. 
Such work is likely to throw up types of architectures that 
we would not otherwise think of, which will force us to 
invent new concepts for describing synthetic minds which 
are not like our own, and help us understand our own by 
contrast. 
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ABSTRACT 

In this article we describe a theory aiming at the inte- 
gration of cognitive processes, emotion and motivati- 
on. The theory describes the informational structure of 
an intelligent, motivated, emotional agent which is able 
to survive in arbitrary domains of reality. This agent is 
„energized" by six motives (needs for energy, water, 
pain-avoidance, affiliation, certainty and competence). 
The cognitive processes of this agent are modulated by 
emotional states and processes. By comparing the be- 
haviour of Psi with human behaviour in a complex 
computer scenario, the model was tested against reali- 
ty. Subjects were asked to regulate a dynamic system 
structural identical to the environment of the autono- 
mous agent. First results show striking similarities 
between artificial and human behaviour as well as 
differences. 

Keywords 

Artificial Life, Cognition, Emotion, Motivation, Action 
Regulation. 

INTRODUCTION 

In cognitive science there is a focus on cognition when 
considering action regulation. Emotional and motiva- 
tional processes, however, play a considerable role in 
human behaviour triggering cognitive processes. In a 
state of anger thinking and reasoning differs from 
processes under „normal" conditions. Different emo- 
tional states even influence perception in a specific 
manner. — In a long lasting process of action regulati- 
on, when humans have to tackle difficult problems, 
neither emotions nor motives remain constant. Forese- 
eing that an important problem cannot be solved an 
individual will feel helpless and this feeling of 
helplessness will trigger other feelings and can change 

the current motive. The motive to find a solution for an 
intellectual task will be replaced by a motive to de- 
monstrate „competence" as the inability to solve the 
problem threatens the self-confidence of the individual. 

THE PSI THEORY OF ACTION-REGULATION 

A single theory of cognitive processes does not suc- 
ceed in explaining human behaviour. Furthermore it is 
necessary to include assumptions about the dynamics 
of emotions and motivations. During the last years we 
developed a theory - the Psi theory - concerning the 
interaction of cognitive, emotional and motivational 
processes. A computer program was constructed to 
simulate the theoretical assumptions (see Dörner & 
Hille, 1995; Hille, 1997; Schaub, 1997). The Psi theory 
is completely formulated in terms of the theory of 
neuronal networks, but going into details about the 
inner structure would exeed the aim of this paper 

Fig. 1: Psi as an „autonomous steam engine". 

The Psi theory includes  more than assumptions about 
single cognitive processes. It aims at a description of 
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the interaction of different cognitive and non-cognitive 
processes. It is a theory in the tradition of „artificial 
life" - research (Steels, 1993). It exists a computer 
program simulating the theory. The actual version of 
this computer program is available in internet on page 
http://141.13.70.49. Fig. 1 shows a possible 
„materialization" of Psi as an autonomous steem engi- 
ne which should care for its existential needs (water 
and energy). The architecture of the model will be 
explained below. 

Motivation 

Fig. 2 shows a rough sketch of Psi's internal structure. 
At the bottom of fig. 2 the motivational system of Psi is 
symbolized by a number of „watertanks". These tanks 
are mechanical models of „motivators". „Motivator" 
means a system which is sensible for the level of a 
variable. This should be kept within certain borders 
(within a setpoint region) by the system. Such variables 
could be water or energy resources of a system, tempe- 
rature of a body or any other variable important for life 
or welfare of a system. When a variable deviates from 
its set point, a motivator becomes active. In this case 
there is a need and the motivator will try to launch 
activities to restore the set point value of the respective 
variable. 

Which motivators are necessary? First of all Psi has to 
care for its existence. This means that Psi needs (for 
instance) water and energy. And Psi should preserve its 
structure; it should avoid pain. Additionally to these 
„existential" needs Psi has „informational" needs, 
namely a need for certainty, a need for competence and 
a need for affiliation. 

The need for certainty is satisfied by „certainty si- 
gnals". An important certainty signal is for example a 
correct prediction. Acting in a certain domain of reality 
Psi will learn regularities of its environment. Therefore 
it will be able to predict the outcomes of its actions and 
progress of events. If these predictions are correct they 
will be certainty signals and will fill the „certainty 
tank". If the predictions are wrong or if the chain of 
events does not develop in the predicted way, however 
this means uncertainty and will decrease the level of 
the „certainty tank". 

The need for competence is a need for „competence 
signals". Each satisfaction of a need, for instance the 
satisfaction of the need for water, is a signal of com- 
petence for Psi. Satisfaction of a need signifies that Psi 
is able to care for itself. On the other hand a longer 
lasting period of non-satisfaction signifies inability and 
therefore is an incompetence signal which empties the 
competence tank. 

Water    Energy Certainty 
Pain Avoidance    Affiliation Gompeteri 

Fig. 2: The internal structure of Psi. SeeText. 

An empty competence- and an empty certainty-tank 
launch specific activities. The need for certainty for 
instance can activate exploration or - depending on the 
competence (level in the competence tank) - flight. A 
low level of competence (it shouldn't be too low) will 
activate „adventure-seeking", looking for problems the 
solution of which proves ones own competence. 

Group integration is symbolized by the level of the 
„affiliation tank". This tank will be filled up by 
„signals of legitimacy" (Boulding, 1978) as for instan- 
ce a smile or a clap on the shoulder. Reports of disap- 
proval serve as signals for nonaffiliation and will 
empty the „affiliation tank". — The needs for certainty 
and for competence are very important for the emotio- 
nal regulations of Psis behaviour. 

Psi's architecture of motivation allows several needs to 
be active at the same moment. It is therefore vitally 
important to equip Psi with a selection device, the 
Motive Selector of fig. 1. This selection device has to 
select one of the active motives for execution. The 
motive selected will become the actual intention. An 
intention is a data structure consisting of informations 
about the goal, about the present state and normally of 
more or less complete plans for achieving the goal. 

The selection device works according to an expectancy 
- value principle; i.e. it selects the motive with the 
largest expectancy of success and the largest under- 
lying need. (We call the product of expectancy of ef- 
fect and amount of the underlying need the strength of 
a motive. So the selection device looks for the motive 
with the greatest strength.) 
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Action regulation, memory and cognitive processes 
After an intention has been formed, Psi will „run the 
intention" to achieve the respective goal. „Running the 
intention" can mean different processes. When Psi has 
a lot of experience with the respective domain of rea- 
lity its memory will often provide a complete course of 
action as a chain of operations or locomotions leading 
from the actual situation to the goal. If this however 
fails an inbuilt planning procedure will try to construct 
a course of actions by putting together single pieces of 
knowledge about operators and event chains. (At the 
moment this planning procedure is a forward-planning, 
hillclimbing procedure.) 

If planning is impossible due to a lack of information 
or if planning proves to be not successfull, Psi will use 
trial-and-error procedures to collect information about 
its respective environment. Generally Psi organizes its 
activities according to the Rasmussen - system 
(Rasmussen, 1983). If possible first of all it tries its 
highly automatized skills, then it changes to 
„knowledge-based" behaviour and the „ultima ratio" 
are the trial-and-error procedures. 

Psi learns by experience, learns the effects of operators 
in a specific domain of reality, learns goals and learns 
chains of events and therefore is able to predict what 
will happen in the future. But additionally we installed 
forgetting in the memory of Psi. Forgetting simply is a 
decay process which continuously diminuishes the 
strengths of the memory traces. Traces which are rather 
strong lose less of their strength in time than weak 
traces which will be destroyed rather quickly. Forget- 
ting has a important function for Psi's cognitive 
processes. „Punching holes" into sensory and motor 
schemata of Psi's memory makes them „abstract", 
„hollow", so that the schemata do not represent con- 
crete images any more, but equivalence classes. 

The memory system of Psi is extremely simple and 
(therefore) powerful. All perceptions and activities are 
continously recorded. This record is a kind of log of 
the changing environment, Psis activities and the cur- 
rent intentions. The memory chains representing the 
immediate past are very dense. Due to forgetting 
however, memory will consist of single episodes and 
activities. Memory traces combined with need satis- 
faction or generation (for instance pain) will be rather 
strong. Others are weaker and therefore more exposed 
to decay. Psi has a short term memory which is simply 
the „head" of the record. This short term memory 
without any rupture continues into an episodic memo- 
ry. Remnants of this eventually form the long term 
memory. If parts of the longterm memory are reused 
(in planning for instance), the strength of the respective 
memory trace is enhanced. 

Emotions 
The information processing of Psi is „modulated". This 
means that all cognitive processes of Psi are „shaped" 
according to certain conditions. Such conditions are for 
instance the strength of the actual intention, the overall 
amount of all the different needs, the amount of com- 
petence and others. These conditions set specific 
„modulators". One of these modulators is „activation" 
which depends on the strengths of the needs (roughly 
spoken the amount of activation mirrors, the sum of the 
strengths of the needs). Activation triggers some other 
modulators, for instance „resolution level" and 
„selection threshold". Resolution level (RL) is the 
degree of exactness of comparisons between sensory 
schemata. As most of the cognitive processes of Psi 
comprise comparisons between schemata this modula- 
tor is very important. Comparisons take a long time at 
a high level level of resolution, but they will be relia- 
ble. Under high pressure (when activation is high) the 
resolution level is low, comparisons don't need a long 
time, but the risk of „overinclusiveness" is high. A low 
level of exactness will automatically produce the ten- 
dency to consider unequal objects and situations as 
equal. (This is due to certain mathematical reasons 
which will not be considered here.) Quick planning 
processes and a high readiness for action will be the 
result of a low resolution level, but the plans will be 
rather risky. 

General nn> 
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Fig. 3: Emotional modulations. See text. 

Selection Threshold (ST) could also be called „level of 
concentration". ST is the strength of the defence of the 
actual intention against competitors, against other in- 
tentions having the tendency to take over the com- 
mand. The strength of the different motives is not at all 
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constant in the life of Psi, but changes continuously. 
Because of consumption the needs for energy and for 
water continuously increase. But a motive can gain 
strength by external factors too. If for instance Psi 
notices in a certain situation that it is easily possible to 
get water, a tendency to shift to the water-intention will 
result as now the expectancy value for the water - 
motive increased. Or if an unexpected event will occur 
the „need for certainty" might increase and Psi will 
exhibit the tendency to explore the (uncertain) envi- 
ronment or will have the tendency to run away and to 
hide. Or if for instance planning proves to be unsuc- 
cessful!, Psi's „self-confidence" (level of competence) 
is endangered and Psi will exhibit the tendency to „try 
its strength", to prove its competence to itself, for in- 
stance by looking for a task which is difficult enough 
that mastery proves competence, but not so difficult 
that the risk of failure is high. 

If ST is high „behavioural oscillations", i.e. a rapid 
change between different intentions will be hindered to 
a certain degree (Atkinson & Birch, 1970). A high ST 
prevents Psi on the other hand from using unex- 
pectedly arising opportunities or from reacting to 
unexpected dangers. Is ST high, the field of Psi's per- 
ception will narrow down. 

Fig. 3 gives a general impression of the emotional 
regulations of Psi. We describe these regulations in 
terms of neuronal networks (as it is realized in Psi). 
White circles represent activating neurons, whereas 
gray circles represent inhibiting neurons. The compe- 
tence and the certainty - level are now represented as 
the activation state of neurons. Certainty signals en- 
hance the activity of the „certainty-neuron", whereas 
uncertainty - signals diminuish this activity. — Satis- 
faction of a need serves as competence signal and en- 
hances the activity of the „competence-neuron", whe- 
reas non-satisfaction decreases this activity. When the 
uncertainty level is low (high uncertainty) a tendency 
for flight or aggressive activities will be observable, 
depending on the competence level. With a high level 
of competence Psi will exhibit a tendency for aggressi- 
on in uncertain situations, whereas with a low level of 
competence it will exhibit flight tendencies. 

Activation triggers the „general unspecific sympathicus 
syndrome"; i.e. high vigilance and a high degree of 
readiness to react. Additionally it triggers RL and ST, 
which modulate cognitive processes, perception, plan- 
ning activities, memory search. It is obvious that Psis 
emotions are the result of a rather complex interaction 
of motivational and cognitive processes together with 
the modulation of RL and ST. 

certainty"), anger (when unexpectedly Psi is hindered 
to reach a goal), surprise (unexpected event). This 
theory of modulations together with the specific moti- 
vational structure of Psi constitute a „subaffective" 
theory of emotion. A theory, which defines emotions in 
non-emotional terms. To be able to monitor Psis emo- 
tions we gave a human face to Psi which alters accor- 
ding to Psis emotional states. Fig. 4 shows some of the 
facial expression of Psi in different situations. 

<•> " <•>      <£>  !' <3>       <2> 
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Fig. 4: Psi's emotions. See text. 

In the upper left corner a resolute Psi can be observed. 
Psi has a goal and is willing to achieve it against all 
obstacles. In the upper right corner Psi is seized with 
horror, helplessly anticipating uneasy events. The 
middle one face shows Psi in a state of pure joy. The 
face in the bottom line right shows a joyfull Psi too. 
You will notice, however, a slight surprise-emotion in 
this face comparing it with the middle one face. The 
middle one face in the bottom line shows pain, whereas 
the face on the right side in the medium line exhibits a 
state of caution and hesitation. — All these emotions 
are observable not only in Psis facial expressions, but 
in its behaviour too1. 

Fig.4 shows what will happen, if you put Psi to a new 
environment. First the feeling of competence and the 
feeling of certainty decrease, as Psi is not able to pre- 
dict what will happen and is not able to care for ist 
existential needs. But after some learning the respecti- 
ve schemata for appropriate behaviour will be establis- 
hed and Psi is able to cope with its „world". 

These modulators (RL and ST) together with the need 
for certainty and the need for competence produce a lot 
of „emotional" forms of behaviour. Psi exhibits fear 
(expectation of an uneasy event), anxiety („need for 

1 The procedure for the facial expressions was pro- 
grammed by Jürgen Gerdes. 
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Fig. 4: An example of the „world" of Psi and a single 
„situation". 

This „world" is a maze-like environment composed of 
single „situations". Fig. 4 shows an example of such a 
„world". Psi has to learn how to move from one situa- 
tion to an other one to arrive at „water" or „energy" - 
situations to satisfy its basic needs. Additionally Psi 
should learn to avoid dangerous situations. The 
„situations" are composed of elements like houses, 
trees, bushes etc. In the upper right corner of fig. 4 an 
example of a „situation" is visible. „To behave" in such 
an environment means to manipulate the respective 
parts of a given situation or to move from one situation 
to the other one by applying the appropriate operators. 
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Fig. 5: Psi's „fate" in a new environment. 

In fig. 5 some of the internal parameters of Psi when 
exposed to a new environment are visible. You may 
observe that first Psi cannot avoid painfull situations 
and is not able to care for its existential needs („thirst" 
for instance increases from cycle 1 to cycle 100 conti- 
nually as Psi is not able to find water within this time 
period). But after some learning Psi becomes able to 
avoid painfull situations and has acquired the capabili- 
ties to care for itself. 

A COMPARISON BETWEEN HUMAN BEHAVIOUR 
ANDTHE BEHAVIOUR OF PSI IN THE BIOLAB- 
GAME 

The capability of understanding, explicating and pre- 
dicting empirical phenomena might help to estimate 
the value of a theory. The study presented is examining 
whether the Psi-model succeeds in replicating human 
behaviour in a complex task. 

For that aim we used the scenario BioLab to compare 
the behaviour of Psi with the behaviour of experimen- 
tal subjects. We were interested in the similarities and 
differences between „artificial" and human behaviour. 
Differences would possibly point out that basical as- 
sumptions of the theory have to be revised. Furthermo- 
re the comparison helps to detect the limits of the mo- 
del explaining human behaviour. 

In summary the behavioural test has two objectives: 
first the results may contribute to the evaluation of the 
Psi model and the underlying theoretical assumptions. 
Second the results can give hints to the improvement 
and the completition of the model of action regulation. 
By confronting the model with reality necessary 
modifications and elaborations might be detected. 

The scenario BioLab 
In the „Biological Laboratory for sugar-based Energy 
Production" („BioLab" factory) subjects are asked to 
produce certain types of molasses to generate electri- 
city or heat. To modify the molecular structure of the 
molasses they can use different kinds of catalysts. 
Under certain conditions, however, the adding of cata- 
lysts may cause contaminations. As a result a cleaning 
of the reactors is necessary. Neither electricity nor heat 
can be produced until this work has finished. Therefore 
it is useful to avoid such situations. 

The BioLab-system corresponds a maze formally. 
Subjects can move from one situation to another by 
using catalysts as operators. They change the structure 
of the molasses respectively to their actual position in 
the maze. The amount of operators consists of ten 
catalysts, some of them needing specific conditions to 
work. The situations consist of a combination of six 
dimensions each of them having two valences: either 
zero or one. This will lead to 64 different situations 
each represented by a specific combination of these 
digits. 

It is possible to divide the structure of the maze into 
eight circles, each of them having the valences of the 
first three dimensions in common. As the eight situati- 
ons within the circles are highly combined with each 
other, it is rather simple to move from one situation to 
another (see fig. 6). In order to leave a circle, it is 
however essential to have one specific combination of 
the dimensions four to six. Only this specific situation 
allows changing between the circles. 
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Fig. 6: The structure of the maze consisting of eight 
circles, built up by eight situations (figure shows one 

of eight sections). 

The subjects do not know the formal structure of the 
maze. They have to explore the BioLab. The situations 
are visualized by pictures showing the molecular 
structure of the molasses on the screen. The situation is 
shown by the characteristics of the molasses in two 
tanks: they vary with respect to amount, colour and 
bubbles (see fig. 7). 

Fig. 7: The situations of BioLab represented by the 
different structure of molasses in two tanks. 

To produce energy, it's inevitable to find a way from 
electricity to heat production and vice versa. Their 
need for energy is represented by two bars: one sho- 
wing the actual need for electricity and the other one 
showing the system's need for heat. The urgency of 
producing electricity and heat is symbolized by the 
length of the bar. For example when a subject reaches a 
situation which provides electricity, the bar will be 
filled up, no matter how empty it was before. Until the 
reload is going to happen the electricity resources will 
be decremented over time. 

Electricity as well as heat can be produced in each of 
the eight circles of the maze. To gain energy a specific 
combination of the dimensions four to six is essential. 

As a consequence of getting to situations of satisfaction 
several times, they will be exhausted. Therefore it is 
important to find alternatives and to adapt the 
behaviour to environmental changes. 

In summary, handling the BioLab requires capacities 
of complex problem-solving. Subjects have to explore 
and regulate a dynamic system with two appetetive and 
one aversive aims. While they are working on the 
BioLab game they are coping with a problem identical 
to the environment of the autonomous agent Psi. Now 
let's have a look how efficient the laboratory is con- 
ducted and how the subjects in contrast to the Psi- 
model learn to use the catalysts in an effective manner. 

The comparison of human and artificial behaviour: 
efficacy of need satisfaction and of catalysts use 

The results presented rely on an experiment conducted 
with 12 subjects each of them playing the BioLab ga- 
me for one hour. Each of the subjects had to play under 
two experimental conditions: first they had to think 
aloud, second they had to keep tacit. After half an hour 
of playing the experimental condition changed. Variing 
the sequence of the two instructions, the subjects were 
randomly divided into two groups. Most of the subjects 
were students of psychology from the University of 
Bamberg. 

In general the task was neither too easy nor too dif- 
ficult for the subjects. All of them succeeded in finding 
situations where energy production is possible, at least 
by chance. One subject succeeded in exploring the 
whole structure of the maze. He/she could intentionally 
change from one circle to another and has found a 
efficient way to move from electricity to heat producti- 
on within the circles. 

For a useful comparison between the behaviour of Psi 
with the behaviour of the subjects we had to parallelize 
parameters of environment as well as of action time. 
Whereas the subjects carried out about six actions per 
minute, Psi conducted more than sixty at the same 
time. For this reason only the first 360 actions of the 
model's behaviour protocol were evaluated. 

Let us have a look upon the efficiency of managing the 
BioLab problem: One value representing the 
performance is the score achieved at the end of the run. 
Starting with zero, the account increases with a 
hundred points whenever electricity or heat is 
produced. Whenever the lab is contaminated, the 
account decreases by fifty points. Every thirty minutes 
the account is lowered by one point and finally every 
use of a catalyst costs one point either. 

These statistical results illustrate that human subjects 
are capable of managing the lab rather good. The mean 
account is 1314 points after 60 minutes. The variance 
between the subjects, however, is huge. The subject 
with the best perfomance gained 2108 points, whereas 
the worst performance achieved 217 points. The effi- 
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ciency of the model run is even lower: Psi could only 
manage to get 120 points in the game. The rather bad 
performance does not rely on a greater number of 
contaminations (see tab. 1). Moreover the results of the 
Psi model show a less effective use of catalysts and 
therefore a lower rate of needs satisfaction. 

Subjects Psi 

mean mini- 
mum 

maxi- 
mum 

value 

account of 1314.58 217 2108 120 
points 

number of 10 2 16 8 
contami- 
nations 

Tab. 1: Statistic values representing the effeciency of 
needs satisfaction. 

One value representing the successful use of the ope- 
rators is the percentage of effective catalyses. Psi used 
as much catalysts as the average subjects. In contrast to 
the subjects, however, only 15% out of these caused 
the molasses to change its characteristics. 

The following figure shows a boxplot about the results 
of the subjects and Psi. The subjects were subdivided 
in two groups: one of them starting with the instruction 
„thinking aloud", the other one tacit. The bar in the box 
indicates the median, within the box there are 50% of 
the subjects represented. The „whiskers" of the box 
mark the 25th and the 75th percentile of the distributi- 
on. Remarkably the performance of the Psi model 
would be placed within the area marked by the whis- 
kers in the tacit group. Compared to the subjects thin- 
king aloud Psi's performance is significantly low. Its 
performance is contrasted by the subject „Ellobo" who 
achieved the best efficacy of the whole sample. 
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Fig. 3: The percentage of effective catalyst use bet- 
ween PSI and the subjects. See text. 

First results of single-case studies 

Comparing human and artificial behaviour with respect 
to statistical values will not be sufficient to evaluate a 
model. Furthermore we tried to replicate the behaviour 
of each individual by varing the starting parameters of 
the simulation. By this we created different personali- 
ties. 

As long as emotional reactions and their impact on 
information processing are concerned, first results 
reveal similarities between the model's and the sub- 
jects' behaviour. 

According to the assumptions of the Psi model subjects 
show a specific way of action organization: at the be- 
ginning they mainly apply a strategy which can be 
described as „trial-and-error". In the following stage, 
catalysts are used with respect to success or failure in 
the past. As a consequence catalysts leading to need 
satisfaction will be used more frequently in the future, 
whereas catalysts leading to neutral situations or 
without any effect will be taken less frequently. Finally 
catalysts producing contamination will be used more 
carefully. 

As soon as environmental conditions are explored 
sufficiently, the subjects as well as Psi start making 
plans. Single action sequences are combined to chains. 
After gaining a high competence in managing the lab, 
people as well as our artificial system have an amount 
of automatisms available. The Rasmussen-system 
(1983) can be discovered in both: human and artificial 
behaviour. 

Remarkably when trying to replicate the behaviour of 
single subjects we suceeded in modelling subjects with 
a rather poor performance, p.e. a quite anxious person 
producing contamination by the first action he/she 
made. As a result the subject avoided the catalyst for 
more than half an hour and as a consequence was not 
able to produce electricity. 

In contrast to more successful subjects the PSI- 
simulation lacks the capability to reflect on its own 
behaviour. For this reason strategic flexibility and 
analogies (i.e. the adoption of learned behavioural 
sequences on similar situations) can not be found in the 
simulation runs of out artificial system but in human 
behaviour. 

CONCLUSION 

Exploring the similarities and differences of the beha- 
viour of Psi and human behaviour, we found remar- 
kably parallels between the behaviour of Psi and the 
behaviour of humans. Similar situations provide dif- 
ficulities for both: humans and Psi. Moreover in com- 
parable situations the model's emotional expression 
resembles to the expression of the subjects. 
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There are striking differences as well as similarities. 
For instance though the planning procedure of Psi is 
sometimes rather close to what is observable in human 
behaviour, shows striking differences to human thin- 
king. 

Mainly self-reflection is missing. Humans more or less 
frequently change their thinking and planning procedu- 
res by considering the records of their own thinking, 
analyzing the structure of these records and altering it. 
Psi is not able to do this. We believe that this is due to 
the fact that Psi is not able to speak. This „inner dialo- 
gue" is one important aspect of higher cognitive 
functioning in humans. Therefore Psi should be provi- 
ded with natural language too in order to get the ability 
of an inner dialogue. 
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ABSTRACT 
In this paper we address the issue of how initial menu 
search experiences are encoded and then used to guide 
subsequent search. We report empirical data from 
participants searching in a menu structure in which they 
cannot use spatial strategies and are therefore required to 
use just the labels to guide themselves. We then describe 
two cognitive models of menu search: the AYN model 
which encodes recognition chunks for tried options and 
gradually acquires positive and negative control 
knowledge; and an activation-based model which 
increases the activation of seen and tried options and then 
uses these activation levels on subsequent trials to guide 
its search. The data from the activation-based model 
provides the better fit to the empirical data. 

Keywords 
Interactive Search, Cognitive Models, Memory, Learning, 
Computer Menus 

INTRODUCTION 
Searching through menu structures is a common method 
of interacting with computers: using software packages, 
browsing the world-wide web and searching databases 
are just some of the tasks that require menu search (or 
interactive search). The task of interactive search can be 
specified in basic terms as requiring a person to make 
selections in order to find a particular goal. They can 
either select an option1 to move forward down a branch 
of the menu structure, or select an operator to move back 
up the menu structure (either back just one step or back to 
the initial starting point). The task of interactive search is 
therefore different from other problem solving tasks in 
that people initially do not know what the outcome of 
operators (moves) will be until they are tried. 

In this paper we summarise an empirical investigation of 
interactive search (for a full report see Howes, 
Richardson and Payne, in preparation), together with two 
possible cognitive models of interactive search which are 
then assessed against the empirical data. We are 
especially interested in understanding how memories 
encoded during the initial search experience shape 
behaviour on subsequent searches for the same goal. In 
particular, how does a user learn the sequence of choices 
that leads to a particular goal? The delay between the 
time when a menu option is selected and the time when 
that option can be evaluated as correct or not (when the 

We use the terms "options", "selections", "choices" 
and "items" interchangeably to refer to the labels at a 
menu node. 

goal is achieved) makes this task more difficult than it 
might first appear. In many instances, incorrect paths 
will be explored before the correct route to the goal is 
found. The user must learn to distinguish those options 
which were tried and found to be incorrect from those 
which eventually led to the goal. 

One of the most obvious guides as to which options to 
select during initial search in an unfamiliar menu is the 
semantics of the labels: labels which are closely related to 
the current goal should be better choices than those which 
are more distantly related to the goal (Franzke, 1994; 
Franzke, 1995). For example, given the goal of checking 
the spelling of a document in Microsoft Word, the menu 
header "Tools" seems like a better choice then "Insert" or 
"Font". However, the label semantics are rarely a 
sufficient guide to the correct route to a goal. In the 
above spell-check example, both "Tools" and "Format" 
might seem equally good choices to a novice user. 

There have been several previous cognitive models of 
how people search in menu structures where the 
semantics are not sufficient, such as, the IDXL model 
developed by Rieman, Young and Howes (1996) and the 
model of expert search behaviour developed by Kitajima 
and Poison (1995). However, these have tended to focus 
on the initial search process and the question of how to 
decide which options to select. Whilst such models are 
candidate models of how experts and novices search 
during initial exploration of a menu structure they do not 
address the problem of how memories of that search are 
encoded and subsequently used: they leave open the 
question of how people perform a menu search task for 
the second, third or fourth time, or how performance 
improves with experience. A start has been made at 
addressing these questions with the AYN model (Howes, 
1994). 

One of the first questions that we can ask is how the 
initial search is encoded. The experience could be 
encoded just in terms of the menu labels. For example, 
the spell-check task might be encoded as selecting 
"Tools" followed by "Spelling". We term this a lexical 
encoding. In addition or alternatively, people might 
exploit the spatial structure of the menu tree and encode 
their search experience in terms of some spatial 
representation of the menu structure and the spatial 
location of the goal within that representation. For 
example, the spell-check task might be encoded as 
selecting an item towards the right of the menu bar and 
then selecting the first item under it. 
In addition, it is also possible that users rehearse their 
choices during the initial search process. For example, at 
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any one time, users could attempt to rehearse the 
sequence of choices leading to their current position in 
the menu structure. Upon reaching the goal, the most 
recently rehearsed sequence would be the correct route. 
We would expect rehearsal of this type during search to 
give rise to a primacy effect (improved performance for 
the first items in the sequence as they will have been 
rehearsed for a longer time than the later items). 

Alternatively, a recency effect (improved performance for 
the last items in the sequence) might emerge if users 
reflect on the actions that they have just performed when 
they reach the goal (e.g. Howes, 1994). 

Therefore, one way to investigate the question of how 
initial search experiences affect subsequent learning is to 
look at the order in which the sequence of options leading 
to the goal are learnt. We use the term "effect of levels" 
to refer to this differential learning of options at different 
levels. 

EMPIRICAL INVESTIGATION 
In this experiment (described in full in Howes, 
Richardson and Payne, in preparation), we wished to 
investigate the order in which the choices leading to the 
goal were learnt, independent of factors such as semantics 
which may differentially affect different decisions. For 
example, if one choice was between two semantically 
plausible options and a second choice was between one 
highly plausible option and one that was implausible, we 
would expect the second choice to be learnt more readily 
than the first. In order to avoid potentially confusing 
effects of semantics such as this in our experimental data, 
we used menu trees constructed entirely from labels 
which had no semantic relationship to the goals. Thus, at 
each node in these menu trees the level of semantic 
guidance to the correct choices was the same and there 
should be no differential effects. 

Such semantically unhelpful menu trees are not entirely 
unrealistic. As pointed out above, semantics are a far 
from perfect guide in many real-life menus and users are 
often faced with selecting between two (or more) equally 
plausible or implausible options. 

In addition, we also wished to investigate how people's 
performance is affected if all possibility of forming 
spatial encodings is removed and they are forced to just 
use the labels. In order to achieve this we used two 
groups of participants. The first group performed the 
menu search task with randomised positioning of the 
labels at each node (each time a participant visited a 
node, the label positions might or might not be swapped 
around). This manipulation should prevent these 
participants from encoding their experience spatially. 
The second group of participants performed the search 
task in "normal" menu trees where the positioning of the 
labels at each node was kept constant over time. This 
should allow us to see what the effect is on learning and 
performance when participants are forming only a lexical 
representation of the menu tree in terms of just the labels 
as compared with when they can also encode spatial 
aspects of their experiences. 

Method 
Thirty-two undergraduate students from the Psychology 
Department at the University of Wales, Cardiff took part 
in this study for course credits. The experiment consisted 

■ Level 1     Level 2 

V 
Intermediate Nodes 

Level 3     Level 4 . .Level 5. 

Leaf Nodes 

Figure 1: Illustration of the design of the trees used in 
the experiment. 

of seven trials. On each trial the participant was asked to 
search for the first target in the first menu tree, followed 
by the second target in the second menu tree, the third 
target in the third menu tree and the fourth target in the 
fourth menu tree. In order to produce a balanced design 
the order of presentation of the four menu trees was 
manipulated in order to ensure that each menu tree was 
presented equally often first, second, third and fourth. 
The experiment was presented on an Apple Macintosh 
computer using a program written in MacProlog32. This 
program automatically recorded the choices made by 
participants and the time taken to make them. 

Each menu tree consisted of five levels with binary 
choices between a top and a bottom label at each node, as 
illustrated in Figure 1. The target was one of the choices 
at a leaf node. At each node there were two options that 
could be selected to move forward down the tree and a 
backup option to move back up the tree (except at the 
top-level root node, where backup is not possible, and in 
the target node, where backup would allow the participant 
to review the choices leading to that target). Pairs of 
semantically related words (e.g. "Carbon" and 
"Charcoal") were used for the option labels at nodes in 
these menu trees. These label pairs were placed in 
different random positions for each participant. There 
were no close semantic relationships between the label 
pairs both within and between trees as determined by the 
experimenters' judgement. 

One between-participants factor was manipulated in this 
experiments. Participants were randomly allocated to one 
of two equally sized groups. For one group, at each node, 
the two options were positioned randomly in the top and 
bottom positions on each visit. For the other group, the 
two options at each node appeared consistently in the 
same positions throughout the experiment. 
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Results 
The main results that we are interested in modelling are 
the order in which participants learnt the sequence of 
choices leading to the target (effect of levels), and the 
improvement in performance over trials. Therefore, we 
shall only consider those analyses. (The full set of 
analyses can be found in Howes, Richardson and Payne, 
in preparation). 

The effects of levels were investigated by seeing whether 
participants selected the correct or the incorrect option at 
the nodes leading to the target. For each target, there was 
a correct sequence of five actions that would lead directly 
to that target. For each of the nodes on this correct path, 
the percentage of correct options chosen by participants 
on their first visit to that node on each trial was 
calculated. The action taken on the first visit to each 
node on each trial was used because this should reflect 
the effects of long term memory, rather than any effects 
of temporary memory for recent local search sequences. 
This measure should therefore show how participants' 
memory for the correct actions developed with 
experience. 

The data for the trial 2 levels effect are summarised in 
Table 1. These data were subjected to an Anova to check 
for main effects of level and node label positioning and 
for any interaction between these factors. There were no 
significant main effects of node positioning: F(l, 30) = 
0.756, p = 0.39, nor of level F(3, 90)=0.959, p = 0.42. 
There was not a significant interaction between these 
variables F(3, 90) = 2.15, p = 0.099. However, t-tests 
revealed that there were significant differences between 
levels 1 and 3 for the consistent condition, but that there 
were no significant differences between any levels in the 
randomised condition. 

The same analysis was carried out for all trials except the 
first. The data are summarised in Table 2 and were 
subjected to an Anova to test for main effects of main 
effects of trial, node option positioning and level and for 
interactions between these factors. 

There was no significant main effect of level, F(3, 90) = 
0.58, p = 0.63 on the total number of correct actions. 
However, there was a significant interaction between the 
positioning of node options and level, F(3, 90) = 2.72, p < 
0.05. There was a significant effect of levels when the 
positioning of the node options was consistent: the 
percentage of correct choices made at levels 1 and 2 was 
higher than at levels 3 and 4. This primacy effect was 
most pronounced on trials 2 and 3. There was no effect 
of levels when the label positioning was random: on all 

Table 1: The mean percentage of correct choices made 
by participants on the first visit to nodes at levels 1, 2, 3 

and 4 on the correct path on trial 2. 

Table 2: The mean percentage of correct choices made 
by participants on the first visit to nodes at levels 1, 2, 3 

and 4 on the correct path averaged over trials 2 to 7. 

Node option 
Randomised 
M         SI) 

positioning 
Consistent 

Level M        SXi 
1 52% 35% 72%       22% 
2 58% 26% 67%       27% 
3 58% 26% 48%       27% 
4 61% 23% 61%      21% 

Node option 
Randomised 
M         SJD 

positioning 
Consistent 

Level M        SJ1 
1 73% 28% 79%      20% 
2 76% 22% 79%      23% 

3 78% 22% 70%      26% 

4 79% 24% 72%      22% 

trials there were no significant differences between 
performance at different levels. 

In addition, there was a significant main effect of trial, 
F(5, 150) = 35.26, p < 0.05 on the total number of correct 
choices made. Correct choices increased over trials 2 to 4 
but not thereafter. There was no significant main effect 
of node option positioning, F(l, 30) = 0.07, p = 0.79 on 
the total number of correct choices. There were no other 
significant interactions. 

Performance over trials was calculated in terms of the 
average number of actions taken to reach the goal on each 
trial. These data are summarised in Table 3. These data 
were subjected to an Anova to check for main effects of 
trial and node label positioning and for any interaction 
between these factors. There was no significant main 
effect of positioning of node options, F( 1, 30) = 2.09, p = 
0.16. There was a significant main effect of trial, F(6, 
180) = 52.99, p < 0.01. The number of actions taken to 
reach the goal decreased significantly over the first four 
trials but not thereafter. There was no significant 
interaction between positioning and trial, F(6, 180) = 
0.84, p = 0.54. 

Conclusions 
When spatial consistency was removed the correct 
choices at all levels within the menu structure were learnt 
at the same rate. In comparison, when the menu structure 
was spatially consistent, participants learnt the choices at 
the top levels first (primacy effect). This result suggests 
that participants in the spatially consistent condition 
might have been carrying out some form of spatial 
rehearsal whilst performing the initial search. The lack of 

Table 3: The mean number of actions taken by 
participants to reach the goal on each trial. 

Node option positioning 
Randomised Consistent 

Trial M S.D M S.D 

1 60.2 20.6 52.5 20.6 
2 39.6 31.8 24.3 12.7 
3 26.9 24.7 20.8 14.4 
4 18.1 13.6 12.8 9.3 
5 14.8 17.7 11.5 11.4 
6 11.0 13.5 8.1 4.4 
7 14.6 26.9 7.5 3.3 
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either a primacy or a recency effect when participants 
were forced to rely just on the labels to guide their search 
suggests that no lexical rehearsal took place. 

However, even when participants had to rely just on 
using the labels, they could still learn to perform the task 
as quickly (in terms of the total number of actions taken 
to reach the goal) as when the label positions were left 
constant over time. Therefore, even though participants 
in the random positioning condition did not appear to be 
using lexical rehearsal, they were still able to learn the 
correct choices with practice. Possible accounts of how 
this might occur are discussed below in the context of 
two possible cognitive models of the data. 

COGNITIVE MODELLING 
The initial goal was to develop a cognitive model of 
learning in menu trees without spatial consistency (i.e. 
label-based learning only). Such a model can then be 
used as a starting point for a model of learning in the 
spatially consistent menu trees, where participants 
appeared to be using spatial rehearsal. 

The main test of the model will obviously be its degree of 
fit to the experimental data described above. The model 
should therefore show a flat effect of levels (i.e. equal 
rate of learning of the choices on the path leading to the 
goal), together with improvement in performance over 
trials. Ideally the model should not only show the same 
pattern of data as the empirical participants, but also the 
same values. For example, its performance (in terms of 
the number of actions taken to reach the goal) should 
improve over the first four trials only but not thereafter. 

Two models of label-based interactive search are: (1) 
The AYN model (Howes, 1994) which encodes chunks 
for tried items, uses this knowledge to limit the search 
space on subsequent trials and learns that the most 
recently selected item is correct when it finds that it is on 
the right path. (2) An activation-based model which 
boosts the activation levels of the representations of tried 
and seen items and then makes decisions based on the 
relative activation levels to guide its selections. 

COGNITIVE MODEL 1: AYN 
The first model of interactive search that we describe is 
the AYN model (Howes, 1994). AYN acquires two types 
of knowledge as it interacts with a menu structure: 
recognition knowledge and control knowledge. 

The recognition knowledge consists of episodic chunks 
that are encoded for every combination of goal, menu and 
action that the model experiences, regardless of whether 
the action in question leads to the goal or not. AYN also 
acquires recognition knowledge that the goal has been 
achieved. This recognition knowledge supports 
identification of the menu trees that have been previously 
visited, which selections made and which goals visited. 

AYN uses its recognition knowledge to help guide search 
in the menu structure during both initial exploration and 
subsequent searches. A set of rules determines how the 
model applies this knowledge: (1) if the goal has not yet 
been achieved then avoid recognised selections; (2) if the 
goal has been achieved and there is a recognised selection 
then it should be applied; (3) if there are no recognised 
selections and the goal has been achieved then a backup 
operator should be applied. These rules help limit the 
size of the search space. 

AYN also acquires both positive and negative control 
knowledge through its exploration of the menu structure. 
This knowledge determines which menu selections lead 
to the goal and which lead to dead-ends. In AYN 
working memory is bounded to store only the previous 
action. Thus, when the goal is achieved AYN only learns 
positive control knowledge for the selection immediately 
preceding the goal. On the next trial, when AYN reaches 
the selection known to be right (i.e. the one before the 
goal), it learns positive control knowledge for the 
immediately preceding selection that led to it. In this way 
positive knowledge is passed back up the structure in a 
final-first way until positive knowledge has been learnt 
for all the selections leading to the goal. 

AYN acquires negative control knowledge in a similar 
way for selections that lead to dead-ends. In fact, the 
AYN model was altered slightly from the version 
reported by Howes (1994) in order to get it to learn 
negative knowledge from backing up, rather than from 
cancelling and returning to the start state. AYN was 
altered so that it learnt that a particular move was "bad" 
either if that move led directly to a dead-end or if that 
move led to a node where both options were rated as 
"bad". 

The AYN model was run fifty times (for seven trials on 
each run) over a five-level binary menu tree (i.e. the same 
structure as that used in the experiments) to generate the 
data. The data generated from the model should therefore 
be in a form that is comparable with that obtained 
empirically. 

Results 
The effect of levels on each trial was calculated in terms 
of percent correct selections made on the first visit to 
each of the nodes on the correct path. The data for trial 2 
only are summarised in Table 4 and Figure 2. The 95% 
confidence interval was calculated for the empirical mean 
obtained at each level in the menu (see Grant, 1962, for a 
discussion of this type of analysis). These confidence 
intervals are shown in Figure 2. None of the means 
generated by the AYN model fell inside the confidence 
interval at any level. At each level, the means generated 
by the AYN model were higher than those of the 
experimental participants. 

The data for the effect of levels averaged over all trials 
are summarised in Table 5. The correlation between the 
percentage of correct choices made at each level on each 
trial by the AYN model and by the experimental 
participants was calculated. The correlation was fairly 
poor, r = 0.747, r2 =0.559. 

Table 4: The mean percentage of correct choices made 
by AYN and the activation-based model on the first visit 

to nodes on the correct path on trial 2. 

AYN 
Activation- 
based model 

Level M         S.D. M         S.D. 

1 
2 
3 
4 

72%       45% 
76%       43% 
68%       47% 
100%       0% 

52%       50% 

56%       50% 
54%      50% 
48%      50% 
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Figure 2: The percentage of correct selections made on 
the first visits to nodes on the correct path on trial 2 by 

the empirical participants, the AYN model and the 
activation-based model 
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Figure 3: The number of actions taken to reach the goal 
on each trial by the empirical participants, the AYN 

model and the activation-based model 

The number of actions taken by the AYN model to reach 
the goal on each trial was calculated. These data are 
summarised in Table 6 and Figure 3. The 95% 
confidence interval was calculated for the empirical mean 
obtained on each trial, as shown in Figure 3. The means 
generated by the AYN model fell outside the confidence 
interval on trials 1, 3, 4 and 5. On each of these trials, the 
means generated by the AYN model were lower than 
those of the experimental participants. The correlation 
between the data generated by the AYN model and the 
empirical data was calculated. The correlation was very 
good, r = 0.991, r2 =0.982. 

Table 5: The mean percentage of correct choices made by 
AYN and the activation-based model on the first visit to 

nodes on the correct path averaged over trials 2 to 7. 

AYN 
Activation- 
based model 

Level M         S.D. M         S.D. 
1 
2 
3 
4 

90%       20% 
93%       14% 
95%       8% 
100%      0% 

83%       29% 
87%       26% 
84%      31% 
84%       29% 

COGNITIVE MODEL 2: ACTIVATION-BASED MODEL 
The second cognitive model of interactive search that we 
consider is a simple activation-based model which makes 
more refined judgements than the AYN model. This 
model does not just distinguish tried from untried options, 
but makes four classifications of options: untried; seen 
and possibly tried; definitely tried; and very recently 
tried. Most importantly, this model does not acquire any 
form of AYN-like control knowledge. Instead it simply 
uses the relative activation levels to determine which 
choices are correct and which are incorrect. 

Table 6: The mean number of actions taken by AYN and 
the activation-based model to reach the goal on each trial. 

Activation-based 
AYN model 

Trial M S.D M S.D 

1 43.3 26.4 56.4 38.9 
2 23.6 21.6 38.0 32.8 
3 13.2 15.8 30.2 35.7 
4 5.2 0.6 23.1 31.5 
5 5 0 12.5 21.2 
6 5 0 5.6 2.7 
7 5 0 5.1 0.9 
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In this activation-based cognitive model, when an option 
is seen its activation is boosted by 10 units, and when an 
option is selected its activation level is boosted by a 
further 40 units (unseen options have an activation level 
of zero). Every time a move is made (selection of an 
option or selecting backup) the activation of all other 
options decays by 1%. Therefore with time the activation 
levels of previously tried and seen options decrease. 
There are 110 decay cycles between trials (to simulate the 
intervening tasks in the experiments). 

The model assesses the activation levels of the options 
that it encounters in order to infer whether options have 
been seen or tried before. It then uses these inferences to 
determine which action to select. If the activation level 
of an option is less than 1 unit, then the model infers that 
that option has never been seen before (= untried). If the 
activation level is between 1 and 20 units then it infers 
that the option has definitely been seen before and could 
possibly have been tried some time ago as well (= seen- 
and-possibly-tried). If the activation level is between 20 
and 40 then it infers that the option has definitely been 
tried before (= definitely-tried), and if the activation level 
is above 40 then it assumes that the option was tried very 
recently (= very-recently-tried). The model uses its 
assessments of the activation of the possible options at a 
node, together with knowledge of whether the goal has 
already been achieved or not, in order to decide which 
action to take. 

If the goal has not yet been achieved, the model uses a 
simple search algorithm similar to that of the AYN 
model. It avoids options that are assessed as being 
definitely-tried or very-recently-tried and selects those 
that are assessed as being untried or seen-and-possibly- 
tried. At a node with two options which are untried or 
seen-and-possibly-tried, it prefers to select the untried 
option. At a node with one option that is definitely-tried 
or very-recently-tried and one that is untried or seen-and- 
possibly-tried, it selects the untried or seen-and-possibly- 
tried option. At a node with only definitely-tried or very- 
recently tried options, or at a node that is a dead-end, it 
selects backup. In this way the model searches efficiently 
through the menu structure to reach the goal. 

Once the goal has been achieved, the model again uses a 
search algorithm based on that of the AYN model. It 
prefers to select an option that has been assessed as being 
definitely-tried before, but not very-recently-tried. If not 
it will select an option that is assessed as seen-and- 
possibly-tried. It does not select untried options or very- 
recently-tried options. It also backs up from deadends. 

The model was run fifty times over a five-level binary 
menu tree, for seven trials on each run, to generate the 
data. 

Results 
As before, the effect of levels on all trials was calculated 
in terms of the percentage of correct choices made on the 
first visit to each of the nodes on the correct path. The 
data for trial 2 only are summarised in Table 4 and Figure 
2. For this model, the means for the percentage of correct 
choices made at levels 1 and 2 on trial 2 fell within the 
95% confidence intervals for the empirical means. The 
mean percentage correct choices for levels 3 and 4 fell 
below the confidence interval: the model made fewer 

correct choices at these levels, on average, that the 
experimental participants. 

The data for the effect of levels averaged over all trials 
are summarised in Table 5. The correlation between the 
percentage of correct choices made at each level on each 
trial by the model and by the experimental participants 
was calculated. The correlation was good, r = 0.917, r2 

=0.840. 

The number of actions taken to reach the goal on each 
trial was calculated. These data are summarised in Table 
6 and Figure 3. The means generated by the model fell 
within the 95% confidence interval for the empirical 
means on all trials. The correlation between the data 
generated by the model and the empirical data was 
calculated. The correlation was very good, r = 0.964, r2 

=0.930. 

CONCLUSIONS 
The data generated by the AYN model provided a good 
fit to the shape of the empirical practice data, although its 
performance was higher, as would be expected given its 
100% accurate all-or-nothing recognition. However, for 
the effect of levels, the correlation of the AYN data to the 
empirical data was not as good: AYN showed a recency 
effect in the learning of the choices on the correct path 
(i.e. better performance for the last item), whereas no 
such effect was seen in the empirical data. In addition, 
the overall level of correct selections made by AYN at 
the nodes on the correct path was much higher than that 
of the empirical participants. 

The activation-based model gave a very good fit to the 
empirical data for learning based on labels alone. The 
correlation between its data and the empirical practice 
effect data was similar to that seen for AYN. However, 
unlike the AYN model, the curve that it generated did not 
differ in absolute value from the empirical data. The data 
from the activation-based model also provided a 
reasonable fit to the empirical levels effect data. Its 
correlation to this data was much higher than the AYN 
model. In addition, although the curve that it generated 
had a slightly different shape to the empirical data, the 
absolute values were not different for two of the four 
means. 

The activation-based model is therefore able to learn the 
correct menu choices at the same speed and in 
approximately the same pattern as empirical participants 
without recourse to either rehearsal or the use of AYN- 
like control knowledge. Learning occurs simply through 
the gradual increase in activation of the correct choices 
relative to other choices. 

A slight, but important difference between the activation- 
based model and the empirical data is that the 
experimental participants showed a slight (but non- 
significant) recency effect whereas the model showed an 
almost completely flat levels effect. However, further 
trials of the model showed that when the delay between 
trials is reduced, the model begins to show a recency 
effect similar to that of the experimental participants. It 
would be interesting to see whether the small recency 
effect exhibited by the participants alters with the delay 
between tasks in a similar way. There is some evidence 
in straightforward recognition tasks that delay affects 
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recency effects in this way (Wright, Santiago, Sands, 
Kendrick and Cook, 1985). 

GENERAL DISCUSSION 
The simple activation-based model provided a better fit to 
the empirical data for searching a spatially inconsistent 
menu structure than the AYN model. Importantly, the 
activation-based model learns the correct path without 
manifesting a recency effect. This is due to the fact that it 
doesn't acquire explicit control knowledge. Instead the 
activation levels of each of the correct choices gradually 
increases relative to the other choices. On average this 
rate of relative increase is the same for all of the choices 
leading to the goal and so a flat effect of levels was 
observed. 

In addition, this result showed that making a simple all- 
or-none distinction between tried and untried options (as 
AYN does) led to better performance than was seen 
empirically. Instead it seems likely that in reality menu 
users might occasionally be unsure as to whether a 
particular item has been selected before or merely seen. 
Errors will therefore arise when users select items that 
have merely been seen before and not tried. Such 
uncertainty is akin to a feeling of mere familiarity for a 
menu item and can be contrasted with definite 
recollection that an item has been tried before (see 
Jacoby, 1991, and Mandler, 1980, for an account of the 
distinction between familiarity and recollection and 
Payne, Richardson & Howes, in preparation, for an 
account of the role of familiarity in guiding menu search 
behaviour). There is currently some debate as to whether 
familiarity and recollection are indeed separate processes 
or just end-points on a continuum (see for example, 
Dodson & Johnson, 1996; Jacoby, 1991). However a 
simplified version of the single-process model of 
recognition can be seen as analogous to the decision 
process underlying the activation-based model. This 
simplified model assumes that there is a single quantity 
(activation levels, in our case) underlying different 
recognition judgements. If the activation level is above a 
certain criterion, an item will seem merely familiar, 
whereas if the activation level is above another, higher, 
criterion the item will be recollected. The activation- 
based model can therefore be thought of as preferring 
"recollected" selections over "familiar" ones. It 
occasionally makes errors by selecting, on the basis of 
their familiarity, items that had only been seen before and 
not actually tried. This model therefore had a lower 
overall level of performance that was not significantly 
different from that of the empirical participants. 

However, this activation-based model only accounts for 
the data obtained in the situation where participants had 
to rely on the labels alone and could not exploit the 
spatial consistencies within the environment. In other 
words, this model only simulates the possible lexical 
encodings that a person might form whilst navigating 
through a menu structure, it does not account for any 
spatial representations that might be constructed. As 
shown in the experiment reported earlier, when spatial 
consistency was provided, people seemed to perform 
some form of spatially-based rehearsal. The activation- 
based model should therefore be extended to model this 
type of performance, perhaps by adding another "layer" 

which rehearses spatial location whilst searching through 
the menu structure. 

There are several other possible avenues of development 
for the activation-based model. One of the first changes 
to explore might be the effect of different functions for 
the rate of decay. For example, research shows that the 
rate of forgetting might be governed by a power law (see 
Anderson, 1995, for an account). Another possibility is 
to explore the effects of adding in features such as 
associations and spreading activation between the 
activated representations. However, the evolution of this 
model to date has been driven largely by the goal of 
modelling empirical data, and any future architectural 
developments will therefore be made only in response to 
empirical data that challenge the model. 

Finally, both the AYN model and the activation-based 
model as described here do not use the semantic 
plausibility of the menu items to guide their search. 
Other experiments that we have carried out suggest that 
people do use semantic plausibility, in conjunction with 
recognition memory, to determine which choices to select 
in a menu (Payne, Richardson & Howes, in preparation). 
Both models have, in other versions, been altered to use 
the semantics of the labels to guide their choices. For 
both models the effect of this is effectively to limit the 
search space to just the subset of the menu labels that are 
judged to be semantically plausible. 
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ABSTRACT 
This paper presents a model of occasional use of 
functions of an application by an experienced user of an 
environment like Windows 95 or the MacOS. We have 
developed a simulation model, LICAI+, that assumes that 
users store episodic records of correct steps discovered by 
exploration or told to them during training. They then use 
the application display and their goal as retrieval cues in 
attempts to recall these episodes later. The model predicts, 
and supporting data show, that tasks that violate the 
label-following strategy are not only hard to learn by 
exploration but also difficult to remember even if the 
correct steps have been previously presented. 

Keywords 
cognitive model, learning by exploration, label-following 
strategy, LICAI+ 

INTRODUCTION 
Experienced users of an environment like Windows 95 or 
the MacOS are occasional users of many applications 
(e.g., a graphics package). Furthermore, many functions 
of a frequently used application like a word processor are 
only used occasionally (e.g., constructing and editing a 
table). Thus, a large majority of the different tasks 
undertaken by skilled users are performed infrequently 
(Santhanam & Wiedenbeck, 1993). 

Such patterns of occasional use should constrain the 
design of usable computer systems. Ideally, such systems 
should consistently support learning by exploration. At a 
minimum, they should facilitate memory for action 
sequences learned by demonstration or by being looked up 
in a manual. The ease of recalling infrequently performed 
functions can be a major determinate of usability. This is 
not a novel claim. For example, the designers of the 
Xerox Star had very similar insights (Bewley, Roberts, 
Schroit, & Verplank, 1983; Smith, Irby, Kimball, 
Verplank, & Harslem, 1982). This paper presents a 
theoretical model of recall of tasks that have been done 
once or a few times and data supporting the model. 

LICAI+ is a model of recall of occasionally used action 
sequences. LICAI+ assumes that users store episodic 
records of correct steps discovered by exploration or told 
to them during training. They then use the application 
display and their goal as retrieval cues in attempts to later 
recall these episodes. The resulting model of the recall 
process is similar to models of text recall (Wolfe & 
Kintsch, submitted). 

Rodolfo Soto and Peter G. Poison 
Institute of Cognitive Science 

University of Colorado 
Boulder, CO 80309-0345, USA 

Tel:+1(303) 492-5622 
E-mail: {soto, ppolson}@psych.colorado.edu 

LICAI+ is an extension of LICAI1 (Kitajima & Poison, 
1996; 1997) which is a model of the processes involved 
in comprehending task instructions and using the 
resulting goals to guide successful exploration. Both 
LICAI and LICAI+ are based on Kintsch's (1986; in 
press) construction-integration theory of text 
comprehension. LICAI+ adds to LICAI the processes 
involved in encoding and successfully retrieving 
encodings of correct actions. LICAI+ assumes that 
successful performance of occasionally performed tasks 
involves a mixture of recall of episodes of correct actions 
and problem solving if recall fails. The model is related to 
Ross' (1984) and Rickard's (1997) models of skill 
acquisition. 

Following a general description of the LICAI+ model, we 
present a theoretically motivated analysis of recall of 
occasionally performed action sequences. Readers 
interested in a more detailed descriptions of the LICAI 
model should consult (Kitajima & Poison, 1995; 1996; 
1997). In support of the LICAI+ model and our 
theoretical analysis we compare our simulation results 
with data reported by Franzke (1994; 1995) and Soto 
(1997). In conclusion, we describe design implications of 
our results. We demonstrate that both ease of learning by 
exploration and good recall are supported by similar 
attributes of an interface. 

DESCRIPTION   OF   LICAI+ 
LICAI+ simulates skilled Mac users in an experiment 
where they are taught novel tasks using a new 
application, Cricket Graph III. The task instructions are 
very explicit but do not contain any information about 
how to perform the task. Then, at some later time 
ranging from several minutes to a week, they are tested 
for retention of these skills when given the task 
descriptions and the displays generated by the application 
as retrieval cues. Users attempt to perform each task by 
exploration and/or recalling an action sequence. However, 
hints are given by the experimenter if users cannot 
discover correct actions by themselves. 

LICAI is an acronym of the Linked model of 
Comprehension-based Action planning and Instruction 
taking. When LICAI is pronounced [li kai], the 
pronunciation represents a two-kanji Japanese word, 

8fW, meaning 'comprehension.' 
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LICAI simulates comprehension of task instructions and 
hints, the generation of goals, and the use of these goals 
to discover correct actions by exploration. LICAI+ adds to 
LICAI processes that encode successful actions and 
retrieve them after a delay. 

Goal  Formation 
LICAI's action planning processes contain limited 
capabilities to discover correct actions by exploration. 
These processes are controlled by goals generated by 
comprehending task instructions and hints. LICAI 
assumes that goal-formation is a specialized form of the 
normal reading process in which task specific strategies 
generate inferences required to guide goal formation. 
LICAI's goal-formation process is derived from Kintsch's 
(1988; in press, Chapter 10) model of word problem 
solving. 

Kintsch's model takes as input a low-level semantic 
representation of problem text, the textbase, and processes 
it sentence by sentence. The result is a problem model. 
Construction of the problem model makes extensive use 
of comprehension schemata which elaborate the original 
text representation with problem domain specific 
inferences. 

LICAI incorporates comprehension schemata that 
transform relevant parts of the textbase for the task 
instructions and hints into goals that control the action 
planning process. Propositions that describe actions on 
task objects in the textbase are recognized and further 
elaborated by specialized task domain schemata to 
generate a more complete description of a task. For 
example, consider a graphing task in which the user was 
given the instruction, Plot a variable named 'Observed' as 
a function of a variable named 'Serial Position.' LICAI 
transforms this task description into the propositional 
representations of two sentences. 1) Put 'Observed' on the 
y-axis, and 2) Put 'Serial Position' on the x-axis. The 
representations of the last two sentences are then 
transformed into task goals that control the action 
planning process. Terwilliger and Poison (1997) 
demonstrated that users actually perform this 
transformation. 

In the studies described in this paper, experimenters gave 
hints of the form 'perform a specific action on a specified 
screen object' (e.g., pull-down the Options menu). 
LICAI requires that these text or verbal descriptions of an 
action on an object have to be transformed into a goal, a 
do-it goal, that specifies a specific object on the screen 
and/or legal actions on that object. Specialized 
comprehension schemata carry this transformation. See 
Kitajimaand Poison (1997) for extensive descriptions of 
comprehension schemata. 

Action  Planning 
The heart of LICAI is the action planning processes. 
LICAI assumes that successful action planning involves 
linking propositional representations of a goal (e.g., 
create a new graph), the screen object to be acted on (e.g., 
the Graph menu), and an action to be performed on that 

object (e.g., press and hold). The most critical of the three 
links is the link between the goal and the correct screen 
object. This link can be retrieved from memory or 
generated by an exploration process. 

Skilled Users 
Kitajima and Poison (1995) developed a version of the 
action planning process used by skilled users of an 
application. This model represents an arbitrary sequence 
of actions required to perform a task as hierarchical goal 
structure that is retrieved from long-term memory and 
used to generate the actions. A task is decomposed into a 
sequence of task goals. Task goals refer to actions (e.g., 
edit) on a task object (e.g., graph title). Each task goal is 
linked to an ordered sequence of one or more device goals. 
Each device goal specifies a unique object on the screen 
(e.g., the Options menu, the graph title) and the state of 
the object (e.g., highlighted) after it has been acted on. 
Thus, skilled users retrieve the critical links between goal 
and screen object from memory. However, Kitajima and 
Poison (1995) did not describe how such goal sequences 
are learned or how they are retrieved from memory. 

New Users 
When a new user of an application attempts to perform a 
task for the first time, Kitajima and Poison (1997) 
assumed that they have a task goal but not the device 
goals. LICAI can simulate exploration by generating the 
correct actions for a novel task without the device goals if 
the task goal can be linked to correct screen objects by 
LICAI's action planning processes. 

A task goal is a proposition with two arguments 
describing a task action and a task object (e.g., hide 
legend). If a correct object on the screen has a label 
representing either one of these concepts (e.g., a menu 
labeled "hide"), the representation of the object will be 
linked to the task goal. LICAI will retrieve the correct 
actions (e.g., move the cursor to the object and press-and- 
hold) on this object from long-term memory, completing 
the necessary links to generate actions. We and numerous 
other researchers have called this linking process the 
label-following strategy (Franzke, 1994; Franzke, 1995; 
Kitajima & Poison, 1997; Poison & Lewis, 1990;. 
Rieman, Young, & Howes, 1996). Thus, the critical 
links can be generated to mediate successful exploration. 
The label-following strategy is the only method that 
LICAI has for learning by exploration. If there is no 
direct link between the task goal and the correct object, 
users must be given a hint. 

LICAI+'s  Encoding  and  Recall  Processes 
LICAI already incorporates a model of encoding and recall 
of goals based on the Kintsch and Welsch (1991) model 
of text recall. They assumed that the textbase is stored in 
episodic memory during the comprehension process. The 
strength in episodic memory of a given element of the 
textbase is determined by the number of cycles it stays in 
working memory and the activation levels it achieves 
during each cycle. LICAI+ generalizes this model to the 
encoding and recall of successful actions. LICAI+ also 
incorporates assumptions from the Wolfe and Kintsch 
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(submitted) model of story recall that enables us to 
compute predicted recall probabilities. 

Encoding Process 
LICAI+ assumes that encoding and storage of a successful 
action is just a special case of the comprehension process. 
The model "comprehends" the results of a successful 
action during training. A comprehension schema creates a 
representation of the successful action which is stored in 
memory during the comprehension process. 

There are two forms of this encoding. The first includes 
the task goal, the object acted on, and results of the action 
if the label-following strategy can discover the correct 
action. The second case is defined by the failure of the 
label-following strategy. The experimenter gives a hint 
which is transformed into a do-it goal by the instruction 
comprehension processes. A do-it goal specifies an action 
on a screen object (e.g., Pull-down the Options menu). 
The do-it goal is included in the encoding of the 
successful action in this second case. 

LICAI+'s goal formation, action planning, encoding, and 
retrieval processes are implemented as special cases of 
Kintsch's (1988; in press) construction-integration theory 
of text comprehension. Each process is modeled by one or 
more iterations of a general construction-integration 
cycle. 

The following is a description of the encoding and recall 
cycles. See Kitajima and Poison (1997) for detailed 
descriptions of the remaining processes. 

The construction phase of the encoding process generates 
a network of propositions that contains the following 
representations: 

1) the task goal, 
2) the do-it goal (if a hint was given), 
3) the acted-on object, 
4) its label (if the acted-on object is labeled), 
5) salient changes in the display state caused by the 

action (e.g., menu dropped), 
6) the display caused by the action (e.g., a pull-down 

menu), 
7) a special encoding node that links the nodes 1, 2, 3,4, 

and 5 with the strengths defined by an analyst. 

In addition, the fundamental linking mechanism assumed 
by the construction-integration theory, the argument 
overlap mechanism, is applied to connect any two 
propositions in the network sharing arguments. Figure 1 
illustrates a network generated for encoding a step of 
pulling down the Legend menu. This action caused a 
pull-down menu to appear with menu items, Hide, 
Show, Moue, and Arrange. 

The integration phase of the encoding process is 
performed using a spreading activation process. The nodes 
in the network can be partitioned into sources of 
activation, targets of activation, and links between 
sources and targets. In the encoding process, the 
representations of screen objects, the task goal, and the 
do-it goal serve as sources of activation. In Figure 1, 

2) Do-It Goal 5) Salient Change 

31 Acted-On Object 

61 Display Caused by the Action 
(Pulldown Menu) 

Figure 1. A diagram showing the propositional network 
generated by the construction subprocess in the encoding 
process. The dotted lines represent the argument overlap 
links. The solid lines connecting nodes, 1 through 5, with the 
encoding node, 7, are special links defining the encoding 
process. 

these nodes are shaded. The encoding node is the target. 
The results of the integration of the network are stored in 
episodic memory. 

At the end of training, episodic memory contains the 
nodes representing the textbase for the task instructions 
and hints, and the nodes participated in encoding processes 
for the correct steps. The strengths of links between these 
nodes are determined by the pattern of activation levels 
achieved in respective integration processes for text 
comprehension and encoding. 

Recall Process 
The recall process of LICAI+ assumes that users employ 
the task goal and the current display representation as 
retrieval cues. The recall process retrieves nodes in 
episodic memory that are linked to these cues. Nodes 
from episodic memory are sampled with replacement until 
the model retrieves an encoding of a step or retrieves a do- 
it goal (i.e., the action planning representation of a hint). 

The predicted sampling distribution for retrieving nodes 
from episodic memory for a given set of retrieval cues is 
calculated by using a sampling probability matrix. This 
matrix is a fully interconnected matrix generated from the 
original episodic memory network. Following Wolfe and 
Kintsch (submitted), the sampling probability matrix is 
generated by two steps: 1) dividing each link strength in 
the episodic memory network by the maximum link 
strength, 2) for any two nodes linked by an indirect path, 
assigning the product of the strength values of the link 
segments in the path to their link strength. 
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Any nodes that are directly linked with the retrieval cues 
in the sampling probability matrix are retrievable. The 
probability of retrieving a retrievable node in a single 
memory sampling trial is proportional to its relative link 
strengths with the retrieval cues. 

Sampling is with replacement, and sampling terminates 
on retrieval of one of the step encodings or a do-it goal. 
These assumptions enable us to calculate the recall 
probability distribution for step encodings and do-it goals 
(recall targets). 

Action Planning After Recall 
LICAI+ attempts to act using the retrieved step encoding 
or the hint. If the step encoding or the hint generates the 
correct action, the model successfully recalls the current 
step. However, there are no explicit order cues in the 
encoding of each step, so the model can retrieve steps out 
of order or retrieve hints that don't apply to the current 
display. In this case, the retrieval process fails, and the 
model has to explore the interface again as on the training 
trial. The exploration will succeed in performing the 
correct action if the label-following strategy works for 
this step. 

AN ANALYSIS OF RECALL OF OCCASIONALLY 
PERFORMED   TASKS 
The basic claim of LICAI+ is that how a step in a task is 
learned, by exploration or with hints, determines how that 
step is encoded and retrieved. Thus, we distinguish 
between label-following (LF) steps or tasks, and non- 
label-following (NLF) steps or tasks where the label- 
following strategy fails for lack of linking shared 
concepts. 

Franzke (1994; 1995) and many others have shown that 
LF steps are rapidly discovered and "accurately" recalled. 
However, it is hard to distinguish between rediscovery and 
recall of a step after one training trial because both recall 
and discovery processes can have similar latency 
distributions. 

Soto (1997), in an analysis of a large number of different 
graphing tasks using Cricket Graph III, showed that NLF 
tasks have some LF steps, usually toward the end of their 
action sequences. The task 'hide legend' is a good 
example. The first two steps (pull-down the Options 
menu, and select Show Graph Items...) are NLF 
steps. No menu label matches the task goal. The third 
step (clear the check box labeled by Legend) is an LF 
step. The last step (click OK) is a highly over-learned 
action that closes a dialog box and terminates the action 
sequence. 

Rodriguez (1997) and Soto (1997) found that the first 
NLF step in the hide legend task is the source of the 
difficulties that users have with this task. Almost all 
users required a hint to complete the first step. Franzke 
(1994; 1995) found a highly significant interaction for 
number of hints between number of targets (screen 
objects) for possible actions on the screen and LF versus 
NLF steps. There are many targets for possible actions on 
the first step of any task. Thus, we would expect first 

steps to be especially problematic. Once users are given 
the hint "pull-down the Options menu" in the hide 
legend task, there are only 7 menu items on that menu. 

We have used two versions of the hide legend task in the 
simulation described in the following sections. The first 
version was a simulation of performing the hide legend 
task using Cricket Graph III, Version 1.5.3 described 
above. We will refer to this as the NLF scenario. The 
other version of the simulated task used a hypothetical 
version of Cricket Graph III that added a Legend menu 
to the menu bar. The items on this menu were Show, 
Hide, Moue, and Arrange. This version of the hide 
legend task requires two steps (select Hide from the 
Legend menu) using this hypothetical interface. We will 
refer to this simulation as the LF scenario. Our 
discussion will focus on recall of the first step for each of 
the two versions. 

SIMULATION 
A Mathematica program was developed implementing 
processes incorporated in LICAI+ and simulating 
responses from Cricket Graph III for correct actions in the 
hide legend task. Training was simulated by assuming 
that each step was performed correctly with hints given 
for the first NLF step. The following processes are 
simulated for the training: the comprehension process that 
generates goals and comprehends hints, storage in 
episodic memory during comprehension, retrieval of goals 
from episodic memory, and action planning, encoding of 
successful actions, and storage in episodic memory. 

Representations of the task instructions, hints, and 
interface displays were coded and input to the simulation. 
The simulation also incorporated extensive knowledge 
about the basic Macintosh interface conventions for each 
screen object. For example, the Options menu item 
affords pull-down, and the Options menu item causes 
menu-selection, and so on. Other knowledge about 
actions, including moving and dragging the mouse 
pointer, and single- and double-clicking the mouse 
button, etc., was incorporated into the model. 

Simulation of Training 
Training on each of the scenarios for the hide legend task 
was simulated in several encoding conditions as described 
below. At the end of training, episodic memory included 
nodes representing the task instructions, the hint (for the 
NLF scenario), the acted-on object and its label for each 
step, and the display generated by the application. The 
link strengths of nodes in episodic memory are 
proportional to the activation level of these nodes 
obtained in the encoding cycle. 

Encoding Bias 
In encoding cycles, we manipulated the relative strengths 
of the links between the rest of the network and the links 
between the network and the task and do-it goals. The 
motivation for such manipulations is a fundamental 
property of the action planning process. The action 
planning process will not work unless the links between 
the current task, or do-it goal, and the rest of the network 
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are much stronger than the rest of the links in the 
network. These strong links cause a goal to dominate the 
integration subprocess. This subprocess selects the object 
to be acted on and the action to be performed on each step 
of the task. Manipulating relative strengths of the links 
between the goal and the rest of the network enables us to 
explore the hypothesis that the goal may dominate both 
action planning and encoding processes. 

Encoding processes have been simulated under three 
conditions. In task goal biased encoding condition (TG), 
we generated a network by multiplying by a factor of 4 
the strengths of links from the task goal. The strengths of 
the links from the do-it goal were not changed. In Figure 
1, three links from the task goal (hide legend) are 
strengthend by a factor of 4. In do-it goal biased encoding 
condition (DIG), the strengths of the links from the do-it 
goal were multiplied by a factor of 4, and those from the 
task goal remained unchanged. In the neutral encoding 
condition (N), no multiplication factor was applied. The 
NLF scenario was simulated using the TG, DIG, and N 
conditions. The LF scenario was simulated for the TG and 
N conditions since hints are not required and there is no 
do-it goal for the LF scenario. 

Simulation of Recall 
The recall cues are the task instruction and the 
representation of task goals used in the action planning 
process in training trial, and the initial display for the 
first step. In each simulation, nodes in the episodic 
memory that match the representations of the cues were 
identified, and then the probability distribution of 
retrieving the recall targets were calculated. The recall 
targets were two encoding nodes for the LF scenario, and 
the do-it goal and four encoding nodes for the NLF 
scenario. 

Recall after LF training 
The probabilities of recalling the encoding of the first 
step for the LF scenario for TG and N bias conditions are 
given in Table 1. In the LF scenario, the encodings of the 
first and second steps are linked to the task goal. In the 
TG condition, the probabilities of recalling the encoding 
for each of the two steps was nearly equal since the task 
goal dominated the encoding process, reducing the 
influence of the application display. Thus, the model 
retrieved the representation of the first step a little more 
than 50% of the time. In the remainder, the model 
retrieved representation of the second step blocking the 
successful retrieval of the first step. 

Correct performance of both steps is mediated by the 
same task goal, and the encodings are linked strongly to 
the common task goal in the TG condition. One 
implication of these results is that the encoding of a 
multi-step LF task will not reliably be retrieved by the 
combinations of task goal and display cues on each step. 
Thus, correct performance will depend on a mixture of 
successful recall and the label-following strategy. 
However, by lessening the biasing on the task goal in the 
N encoding condition, the display cues made a much 
stronger   contribution   to   the   encoding   process   and 

Table 1. Probabilities of recalling the do-it goal or the 
encoding of first step for the LF and NLF scenarios. TG, 
N, and DIG stand for task goal biased, neutral, and do-it 
goal biased encoding condition, respectively. 

LF Scenario NLF Scenario 

TG N TG N DIG 

Probability of recalling 
the do-it goal 

N/A N/A .027 .253 .618 

Probability of recalling 
first step encoding 

.551 .736 .251 .446 .177 

Total .551 .736 .278 .698 .795 

Predicted Hints N/A N/A .722 .302 .205 

significantly increased the probability of correctly 
recalling the encoding of each step. 

Recall after NLF training 
The probabilities of recalling the encoding for the first 
step and the do-it goal for the NLF scenario in the TG, 
DIG, and N bias conditions are given in Table 1. For the 
NLF scenario, the row labeled Total gives the probability 
of correctly performing the first step. LICAI+ cannot 
perform the first step without recalling the encoding or 
the do-it goal. The entries for Predicted Hints are, 1- 
Total. 

Manipulation in the NLF scenario of the bias has a huge 
impact on recall performance. In the TG biasing 
condition, the probability of recalling the do-it goal is 
small. The task goal dominates the encoding process and 
the do-it goal has very weak, indirect links to the task 
goal. The task goal does have links to all four encodings 
of each step. The probabilities of recalling each step 
encoding are almost equal, .251, .227, .180, and .315, 
respectively. 

In the N encoding condition, both the recall probabilities 
for the do-it goal and the first step encoding increased 
compared with the TG encoding condition. The reason is 
the same as the LF case. The display cues become more 
effective in recall process. Included in these cues is the 
label for the Options menu which is directly linked to 
the do-it goal. Thus, the initial display is a more effective 
retrieval cue for both the encoding of the first step and the 
do-it goal. 

On the other hand, in the DIG condition, all links 
involving the concept Option are very strong. This 
enhances the effectiveness of the representation of the 
Options menu as a retrieval cue and strengthens the 
representation of the do-it goal in episodic memory, 
making it easier to retrieve. 

COMPARISONS   WITH   USER   PERFORMANCE 
Franzke (1994) and Soto (1997) have done studies 
relevant to evaluating LICAI+'s recall predictions. For 
NLF steps, the model predicts that users will require a 
hint to successfully perform the step if they fail to recall 
the correct step encoding or hint. We used the best 
available   measure   of   recall,   proportion   of   subject 
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Table 2. Proportion of times at least one hint was 
required for steps categorized by link type, training 
(exploration) and recall trial (short or long delay). From 
Franzke (1994). 

Table 3. Observed proportions of tasks requiring at least 
one hint as a function of task type and training and delay. 
From Soto (1997). 

Link Type Training Short Delay Long Delay 

Exact Match .07 .00 .14 

Synonym .08 .02 .18 

Inference .42 .07 .29 

No Link .88 .05 .60 

requiring a hint on a task or step. However, this variable 
does not provide an unambiguous measure for evaluating 
the recall predictions for LF steps and tasks. Both 
successful recall and the label-following strategy can 
generate correct actions within 10 seconds. 

For LF steps and tasks, LICAI+ predicts that no hints 
should be required during training or on recall trials. 
However, Rieman (1996) and Rieman, Young, and 
Howes (1996) found that users will explore an interface 
before taking the initial correct action predicted by the 
label-following strategy. This initial exploratory behavior 
can lead to long latencies and hints on LF steps that are 
outside the scope of LICAI+. 

Description  of Available  Experimental   Data 
We first present experimental data from Franzke (1994) 
and Soto (1997) focusing on the proportion of hints 
required on training and recall trials. 

Description of Franzke (1994) 
Franzke (1994) had four groups of 20 participants create a 
graph and then perform 9 editing tasks on the graph using 
one of four graphics applications, Cricket Graph I or III, 
or one of two versions of EXCEL. During training, 
participants did the task by exploration, receiving hints 
when necessary. Half the participants in each group were 
tested for retention after a 5 minute delay (short delay), 
and the remainder were tested after a 7 day delay (long 
delay). 

Franzke classified each step in each task into one of four 
categories according to the relationship between the task 
goal for each step given in her instructions and the label 
of the object to be acted on for that step. Her exact match 
and synonym categories are examples of LF steps. In her 
third category an inference is required to link the correct 
object and the task goal. In the fourth category (no link) 
there is no meaningful link between the screen object and 
task goal. The latter two categories are both examples of 
NLF steps. 

The results relevant to LICAI+ from Franzke's (1994) 
experiment are shown in Table 2. The table shows the 
proportion of times that at least one hint was required on 
a step, with the steps categorized by link type, training 
(exploration) and recall trial (short or long delay). 

Description of Soto (1997) 
Soto (1997) performed a study replicating and extending 
Franzke's results. Soto's 19 participants were trained on a 

Session 1 Session 2 

Task Type Training Short Delay Long Delay Short Delay 

LF/C .01 .00 .00 .00 

LF/U .19 N/A .12 N/A 

PL/C .84 .26 .46 .11 

P1VU .58 N/A .29 N/A 

series of 33 graph editing tasks using Cricket Graph in 
and were tested for retention after a 2 or a 7 day delay. All 
participants were experienced Macintosh users who had 
not used a graphing application. Editing tasks were carried 
out on three types of graphs: histograms, pie charts, and 
bar charts. The 11 histogram editing tasks and the first of 
the 11 bar and pie chart editing tasks were used as warm- 
up tasks, and these data are not included in the results 
described below. 

Four out of the 10 experimental pie and bar chart editing 
tasks were unique (U) to that graph type and occurred once 
during training and testing. An example is "stand out a 
pie slice." Six of the tasks were common (C) to both 
graph types and occurred twice during training and recall 
sessions. An example is 'hide legend.' The delay between 
the two presentations of the common tasks averaged 
about 7 minutes. In Soto's data analysis, the second 
occurrence of a common task was treated as a recall trial 
with a short delay. His participants had no trouble 
recognizing the second occurrence even with a change in 
graph type. 

Soto classified his editing tasks into three categories. 
Label-following (LF) tasks required acting on objects 
whose labels were semantically related to the goal. Thus, 
all steps in these tasks were equivalent to Franzke's direct 
match and synonym step types. Direct-manipulation 
(DM) tasks required acting on the task object (e.g. pie 
slice) mentioned in the task goal. These data are not 
discussed as it is beyond the scope of this version of 
LICAI+. Poorly-labeled (PL) tasks did not support either 
label-following or direct-manipulation violating the label- 
following strategy. Occasionally, a task supported label 
following as well as direct manipulation (e.g., 'Change 
the graph title to "Year of Production'"). For this reason, 
the tasks were classified based on the method used by the 
subject, rather than on a priori criteria. 

Soto's analysis is by task rather than by the step level. 
The typical PL task has one or two initial NLF steps. 
Soto's findings and Franzke's (1994) results suggest that 
the initial NLF step has the largest impact on users' 
performance. Previously, we summarized Franzke's result 
showing that there is an interaction for the number of 
hints needed between LF versus NLF and the number of 
possible targets for action on a screen. The difficulty of 
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NLF steps increases dramatically as a function of the 
number of targets. 

Comparison With  LICAI+'s  Predictions 
Training Performance 
LICAI+ predicts perfect performance for both training and 
recall trials at all delays for LF steps. If we use the 
proportion of users requiring hints as our measure, a large 
majority of Franzke's (1994) results (shown in Table 2) 
and Soto's (1997) findings (shown in Table 3) support 
this prediction. The largest deviation that we know of is 
in the data from LF/U, Soto's condition where 19% of 
the participants required hints on the training trial. 

The model makes equally strong training performance 
predictions for tasks and steps that do not support the 
label-following strategy (NLF tasks). LICAI+ predicts 
that these tasks and steps cannot be learned by exploration 
without hints or information looked up in a manual or 
help system. However, this prediction for NLF tasks is 
not sound. The observed proportions of tasks or steps 
requiring at least one hint ranges from less than .5 to .9 
in different conditions of the Franzke and the Soto data. 

However, the pattern of deviations in both the Franzke 
and the Soto data is instructive and supports the claim 
that the LF-NLF distinction is a useful design heuristic. 
LICAI+ makes incorrect predictions for learning by 
exploration in NLF tasks because of the model's simple 
exploration process. First, the model cannot perform 
exploratory activities like pulling down a menu to see if 
any items on that menu link to the tasks goal. 
Experienced Macintosh users carefully explore menus 
(Rieman, 1996) and act upon matching labels uncovered 
during such explorations. 

Second, users seem to be able to use elimination 
strategies when dealing with a small number of screen 
objects like the items on a menu. For example, when 
participants are given the hint to pull down the Options 
menu in the hide legend task, they correctly select Show 
Graph Items... by a process of elimination. The other 
items on this menu are more specific and clearly have 
nothing to do with the hide legend task. LICAI+ can 
perform this step if it is given the knowledge that 'show 
is the opposite of hide' and that 'the legend is a graph 
item.' 

The above arguments suggest that an interesting test of 
the model would be to consider NLF tasks in which the 
first two steps violate the label-following strategy. 'Hide 
legend' is such a task. Rodriguez (1997) shows that 100% 
of his subjects required hints to be able to perform this 
task. Franzke (1994) found that approximately 90% of the 
participants required hints for steps where there was no 
link between the task goal and the correct object's label. 

Recall at Short Delays for NLF Tasks 
LICAI+ predicts that successful performance on recall 
trials is possible only when users retrieve a hint or an 
encoding of a step from episodic memory. However, the 
model does not make predictions about the effects of 

delay. We have assumed that LICAI+'s recall predictions 
apply to delays of one or more days. 

Franzke's (1994) and Soto's (1997) results show that 
immediate recall of NLF steps is quite good. Franzke 
(1994) found that about 90% of NLF steps can be recalled 
after a 5 minute delay (see Table 2). About 75% of Soto's 
PL tasks were performed correctly, without a hint, after a 
short delay (See Table 3). 

Recall at Long Delays for NLF Tasks and Steps 
LICAI+ predicts that successful recall performance can 
vary from .722, to .205 as a function of the encoding bias 
for NLF tasks and steps. Franzke's and Soto's results at 
long delays are hard to interpret because of the results 
from training trials for NLF tasks. Users' learning by 
exploration is better than that predicted by LICAI+. Thus, 
contrary to the predictions of the model, users will be 
able to discover the correct action on a recall trial even if 
they fail to recall a hint or encoding of the step. 

We reanalyzed both Franzke's no link and inference steps 
at the long delay shown in Table 2 and Soto's recall data 
from his PL conditions shown in Table 3 at the long 
delay. We made the assumption that the probability of 
requiring hints on recall trials, Preq„mMni ■> 's Just tne 

probability of failing to recall a hint or step encoding, 
Pjan_recaii»times the probability of failing to discover the 
correct action by exploration, Pjan_exp\OTatio,v assuming that 
the two events are independent. If we assume that 
PjaiLfxphratio» estimated by the probability of requiring 
hints on the training trial, PSai\_Tecau can be estimated by 

fail_recall      * require _hii\r*fail_explorarioir 

The estimated values of P!M_TecM for Franzke's no link 
steps is .68, and .69 for the inference steps. These values 
are close to the predicted value for the TG condition 
shown in Table 1. 

The estimated values of PSailrecaH for Soto's poorly labeled 
tasks at a long delay is .50 for the unique tasks and .55 
for the common tasks. These results suggest that the task 
goal has a strong influence on the encoding process but 
that it is not as strong as the 4:1 bias assumed in 
computing the predictions for the TG conditions shown 
in Table 1. 

CONCLUSIONS AND IMPLICATIONS FOR 
PRACTICE 
We have asserted that most users are occasional users of 
many applications, and they routinely use only a small 
fraction of the functionality of their frequently used 
applications. A model of routine cognitive skill is not a 
good description of users' actual patterns of use. The 
action sequences for occasionally performed tasks are 
generated by a mixture of recall of previous episodes of 
use and of problem solving processes that attempt to 
reconstruct missing action knowledge. Performance of 
these tasks is more like the reconstructive processes 
involved in recalling a story rather than the execution of a 
rule-based representation of a routine cognitive skill. 

LICAI+ is a model of occasional users. This model 
suggests   the  partitioning  of   all   steps   executed   in 
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performing a task into two categories: steps that support 
the label-following strategy and those that do not. Steps 
and tasks that support the label-following strategy can be 
performed by exploration. We know that users have 
strong preferences for learning by exploration (Carroll, 
1990; Rieman, 1996), which the label-following strategy 
supports. 

Experienced users can make effective use of manuals 
(Rieman, 1996) to perform tasks that are not supported 
by the label-following strategy. However, users will have 
continued trouble with steps not supported by label 
following (NLF steps). These steps once correctly 
performed with the assistance of hints are difficult to 
remember over long delays (2 or more days). We estimate 
that the probability of recall failure is at least .5. 

The data from the short delay recall conditions also 
suggests a possible limitation of empirical usability 
tests. Test users will have trouble with the initial 
versions of common tasks that don't support the label- 
following strategy. Second and third versions of these 
tasks that are given to test-takers later in a session will be 
performed correctly, and evaluators may incorrectly infer 
that there are no problems with the interface for these 
later versions. 

In summary, the theoretical and empirical results 
presented in this paper and in numerous other studies 
demonstrate the wide applicability of the label-following 
strategy. It supports rapid learning of all kinds of 
applications, not just walk-up-and-use applications like 
automated teller machines. We have shown in this paper 
that label following is also a major contributor to the 
usability of occasionally performed tasks. 
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ABSTRACT 
Current cognitive user models enable interface designers 
to describe, analyze and predict aspects of user cognition. 
However, none of the major cognitive user models such 
as ICS, MHP, or CCT tackle the human error aspect of 
cognition explicitly. The represented operator perfor- 
mance is constrained to be error-free, expert performance. 
This paper argues that usability and design analysis will 
greatly benefit from representing a cognition-based error 
model within a cognitive architecture, such as ICS. The 
Netscape Internet browser acts as a case study throughout. 
The resulting approach is shown to aid the analysis of 
human error. Reasoning about potential error causes as 
well as the generation of design recommendations can 
thus be grounded in cognitive theory. 
Keywords 

Human Error, Netscape, Cognitive User Modeling, ICS 
INTRODUCTION 

Integrating Error Models and Cognitive Architectures 

Cognitive architectures seek to represent the building 
blocks of human cognition. They provide the basis for 
cognitive user models, which strive to represent some 
aspects of the user's understanding, knowledge, or 
cognitive processing. These models can then contribute to 
our understanding of the cognitive limitations of an 
operator performing a task, for example the effects of 
cognitive load on user performance (Barnard and May, 
1993; Ashcraft, 1994). 

Erroneous task performance highlights precisely these 
limitations of human cognition. It is surprising, therefore, 
that the major cognitive user models do not explicitly 
tackle issues associated with erroneous performance 
based on cognition. They strive to represent error-free 
performance, assuming expert performance in some 
perfect context (see for instance Simon, 1988; Grant and 
Mayes,   1991;   Booth,   1991).   This   idealizes   real-life 

conditions of task performance. 

User error can point to problems in human-system 
interaction that need to be resolved in order to enhance 
the system's usability. Human error taxonomies aid the 
prediction and detection of error classes. They can thus be 
exploited for error prevention and recovery mechanisms 
(Reason, 1990; Taylor, 1988). Those can then be 
incorporated into the interface design. 

On the other hand, stand-alone human error theories 
highlight possible sources of erroneous performance 
without providing a language in which to express these 
error tendencies when applied to human cognitive task 
performance. This paper will use a cognitive architecture 
as a vehicle for expressing not only expert task 
performance but also the more realistic error-prone 
thought and action sequences processed by the human 
operator. By doing this, the error modeling capability 
implicit in the comprehensive ICS cognitive architecture 
is made the focus of inquiry into the underlying cognition 
of user performance. Such explicit modeling of erroneous 
performance can thus help to communicate user cognition 
analyses, and to ground design decisions in a cognitive 
theoretical framework. 

As a running example, error modeling will be applied to 
tasks concerning the use of Netscape Navigator™. This 
example is appropriate because it represents a mass- 
market application where errors frequently lead to high 
levels of frustration during common tasks (Johnson, C, 
1997). 

Interacting Cognitive Subsystems (ICS) and Reason's 
Model of Human Error 

We will use Interacting Cognitive Subsystems (ICS) 
(Barnard and May, 1993) to illustrate the modeling of 
human error within a cognitive architecture. ICS provides 
a comprehensive account of human cognition.  It has 
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proved powerful in explaining cognitive phenomena such 
as the stability of users' mental models during dual task 
interference effects (Duke, et al. 1995). It has been 
applied to real-life systems and tasks, such as 
cinematography (May and Barnard, 1995). Alternative 
cognitive user models, such as Task Analysis for 
Knowledge based Descriptions (TAKD) (Johnson, P. et 
al., 1994), User Action Notation (UAN) (Hartson et al., 
1990), or Soar (Newell, 1990) might have been used. 
However, they lack the level of detail in ICS's 
representation of cognitive processes, or, in the case of 
Soar, the inherent constraints these have to satisfy 
(Wilson et al., 1988; Kjaer-Hansen, 1995). ICS was 
designed to provide a theoretical framework within which 
to place user cognition. It attempts to "satisfy the need for 
applicable theory" (Barnard, 1987). ICS, therefore, 
bridges the gap between theory-oriented cognitive 
architectures and task-oriented cognitive user models 
(Grant and Mayes, 1991; Simon, 1988). 

Reason's taxonomy of human error (Reason, 1990) 
represents a conceptual classification of error, as opposed 
to a contextual or a behavioural one. The latter, 
exemplified for instance by Hollnagel's (1991) 
classification of error phenotypes, does not lend itself to 
the in-depth analysis of the underlying cognitive sources 
of error. For instance, a behavioural error category might 
include errors that exhibit the same surface characteristics 
without sharing the same cognitive basis. 

An Interactive System: Netscape Navigator 

According to user population estimates, the Internet is 
gaining roughly 150,000 new users per month, joining 20 
million existing Internet users (Pitkow and Recker, 1994). 
Internet browsers facilitate global communication by 
providing supporting hypertext navigation. Familiarity 
with such browsers, and therefore their usability 
constitutes a prerequisite for taking part in this novel 
information exchange. Maximizing this usability 
therefore represents a continuous concern for designers of 
successively modified versions of Internet browsers. The 
Netscape Interface (see Figure 1) will be used for 
illustration throughout this paper. 

Content and Structure of this Paper 
The following section will take a closer look at the ICS 
architecture and Reason's theory of human error. The 
modeling capacities of ICS will be illustrated by a 
representation of an error-free user performance. 
Reason's error classification scheme will then be 
introduced. Readers familiar with ICS and Reason can 
move straight to the third section, where the benefits of 
this combined modeling approach are pointed out. ICS is 
used as a framework within which Reason's classification 
of human error can be expressed. 

A COGNITIVE ARCHITECTURE AND A HUMAN ERROR 

MODEL 
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Figure 1. The Netscape Internet Browser 

This section describes Barnard's ICS model and Reason's 
human error taxonomy. This provides the framework in 
which the representation of erroneous operator interaction 
can be placed. 

Interactive Cognitive Subsystems (ICS) 

Cognition is represented in ICS as the flow of information 
between a number of different subsystems, and the 
processing performed on this data. Each of the 
subsystems has associated with it a unique mental code in 
which it represents the information it receives and 
processes. It will transform its data output into the 
corresponding mental code of the subsequently receiving 
subsystems. Each subsystem can receive several input 
streams and achieve a blending of these data streams 
under certain circumstances as described below (May and 
Barnard, 1995). Each subsystem also has at its disposal a 
local image store. This serves as an episodic memory 
buffer of infinite size. A copy of any input the subsystem 
receives will automatically be copied to the local image 
store, before being further processed. 

The nine subsystems can be grouped into four categories. 
Figure 2 presents an overview. 

Modeling a Netscape Task in ICS 

Figure 3 illustrates how the error-free performance of a 
task of locating an object (an Up-Arrow, such as shown in 
the visual subsystem) is modeled in ICS in terms of 
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Sensory subsystems: 
VIS visual: hue, contour etc. from the eyes 
AC acoustic: pitch, rhythm etc. from the ears 
BS body-state: proprioceptive feedback 

Effector subsystems: 
ART articulatory: subvocal rehearsal & speech 
LIM limb: motion of limbs, eyes etc.  

Structural subsystems: 
OBJ object: mental imagery, shapes etc. 
MPL        morphonolexical: words, lexical forms 

Meaning subsystems: 
PROP      propositional: semantic relationships 
IMPLIC   implicational: holistic meaning 

Figure 2. The Cognitive Subsystems 

information flow between the subsystems, and thus the 
different resources that are employed. Visual information 
concerning the target arrives at the visual subsystem and 
is copied into the local store. It is then transformed into 
object code (1). The propositional subsystem has 
generated a representation of the target of the location 
task (by conferring with its local buffer) and transforms 
this into object code (2). This is sent to the object sub- 
system, and can there be blended with the incoming struc- 
turally encoded visual information (3). The matching rep- 
resentation can be sent back to the propositional sub- 
system - the target has been located. 

Thus, Figure 3 illustrates how human mental processing 
underlying error-free performance can be represented 
within ICS. In the case of erroneous performance, 
however, usability designers might resort to an error 
classification scheme in order to analyse this particular 
instance of user behaviour. The following section will 
introduce one such taxonomy. We will then go on to show 
how a more detailed, cognitive analysis can be based on 
initial error classification, and thus provide a further 
perspective on user behaviour. 
Reason's Classification of Human Error 

Reason (1990) investigated the more general underlying 
error production mechanisms within human cognition and 
produced a conceptual classification of error types which 
is widely referred to in research into error modeling 
(Green, 1985, Rasmussen, 1983; Rouse and Morris, 1987; 
De Keyser, 1989). He bases his error classification skill- 
based slips and lapses on the one hand, and rule- and 
knowledge- based mistakes on the other (see also 
Norman, 1981, and Rasmussen, 1983). 

Reason furthermore asserts that instances of his three 
basic error types are indirect results of what he calls the 
'underspecification' of cognitive operations. In case of an 
ambiguity of the situational requirements, the cognitive 
system defaults to contextually appropriate, high frequ- 

ency responses. This idea of default assignments features 
in most other cognitive theories, such as Bartlett's (1932) 
theory of schemata, and is well backed up by empirical 
evidence. 

This scenario particularly lends itself to being expressed 
in the 'cognitive language' provided by ICS. The 
limitations of human cognition in the face of information 
overload, or cognitive strain, is built into ICS as the 
architectural constraint of subsystems not being able to 
process simultaneously inputs which belong to distinct 
configurations. Using ICS might help expressing the 
details of Reason's 'underspecification' more precisely. 
Skill-based Slips and Lapses 

Slips and lapses are error types that these manifest them- 
selves as actions or states that deviate from the current 
intention due to execution failures (slips) and/or storage 
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Figure 3. Processing associated with the task of locating 
an icon on Netscape 

failures (lapses). Slips and lapses are observed at the skill- 
based level of performance, and originate from either the 
omission of attentional checks (inattention) during the 
routine action sequence or making an attentional check at 
an inappropriate moment (overattention). 

A slip caused by inattention occurs in particular when 
current intention is to deviate from common practice. For 
instance, entering a well-known URL of a website cons- 
titutes a routine task. If the URL is changed and the user, 
although aware of that change, still happens to enter the 
old URL, then this is a typical example of an action slip. 

W 



A lapse might arise from what Reason calls "Reduced 
Intentionality'. For instance, if selecting a link on the 
current site results in a considerable delay for this site to 
be loaded, the users might become distracted, and then 
experience disorientation upon facing the loading site. 
This can be seen as one of Reason's described reduced 
intentionality states, such as a 'what-am-I-doing-here' 
experience (see below). 

Skill based errors such as these contribute to the sources 
of user frustration when accessing the World Wide Web 
(as described in more detail in Johnson, C, 1997). These 
errors need to be taken into account in future design 
decisions. Applying Reason's categorization of error helps 
to identify error classes and presents a step towards 
dealing with the underlying usability problems of the 
system. 

However, error taxonomies such as Reason's typically 
confine themselves to broad error categories such as slips 
and lapses. A more detailed, lower level description of 
such classes might aid the further investigation of its 
instances. Thus, the design process might be tuned more 
finely to the usability needs pointed to by the user error. 

Cognitive modeling techniques such as ICS can provide a 
more precise vocabulary to augment the general descrip- 
tions of error taxonomies. Examples of this lower level 
modeling of classes of human error are given below. 

Rule-based Mistakes 

Mistakes are apparent in actions that may run according 
to plan, but where the plan is inadequate to achieve its 
desired outcome. For any task, rules must be selected by 
the cognitive system which describes methods to reach a 
given (sub)goal. The selection occurs according to certain 
criteria. These include best match, specificity, and rule 
strength. Rule strength is defined to be the number of 
times a rule has performed successfully in the past. 
Occasionally, rule strength might override the other 
factors resulting in misapplications of otherwise 'good' 
rules to inappropriate situations. 

As an example, an animated icon at the bottom of a page, 
near the contact information is quite often the mail-me 
icon (commonly found are self-folding envelopes, self- 
writing letters, or moving mailboxes). A corresponding 
rule will be formed and strengthened over several 
successful applications. In the case of a home-page icon 
being animated and located at a similar position in the 
screen layout, this rule might be applied and could lead to 
non-intended actions such as clicking on the icon when 
intending to mail the author of the page. 

Such error classes can be predicted as increasingly adding 
to usability deficiencies as the use of animated icons 
accelerates in web page design (Nielsen, 1997). By being 
able to predict these errors, preventative measures can be 

taken and further user frustration (Johnson, C, 1997; 
Ramsay et al., 1998) can be curbed. 

USING ICS TO EXPRESS REASON'S ERROR TYPES 

In this section, we will examine more closely the 
modeling of errors as identified by Reason's taxonomy 
within the ICS architecture. 
Commonly occurring errors and usability problems when 
interacting with Internet browsers' interfaces gave rise to 
numerous design guidelines and principles'. Interface 
design issues such as the use of counter-intuitive icons 
and download delays are all well known to aggravate 
usability problems (see for instance Nielsen, 1996; John- 
son, C, 1997; Ramsay et al., 1998). Rarely, however, are 
the errors resulting from those usability problems 
described in detail, or even analyzed in terms of 
underlying psychological factors (Johnson, C, 1998). 
Expressing such errors within a cognitive model will 
allow us to investigate and reason about their underlying 
psychological causes. The model is thus used as a tool for 
reasoning about user error on a further, more detailed 
level. 
Analysis of Errors and their Underlying Cognition 

High download latency of web pages was identified as 
major source of frustration and decreased satisfaction 
with the downloading site and also as attenuating user 
performance (Ramsay, Barabesi and Preece, 1998; 
Johnson, C, 1997). For instance, as introduced above, if 
selecting a link on the current site results in a 
considerable delay for this site to be loaded, the users 
might become distracted, and then experience 
disorientation upon facing the loading site. 

This disorientation can be classed as the effect of a 
phenomenon which Reason termed 'Reduced 
Intentionality'. If a delay occurs between the formulation 
of an intention to do something and the time for this 
activity to be executed, the intention needs to be 
periodically refreshed. Other cognitive processes such as 
secondary intentions will otherwise claim the workspace 
resources. This mechanism can lead to lapses in the form 
of reduced intentionality states, the above described 
surprise and disorientation. 

The cognitive processes underlying this scenario can be 
represented in ICS as shown in Figure 4. 

' See for instance Yale C/AIM WWW Style Manual (URL: 
"http://info.med.yale.edu/caim/manual/index.html" current at 
08.12.1997) or The Ten Commandments of HTML 
(URL:"http://www.visdesigns.com/design/commandments.ht 
ml" current at 08.12.1997 
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Figure 4. Reduced Intentionality: A Lapse 

After processing the goal hierarchy for selecting a link, 
the cognitive system shifts its focus back onto the current 
page (3 and 4). If novel external (1) and the current inter- 
nal input are not coherent, and thus cannot be blended (2), 
a decision must be made as to which of those to accept as 
valid input. The longer the delay, the stronger the influ- 
ence of the novel input grows, with it eventually replacing 
the internal propositionally influenced representation (3). 
The recognition of this mismatch will lead to a lapse as 
described above. 

By modeling the underlying mechanisms of 
manifestations of attenuated performance, such as user 
error, and the causes of decreased satisfaction within ICS 
we can shed some light on the processes fundamental to 
the production of the user error as mediated by the 
described usability problems. 

Reasoning about Alternative Analyses of Error Causes 

Misinterpreting user interface icons is a common source 
for user error in interactive systems (Norman, 1988, 
1993). However, the mistake might be grounded in 
varying cognitive processes, and not stem from one kind 
of cognitive mechanism alone. 

Typically, user interface design manuals and textbooks 
stress the importance of intuitiveness of the icons chosen 
(Preece, 1994) and thus identify 'counter-intuitiveness'as 
a source of faulty identification of icons. However, further 
insight into the source of such user error can be obtained 
by investigating it in greater detail. As will be shown 

below, mistaking for instance a mail-me button with a 
homepage icon can be modeled in respect to two differing 
underlying cognitive mechanisms. 

Unless these two different causes are considered these 
designs might misdiagnose an important problem in user 
utilization of icons. Using a cognitive architecture to 
reason about the potential underlying cognitive error 
production processes allows designers to investigate the 
detected usability problem in a systematic way. 

The above described user error could according to 
Reason's scheme be classified as a slip termed 
'Perceptual Confusion'. In perceptual confusion, 
something that looks like the proper object, is in the 
expected location, or does a similar job is accepted as a 
match for the proper object. These slips could arise 
because, in a routine set of actions, it is unnecessary to 
invest the same amount of attention in the matching 
process. Thus acceptance criteria concerning the expected 
input might degrade, and result in rough and ready 
matches. 

The processing carried out can be modeled in ICS as 
shown in Figure 5. 

Figure 5. Perceptual Confusion: A Slip 

The visual data is received at the visual subsystem (1), 
sent to the object subsystem for the recovery of a 
structural description (2), and finally interpreted by the 
propositional subsystem (3). A loop is entered in order to 
maintain a stable cognition. The resulting interpretation 
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on the propositional level influences the further view of 
the object. If, however, the object subsystem receives 
ambiguous visual information, it will make use of its local 
image record and fill in the assumed missing information. 
This principle of ICS resembles closely what Reason 
describes as the cognitive system's reaction to 
underspecification of a mental operation as described 
above. 

The data thus acquired from the image record of the 
object subsystem might also fit in with the propositional 
interpretation of what is perceived, and thus stabilize in 
the cognitive system. If the assumption underlying the 
choice of what data is used to eliminate the 
underspecification is wrong, however, the representation 
of what is thought to be perceived will also be incorrect. 
The wrong icon will be chosen, and the information 
necessary for a mouse click sent to limb subsystem (4). 

This represents one possible underlying cause of the 
described error. However, the same manifestation of user 
behaviour might also point towards a second, different 
underlying cognitive mechanism. Employing Reason's 
taxonomy, the mistaking of an icon can be classed as a 
perceptual slip as modeled above. On the other hand, it 
could also be classed as a rule based mistake. Using ICS 
to model the underlying cognition of the error provides a 
means to further investigate the behaviour trace and its 
associated usability problem. 

Thus, the error described above could be classed as a rule- 
based mistake as opposed to a slip. Identifying the home- 
icon might well be based on rules that are utilized by the 
cognitive system in order to discriminate different sets of 
icons. Features which positively discriminate icons 
fulfilling one function from those fulfilling another might 
be listed in the set of conditions which when matched 
cause to fire the rule. Indiscriminative features in icons 
might thus lead to a rule wrongly being fired. 

This can be modeled in ICS (see Figure 6) similar to the 
modeling approach applied to the perceptual confusion 
approach, but this time with the implicational subsystem 
playing the major role in accepting information 
augmented wrongly by the propositional subsystem and 
its local image store. Thus for the goal 'press home 
button', a subgoal hierarchy can be formulated as 'if 
locate home button, move cursor to click on it', and 'if 
object has X features, it is the home button'. By mistaking 
the icons on a propositional level, the mail-me button 
might be clicked instead. 

The examples elaborated above show clearly how one 
overt form of user error can stem from several different 
'errors' within the cognitive processing taking place. This 
M:N relationship between cause and error might have 
gone undetected if systematic error modeling within a 
cognitive architecture had not taken place, this helps 

analysts to explicitly consider the detailed causes of 
usability problems. 

Generating Design Recommendations 

Since underspecification proved the major source of error 
in the above example, once for perceptually and then for 
semantically discriminative features of the icon, this 
should be targeted by designers to remedy misidentifica- 
tion of icons. Thus, two functionally dissociated sets of 
icons should not share the same superficial perceptual 
features. 

£.^":M. 

Figure 6. Rule Strength: A Mistake 

Features commonly used to discriminate one set of icons 
from another should be taken into account when 
designing future sets (Moyes, 1995). These feature 
considerations should not limit themselves to ambiguity 
concerning structural characteristics of icons, but also to 
features such as those mentioned in the examples earlier. 
This included as discriminative features of mail-me 
buttons not only their shape and internal composition, but 
also for instance the location of the icon on the screen, 
and characteristics commonly unique to mail-me buttons 
such as animation as present in self-folding envelopes, 
self-writing letters, or moving mailboxes. 

The important point to highlight here is that the modeling 
approach described does present a method for providing a 
grounded rationale for design decisions, and can guide the 
designer in making informed choices when faced with 
design alternatives. 

Another example of how this modeling technique can aid 
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the generation of design decisions is introduced as this 
section progresses. 

Johnson (C, 1997) describes how download latency of 
web pages affects the usability of the World Wide Web. 
The effects range from user dissatisfaction with time 
investment to the psychological devaluation of the 
anticipated page (Ramsay et al., 1998). Consider the 
following scenario of user error resulting from download 
latency: After having selecting a link on the current site, a 
delay in downloading might lead to attention being 
focused on reading the current page. An intention to scroll 
down the page just before the new page is downloaded 
might lead to the scrolling action being carried out on the 
new page instead. 

This scenario fits Reason's description of 'behavioural 
spoonerisms', namely slips based on interference errors. 
As defined above, a slip is an action that deviates from 
intention due to failure in the execution stage of 
processing operations. An interference error occurs, when 
two concurrent actions compete for control over cognitive 
processing and a transposition of actions within the same 
sequence takes place. For instance, intending to speak and 
perform an action at the same time can lead to 
inappropriate blends of speech and action. In our 
example, waiting for the new page to load, and scrolling 
the old page can be seen as two concurrent actions 
interfering and leading to an execution failure, the 
scrolling of the new page. 

This can be modeled in ICS very similarly to the skill- 
based example of reduced intentionality. Only this time 
the focus is not on the delay but on the shift of focus back 
to the current page. A 'mental model' of the current page 
will be constructed (or reactivated). The unexpected 
appearance of the new page might lead to a blending of 
representation and the action included in one cognitive 
configuration carried out as part of a secondary one. 

As a consequence, future browser designers should 
beware of the error-inducing character of non-interrupted 
browser functionality when downloading a site. 
Alternatively, browser functionality should only be 
available to the current site accessed. A clear distinction 
should be made when transferring functionality to the 
downloading site to alert users to the new context. This 
design flaw in Internet Browsers has not received much 
attention. We hypothesize that it may become 
increasingly important as the interweaving of the user 
population of the Internet grows and the World Wide 
Web becomes an increasingly common tool for 
communication and information exchange. Detailed, 
error-oriented cognitive analysis of such design problems 
can help to predict future generations of interface 
problems. 

CONCLUSION AND FURTHER WORK 

Cognitive user modeling enables engineers to gain a 
deeper understanding of the complexities of human task 
performance. Current techniques typically constrain this 
performance to be idealized, error-free and often at an 
expert level. However, human error during performance 
represents a major source of insights into the workings 
and limitations of operator cognition, and therefore into 
usability problems. By being based on cognitive models, 
the possibility of representing erroneous performance is 
inherent in these techniques. Few modeling techniques to 
date explicitly represent human error precisely, as 
embedded in cognitive theory. This paper showed the 
adoption of Reason's error taxonomy and Barnard's ICS 
for the systematic representation of operator error within a 
theoretical cognitive framework. The utilization of such a 
combined approach was illustrated to benefit several areas 
of application. User error can be described more precisely 
by linking it to its underlying cognition. Analysis can 
reach beyond surface categorization, and it is made 
possible to reason about the actual causes of error. As a 
consequence, an informed choice concerning competing 
design options is facilitated. This paves the way for 
usability design that takes full advantage of the insights 
expressed in cognitive theory. 

Embedding human error modeling into a cognitive 
theoretical framework helps to express designers' 
understanding of the error sources. Communication of 
their reasoning, based on expertise and experience, is 
illustrated in this paper by using Reason's taxonomy and 
ICS. Further work might also take issues such as 'learn- 
ability' and level of complexity into account in the choice 
of the cognitive architecture employed. More easily 
learnable cognitive modeling techniques will further lend 
themselves for integration into the design process. 
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ABSTRACT 
We have recorded the behaviour of several users solving 
the same tasks with an interactive database program and 
were able to identify several distinct strategies. Since the 
number of users exceeds the number of strategies, 
multiple users will have a strategy in common. Our aim 
was to find groups of users sharing the same strategy. 
Following each of the three methods (correlation, inter- 
section, and exclusion) we define a metric among task 
solving sequences. For multiple users, we represent these 
measures by a matrix system, in order to find groups of 
users with common behaviour. Direct interpretation or 
multi dimensional scaling of such matrices indicates 
distinct user groups. The common denominator for each 
group can be interpreted as a strategy. A few distinctive 
solution strategies were found to exist. 

Keywords 
Mental models, observable behaviour, plan recognition, 
user strategies, statistical analysis, repetitive behaviour 

1   MODELLING   APPROACH 
Humans express themselves in many ways. One of these 
ways is everyday problem solving. We will focus on 
problem solving in the domain of human computer inter- 
action. In particular, we will examine how multiple users 
solve various tasks with a relational database application. 

complexity 
Fig. 1: A scheme showing the differences between models of 
reality and real humans (HPSs). Models are meant to 
represent objects and processes existing in reality. 

It is hard to grasp how human problem solvers (HPS) 
really express themselves, since the persons we study are 
live beings. Nevertheless, a mental model (see Fig. 1) 
may give us an idea of the real HPS. Since we are 
interested in computer mediated, everyday task solving, 
we introduce a special case of mental models, called user 
mental model (Tauber, 1985) (UMM; see Fig. 1). UMMs 
can bring understanding about the strategies people use 
when solving specific problems. UMMs can be represen- 
ted in many ways, using plain text, Petri nets or state- 
transition vectors. We choose the latter representation to 
elaborate UMMs based on observable task solving 
behaviour. 

In general, we observe a lot of task solving behaviour 
that is not strictly task related. If we study one user 
solving a task, we are hardly able to single out the 
successful strategy from the remaining behaviour. One 
approach may be to study many users solving the same 
task. Since they all solve the same problem, we suppose 
that their common behaviour is what was required to 
solve the task. If there are several successful strategies, 
some users may have one strategy in common, other 
users a second one. 
Successful strategies are most often defined by the given 
task-system combination. For users to accomplish a task, 
they must follow one of these strategies. As soon as a 
successful strategy has been accomplished, user behaviour 
is finished. 

Which strategy a user prefers, as well as other kinds of 
user behaviour can tell us something about the particular 
HPS; for instance how the successful strategy was 
acquired. Given a behavioural task solving sequence, we 
want to separate the strategy (which is more related to the 
task-system combination) from the remaining behaviour 
(which is more related to the HPS). In the rest of this 
paper, strategy will mean one (of many), possibly error 
free, task solving behavioural sequences. 

The aim of our work is to find which strategies are needed 
to solve a given task. We are looking for automatic 
methods to find these strategies. Under certain conditions, 
strategies may also be obtained by protocol analysis 
(Ericsson and Simon, 1984). Protocol analysis implies 
manual inspection of video and verbal utterances in 
addition to logfiles. With simple tasks, this work can be 
overcome. For more complex tasks, protocol analysis be- 
comes   cumbersome.   Semi-automatic    generation    of 
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process models was studied by Ritter and Larkin (1994). 
Motivated by their work, we wish to suggest further prin- 
ciples for automatic recognition of user strategies and 
plans. 

In this paper, human perception and verbalisation will not 
be considered as part of the problem solving. Hence, 
purely based on observable task solving behaviour, we set 
out for automatic methods, applicable with simple as 
well as with complex tasks. We only consider protocol 
analysis as a mean to validate the automatic methods we 
elaborate. 

2 SYSTEM   DESCRIPTION 
The system we study is a relational database program 
with 153 different dialogue states. The possible 
transitions of the system are represented by a state- 
transition vector space. A state-transition-vector (STV) 
summarises a subject's task solving behaviour for one 
task. It has length n, where n is the total number of 
transitions (n=978) for the complete database program. 
Each STV element tells how many times a certain 
transition was activated to solve the task. 

Since the order of activated transitions is not contained in 
the STV, the order of user behaviour is only partly 
conserved. It is stored in an implicit form, given by the 
system dialogue structure and is embedded in the structure 
of the STV. 

To reduce complexity, it is possible to replace each STV 
element >1, by 1. We call the result binary-state-transi- 
tion-vector (B-STV). It tells us which transitions were 
activated, but nothing about repetition. 

3 TASK DOMAIN 
An empirical investigation was carried out to compare 
different types of expertise (Rauterberg, 1992). For the 
reconstruction of UMMs we used logfiles of six novice 
and six expert users, all solving the same task. The task 
was to find out how many data records there are in a given 
database consisting of three file. An example UMM of a 
task solving process, based on one of the experts, is 
presented in Rauterberg et al. (1997). In that example, 15 
different transitions (number of positive STV elements) 
were activated to solve the task. However, since some of 
them were activated repeatedly, the total number of 
activated transitions (the sum of STV elements) is 25. 

4 INTERPRETING   BEHAVIOURAL   SEQUENCES 
Studying an STV of one user can tell us which system 
states the user passed by, which transitions that were 
triggered in those states and how many times that 
happened. Different users working with the same system 
are directly comparable, since their behavioural sequences 
only differ by the value of the vector elements. 

STVs. Exclusion areas can be understood as the 
asymmetric difference between two user STVs. 

Based on such considerations, we raise the following 
questions and suggest corresponding methods as answer: 

1) What is the proximity between two behavioural 
sequences? Method suggested: correlation. 

2) What do two behavioural sequences have in common 
(similarity)? Method suggested: intersection (Fig. 2). 

3) What do two behavioural sequences not have in 
common (difference)? Method suggested: exclusion (Fig. 
2). 

userl STV 

user2 STV 

Fig. 2: Intersection area and exclusion areas between userl 
and user2 STV. 

For each method, we elaborate a metric (Table 1). The 
order of the metric may be symmetrical (the metric 
applied from userl STV to user2 STV is the same as the 
metric applied from user2 STV to userl STV) or asym- 
metric (the metric applied from userl STV to user2 STV 
is not the same as the metric applied from user2 STV to 
userl STV). Based on the metrics applied between all the 
user STVs, we then apply a grouping algorithm. 

With each group suggested by the grouping algorithm, a 
strategy may be approximated. The procedure is to create 
a STV with a maximum number of non-zero elements 
common to all the users of the group. 

In the following presentation, we will proceed from more 
statistically based to more analytically based methods. 

Table 1: The three suggested methods and their characteris- 
tics. CORR means a standard correlation method, the other 
metrics are defined by Formula 1,2 and 3. 

Method Metric 
name 

Metric 
nature 

Grouping 
algorithm 

Correlation CORR Statistical Statistical 

Intersection M's  Mm 
p.q      p.? 

Analytical Statistical 

Exclusion MEX 
p.v 

Analytical Analytical 

5   BASIC   QUESTIONS   AND   METHODOLOGY 
First, we want to find out how the behavioural sequences 
of two users can be related. A classical method is that of 
correlation. An alternative is to look for analytical 
methods. The user STVs can be represented by ellipses as 
in Fig. 2. The area of an ellipse corresponds to the sum 
of the STV element values. Intersection area can be 
understood as symmetric similarity between two  user 

5.1   CORRELATION   METHOD 
In this method the metric between user STVs is the 
degree of proximity. The metric values are analysed by 
multi-dimensional-scaling (MDS, Systat, 1989) to 
indicate groups of users. 

<?1 



5.1.1 METRIC 
Correlation is one way to measure the proximity between 
behavioural sequences. We apply Pearson correlation as a 
measure for proximity between two STVs. By this 
procedure, we get an mxm (m=12) diagonal dominant 
symmetrical matrix with possible values between minus 
one, via zero (no proximity) and one (equality). For Fig. 
3 the observed values are between -0.003 and 0.948 
(without considering the diagonal elements). 

5.1.2 GROUPING ALGORITHM 
The correlation matrix is interpret by MDS, giving the 
plot of Fig. 3. We have chosen to apply two dimensional 
MDS to allow visual interpretation of the plots. 
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Fig. 3: MDS (r=l, Kruskal, Mono) plot with a Pearson corre- 
lation matrix gives RSQ=0.870. 

5.1.3 OUTCOME 
From the plot in Fig. 3 we see how the users may be 
grouped: {Nl, N4, N6, E4}, {N2, N3, El, E2, E3, E6} 
and {N5, E5}. Some of these user STVs may well con- 
sists of parts of several strategies in addition to the suc- 
cessful one. 

According to the proportion of variance (RSQ=0.870), 
MDS explains some of the variance of the user data, but a 
significant part remains unexplained. 

5.2   INTERSECTION   METHOD 
This method is based on the observation that if two users 
followed the same strategy, that strategy will belong to 
the intersection of the two users STVs. The order of the 
an intersection metric is symmetric, since both user 
STVs have the same in common. These metric values are 
analysed by MDS to indicate groups of users. 

5.2.1 METRIC 
Similar behaviour is measured by summing up the 
smaller STV elements of the two user STVs, thus 
considering the number of activated transitions common 
to both users. 

It is reasonable to normalise the degree of intersection by 
the smaller of the sums of the STVs elements (which 
would be the maximum possible value for the 
intersection). 

Formula 1: 

M is 

n 

n n 

mm 
'p.' 

.1=1 i=i 

where: 

P<1 

i 
n 

eP,i 

: Intersection metric between user p and q 

: Summing Index STV elements 

: STV length, upper summing limit 

: STV element i for user p 

: STV element i for user q 

We may ignore repetitive behaviour, using B-STVs in- 
stead of STV. Results based on B-STVs are called binary. 

Formula 2: 

n 

Xrnm(ep.-eqi,l) 
i=i 

f n n N 

Smin(ep."1)'EminK"1) 
V/=i i=i 

mm 

where: 

M 
i 
n 
e 

BIS 
'PA 

P.' 

1.' 

Binary intersection metric between user p and q 

Summing Index B-STV elements 

B-STV length, upper summing limit 

B-STV element i for user p 

B-STV element i for user q 

By this procedure, we get an mxm (m=12) symmetrical 
matrix with elements based on STVs (Formula 1) or 
B-STVs (Formula 2). The elements take possible values 
between zero (no similarity) and one (equality). For Fig. 
4, based on STVs, the observed values are between 0.078 
and 0.929 (without considering the diagonal elements). 
For Fig. 5, based on B-STVs, the observed values are 
between 0.182 and 0.882 (without considering the 
diagonal elements). 

5.2.2 GROUPING ALGORITHM 
We interpret the symmetrical exclusion matrix by MDS, 
obtaining plots like Figs. 4 and 5. The users seem to re- 
present three groups, {Nl, N4, N5, N6, E4}, {N2, N3, 
El, E2, E5} and {E3, E6}. E3 and E6 may as well be 
combinations of several strategies. 
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Fig. 4: MDS (r=l, Kruskal, Mono) plot with a normalised 
intersection matrix gives RSQ=0.975. 

exclusion areas are asymmetric, the method does not 
allow for MDS as grouping algorithm. 

5.3.1 METRIC 
This method measures the difference between two STVs 
by estimating how much of one user STV (column index 
in Table 2) is excluded from a second one (row index, 
Table 2). 

Formula 3: 

OIlH^-^'0) 
where: 

M 
i 
n 
e 

EX 

p,i 

<!•• 

: Exclusion metric between user p and q 

: Summing Index STV elements 

: STV length, upper summing limit 

: STV element i for user p 

: STV element i for user q 
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Fig.  5:  MDS (r=l, Kruskal,  Mono)   plot   with   a binary 
normalised intersection matrix gives RSQ=0.995. 

5.2.3 OUTCOME 
According to the RSQ of Fig. 4 (RSQ=0.975) and of Fig. 
5 (RSQ=0.995), we can explain most of the variance 
among user data. However, the binary based plot of Fig. 
5 (RSQ=0.995) is slightly better than that of Fig. 4 
(RSQ=0.975). That is surprising, since the method 
ignores information about repetitive behaviour. Maybe 
such information is redundant in the context of this 
method. 

5.3   EXCLUSION   METHOD 
This method is based on the exclusion as a metric of 
difference. Exclusion among two users is always given by 
two areas. The area of one user STV (user 1, Fig. 2) 
excluded from the area of a second user STV (user 2, Fig. 
2), is not the same as the area of the second user STV 
excluded from the area of the first one. Since the two 

Following this procedure for all users, we get an mxm 
asymmetrical matrix (Table 2), where each element is a 
measure of exclusion (Formula 3). Since there were six 
novices (N1-N6) and six experts (E1-E6), m is 6+6=12. 

Table 2: Numerical representation of exclusion matrix. 
K6 6 43 47 51 70 50 47 35 73 5 171 0 

E5 17 15 14 69 48 67 23 7 64 21 0 24 

E4 9 44 47 56 70 55 47 35 73 0 171 8 

E3 17 41 41 68 77 62 28 28 0 21 162 24 

E2 17 15 16 68 81 67 19 0 66 21 143 24 

El 20 16 19 73 85 72 0 7 54 21 147 24 

N6 3 41 44 28 48 0 47 30 63 4 166 2 

N5 3 39 42 41 0 33 45 29 63 4 132 7 

N4 2 41 42 0 55 27 47 30 68 4 167 2 

N3 16 11 0 68 82 69 19 4 67 21 138 24 

N2 18 0 15 71 83 70 20 7 71 22 143 24 

Nl 0 41 43 55 70 55 47 32 70 10 168 10 

Ni Nl N3 N4 N5 Hb El Ml E3 E4 E5 Ed 

5.3.2 GROUPING ALGORITHM 
The grayscale representation (Fig. 6) of the exclusion 
matrix (Table 2) is generated by Mathematica (Wolfram, 
1991) ListDensityPlot with the negative, inverted 
exclusion matrix as input. We use the negative matrix to 
obtain a consistent plot. Fig. 6 is only meant as a visua- 
lisation of Table 2, and is not an exact mapping. Since 
division by zero is not defined, the diagonal elements of 
Table 2 were directly mapped to the darkest graytone. Fig. 
6 shows to what degree a column user STV is excluded 
from a row user STV. Darker matrix elements correspond 
to lower degree of exclusion. 

To interpret the degrees of exclusion in Table 2, we 
suggest an iterative predictor-corrector algorithm. The 
corrector is an estimator for the threshold value so that 
only considering exclusion measures between that value 
and zero will give the predicted number (predictor) of user 
groups. The stop criterion for the iteration method is that 
the number of user groups given by the corrector, equals 
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the value of the predictor. Research on converge criteria is 
part of our future work, so now we simply assume 
convergence. For each iteration the corrector is modified 
in order to meet the stop criterion, according to the 
following rules: If we consider too few exclusion 
relations (i.e. the corrector is too close to zero), the 
number of groups will be higher than the predictor. If we 
consider too many exclusion (i.e. the corrector is too far 
from zero), many or all of the users will be related by 
exclusion statements, and the number of groups will be 
lower than the predictor. We give our predictor the value 
predictor=3. By visual inspection of Fig. 6 it appears 
reasonable to consider the darkest matrix elements only. 
Since these elements have numerical values equal to or 
below 8 (Table 2), we choose the initial value of the 
corrector to be 8. 

E2     E3     E4     E5    E6 

Fig. 6: Grayscale representation of exclusion matrix. Darker 
elements mean higher exclusion of column user STV from 
row user STV. 

Diagonal elements are ignored, since each STV is fully 
similar to itself. 

Since small differences indicate similarity, we can derive 
(based on Table 2) four similarity relations (Table 3). 

Table 3: We can derive these four similarity relations. 

Similarity 
relation 

User STVs of each relation 

1 Nl e N4, N5, N6, E6 

2 E4 e N4, N5, N6, E6 
3 E6 e N4, N5, N6, E4 
4 E2e N2.N3.E1.E5 

All users that are related by an similarity relation are 
defined to belong to one group. Since the three first 
similarity relations (Table 3) are interrelated, this gives 
one group. The remaining, fourth similarity relation 
(Table 3) gives a second group. Users not appearing in 
any similarity relation define a separate group. 

5.3.3 OUTCOME 
Hence, the algorithm gives the following groups: {Nl, 
N4, N5, N6, E4, E6}, {N2, N3, El, E2, E5} and {E3}. 
We assumed that the number of groups should be three, 
so the stop criterion has already been met. If our predic- 
tion had not been met, we would have to try with a 
higher or lower corrector (according to the above men- 
tioned rules) and go back to the start of the predictor- cor- 
rector algorithm. This algorithm is repeated until the stop 
criterion is met (convergence). 

6   DISCUSSION 
In order to validate the outcome of these three automatic 
methods, we performed a protocol analysis (Ericsson and 
Simon, 1984) of the task. This is manual work, based on 
analysis of video and verbal utterances in addition to 
logfiles. This is mostly feasible for simple tasks, where 
users basically follow one or a few strategies. This 
analysis showed that there are three distinct strategies 
solving the task. We call these strategies SI, S2 and S3. 
Table 4 shows the users according to their successful 
strategy. 

Table 4: Manual protocol analysis of the task shows three 
distinct strategies and gives information about which user 
succeeded by which strategy. 

Strategy Users according to strategy 
SI 
S2 

S3 

Nl, N4, N5, N6, E4, E6 
N2, N3, El, E2, E5 
E3 

The strategies are represented as STVs and have the same 
qualitative interpretation as the STVs of the users (NI- 
NO) and (E1-E6). We see that the correlation method and 
intersection method do not correspond fully with the 
outcome of the protocol analysis. The exclusion method, 
however, gives exactly the same results. So, the 
exclusion method is the best one with our combination of 
system, task and users behaviour. In the future, we want 
to find out how the different methods, especially the 
exclusion method, perform with other, more complex 
tasks. 

We have seen that for a relatively simple task, the method 
which is purely analytical (exclusion method) is the best 
one. Measured by the RSQ-values, the intersection 
method is better than the correlation method, which is 
purely statistical. This indicates that in our context, sta- 
tistical methods offer less explaining power than the 
analytical methods for strategy and plan recognition. 

7  CONCLUSION  AND   FUTURE  PERSPECTIVES 
We have acquired results for one task only. To make our 
methods more reliable, we need to evaluate several tasks. 
For each task, we will validate our methods by manual 
protocol analysis. 

We also plan to study learning experiments, in order to 
recognise the acquisition process of strategies. 
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ABSTRACT 
In this paper, we describe a model of en-route air traffic 
controllers' cognitive activities in a dynamic man-machine 
system. The implementation of the model MoFl (Modell 
der Fluglotsenleistungen) is based on a production system 
in the programming language ACT-R (Adaptive Control of 
Thought - Rational, Anderson, 1993). 
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INTRODUCTION 
For various reasons, it can be useful to have a computer 
model of the operator's cognitive skills (see e.g., Opwis & 
Spada, 1994). The implementation of complex 
psychological assumptions 

• can provide a more detailed and explicit description 
of every cognitive process involved than a verbal 
description, 

• can test a theoretical framework by showing if the 
anticipated effects can be reproduced, 

• can serve as a framework for generating hypotheses 
that support the empirical work, and 

• can be used to analyse and predict the effects of 
future technological changes on the operator's 
cognitive activities in complex man-machine 
systems. These insights into the consequences 
affecting cognitve performance can be helpful for 
future system design or training concepts. 

On the basis of a broad empirical work - interviews, 
simulation experiments, memory tests, and a card sorting 
task with experienced and less experienced en-route air 
traffic controllers and of theoretical considerations, the 
interdisciplinary research group "En-route Controller's 
Representation" (EnCoRe) constructed a model MoFl 
(Modell der Fluglotsenleistungen) of the cognitive 
activities of experienced en-route air traffic controllers. 
The air traffic control domain serves here as an example to 
model cognitive processing during control of complex and 
dynamic situations. The focus has been on issues 
concerning problems inherent to dynamic situations: 
mental representation of the changing situations, and the 
context-dependent flexible coordination of concurrent 

cognitive tasks. In comparison to other research (Freed & 
Johnston, 1995, Bass et al., 1995) in our approach we 
concentrated on modelling the cognitive abilities of air 
traffic controllers rather than perceptual and motor skills. 
According to the rate at which traffic situations changes, 
and the cognitive task of air traffic controllers, perceptual 
and motor skills were only treated in order to ensure a 
realistic model - environment interaction. 

The implementation of the model is based on a production 
system in the programming language ACT-R 3.0 (Adaptive 
Control of Thought - Rational, Anderson, 1993). As 
programming environment, ACT-R includes a broad and 
detailed theoretical framework of human cognition. For the 
most part, ACT-R is suitable for modelling the cognitive 
performance of en-route air traffic controllers. But, for 
some aspects of dynamic situations ACT-R does not 
provide convincing solutions. 

The aim of this paper is to present the construction and the 
implementation of the model. This includes the principles 
of construction and implementation of our model, and the 
discussion of two special issues concerning the cognitive 
architecture of ACT-R: "dynamic representation" and 
"executive control". This paper is divided into three 
sections: 

• short description of the air traffic control task 
• the framework for the implementation: the cognitive 

architecture ACT-R 
• description of the psychological assumptions of the 

model and its implementation 

THE AIR TRAFFIC CONTROL TASK 
On the basis of different sources of information (e.g., 
radarscreen, flight strips, head-phone communication with 
pilots), air traffic controllers have to control complex, 
dynamic, and time-constraint traffic situations in order to 
diagnose risky relationships between aircraft and to solve 
potential conflicts. Therefore, they have to perceive, 
comprehend, and anticipate multiple characteristics of 
many aircraft while new incoming aircraft create new 
traffic relationships for evaluation. It's a common 
assumption, that in complex technological systems of a 
dynamic nature operators develop a mental representation 
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of the task environment with which they .interact. 
Diagnosis, decisions on future cognitive activities and 
actions are based on these insights into current and 
anticipated structures of the changing situation. Air traffic 
controllers express with the termpicture (e.g., Whitfield & 
Jackson, 1982; Falzon, 1982) what is often described as 
situation awareness (e.g., Endsley, 1995; Flach, 1995): a 
mental representation of the current and future traffic 
situation. 

By modifying the framework of cognitive task analysis 
(the "decision ladder", Rasmussen, 1986), extensive 
interviews with seven experienced controllers provided a 
first explorative functional analysis of main tasks used to 
build up and maintain this mental picture of the traffic 
situation. 

According to verbal reports of the air traffic controllers, 
the diagnosis of potential conflicts between aircraft 
contains stages, which are characterized by an increasing 
restriction and specification of the problem space. These 
stages are: observing the whole situation, analysing the 
parameters of selected aircraft, and anticipation. In the 
first step (observation) the operator monitors the whole 
situation in order to get a quick overview of the whole 
traffic situation. The goal of conflict detection demands 
selection strategies during radar-screening to structure the 
representation (see e.g. Amaldi & Leroux, 1995). 
According to the verbal reports, experienced controllers 
classify the aircraft on the basis of these signals 
(proximity, vertical movement, etc.) into two groups: those 
aircraft which have to be further analyzed (analysing the 
parameters) and anticipated (anticipation) in order to 
check for future conflicts, and those which are separated 
safely during that moment. The initial steps towards 
intervention and conflict resolution could be described 
according to Rasmussen's stages (define task, fomulate 
procedures, and execute). 

In order to model the air traffic controller's picture and the 
processes used to build up and to maintain this mental 
representation of the changing traffic situation, 
experiments provided a more detailed analysis of the 
following topics: 

• information selection and recall, 
• relational structure of the representation, and 
• anticipation and conflict management. 

The experimental work with real time simulation was 
based on a realistic simulation system of the control task 
called "En-route Controllers Representation - Pro- 
grammable Airspace Simulation" (EnCoRe-PLuS) 
(Bierwagen, 1996). This system simulates air traffic 
control scenarios providing radar screen runs, electronic 
flight strips, and head-phone communication with a ghost- 
pilot; it also allows the user to set up experimental 
procedures and to keep logfiles of all system activities, 

The results of this empirical work led to the 
conceptualization and the implementation of a model that 
describes the cognitive activities of air traffic controllers. 

The implementation of the model is connected with a 
modified version of EnCoRe-PLuS. EnCoRe-PLuS 
provides a real-time simulation environment. Predefined 
traffic builds up a simulation scenario that interacts with 
the model: 

• The model can actively access new information 
about the changing traffic situation and can integrate 
it to its representation of the current situation. 

• The model is informed about events within the task 
environment (e.g., incoming aircraft) 

• The model can intervene with the traffic 
environment in order to solve conflicts. 

MODELLING MENTAL PROCESSES OF EXPERIENCED 
OPERATORS DURING CONTROL OF A DYNAMIC MAN- 
MACHINE SYSTEM 
For modelling mental processes of experienced air traffic 
controllers during control we have used the production 
system ACT-R 3.0. ACT-R provides a suitable framework: 
1. as a psychological framework of human cognition, it 
also describes an environment for implementation, 2. 
ACT-R is based on explicit and very detailed assumptions 
about the cognitive architecture, and 3. as an environment 
for implementation, it is available in the public domain at 
no costs. In addition ACT-R has been applied to modelling 
a great number of problem solving tasks and is still in 
progress (e.g., ACT-R Perceptual - Motor Layer, RPM). 

Even within such a framework, the conceptualization and 
implementation of mental processes in dynamic 
environments, as in the case of air traffic control, demand 
additional assumptions about three aspects of the dynamic 
task environment. 1. The continous changes of the 
situation. These changes do not allow fixed sequences of 
cognitive processing, they rather call in a cyclic update of 
varying relations as a basis of situational awareness. 2. The 
necessity to predict future states of the situation in order to 
predict potential conflicts. Such predictions alter the goals 
of ongoing control activities. 3. The demands to coordinate 
and to sequence simultanious requirements of the control 
task. 

Widely used concepts for adaptive control of complex task 
enviroments (e.g., Anderson, 1993; Rasmussen, 1986; 
Hacker, 1978) concentrate on rather static tasks and on 
invariant goal structures. For example the cognitive 
architecture of Anderson's ACT-R does not take into 
account that in dynamic situations the operator has to 
continuously update her or his mental representation. In 
addition, such production systems are directed by a fixed 
goal hierarchy. But in the case of the changing and 
complex situation requirements, the controller has to 
coordinate the cognitive activities. This coordination is 
context-dependent: it does not follow a pre-defined goal 
hierarchy. 

Recently there are some promising attempts to formulate 
cognitive architectures that deal with the specific demands 
of a dynamic task environment. For example, as a 
conceptual neighbor to ACT-R and SOAR, a new 
computational   framework,   the   executive   -   process 
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interactive control (EPIC), is proposed for this kind of 
human performance (Meyer & Kieras, 1997a,b; Meyer et 
al., 1995). Perceptual, cognitive, and motor processors 
have been built up for modelling cognitive processes 
during the performance of multiple concurrent tasks. The 
perceptual processor provides a continously update of the 
task environment. Within the cognitive processor, 
concurrent tasks can be scheduled by flexible executive 
processes that control relative task priorities. Also the 
architecture for human representation in complex system, 
"Man Machine Interactive Design and Analysis System" 
(MIDAS), promises a modelling environment that provides 
an updateable mental representation of the task 
environment and flexible scheduling of multiple task 
performance (Corker & Smith, 1993). 

The implementation of the model "MoFl" (Modell der 
Fluglotsenleistungen) is based on ACT-R 3.0. The basic 
assumption is that cognitive skills are composed of 
production rules. A production rule is a modular piece of 
knowledge. Combining these rules into a sequence 
represents complex cognitive processes. ACT-R includes 
two kinds of knowledge representation: declarative and 
procedural knowledge. The basic units in declarative 
memory are so-called working memory elements (WMEs). 
A WME is an object with identity. It has named slots that 
can be filled with Lisp objects or references to other 
WMEs. References to other WMEs can be interpreted as 
relations, so that a semantic net with WMEs as nodes and 
references for relations is spread out. ACT-R defines an 
object-oriented structure for declarative memory. Every 
node in the net is an object of a certain class. A class is 
declared by naming all slots an object of this class will 
have. Subclassing is possible. Every WME has an 
activation level. It is manipulated by the programming 
environment. A special structure within the declarative part 
of the memory is the goal-stack. WMEs can be pushed 
onto and popped from this structure. The topmost WME is 
the current goal. 

Production rules are the procedural part of memory. They 
consist of a condition and an action part. Conditions and 
actions refer to WMEs. The application of a production 
rule is realized by a simple pattern-matching mechanism. 
In order to support goal-directed performance, the first 
condition of every production rule must match the current 
goal. If all conditions of a production rule are true, then the 
action part is executed. Possible actions are: manipulation 
of the goalstack (push and pop), creation and deletion of 
WMEs, and modification of the slots of already retrieved 
WMEs. An ACT-R run consists of the continous 
application of production rules. 

The prioritizing of processing is controlled by the 
activation parameter in ACT-R as well as by the current 
goal. A production is applied if it fires. A rule can fire if 
all conditions are fulfilled. Typically the fastest production 
will fire. The speed of application is mainly computed by 
the time it takes to retrieve the condition WMEs. 

Activation signifies the current relevance of a WME for 
the processing of information. Sources of activation are the 

encoding process, execution of a production (addition of 
new WMEs), and creation of a goal node. The more 
activated a WME is, the faster it is retrieved. This means 
that if various WMEs match the pattern of a production 
rule, the most activated WME is retrieved. If various 
production rules can be applied, that production rule fires 
that retrieves the most activated WMEs. A WME can only 
get retrieved if its activation is above a certain level. But in 
the case of air traffic control there are three cases in which 
an inactive WME also has to be retrieved. In the first case, 
the controller has to update his mental representation 
continuously. Empirical work showed that controllers 
reduce the problem space by paying attention to 
meaningful signals for conflict detection during radar- 
screening. Because of these signal features, aircraft 
become focal. That means that they are attention 
demanding objects, therefore highly activated. Aircraft 
without these features are extrafocal (less activated). For 
these extrafocal aircraft there is no further demand for 
processing and they become inactive. But, in contrast to 
ACT-R, these inactive WMEs have to be retrieved in order 
to update them. Second, activation is increased not only by 
the encoding process. It is also guided by the encoding of 
signal features of aircraft. The third case concerns the 
context-dependend coordination of a goal. The high 
activation level of a goal that targets the solution of a 
detected conflict between aircraft can be decreased, it may 
be put aside for a while if there is enough time remaining 
for the solution. But at a certain point, activation has to 
increase suddenly in order to retrieve this WME and to 
apply the appropriate production rule in order to solve the 
conflict. Otherwise the both inactive aircraft will collide. 

Additional features of ACT-R are learning mechanisms to 
adjust WME and production parameters, partial matching, 
and the aggregation of production rules. These features are 
not used in our model. 

THE MODEL 
In this section, the psychological assumptions, based on 
experimental work and theoretical considerations, and the 
implementation of the main components and functions of 
the model MoFl are summarized. 

MoFl describes three main cycles of information 
processing, (i.e., monitoring, anticipation, problem 
resolution) operating on different parts of the situation 
representation, called the picture (see Figure 1). The 
coordination of these processes is driven by control 
procedures. Monitoring and anticipation are diagnostic 
processes (conflict detection), problem resolution is the 
preparatory step for intervention by the controller. 

The Monitoring Cycle: Data Selection and Update 
The monitoring cycle includes data selection procedures 
and the regular update of aircraft features. In an 
experiment on data selection, 36 en route controllers had 
to control familiar and unfamiliar dynamic airspace 
situations. In order to investigate information selection, 
data of aircraft on the radar screen and the flight-strip- 
system were masked, but could be unmasked by moving 
the pointer of the mouse to the respective location. 
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Figure 1: The structure of the air traffic controller's model of cognitive activities 

Frequencies and durations of the unmasking were 
recorded. The data showed, that the representation of the 
current traffic situation was build up under considerable 
reduction of information. The controller selects relevant 
features of aircraft, especially identification codes, the 
horizontal and vertical positions of objects, and flight 
directions. In addition, our interviews and the literature 
indicate that the controller searches for meaningful signals 
in order to detect conflicts during radar-screening. These 
are aircraft features like vertical movements, proximity to 
other aircraft or to points in airspace where conflicts 
frequently occur (e.g., Niessen et al., 1997; Amaldi & 
Leroux 1995). 

According to these signal features, aircraft become focal 
(highly activated), that means that they are attention 
demanding objects. Aircraft without such features are 
extrafocal (less activated). In the dynamic environment of 
air traffic control, objects have to be updated continuously. 
There is a relationship between the semantics of objects 
and the frequency of updating: focal, attention-demanding 
objects demand a higher monitoring frequency than 
extrafocal objects. This assumption has been supported by 
results of a memory test: positions of extrafocal 
(inrelevant) aircraft were reproduced back in time, whereas 
positions of attention demanding objects (e.g., conflictions, 
and climb or decend) were reproduced correctly (for 
similar results, see Boudes et al., 1995). This bias 
indicates, that there is an interaction between the semantics 
of objects and the updating frequency: the more the current 
position of aircraft demands attention the better they were 
reproduced. 

The communication between the controller and the task 
environment, and the data selection were implemented as 
follows: Communication between MoFl and EnCoRe- 
PLuS is realized by socket communication. Two ways of 
communication are provided: 

• asynchronous communication: Special events in the 
task environment, like pilot-initiated radio 
communication or signals suddenly appearing on the 
radar-screen, are announced to MoFl by EnCoRe- 
PLuS. After every application of a production rule, 
a Lisp function hooked to the ACT-R specific 
production-cycle-hook, checks for new messages and 
triggers appropriate Lisp call-back functions that 
create new WMEs for further processing. 

• synchronous communication: MoFl identifies an 
internal demand for new information about a 
specific object within the task environment or the 
internal control-flow suggests to update aircraft 
information. This demand is fulfilled by an active 
request to the simulation environment. The response 
is integrated into the picture by call-back functions. 

If the data selection procedures are triggered, appropriate 
goals are put onto the goal-stack to enable the following 
processing sequence: 

1. 

2. 

choose aircraft: according to aircraft focality and 
state of the picture, decide which aircraft has to be 
updated. 
make an information request: according to the state 
of the object which is going to be updated, choose 
which information has to be requested, and trigger 
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the appropriate Lisp function. The response of 
EnCoRe-PLuS is handled by a call-back function 
that generates a goal. 

3. take new information into the picture: This goal is 
processed by a production that modifies the WME 
representing this information. 

4. test new data for signal features: the updated WME 
is tested for changes of signal features such as 
changing flightlevel (vertical movement), or 
proximity to other aircraft. 

Anticipation 
The next step in diagnosis consists of an anticipation cycle 
which operates on the focal objects. For each 
attention-demanding (focal) aircraft or aircraft 
relationships, a future state is anticipated seperately. The 
goal of the anticipation cycle is to create new cognitive 
processing information about aircraft. Depending on the 
results of anticipation, aircraft with signal features can then 
be represented as events. An event reflects the type of 
relation between aircraft or relations between aircraft and 
airspace features in future time and space. The anticipation 
allows to decide (decision) if the future trajectories of 
aircraft result either in a conflict, in a safe separation, or 
the demand for more monitoring. In an experiment on 
conflict-management, different types of clearcut and 
potential conflicts were varied in a 70 minutes traffic 
scenario according to the Eurocontrol Air Space Model 
(EUROCONTROI, 1994). The EUROCONTROL classification 
has two dimensions: 1. different tracks (same, opposite, 
crossing), and 2. level- or climb/ decend-flight. 36 
controllers had to detect and to solve the conflicts. The 
data showed that controllers did not differentiate between 
conflicts (separation minimum: 5 nautical miles) and 
potential conflicts (10 nautical miles): they intervened in 
all cases. This indicates that conflict detection is not based 
on a calculation but on fuzzy estimation. The controllers 
always chose the safer way by overestimating the risk. 

We assume that, if a conflict is detected, the event conflict 
includes an estimation of the time remaining for conflict 
solution (timestamp). Relations which have proved to be 
safe, are no longer in the focal part of the picture and 
become extrafocal at this time. This indicates that there is 
almost no demand for cognitive processing, except for 
updating. If the operator is not sure about the potential 
conflict, the event monitoring becomes focal, indicating 
both a higher frequency of monitoring and also a high 
demand for further anticipation. This distinction of aircraft 
relationship has been supported by the results of a card 
sorting task with 18 air traffic controllers. As expected the 
controller showed a tendency to classify traffic scenarios 
on the basis of anticipation. 

The anticipation cycle is implemented by sequenced 
production rules testing four questions: 
1. Are aircraft on the same airway, or on crossing 

airways? 
2. Have aircraft the same altitude or is at least one in 

climb or descend? 
3. Simulation of the future movement of aircraft using 

velocity leaders. A velocity leader is an graphical 

arrow element on the radar screen showing the 
estimated movement of aircraft for a certain lapse of 
time. Will there be a violation of the separation 
criterion (anticipation)'} 

4. How certain was this simulation? Certainty is 
measured by the time remaining for the violation of 
the separation criteria. In addition the latest time for 
conflict solution is calculated (timestamp). 

According to this sequence focality of aircraft-WMEs is 
modified, or events are created. 

The Picture 
The resulting picture is characterized as a representation of 
objects, events, and objects with reference to other objects, 
and / or airspace structure. Objects with signal features are 
represented focally, objects without these features 
extrafocally. In addition, events which indicate the 
meaning of aircraft relations in future time and space are 
represented focally. Within the air traffic control domain, 
the term picture describes the idea of a global mental 
representation of the current and future traffic situation in 
working memory. From a psychological perspective, we 
assume the picture as an analogous non-symbolic mental 
representation of the situation. There is some empirical 
evidence that experienced controllers anticipate future 
states of aircraft without calculating the trajectories. This 
indicates that they build up a non-metric, analogous 
representation of the situation. In assuming such an 
analogous representation, we follow Craik's (1943) and 
Johnson-Laird's (1983) basic ideas of a functional internal 
model that parallels processes of the external world. 

The picture 
• is understood as an active knowledge-based 

construction of meaningful relations between 
elements of a situation, and not as an addition of 
perceptions. 

• is incomplete with regard to the content of 
information and is temporary. The representation is 
build up by schemata in order to serve current 
functions, and is not stored in long term memory. 

• can be manipulated by drawing inferences, by 
making predictions, by understanding phenomena, 
by deciding what further processing or action to 
take, and by controlling the execution. 

The implementation emulates the picture as the totality of 
the cognitively available objects at a given time, their 
features, and their perceived and infered relations in actual 
and future time and space in terms of WMEs. Since it is 
not possible to model an analogous representation of space 
on digital computers, the implementation's picture is a 
semantic net of airspace objects, anticipated events, and 
inferenced actions that are represented as WMEs. Some of 
these objects have spatial positions that make it possible to 
define them by positions. More sophisticated operations 
such as retrieval by distance to other airspace objects have 
to be emulated. 
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We used the object-oriented features of ACT-R to define 
the structure of the picture (see, Figure 2). Every airspace 
object has a position on the radar screen. Derived classes 
are airways, sector boundaries, and aircraft which have 
additional slots including callsign, speed, and altitude. 
Aircraft are specialized to incoming, changing altitude, 
and near to another airspace object (proximity). For every 
class,    instances    are 
generated and modified 
as WMEs in working 
memory      by      data 
selecting    productions 
during the monitoring 
cycle. Events represent 
infered      knowledge 
about     aircraft.     All 
events refer to aircraft 
objects.  Instances  are 
generated        by 
production rules in the 
anticipation       and 
conflict      resolution 

anticipation, conflict resolution, and action) is driven by 
control procedures. We assume that the different 
processing components cannot be interrupted. The 
controller has to switch between them: for example, 
between the solution of a conflict and further monitoring 
(update including data selection). On the basis of the state 
of the picture, control procedures select the most important 

and most urgent 
processing de- 
mand. 

WME 
—I- 

r [ 

aircraft with signal 

-I     changing flighilevel    I 

J proximity I 

]     C 
monitoring -c 

potential conflict 

1 
sector knowledge 

: 
sector boundary : module. They belong to 

the event-subclasses: 
monitoring, conflict, 
and resolution. 
Conflicts can be 
crossing or chain. 
Conflict events have an 
additional slot that holds a reference to the conflict partner. 

Conflict Resolution 
If conflicts are detected, the problem resolution cycle 
initiates several steps to prevent an impending conflict. 
The controller has to select the most urgent conflict in 
order to generate or recall solutions {alternative solutions). 
Next, the operator has to check that the solution does not 
generate new follow up conflicts {decision). We assume 
that the controller checks by running a mental simulation 
of the solution (as in the anticipation cycle). The results of 
this model are executed {action). 

The implementation uses a predefined set of standard 
solutions fitting certain types of conflicts. To use this set 
the class of the conflict is determined by production-rules. 
According to this classification some solutions are 
generated from the standard solution set. The production 
rules of the simulation in the anticipation cycle are 
triggered by goals indicating the solutions that have to be 
taken into account. If a solution does not produce follow- 
up conflicts a solution-WME is generated. A solution 
consists of a sequence of actions that have to be executed 
by the model. The time remaining for the first intervention 
of the sequence is stored in the solution-WME. To execute 
an intervention sequence Lisp functions interact with the 
task environment EnCoRe-PLuS. 

Control Procedures 
The multitude of represented objects, relations, and 
features within the picture demands that the controllers 
prioritize the processing at any one time. The coordination 
of the above describes modules (data selection and update, 

choose aircraft 

data selection 

communication 

I test if changing flighllevel 

test lor proximity ] 
: 

conflict resolulioi o 
-c : 

control procedures : 

Figure 2: Simplified class hierarchy for the working memory elements 

In ACT-R, 
Anderson 
postulates a 
hierarchical goal 
structure that 
directly reflects 
the task 
dependency in 
the environment. 
To model this 
hierarchy of 
goals, several 
WMEs can be 
pushed onto the 
goalstack, a 
special structure 
within working 
memory. 

Processing is controlled by the current goal, which is the 
first element of the goalstack. The current goal spreads 
activation among its neighbors in the semantic net. The 
system focusses only on this top goal at this time. But, 
because of the dynamic task environment of air traffic 
control, there is no fixed hierarchical goal structure. 
Therefore, the continuously changing situation demands 
another prioritizing of the processing of simultaneously 
on-going events at any particular time. In addition, time 
contraints in this context force a flexible and appropriate 
selection of the most relevant demand for processing. In 
order to model this contextualized scheduling of 
processing, we had to postulate a different concept. Our 
assumption is that the scheduling of processing is 
determined by the state of the whole mental representation 
of the traffic situation. 

Several tasks are active at every moment. Every task is 
done by one of the modules data selection, anticipation, or 
conflict resolution. The superior control procedures 
module has to build up an ad hoc process flow depending 
on the current structure of the picture. To achieve this, we 
assume that the modules cannot be interrupted and are 
exclusive. The process flow is done by meta productions in 
the control procedures module that trigger a module with 
an object or event as parameter. In order to trigger a 
module and make it not interruptible, we introduced a new 
class of WMEs. These control-WMEs are the only ones 
that get onto the goalstack. 

The start of every module is a top level production. It is 
triggered by a top level goal. This kind of production will 
push new subgoals onto the goalstack that will trigger 
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other productions of that module. Every production has to 
clean the goalstack by popping its trigger-WME. When a 
module is finished the goalstack should then be clean. The 
productions of the control procedures are triggered by the 
controlflow-goal, which has no parameter. This goal is 
never popped. Thus when the goalstack is "clean" it is on 
top of the goalstack and thus the current goal triggers the 
control procedures-module again. Processing radio 
communication when a plane announces that it is going to 
enter the sector, is the only reason to interupt a module, 
make a mark in the working memory, and continue the 
module. The mark has a high priority so that it will be 
processed soon. 

The meta production rules of the confro/-/7ou'-module for 
the air traffic controller model use this prioritizing rules: 
1. if a solution-WME exists in the picture and it is 

time to solve, then do action on this solution, else 
2. if a conflict-WME exists and it is time to do, then 

conflict resolution, else 
3. if a monitoring-event or an aircraft-WME with a 

signal (incoming, changing altitude, or proximity) 
exists in the picture, then do update and anticipation 
on this WME, else 

4. if an aircraft-WME exists, then do monitoring on it. 

Every solution-WME and every conflict-WME has a slot, 
where it represents when it is supposed to happen. The 
control productions use a function, that compares this ideal 
time with the current time. It fires the appropriate action 
according to a predefined bias. 

If the current goal is control/low, only the 
meta-productions are able to fire. They match patterns 
against the picture according to the prioritization scheme 
listed above. The chosen action will generate a new 
control-WME (CF) of the appropriate subclass. It refers to 
the detected aircraft-WME or event-WME. The goalstack 
consists now of (controlflow,CP). This triggers the 
toplevel production for CF. It will produce new 
control-WMEs probably refering to the detected WME, 
pop CF, and put the new control-WMEs onto the 
goalstack. They trigger new sublevel productions that all 
pop their trigger. When the module for CF is finished, the 
goalstack is (controlflow), meaning that only the 
meta-productions are able to fire. 

The model deals well with the dynamic environment by 
using this control scheme. If another task needed 
interruptible modules, the control procedures would have 
to be triggered after every production cycle within the 
module, and the controlflow WMEs would have to be 
stored in the picture, when they are inactive. The meta 
productions would then trigger the most important 
controlflow-WME or generate a new one. 

CONCLUDING REMARKS: EVALUATION OF THE 
MODEL 
The construction and implementation of the above 
described model is based on a broad experimental work. 
Early in 1998 we will evaluate our model with empirical 
data. Three simulation experiments with experienced air 

traffic controllers are planned in order to investigate time 
parameters of conflict detection, the content of the picture, 
and the distribution of activation within the controller's 
picture. These data will be compared to the results of 
model simulation runs using the same task environment. 
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ABSTRACT 

This paper describes a computational model of spatial 
learning and localization. The model is based on the 
suggestion (based on a large body of experimental data) that 
rodents learn metric spatial representations of their environ- 
ments by associating sensory inputs with dead-reckoning 
based position estimates in the hippocampal place cells. 
Both these sources of information have some uncertainty 
associated with them because of errors in sensing, range 
estimation, and path integration. The proposed model in- 
corporates explicit mechanisms for information fusion from 
uncertain sources. We demonstrate that the proposed model 
adequately reproduces several key results of behavioral 
experiments with animals. 

Keywords: cognitive modeling, cognitive maps, Hip- 
pocampus, probabilistic localization. 

INTRODUCTION 

Animals display a wide range of complex spatial learning 
and navigation abilities (Schone, 1984; Gallistel, 1990), 
far more impressive than the capabilities of contempo- 
rary robots. Considerable research effort has been de- 
voted to understanding different aspects of these spatial 
behaviors through cognitive, behavioral, neurophysiolog- 
ical, and neuropharmacological studies. This has resulted 
in a large corpus of experimental data, a number of the- 
ories and models of animal spatial learning, and several 
implementations of such models in robots and other arti- 
ficial automata (Mataric, 1992; Kuipers and Byun, 1991; 
Kortenkamp, 1993; Bachelder and Waxman, 1994; Recce 
and Harris, 1996). However, animal spatial learning is still 
far from being completely understood or successfully imi- 
tated. 

Based on a large body of experimental data it has been 
suggested that rodents learn cognitive maps of their spa- 
tial environments (Tolman, 1948). These cognitive maps 
have been postulated to contain metric information, i.e., 
the places in the environment are represented in a met- 
ric coordinate system, allowing the animal to take novel 
short-cuts and measured detours. In addition, there is also 
a vast body of experimental data from lesion studies of hip- 
pocampal regions and cellular recordings of hippocampal 
cells that directly implicate the hippocampal formation in 
rodent spatial learning (O'Keefe and Nadel, 1978). Based 
on this data, O'Keefe and Nadel proposed the locale sys- 
tem hypothesis, suggesting that the hippocampal place cells 
learn metric cognitive maps by associating sensory inputs 

with dead-reckoning1 position estimates generated by the 
animal. 

In the two decades since the locale hypothesis was 
first proposed, a number of computational models of hip- 
pocampal spatial learning have been developed (Trullier 
et al., 1997). Surprisingly, only a few of the models sup- 
port metric spatial representations. Furthermore, the few 
models that are based on the locale hypothesis make the 
unrealistic assumption that the two information streams, 
namely, sensory inputs and dead-reckoning, are largely 
error-free. However, sensory and dead-reckoning systems 
of animals are prone to several sources of errors (e.g., errors 
in place recognition, distance estimation, dead-reckoning 
drifts, etc.), and any computational model of hippocampal 
spatial learning and localization must therefore be capable 
of satisfactorily dealing with these associated uncertainties. 

In this paper we develop a computational model of hip- 
pocampal spatial learning that allows the animal to learn 
a metric place map (or a cognitive map) and that explic- 
itly addresses information fusion from uncertain sources. 
Following a brief discussion of experimental data support- 
ing the model, we present the key features of the model and 
simulation results that demonstrate that the proposed model 
satisfactorily reproduces the results of behavioral experi- 
ments on gerbils reported by Collett et al., (1986). We 
also discuss the relationship between this neuro-cognitive 
model and some approaches to spatial learning that have 
been employed in contemporary robotics. 

HIPPOCAMPAL SPATIAL LEARNING 
The hippocampal formation is one of the highest levels of 
association in the brain and receives highly processed sen- 
sory information from the major associational areas of the 
cerebral cortex (Churchland and Sejnowski, 1992). It is 
composed of the dentate gyrus (Dg), and areas CA3 and 
CA1 of Ammon's horn as shown in Figure 1. It receives 
input primarily from the entorhinal cortex (EC), which is a 
part of a larger convergence area called the parahippocam- 
pal cortical area, and outputs to the Subiculum (Sb) and 
back to the EC (Churchland and Sejnowski, 1992). (For 
other anatomical and physiological details the reader is re- 
ferred to (Churchland and Sejnowski, 1992).) 

The hippocampal formation has been strongly impli- 
cated in animal spatial learning and localization based on 
evidence from hippocampal lesion studies and cellular 

'Dead-reckoning or path-integration refers to the process of 
updating an estimate of one's position based on self-knowledge 
of time, speed, and direction of self-motion. 
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Figure 1: Anatomy of the hippocampal formation. 

recordings. While hippocampal lesions have been found to 
produce severe deficits in learning spatial tasks such as the 
object-place task (Churchland and Sejnowski, 1992), and 
the ability of rodents to traverse complex mazes (cf. ap- 
pendix of O'Keefe and Nadel, (1978)), cellular recordings 
have led to the discovery of place cells and head-direction 
cells which demonstrate highly correlated firings during 
the execution of such tasks. Pyramidal cells in regions 
CA3 and CA1 of the rat hippocampus have been found 
to fire selectively when the rat visits particular regions of 
its environment. These cells thus appear to code for spe- 
cific places and have been labeled place cells (O'Keefe and 
Dostrovsky, 1971). Cells with such location-specific firing 
have been found in almost every major region of the hip- 
pocampal system, including the EC, the Dg, regions CA3 
and CA1, the Sb, and the postsubiculum. 

In addition to place cells, head-direction cells have also 
been discovered in the hippocampal region (Taube et al., 
1990). These cells respond to particular orientations of the 
animal's head irrespective of its location in the environment 
and fire only when the animal faces some particular direc- 
tion (over an approximately 90 degree range) in the hori- 
zontal plane. These cells thus appear to function as some 
sort of an in built compass. 

A number of experiments have served to identify cru- 
cial properties of place cells and head-direction cells (see 
McNaughton et al., (1996) for a detailed exposition of the 
properties). In brief, these cells have been found to re- 
spond to sensory as well as path-integration inputs. Fur- 
ther, places appear to be represented by an ensemble of cell 
firings, with the cells being active in multiple environments 
and often at multiple places in the same environment. The 
firing of these cells is conserved in darkness, provided the 
animal is first allowed to orient itself under lighted condi- 
tions. Further, any restraint on active motion ceases the cell 
firings. 

HIPPOCAMPAL COGNITIVE MAP 

Based on extensive experimental evidence it has been sug- 
gested that rodents learn cognitive maps of their environ- 
ments (Tolman, 1948). These cognitive maps are metric 
in nature, i.e., the spatial representation encodes distances 
and directions between the environmental cues.   Against 

this background, (O'Keefe and Nadel, 1978) forwarded 
the locale system hypothesis (based on an immense corpus 
of neurophysiological and behavioral data) suggesting that 
the cognitive map resides in the hippocampus and that the 
place cells use sensory and dead-reckoning inputs to en- 
code the metric map. A computational implementation of 
this locale system hypothesis of hippocampal spatial learn- 
ing has been developed which allows the animal to learn 
its environment in terms of distinct places, with the center 
of each place also being labeled with a metric position es- 
timate derived from dead-reckoning. A detailed treatment 
of this model can be found in (Balakrishnan et al., .1997); 
here we will only present a brief summary. 

As the animal explores its environment the model creates 
new EC units that respond to landmarks located at partic- 
ular positions relative to the animal. Concurrent activity 
of EC units defines a place and CA3 place cells are cre- 
ated to represent them. These sensory input-driven CA3 
place cells are then associated with position estimates de- 
rived from the dead-reckoning system to produce place fir- 
ings in the CA1 layer. Thus, the firing of CA1 cells is de- 
pendent on two information streams: sensory inputs from 
CA3 and the animal's dead-reckoning position estimates. 
The dead-reckoning input is used to learn the center of the 
place in terms of metric coordinates. 

When the animal revisits familiar places, incoming sen- 
sory inputs activate a place code in the CA3 layer that cor- 
responds to a familiar place. Since multiple places in the 
environment can produce the same sensory input (called 
perceptual aliasing in robotics), the CA1 layer uses dead- 
reckoning estimates to disambiguate between such places 
and produces a unique place code that corresponds to the 
current place. The hippocampal system then performs spa- 
tial localization by matching the predicted position of the 
animal (its current dead-reckoning estimate) with the ob- 
served position of the place field center (dead-reckoning es- 
timate previously associated with the activated CA1 place 
code). Based on this match, the dead-reckoning estimate 
as well as the place field center are updated as shown in 
Figure 2. 

Prediction 

Observation 

Figure 2: A schematic of hippocampal localization. 

Thus, not only does the hippocampal model learn a met- 
ric cognitive map of the environment, but it also permits 
the metric estimates to be updated when the animal revisits 
familiar places. Further details of the model may be found 
in (Balakrishnan et al., 1997). 
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Hippocampal Kaiman Filtering 

In the locale system hypothesis of hippocampal spatial 
learning, information is integrated from two streams: the 
sensory inputs and the dead-reckoning system (O'Keefe 
and Nadel, 1978). It should be noted that information pro- 
vided by both these streams is uncertain because of errors 
in object recognition, distance estimation, and path inte- 
gration. For instance, the firing of place cells and head- 
direction cells drift in darkness, suggesting errors in path- 
integration. Thus, in order for the hippocampus to perform 
robust spatial localization using these uncertain informa- 
tion sources, it must have adequate mechanisms for han- 
dling uncertain information sources. Although several hip- 
pocampal models of spatial learning have been proposed, 
including some that are closely related to the model de- 
scribed above, none of the models are capable of explicitly 
handling such uncertainties. 

As with animals, mobile robots too have to deal with 
uncertainties in sensing and action. This has led to many 
probabilistic localization approaches for mobile robots. 
One such localization tool is the Kaiman filter (KF) (Gelb, 
1974) (or some extension or generalization of it), which al- 
lows the robot to build and maintain a stochastic spatial 
map, propagate sensory and motion uncertainties, and lo- 
calize in optimal ways (Ayache and Faugeras, 1987). A 
schematic for a KF is shown in Figure 3. 
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Figure 3: A schematic of Kaiman filtering. 

As can be observed from Figures 2 and 3, the computa- 
tional model of hippocampal function and KF both embody 
the same predict-observe-match-update principle. Further, 
KF provides a framework for performing stochastically op- 
timal updates even in the presence of prediction and obser- 
vation errors. Based on the similarities between the two, 
Balakrishnan et al. (1997) developed a KF framework for 
uncertain information fusion in the hippocampal localiza- 
tion model described above. In this framework, KF helps 
the animal in maintaining and updating an estimate of its 
own position as well as the estimates of the place field cen- 
ters. These estimates, referred to as the state, include: 

Xfc    = [xo,k,xi,- ■■,xn]T 

where x0,k denotes the position of the animal at time in- 
stant k, Xi denotes the center of place field i, and n is the 
number of distinct places that have been visited by the ani- 
mal. Without loss of generality, these position estimates are 
assumed to be specified in 2D Cartesian coordinates, i.e., 

Xi = (xix, xiy). The animal also computes and updates the 
covariance matrix associated with this state vector, denoted 
by Pfc, which is given by: 
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where 

Cij = 
txj* 

J*»x Cjyiy 

denotes the covariance between the 2D Cartesian represen- 
tations of the state elements Xi = (xix, Xiy) and Xj = 
\XjI,Xjv). 

When a new place is visited, the state vector is aug- 
mented by the center of this new place and the state esti- 
mate and its covariance matrix are modified accordingly. If 
the animal motions are assumed to be linear and the mea- 
surement function in Figure 3 is also a linear function of the 
state, a framework for hippocampal Kaiman filtering can 
be developed that updates the place field centers and the 
animal's position estimate in stochastically optimal ways. 
These details can be found in Balakrishnan et al., (1997). 

Frame Merging 

The procedure described above allows the animai2 to learn 
a metric place map. However, it does not allow the animat 
to learn and integrate independent local metric maps corre- 
sponding to different regions of the environment, or to learn 
and integrate a new map into an existing one. We have de- 
veloped an extension of the computational model described 
above that permits the animat to learn separate place maps 
in different/rawes and to merge frames together in a well- 
defined manner. 

Suppose the animat has learned a place map, labeling the 
places with metric position estimates derived from its dead- 
reckoning system. Let us refer to this frame as f0u. Sup- 
pose the animat is now reintroduced at another place. The 
animat stores away /<,/<* in its memory, and begins a new 
frame fnew at the point of reintroduction. It also resets 
its dead-reckoning estimates to zero, thereby making the 
point of reintroduction the origin of its new dead-reckoning 
frame. Now it proceeds as before, learning places and cre- 
ating EC, CA3, and CA1 cells using the algorithms detailed 
in (Balakrishnan et al., 1997). At each step it also checks 
to see if sensory inputs excite CA1 cells residing in /<,/<*. If 
this happens, the animat is at a place it has seen earlier in 
the older frame (/0M). It then merges the two frames, la- 
beling the places in the two frames in a uniform coordinate 
system as follows. 

Suppose CA1 unit c fires in fnew and m fires in f0u. The 
goal is to merge fold into fnew. We do this by changing the 
position labels of all CA1 units in j0u to equivalent labels 
in fnew Letx^""" andx^'d denote the estimated center of 
the animat's current place in the two frames fnew and f0i&. 
Since x£n"" and x^'d correspond to the center of the same 
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place field, albeit in different frames, Ax = x£M — x^1"1" 
denotes the amount by which frame f0u has to be trans- 
formed to coincide with fnew Assuming a metric coordi- 
nate representation, we can update the place field centers 
of fold to fnew via the transformation: 

y/neiu      S^fold Ax Vie/, old (1) 

The covariances between units in faid and fnew can 
be updated using the following expressions (details of the 
derivations can be found in (Balakrishnan et al., 1998)): 
Case I: i and j were both units in f0id 

ftUcw _  /-(/old   _  fifold   _ pSold     i    f-lfold   _L flfncw wij wi? mj        ^im     '   ^mm ~ ^cc 

Case II: i was a unit in fnew and j was in f0u 

ij - °ic 

where C/j refers to the covariance between units i and 7 
in a particular frame /. 

Once these updates have been carried out, frame f0id has 
been effectively merged into fnew. However, it must be 
borne in mind that this frame merge procedure is currently 
blind to perceptual aliasing. Consequently, the animat lo- 
calizes to the first place that sensorily matches a place it has 
seen before. If multiple places in the environment produce 
similar sensory inputs, this procedure will lead to localiza- 
tion problems. 

Goal Representation 
Since the computational model of (Balakrishnan et al., 
1997) allows the animat to learn places in a metric frame- 
work, goals encountered by the animat can also be remem- 
bered in terms of their metric positions. Thus, when an 
animat visits a goal location, it computes an estimate of 
the goal position based on its current dead-reckoning esti- 
mate. However, since dead-reckoning is error prone, the 
remembered (or computed) position of the goal is also er- 
roneous. We need a procedure that explicitly handles this 
uncertainty, much like the KF for updating place field cen- 
ters. We have developed a mechanism that maintains and 
updates the goal location estimate and its variance using the 
expressions in equation 2 
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where XQ is the estimated goal position and aG its vari- 
ance, xo is the current dead-reckoning estimate with asso- 
ciated variance OQ. It can be shown that this update expres- 
sion minimizes the variance of the goal position estimate 
(Balakrishnan et al., 1998). These update expressions are 
applied each time the animat reaches the goal. If the ani- 
mat has never encountered the goal before, the goal vari- 
ance aG is set to 00. Thus, when the animat encounters 
the goal for the first time, the above expressions result in 
the setting of the goal position estimate to the value of the 
dead-reckoning estimates. 

The animats in our experiments navigate to goal loca- 
tions through two means. If the goal is visible, the animats 
directly move towards the goal {goal approaching). How- 
ever, if the goal is not visible but the animat has previously 
visited the goal location and thus remembers its position, 
it simply moves in a fashion that reduces the discrepancy 
between its current position estimate and the remembered 
position of the goal. We call this the goal seeking behavior. 
The goal seek behavior takes the animat along the shortest 
path to the goal. It is possible that the direct short-cut to 
the goal is blocked or has obstacles that the animat must 
then avoid. However, for the purposes of the experiments 
described in this paper the environments are assumed to be 
largely open and obstacle-free. 

SIMULATION DETAILS 
In this paper we attempt to simulate the behavioral experi- 
ments of Collett et al.(1986) using the computational model 
of hippocampal spatial learning described earlier. The ex- 
perimental setup of Collett et al. consisted of a circular 
arena of diameter 3.5 meters placed inside a light-tight 
black painted room. Gerbils were trained to locate a sun- 
flower seed placed in different geometric relationships to a 
set of visible landmarks. The floor of the arena was cov- 
ered with black painted granite chips to prevent the gerbil 
from spotting the seed until it was very close to it (Collett 
et al., 1986). 

In our simulations, we used a square arena of size 20 x 20 
units. The walls of the arena were assumed to be impen- 
etrable and devoid of any distinguishing sensory stimuli. 
This is in keeping with the original experiment in which 
the walls were in complete darkness and presumably not 
visible to the animal. The landmarks, on the other hand, 
were assumed to be visible to the animat from all points in 
the arena. The animats could also estimate landmark posi- 
tions relative to themselves, but this estimate was assumed 
to be corrupted by a zero-mean Gaussian sensing error with 
standard deviation as = 0.01 units per unit distance. Sen- 
sory inputs obtained in this fashion were used to generate 
the activations of the EC layer as well as the place firings 
of the CA3 and CA1 layers, using the algorithms described 
in (Balakrishnan et al., 1997). The animat motions were 
also error-prone, with motion error modeled by zero-mean 
Gaussians with OM - 0.5. The animats possessed means 
for fairly accurate dead-reckoning with errors being mod- 
eled as zero-mean Gaussians with OD = 0.05 units. Ani- 
mats could approach a visible goal and were said to have 
consumed the goal if they entered a circular region of ra- 
dius 0.33 units around it. 

The experiments of Collett et al. were simulated by first 
setting up the arena with the landmark(s) in the appropriate 
positions. The animat was then introduced into the arena 
at a random position and allowed to perform 500 steps of 
sensing, processing, and moving. In this mode the animats 
learned places by inducting EC, CA3, and CA1 units in ap- 
propriate ways, and updating the position estimates using 
the Kaiman filtering mechanism described in (Balakrish- 
nan et al., 1997). If the animat happened to see the goal 
during these sessions, it was made to approach and con- 
sume it. This constituted one training trial. Once a trial 
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was complete, the animat was removed from the environ- 
ment and reintroduced at another random position for the 
next trial. Each animat was subjected to five such training 
trials. In each trial the animat learned places in a new frame 
and merged frames if they lead to the same place. The firing 
threshold of CA3 units (CA3Threshold), which signals 
place recognition based on sensory inputs, was set to 0.75 
during training. 

Once training was complete, the animat was subjected to 
ten testing trials in which the landmarks in the arena were 
manipulated in specific ways and, importantly, the goal was 
absent. During these tests the animat was released at pre- 
determined positions in the arena with its dead-reckoning 
variance set to oo. Further, spatial learning was turned off 
in these animats and they were only capable of localizing. 
The animats had a maximum of 150 steps within which to 
localize by visiting a familiar place. Un-localized animats 
were removed from the environment, with that testing trial 
being dubbed a failure, and the process continued with the 
next testing trial. During testing, CA3Threshold was 
lowered to 0.25 to enable the animats to localize even if 
the landmark arrangements had been changed in critical 
ways. A localized animat was allowed a maximum of 300 
timesteps to navigate to the goal using the goal seek behav- 
ior described earlier. Since the goals were absent during 
testing, the animats searched in the region of the remem- 
bered goal location. If the animat reached a circular region 
of radius 0.5 units around the predicted goal location, it was 
allowed to spend 25 timesteps searching for the goal. Af- 
ter this, the variance of the position estimate of the animat 
was once again set to oo and the animat was permitted to 
re-localize to enable it to correct its localization if it had 
wrongly localized earlier. This had interesting behavioral 
consequences as will be explained later. 

For the training as well as testing trials, the trajectories 
followed by the animats were recorded. Also, the 20 x 
20 arena was decomposed into cells of size 0.33 x 0.33 
and a count of the amount of time spent by the animats in 
each cell was kept. These statistics for training and testing 
were computed for five different animats. The cell with the 
largest value (amount of time spent by the five animats) 
was used to normalize the values in the other cells, and was 
plotted in the form of a search histogram. Thus, darker 
cells in the histogram indicate that the animats spent more 
time in that region of the arena compared to the regions 
corresponding to the lighter ones. It must be mentioned 
that the arena size, the histogram cell size, as well as the 
goal visibility range were roughly chosen to correspond to 
actual values used by Collett et al. 

EXPERIMENTS AND RESULTS 

In this section we present simulations of Collett et al.'s 
behavioral experiments, using the computational model of 
spatial learning and localization detailed in (Balakrishnan 
et al., 1997; Balakrishnan et al., 1998). 

One Landmark Experiment 

In this experiment, Collett et al. placed the seed at a con- 
stant distance and orientation from a single landmark and 

trained gerbils to reliably approach the goal position. They 
found that well-trained gerbils run directly to the seed when 
introduced into the environment. Further, in testing trials 
the gerbils were found to concentrate their search efforts at 
the expected location of the seed even though the seed was 
absent (Figure 1 in (Collett et al., 1986)). In our simula- 
tion of this experiment, the goal location was 4 units to the 
south of a single landmark, as shown by the search distri- 
bution concentrated in that region (Figure 4, Left). In these 
figures, filled squares represent landmarks. This compares 
rather well with the observations of (Collett et al., 1986). 
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Figure 4: Left: One landmark experiment. Middle: Two 
landmarks experiment. Right: Two landmarks experiment 
with one landmark removed. 

Two Landmark Experiments 

In the next set of experiments, Collett et al. trained gerbils 
to locate a sunflower seed placed to the south of a line con- 
necting two identical landmarks. In this case, the goal was 
equidistant from the two landmarks. In our simulations, the 
goal was placed 4 units to the south of the line connecting 
two landmarks placed 4 units apart. As seen in Figure 4 
(Middle), the search effort of the animats is reliably con- 
centrated in a region rather close to the position of the goal 
in the training trials. This figure compares well with Figure 
7b in (Collett et al., 1986). 

Collett et al. also trained gerbils on the two landmark 
task and tested them with one landmark removed. They 
found that the gerbils searched on both sides of the sole 
landmark apparently matching the landmark either to the 
left or the right landmark of the original configuration (Fig- 
ure 7c in (Collett et al., 1986). Our animats demonstrated a 
similar behavior as seen in Figure 4 (Right). 
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Figure 5: Left: Two landmarks experiment with landmark 
distance doubled. Middle: Three landmarks experiment. 
Right: Three landmarks with one removed. 

Also, when the gerbils were trained with two landmarks 
and tested with the landmark distance doubled, Collett 
et al. found that the gerbils searched predominantly at 
the two interior locations each at the correct distance and 
orientation from one of the landmarks (Figure 7d). We 
observed similar search histograms in our experiments, 
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as seen in Figure 5 (Left). We also found that all the 
animats that first searched at the outer locations later 
searched in one of the interior two locations, when asked 
to relocalize. Further, most animats that first searched at 
the interior locations, did not search at the outer locations 
upon relocalization. 

Three Landmark Experiments 

In this experiment, three identical landmarks were arranged 
to form the vertices of an equilateral triangle with the goal 
located at the centroid of the triangle. Animats trained in 
this environment produce search histograms concentrated 
reliably at the correct position of the goal, i.e., the centroid 
of the triangle as shown in Figure 5 (Middle). This com- 
pares favorably with Figure 6b in (Collett et al., 1986). 

Collett et al. also trained the gerbils on the three land- 
mark task and tested them in environments with one or two 
of the landmarks removed. With one landmark removed 
they found that the gerbils searched at a location at the cor- 
rect distance and orientation from the two remaining land- 
marks (Figure 6c). As can be seen from Figure 5 (Right), 
our animats demonstrate largely similar search behaviors. 
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Figure 6: Left: Three landmarks with two removed. Mid- 
dle: Three landmarks with one distance doubled. Right: 
Three landmarks with an extra landmark added. 

With two of the three landmarks removed, Collett et al. 
found that the gerbils distributed their search time between 
three sites, one for each of the three possible matches of the 
sole landmark (Figure 6d). This can be compared directly 
with our simulation results in Figure 6 (Left). Similarly, 
when the gerbils were trained on the three landmark task 
but tested with one landmark distance doubled they were 
found to search at a goal location at the correct distance 
and bearing from the two unmoved landmarks (Figure 8 in 
(Collett et al., 1986)). Our animats display similar behav- 
iors (Figure 6 (Middle)). 

When gerbils were trained on the three landmark task, 
but tested in an environment with an additional landmark 
placed so as to create another equilateral triangle with a 
different orientation, Collett et al. found that the gerbils 
reliably searched at the goal location within the correctly 
oriented triangle. Our simulation of this experiment pro- 
duced similar results as shown in Figure 6 (Right). 

DISCUSSION 

In this paper we have extended the spatial learning and lo- 
calization model developed in (Balakrishnan et al., 1997) 
along several significant directions. We have developed 
mechanisms to learn local place maps in disjoint frames, 
and to merge these frames to produce global place maps. 

We have also incorporated a mechanism for learning and 
remembering goals in terms of their metric positions, with 
an associated mechanism for updating goal positions in a 
stochastically consistent manner. With these additions, an- 
imats can not only learn maps of environments in a piece- 
meal fashion but also learn and reliably navigate to goals in 
the environment. 

This allowed us to simulate the behavioral experiments 
of (Collett et al., 1986). The primary goal was to test 
whether our computational model of hippocampal spatial 
learning and localization was capable of explaining their 
behavioral data with gerbils. We simulated a number of 
their experiments and the search histograms generated by 
our animats were found to be very similar to those pro- 
duced by the gerbils in their experiments. This is especially 
interesting because our animats did not remember goals in 
terms of independent vectors to individual landmarks, as 
suggested by (Collett et al., 1986). Our results indicate that 
if goals are remembered in terms of metric position esti- 
mates, localization errors are enough to explain the search 
distributions of the gerbils observed in environments with 
landmark configurations changed. 

To the best of our knowledge, the only computational 
simulation of the (Collett et al., 1986) experiments, apart 
from the work presented in this paper, is that of (Redish 
and Touretzky, 1996). In their simulations, the animat was 
placed at different random positions in the arena and was 
given its position relative to the goal (which was assumed 
to coincide with the origin). The animat then created place 
cells using a combination of this position estimate and sen- 
sory inputs from the visible landmarks. Ego-centric angles 
between landmarks were also encoded in the place cells, 
which allowed the animat to initialize its head-direction if 
it happened to be disoriented. In test trials they introduced 
the animat at a random position and allowed it to localize, 
i.e., the animats performed head-direction and position esti- 
mate resets. Once the animat had localized, it could predict 
the goal location which was simply the origin of the coor- 
dinate frame with respect to its current localized position. 
They repeated this process a number times and calculated a 
histogram of predicted goal positions (Redish and Touret- 
zky, 1996). 

Our computational model of hippocampal spatial learn- 
ing is closely related to that of (Redish and Touretzky, 
1996) (referred to hereafter as the RT model) since both 
models are based on the cognitive map concept of (Tol- 
man, 1948) and its implicated substrate in the hippocam- 
pus (O'Keefe and Nadel, 1978). Further, both these mod- 
els make use of the locale system hypothesis of (O'Keefe 
and Nadel, 1978) with places being learned using a combi- 
nation of sensory inputs and dead-reckoning information. 
Finally, both simulations represent goals in terms of metric 
position estimates derived from dead-reckoning. 

Despite these similarities, there are some significant dif- 
ferences between the two models and the behavioral re- 
sults generated by them. Our model assumes that errors 
exist in the sensory and dead-reckoning input streams and 
our computational framework explicitly addresses the is- 
sue of information fusion from erroneous (or uncertain) 
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sources. By formulating the the place learning and local- 
ization problem within the framework of Kaiman filtering, 
we have been able to derive update expressions that can 
be proven to be stochastically optimal. The RT model in- 
corporates a mechanism for initializing the head direction. 
However, doing so makes the place cells directional, which 
appears to be at odds with experimental results that sug- 
gest the non-directionality of the CA3 and CA1 pyrami- 
dal cell firings. Our model assumes that the place cells are 
non-directional and this requires that the animats have re- 
liable head-direction information, i.e., we assume that the 
animals have not been disoriented. Further, animals learn 
and remember multiple goal locations, and plan and exe- 
cute multi-destination routes. Extending our model to han- 
dle learning and representation of multiple goal locations 
is rather straightforward. However, it is not clear how one 
could represent multiple goals in the RT model consider- 
ing that goals in their model correspond to the origin of 
the dead-reckoning system. Finally, animats in our simu- 
lations were capable of actually moving in their environ- 
ment, whereas the animats used in the RT simulations do 
not move. Consequently, the histograms reported in (Re- 
dish and Touretzky, 1996) correspond to predictions of the 
goal position rather than the time spent by the animat in dif- 
ferent regions of the environment. Thus, a dark histogram 
cell that is far from the goal in the RT model implies that 
the animat has a completely wrong estimate of the goal po- 
sition and hence a completely wrong localization, while a 
similar cell in the histograms of Collett et al. simply means 
that the animal spent some time in that region localizing (or 
moving slowly on its way to the goal), and does not neces- 
sarily imply that the animal's localization or its prediction 
of the goal position is wrong. Since the animats in our sim- 
ulations were capable of navigating, the search histograms 
generated in our experiments correspond more closely to 
those reported by Collett et al. (1986). 

Other Robot Localization Approaches 
Owing to the Kaiman filtering framework, our computa- 
tional model of hippocampal spatial learning is directly 
related to KF approaches for robot localization (Crowley, 
1995; Leonard and Durrant-Whyte, 1992). However, these 
KF based approaches require a sensor model of the envi- 
ronment (as shown in Figure 3) and often run into match- 
ing problems in environments with multiple identical land- 
marks and limited sensor ranges. The hippocampal model, 
on the other hand, provides a place-based extension of KF 
and easily addresses these problems (Balakrishnan et al., 
1997). A number of robot localization approaches based 
on cognitive mapping theories (or multi-level space repre- 
sentations) have also been developed (Levitt and Lawton, 
1990; Kuipers and Byun, 1991; Kortenkamp, 1993). Al- 
though closely related to the hippocampal spatial learning 
model, they are not formulated to computationally charac- 
terize ä specific brain region and differ in this regard. Fi- 
nally, a number of neurobiological models of robot nav- 
igation have been developed (Mataric, 1992; Bachelder 
and Waxman, 1994; Recce and Harris, 1996). However, 
these models deal with topological space representations 
(not metric ones), and are thus at discord with the cognitive 

map theory of (Tolman, 1948) and the locale hypothesis of 
(O'Keefe and Nadel, 1978). These differences are treated 
at length in (Balakrishnan et al., 1997). 

Future Work 

As we mentioned earlier, our computational model as- 
sumes that the animat has an accurate head-direction es- 
timate. This may not be the case if the animal has been 
disoriented. We are currently exploring the possibility of 
such a head-direction reset mechanism being implemented 
by place cells in the subiculum with the correction being 
performed by the head-direction cells in the post-subicular 
region. We have also developed a method to incorporate 
multiple goal locations in the model (Balakrishnan et al., 
1998). 

Given the fact that Kaiman filter based models of place 
learning and localization satisfactorily reproduce an inter- 
esting collection of results from behavioral experiments in 
animals, it is natural to ask: Can the hippocampus per- 
form the Kaiman filter computations? If so, how? Some 
suggestions have been forwarded for the neural basis of 
these computations in the hippocampus, including the role 
of CA3 recurrent collaterals in the propagation and update 
of estimates and covariances of the places, sharp waves in 
the consolidation of position and covariance estimates, and 
the CA1 region in the computation of matrix inversions re- 
quired for KF (Balakrishnan et al., 1997). These issues 
remain to be explored and explained, both through compu- 
tational modeling efforts of neuro-physiological and behav- 
ioral phenomena, and through biological studies in living, 
behaving animals. 
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ABSTRACT 
We present a connectionist architecture to model 
perceptual-motor processing of subjects engaged in the 
task of drawing a reproduction of a previously observed 
point on a white paper sheet. Such a task was designed to 
investigate the structure of perceptual field. Computer 
simulations showed a satisfactory agreement between 
model's forecastings and the experimental data obtained 
from an experiment performed on human subjects. 

Keywords 
Perceptual field, neural networks, spatial memory 

INTRODUCTION 
Every model of human visual perception must take into 
account the evidence, given by Gestalt psychologists 
(see, e.g., Koffka, 1935), for global factors of wholistic 
nature. In most cases, however, the study of such factors 
was done only in a qualitative way. For this reason 
Gestalt psychologists were unable to build a formalized 
theoretical model of visual perceptual processing, 
designed to do quantitative forecastings of experimental 
data. Notwithstanding they introduced a fundamental 
concept, the one ofperceptual field, viewed as similar to 
a vector field of forces acting within perceptual space. 
The lines of force of such a perceptual field should 
coincide, on one hand, with the paths followed in 
apparent movement phenomena, whereas, on the other 
hand, they should be orthogonal to perceived figural 
contours. A semi-quantitative investigation of perceptual 
field was undertaken already by Brown & Voth (1937), 
and by Orbison (1939). Such a task, however, requires to 
face strong theoretical and experimental difficulties in 
the case of nonhomogeneous stimulus areas, due to the 
great number of possible different situations, and of 
factors to be controlled. 
In more recent times some authors (Stadler & Kruse, 
1990; Stadler et at, 1991) proposed an experimental 
procedure to investigate in a quantitative way the 
perceptual field structure in the case of homogeneous 
stimulus areas. Such a procedure was, in some way, 
inspired by Bartlett's early observation of the wandering 
point phenomenon (Bartlett, 1951). The experimental 
paradigm used to detect this latter can be described as 
follows. To a first subject is shown a white paper sheet 

on which, in a particular position, a black point was 
drawn. After the sheet has been removed, the subject is 
asked to draw, on a second white paper sheet, a point 
exactly in the same position in which was placed the 
point previously observed on the first sheet. After the 
first subject has drawn the point, the second paper sheet 
is shown to a second subject which, subsequently, is 
asked to do, on a third paper sheet, the same task as the 
first subject. Then the third paper sheet is shown to a 
thirs subject, and so on. In this way it is possible to 
obtain an ordered sequence of reproduced points, starting 
from the first presented one. Such a sequence, once 
transferred on a single sheet, evidences a wandering path, 
starting from the first point, which can be considered as a 
visualization of the line of force of perceptual field 
passing through this point. 
Bartlett's idea appears as very appealing, mainly because 
the drawn point behaves like a probe, useful to 
investigate a perceptual field - the one created by sheet 
boundaries - in an homogeneous stimulation condition, 
without influencing in an essential way the field itself. 
However, such a procedure is practically unsuitable to 
study perceptual field structure in all locations belonging 
to paper sheet, as it would require a too great number of 
experimental subjects. A more easily implementable 
method is the one which makes use of a previous suitable 
sampling of locations, and, for each sampled location, 
ask the same subject to reproduce the point drawn in this 
location. In this way the data coming from a single 
subject let us obtain the displacements (of the 
reproduced point with respect to the observed point) 
associated to all sampled locations. These displacements, 
in turn, are proportional to the vector forces acting in 
each one of sampled points. We can thus obtain a 
quantitative representation of perceptual field structure 
and of its lines of force. 
Such a representation, once obtained,, should be 
considered as a remarkable result, because it lets us 
characterize in a quantitative way the perceptual field 
postulated by Gestalt psychologists. However it raises an 
important problem, concerning the origin of observed 
perceptual field structure. Does this latter derive from 
some general Maximum (or Minimum) Principle, such as 
the one of goodness of form? Or it is a byproduct of 
sensorimotor processing* required by experimental task 
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described above, and of principles ruling the operation of 
neural architectures involved? In order to support the 
evidence for the latter alternative we built a connectionist 
model designed to represent perceptual-motor processing 
by the experimental subject engaged in such a task, and 
to forecast the displacements observed in an experiment 
we performed, according to the paradigm presented 
above, on 10 subjects. Such a model was implemented 
through an architecture constituted by several different 
neural networks reciprocally interconnected, each one 
designed to do a particular task. Such a choice was 
dictated by the complexity of the experimental situation 
to be modelled. Namely this latter involves, first of all, 
an acquisition system, to grant for input of stimulation 
patterns, both of the sheet with the drawn point, and of 
the empty sheet where the point has to be reproduced, 
together with the instantaneous position of the point of 
pencil used to draw the reproduction. Moreover, we need 
a spatial memory, to store the information relative to the 
observed point, and a motor system, able to command 
hand motion in order to move pencil point up to the 
location where the point should be reproduced. Such a 
model was implemented through a computer program, 
and the outcomes of simulations we did were compared 
with the mean displacements observed in experiment 
with human subjects. We found a satisfactory agreement 
between computer simulation results and experimental 
data. Such an effect was essentially a consequence of 
general principles underlying the operation of single 
neural networks belonging to the architecture we 
described, rather than a consequence of ad hoc 
mechanisms already embodied within our model. 
Notwithstanding we feel that, in order to obtain a better 
agreement, some further experimental and theoretical 
problems remain to be solved. 
Before undertaking a detailed illustration of proposed 
model, we will describe, in the second section, the 
experiment done on human subjects. The third section 
will contain a description of the component of our model 
we consider as the most critical one: the spatial memory. 
The other networks belonging to model architecture will 
be presented in a fourth section. The fifth section, then, 
will be devoted to a description of simulations done, and 
to a comparison between the results so obtained and 
experimental data coming from human subjects. The 
conclusion will be the object of sixth section. 

THE EXPERIMENT 
The experiment was designed with a procedure   similar 
to the one described, e.g., in Stadler et ah (1991), but 
with a systematic control of experimental variables. 

Subjects 
The experiment was performed on 10 subjects, all 
students of Psychology, 5 males and 5 females, all with 
normal vision, or correct to normal. 

Stimuli 
The stimuli were constituted by 609 A4-sized paper 
sheets, each one with a single point in a particular 
location. Each point had a circular form, whose radius 
was 1mm. The set of all locations filled a lattice with 29 
rows and 21 columns, in which the distance between two 
neighbouring points, both along the horizontal and the 
vertical direction, was 1 cm. 

Procedure 
To each subject were presented, once at time and each 
one for a duration of 1 s, all 609 stimulus sheets. The 
subject was sitting in a dark room, before a suitably built 
device, constituted by a box, with an upper opening to 
look inside and a lateral opening to insert subject's hand 
holding a pencil. Only the inner box was enlightened, so 
that the subject was forced to focus his/her attention 
only on stimulus sheet. After 1 s the sheet was removed 
through a suitable opening, existing in the box, by an 
experimenter , located in the dark, which substituted the 
stimulus sheet with an A4-sized blank sheet. The subject 
was asked to draw on this sheet a point exactly in the 
same; location occuped by the point contained within the 
stimulus sheet presented before. The experimenter 
controlled that the initial position of subject's hand was 
always the same across all trials. Once the subject drew 
the reproduction of the observed stimulus point, the sheet 
was removed a new stimulation sheet was presented. The 
presentation order was randomized, and different from 
subject to subject. Each experimental session was 
preceded by a training period, to ensure the 
understanding of the task by the subject. 

Results 
For each stimulus point and for each subject we measured 
the difference between the position of the reproduced 
point and the one of the stimulus point. Such a 
difference led us individuate the vector field acting in the 
location of stimulus point, and whence the tangent vector 
to the line of force of perceptual field passing through 
this point. Afterwards, we computed for each point a 
mean tangent vector, by averaging the results relative to 
the different subjects. The spatial distribution of mean 
tangent vectors thus obtained evidenced a regular trend 
(see Fig. 1). More precisely, the majority of straight lines 
individuated by each tangent vector were crossing in a 
small number of points, which Stadler et al. (1991) 
identified with the attractors of perceptual field. We 
found a strong evidence for the presence of two attractors 
located near the two corners on the upper part of the 
sheet (here the attribute "upper" refers to the 
observational point of view of experimental subject), in 
agreement with the findings by Stadler et al. On the 
contrary, we found only a weak evidence for the presence 
of other two attractors located near the two corners on the 
lower part of the sheet , differently from what found by 
the Authors quoted above. 
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Fig.l 
Observed distribution of tangent vectors to lines of force 
of perceptual field (averaged on all subjects). 

MODELLING SPATIAL MEMORY 
The general architecture of the model we proposed, to 
describe perceptual-motor processing by a subject within 
the experiment described above, consists of the following 
interconnected neural networks: 1) a retina designed to 
receive input patterns, 2) a spatial memory, designed to 
process retinal output values, and to store the location of 
the point to be reproduced, 3) two filtering networks, 
designed to detect, respectively, the position of the point 
to  be  reproduced  (determined  as  output  of spatial 
memory),    and   the   one   of   pencil   point   during 
reproduction, 4) a motor network, designed to give the 
right motor commands to the hand holding the pencil, as 
a function of the location of the point to be reproduced, 
and of the instantaneous position of pencil point. 
The   choice   of implementing  the   above   described 
subsystems through neural networks was dictated by the 
following reasons: 
a) neural networks algorithms appear as more suitable to 
model, by using only a small number of rules of 
interaction between network units, behaviours such as the 
ones implied by perceptual or motor processing, which, 
stated in terms of traditional symbolic rule systems (such 
as the ones expressed through usual Predicate Calculus), 
would be too difficult to describe; such a circumstance is 
proved by fast diffusion, in recent times, of neural- 
network-based systems which do in a very efficient way 
artificial vision tasks, such as pattern recognition, visual 
scene analysis, object identification, and motor control 
tasks; 
b) neural network structures appear as closer than usual 
symbolic rule systems to biological structures involved 
in visual and motor tasks, so that an interrelation between 
neurophysiological study and cognitive modelling 
becomes easier; 

c) a parallel hardware implementation of neural network 
models can be faster than any serial processing of 
symbolic rules; such an argument would become crucial 
if our model would be used to command in real time an 
autonomous robot; 
d) neural network algorithms appear as more robust, 
with respect to traditional symbolic rule systems, with 
respect to errors, variations of input patterns, variations 
of model parameter values. 
We underline that the previous arguments, within this 
paper, have nothing to do with the traditional 
contraposition between symbolic and subsymbolic 
approach. Our neural network algorithms are symbolic, 
in the same way as usual symbolic rule systems. We feel 
only they are more convenient. 
Within our model architecture the retina is modelled as a 
planar lattice of units, each one of which can be, at a 
given instant of time (henceforth we will suppose the 
time be discretized: t = 1, 2, 3, ...), in one of two states: 
activated or non-activated (corresponding to the 
activation levels 1 and 0, respectively). As regards neural 
network representing spatial memory many different 
modelling possibilities exist. They can be grouped 
within two fundamental categories: models which make 
use of correlation matrices, and are based on long-range 
connections, and models implemented through cellular 
neural networks, based on short-range connections. The 
prototype of models belonging to the first category is the 
celebrated Hopfield's associative memory model 
(Hopfield, 1982). There exist, however, memory models 
belonging to this category, but not directly implemented 
under the form of neural networks (see, e.g., Pike, 1984; 
Humphreys, Bain & Pike, 1989). A more recent neural 
network model of spatial memory of this type is the one 
proposed by Fukushima et al. (1997). A feature 
common to all these models is that spatial patterns are 
stored as contributions to a matrix of connection weights, 
each element of which captures the correlation between 
two elements of a pattern lying in different locations. 
This implies that the neural network implementing 
spatial memory must be constituted by a number of units 
equal to the one of pattern elements, with connection 
lines linking every pair of units, independently from the 
spatial distance between the elements corresponding to 
the units. The presence of such long-range connections 
not only is biologically implausible, but can give rise to 
strong interference effects between stored patterns, if we 
need to memorize more than one pattern. Such effects can 
worsen in a dramatic way network performance in recall 
phase. Moreover, this kind of neural networks appear as 
particularly suitable to memorize complex patterns, 
rather than very simple ones, as it is the case in our 
experiment, where the pattern is constituted by a single 
point. 
The second category of neural network models of spatial 
memory, the one based on Cellular Neural Networks 
(CNN), derives from the fundamental paper by Chua & 
Yang (1988). Shortly, a CNN is constituted by a spatial 
lattice of units, each one endowed with a particular 
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activation fraction (of neural-like nature), and with a 
neighbourhood function, stating what units can send 
their output signals to the input lines of the unit itself. 
Each line connecting a given unit to its neighbouring 
units is characterized by a suitable connection weight. In 
practical applications CNN showed very good 
performances in artificial vision tasks relative to 
processing of simple spatial patterns. For this reason we 
choose this category of models to implement our spatial 
memory. 
Within our model spatial memory was represented as a 
planar lattice whose dimensions and number of units 
were identical to the ones of the retina. Each spatial 
memory unit received input signals both from the retinal 
unit lying immediately under it, and from its 
neighbouring units within spatial memory. To this 
regard, we choose as neighbourhood of a given unit the 
classical 8-neighbourhood. This means that the 
neighbouring units of the unit with coordinates (/, j) were 
the ones with coordinates (i-lj'-l), (i-l,f), (i-lj'+l), (i, 
;-/), (i,j+l), (i+IJ-1), Q+1J), (f+lj+l). If we denote 
by xij(t) the activation level of the unit with coordinates 
(i, j) at the time t, we can write the activation law we 
choose under the form: 

(1) xy (t+1) = a Qij tgh [Pij(t)J - dxij(t), 

where: 

(2) Pij(t) = Zr>s eD wijrs xrs(t) + gxi/t) + Iij(t) - s, 

and D denotes the neighbourhood of the unit (ij), Iij(t) 
is the input signal coming from the retina, whereas? is a 
suitable threshold parameter. The quantities  a, d, g 
denote other parameters to be fixed by the experimenter. 
Moreover Qij denotes a factor, depending on xy(t) , we 
varied, in order to investigate the effect of different 
choices   of  activation   function   on   spatial   memory 
performance. The forms of Qij we used within our 
computer simulations were the following: 

(3.a)     Qij=\ 

(3.b)     Qij=\-xij(t) 

(3.c)     Qij=l-/xij(t)/M 

(3.d)      Qij = 0.5+xij(t)-1.5 [xij(t)l3 

The connection weights Wyrs associated to the lateral 
connections were varying with time according to a Hebb- 
like law of the form: 

(4) wijrs(t+l) = WijrsO) + b Mijrs xy(t) xrs(t-l) + 
- d wijrsfl), 

where b and d are other parameters, whereas Murs is 
another factor, depending on xy(t) and xij(t+l), which 
we modified in order to investigate the effect of different 
forms   of   the   Hebbian   law   on   spatial   memory 
performance. The explicit forms of Myrs   we used 
within our computer simulations were the following: 

(5.a)   Mijrs = 1 

(5.b)   Mijrs =l-Xij(t+l)xrs(t) 

(5.c)    Mijrs = l-\xij(t+l)xrS(t)\UZ 

In all simulations we performed the operation of spatial 
memory was observed for a number of time steps, 
previously fixed by the experimenter. At the end of this 
period, the activation levels of the units were filtered in 
the following way. First of all, we searched for the units 
whose activation level was the maximum one. Once 
found these units, their activation level was set to 1, 
whereas the activation level of all other units was set to 
0. The units whose activation level was 1 were 
considered as representing what was stored within spatial 
memory. In other words, they specified the locations 
where should be placed the point to be reproduced. Of 
course, in all computer simulations, only one unit of 
spatial memory was characterized by an activation level 
equal to 1. We underline that, apart from specific choices 
of the factors Qij and Myrs , the laws (1) and (4) are 
nothing but an expression of very general principles 
ruling neural activation and synaptic facilitation. Thus, 
the effects of spatial memory operation are to be viewed, 
essentially, as a consequence of the adoption of such 
principles. 

FILTERING AND MOTOR NETWORKS 
When applying our general architecture to modelling 
human subjects performance in point reproduction task, 
we needed two filtering networks: one to detect the 
position of the point to be reproduced, as deriving from 
spatial memory processing, and another to detect the 
actual position of the point of the pencil used to draw the 
reproduction of the point itself. The former network 
received as input the pattern of activation levels of spatial 
memory, whereas the latter received as inputs the 
activation levels of retinal units in presence of the pencil. 
To do our simulations, we were forced to introduce a 
particular schematic representation of the pencil together 
with the hand holding it (as it is perceived by human 
subjects in the real laboratory experiment). More 
precisely, we choose to represent the hand through a 
rectangular array of 3x2 units, to which was attached, in 
the middle of the longest side, a line of 3 units 
representing the pencil. We underline that both choices 
of filtering networks, and of pencil representation, were 
dictated by the need for proving that a neural-like, and 
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somehow realistic, representation of the information flow 
from spatial memory to motor network is possible. We 
acknowledge that other different representations would 
be possible without changing the operation principles of 
the neural architecture we proposed. However, we feel 
that the representation we adopted should be particularly 
suitable if we would implement our architecture through 
a particular hardware to be installed within an artificial 
device, such as a robot able to draw a reproduction of a 
visually observed pattern. 
The filtering network receiving inputs from spatial 
memory was designed in such a way as to let survive 
only patterns consisting of a single activated unit. It was 
implemented through a 2-dimensional array of units 
(essentially a time-discrete CNN), of slightly greater 
dimensions with respect to the ones of the retina, in such 
a way as to include the representation of the hand holding 
the pencil. Each unit had a 8-neighbourhood and its 
activation potential was given by: 

(6) P0 = xjj(t) - UK s £D Wfjrs xrs(t) + 10 

where D denotes the neighbourhood, all other symbols 
have the meaning defined in the previuous paragraph, 
and the connection weights wijrs were all positive. The 
activation law had the form: 

(7) xtj(t+l) = 1 if Pij(t) >0.5, otherwise xtft+l) = 0. 

In our simulations the operation time of this network was 
limited to only one time step. 
As regards the second filtering network, the one 
receiving inputs from the retina and devoted to detect the 
position of the point of the pencil, we designed it in such 
a way as to let survive only the unit corresponding to the 
position of this latter. To this end, we adopted a 2- 
dimensional array of units, whose dimensions were 
identical to the ones of the first filtering network. 
Moreover, by taking again a 8-neighbourhood, we 
defined the activation potential as: 

(8) Pjj(t) =Er> s e£> wijrs xrs(t) - WOFF x\j(t) + I ij(t), 

where WOFF and wijrs were all positive. In our 
simulations we choose all wijrs values as identical to a 
common value wß- The activation law had the form: 

(9) xi/t+1) = 1 if 0 < P0 < (2wE - w0FF)/2 , 
otherwise  x(j(t+l) = 0 . 

Also in this case the network operation lasted only for 
one time step. 
As regards the motor network, it was designed to 
transform the knowledge of the actual position of the 
point to be reproduced, and of the point of the pencil, in a 
motor command able to induce a displacement of the 
hand, and whence of the point of the pencil. To this end 

the coordinates of the point to be reproduced (as deriving 
from the first filtering network), and of the point of the 
pencil (as deriving from the second filtering network), 
were first transformed into a binary form, by using 5 
binary digits for each coordinate. Thus, all knowledge 
relative to the actual positions of the points quoted above 
was coded through a 20-components binary vector. This 
latter was used as input for a 3-layer Perceptron, whose 
output layer contained two units, one devoted to code the 
motor activation along the horizontal direction, and 
another to code this activation along the vertical 
direction. As the allowed motions along these directions 
could be both positive and negative, we choose, as 
activation function of the Perceptron units, the 
hyperbolic tangent one (with a suitable amplification 
factor). 
The Perceptron was trained on a sample of input patterns, 
containing different relative positions of the point to be 
reproduced and of the point of the pencil. The desired 
output to each input pattern was obtained by putting the 
wanted motor activation along a given direction as 
directly proportional to the difference between the 
coordinates of the points quoted above along the same 
direction. Such a choice was made in conformity with 
neurophysiological findings (cfr. Schwartz & 
Georgopoulos, 1987), which evidenced a direct 
proportionality between the electrical activity of motor 
cortex neurons and perceived target distance. Of course, 
the proportionality factor had to be considered as a 
parameter to be chosen by the experimenter. The training 
was done through usual error-backpropagation rule. To 
avoid computational problems, the wanted outputs were 
divided by a suitable scale factor. 
Once trained, the Perceptron was used as a simple input- 
output device, giving motor activation as a response to 
the 20-component binary input vector. To compute the 
effective displacement of the point of the pencil, we set 
the velocity component of this latter along a given 
direction as directly proportional to the motor activation 
along the same direction. Such a choice was made in 
conformity with recent neurophysiological findings on 
the correlation between motor cortex activation and limb 
movement velocity (cfr. Schwartz, 1992; 1993). Once 
computed the velocity components, the new coordinates 
xnew> ynew of the point of the pencil were computed 
from the old ones x0ld, yold through the relationships: 

(10) xnew = x0ld + (kvx + vbx) *At   , 

ynew = yold + (kvy + vby)*At , 

where A: is a proportionality factor, vx and vy are the 
components of the velocity computed as afunction of the 
corresponding motor activations, vbx and vby are the 

components of a "base" velocity, whereas At is the time 
step amplitude. The introduction of a base velocity was 
made to represent the cerebellar modulation of limb 
movement, whereas the velocity obtained from motor 
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activations represented the power impressed to the 
movement itself, in conformity with the hypothesis put 
forward by Flash & Hogan (1985). 

COMPUTER SIMULATIONS AND COMPARISON WITH 
DATA OBTAINED FROM HUMAN SUBJECTS 
We  used   our  model architecture to   simulate   the 
behaviour   of  human   subjects   in   the   experiment 
previously described. A number of preliminary trials 
suggested the following parameter values: a = 0.5, d = 
0.1, g = 0.3, s = 0, b = 0.4, d =  0.05, k = 1, At=l, 
vbx ~ 0.1, vby = 0.1;WE= 0.15, wOFF= 0.1. Moreover 
all non-zero connection weights   wijrs appearing in 
formula (6) were set to 0.8. The motor network was 
consisting of a 3-layer perceptron whose hidden layer 
had 2 units. The proportionality factor between motor 
activation and velocity was chosen as 0.6. The spatial 
memory processing lasted for 10 time steps after the 
disappearance of each stimulation pattern, and the hand 
movement had a limit duration of 10 time steps. We 
tested our model on the reproduction of the 609 points 
presented to human subjects. From the positions reached 
by the point of the pencil, as computed through our 
model, at the end of the movement period, we derived the 
tangent vectors through the same procedure used in the 
case of human subjects. 
We did many different simulations with the same 
parameter values, corresponding to different 
combinations of choices relative to Qfj and Mfjrs. In all 
cases the results evidenced very clearly the presence of 
four attractors located near the corners of the sheet, two 
in the upper part and two in the lower part. As a 
quantitative measure of model performance we choose 
for each stimulus point, the euclidean distance between 
the position reached, within the model, by the point of 
pencil and the corresponding average position of the 
point reproduced by human subjects. We then computed 
the mean value 8 of such a distance, averaged on all 
stimulus points. As other two measures of model 
performance we choose: 
1) the   Bravais-Pearson   correlation   coefficient    cy 
between the vertical components of the tangent vectors, 
obtained in our simulations, and the ones of mean tangent 
vectors, obtained from human subjects' data; 
2) the   Bravais-Pearson   correlation   coefficient    ex 
between the  horizontal  components  of the  tangent 
vectors, obtained in our simulations, and the ones of 
mean tangent vectors, obtained from human subjects' 
data. 
The values of 8, cy, and ex obtained in correspondence 
to the different choices of Qij and Mijrs   are listed in 
the following (to shorten the exposition, every choice is 
indicated through the numbers of the corresponding 
formulae). 
A) choice (3.a), (5.a): 

£=21 , cy = 0.34 , ex = 0.24 

B) choice (3.b), (5.a): 

8= 17 , cy = 0.43 , ex = 0.20 

C) choice (3.a), (5.b): 

£=48 , cv = 0.16 , ex = 0.17 

D) choice (3.c), (5.a): 

8= 12 , cy = 0.58 , ex = - 0.20 

E) choice (3.c), (5.b): 

8=11 , cy = 0.60 , ex = -0.21 

F) choice (3.d), (5.b): 

8=25 , cy = 0.64 , ex = 0.18 

G) choice (3.d), (5.a): 

8=12 , c^ = 0.62 , ex = 0.17 

H) choice (3.d), (5.c): 

8=24 , c^ = 0.64 , ex =0.19 

In order to have an idea of the meaning of these numbers, 
we remember that a value 8= 10 means that the average 
distance from the points reproduced by our model and 
the ones reproduced by human beings is only of one 
lattice cell. We could thus hold that the results obtained 
from the choices D), E), G) evidence a very good 
agreement between our model behaviour and the one of 
human subjects. We should, however, take into account 
also the values of cy and ex, which show a very strange 
trend. On one hand, namely, the correlations regarding 
vertical components evidence a very good agreement 
between our model and human data, chiefly in 
correspondence to the choices D), E), F), G), H). The 
choice G), then, seems to have realized the best 
compromise between a high value of cy and a small 
value of 8 On the other hand, the correlations regarding 
horizontal components appear as too small, in some cases 
even negative. The highest value was obtained in 
correspondence to the choice A), which, however, 
doesn't appear as particularly good, when we look at the 
values of 8 and of cy. From simulation results it appears 
as evident that neither the choice of Qij nor the one of 
M[jrs , isolately considered, can improve the 
performance of our model. This latter depends on both 
choices. The best one appears to be G), but the 
improvement in performance on ex, without a great 
worsening on cy and 8, suggests that a good research 
strategy would be the one of investigating what happens 
by replacing in (5.c) the exponent  1/2 with smaller 
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exponents. In any case, such a circumstance evidences 
how model's performance depends essentially on general 
form of laws such as (1) and (4), rather than on particular 
choices of factors such as QH and Mijrs . Another 
possible explanation of the results we obtained can be 
found in the existence of some bias which influenced the 
performance of subjects during the experiment. Namely 
the variance of their behaviours is very high. Moreover, a 
comparison we did between our simulations and the 
results obtained from single subjects showed, in some 
cases, an agreement better than the one evidenced by a 
comparison with average subject behaviours, whereas, in 
other cases, such an agreement was worse. However, only 
a careful repetition of the experiment with human 
subjects can tell us whether this is or not the reason for 
the observed trend of ex. 

CONCLUSION 
The computer simulations so far done evidenced that our 
model was able to reproduce in a satisfactory way some 
qualitative (the presence of attractors) and quantitative 
features of subjects' performance in the point 
reproduction task. It is, thus, possible, to conclude that 
our model was able to reproduce some Gestalt-like 
properties of visual perception, owing essentially to a 
suitable choice of the dynamical laws underlying spatial 
memory operation. The usefulness of our proposal stems 
also from the fact that the neural network architecture we 
introduced is of modular nature, so that it becomes very 
easy to investigate the effects on model performance of 
different choices of the laws ruling the operation of each 
module. Besides, our model can be easily adapted to 
represent the cognitive processing of a subject engaged in 
other sensorimotor tasks, different from the one of point 
reproduction. A continual , and mutual, interaction 
between experimental and modelling activity is, 
however, needed in order that complex model 
architectures, such as the one we proposed, be useful to 
improve our knowledge about cognitive system. 
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ABSTRACT 
The neurosymbolic hybrid system ARCS, which extends 
a classifier for certain kinds of visually presented objects, 
generates recall images it is then capable of classifying. 
The modules performing classification are exploited for 
imagery, too. In particular, each weightless neural 
discriminator has been modified so as to generate a non- 
crisp example of the class of simple visual features it was 
trained to detect; a symbolic process prescribes how to 
assemble more complex patterns from such non-crisp 
examples; both generated features and their compositions 
are correctly classified, even though the system was 
originally conceived for actual visual inputs only. These 
cognitively significant aspects of the hybrid system are 
examined in the framework of a more general discussion 
of neurosymbolic integration for cognitive modelling. 

Keywords 
Hybrid systems, neurosymbolic integration, recall 
images, weightless neural systems, multidiscriminators, 
production rules 

INTRODUCTION 
"If you were going to program a computer to mimic 
human imagery," Kosslyn (1995, p. 269) remarks 
"perhaps the most fundamental problem the program 
would have to solve is the generation of images." The 
neurosymbolic system ARCS (Arches Recall and 
Classification System) illustrates a way of solving this 
problem, relative to images of simple features and their 
compositions it is already capable of classifying. 

The task domain contributes to highlighting the current 
interest of neurosymbolic integration for AI and cognitive 
modelling. The generation and classification of the 
selected, more complex patterns, which seem to elude a 
purely neural network approach, are naturally handled by 
means of the hybrid neurosymbolic system. The selected 
features are various line segments and angles; the more 
complex patterns represent various portal shapes. ARCS 
grew out of a hybrid classifier for portal shapes (De 
Gregorio, 1996), embedded into an architectural expert 
system for landmark building classification and 
preservation (Burattini, 1994). 

There are aspects of the process by which ARCS 
generates recall images that are significant for cognitive 
modelling. Human image generation seems to involve a 
process for producing image parts, and another process for 
positioning individually activated parts in the image, so 
as to form more complex visual objects (Farah et al., 
1985, Kosslyn, 1994, Kosslyn, 1995, pp. 270-273). The 
same division of labour applies to the image generation 
mechanism of ARCS: one can distinguish between 
simple visual features and more complex patterns, and 
between two corresponding stages of image generation. 

The first stage of image generation is carried out by the 
neural module of ARCS. This module is a weightless 
neural system formed by RAM-discriminators (Aleksander 
& Morton, 1990). The standard weightless discriminator 
model was slightly modified in order to make a wider 
repertoire of behaviours available (De Gregorio, 1997). In 
particular, such a modified discriminator can generate a 
grey-level, non-crisp example of the class of simple 
visual features it was trained to detect. The generated 
example differs from, but bears a precise relationship 
(spelled out in detail in the following sections) to every 
binary pattern of the corresponding training set. Roughly 
speaking, the grey intensity level of each non-white pixel 
in the example is proportional to the number of times 
that the corresponding memory locations of the 
discriminator were addressed by input training patterns. 
Since this relationship shows that each image in the 
training set contributes to forming the generated class 
example, a question that naturally arises is whether such 
recall images might be regarded as typical examples of the 
classes of visual patterns detectable by ARCS. From a 
computational perspective, it is worth pointing out that 
the first stage of image generation is carried out by neural 
nodes that are endowed with functionalities akin to (but 
not identical with) those of bidirectional associative 
memories (Kosko, 1988). 
In the second stage of image generation, more complex 
objects are formed by properly assembling the elementary 
features together. This latter process is governed by the 
symbolic module of ARCS, a system of production rules 
determining the features to be assembled together and 
their categorical spatial relationships in the complex 
recall image. 

In addition to generating recall images by a two-stage 
process, ARCS can inspect and classify them. It achieves 
this goal using a pre-existing hybrid classifier for actual 
visual inputs. Thus, classification of both mental images 
and actual visual inputs is taken care of by the same 
process. This is consistent with the widespread conviction 
(Damasio and Damasio, 1994, Finke, 1985, Kosslyn, 
1994) that visual imagery exploits the mechanisms of 
visual perception; more generally, that mental imagery, 
in any of its modalities (visual, auditory, tactile, etc.), 
exploits the mechanisms of same-modality perception. 
Yet another aspect of ARCS which is worth mentioning 
in this connection is the coarse internal organisation of 
the (recall) image classification process, as it closely 
reflects Kosslyn's protomodel of visual perception 
(Kosslyn, 1994, p. 69). In ARCS, shape and location 
data are handled by different processes and trigger 
classificatory hypothesis formation and the hypothesis- 
driven testing of proposed classifications by means of 
additional perceptual clues. 
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To sum up, the following claims concerning image 
generation and classification in ARCS seem, in our view, 
to capture the more relevant aspects of this computational 
system for cognitive modelling. 

(i) The recall images generated by ARCS are non-crisp 
examples of the classes of visually presented features and 
objects the system is capable of classifying. (This claim 
is supported by (ii).) 

(ii) The classification of recall images is correctly 
achieved by the same mechanism performing 
classification of actual visual inputs. 

(iii) Image generation results from the composition of 
two distinct computational processes: simple visual 
features are first generated and then assembled into more 
complex patterns. 

(iv) The coarse internal organisation of the image 
generation and classification mechanisms reflects 
distinguishing traits of current models of high-level 
vision. 

These claims are more precisely specified in the next four 
sections, which describe the symbolic and neural 
components of the hybrid image classifier and generator. 
In the final section, the cognitively significant aspects of 
this system are rehearsed in the light of a more general 
discussion on neurosymbolic hybrid approaches to 
cognitive modelling. 

RAM-DISCRIMINATORS   AND   CLASSIFICATION 
In this section, we briefly describe the structure of RAM- 
discriminators, their training procedure, and the feature 
classification task performed by the multidiscriminator 
system of ARCS. 

RAM-discriminators 
A RAM-discriminator consists of a set of N one-bit word 
RAMs with X inputs and a summing device (£). Any 
such RAM-discriminator can receive a binary pattern of 
X-N bits as input. The RAM input lines are connected to 

the input pattern by means of a so-called "random 
mapping". The summing device enables this network of 
RAMs to exhibit — just like other artificial neural nets 
that more directly model features of biological neural 
networks — generalisation and noise tolerance. (See fig. 
1 for a schematic representation of a particular RAM- 
discriminator.) 

In order to train the discriminator one has to set to 0 the 
RAM memory locations and to choose a training set 
formed by binary patterns of X-N bits (see fig. 2 in which 
a possible training set for the feature vertical line is 
proposed). For any training pattern a 1 is stored in that 
memory location of each RAM which is addressed by this 
input pattern. Once the training is completed, the RAM 
memory contents will be set to a certain number of O's 
and l's. 

The information stored by the RAM during the training 
phase is used to deal with previously unseen patterns. 
When one of these is given as input, the RAM memory 
contents addressed by the input pattern are read and 
summed by Z. The number r thus obtained, which is 
called the discriminator response, is equal to the number 
of RAMs that output a 1. r reaches the maximum value 
N if the input pattern belongs to the training set (in the 
present example, if the input pattern is one of the patterns 
in fig. 2). r is equal to 0 if no three-bit component of the 
input pattern appears in the training set (no RAM outputs 
a 1). The other, intermediate values of r express some 
kind of "similarity measure" of the input pattern with 
respect to the patterns in the training set. 

We selected RAM-discriminators as digital neural 
components for our system on the basis of the following 
considerations: their training algorithm can be easily 
modified as needed for image generation tasks; RAM- 
discriminators are tailored for efficient implementation on 
conventional computers; the "use of artificial neurons 
more closely reflecting biological neurons would not 
make a difference at the coarse level of cognitive 
modelling sketched in the introduction. 
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Figure 1 - RAM-discriminator 
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Figure 2: a possible training set for the feature vertical line 
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Figure 3 - a multi-discriminator system 
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Multidiscriminators 
Multidiscriminator systems are formed by various RAM- 
discriminators (Aleksander et al., 1984). Each 
discriminator is trained on a particular class of patterns, 
and classification by the overall multidiscriminator 
system is achieved in the following way. 

When a pattern is given in input, (see fig. 3 for a 
schematic representation of a multidiscriminator system 
formed by 10 RAM-discriminators), each discriminator 
gives a response on that input. The various responses are 
evaluated by an algorithm which compares them and 
computes the relative confidence c of the highest response 
(that is, the difference d between the highest and the 
second highest response, divided by the highest response). 

In ARCS, six discriminators were trained with drawings 
representing variations (in angle width, size, or position) 
on the simple geometric features of fig. 4. The 
discriminators are organised into a multidiscriminator 
system which ranks their responses. 

{ 
I 

Figure 4 - geometric features 

AND (MODIFIED) RAM-DISCRIMINATORS 
FEATURE   GENERATION 
RAM-discriminators were modified in what their memory 
locations may hold and, correspondingly, in their training 
algorithm. These changes, which produce something very 
similar to the PLN nodes introduced in (Aleksander, 
1988), allow one to store q-bit words in memory 
locations (where q is usually not greater than 8); in turn, 

this information can be exploited for producing recall 
images (and improving in other ways the behaviour of 
RAM-discriminators). 

Another training algorithm 
The training algorithm of RAM-discriminators was 
changed in one respect only: instead of storing l's, one 
just increases by 1 the memory location contents that are 
addressed by the input patterns. At the end of the training 
phase, the values of the memory contents will vary 
between 0 and M (where M is the number of training 
patterns). Fig. 5 shows the result of training the same 
RAM-discriminator of fig. 1 on the patterns of fig. 2, by 
means of the new algorithm. 

The various memory content values can now be associated 
to subpattern frequency in the training set. For instance, 
the memory content of the address 010 associated to the 
+-th RAM is 5. This value indicates that the subpattern 
010 is present 5 times in the training set of fig. 2. 
Moreover, one has to notice that the newly obtained 
memory contents do not give rise to different behaviours 
with respect to regularly trained RAM-discriminators, if 
one replaces the £ device with another summing device, 
outputting the number of addressed memory locations 
whose content differs from 0. 

One may take advantage of the new values stored in the 
RAMs in order to produce recall images (De Gregorio, 
1997). This behaviour is significantly related (but not 
identical) to the exact input/output reversibility exhibited 
by the Bidirectional Associative Memories (BAM) 
introduced in (Kosko, 1988). The form of bidirectional 
behaviour we want to obtain from a RAM-discriminator 
D, trained with the new algorithm to pick out the 
elements of class X, must satisfy the following 
conditions: 

(a) in one direction, D has to perform the usual 
classification process of RAM-discriminators; 
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RAM-discriminator of fig. 1 trained with the 
new algorithm 

(b) in the opposite direction, D has to provide, when 
given the name of class X in input, an example of X. 
It is not required that the example be identical to a 
member of the training set for D. Furthermore, we regard 
(b) as satisfied for any example of geometric feature in 
fig. 4 if the example is correctly classified by the 
multidiscriminator of ARCS. 

The solution outlined here involves the construction of 
grey-level (rather than black and white) images exploiting 
the information held in the modified RAM memory 
locations. (A mathematical framework for approaching the 
reversibility problem for weightless systems is briefly 
sketched in (Redgers & Aleksander, 1992).) 

Generating   grey-level   images 
The procedure for constructing grey-level images is the 
following. Let bi, b2, and b3 be the first, second, and 
third bit forming the address of a memory location (for 
instance, bi = 0, b2 = 1 and bß = 1 represent the address 
of the 011 memory location). To each of these bits a 
particular pixel of the image is associated (see the 
mapping in fig. 1). For any RAM, let B;, for i = 1, 2, 3, 
be the sum of all memory location contents for which b; 
is 1 and the value stored is not equal to 0. For instance, 
for the »-discriminator in fig. 5 we obtain: Bj = 1, B2 = 7 
and B3 = 1. Applying this condition to every RAM in 
fig. 5 we obtain: V; :j e {•, x, 0, +}, By = 1, B2/ = 7, 
By = 1. This regularity over the four RAMs depends on 
the fact that each pixel in the left-hand and right-hand 
columns of the matrix assumes value 1 (black) only once 
in the training set, whereas each pixel in the central 
column assumes value 1 (black) seven times in the 
training set. 

Now, one can set the grey intensity level of each pixel 
associated to the bit by in such a way that it is 
proportional to the corresponding value B,y: the higher is 
By the darker will be its grey intensity level. The result 
of this procedure applied to the modified RAM- 
discriminator trained for the feature vertical line is shown 
in fig. 6. 

1 7 1 

1 7 1 

1 7 1 

1 7 1 

Figure 7 - examples generated by the modified multi- 
discriminator 

Let us now turn to consider the wider class of simple 
visual features exemplified in fig. 5. In recognising these 
features, the multidiscriminator system of ARCS (trained 
by the modified algorithm described in this section) works 
in a canonical way, i.e. just as any regular 
multidiscriminator system. Moreover, the system may 
also provide, upon request, an example of each geometric 
feature it can classify. The results are shown in fig. 7. 

CLASSIFYING   COMPLEX   PATTERNS 
ARCS was originally conceived for classifying actual 
photographs of portal shapes into one of the classes a to / 
exemplified in fig. 8. The hybrid approach was pursued 
after direct classification through a multi-discriminator 
system failed. 

The purely neural approach 
The training set employed in the first, purely neural 
approach contained several drawings varying from the 
examples in fig. 8 only in the way of their position and 
size. The results obtained in a test made with 85 actual 
photographs of portals showed that only portal shapes 
belonging to classes a and b were correctly classified in a 
systematic way. The main reason for this failure emerges 
clearly from fig. 9, where the differences a-b, e-f, and c-d 
are shown. 

While the relative complement of b in a is a rather large 
set of points, the other relative complements are much 
smaller and more localised. Thus, the information 
enabling one to discriminate between some such classes 
concerns the geometrical properties of small collections of 
points. It seems that spatial reasoning about geometrical 
features is crucially involved in this classification task. In 
particular, the more useful geometric cues are the top, the 
horizontal, and the vertical parts of portals, as exemplified 
in fig. 10 for polygonal portals. (Notice, however, that 
the horizontal parts are not essential for the non-linear 
portals a, e, and/in fig. 8.) 

In order to mimic this geometrical reasoning capability, a 
hybrid system composed of a neural module and a 
symbolic module was adopted (De Gregorio, 1996): a 
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Figure 6 - the generated example of vertical line Figure 8 - classes of portal shapes 
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neural network for recognising geometric features was 
combined with a set of production rules specialised in 
classifying special arrangements of these features. 

The symbolic module 
In the symbolic module one can distinguish between three 
different sets of production rules. 

The first set of rules enables the system to evaluate the 
geometric "coherence" of the discriminator responses. For 
instance, suppose that on the current input "straight 
angle" and "obtuse angle" are the best and the second best 
response for both left and right horizontal parts, 
respectively. Then, the system uses these rules to verify 
whether the left and right recognised features are almost at 
the same height, almost aligned with the top, symmetric 
with respect to the top. If the "straight angle" responses 
do not satisfy these conditions while the "obtuse angle" 
responses do, the system selects the "obtuse angle" ones 
as possible responses, because they are geometrically 
"coherent". 

The second set rules implements an abduction-prediction- 
test inference cycle (Burattini and De Gregorio, 1994) 
which can be roughly described in the following terms. 
From the ranked list of responses for the top feature, 
which is provided by the multidiscriminator system, the 
best response is picked out to start the cycle. The system 
abduces the portal shapes (hypotheses) that are consistent 
with the higher-ranked top feature. Given these 
hypotheses on overall portal shape, the system predicts 
which horizontal features may be detected, and activates 
the appropriate discriminators. Then, if one of these 
horizontal features is actually detected, the associated 
hypothesis is selected for further scrutiny, and the system 

activates the relevant discriminator to test again that 
hypothesis with respect to the vertical features; otherwise, 
the cycle is repeated on the next hypothesis (with the 
obvious termination conditions). 

The third set of rules is formed by six rules, one for each 
portal shape, and enables the system to infer the final 
portal classification (if any). For example, the rule 
concerning polygonal portals can be informally stated as 
follows: 

(Rp) If top feature is in class no. 1 of fig. 4 and the 
horizontal and vertical features are in (or are obtainable by 
90° rotation or specular reflection from instances of) class 
no. 4, then portal shape is polygonal (as in fig. 8, d). 

The hybrid classifier has correctly classified the 85 actual 
photographs of portals that showed the inadequacy of the 
previously attempted, one-step neural classification 
approach (see fig. 11 for an input image - left - which is 
filtered - centre - and eventually classified - right; the 
higher the responses the darker the lines). 

GENERATING AND CLASSIFYING RECALL 
IMAGES  OF  COMPLEX  PATTERNS 
We have pointed out that the third set of production rules 
of the symbolic module enables the system to infer portal 
classification from portal components. By exchanging 
condition and action parts of these rules, one obtains new 
rules specifying which parts are to be assembled together 
to form the recall image of a given portal shape. For 
example, from rule (Rp), one obtains a rule which can be 
informally stated as follows: 
(Rp<-) If portal shape is polygonal (as in fig. 8, d) then 
top feature is in class no. 1 of fig. 4 and the horizontal 
and vertical features are in (or are obtainable, by 90° 
rotation or specular reflection, from instances of) class no. 
4. 

Similarly, by exchanging condition and action parts of the 
"geometrical coherence" rules, we obtain rules 
determining categorical spatial relationships between parts 
of complex recall images (ruling that vertical and 
horizontal components must be aligned and symmetrical 
with respect to the top, that the horizontal components 
must be aligned with the top). 
An assembly problem which is not solved in the current 
implementation is how to determine the proportions of 
the components and their metric spatial relationships. A 
dynamic solution would require the recording of the 
corresponding data during the classification of actual 
visual inputs — in order to set, and then progressively 
refine the values of such spatial relationships as new 
examples are being classified. We have not yet 
implemented a process of this sort, which takes 
dynamically into account all past experience of the 
system. Currently, the system assigns fixed default values 
to such relationships. 

The grey-level recall images obtained by means of the 
"assembly" rules are correctly recognised by the classifier 
of ARCS (see fig. 12). As with the actual photographs of 
portals given in input to the system, these recall images 
are first processed by a grey-level filter, which produces a 
binary image sharpening the non-crisp input image. The 
latter is given in input to the hybrid classifier described in 
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Figure 11 - input image of a polygonal portal (left), filtered (centre) and classified by the multidiscriminator (right). 

the previous section. (Let us notice, in passing, that the 
existence of a filter editing visual information, by filling 
in missing details or sharpening fuzzy data is postulated 
in various cognitive models. See, for instance, Kosslyn 
(1994, p.389) and Rocha (1997, p. 157).) 

Fig. 12 shows the grey-level recall image of a polygonal 
portal (left) which is filtered into a black and white image 
(centre). The responses of the discriminators for the 
various features (right) are represented in different 
intensities of grey: darker lines correspond to higher 
response values. 

Is a recall image obtained in this way a typical example 
of the corresponding class? To the extent that frequency 
and typicality can be assimilated, the (filtered) recall 
images might be regarded as typical pictorial 
representatives of their classes. The non-crisp recall image 
preserves in its darker, more noticeable parts a trace of the 
more frequently encountered patterns during the training 
phase. In the filtered recall image (see fig. 12, centre), the 

xva.Uli;lniiift4Uliiii/i5St> ' ZJ lUflinjbffiltrata 

sharpened trace induced by such patterns stands out even 
more clearly. 

Under the hypothesis that frequency and typicality are 
identifiable in the domain under consideration, one can 
assert that the various classes of portals in fig. 8 are 
pictorially represented in the system by means of recall 
images, whereas the more abstract, general class portal 
can only be represented by a disjunction of statements 
such as (Rp). (See Ullman (1996, p. 184) for a recent 
discussion of related issues.) 

In concluding this section let us notice that (complex) 
recall images may be adjusted on the basis of further 
experience. If, during a new training session, the memory 
location contents of the various RAMs are modified, then 
the grey-intensity level of the associated pixels in the 
generated example will change accordingly. 

Figure 12 - recall image of a polygonal portal (left), filtered (centre) and processed by the multidiscriminator (right). 
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Figure 13 - system layout (RKB stands for Reverse Knowledge Base). 

NEUROSYMBOLIC HYBRID SYSTEMS FOR 
COGNITIVE    MODELLING 
The idea that visual perception and imagery share the 
same underlying mechanisms is supported by various 
behavioural, neuropsychological and more recently 
accrued brain imaging data. ARCS reflects this 
hypothesis, insofar as visual object classification and 
generation of recall images in the task domain are 
concerned. Notably, classification of both actual and recall 
images is performed by exactly the same mechanism, 
whereas just a reversing of some neural and symbolic 
mechanisms involved in classification is needed to 
generate recall images. This reversing might be viewed as 
contributing to an abstract, purely functional modelling 
of reentrant neuronal connections (Edelman, 1989, p. 
195, Damasio & Damasio, 1994), which combines the 
two quite different computational techniques of production 
rules and weightless neural systems, that are usually 
associated to the symbolic and subsymbolic paradigm, 
respectively. 
Neural and symbolic techniques converge into hybrid 
neurosymbolic approaches to cognitive modelling 
(Hilario, 1995). These approaches seem to provide 
appropriate tools for modelling the interaction between 
top-down reasoning processes (typically simulated by 
symbolic computation) and bottom-up perceptual 
processes (often simulated by neural computation). The 
hybrid system ARCS is a case in point, since 
classification is accomplished by the interaction of both 
types of processes. We were unable to carry out this task 
by means of the purely neural, one-step classification 
process that was previously adopted. 

Also the generation of recall images in ARCS is not a 
one-step process. The neural module generates examples 
of the various classes of features. Categorical spatial 
information about the position of features is represented 
in the symbolic module, and enables the system to 
assemble individually generated features into a complex 
recall image. Thus, the partition of the system into a 

neural and a symbolic component corresponds to a 
decomposition into functionally distinct subsystems, 
which is postulated in Kosslyn's model of imagery 
(Kosslyn, 1994 and 1995). A more detailed system layout 
is shown in fig. 13. 

In general, the cognitive models taking the form of hybrid 
systems may raise a special epistemological problem 
since, in principle, model and cognitive reality might be 
compared at the symbolic, subsymbolic, and even 
neuronal levels. The problem does not arise if the hybrid 
system is proposed as a coarse model of input/output 
behaviours, relative to the major components of the 
cognitive system only. At this level of comparison, it is 
immaterial whether the various components are 
implemented as a neural net or as a symbolic system: 
only the functions computed by each component are 
relevant. Claims (i)-(iv) — made in the introduction and 
relating ARCS to the computational modelling of aspects 
of high-level vision and visual imagery — are to be 
understood just at this functional level of comparison. 
Thus, the choice of a hybrid architecture for ARCS is 
only pragmatically motivated: it allows one to simulate 
cognitive functions that seem to elude symbolic 
(respectively, neural) computation techniques in isolation. 

These various observations suggest that the hybrid 
approach pursued here is not in principle incompatible 
with later developments possibly allowing one to 
substitute a neural module for a symbolic module, salva 
functional equivalence, and eventually transforming a 
hybrid system into a unified neurosymbolic system. In 
such unified systems, neurally implemented modules 
perform symbolic reasoning, too (Hilario, 1995). In 
principle, ARCS may be transformed into a unified 
system, by neurally implementing the production rule 
system performing geometric reasoning (adopting, e.g., 
the methodology proposed in (Aiello et al, 1997, Aiello 
et al., 1995)). It is not obvious, however, that every 
hybrid system can be turned into a unified system. There 
are forms of reasoning that currently go beyond unified 
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approaches; these include most forms of classical 
reasoning in first-order logic, which lack (efficient) neural 
implementations. For discussion, see (Aiello et al, 1997, 
Ajjanagadde & Shastri, 1993, Sun, 1994). 

Finally, some remarks about future work on recall images 
in problem solving. One may endow the system ARCS 
with an explanation module combining words and 
pictures. If a user wants to know why a given house 
portal was classified as, say, polygonal, the system may 
justify this conclusion roughly as follows: 

(a) it generates and displays examples of the visual 
features detected in the input image; 

(b) it verbally declares and visually exemplifies the spatial 
relationships that were recognised to hold between the 
displayed features; 

(c) it displays an example of the overall portal shape, 
obtained by properly arranging the generated features, next 
to the input image. 

Similar uses of multiple representations have been 
recently discussed in (Tabachneck-Schijf et al, 1997). 
Both in ARCS and in other contexts that we are currently 
exploring (concerning simple 2-D geometric figures), 
recall images may be used to complete partially occluded 
pictures, so that the various completions that the system 
declares as consistent with the occluded image can be 
shown. 
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ABSTRACT 
This paper contrasts two views about the relationship 
between the processes of access and mapping in analogy- 
making. According to the modular view, analog access 
and mapping are two separate 'phases' that run sequen- 
tially and relatively independently. The interactionist 
view assumes that they are interdependent subprocesses 
that run in parallel. The paper argues in favor of the 
second view and presents a simulation experiment dem- 
onstrating its advantages. The experiment is performed 
with the computational model AMBR and illustrates one 
particular way in which the subprocess of mapping can 
influence the subprocess of access. 

KEYWORDS 
Analogy-making, interactionist approach, access, 
mapping, simulation experiment, hybrid cognitive archi- 
tecture. 

INTRODUCTION 
A crucial point in analogy-making is the retrieval of a 
base (or source) analog. Accessing an appropriate base 
from the vast pool of episodes stored in the long-term 
memory is not only a logical necessity (one cannot make 
analogies without a source) but apparently is the most 
difficult and capricious element of analogy-making. 
Starting with the classical experiments of Gick and 
Holyoak (1980) it has been repeatedly demonstrated that 
people have difficulties in spontaneously accessing a 
base analog, especially when its domain is very different 
from that of the target problem. In the aforementioned 
study only about 20% of the subjects were able to solve 
the so-called radiation problem even though an 
analogous problem (with solution) was presented shortly 
before the test phase. When provided by an explicit hint 
to use this source analog, however, 75% of the subjects 
achieved the solution. This great difference between the 
two experimental conditions was attributed to the 
difficulty of analog access. 

On the other hand, we know a lot of stories about great 
scientists making discoveries by spontaneously using 
remote analogies. We have also personal experience in 
everyday usage of remote analogies. A recent study by 
Wharton, Holyoak, and Lange (1996) has demonstrated 
that about 35%  of their subjects were successfully 

reminded about a remote analog story studied 7 days 
earlier when cued by the target story. (They have used a 
directed reminding task, not a problem solving task, 
however.) 

Researchers of analogical access have become interested 
in the features of a remote analog that facilitate retrieval. 
Most data in the field (Holyoak and Koh, 1987, Ross 
1989) suggest that analogical access is almost 
exclusively guided by superficial semantic similarities 
between base and target—similar objects and relations, 
similar themes, similar story lines, etc. In contrast, 
analogical mapping is dominated by the structural 
similarity between target and base, i.e. having common 
systems of relations (Gentner, 1983, 1989). This 
explains why remote analogs are much more difficult to 
access than to map—they lack the superficial similarities 
needed for access but do have the (quasi)isomorphic 
relational structure necessary for mapping. 

This clear separation stimulated the researchers in the 
field to build separate models of mapping and retrieval 
and even to claim that they are different cognitive 
modules. Thus Gentner (1989) claims that 'the analogy 
processor (the mapping machine) is a well-defined sep- 
arate cognitive module whose results interact with other 
processes, analogous to the way some natural language 
models have postulated semi-autonomous interacting 
subsystems for syntax, semantics, and pragmatics.' 
Although she explicitly mentions in a footnote that this 
should not be considered in the Fodorian sense as innate 
and impenetrable, the actual models built are quite im- 
penetrable. This line of research has generated a number 
of quite successful models that explained the data and 
made some new predictions. Typically, a model of 
mapping is coupled with a (separate) model of retrieval. 
The best-known examples are SME + MAC/FAC 
(Falkenhainer, Forbus, and Gentner, 1986; Forbus, 
Gentner, and Law, 1995) and ACME + ARCS (Holyoak 
and Thagard, 1989; Thagard, Holyoak, Nelson, and 
Gochfeld, 1990). 

However, the experimental work soon revealed that the 
pattern is not that clear and straightforward. It has been 
demonstrated that superficial similarities do play an 
important role in mapping as well.  In particular cross- 
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mapping is difficult (Ross, 1989). This led Holyoak and 
Thagard to include syntactic, semantic, and pragmatic 
constraints in their model of mapping ACME (Holyoak 
& Thagard, 1989) and to develop their multi-constraint 
theory (Holyoak & Thagard, 1995). 

There are also some indications that structural similarity 
might play a role in access as well. Thus Ross (1989) 
demonstrated that in some cases (when the general story 
line is similar) structural similarity plays a positive role 
in retrieval, while in other cases (when the general story 
line is dissimilar) it does not play any role or can even 
worsen the results. The results of Wharton, Holyoak, and 
Lange (1996) also support indirectly the hypothesis that 
structural correspondences might affect the access. This 
was reflected in the models being proposed. Both 
MAC/FAC and ARCS included a submodule of partial 
mapping in the module of retrieval, thus considering 
structural similarities at an early stage. 

To sum up, the initial separation between retrieval and 
mapping was founded on their different psychological 
characteristics—semantic factors govern the retrieval, 
structural factors govern the mapping. Subsequent more 
precise experiments, however, cast doubt on this clear 
separation. These complications were accommodated by 
making patches to the original models. Finally, it was 
acknowledged that all kinds of constraints affected all 
phases of analogy-making, although to different extent 
(Holyoak & Thagard, 1995). 

The experimental data themselves became more and 
more complex and controversial. These controversies can 
be explained in terms of more and more sophisticated 
classifications of the types of similarities involved in ac- 
cess and mapping (Ross, 1989; Ross & Kilbane, 1997). 
We argue, however, that these problems are resolved 
more parsimoniously by adopting a principally different 
view of analogy-making. 

This resembles an episode of the history of astronomy. 
The geocentric system of Ptolemy started as a straight- 
forward theory that described the observable movement 
of both stars and planets remarkably well1. As accuracy 
of measurement increased, however, discrepancies 
between theory and data crept in every now and then. It 
became routine for astronomers to deal with such 'anom- 
alies' by adding more and more epicycles. But as time 
went on, it became evident that astronomy's complexity 
was increasing far more rapidly than its accuracy and 
that a discrepancy corrected in one place was likely to 
show up in another (Kuhn, 1970). 

Back to the domain of analogy-making, most classical 
models assume sequential processing: first the retrieval 
process finds the base for analogy and then the mapping 
process builds the correspondences between the target 
and    the    retrieved    base    (Figure     1). Thus 
MAC/FAC+SME and ARCS+ACME are linear models 
separating retrieval and mapping in time and space. 

This view underlies most of the experimental work in the 
field as well. Researchers often contrast hint versus non- 
hint conditions in problem solving supposing that in the 
first case only mapping takes place, while in the second 
retrieval and mapping are running one after the other. 
However, as Ross (1989) has noted, even when explicidy 
hinted to use a certain analog subjects still must access 
the details of its representation. Another common 
experimental technique uses a memory task (typically 
recall) for studying access with the assumption that the 
same processes take place during analogical problem 
solving. 

Retrieval -3* Source Mapping 

time 
Figure 1. Dominating sequential models of analogy- 

making. 

The limitations of both the models and experimental 
methods can be overcome by giving up the linearity as- 
sumption. This might look strange at first glance—how 
can you map the source analog onto the base if you have 
not even accessed it?! If, however, one reconsiders one 
more assumption—that there are centralized representa- 
tions of situations/problems in human memory—then it 
becomes clear that whenever we have partial retrieval of 
the base (having recalled a few details) we can start 
looking for corresponding elements in the target. This 
allows us to conceptualize access and mapping as paral- 
lel processes that can interact (Figure 2). In this para- 
digm, access and mapping refer not to phases or other 
behavioral steps, but rather to separate mechanisms that 
both play a role in selecting and activating a base and in 
finding the correspondences between base and target. 

Access 

I Mapping 

It is still used today as an engineering approximation. 

time 
Figure 2. Parallel and interactive models of analogy- 

making. 

The current paper explores the implications of the 
parallel and interactive view on access and mapping by 
running simulation experiments with an integrated 
model of human (analogical) reasoning called AMBR 

(Kokinov, 1994c, Petrov, 1997). These experiments 
provide a detailed example of how these two processes 
can interact and thus open space for new theoretical 
speculations as well as for new experimental paradigms. 
AMBR'S predictions about the development of the process 
over time call for appropriate experimental methods 
capturing the dynamics of human analogy-making—RT 
studies, think-aloud protocols, etc. Some of the contro- 
versies around the role of superficial and structural 
similarities in access and mapping 'phases' can now be 
expressed in terms of the interactions between the two 
mechanisms. 
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A very important contribution of the simulation is that it 
demonstrates how the supposedly later 'phase' of 
mapping can influence the supposedly earlier 'phase' of 
access. A detailed example shows how the access process 
develops over time and how it is influenced by the 
concurrent mapping process. This is contrasted with the 
case of isolated access. Different results are obtained in 
the two cases. These results correspond to the data of 
Ross and Sofka (unpublished) which main conclusions 
are summarized in (Ross, 1989) as follows: '... other 
work (Ross & Sofka, 1986) suggests the possibility that 
the retrieval may be greatly affected by the use. In par- 
ticular, we found that subjects, whose task was to recall 
the details of an earlier example that the current test 
problem reminded them of, used the test problem not 
only as an initial reminder but throughout the recall. For 
instance, the test problem was used to probe for similar 
objects, and relations and to prompt recall of particular 
numbers from the earlier example. The retrieval of the 
earlier example appeared to be interleaved with its use 
because subjects were setting up correspondences 
between the earlier example and the test problem during 
the retrieval.' The simulation data presented in the 
current paper (obtained absolutely independently and 
based only on the theoretical assumptions of DUAL and 
AMBR) exhibit exactly the same pattern of interaction. 

We must admit that even in a highly parallel and inter- 
active model such as AMBR the effects of interactions are 
not predominating. In the majority of cases the indepen- 
dent work of the access mechanism might well yield the 
same results as the interaction between mapping and ac- 
cess described above. That is why the classical linear 
models of analogy have been successful and have 
contributed a lot to our understanding of human analogy- 
making. However, exactly the few exceptional cases that 
do provide different results in a parallel model are the 
more interesting and those who make the interpretation 
of the experimental data look controversial if analyzed in 
the spirit of the sequential models. 

There are a few other models that advocate a parallel, 
overlapping, and interactive view on analogy—Copycat 
(Mitchell, 1993, Hofstadter, 1995), Tabletop (French, 
1995, Hofstadter, 1995), and LISA (Hummel and 
Holyoak, 1997). However, Copycat and Tabletop do not 
model retrieval at all—they model the parallel work and 
interaction between perception/representation building 
and mapping. LISA also integrates access and mapping 
and performs them in parallel. Thus the mapping 
mechanism (connectionist learning in this case) 
influences the access. As a result, LISA could in 
principle demonstrate effects similar to those reported 
here. 

BRIEF DESCRIPTION OF THE ARCHITECTURE DUAL 
AND THE MODEL AMBR 
The basis for the simulation experiment discussed in this 
paper is a model called AMBR (Associative Memory- 
Based Reasoning). It is built on the cognitive architec- 
ture DUAL.   Space limitations allow only an extremely 

sketchy description of DUAL and AMBR here. The inter- 
ested reader is referred to earlier publications (Kokinov, 
1988, 1994a,b,c; Petrov, 1997). 

DUAL is a multi-agent cognitive architecture that sup- 
ports dynamic emergent computation (Kokinov,Nikolov, 
and Petrov, 1996). All knowledge representation and 
information processing in the architecture is carried out 
by small entities called DUAL agents. Each DuAL-based 
system consists of a large number of them. There is no 
central executive in the architecture that controls its 
global operation. Instead, each individual agent is rela- 
tively simple and has access only to local information, 
interacting with a few neighboring agents. The overall 
behavior of the system emerges out of the collective 
activity of the whole population. This 'society of mind' 
(Minsky, 1986) provides a substrate for concurrent pro- 
cessing, interaction, and emergent computation. 

Each DUAL agent is a hybrid entity that has symbolic and 
connectionist aspects (Kokinov 1994a,b,c). On the sym- 
bolic side, each agent 'stands for' something and is able 
to perform certain simple manipulations on symbols. On 
the connectionist side, it sends/receives activation to and 
from its immediate neighbors. Thus, we may adopt an 
alternative terminology and speak of nodes and links 
instead of agents and interactions. The population of 
agents may be conceptualized as a network of nodes. 

The long-term memory of a DuAL-based system consists 
of the network of all agents in that system. The size of 
this network can be very large. Only a small fraction of 
it, however, may be active at any particular moment. 
The active subset of the long-term memory together with 
some temporary agents constitutes the working memory 
(WM) of the architecture. The mechanism of spreading 
activation plays a key role for controlling the size and 
the contents of the WM. There is a threshold that sets 
the minimal level of activation that must be obtained by 
an agent to enter the WM. There is also a spontaneous 
decay factor that pushes the activation levels back to 
zero. As the pattern of activation changes over time, 
some agents from the working memory fall back to dor- 
mancy, others are activated, etc. Only active agents may 
perform symbolic computation. Moreover, the speed of 
this computation depends on the level of activation of the 
respective agent. This makes the computation in DUAL 

dynamic and context-sensitive (Kokinov et al., 1996; 
Kokinov, 1994a,b,c). One particular consequence of this 
dynamic emergent nature of the architecture is that, 
although all micro-level processing is strictly deter- 
ministic, the macroscopic behavior of a DUAL system can 
be described only probabilistically. 

The AMBR model takes advantage of these architectural 
features to account for some phenomena of human rea- 
soning and in particular reasoning by analogy (Kokinov, 
1988, 1994c). Again, due to space limitations we will 
consider only a small fraction of model's mechanisms. 

Analog access in AMBR is done by means of spreading 
activation by the connectionist aspects of the DUAL 
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agents. In particular, only few of the many episodes 
stored in the long-term memory are active during a run 
and only they are accessible for processing. The 
episodes or 'situations' have decentralized represen- 
tations—it is not a single agent but a whole coalition 
that represents the elements of a situation and the 
relationships among them2. Therefore, it is possible that 
an episode is only partially accessed because only some 
of the agents have entered the WM. 

The process of analogical mapping is done in AMBR by a 
combination of three mechanisms—marker passing, 
constraint satisfaction, and structure correspondence 
(Kokinov, 1994c; Petrov, 1997). The main idea is to 
build a constraint satisfaction network (CSN) to deter- 
mine the mapping between two situations. This network 
consists of hypothesis agents representing tentative cor- 
respondences between two elements. Consistent hypoth- 
eses support, and incompatible ones inhibit each other. 

This is similar to other models of analogy-making and 
notably ACME (Holyoak and Thagard, 1989). AMBR 

differs from the latter model, however, in several ways: 
(0 the CSN is constructed dynamically, (»') only hypoth- 
eses that have some justification are created, (Hi) the 
CSN is incorporated into the bigger working memory 
network, and (iv) there is no separate relaxation phase so 
there is a partial mapping at each moment. 

The implication of these four points is that, unlike 
ACME and most other analogy models, the processes of 
access and mapping run in parallel and influence each 
other in AMBR. In other words, the model departs from 
the classical 'pipeline' paradigm and aims at a more 
interactive account of analogy making. 

The influence between the two subprocesses in AMBR 

goes in both directions. The present paper concentrates 
on the 'backward' direction—from mapping to access. 
The next section describes a simulation experiment that 
sheds light on this kind of influence. 

SIMULATION EXPERIMENT METHOD 
We performed a simulation experiment to contrast the 
two ways of combining access and mapping—parallel vs. 
serial. The experiment also tested whether the AMBR 

model was capable to access a source analog out of a 
pool of episodes, and to map it onto a target situation. 

Design 
The experiment consisted of two conditions. Both condi- 
tions involved running the model on a target problem. In 
the 'parallel condition', AMBR operated in its normal 
manner with the mechanisms for access and mapping 
working in parallel. In the 'serial condition', the pro- 
gram was artificially forced to work serially—first to ac- 
cess and only then to map. The target problem and the 
content of the long-term memory were identical in all 
runs. The topics of interest fell into two categories—the 

This is one of the differences between the current version 
of the model (AMBR2) and the original proposal (AMBRl) 
as set forth by (Kokinov, 1994c). 

final mapping constructed by the program and the 
dynamics of the underlying computation. The latter was 
monitored by recording a set of variables describing the 
internal state of the system at regular time intervals 
throughout each run. 

Materials 
The domain used in the experiment deals with simple 
tasks in a kitchen. The long-term memory of the model 
contains semantic and episodic knowledge about this 
domain. It has been coded by hand according to the 
representation scheme used in DUAL and AMBR 

(Kokinov, 1994c; Petrov, 1997). The total size of the 
knowledge base is about 250 agents. It states, for 
example, that water, milk, and tea are all liquids, that 
bottles are made of glass, and the relation 'on' is a 
special case of 'in-touch-with'. The LTM also stores the 
representations of eight situations related to heating and 
cooling liquids. Two of these eight situations are most 
important for the experiment and are described below 
together with the target problem. 

Situation A: There is a cup and some water in it. The 
cup is made of china. There is an immersion heater in 
the water. The immersion heater is hot. This state of 
affairs causes that the water is hot. 

Situation B: There is a glass and an ice cube in it. The 
glass is made of [material] glass. The glass is in a 
refrigerator. The refrigerator is cold. This state of 
affairs causes that the ice cube is cold. 

Target problem (situation T): There is a glass and some 
cola in it. The glass is made of [material] glass. There is 
an ice cube in the coca cola. The ice cube is cold. What 
is the consequence of this state of affairs? 

cause 

temper-of    in       in   made-of temper-of 

hot  imm-heater water  cup   chma       hot   water 

B cause 

made-of      in       in    temper-of temper-i 

/WlA. /.\     7X 
m.glass ice-cube   glass fridge  cold     cold   ice-cube 

cause 

temper-of    in       in   made-of 

cold      ice-cube cola  glass  m.glass 

Figure 3. Simplified representations of situations A, 
B, and T. (The actual AMBR representations are 
more complex.) See text for details. 
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As evident from Figure 3, both situations may be con- 
sidered similar to the target problem. There are some 
differences, however. Situation B involves the same 
objects and relations as the target but the structure of the 
two are different. In contrast, situation A involves 
different objects but its system of relations is completely 
isomorphic to that of the target. According to Gentner 
(1989), the pair A-T may be classified as analogy while 
B-T as mere appearance. Thus it was expected that 
situation B would be easier to retrieve from the total pool 
of episodes stored in LTM. On the other hand, A would 
be more problematic to retrieve but once accessed it 
would support better mapping. 

Procedure 
The Common Lisp implementation of the AMBR model 
was run two times on the target problem. The two runs 
carried out the 'parallel' and the 'serial' conditions of 
the experiment, respectively. The contents of the long- 
term memory and the parameters of the model were 
identical in the two conditions. 

Recall that situations have decentralized representations 
in AMBR. The target problem was represented by a coa- 
lition of 13 agents standing for the ice-cube, the glass, 
two instances of the relation 'in' and so on. 11 of these 
agents were attached to the special nodes that serve as 
activation sources in the model. This attachment was 
the same in the two experimental conditions. 

In the parallel condition, the model was allowed to run 
according to its specification. That is, all AMBR 

mechanisms ran in parallel, interacting with one 
another. The program iterated until the system reached 
a resting state. A number of variables were recorded at 
regular intervals throughout the run. Out of these many 
variables, the so-called retrieval index is of special 
interest. It is computed for each situation and is based 
on the average activation level of the respective 
coalition. More concretely, the retrieval index is 
calculated by the formula: 

RI (0 = 
05+ N 

where N is the total number of agents in the coalition 
and aß) is the activation level of agent, at moment t. 

In short, at the end of the run we had the final mapping 
constructed by the program as well as a log file of the 
retrieval indices of all eight situations from the LTM. 

In the serial condition, the target problem was attached 
to the activation source in the same way and the same 
data were collected. However, the operation of the pro- 
gram was forcefully modified to separate the processes of 
access and mapping. To that end, the run was divided in 
two steps. 

During step one, all mapping mechanisms in AMBR were 
manually switched off. Thus, spreading activation was 
the only mechanism that remained operational. It was 
allowed to work until the pattern of activation reached 
asymptote. The situation with the highest retrieval index 

was then identified. If we hypothesize a 'retrieval mod- 
ule', this is the situation that it would access from LTM. 

After the source analog was picked up in this way, the 
experiment proceeded with step two. The mapping 
mechanism was switched back on again but it was 
allowed to work only on the source situation retrieved at 
step one. This situation was mapped to the target. Thus, 
at the end of the second run we had the final mapping 
constructed at step two, as well as two logs of the 
retrieval indices. 

RESULTS AND DISCUSSION 
In both experimental conditions the model settled in less 
than 150 time units and produced consistent mappings. 
By 'consistent' we mean that each element of the target 
problem was unambiguously mapped to an element from 
LTM and that all these corresponding elements belonged 
to one and the same base situation. Stated differently, 
the mappings were one-to-one and there were no blends 
between situations. 

In the parallel condition, the target problem was mapped 
to situation A, revealing the isomorphism illustrated in 
Figure 4. One element from the source situation re- 
mained unmapped—the agent representing that the 
water becomes hot. This proposition is a good candidate 
for inference by analogy. Mutatis mutandis, it would 
yield the conclusion that the cola becomes cold. (In the 
current version of AMBR the mechanisms for analogical 
transfer are not implemented yet.) 

A cause 

temper-of    in       in   made-of    ;      temper-of 

hot; imm-heater  water  cup; china j     hot   water 

cause 

;temper-of;    in   •    in   Imade-of 

cold      ice-cube cola  glass  m.glass 

Figure 4. Correspondences constructed by the model 
in the parallel condition. 

In the serial condition, situation B won the retrieval 
stage. This is explained by the high semantic similarity 
between its elements and those of the target—both deal 
with ice cubes in glasses, cold temperatures, etc. The 
asymptotic level of the retrieval index for B was more 
than three times greater than that of any other situation. 
In particular, situation A ended up with only 4 out of 14 
agents passing the working memory threshold. 

According to the experimental procedure, situation B 
was then mapped to the target during the second stage of 
the run. The correspondences that emerged during the 
latter stage mapped consistently the chains of two 
interlocking relations 'in' and the higher-order relation 
'cause' (Figure 5). This structural alignment was 
achieved, however, at the expense of the semantic 
similarity between objects—the two glasses did not 
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correspond, which in turn violated the structural con- 
straint regarding the arguments of the relation 'made- 
of. 

B cause 

made-of      in       in   temper-of   j     temper-of 

m.glass ice-cube   glass fridge  cold j   cold  ice-cube 

T  ''■■{■■': •;■ ••••■■•• ■{■■ ■<■—'. ;     cause 

temper-of!    in   ■    in  imade-ofj ? 

cold      ice-cube cola  glass  m.glass 

Figure 5. Correspondences constructed by the model 
in the serial condition. 

It might be argued that these flaws of the mapping are 
not very serious, especially in the light of the structure 
mapping theory (Gentner, 1983). If we consider the ma- 
terial of the glasses an attribute, it is permissible to give 
it little attention. There is, however, a more serious flaw 
in the set of correspondences. The proposition 'tem- 
perature-of(ice-cube, cold)', which is a premise of the 
relation 'cause' in the target, is mapped to the proposi- 
tion 'temperature-of(ice-cube, cold)', which is a conse- 
quence in the source. Therefore, the whole analogy 
between the target problem and the situation B could 
hardly generate any useful inference. 

To summarize, when the mechanisms for access and 
mapping worked together, the model constructed an 
analogy that can potentially solve the problem. On the 
other hand, when the two mechanisms were separated, 
the retrieval stage favored a superficially similar but in- 
appropriate base. The mapping stage then worked hard 
to produce an acceptable set of correspondences. Still, 
the final result was seriously flawed. 

The presentation so far concentrated on the final result 
produced by the model. We now turn to the dynamics of 
the computation as revealed by the time course of the 
retrieval indices. Figure 6 plots the retrieval indices for 
several LTM episodes during the first run of the program 
(i.e. when access and mapping worked in parallel). 

Figure 6. Plot of retrieval indices versus time for the 
parallel condition.   Situation A is in solid line, B in 

dashed. The dotted lines at the bottom correspond to 
other situations from LTM. 

This plot tells the following story: At the beginning of 
the run, several situations were probed tentatively by 
bringing a few elements from each into the working 
memory. Of this lot, B looked much more promising 
than any of its rivals as it had so many objects and 
relations in common with the target. Therefore, all 
agents representing situation B were rapidly activated 
and they began trying to establish correspondences 
between themselves and the target agents. The active 
members of the rival situations were doing the same 
thing, although with lower intensity. At about 15 time 
units since the beginning of the simulation, however, 
situation A (with the immersion heater) rapidly gained 
strength and eventually overtook the original leader. At 
time 30, it had already emerged as winner3 and gradually 
strengthened its dominance. 

The final victory of situation A, despite its lower 
semantic similarity compared to situation B, is due to the 
interaction between the mechanisms of access and 
mapping in AMBR. More precisely, in this particular 
case it is the mapping that radically changes the course 
of access. To illustrate the importance of this influence, 
Figure 7 contrasts the retrieval indices with and without 
mapping. 

Figure 7. Retrieval indices for situations A and B 
with and without mapping influence on access. 
See text for details. 

The dotted lines in Figure 7 show the retrieval indices 
for the two situations when mapping mechanisms are 
suppressed. Thus, they indicate the 'pure' retrieval 
index of each situation—the value that is due to the ac- 
cess mechanism alone. The index for situation B is 
much higher than that of A and, therefore, B was used as 
source when the mapping was allowed to run only after 
the access had finished. 

In the interactive condition, however, the mapping 
mechanism boosted the retrieval index via what we call a 
'bootstrap cascade'.  This cascade operates in AMBR in 

The 'hump' in the graph is a side effect of the mapping 
mechanism which is too complex to be detailed here. In a 
nutshell, it involves transforming 'embryo hypothesis 
agents' into 'mature hypothesis agents' (Petrov, 1997). 
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the following way. First, the access mechanism brings 
two or three agents of a given situation into the working 
memory. If the mapping mechanism then detects that 
these few agents can be plausibly mapped to some target 
elements, it constructs new correspondence nodes and 
links in the AMBR network. This creates new paths for 
the highly active target elements to activate their mates. 
The latter in turn can then activate their 'coalition part- 
ners', thus bringing a few more agents into the working 
memory and so on. 

The bootstrap cascade is possible in AMBR due to two 
important characteristics of this model. First, situations 
have decentralized representations which may be ac- 
cessed piece by piece. Second, AMBR is based on a par- 
allel cognitive architecture which provides for concur- 
rent operation of numerous interacting processes. Taken 
together, these two factors enable seamless integration of 
the subprocesses of access and mapping in analogy- 
making. 

CONCLUSION 
The simulation experiment reported in this paper 
provides a clear example of mapping influence on analog 
access and of the advantages of the parallel interactionist 
view on analogy-making. Furthermore, the computa- 
tional model AMBR provides a theoretical framework for 
explaining the controversies in the psychological data on 
access and reminding. It is possible to explore in which 
cases the interaction between access and mapping 
produces results different from a sequential and indepen- 
dent processing. It provides also a framework for gener- 
ating more precise hypotheses and new experimental 
designs for their testing. Thus, for example, the detailed 
logs of the running model might me used for comparison 
with protocols of think-aloud experiments. 

Analogy-making has certainly no clear cut boundaries. 
Most literature has concentrated on explicit analogies, 
i.e. consciously retrieving an analog and noticing the 
analogy. However, there are other cases which might be 
called implicit or partial analogies, e.g. subconsciously 
accessing part of a previously solved problem and 
mapping it to part of the target description without 
consciously noticing the analogy. The decentralized 
representations of situations in AMBR make it possible to 
model the process of partial access, access with distor- 
tions, blending (Turner & Fauconnier, 1995), and inter- 
ference. A previously solved problem can influence the 
course of problem solving in an even more subtle way by 
priming some concepts or situations which then trigger a 
particular solution (Kokinov, 1990, Schunn and Dunbar, 
1996). The AMBR model can be used to analyze such 
cases. It has already been successfully applied for pre- 
dicting priming and context effects (Kokinov, 1994c). 

Priming effects are an example of the influence of access 
on mapping which is the opposite direction of the one 
discussed in the current paper. Order effects are another 
kind of effect that goes in 'forward' direction. Such 
effects may be due to non-simultaneous perception of the 
elements of the target problem (Keane, Ledgeway, & 

Duff, 1994) and/or non-simultaneous retrieval of 
relevant pieces of information from LTM. Thus the 
mutual influence between analog access and mapping 
offers many opportunities for investigation. 
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ABSTRACT 
This study deals with the interpretation of verbal 
commands for action. After an experimental study of 
human interpretation of instructions for drawing 
geometrical figures, we have devised a model whose 
computerized version is called SIROCO. This model 
represents an attempt to simulate category construction for 
interpretation. The use of fuzzy logic and circumstantial 
semantic networks allows emphasizing the importance the 
situation plays in completing and clarifying propositions 
expressed in natural language. Finally, a simulation shows 
quite good results for the model. 

Keywords 
natural language, command, action, fuzzy logic, semantic 
network, situation, categorisation. 

INTRODUCTION 
When you look at the content of verbal commands, they 
appear to be poor, ambiguous and elliptic. Nevertheless, 
they are in fact efficient as measured by the fit of actions 
carried out by an operator to the speaker's (the person who 
formulates the command) intended goal. In summary, a 
few words are enough to elicit complex and precise 
actions. How can the power of utterances be explained ? 
A partial explanation lies in the fact that the operator has 
mental models of situations, scenarios and procedures at 
his disposal. These comprise a general knowledge which 
allows him to complete the information received, to 
activate other knowledge in order to understand what is 
being asked of him and finally, to carry out the action. 
When, for example, someone is asked to post a letter, he 
knows that the letter needs a stamp, an address, and that it 
should be dropped in a mail box or taken to the post 
office. Modelling the operator, (here, the person asked to 
mail the letter) calls for describing and representing the 
kind of general knowledge we have just described. This is 
what a number of recent systems have attempted to do, 
including CARAMEL (Sabah & Briffault, 1993) for 
understanding stories, CAMILLE (Hasting & Lytinen, 
1994) for describing scenarios, and KA (Peterson, Mahesh, 
& Goel, 1994) for technical specifications. 

Pragmatic explanations might also be useful in explaining 
the power of utterances. Sperber and Wilson's 
communicational implications (1986) and Grice's maxims 
(1975) come to mind. Thus, in the above example, 
lacking any indication as to the cost of the stamps, the 

operator might rightly assume that the letter should be 
sent at a standard rate; because if it were to be sent express 
or recommended, this very relevant bit of information 
would surely have been provided. Modelling the operator 
thus calls for integrating pragmatic rules as well as general 
knowledge into the comprehension system. This is what 
has been done with DIABOLO, a system for analysing and 
generating dialogue (Vilnat, 1995). 

The situated action approach1 provides a more 
circumstantial way of explaining the efficiency of speech. 
The proponents of situated action place less emphasis on 
the notion of internal representation and more on 
situational cues and action. For Olson (1970), who rejects 
the linguistic approach to studying the comprehension of 
verbal utterances, the meaning of an utterance should not 
be looked for in the proposition, but in the situation to 
which the utterance refers. This is the approach we are 
taking here: the power of language resides in its relation 
to a given situation. Important clues that allow 
completing vague and elliptical utterances are provided by 
(i) the environment, (ii) the information that has already 
been communicated (what we will call the "background") 
and (iii) the task (what must be done with the elements 
provided by the environment). 

We thus propose that a system for interpreting verbal 
commands must be able to cope with the incompleteness 
and the imprecision of language by analysing situations. 
The system we have devised to do so is called SIROCO. 
Though it is currently outfitted to interpret verbal 
commands for drawing geometrical figures, it could be 
adapted to interpret other kinds of verbal commands. We 
have used it to study how operators interpret commands 
and make decisions. In the case of incompleteness, the 
system has to identify the instructor's intended categories. 
In the case of imprecision, it has to define the fuzzy 
boundaries of the categories. To this end, we used two 
tools for representing information that is incomplete or 
imprecise, namely: circumstantial semantic networks and 
fuzzy subsets. 

The study we present here was done in three phases: An 
experimental phase in which a human subject-operator was 
asked to interpret and carry out instructions for drawing 
geometrical figures given in natural language by a subject- 
instructor. The second phase consisted in designing a 

^ee Norman (1993), for an introduction to this situated 
action approach. 
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model of the subject-operator. Finally, a simulation 
allowed comparing SIROCO's responses to those of the 
subject-operator. 

EXPERIMENT 

Objectives 
The aim of this experiment was to provide empirical data 
on the degree of precision with which people interpret 
verbal commands for drawing geometrical figures. More 
importantly, it aimed at providing information on how 
missing information is completed and, more generally, on 
how concrete situations influence the precision with which 
a command is carried out. All data relative to instructor 
commands and operator actions was collected 
automatically to provide a precise record of input and 
output for the simulation. 

Method 

Participants 
Thirty    five   instructors    were    recruited    from    the 
undergraduate population of the University Paris 8, St 
Denis-Vincennes. A single operator was recruited from the 
same population, his responses provided the data we 
analysed. 

Materials 
A set of 35 drawings (8.2 cm large and 14.8 cm high), 
one for each instructor, were created with a drawing 
software. Each drawing was composed of three simple 
geometrical figures. The set was designed to provide a 
wide range of property combinations for the geometrical 
figures. The different figure-properties were: rectangle, 
circle and square, for the shape; red, green and blue, for the 
color; small, medium and large, for the size (from 1 cm 
up to 6.2 cm for width, from 0.6 cm up to 6.46 cm for 
height); top, center and bottom for the vertical position 
(from 0.01 cm up to 11.65 cm on the Y coordinate); and, 
finally, left, middle and right for the horizontal position 
(from 0.31 cm up to 5.98 cm on the X coordinate). The 
complexity of these combinations, from the point of view 
of the corresponding lattice (see next section), was 
maximal in all cases. In other words, any two geometric 
figures have both common and distinctive features. 
The computer apparatus consisted of two large monitors 
placed back to back on a long table (fig. 1). Thus, the 
instructor and the operator, each behind a monitor, were 
hidden from each other. The instructor could only 
communicate through verbal commands, the operator 
could not see the original drawing the instructor had in his 
hand. 

General procedure 
Each one of the thirty five drawings was given to an 
instructor. The instructor was asked to make the operator 
reproduce this picture through verbal commands only. The 
operator, who was not allowed to speak to the instructor, 
typed each verbal command2 he received into the word 
processor and then carried it out. The graphic interface on 
which the operator worked was of the same size as the 

instructor's picture. On his screen, the instructor saw what 
the operator was drawing. After the operator had finished 
carrying out a command, the instructor could correct the 
drawing with a new verbal command and so on, until the 
instructor was satisfied with the drawing the operator had 
produced. 

2 Verbal commands were expressed in French. For the 
purpose of this article we translated some of them. 

Figure 1. The instructor was placed in A and had in his 
hands a drawing (F). The operator was placed in B. 

Automatic data collection 
All action related to writing verbal commands (on the 
word processor) and drawing figures (on the graphic 
interface) was recorded with "spy" software. 

Results  and  discussion 

The Power of utterrances 
On average, 9 commands were necessary for a satisfactory 
reproduction of the original drawing. The minimum was 
4, the maximun was 18 for a single drawing. On average, 
3 commands were required for reproducing each figure. 
More precisely, 2 commands were sufficient to correct the 
first attempt to draw a figure. This may seem very few 
when one considers that there were four continuous factors 
which defined each figure (size, shape, vertical and 
horizontal position). 

The precision of commands for discrete properties 
There were just a few lateralisation errors ("not on the left, 
I said on the right"). Though information on size and 
color was not always given, these were correctly 
reproduced by the operator. The semantic structure of the 
properties of the figures already in place (see MODEL 
section) did allow completing the missing property 
information in a command. Thus, our hypothesis was 
globally satisfied. Nevertheless, the operator seemed to 
hesitate between an average value and a value inferred from 
properties already in place. The effect of the extracted 
regularity of the properties already in place would certainly 
have been greater if the objects were more numerous (in 
our experiment there are only three figures per drawing). 

The precision of commands for continuous properties 
From a statistical point of view, there were no significant 
differences between the figure-values for the continuous 
properties of the operator's finished drawings and the 
corrresponding values of the original drawings: for the X 
coordinates of the figure's top-left corner p>.96, for the Y 
coordinates (of the same point) p>.17, for width p>.94 
and for height p>.08. The correlation between the 
operator's drawings and the originals one was .86 for the 
X coordinate (p<.0001), .93 for the Y coordinate 
(p<.0001), .70 for W (width) and .86 for H (height) 
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(p<.0001).The average correlation for each of the first 
seven commands is given in table 1. 

Table 1: The average correlation for each of the first seven 
commands 

Cl C2 C3 C4 C5 C6 C7 
X:       .75 .95 .70 .80 .91 .91 .91 
Y:       .88 .99 .76 .97 .98 .94 .97 
W:      .96 .76 .27 .55 .53 .96 .50 
H:       .94 .93 .80 .50 .93 .97 .88 

It is clear that the operator faithfully reproduced the 
original values quite rapidly, because from the first try on, 
the commands were executed with an overall precision of 
4% for X, 1 % for Y, 3 % for W and 2% for H. When the 
operator's figures did not fully correspond, a few more 
verbal commands were all that was needed to correct them. 
In summary, long-distance geometric figure drawing in 
this experiment was extremely precise. 

MODEL 
The results of the experiment show that the situation is 
indeed an aid in interpreting commands. The present model 
replicates the way in which the situation provides 
information by taking advantage of the dynamicity of 
circumstantial semantic networks and the flexibility of 
fuzzy subsets. 

General   Description 
For SIROCO, interpreting verbal commands means using 
the situation to construct the instructor's intended 
categories. Thus, when one or more of a figure's 
properties is not explicitly indicated, it is inferred from the 
property network based on the figures that have already 
been drawn. Often property-categories are specified with 
absolute utterances such as "large" or "at the top" but 
sometimes compound utterances such as "rather square" or 
"smaller" are used. The meaning of compound utterances 
must be constructed from the meaning of the absolute 
ones. Indications and corrections given prior to a new 
command (the background) must also be taken into 
account. Finally, all of this information is represented in 
the form of fuzzy subsets and integrated through a 
procedure which aims at finding the solution that best 
satisfies all the constraints including space constraints. 

Incompleteness processing with circumstantial 
semantic   networks 
The propositional meaning of an instruction is first 
analysed as to the objects and their associated properties. 
Subsequently, objects and properties are used in order to 
construct a semantic network which reflects an 
understanding of the proposition (Zibetti & Tijus, 1997; 
Poitrenaud, 1995). 
In this network, properties shared by several objects are 
grouped together in order to constitute categories (figure 
2). The underlying mathematical structure of this property 
network is the Galois lattice (Barbut & Monjardet, 1970). 
This network allows different logical operations, For 
example, if among different geometrical coloured figures, 
all the squares are black, it is possible to predict the black 
property from the square property because of the inherited 
properties of the square category in the semantic network. 

Otherwise, in certain context an object can be designated 
by a single property such as "the white one" in figure 2 to 
refer the white circle, or as "the black one" to refer the 
black circle because given that there are two black objects, 
the instructor might want to designate a figure that differs 
from others in the same category by being black. 

Finally, the lattice allows some operations which can 
explain and simulate categorisation processes (Tijus & 
Moulin, 1997). For example, it is always a problem to 
categorise an incompletely described new object. A good 
solution (from the point of view of modelisation) consists 
in choosing or constructing a category that alter the 
structure of the network as little as possible. For example, 
if a white square has to be drawn, without any 
specification as to its size, in the situation described in 
figure 2, it will be small. More generally, this semantic 
network represents the property structure of a given 
situation which can be very useful for modelling (Richard, 
J.F., Poitrenaud, S., & Tijus, CA., 1993). 

Corresponding semantic network 
small 

/\ 
black (and small)    circle (and small) 

/ N   ^\ / (circle and black and small)   \ 

square (and black and small) white (and circle and small) 

O 
Present objects 

Figure 2. Example of a semantic network constructed 
from the object properties of the situation. 

Representing a command with fuzzy subsets 
A drawing command specifies size, shape, colour and 
position categories. Except for colour categories which are 
precisely defined (there is just one kind of blue, green and 
red available), the other kinds of categories (for example, 
large, rectangle) have imprecise boundaries. Thus an 
element (like a value corresponding to a surface in square 
centimetres) can have an intermediate degree of 
membership between 0 and 1 in a category. So we have 
chosen to represent these categories with a fuzzy subset. 
The concept of fuzzy subsets (Zadeh, 1965; Bouchon- 
Meunier, 1995) is a generalisation of the concept of sets. 
A fuzzy subset is characterised by its membership 
function (figure 3). 
An important issue lies in the choice of reference variables 
(in figure 3, the choice is surface area as measured in 
square centimetres). This choice has to be made such that 
the variable is well suited to determine whether or not an 
element belongs to the represented category. Ideally, this 
variable has to correspond to a psychologically relevant 
perceptive dimension. Psychophysics, which studies the 
relations between physical and perceptive dimensions, 
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could provide this kind of variable. As we are focusing 
upon general principles, we chose simple variables (like 
surface area for size categories, and abscissa for horizontal 
position) and trapezoidal fuzzy subsets. 

A degree of 
membership 

"medium size" 

core 

support _1 surface 
area (cm2) 

Figure 3. The membership function for a fuzzy subset 
representing "a medium size" category. Note that the 
"core" is comprised of elements which belong to the fuzzy 
subset with a membership degree equal to 1, and that the 
"support" is comprised of elements which belong to the 
fuzzy subset with a non-zero degree. 

We represent a command by associating a fuzzy set to 
each dimension of the description. Zadeh (1975) introduced 
the concept of linguistic variables which consist of a 
variable, a universe in which the variable is defined (real 
numbers for example), and a set of fuzzy subsets which 
represent different characterisations of the variable (for 
example, small, medium and large for a size variable). 

Here we use four linguistic variables to represent a 
command: (i) the size which is the surface area of the 
figure and which is characterised by "small", "medium" 
and "large", (ii) the elongation which is the width/height 
ratio and which is characterised by "upright" "equal" and 
"reclining", (iii) the horizontal position on the abscissa 
which is characterised by "left", "middle" and "right" and, 
finally, (iv) the vertical position which is on the ordinate 
and which is characterised by "top", "centre" and 
"bottom". Two discrete variables complete this 
representation: colour which can be blue, green or red and 
shape, which can be rectangular or elliptical. 
Because there is an odd number of characterisations for 
each variable (exactly three), there is always a central 
category. Moreover the fuzzy subsets that represent these 
characterisations are such that they constitute a fuzzy 
partition of the universe. Which means that for each 
element, the sum of its membership degrees in all the 
different characterisations for a given variable is 1. Thus 
the slopes of the trapezia intersect at midpoint (see figure 
4). 

Applying a linguistic modifier 
Our aim here is to represent utterances like "very large" or 
"toward the left", that is to say modified versions of 
categories. Zadeh (1972) associates to each linguistic 
modifier ("very", "rather",...) a mathematical 
transformation which allows constructing new fuzzy 
subsets from initial ones. The initial fuzzy subset 
represents an initial category ("large"). The new fuzzy 
subset represents a modified version ("very large") of the 
initial category. 

Since Zadeh's pioneering work, numerous new modifiers 
have been introduced. Here, we use modifiers (Bouchon & 
Yao, 1992) which exploit the distribution of defined 
categories in a single universe (size, for example). The 
mathematical transformation corresponds to a shift whose 
amplitude and direction can be deduced automatically. We 
chose them for the way they can readily be applied to all 
different kinds of properties (see figure 4). 

degree of membership 
central category 

Cl C2 
ismaU) 

very 

rather 

(medium) 

maximal 
shift 

maximal 
shift very 

fuzzy subsets representing different 
characterisations of a same variable. 

shifted fuzzy subset representing 
"rather small" for example. 

Figure 4. Illustration of linguistic modifier mechanisms. 

From a given characterisation and a given modifier, 
simple mechanisms yield the shift to be applied. Thus, 
for modifiers like "very" the direction of the shift is 
toward an extreme and for modifiers like "rather" the 
direction is toward the centre (figure 4). The amplitude of 
the shift is defined as a proportion of the maximal shift 
which corresponds to the distance between initial category 
cores. Thus a modified category will never overlap upon a 
neighbouring category. Moreover, the maximal shift 
automatically defines a scale regardless of the type of 
variable. Finally, it is possible to use modifiers of 
different strengths. Thus "very very" is a modifier of the 
same kind as "very" but the amplitude of the shift 
associated to it is larger. To be more precise, the 
coefficient associated to "very very" is larger than the one 
associated to "very". 

Applying a fuzzy relation 
Utterances like "larger" or "a little bit less to the left" can 
be represented with fuzzy relations. The concept of fuzzy 
relations (Zadeh, 1971) is a generalisation of the concept 
of relation as it allows intermediate degrees (between 0 
and 1) of relation between elements. It corresponds again 
to a fuzzy subset. In contrast to the preceding case 
concerning modifiers, this fuzzy set will not be 
constructed from a fuzzy set but from a value (the surface 
area of the figure, if the command is "larger"). We can 
divide this kind of command into two parts: the relation 
part which is, for example; "much more", "less" or 
"same" and a category part which is, for instance, "on the 
left" or "large". 
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It is possible to define mechanisms such that from a 
given relation and category, the fuzzy set representing the 
utterance can be constructed. First, after having defined a 
sign for a relation ("less" relations will be negative and 
"more" relations, positive), a category (positive categories 
are to the right of the central category, negatives are to the 
left) the direction (increasing, decreasing) indicated by the 
utterance (for example, "less big") is calculated by 
multiplying the relation sign and the category sign. When 
the category is the central one, the direction depends on 
the position value compared to the middle value of the 
category (when the command, for example, is "rounder", 
the question to be asked is whether the figure is an 
upright or a reclining ellipsis). Like modifiers , different 
coefficients are associated with each relation expressing a 
different strength. "Much more" indicates a stronger 
variation than "more" (figure 5). 

A degree of membership 

0 

"larger"    "much larger" 

5.2 cm2 
(figure surface) 

surface area 

Figure 5. Illustration of fuzzy subset construction for 
utterances containing "larger" and "much larger" (than 5.2 
cm2). 

Softening inferred categories 
As we mentioned above, when no characterisation is 
specified for a given variable in a drawing command, it is 
inferred from the semantic network. This tacit information 
is not as constraining as explicit information. We 
therefore chose to represent it by allowing all values, that 
is to say, by taking a support (for the constructed fuzzy 
subset) equal to the entire universe of the variable. 
Moreover, taking the results of experimentation into 
account we softened the inferred category by applying a 
modifier. 

Background   communication 
At any point in a verbal exchange involving commands, 
what has already been said and done constitutes the 
background communication so decisive for interpretation. 
For example, what "larger" means can vary according to 
whether it is an initial correction whose aim is to get the 
operator to draw a figure of roughly the right size or 
whether it is a final correction aimed at precision. The 
background thus allows the commands to be interpreted 
with increasing precision. Indeed, without background, 
instructions like "a little bit larger" followed by "a little 
bit smaller" would consist of nothing more than 
commands for switching back and forth from an initial 
value. 

Background construction 
During communication, various indications and 
corrections are given. This can be represented by a list of 
slopes  of different constructed  trapezia  in  the prior 

commands. For each variable, there is one background. 
Fixing a maximal length for this list allows taking the 
operator's limited memory into account. 

Making background operational 
Only two slopes are useful for each variable. They 
correspond to the more restrictive constraints (right, left 
constraints could be for instance, respectively, much 
smaller than 10.3 square centimetres and larger than 5.4 
square centimetres) and allow constructing a fuzzy set. So, 
background is accounted for by intersecting this last fuzzy 
subset with the current command associated to the fuzzy 
subset. When this intersection is small (under a given 
threshold), we can decide to forget the background in order 
to produce an appropriate response despite contradictory 
commands. 

Choosing an appropriate solution 

Choosing a relevant point 
According to the specified position in the drawing 
command, the relevant point varies. For example, if the 
command calls for drawing a figure at the top left corner, 
the top left corner of the figure is the relevant point. 
Which means, that it is the point which will be taken into 
account for characterising the figure's position (in the 
example, the more the top-left corner of the figure is at the 
top and to the left, the more the position of the figure is 
acceptable). If the command is "To the left of the square, 
draw a ....", the right and centre (vertically) point is 
relevant. 
From the 3 vertical position characterisations and the 3 
horizontal position characterisations, we defined 9 relevant 
points. Relevant points allows simplifying the decision 
procedure. We could have chosen a more sophisticated 
variable that might have been more psychologically 
relevant, but as we are focusing upon general principles, 
we did not do so. 

] 2         2 

8« 
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>       • ,4 

* 
7        6        i 

Figure 6. The nine possible relevant points of a figure. 

Defining the degree of acceptability for all points of the 
drawing area. 
For a point p of the drawing area, the acceptability degree 
is computed by aggregation of two intermediate degrees 
di(p) and d2(p). We chose the min operator for expressing 
conjunctions: 

d(p) = min(di(p),d2(p)), 

where di(p) indicates the degree to which point p (the 
relevant point) is a good point from which to begin 
drawing the figure specified in the command ("in the top- 
left corner" or "near the circle") and where d2(p) indicates 
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the degree to which it is possible to place at p a figure of 
the size and shape corresponding respectively to the size 
and the shape of the characterisations of the command. It 
is computed as : 

<fe(p) = sup{(min (|isize(l), |ishape(U)) / 0 < 1 < lmax> ° 
< h < hmax(l)}, 

where Imax and hmax are respectively the largest possible 
width and height taking into account the figures already 
present and usize and Ushape are respectively the 
membership functions of the size and shape fuzzy subsets 
constructed from the command (figure 7). 

_^ lmax 
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hmax 
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) 

Figure 7. Illustration of the d2(p) calculation when p is 
the top-left corner of the figure. 

Computing   d(p)   for   all   drawing-area   points   allows 
defining favourable areas (figure 8). 

n 
A B 

Figure 8. A) Figures already present.B) Visualisation of 
favourable areas for drawing "a large circle at the centre of 
the drawing area". 

A solution suited to the situation 
The general optimisation procedure allows choosing a 
solution   suited   to   the   situation   without   explicitly 
describing the situation beforehand (figure 9). 

VALIDATION 
The above model has been computerised and called 
SIROCO. This system allowed simulating the operator- 
subject in order to validate the model by comparing 
system responses to the operator responses. 

□ O 

"Draw a large rectangle   ' 
in the top-left corner ". 

Draw a circle next 
to the first one". 

Figure 9. In these two situations, the optimisation 
procedures decide respectively to draw an upright rectangle 
and a circle to the right of the first one. 

Model   parametrization 
The experiment provided thirty five communication 
records. Ten records were kept in order to test the model. 
The others were used for teaching the fuzzy subsets of the 
different characterisations, the modifiers and relation 
parameters to the system. More precisely, the first 
drawings for each communication (which correspond to a 
minimal context) allowed defining the cores for all 
characterisations. Supports were then defined in order to 
construct a fuzzy partition for each variable (see above). 
Analysing experimental results allowed defining modifier 
and relation coefficients. Relation coefficients express 
similarity, these similarity relations are not necessarily 
linear. For example, for an equal difference of surface, the 
smaller the two compared surfaces are, the more they are 
perceptively different. However, we considered these 
relations to be linear, and chose average coefficients 
because the experimental material did not allow inferring 
their exact shape3. 

Simulation 

A description of SIROCO 
Developed in C++, SIROCO includes a graphic interface 
for visualising system and subject drawing responses. It 
also allows running a commands file, typing commands 
interactively and readjusting the system's responses to the 
subject's responses at will. Finally, it allows visualising 
favourable drawing areas (by creating a matlab file). 

Definition of a minimal language 
The commands that were kept in order to test the model 
were translated into a minimal language with a limited 
number of words and with a strict structure3. Most of 
these words indicate the linguistic variable 
characterisations, and also, the modifiers and relations 
often used in commands. This language aims at 
representing commands without interpreting them. For 
example, "nearer the edge" is not translated as  "more 

3 We should define, as in FILIP (Zemankova, 1989), 
these relations from the outside of the system. 
*The commands which could not accurately be translated 
into the minimal language were excluded from the results. 
Variables and objects (like edges) need to be added to the 
language to make it more expressive. However our 
translation tables do allow expressing most of the 
commands. 
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toward the left" (if the figure is near the left edge) but by 
"more extreme" ("extreme" is automatically replaced with 
the object category, in this case, the "left"). Likewise, 
"make the rectangle longer" is translated by "more 
extreme". Thus, if the shape category is upright, the 
height will be increased. If the category is reclining, the 
width will be increased. We also use the OR connector in 
order to express utterances like "rectangle" (an upright 
rectangle OR a reclining rectangle) or "next to" (to the left 
OR to the right of another figure). 

Simulation with readjustment 
For this simulation, the operator-subject comparison was 
made command by command. Each of the system's 
responses was automatically readjusted to the subject's 
responses just before the next command was interpreted. 
The communication background was also readjusted. Thus, 
for each new command, the system was placed in precisely 
the same interpretive situation as the subject. 

Results  and  discussion 
In order to evaluate model validity, we compared the 
figures the human operator drew with the ones the system 
drew. More precisely, we compared the X and Y co- 
ordinates of the figure's top-left corner, the width W and 
the height H. We measured the error margin and the 
correlation for each of these variables. 

Table 2: The average error margin in centimetres for the 
first seven commands. 

X: 
0.25 

Y: 
0.35 

W: 
0.30 

H: 
0.28 

Compared to the figure variance in the initial drawings, 
there is no significant difference between subject and 
system drawings for the X coordinate (p>.2) and for width 
W (p>.32). On the other hand, we found differences for the 
Y coordinate (p=.02) and for height H (p <.01). Positions 
and sizes have a very important correlation: .93, .84, .93 
and .92, respectively for X, Y, W, H. From the first to 
the third figure, the correlation is shown in table 3. 

Table 3: The correlation from the first to the third figure. 

X: .94 .93 .91 
Y: .93 .98 .30 
W: .91 .90 .97 
H: .83 .90 .97 

We can see that simulation becomes more and more 
precise as communication progresses (table 4). 

Table 4: The correlation from the first to the seventh 
command. 

Cl      C2      C3      C4      C5      C6      C7 
X: 91 .94 .97 .97 .95 .92 .96 
Y: .86 .79 .8 .99 .99 1 1 
W: .35 .9 .97 .80 .86 .86 .99 
H: .67 .84 .93 .85 .95 .97 .99 
av: .70 .87 .92 .90 .94 .94 .98 

The small error margin with which the system operated 
might be, but is not necessarily, due to the model. The 
system chose one solution from a set of equally possible 
solutions and, under the same conditions, a human 
operator might also give different responses. In order to 
explain these differences, we should add that the system, 
as opposed to a human subject, does not make mistakes 
and does not forget information. Overall, the response 
given by the system is always acceptable and it is difficult 
to distinguish it from the human operator's response. 
Otherwise, softening the category the system had infered 
from the semantic network also gave good results. 

GENERAL   DISCUSSION 
A small number of combined cues are enough to enable 
us to define a precise solution. Other more elaborate 
experiments could reveal other important cues. Even in 
the particular case of this experiment, we do not pretend 
to have tackled all the facets of command interpretation. 
Category learning (Omri, 1994), that is to say the 
adjustment of interlocutor categories, is not taken into 
account here. Nonetheless, its affect would probably have 
been insignificant because communication between the 
operator and the instructor took place very quickly (the 
instructor was replaced for each new drawing). 

As we mentioned in the introduction, our study is about a 
particular contextual explanation of the power of 
language. Thus, some implicits of communication were 
not taken into account, whereas their effects were not 
negligible from the point of view of the results. For 
example, when the command was to draw a figure on the 
left and there already was a figure on the left, the system 
chose to place the new figure very near the first one (it 
placed it as far to the left as it could). The implicit 
information in this command is that the two figures can 
not be stuck together, because if they were, this 
information would be given. To explain this kind of 
implicit principle of relevance introduced by Sperber and 
Wilson (1986) seems well suited. It could be implemented 
with semantic networks and fuzzy sets. 
In summary, we have shown here a set of mechanisms for 
constructing the meaning of utterances from the basic 
category meanings. We have associated fuzzy subsets with 
semantic circumstantial networks and it appears that these 
representational tools are complementary as they cope 
with two different kinds of knowledge imperfection 
(imprecision and incompleteness) (Bouchon-Meunier, 
1992). We could talk about "fuzzy semantic networks" 
even if category inclusion is not gradual as in Rossazza's 
networks (1992). 

Unlike Hersh and Caramazza (1976), we are not only 
interested in representing the meaning utterances, we 
wanted to make it work, which is much more 
challenging. The method we follow, first, determination 
of fuzzy meaning for a set of variables, and second, 
definition of a solution maximizing the satisfaction degree 
of all variable constraints and integrating all 
environnement constraints, seems well adapted to model 
action. Compared with a rule system where the rules have 
to cover all situations and have to be explicited, this 
method appears more adaptative and more simple to 
implement, the main work consisting in constructing 
variables. 
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CONCLUSION 
The aim of this interdisciplinary study was double. On the 
one hand, our goal was to model the processes of 
command interpretation (through cognitive psychology) 
and on the other hand, it was to create a system capable of 
responding consistently to verbal commands, of detecting 
implicit information and of adapting itself to a given 
situation (through artificial intelligence). These two 
aspects of the study are by no means opposed because 
devising a system that models a human subject has every 
chance of being a system whose behaviour is adequate. 
This is all the more true given that verbal communication 
is a specifically human activity. 

There already exist certain mobile remote control 
apparatuses, equipped with a camera, for inspecting places 
that humans, for one reason or another, cannot enter. The 
operator who controls the apparatus must constantly 
specify the angle and speed at which the apparatus moves. 
Though the interface may be user friendly and, for 
instance, allow guiding the apparatus with a joystick 
rather than explicitly indicating angle and speed, there are 
still disadvantages. Namely, the constant supervision that 
the system requires calls for technical mastery as well as 
taxing levels of alertness and watchfulness on the part of 
the human operator. These disadvantages could be 
partially compensated for by redesigning the system to 
respond to natural language. 
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ABSTRACT 

Novice acquisition of skilled recall of chess positions 
was studied in an experiment in which two novices 
studied a series of five hundred chess positions dur- 
ing a period of several months. They spent fifteen 
minutes to half an hour a day teaching themselves 
chess positions. As a result their skills in recalling 
chess positions rose from an average sixteen percent 
to somewhere between forty to fifty percent. The 
learning curve proved to be a logarithmic function in 
which learning is very fast at first but after some 100- 
150 studied positions the speed of learning decreases 
substantially. 

A computer simulation was used to model the res- 
ults. Two alternative ways of thinking were tested. 
In the first model chunk construction was assumed to 
be based on neighbourhood of associated pieces. The 
second model assumed a frequency based correlative 
association process. Although the learning curves of 
the two models are very similar by shape to that of 
the subjects, the frequency based associative model 
gave better explanation for the data. This is why it 
is natural to suggest that common co-occurrence is 
one mechanism in associative processes during chess 
players learning of chess specific chunks. 

Keywords 

Cognitive modeling, novice skill acquisition, chunking 

INTRODUCTION 

One can argue that research on chess players' memor- 
ies is relevant only when the top level skills are con- 
sidered. When all the basic skills training is focused 
on people that are very far from having ten years ex- 
perience in the field, it should be interesting to invest- 
igate what are the major properties relevant to early 
learning in chess. The first hours of chess training 
are close to any basic course in some symbolic sub- 
ject matter. Therefore, it would be good to pay more 
attention to these earliest stages of information pro- 
cessing. An important shift to the direction of early 
learning was made by Fisk and Lloyd (1988) when 
they studied the acquisition of skilled visual search in 
chess with absolute novices. 
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tei@iki.fi 

Fisk and Lloyd's (1988) study showed that a skill de- 
velops very rapidly at first, but later the speed of 
learning decreases substantially. By studying some 
later stage of skill development, they could not have 
made this observation (see also Newell and Rosen- 
bloom 1981, and Rosenbloom and Newell 1987 for 
parallel findings in different task environments). If 
a similar pattern of skill development to the one con- 
cerning the reaction time results of Fisk and Lloyd 
(1988) could be found in chess recall task, it might 
explain why the development of skilled memory takes 
so much time. Though it is easy to achieve one level, 
each new step takes more and more effort. 

To help resolve the problems above, two students with 
only very elementary knowledge in chess were asked to 
study hundreds chess positions ten to twenty minutes 
a day for four to six months in order to recall the po- 
sitions as well as they can. The development of their 
recall was tested several times during this period. The 
aim was to determine the form of the learning curve 
for a later simulation analysis. 

By using computer simulation we wanted to study the 
nature of the chunking mechanisms in early learning. 
Chase and Simon (1973) suggested that a number of 
chess specific relations such as colour, kind, threat, 
defense, and proximity are important in chunk con- 
struction. Here, we are interested in an even simpler 
factor. This is general associativity, and a good ap- 
proach to it is to use a simple correlative measure. If 
the pieces that commonly co-occur are used in build- 
ing new chunks (the idea that general associativity is 
important), one should get the best fitting simulation 
outcome by chunking pieces with high correlation. 

In the next section the settings and the results of ex- 
periments in which two novice chess players learnt and 
tried to recall game and random chess positions are 
described. In the following sections a computer simu- 
lation designed to model the experimental conditions 
and results are presented and analyzed. 

METHOD 

Subjects 

Two graduate psychology students participated in the 
experiment. One was a woman, NT, who had played 
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only few games of chess in her life. The second subject 
was a man, MQ, with the same background, who had 
played chess a little more often, but he had neither 
chess ambitions nor qualifications. Neither of the sub- 
jects had ever visited a chess club or participated in a 
chess competition. Both were thus absolute novices. 

Task and Procedure 

NT, the first subject, was asked to study five hundred 
middle game positions from a book of combinations. 
She studied four to five positions for approximately 
fifteen minutes a day. When studying the positions 
she put the pieces on the board according to the illus- 
tration and tried to learn the location of each piece. 
She concentrated, however, only on the patterns and 
did not study the moves at all. She was tested five 
times: before the experiment began, after 110, 250, 
365, and 500 positions. Her involvement in the whole 
experiment lasted about four months. 

The experiment involving MQ was made a couple of 
months after the end of the experiment with NT. This 
second experiment took six months as MQ wanted to 
spend more time per a position than NT. He also 
studied five hundred middle-game positions from a 
book of middle game combinations and his method of 
study was the same as NT's. It was possible to test 
MQ somewhat more frequently than NT. His recall 
was tested eight times: at the beginning, after 30, 60, 
175, 220, 270, 350 and 500 studied positions. The 
irregularities in testing intervals were due to certain 
practical problems involved in running this long ex- 
periment such as compulsory exams, Christmas leave, 
etc. Each test consisted of a standard de Groot (1965, 
1966) experiment. Subjects were shown ten game and 
ten random positions with 18 to 28 pieces in each. 
The presentation time was five seconds per position 
and the presentation order was random. The posi- 
tions presented in the various testing sessions were 
always different. 

The test positions were made by using chess print 
transfers which were then photographed as slides. 
They were shown with a slide projector. The sub- 
jects sat at a distance of 150 cm from a display. The 
size of chess boards on the display was 40 x 40 cm. 

RESULTS AND DISCUSSION 

The results of the experiment are presented in fig- 
ure 1. The x-coordinate represents the number of 
studied positions and the y-coordinate the percentage 
of recalled pieces in a test session. The percentages 
are the mean percentages of correctly placed pieces 
calculated for each test session. 

The effect of learning is clear. The subjects were able 
to increase their percentage of recalled pieces from 
roughly fifteen to somewhere between forty and fifty 
percent, which was a rise of 25-35 percentage points. 
However, in recalling random positions the effect was 
substantially smaller averaging about five percentage. 
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Figure 1: Percentage of recalled pieces when the sub- 
jects were tested 5 or 8 times during learning. 

The profile of learning curve was very similar for both 
subjects. When studying the first hundred to one 
hundred and fifty positions they achieved most of the 
total increase in recall percentages. The increase was 
far slower from two hundred positions onwards. There 
was also some increase in recalling random positions, 
but the profile is very different from game positions, 
the increase being more linear throughout the whole 
learning period. 

The learning curves of NT and MQ have a standard 
form. They are like many other learning curves: at 
first it is very steep reflecting a sharp improvement 
in learning. However, after a short period of time 
the speed decreases and the gain in performance level 
becomes smaller per training unit (Fisk and Lloyd 
1988, Newell and Rosenbloom 1981, Rosenbloom and 
Newell 1987). This kind of curve can be called negat- 
ively accelerating or logarithmic. 

SIMULATIVE ANALYSES 

The results of the experiment provide very rough in- 
formation. As such they do not tell very much about 
chunking as a method of learning. However, by using 
a computer simulation it would be possible to associ- 
ate the previous experimental data with some other 
information about chess players' chunking. Thus the 
present experiment may be used for a theoretical dis- 
cussion of some aspects of chess players' informa- 
tion chunking and to estimate the number of chunks 
needed for very high performance. 

Several properties of chunks and chunking in chess 
which should be taken into account in any attempt 
to model chess players' recall, have been noted dur- 
ing the last twenty five years. The main function of 
chunking is to avoid the capacity limitations of human 
working memory. The more and larger the chunks a 
chess player has in his long term memory, the greater 
the probability of him being able to avoid the limits 
of his working memory and achieve a high level of 
performance. 

This should not, however, be interpreted so that the 
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chess players' working memory is seen as a box with 
a few slots. The reason for capacity should rather 
be sought in the integration of information as the 
chess positions are stored in the long-term memory 
rather than in working memory (Charness 1976, Frey 
and Adesman 1976, Lane and Robertson 1979, Lories 
1987, Simon 1976). 

Chase and Simon (1973) observed that skilled chess 
players do not necessarily recall more chunks than 
novices, but the sizes of their chunks are larger. 
The increase in chunk size is not an all-or-nothing 
phenomenon but it rather takes place incrementally. 
Good players do not learn new and longer chunks at 
one time but their chunks slowly lengthen and their 
recall improves (Chase and Simon 1973, Newell and 
Simon 1972). This is also the way chunk learning 
is assumed to occur by some theories of cognitive 
skills (Newell and Rosenbloom 1981, Rosenbloom and 
Newell 1987). 

In addition to chunk size the factors behind the co- 
herence of chunks have deemed important. Chase and 
Simon (1973) found five chess-specific relations (same 
kind or colour, threat, defense and adjacent locations 
on board) that increase the probability of successive 
pieces to belong in the same chunk. Another issue af- 
fecting the recall ability of a chunk is its location, not 
just the chess-specific relations between the pieces in 
it (Saariluoma 1984). It is easy to find strongly as- 
sociated piece patterns in random positions, but they 
are very seldom correctly located. Finally, the speed 
of information intake must be taken into account. El- 
lis (1973) and Saariluoma (1984, 1985) have shown 
with very different procedures that skilled chess play- 
ers are faster to extract information from chess pos- 
itions than less skilled (Charness 1988). Chase and 
Simon (1973) have also noted that the more skilled 
the subjects the faster they learn chess games. 

All these properties of chunks must be built into any 
model attempting to explain chess players' recall of 
chess positions. The model must contain an initially 
almost empty long term memory with a large num- 
ber of simple chunks and it must be able to incre- 
mentally learn larger chunks. The pieces in chunks 
must have a number of chess specific relations between 
them and they must also be located in precise posi- 
tions on a chess board. The speed of learning must 
also increase. The importance of building this kind 
of model is in testing the logic of theories. It has 
been known since the original study by Simon and 
Gilmartin (1973) that chunking can be studied in this 
way. Their model, however, was not a learning pro- 
gram and therefore it was not suitable in explaining 
the early learning curve. It is thus necessary to build 
a model, which is able to simulate the dynamics of the 
learning process. In the simulation model described 
below only the aspects of learning and precise location 
of pieces when building chunks are addressed, other 
chess specific heuristics are not considered. 

Structure of the Simulation Program 

Two versions of computer simulation programs were 
built to model the chunk construction strategies of 
novice chess players in the experiments described 
above. The models were programmed in the object- 
oriented language Java. Their functionally separate 
cognitive components are implemented as different 
object classes, instances of which are created during 
run time. The main classes are piece, chunk, long 
term memory (LTM), short term memory (STM) and 
subject that controls learning and recalling. The chess 
board is coded as two dimensional array of strings 
which present piece type and color. As the size of 
the array was the same as a real chess board's, the 
location of every piece was presented explicitly. For 
the chunking chess pieces (location, color and type) 
were coded as integers, and memory chunks were lists 
of these integers. The class hierarchy, and class or 
object methods were not intended to model human 
cognitive architecture or algorithms. The system was 
only to predict the development of the learning curve 
of an unexperienced chess player due to accumulation 
of new chess chunks in memory when her/his recall of 
unfamiliar chess positions is tested regularly during 
the learning phase. 

Learning and Recalling 

In the beginning the simulation systems have in LTM 
768 chunks, which present every possible one piece 
chunk that can be formed, i.e. every piece type (12) 
on each location (64) on the board. So it was assumed 
that the subjects can trivially recognize single isolated 
pieces wherever they are situated on the board. After 
the initial situation the systems form new chunks in 
LTM from every shown study position. The size of 
chunks stored in LTM increases due to the systems' 
experience; in the beginning chunks of size two pieces 
are built, but later on the systems memorize larger 
chunks as they notice that possibly all the two (three, 
four, five, etc.) piece chunks are already known to 
them. The amount of chunks learnt from one posi- 
tion and used in recalling one position is limited by 
the capacity of the short term memory. Overlapping 
chunks are not constructed from a single position. 

Unlike Simon's and Gilmartin's (1973) EPAM-based 
learner, the systems can find a chunk in memory in- 
dependent of the piece around which it is built, so 
the chunk is identified by the pieces in it and no du- 
plicates of the chunks are stored. Simon's and Gil- 
martin's chunks were identified by the focal pieces 
around which the chunks were built. However, the 
simulation systems do not examine the chess posi- 
tions as a whole but process them one chunk at a 
time, starting with a specific or a random piece on 
a board. In the test phase the systems first build a 
proper chunk of the pieces on a test position, and then 
look for a corresponding chunk in LTM. So they do 
not reconstruct positions on empty boards like in Gil- 
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martin and Simon (1973), but try to cover the pieces 
on the board with corresponding chunks in LTM if 
they are found. If the chunk cannot be found, the sys- 
tems try a one piece smaller or a totally new chunk, 
otherwise they add the chunk to STM and mark the 
corresponding pieces on the board as recalled. Finally 
the recall score is calculated as a percentage of pieces 
explained by chunks in STM of all the pieces in the 
position. 

Pieces or chunks that are not seen in learning phase 
are never memorized or retrieved, so the models 
make no commission errors. Once they have learnt 
something they never forget it, nor retrieve any in- 
complete or wrong chunk from memory. The mod- 
els did not learn any chunks from the test positions, 
either. 

Chunking Heuristics 

The first version of the simulation is a naive one. It 
uses a random neighbourhood heuristic. In the 
learning phase and in the recall phase it always pro- 
cesses the chess positions in random order. It starts 
building a chunk from a random piece (focal piece), 
and when expanding a chunk to its neighbours the 
system proceeds to a random direction. It should be 
noted that only the pieces in adjacent location can 
form a chunk. The pieces that do not have any im- 
mediate neighbours can only form a one piece chunk. 

The other simulation model uses a correlation 
heuristic when constructing chunks. Its decision 
about which pieces belong to a chunk is based on 
the frequency of co-occurrence of those pieces. The 
system chooses the most commonly seen piece as a 
focal piece around which it tries to form a chunk. 
Next the system adds to the chunks the most common 
neighbour of this focal piece, and then expands the 
chunk to the most common neighbour of this piece. 
However, in the learning phase the system starts ex- 
amining the board and building chunks from random 
pieces. In this way it is guaranteed that the diversity 
of learnt chunks is high; not merely the most frequent 
pieces or chunks around them are exploited. Addi- 
tionally, the multiplicity of chunks was thought to be 
of some use in recalling random positions. 

The correlation model keeps record of the occurrences 
of single pieces and two piece combinations in a mat- 
rix like table. Note, that the system calculates fre- 
quencies of those pieces only that it memorizes in 
learning phase. 

Neither of the models take into account the possibility 
of building very oddly shaped chunks. Despite of the 
chunking heuristics their structure and functioning is 
identical. 

Simulation Results 

The conditions in which the simulation models were 
tested were similar to those of the subjects MQ and 

NT. The models were taught 500 chess positions and 
the recall of unfamiliar game and random positions 
was requested within the same intervals as MQ's, in 
the beginning, after 30, 60, 175, 220, 270, 350 and 
500 studied positions. Every test session consisted of 
ten real game and ten random positions. The random 
positions were permutations of the real chess positions 
used in the tests. They included just the same number 
and type of pieces, only in different locations. 

For curiosity, test runs were run with short term 
memory sizes 4, 7, 10 and 12 chunks, because it was 
not very clear in the beginning whether it was just the 
quality of the chunks, not the number of them used 
in recalling that could improve the performance most. 
The short term memory size of 4 produced quantit- 
atively the most similar results to the novice human 
subjects. When the STM size was over 7 chunks, the 
performance reminded that of experts'. The learning 
curves with STM size 4 for real game positions and 
random positions, and for both models are presen- 
ted in figure 2. The curve is plotted such that for 
every test session the average recall percents of game 
and random positions are calculated, and then the 
whole test sequence is averaged over 20 independent 
runs. Similarly, the learning curves for all the short 
term memory sizes and both chunking heuristic in real 
game conditions are presented in the figure 3. 

200 300 
number of studied positions 

Figure 2: Percentage of recalled pieces when the sim- 
ulation systems were tested 8 times during learning. 
Short term memory size was 4 chunks. 

When evaluating the simulation versions it is very 
clear that the correlation model can exploit the reg- 
ular patterns seen on chess board much better than 
the random neighbourhood model. Hence it is able to 
memorize the most useful piece combinations which 
help it to recall more pieces in the test situations. The 
other model stores too much redundant information. 
With the same amount of stored chunks it could re- 
call much less of the game positions. The both simu- 
lations performed worse in the random test condition 
than in real game test condition, but the correlation 
model performed significantly worse than in the real 
game condition. With the neighbourhood model the 
difference was not so big.   Still in the random con- 
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Figure 3: Learning curves for the short term memory 
sizes 4, 7, 10 and 12. 

dition the correlation version reached better results 
than the neighbourhood version in the real game con- 
dition. 

The Effect of the Amount of Learnt Chunks vs. 
Short Term Memory Size 

The hypothesis was that the sharp increase at the be- 
ginning and the modest increase later on in the learn- 
ing curve is caused by early accumulation of relevant 
chunks in LTM. Although the chunk amount goes up 
at a quite constant rate throughout the learning time 
the recall score does not seem to reflect it very well. 
It seems like after some turning point remarkably 
more chunks would be needed to enhance the per- 
formance. Note that the program using a neighbour- 
hood heuristics could produced no more than about 
700 chunks while the other one discovered a little over 
2000 chunks. The accumulation of LTM chunks for 
different STM sizes and the two chunking heuristics 
is plotted in figure 4. 

The size of the simulated short term memory played 
more drastic role in the performance than learning 
the relevant chunks. With the minor size (4 chunks) 
it was impossible to reach the results that were quite 
easy to obtain with STM sizes 10 or 12, as can be seen 
in figure 3. Otherwise a huge amount more learning 
would be demanded, say 10000 or 50000 LTM chunks 
(which may be normal for expert chess players). Our 
simulation did learn only about 2000 chunks at its 
best, and the amount of formed chunks did not, some- 
what surprisingly, vary with STM size, when only 500 
positions were studied. However, the amount kept 
on increasing linearly when the number of studied 
positions was doubled to 1000 (the results of these 
runs are not reported here, because the recall score 
did not improve at all). If the formation of overlap- 
ping chunks had been allowed, the amount of stored 
chunks may have been remarkably larger, but the re- 
call scores somewhat smaller, because the same pieces 
might have been included in several chunks when re- 
calling a single position. 

Figure 4: Accumulation rate of long term memory 
chunks during learning for both heuristics, run over 
STM sizes 4, 7, 10 and 12. 

The Effect of the Chunking Method vs. 
of Chunks 

the Size 

It was noticed that not merely the size of the chunks 
was important for the performance but the quality of 
them, although it was hypothesized that the learn- 
ing is due to the gradual accumulation of bigger and 
bigger chunks. In practice the system could not ex- 
ploit much larger chunks than five pieces on average, 
because it could learn only a fraction of the combin- 
atorial alternatives, as the amount of them grows ex- 
ponentially with the size. For this reason the longer 
chunks were harder to match to the game positions 
as they were seen so rarely during the learning phase. 
In the figure 5 the average sizes of the chunks used by 
the model using correlation heuristic in recalling real 
game positions are presented. The curve is plotted as 
an average of the largest chunks used to recall the ten 
test positions in every test session. 
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Figure 5: The average sizes of the largest chunks used 
in recalling real game positions by correlation model, 
plotted for all STM sizes. 

It was also noticed that the overall method used in 
building chunks produced significant differences in 
performance. The method that incrementally builds 
larger chunks adding one adjacent pawn to an ex- 
isting chunk improved the performance considerably 
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compared to simple accumulation of chunks of differ- 
ent sizes. Hence it is advantageous to add one pawn 
to the earlier memorized chunk than to memorize two 
almost separate chunks that do not have many pieces 
in common. The latter method forms more variable 
chunks but it does not take into account the nature 
of real game positions. Although the test positions 
were not consecutive positions from a single game, 
especially the model using correlation heuristic was 
superior in exploiting regular patterns in positions it 
had seen in learning phase. The incremental method 
building chunks uses additionally the idea that it does 
not really matter that one pawn has changed place, it 
can still retrieve the chunk partially i.e. recall a one 
pawn smaller chunk that it has possibly built earlier. 
It may not have seen all the one piece smaller chunks 
previously, but in practice quite a few of them, any- 
way. 

GENERAL DISCUSSION 

These empirical results are very clear. A negatively 
accelerating learning curve was found. In this aspect 
chess is similar to many other symbolic and motor 
skills: The first steps are always the fastest in ac- 
quiring any skill. During this period one learns the 
most basic but also most common aspects of the do- 
main. In chess this means the very familiar chunks 
such as castling or standard pawn chains. In random 
positions the absence of similar regularities makes it 
impossible for them to find equally common piece con- 
figurations and chunking is much less effective. Later 
in skill development the number of pieces in a chunk 
will increase and the number of combinatorial pos- 
sibilities also increases exponentially. Consequently, 
it is very logical that the increase in the number of 
recalled pieces decreases respectively. 

By a computer simulation we investigated vari- 
ous possibilities to interpret the empirical data. 
Of course, simulation has several weaknesses as a 
method. It is far from being unambiguous, because 
it is possible to construct several different types of 
models to investigate possible interpretations of data. 
Nevertheless, one should not forget that it is still 
better than mere intuition. The formal dimension 
of thinking is better controlled by using modeling 
than by relying on intuition. Therefore, a simula- 
tion, though having undeniably speculative sides, can 
be beneficial. 

In our simulation, we were at first interested in the 
form of learning curve. Therefore, we let chunks grow 
incrementally, and indeed, our assumption was cor- 
rect. There was a clear difference between game and 
random positions. This means that the incremental 
growth of chunks is a very good conjecture for the ex- 
planation of the negatively accelerating learning curve 
in chess. The exponential growth in the number of 
possible chunks as a consequence of the increase in 
the required chunks' length effectively explains the 

form of the learning curve. 

It was interesting to notice that we got the best fit 
with the data when the size of working memory was 
kept at 4. On one hand this piece of evidence fits 
extremely well with the classic models of chess play- 
ers' memory suggested by Chase and Simon (1973), 
for example, in which chunks are stored into short 
term working memory. However, the empirical re- 
search since Charness (1976) has clearly shown that 
experts do not store information into their short term 
working memory but in long term working memory 
(Ericsson and Kintsch 1995). This is apparently very 
problematic, but we must remember that in this ex- 
periment we investigated early learning. Therefore, 
there is nothing strange in that people would use their 
short term working memories to store chess specific 
information. The development of retrieval structures 
typical to masters takes a decade. 

Finally, we were interested in the nature of associ- 
ative connections between the chunk elements. The 
two simulation models suggest very evidently that fre- 
quency based correlative chunks provide much bet- 
ter a model for the data than random neighbourhood 
model. Indeed, this fact is also in harmony with the 
classic theory of associations, which assumes that fre- 
quent co-occurrence is sufficient explanation for many 
associations. 

The ultimate point of simulation is the analysis of 
the interconnections between various phenomena and 
cognitive mechanisms. In that way simulation allows 
us to provide global theoretical concepts with more 
accurate contents than is possible when basically in- 
tuitive theoretical notions are used. This is an im- 
portant point when the foundations of psychological 
argumentation is considered (see Saariluoma 1997). 
Here, the main problem is to find, how the learning 
curve, chunks growth, ST-WM capacity are interre- 
lated and what is the significance of these finding in 
global psychological terms. 

The model suggest that chess skill is essentially based 
on associative piece configurations and the basic 
learning mechanism is a gradual construction of them. 
The problem in improving memory recall is to resolve 
the combinatorial problem of getting sufficient num- 
ber of chunks to get full coverage of standard real 
game piece configurations. The learning curve shape 
is thus simply a consequence of required number of 
chunks on each level of length. More chunks of length 
five need to be stored than chunks of length three. 
Consequently, model suggests that the shape of early 
learning curve is a consequence of combinatorial prop- 
erties of the materials and limited capacity of the sys- 
tem. 

In global terms, one can argue that chunking is one 
form of knowledge construction. As it is well known, 
the major contemporary global learning theory is 
called constructivism. It is predominant way of think- 

lS<o 



ing as well in clinical as in social and educational psy- 
chology (Resnick 1987). The crucial theoretical prob- 
lem in this way of thinking is the notion of construc- 
tion itself. What does it mean, in concrete terms, that 
people construct their knowledge bases. The simula- 
tion of early learning provides one alternative. It is 
frequency based construction of associative and pre- 
linguistic patterns. 

A problem in this context is the precise role of learn- 
ing results and chunking mechanism, de Groot and 
Gobet (1996, p.117) criticise Chase's and Simon's 
(1973) chunking explanations relying on Ericsson's 
and Harris's (1990) experiment in which they showed 
how a novice, by using mnemonic techniques, can im- 
prove his/her performance with no improvement in 
chess skills. The point is that chunks only do not 
suffice in chess, but knowledge about moves is also 
required. The authors are naturally correct in their 
thinking. 

Nevertheless, one can argue that the memory mechan- 
ism of chunking is not bound to static piece patterns, 
but moves are sequences of spatio-temporal chunks. 
Thus chunking in position recall tasks utilizes the 
same underlying mechanisms that all learning of chess 
knowledge. Blindfold game recall strongly speaks for 
this interpretation (Saariluoma 1989). The problem 
is that one must learn all relevant types of chunks, 
i.e. piece configurations and moves, to improve one's 
chess skills. The concept is relevance (de Groot and 
Gobet 1996, Saariluoma 1995). If people do not learn 
relevant spatio-temporal chunks their skill construc- 
tion is biased. Indeed, much of our conceptual know- 
ledge is in these tacit patterns and therefore it is so 
important to understand these knowledge construc- 
tion mechanism also in early learning (Saariluoma 
1995, 1997). 
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ABSTRACT 
The aim of this study was to understand some particular 
human methods of problem solving in everyday 
situations. In this aim, we designed an experiment to 
obtain individual protocols. A cognitive model was based 
on the notions of phases and states of mind that evolved 
during the problem-solving process. The proposed model 
was then implemented in IGGY, a system which uses a 
blackboard architecture, and the validity of the model was 
tested by a Turing-like test and by a statistical analysis. 

Keywords 
Cognitive modelling, problem solving, incomplete 
information, model validation, blackboard system. 

INTRODUCTION 
In everyday life, people frequently encounter incompletely 
described situations where common sense reasoning and 
planning are essential. In most of these situations, the 
complexity of the reasoning process comes both from the 
fact that the state space in which constraints have to be 
satisfied is so large that no combinatoric approach can be 
used, and from the fact that some information is missing 
and hence must be collected. A simplistic example of 
such a situation is when someone wants to organise a 
party with friends. To this end, several constraints must 
be satisfied and the problem cannot be solved 
instantaneously because information is missing. 

The way the solution is built up depends in particular on 
how strictly people pay attention to the constraints and 
how well they gather and use information. In this kind of 
problem, people may choose to use sophisticated 
reasoning that resembles planning, by optimally 
articulating the pieces of information already known, 
inferring the best way to gather the missing information, 
and anticipating the different possible outcomes. On the 
opposite, they may decide to avoid paying an important 
cognitive cost and adopt a simple behaviour, driven more 
by reaction than by planning. However, although Agre 
and Chapman (1987) stated that this reactive behaviour 
was cognitively plausible, there is, to our knowledge, no 
experimental evidence of such activity for human 
subjects. 

In this interdisciplinary study, at the intersection of 
Cognitive Psychology and Artificial Intelligence, our 
purpose is to understand and simulate the way human 
beings elaborate plausible conclusions in imperfectly 
described everyday situations. To this end we have chosen 
to carry out a psychological experiment dealing with an 
ill-structured problem (Simon, 1973; Voss & Post, 1988; 
Goel, 1992). In this class of problems, people have to 
reason on incomplete or uncertain knowledge. Design 

problems (Guindon, 1990; Visser, 1990; Ball et al., 
1997) form a particular subclass of this class. 

In our work, a bottom-up approach has been adopted: an 
experiment was conducted in which subjects were to solve 
individually the so-called "hi-fi system problem". The set 
of experimental protocols obtained were analysed to 
extract the different behaviours, and from this analysis a 
computational model was built and implemented in order 
to have a better understanding of the human problem- 
solving process. Finally the output of this simulation 
was compared with the human protocols in order to 
validate the proposed model. 

THE   PROBLEM-SOLVING   SITUATION 
The task was designed with the following characteristics: 

• the set of constraints could be satisfied in a large state 
space, and a pure combinatoric solution could not be 
considered; 

• information initially available had to be incomplete in 
order to compel the subjects to reason in an uncertain 
environment; 

• it had to be of sufficient complexity so as to obtain a 
large range of behaviours; however it had to be simple 
enough to be manageable. 

The problem consisted in configuring a hi-fi system. A 
complete system comprised five different items: an 
amplifier, a tuner, a record player, a tape recorder and a 
compact disc reader. The subject could choose between 
three models of amplifiers and between four models for 
each of the other items. The amplifier had a special status 
insofar as the other items had to be compatible with it1. 
The price of the items, the maximum amount allowed and 
the compatibility between the amplifiers and the 
components2 were given to the subjects at the beginning 
of the experiment. However, the subjects did not know 
which items were available at the beginning. This 
information had to be acquired by making a phone call for 
each chosen item and the subject knew that s/he would be 
told the number of calls allowed in due time. Thus, there 
were four types of constraints: the total price of the 
system, the compatibility between the amplifier and the 
components, the availability of the chosen items and the 
number of phone calls. 

In order to record all the actions performed by the 
subjects, the task was simulated via a computer program. 

In the remainder of this  article,  the amplifier is thus 
differentiated from the other items called "components". 
Some components were compatible with more than one 
amplifier. 
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The user interface was designed to serve as an external 
memory store and a calculator of the total amount spent 
on the chosen items. In order to instigate a large variety 
of behaviours, three versions of the problem were built, 
which differed by price and compatibility table. Forty 
seven female and male students took part individually in 
the experiment. Each subject was asked to solve the 
problems by thinking aloud. The subjects' verbalisation 
was tape recorded and all their actions were automatically 
recorded by the simulation program. Therefore, a protocol 
was a list of all the subject's actions (and results of 
actions) and verbalisations during a problem-solving 
process. 
Fifteen of the 141 individual protocols were eliminated 
from data corresponding to certain subjects that did not 
understand the instructions. Therefore the raw data 
comprised 126 protocols. 

BUILDING A FRAMEWORK TO MODEL THE 
PROTOCOLS 
The model had to be realistic, complete and simple. This 
needed a lot of comings and goings between the analysis 
of the experimental data and the building of the model. 
Therefore, our cognitive model was built by successive 
approximations. 

An ideal strategy 
An optimal way for handling the problem situation 
consists in selecting three configurations, based on three 
different amplifiers, and in choosing components that are 
as multi-compatible as possible. By doing so, one can 
make sure that the constraints of price and compatibility 
are satisfied. Information gathering (i.e. by phoning) will 
be undertaken only when the configurations are 
completed. This ideal strategy is based on parallel 
planning and can be characterised as being "opportunistic" 
when item choice and information gathering exploit the 
idea of multi-compatibility. Such a strategy is similar to 
a breadth-first search observed in expert designers (Ball et 
al., 1997), because it takes into account the three possible 
alternatives at the same time and leads to a solution with 
a minimum risk of backtracking. 

A rough characterisation of the protocols 
The subjects could solve the problem at different levels of 
reasoning, from the most sophisticated to the simplest 
mode. We characterised a mode of reasoning as being 
sophisticated when (i) the subject built in parallel three 
configurations based on the three amplifiers, then 
explored in depth the configuration that appeared the most 
promising at a given time; (ii) the subject explored at the 
same time several solutions with a single amplifier; (iii) 
the subject used a strategy similar to the focusing one 
(Bruner et al, 1956) by phoning in order to reduce the set 
of possible solutions quickly. This mode of reasoning 
resembled the ideal strategy presented above. The 
reasoning was characterised as being shallow when the 
subject tried to build up only one configuration at a time. 
This mode of reasoning is similar to the depth-first search 
approach observed in novice designers. It bore two 
characteristics: (i) the subject abandoned the current 
solution only when forced to do so (i.e. one or more 
constraints were violated); (ii) the subject phoned for a 
component of a given category then shifted to another 
category as soon as s/he got a positive answer. 

To our surprise, after a first superficial analysis of the 
protocols, we did not find much sophisticated reasoning. 

Only 13 of the 126 protocols can be characterised as 
adopting a sophisticated mode of reasoning. In the 
remaining 113, subjects focused on building up one 
configuration at a time. 
Moreover, the subjects did not respect simultaneously all 
the constraints of the problem. 
Despite the fact that the observed behaviours were simpler 
than expected, there did not exist two identical protocols. 
The question that arose was then how different were they? 
To answer this question we needed to define a framework 
for analysing the protocols more precisely. 

This analysis takes into account the protocols that adopt a 
shallow mode of reasoning. 
From the 113 protocols, three sets of protocols were 
drawn at random. The first set comprised 30 protocols 
which have been carefully analysed to determine the main 
ingredients of the cognitive model and to build up a 
precise method of analysing the protocols by hand. The 
second set of 43 protocols was randomly drawn from the 
remaining protocols to validate the completeness of the 
hand analysis method. The third comprising the 40 
remaining protocols was used to validate the implemented 
model: they were not used for the setting up of the 
parameters of the implementation. 

The ingredients of the model 
Our model was based on the notions of phases, states of 
mind, strategies and tactics. 

The Notion of Phases 
The configuration building process rarely developed 
smoothly and some "obstacles" arose which had to be 
overcome. Two kinds of obstacles were distinguished: 
either they were not really bad and the situation needed 
only a few corrections or they were more serious and 
constituted deadlocks which needed to be removed. From 
this point, we differentiated between the situations 
considered as being normal and those considered as 
abnormal, with two degrees of abnormality. 
In every abnormal situation, the configuration building 
process was interrupted and the subjects undertook either a 
correction task or a deadlock-solving task. After the 
obstacle had been solved, they either returned to then- 
previous task or tested their configuration if they thought 
they had found a solution. Thus, each protocol could be 
divided into phases characterised by the current task. 
These phases were configuration building, correction, 
deadlock solving and test. Figure 1 represents all the 
possible relations between the phases. 

Figure 1: the possible relations between phases 
The Criteria Taken into Account by the Subjects: the 
State of Mind 
The decision to perform any particular action depended on 
the attention paid to the different constraints. Thus, we 
defined the notion of criteria taken into account by the 
subjects. They were related to the four constraints of the 
problem, and they were given the same names: 
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• compatibility criterion: the subjects focused on the 
compatibility between the different items, 

• availability criterion: the subjects tried to check as 
soon as possible the availability of items, 

• price criterion: the subjects took into account of the 
price of the items, 

• phone calls criterion: the subjects were careful how 
many phone calls they made. 

The criteria were different from the constraints: satisfying 
a constraint meant making sure that it was not violated, 
whereas complying with a criterion only meant that the 
subjects had this constraint in mind while taking 
decisions, in order to reduce the chances of violating it. 

The subjects did not necessarily take into account all 
criteria at the same time but only a subset of them that 
varied as new information was acquired. This subset of 
criteria was called state of mind. It evolved according to 
the problem-solving situation and its changes triggered 
modifications in the subject's behaviour. 

The Possible Strategies 
In a configuration building phase, the subjects could 
perform two different kinds of actions: choose the items 
that will form a configuration and gather information 
about the availability of items. We distinguished between 
item   choice   strategies,   and   information   acquisition 
strategies. 
There were two possible item choice strategies: 
• amplifier centred strategy (Strategy 1): choose the 

components by focusing on only one amplifier, 
• component centred strategy (Strategy 2): choose the 

components without having in mind a predetermined 
amplifier, so that the determination of a single 
amplifier was delayed as long as possible. 

Three possible information acquisition strategies, 
probably related to the user interface used in the 
experimentation, emerged from the protocols: 
• select then phone strategy (Strategy 4): choose several 

items and then phone for each of them, 
• phone then select strategy (Strategy 5): give a 

sequence of phone calls for a series of items and then 
build up a solution by selecting only available items, 

• phone and select simultaneously strategy (Strategy 6): 
select each item and then phone immediately for it (if 
available, the item was kept, else it was discarded, and 
the subject selected another item). 

Moreover, the subjects could forget that it was necessary 
to know the availability of all the elements of a chosen 
configuration. In this case a null strategy (Strategy 7) was 
attributed. 

In a deadlock-solving phase, the subjects had to change 
the flawed configuration by deciding to focus the 
deadlock-solving process on either an amplifier or a 
component. All the strategies, except Strategy 4 and 
Strategy 7, could be applied. 
Finally, since the correction phase concerned the items 
that violated the constraints, no strategy on item choice 
was necessary. This is the reason why a null strategy on 
item choice (Strategy 3) was attributed to any error 
correction phase. 

Table 1 summarises all the possible strategies in the 
different phases. 

Item choice strategies CB c DS 

1. amplifier centred strategy X X 

2. components centred strategy X X 

3. null strategy X 
Information acquisition strategies CB c DS 

4. select then phone strategy X X 

5. phone then select strategy X X X 

6. phone and select simultaneously 

strategy 

X X X 

7. null strategy X X 

Table 1: strategies for each phase 
(CB: configuration-building phase, C: correction phase, 

DS: deadlock-solving phase) 
Instantiating the Items Choice Strategies: the Tactics 
In the configuration building and deadlock-solving phases, 
the same strategy on item choice could be instantiated 
through different atomic actions. In order to differentiate 
between these different choices, we introduced the notion 
of tactics. 

CB DS c 
Tactics on amplifier choice Stl St. 2 Stl St 2 St 3 

1. cheapest amplifier X X X 

2. medium-priced amplifier X X X 

3. amplifier compatible with the 

most components 

X X X 

4. amplifier compatible with the 

fewest components 

X X 

5. amplifier most compatible 
with the configuration 

X X X 

6. amplifier compatible with 

available components 

X X X 

7. amplifier compatible with the 

cheapest components 

X X X 

Tactics on components choice St. 1 St. 2 Stl St 2 St 3 

8. cheapest comp. compatible 

with a given ampl. 

X X 

9. medium-priced components 

compatible with a given ampl. 

X X 

10. available comp. compatible 

with a given ampl. 

X X 

11. cheapest comp. compatible 

with at least 2 amplifiers 

X X 

12. components compatible with 

the most amplifiers 

X X 

Tactics on key-component choice St. 1 St. 2 Stl St 2 St 3 

13. cheapest key-component X X 

14. key-component of blocking 

category 

X 

15. available key-component X 

Table 2: tactics in terms of phases and strategies 
From an informal analysis of the 30 protocols, 15 
different tactics were identified, which depended on the 
current phase, on the state of mind and on the item choice 
strategy. We distinguished between tactics for choosing 
an amplifier and tactics for choosing the components. In 
the latter case, there was an additional distinction between 
situations where a set of components had to be chosen 
and situations where only one component, called key- 
component, had to be chosen in order to start or restart a 
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configuration. Table 2 presents the fifteen tactics and their 
domain applicability. 

METHOD TO ANALYSE THE PROTOCOLS 
The hand analysis was performed in parallel by two 
"judges"3 and the infrequent disagreements between them 
were easily solved after a discussion with a third judge. 
The method to analyse the protocols was applied to 73 
protocols: the set of 30 that were used to build up the 
framework of the cognitive model, and the set of 43 that 
were reserved to verify the completeness of the hand 
analysis method. 

Decomposing the protocols into phases 
Identification of the test phase was straightforward: it 
boiled down to the "test" action. 

A deadlock-solving phase was usually a short sequence of 
actions that eventually led to a change of amplifier. It 
began when the subjects considered that they would not 
be able to find a solution with the current amplifier. After 
possibly checking the availability of some items, the 
subjects chose either a new amplifier or a component 
compatible with another amplifier. This choice ended the 
deadlock-solving phase. 

A correction phase, by contrast, was a phase where the 
subjects checked the availability of items and/or replaced 
components that violated the constraints. It could be 
triggered by a negative test or simply by the subjects' 
noticing one or more errors in the solution. 

A configuration building phase was simply defined as a 
phase that was none of the three phases defined above. 

Recognising the strategies and the tactics 
Once the phases had been identified, strategies and tactics 
were rather easy to detect. But the identification of 
strategies and tactics could not be conducted separately. 
Most actions, when taken out of context, were 
compatible with more than one strategy and more than 
one tactic according to the possibilities given in tables 1 
and 2. It was often necessary to take into account a 
sequence of actions in order to narrow the range of 
possibilities. As mentioned earlier, the verbal utterances 
were good clues to help choose among the possible 
hypotheses. Thus the approach we used to identify 
strategies and tactics was a hypothesis-and-test approach. 

Identifying the state of mind 
The last ingredient to be identified in the protocols was 
the state of mind. To this end, we assumed that any 
criterion that appeared in the state of mind had a visible 
effect in the protocol. 

The information acquisition strategies depended on the 
availability criterion . Strategy 5 and Strategy 6 favoured 
an early discovery of the availability and therefore required 
the presence of the availability criterion, whereas 
Strategy 4 and Strategy 7 were inconsistent with it. 

Each tactic corresponded to one or two criteria, and some 
tactics excluded a criterion. The compatibility criterion 
was also attributed when the subject explicitly referred to 
it when choosing items. 

The subjects could change their states of mind, strategies 
or tactics during a configuration building phase. This 

3    We thank Jean-Marc Meunier for having  done a very 
efficient job as one of these two judges. 

meant that a configuration building phase could be divided 
into several episodes. An episode was defined as a 
sequence of actions characterised by the same set of phase, 
state of mind, strategies and tactics. The end product of 
the analysis of a protocol is a skeleton which partitions 
the protocols into successive episodes. 

GENERATING   ARTIFICIAL   PROTOCOLS 
Our aim was to build a computational model to simulate 
human reasoning in this particular problem-solving task. 
Protocol analysis made it possible to identify, for each 
protocol, the successive phases, strategies, tactics, states 
of mind and their changes during the problem-solving 
process. However, the model did not "explain", why 
different subjects adopted different states of mind, 
strategies and tactics and why some of them made more 
careless mistakes than others. In order to introduce this 
inter-individual variability, individual characteristics had 
to be taken into consideration. This led us to introduce 
the notions of observation and of personality. 

Linking the episodes: observations as triggers 
of the episode changes 
During problem solving, any change of ingredient 
corresponds to a new episode, which depends on the 
subjects' interpretation of the current situation. From a 
generative point of view, our aim was to simulate not 
only behaviours inside episodes but also the inferences 
the subjects made from the current situation in order to go 
ahead. For this we used the notion of observation, which 
corresponds to the explanations about the problem- 
solving process that would be present in the subjects' 
verbalisations if these were complete. The subjects' 
verbal utterances are thus considered as a sample of their 
observations and they play an important role to explain 
the changes of episode. 

Observations may concern the current configuration as a 
whole (e.g. "the configuration is too expensive") or a 
particular element (e.g. "tuner 1 is available"). They can 
have an impact on the phase (e.g. deadlock, correction to 
be done or configuration to be tested), on the state of 
mind (e.g. number of phone calls already made too high: 
take into account the phone calls criterion), on strategies 
(e.g. an element compatible with several amplifiers: 
Strategy 2) and/or on the current tactics (e.g. expensive 
configuration: "cheapest components" tactic). 

From the 73 protocols that have been hand analysed, all 
the verbal utterances were picked out except for the meta- 
cognitive statements. The list of useful utterances can be 
grouped into 22 observations. In our model, the 
observations are represented by predicates with or without 
arguments. They are not described here due to space 
limitation. 

The personality of the subjects 
The second notion we needed in order to simulate the 
diversity of the observed behaviours was personality. 

For each of the 73 protocols that have been analysed, we 
determined the personality of the subject by 5 orthogonal 
features: 
• careful, for the frequency of careless mistakes made by 

the subject, 
• thrifty, for the importance attached by the subject to 

the price of the configuration, 
• opportunistic,   for   the   subject's   ability   to   use 

information flexibly, 
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• systematic, for the subject's choice of elements that 
followed more or less strictly the order in which the 
categories were presented in the price and 
compatibility table, 

• good appraiser, for the subject's aptitude to estimate a 
situation correctly. 

All of them can take the values poorly, fairly and very. 

In the process of generating artificial protocols, these 
parameters are given as data of the problem-solving 
process and observations and choices are made essentially 
according to them. 

IMPLEMENTATION OF THE COGNITIVE 
MODEL: THE IGGY SYSTEM 
From a psychological point of view, the implementation 
of our cognitive model aims to validate the model and, 
from an AI point of view, to show the feasibility of such 
a computational model. IGGY, a system written in 
Common Lisp, implements the model: it is a protocol 
generator that takes as input a personality and gives as 
output a protocol corresponding to this personality. 

We need an architecture allowing the specialisation of 
knowledge and the sequentiality of actions. The 
blackboard architecture (Engelmore & Morgan, 1988, 
Hayes-Roth, 1993) with a hierarchical control is well 
suited to our needs. 

IGGY'S components 
IGGY is a hybrid system which contains three elements: a 
blackboard, an executor and an engine (see Figure 2). The 
engine co-ordinates the other two elements in a 
"perception-decision-action" loop in disguise, where the 
perception and decision tasks are accomplished by the 
blackboard and the actions are performed by the executor, 
which generates protocols. 
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Figure 2: the system IGGY 
The Blackboard System 
It includes a blackboard, domain specialists grouped in 
five families, family controllers and a global controller. 

The blackboard 

It includes five thematic panels: the static parameters of 
the problem (compatibilities, the price of the items and 
the personality of the simulated subject), the dynamic data 
of the problem (the availability of the items and the 
configuration), the current observation list, the current 
episode and the history of the different episodes of the 
problem solving (the skeleton). 

An abstract, updated at each change of the blackboard, 
informs the system on the nature of the new information 

(phase, state of mind, strategies, tactics, observations or 
action). 
The domain specialists 

There are fifty two domain specialists grouped into five 
families representing the ingredients. Each specialist 
corresponds to a possible choice in its family. Thus, there 
are twenty two specialists for the observations, four for 
the phases, four for the states of mind, seven for the 
strategies and fifteen for the tactics. 

They are represented by "condition/action" rules: their 
condition concerns the state of the blackboard and their 
action consists in writing a new instantiation of an 
ingredient on the "current episode" panel, except for the 
"observation" family that writes on its own panel. 

The family controllers 

Each control specialist, called family controller, concerns 
one family and knows the list of domain specialists that 
it supervises. At the beginning of the problem-solving 
process, the observation controller is triggered to 
initialise the observation list. Observations are generated 
according to the personality. From this list of 
observations, the first episode is calculated by the phases 
controller, the states of mind controller, the strategies 
controller and the tactics controller. Then the executor 
performs just one action according to the episode. After 
each executed action, the observations controller is 
triggered and either new observations are written in the 
observations list, or no observation is made. In the first 
case, a new episode is calculated. In the second case, the 
executor continues with its job, and so on. 
The family controllers are specified by condition/action 
rules. The condition concerns the state of the abstract and 
is defined so that family controllers are triggered 
cyclically in the following order {observations, phases, 
states of mind, strategies and tactics}. The action is 
threefold: send a call for proposals to the domain 
specialists, choose one of the candidates and trigger it. If 
there is no candidate then the next family controller is 
triggered. 
The global controller 

The global controller supervises all the family 
controllers. It is reduced to the action part: as a control 
specialist, it send a call for proposals to the family 
controllers, then chooses one candidate and triggers it. 
When a new observation is made that raises a conflict 
between family controllers, the global controller chooses 
in priority the "phase" family controller, but if no domain 
specialist proposes a change, then comes the turn of the 
"state of mind" family controller, and so on. 

The Executor 
This module generates the sequence of actions 
corresponding to the current episode chosen by the 
blackboard system. It executes only one action at a time 
and gives the control back to the engine. 

VALIDATION  OF  THE  MODEL 
Validation consists in comparing a set of real protocols 
with a set of simulated ones. The first (real) set is the 40 
protocols that had been put aside to validate the 
implemented model. The second (simulated) set of 
protocols has been provided by IGGY: 73 protocols have 
been generated, each having the personality of one of the 
73   analysed protocols.   Then,  40  of  the   simulated 
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protocols have been randomly selected to constitute the 
artificial sample. 

Turing-like  test 
The first validation method was based on a Turing-like 
test (Turing, 1950). 

We have adapted this test in the following way: from the 
two sets of protocols described above, we randomly drew 
two samples of 15 protocols. The 30 protocols were 
given to the psychologist4 who had already analysed the 
73 real protocols. We asked him first to hand analyse 
them (using the same analysis framework to derive 30 
skeletons), and second to classify them according to their 
origin (human or artificial). The results were very good 
since he misclassified half of the protocols: 8 artificial 
and 7 real protocols were classified wrongly by the 
psychologist. 

Statistical   comparisons 
The comparisons were based on a set of observables 
obtained from the protocols of the two samples (40 
protocols for each sample). The significant level we 
adopted was p=.05. 

We counted separately the number of episodes for the four 
different phases: configuration building, correction, 
deadlock solving and test. 

Table 3 shows the data concerning the configuration 
building episodes: data in the cells represent the number 
of protocols in which there were one, two, three, four or 
five configuration building episodes. By combining the 
"4 episodes" with the "5 episodes" cells, we obtained 
Z2(3)=27.75 (p<.05). 

Prot. lepis. 2epis. 3 epis. 4 epis. 5 epis. 

IGGY 1 6 15 13 5 

Real 4 25 9 2 0 

Table 3: Number of protocols by number of configuration 
building episodes. 

Table 4 shows data concerning the test phase: in the cells 
are the numbers of protocols in which there were one, 
two, three, or four test episodes. In order to use the %2 

test, we considered two categories, "one episode" and 
"two-or-more episodes": %2(1)=12.29 (p<.05), the 
difference was significant. 

Prot. 1 epis. 2 epis. 3 epis. 4 epis. 

IGGY 36 3 1 0 

Real 22 15 2 1 

Table 4: Number of protocols by number of test episodes. 
Tables 5 and 6 show data concerning, respectively, the 
deadlock solving and the correction phases. As in tables 3 
and 4, data in the cells represent the number of protocols. 
For these two types of data, the differences between the 
two groups are not significant: %2(2)=4.64 (p=.10) and 
X (2)= 1.04 (p=.59) respectively (the last 3 categories of 
Table 6 have been combined). 

Prot. 0 epis. lepis. 2 epis. 

IGGY 7 20 13 

Real 10 25 5 

Table 5: Number of protocols by number of deadlock- 
solving episodes. 

Prot. OcpLs. lepis. 2 epis. 3 epis. 4 epis. 

IGGY 22 11 6 0 1 

Real 20 15 4 1 0 

Table 6: Number of protocols by number of correction 
episodes. 

We also counted the number of protocols in which a 
given strategy or tactic was observed at least once. For 
Strategy 1 and Tactic 15, no statistical test was needed; 
for the artificial and real protocols there were, 
respectively, 40 and 39 Strategy 1, and 1 and 0 Tactic 15. 
For the other data (six strategies and twelve tactics), 
Tactic 11 and Tactic 12 being combined, we used the %2 

test when possible; else the Fisher exact probability test 
was used. Except for Strategy 6, the obtained p-values 
were either very small or very large, as shown in tables 7 
and 8. 

Note that data presented in tables 3 to 8 are obtained from 
the same two groups; they were a kind of "repeated 
measures". In this case, we should use the Bonferroni %2 

statistic (Jensen et al., 1968), instead of the classical %2 

statistic. It turned out that the Bonferroni statistic gave 
the same conclusions (except for Strategy 6, where 
p>.05) as the classical %2 statistic and Fisher's test on 
accepting and rejecting the null hypothesis. 

From the twenty possible types of strategies and tactics, 
artificial and real protocols differed only for two of them 
(marked by "*"): Strategy 4 and Tactic 5. 

Prot. St. 2 St 3 St. 4* St 5 St. 6 St. 7 

IGGY 12 18 25 4 40 5 

Real 10 20 9 7 35 4 

p-value .61 .65 .0003 .33 .03 .72 

Table 7: Number of protocols (out of 40) in which the 
strategies were observed at least once 

Prot. Ta.l Ta.2 Ta.3 Ta.5* Ta.6 Ta.7 

IGGY 21 3 5 28 4 9 

Real 26 9 6 9 5 4 

p-value .26 .06 .75 <.0001 .72 .13 

Prot. Ta.8 Ta.9 Ta.10 Ta. 11/12 Ta.13 Ta.14 

IGGY 39 5 8 7 8 7 

Real 37 7 11 5 4 6 

p-value .37 .53 .43 .53 .21 .09 

Table 8: Number of protocols (out of 40) in which the 
tactics were observed at least once 

The last comparison between artificial and real protocols 
concerns the states of the mind in the first, penultimate 
and last configuration building episodes. It is clear that 
the diversity of the states of mind increases during the 
solving process. Table 9 gives the distribution of the 
states of mind. 

Jean-Marc Meunier 

M 



1st epis. Penult, 
epis. 

Last epis. 

State of mind IGGY Real IGGY Real IGGY Real 

Availability (A) nil nil nil nil nil nil 

Compatibility (C) nil nil nil nil nil nil 

Price (P) 10 9 1 5 nil nil 

Telephone (T) nil nil 1 0 1 0 
AC 3 1 0 1 0 1 

AP 24 25 24 28 11 19 
AT nil nil 1 0 2 8 

CP 1 0 2 1 1 0 
CT nil nil nil nil 2 1 

PT nil nil 2 0 15 5 

ACP 2 5 6 1 4 5 

ACT nil nil nil nil 2 1 

CPT nil nil 2 0 2 0 

Table 9: Number of states of mind at different episodes 
In order to perform statistical comparisons, we combined 
the rows of Table 9 in the following ways: 

• For the first episode, the %2 was calculated on a table 
with 2 columns and 3 rows: P; AP; CP+AC+ACP 
(the shared criterion was C); 

• For the penultimate episode, the only combined table 
of observed data that allowed the use of a statistic test 
was a 2X2 table. Row 6 was left alone, and the 
remaining rows were combined; 

• For the last episode, we chose the following 
combinations of rows: AP; CP+AC+ACP (the shared 
criterion was C); T+PT+AT+CT+CPT+ACT (the 
shared criterion was T). 

For the 3 episodes, the differences between artificial and 
real protocols were not significant: x2(2)=-073 (p=.96), 
%2(1)=2.32 (p=.13), and x2(2)=4.30 (p=.12), respectively. 

Discussion 
The results we obtained are generally good, since there 
were only four cases where the difference was significant. 
The results of statistical tests showed that, the p-value for 
a test was either very large or very small. It did not seem 
reasonable to appeal merely to the notion of sampling 
error. The differences concerned the number of episodes in 
the configuration building phase, the number of test 
phases, the number of protocols in which there was at 
least one application of Strategy 4 (select then phone 
strategy) or Tactic 5 (choice of the amplifier that was the 
most compatible with the configuration). Reasons must 
be found to explain some of these differences. 

First, the IGGY'S protocols had more episodes in the 
configuration building phase than the real protocols. This 
difference can be attributed to an important difference 
between human subjects and IGGY as far as verbalisation 
is concerned. Unlike IGGY's reasoning, which is 
explicitly visible through the evolution of its internal 
state, the activity of the subjects is only known through 
their observed behaviour. Consequently there can be 
changes of episode within a configuration building phase 
that cannot be detected in the analysis of the real 
protocols, due to the lack of a proper verbalisation. On 
the contrary, in the case of IGGY, if all the conditions for 
an observation to be made are satisfied, then the 
observation is effectively made. In this respect, IGGY can 
be considered as a subject who verbalises all  her/his 

actions. This explanation is coherent with the following 
finding. We counted the number of the verbal utterances 
in the real protocols that belonged to the 22 
verbalisations we used in the model, and the number of 
observations in the artificial protocols. The mean number 
of verbal utterances were respectively 6.65 (S.D.=2.38) 
and 8.32 (S.D.=2.31). The p-value for the Student-t test 
was .002. 

The second difference concerned the finding that human 
subjects were more likely to test the configuration when 
it was not yet a satisfying solution. This difference 
suggests that the simulated subjects were somewhat better 
appraisers than the human subjects. Thence, being better 
appraisers, the simulated subjects were more able to 
establish relationships between the amplifier to be chosen 
and a set of components already put in a column. 
Consequently, Tactic 5 was more often observed in the 
IGGY's protocols. However, IGGY and human subjects 
were equally efficient in detecting errors. These findings, 
together with the difference concerning the use of Strategy 
4, suggested that the number of personality features we 
introduced as free parameters of IGGY was somewhat too 
small, and that these features were probably correlated. 

CONCLUSION 
We were interested in complex problems that belong to a 
semantically rich domain and which did not give from the 
outset all the information that was necessary to reach a 
solution. 

The principal characteristics that differentiate our problem 
from the puzzle problems are: (i) the problem space is 
very large (more than one million nodes); (ii) the problem 
is more likely to be an arrangement* problem than a 
transformation one so that general heuristics such as 
means-ends analysis cannot be applied; (iii) the subjects 
must ask for information to find a solution. These 
characteristics are common to both our problem and 
design problems, although the latter are much more 
difficult, take more time, and are usually much more ill- 
defined. 
In our experiment, we deliberately intently built the user 
interface in order to allow the subjects to use different 
ways of solving the problem, from a sophisticated 
reasoning mode similar to that of an expert in the domain 
of design, to a very reactive mode where the subject tries 
to build up one solution at a time, without considering 
the possible alternatives. It turned out that the majority of 
our subjects adopted an approach rather similar to that of 
the novice designers. 

This result is coherent with studies about human 
reasoning, which demonstrated a general tendency to 
depart from sophisticated reasoning behaviour. For 
instance, research work on deductive reasoning and 
decision making has shown that people do not usually 
reason following an "apparendy appropriate normative 
system" (Evans & Over, 1997, p.2) such as standard rules 
of logic or mathematical models. Several factors have 
been called upon to justify this departure from a 
normative behaviour, such as Simon's bounded 
rationality and satisficing principles, bias introduced by 

The goal is a state of the world that satisfies certain 
requirements. The anagram problem is typically an 
arrangement problem. 
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the way the subject builds up a representation of the 
problem situation, memory load, etc. 

However, adult subjects cannot be dubbed as being 
incapable of sophisticated reasoning, because around 10% 
of the observed protocols showed an approach that was 
similar to the ideal strategy. For the remaining protocols, 
the fact that all of them reached a solution that met the 
goal requirements suggests that the subjects' behaviour 
can be considered as based on a rationality of purpose 
rather than a rationality of process. Evans and Over 
(1997) argued that the first kind of rationality is more 
generally and more spontaneously applied than the second 
one. 

Finally, from the Artificial Intelligence point of view, 
although we did not find as much sophisticated reasoning 
and anticipative behaviour as we expected, this study 
brings out a number of interesting points. We have 
already shown (Chaignaud & Levy, 1996) that a parallel 
could be established between our cognitive model and 
recent trends in Artificial Intelligence such as knowledge 
compilation or constraint satisfaction. 

We think that our model, and particularly the notions of 
phase, state of mind, strategy, tactic and personality, is 
general enough to be used in a whole class of problems 
that we have called configuration problems: variables 
have to be instantiated among a set of values that have to 
satisfy several constraints. Moreover the data of the 
problem is incompletely described. Possible examples 
include timetable problems in a school subjected to the 
constraint of availability of the classrooms, when the 
other obligations of the teachers are not known in 
advance; the travel agency problem where one has to 
schedule multimodal journeys to go from one point to 
another, and the availability of the seats is not known in 
advance. The dichotomy between normal and abnormal 
situations arises in most problems with incomplete 
information, and our system is able to manage two 
degrees of abnormality (simple errors and deadlock) and to 
react according to the situation. 

By using the notions of personality and state of mind, our 
model accounts for observed individual differences that 
cannot be explained otherwise. Moreover, it captures the 
dynamic aspect of the problem-solving process. 
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Cognitive models are used in the design of aircraft 
and industrial plant; operator tasking; user • 
interface design; and for operations research into 
the behaviour of complex sociotechnical systems. 
The purpose of their use is to account for human 
performance in shaping work environments, 
developing cognitive aids, evaluating systems and 
designs, and predicting the outcomes of courses of 
actions. These models come from a number of 
intellectual traditions, and the papers included here 
arc from and across disciplines. Rather than 
focusing on a particular model, this symposium 
seeks to explore some of the uses to which 
cognitive models are put, to find which models arc 
being used and to draw some conclusions as where 
advances has been made and the technical 
challenges still in front of the cognitive modelling 
community. 
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Introduction 
In the military environment the physical systems 
components are there to facilitate operator mission 
objectives. While analysts have traditionally paid 
considerable attention to fidelity when modelling 
physical entities, the physical characteristics of 
system components arc not sufficient to describe 
operational systems in sociotechnical environments; 
the human operators contribute significantly to 
systems outcomes [IJ. In supporting operational 
usage after a capacity acquisition it is in the 
domain of mission parameters and operator 
procedures that the scope for change to improve 
performance lies. In operational research there has 
been a shift in focus from modelling an operator 
performing a task in an environment to modelling 
an entity with a social role performing actions in a 
dynamic social environment. This involves the 
recognition of the intentions of other entities. It 
could be said that the focus has shifted from 
computational theory of mind to computational 
theory of other minds. 

Two aspects of modelling users are addressed in 
this presentation : the first, "grey box modelling" is 
applied to documenting a user's model of 
simulation software; the second concerns a method 
for learning to recognise the intentional behaviour 
of players or simulated agents in an agent-oriented 
virtual environment. 

Testing Models 
Grey box modelling, the process whereby a user by 
means of exploration develops a causal model of a 
partially understood system is the problem of 
legacy code maintenance and black box model 
commissioning. It is the process of acquiring 
expertise with a system to the point of function 
practicality. In our current work a method 
developed for the verification of knowledge based 
systems is applied to the testing and documentation 
of a developing user model of software [2-4]. The 
context is operations research where large models 
are used; often with large components externally 
sourccd and less than well documented. 
Considerable investment of staff time is required in 
learning and using these systems. An explicit 
documentation of the mental model the user has of 
the system has significant potential as a guide and 
aid to the acquisition of expertise, and the retention 
of this expertise independent of staff movement. 

Learning Plans 

In this work the experimental aim was to 
demonstrate a method of constructing procedures 
from spatio-temporal data which describe action 
plans of agent/entities in a virtual environment [5- 
6|. These arc required for testing candidate 
operator intentions against operator action history, 
and arc intcrpretable as partial instantiations of 
intentionality. The capacity of situation awareness 
possessed by human operators in dynamic social 
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Systems requires is the recognition of plans whilst 
in execution in addition to than casual physical 
processes in train. A desirable incidental benefit is 
a summary method for the massive amount of data 
obtainable in a human-in-thc loop simulation. 

We explore this experimentally in the context of 
llight simulation, and offer a method for learning 
action plans. This requires three components: an 
appropriate ontology (model of operator task 
performance), an appropriate virtual environment 
architecture (accessibility of data and image 
generation databases) and a learning procedure 
(which relates the data stream to the domain 
ontology). 

In simple terms, we are looking at the domain 
of circuit flight. We have a task analysis for 
circuit flight. The flight simulator has an 
authentic flight model for a PC9 aircraft, and a 
cockpit with generic throttle and stick 
controls. It also has a particular software 
architecture conferring special data recording 
properties. A relational learning technique is 
used to relate the data from the flight simulator 
to the task analysis. We build relations which 
describe generalised flight plan segments. 
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In practise these run in real-time and announce 
attributed plan segments while the pilot is 
executing them. This is a compelling 
demonstration of the feasibility of real-time 
recognition of intention in a user interface to 
an immersive virtual environment task. We 
assert that our results have wider significance 
and may form part of the foundation for the 
construction of agent-oriented simulations, and 
more broadly, virtual environments 
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Abstract 

In an increasingly complex and automated aircraft 
environment, aircrew tasks arc now more cognitive 
than physical in nature. This has led to interest in the 
requirements for cognitive quality in aircrew 
systems, and the need for engineering principles to 
guide the design of cognitive tasks. In symbiotic 
systems where both human and system cognitive 
quality is necessary for effectiveness, research is 
needed into the requirements for cognitive control 
(strategic, opportunistic) and compatibility 
(usability, intuitiveness). Such joint cognitive 
systems require reliable, and adaptive, cognitive 
models. 

DCRA CHS is currently developing such a cognitive 
model which will provide guidance on pilot-system 
dialogue structures, and cognitive task specification. 
The model attempts to encapsulate the relationship 
between human and machine at different levels of 
control, communication, awareness, and behaviour, 
and draws upon contemporary psychological theories 
such as: Rasmusscn (1983); Mollnagcl (1996); 
Taylor (1988). The model will provide guidance on 
the nature of the relationship between human and 
system. For example, the model will indicate that at 
no time should the system remove the pilot's control. 
Instead, a process of critiquing is preferable where 
the system is able to critique the pilot's errors, and 
similarly, the pilot is able to critique, and improve, 
the Cognitive Cockpit's advice. This paper outlines 
the adaptive cognitive model and the factors that 
ensure that it is a practical, applicable, framework 
for implementing automation in the DERA CHS 
Cognitive Cockpit. 

Rasmusscn J (1983), Skills, Rules, and Knowledge: 
Signals, Signs, and Symbols, and oilier 
distinctions in human performance models, IEEE 
Transactions on Systems, Man, and Cybernetics, 
Vol. SMC-13, No 13, 3. 

Hollnagel E (1996), Modelling the Orderliness of 
Human Action, In "Cognitive Engineering in the 
Aviation Domain", Amalberti R, and Sarter N 
(Eds.) 

Taylor MM (1988), Layered Protocols for 
Computer-Human Dialogue I: Principles, In 
"International Journal of Man-Machine Studies", 
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ABSTRACT 
This paper presents an overview of three cognitive 
models developed with the COGNET (for Cognition as a 
Network ol" Tasks) methodology and toolset. The 
examples illustrate the broad range of applications for 
which such models are suitable. They include a model 
for an air defense gunner which was developed for the 
purpose of crewstation design evaluation. The second 
example is a set of models for the watchstanders in an 
advanced ship's combat information center which are 
being developed as part of an embedded intelligent 
training system. The last example is a model of an 
airborne anti-submarine warfare sensor operator which 
is being developed to support an intelligent interface for 
the sensor operator. 

Keywords 
cognitive model, design evaluation, training, intelligent 
interface, COGNET, CIC watchstander, air defense 
gunner, sensor operator. 

INTRODUCTION 
Development of a cognitive model for a person 
operating a complex system is always a daunting effort. 
At a minimum, the cognitive modeler must define the 
task procedures for system operation, the complete 
knowledge base that is relevant to performance of these 
tasks, including both general and task-specific 
knowledge, and the various component performance 
models which characterize each aspect of human task 
performance. Construction of these cognitive models 
typically entails use of specialized AI programming 
languages such as LISP and accordingly requires the 
support of highly trained computer scientists. The 
COGNET methodology and toolset for cognitive 
modeling (Zachary, Ryder & Hicinbothom, in press; 
Zachary et al., 1992) has been developed in order to 
facilitate the development of cognitive models with a 
minimum need for support from such computer 
specialists. COGNET offers an integrated model 
development environment with a graphical interface for 
goal and task representation. This paper presents an 
overview of the COGNET toolset and descriptions of 
three distinctly different types of application of 
COGNET for military systems. The three COGNET 
applications include the primary alternatives that have 
been conceived for applications of executable cognitive 
models — (1) detailed performance prediction for 
design evaluation, (2) an embedded cognitive model for 

an intelligent training system, and (3) an embedded 
cognitive model for an intelligent operational interface. 

DESIGN EVALUATION - GUNNER MODEL 
The application of COGNET for design evaluation 
concerns the development of a simulation model for the 
operator of the U.S. Army's mobile air defense 
weapons system known as Avenger. The Avenger is an 
operational mobile Forward Area Air Defense (FAAD) 
element consisting of a High Mobility Multipurpose 
Wheeled Vehicle (HMMWV) having a rotalable turret 
and eight ground-to-air Stinger missiles. Avenger is 
manned by a driver and operated by a gunner. The 
gunner sits in the turret where he searches for air targets 
through a transparent windscreen and also with a 
forward-looking infrared (FLIR) display. Upon 
delecting a target, the gunner aims the turret optical site 
al the target by rotating the turret using a control yoke, 
and then, upon verification of a hostile identification, a 
missile can be fired using control buttons on the yoke. 
The simulation of the Avenger gunner was developed to 
operate in the software environment of a simulation- 
based trainer for the Avenger system, called the Avenger 
Institutional Conduct of Fire Trainer (Avenger ICOFT). 
This simulation effort was originally conducted in order 
to enable simulation-based evaluation of contemplated 
modifications to Avenger, but interest has also 
developed in the potential use of this simulation for DIS 
applications. The gunner model includes distinct 
component performance models for visual search, target 
detection and identification, target tracking, and 
associated equipment operation and decision making. 
The model was developed initially through a task 
analysis of gunner performance in the ICOFT and later 
through collection of detailed performance time data in 
the ICOFT to use for model parameter calibration. 

TRAINING APPLICATION - CIC MODELS 
The COGNET application for intelligent training 
involves a series of models to simulate both the 
behavioral and cognitive activities of the watchstanders 
comprising the Anti-Air Warfare (AAW) team in the 
Combat Information Center (CIC) on an Aegis-based 
Cruiser (sec Zachary et al., 1997 for a more detailed 
summary). This was done to construct simulation-based 
Advanced Embedded Training Systems for shipboard 
team training. The various members of the AAW team 
must identify and appropriately respond to air tracks so 
as to maintain the self-defense of own-ship and any 
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protected assets. This is a particularly difficult task in 
complex geo-political environments characterized by 
low-intensity conflict such as the Persian Gulf. Models 
for four different watchslandcrs have been developed — 
the AAW Coordinator (AAWC), the Tactical Action 
Officer (TAO), the Electronic Warfare Supervisor 
(EWS), and the Identification Supervisor (IDS). Each 
simulation model is able to: 

* operate the actual walchstation (or a high-fidelity 
simulation) in the same manner and with the same 
level of performance as a human expert; 

* generate and respond to voice interactions with other 
members of the AAW team and other CIC personnel; 

* reason about and solve tactical problems as they 
arise; and 

* lake appropriate tactical actions. 

The simulations were built to support shipboard team 
training based on the embedded training simulation 
capability of the Aegis Weapon Control System. While 
an Aegis embedded simulation is running, the 
behavioral models work the simulation scenarios in 
parallel to human trainees, generating expert level 
behaviors that are used as a dynamic benchmark for 
diagnosing both the behavioral and cognitive 
performance of the trainees. This diagnosis is then used 
to provide (real-time or deferred) feedback. Other direct 
applications of these models include supporting mission 
rehearsal and tactics development. 

INTERFACE APPLICATION - SENSOR OPERATOR 
MODEL 
COGNET has been used in a planned design for an 
intelligent interface for the U.S. Navy's new SH-60R 
multi-mission helicopter, designated as the Task- 
Oriented Interface Layer (TOIL). TOIL is envisioned as 
separate from the basic crewstation interface planned for 
the SII-60R and is intended as an alternative means for 
the sensor operator SO to accomplish essentially all 
functions provided by the crewstation. TOIL is offered 
as an option to the SO who may use it as much or as 
little as seems appropriate given the knowledge and 
skills that that operator has with the crewstation and 
tactical domain. Thus, TOIL represents an alternative 
interface layer for operator interaction with the system. 
TOIL is implemented in the form of various menu and 
data windows that appear in the data strip region of the 
SO's mission display. TOIL is structured to provide 
interface options and guidance that are specifically 
tailored to the momentary tactical and task context, and 
is hence task-oriented. Additionally, TOIL will 
incorporate intelligent agent software which will enable 
automation of some interface or tactical functions as 
part of TOIL. 

CONCLUSIONS 
The three example applications of COGNET described 
above provide an indication of the diverse ways that 
cognitive models are beginning to contribute to complex 
military systems. With the emergence of such "main 
stream" applications, it is becoming increasingly 
important to provide tools and methods to facilitate such 
model developments. COGNET represents a candidate 
model development environment that is designed to 
support modeling of the kinds of real-time, multi-tasking 
jobs involved in military crewstations such as are 
described here, but it is also designed to be relatively 
easy to use by people with minimal special computer 
training. Clearly, there are still many further 
enhancements and aids thai are feasible and warranted 
for COGNET, as well as other similar cognitive 
modeling environments, lo improve their usability. Two 
such areas of particular current interest arc a graphical 
visualization tool for the COGNET declarative 
knowledge base (i.e., blackboard) and an aid for 
COGNET-orienlcd knowledge engineering (e.g., for 
guiding interviews and supporting information 
management). 
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ABSTRACT 
The work reported here has been led in a collaboration 
which took place in the framework of "taskforce 1: 
Representation Change" of a european project "Learning 
in Humans and Machines" sponsored by the European 
Science Foundation during the years 1994-97. 

This interdisciplinary and international collaboration has 
gathered Psychologists and Education Scientists, who 
collected and analyzed data about the knowledge of 
students in elementary mechanics, and who hypothesized 
mental models explaining the data; Computer Scientists 
specialized in Knowledge Representation who designed a 
language tailored to express the above models; and 
Computer Scientists specialized in Machine Learning, 
who investigated the behaviour of two systems on (part 
of) the data collected, and evaluated the relevance of the 
formal study of theory revision to the modelization of the 
conceptual changes that take place in students. 

Keywords 
conceptual change, force, knowledge representation, 
machine learning, mechanics, mental models, validation 
of cognitive models 

INTRODUCTION 
We report on a collaborative and interdisciplinary work, 
which took place in the framework of a project called 
"Learning in Humans and Machines" sponsored by the 
European Science Foundation. The objective of the 
authors in this research was to effectively bring together 
the know-how from the fields of cognitive psychology 
and machine learning in view of the fulfilment of two 
main goals. The first, mostly relevant for cognitive 
psychology, is to propose a theory of the development of 
knowledge acquisition in mechanics, with the help of 
computational models, clearly formalised and precisely 
testable. The second one, relevant for machine learning, is 
to obtain powerful guidelines for a more effective design 
strategy of learning systems, starting from the very basic 
issue of what knowledge they should handle and how to 
represent it. 

All the research works that are presented have been 
conducted from the same data that has been collected on 
Greek students of various ages concerning their concept of 
force. The format of the present paper will be as follows. 
It will start with a short presentation of the empirical data 

which led to the identification of a small number of 
mental representations of force in students ranging in age 
from 5 to 15 years of age. It will continue with a 
presentation of a computational model which tries to 
reproduce the conceptual changes that take place when 
children develop the concept of force with reference to the 
theoretical framework proposed by the psychology team. 
We will then proceed with another short presentation of a 
process model of the solution of three problems in 
mechanics by elementary school students before and after 
a six week experimental program of instruction in 
mechanics. It will be followed by a presentation of a 
computer model designed to represent accurately the 
characteristics of the psychological model. 

MENTAL MODELS OF FORCE 
(Christos Ioannides & Stella Vosniadou) 

The purpose of the research reported in this section was to 
investigate the development of the concept of force in 
young children and propose a theoretical framework 
within which we can explain this development. 
A total of 105 children ranging in age from 5 to 15 years 
were interviewed individually using a questionnaire 
consisting of 27 questions. Each question referred to a 
drawing depicting objects of different weights and sizes 
(e.g. big stones and big balloons vs. small stones and 
small balloons), some stationary and some moving, and 
were asked about the kinds of forces that were exerted on 
these objects. Following a methodology developed by 
Vosniadou and Brewer (1992; 1994), we were able to 
identify eight mental models of force which were used 
consistently by 70.6% of the students in order to answer 
the questions. The mental models of force are presented in 
Table 1. The younger children in our sample used mental 
model 1, according to which there is an internal force 
within big and heavy objects regardless of their kinetic 
state or position. Older children's responses (about 9-10 
years), could be mostly explained by assuming that they 
had used mental model 4, according to which there is an 
acquired force only within moving objects. This force was 
thought to be imparted to the objects by an external agent 
which set them in motion and serves to explain this 
motion. Mental models 2 and 3 were based on 
combinations of the above two interpretations of force 
(internal and acquired ). In contrast to  model 4,   the 
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children who used mental model 5 believed that there is a 
force of push or pull exerted on objects pushed or pulled 
by an agent (even in the absence of movement). The same 
interpretation of force is also present in model 7. Most of 
the children who had received instruction in mechanics 
developed mental model 6 according to which the force of 
gravity is exerted on all the objects. The force of gravity 
model was usually added to an already existing acquired 
force model. Various alternative interpretations of the 
word gravity have been identified. For example, some 
children believe that the force of gravity increases with 
the stability of the objects, others that gravity increases 
as the distance of an object from the ground becomes 
greater. 

Table 1: Frequencies and percent of mental models of 
force as a function of grade. 

Mental Models of 
Force 

1. INTERNAL 
FORCE: There is an 
Internal Force within 
stationary and 
moving heavy 
objects 

2. INTERNAL and 
ACQUIRED FORCE: 
There is an Internal 
Force within 
stationary heavy 
objects - There is an 
Internal and an 
Acquired Force 
within heavy objects 
that are moving 

3. INTERNAL 
FORCE IN 
STATIONARY 
OBJECTS: There is 
an Internal Force 
within stationary 
heavy objects only 

o 
4. ACQUIRED 
FORCE: There is an 
Acquired Force 
within moving 
objects only 

0  <S* 

Kind/ 

garten 

40% 

20% 

13.3% 

0% 

4'« 
grade 

6.7% 

26.4% 

6.7% 

6.7% 

grade 

20% 

0% 

30% 

grade 

0% 

0% 

10% 

Mental Models of 
Force 

Kind/ 

garten 

4'h 

grade 
6'" 
grade 

9"> 
grade 

5. ACQUIRED 
FORCE and FORCE 
OF PUSH/PULL: 
There is an Acquired 
Force within moving 
objects - Force from 
an external agent on 
all objects that are 
pushed or pulled by 
the agent 

0% 0% 13.3% 16.5% 

6. GRAVITATIONAL 
FORCE and 
ACQUIRED FORCE: 
There is the force of 
gravity on all 
stationary and 
falling objects - 
There is the force of 
gravity and an 
acquired force within 
moving objects 

0% 3.3% 0% 39.6% 

7. FORCE OF 
PUSH/PULL: There is 
a force only on 
objects that are 
pushed or pulled by 
an agent 

0% 0% 0% 3.% 

8. SUSPENDED and 
ACQUIRED FORCE: 
Objects at high and 
unstable positions 
have "more force" 
then objects at a 
lower or more stable 
position (Suspended 
Force)- There is an 
Acquired Force 
within moving 
objects 

6.7% 16.5% 13.3% 3.3% 

9. Mixed 20% 33.3% 23.3% 26.4% 

Mental models are assumed to be formed as children 
attempt to explain their everyday observations and 
information (verbal or other) they receive from the culture 
under the constraints of certain ontological and 
epistemological presuppositions, such as that force is a 
property of physical objects, and that the motion of an 
inanimate object requires an explanation in terms of a 
causal agent (see Figure 1). The process of conceptual 
change seems to be a slow affair that proceeds through the 
gradual suspension or revision of well entrenched beliefs 
and presuppositions. For example, the older children seem 
to have differentiated weight from force. Nevertheless, the 
presupposition that force is a property of physical objects 
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and that the motion of physical objects requires an 
explanation, do not seem to have been changed in the 
conceptual system of the 9th grader, despite the fact that 
these students have been exposed to systematic 
instruction in Newtonian mechanics. 

Framework theory Specific theory 

Presuppositions 

- There are physical 
objects. There are 
animate and inanimate 
physical objets. 

- Physical objects have 
properties. Force is a 
property of inanimate 
or animate objects etc. 

Observations or 
other information in 
the cultural context 

- Humans that push 
or pull other humans or 
objects, exert force. 
- Heavy objects resist 
the push, pull of other 
objects or humans. 
Light objects do not. 

i 
Beliefs 

Heavy objects have 
internal force 

Mental model 

There is an internal 
force in heavy objects, 
moving or stationary 

not affected by motion 
or position 

Figure 1: Hypothesised conceptual structure underlying 
the internal force mode. 

ELABORATION OF A MACHINE LEARNING 
MODEL 
(Floriana Esposito, Giovanni Semeraro, Donato Malerba 
and Stefano Ferilli) 

From the Machine Learning perspective, the research 
focuses on the elaboration of a computational model 
which tries to reproduce the conceptual changes that take 
place when children develop the concept of force with 
reference to the theoretical framework proposed by the 
psychologist team. 

A fundamental characteristic in the use of mental models 
concerns the possibility of verifying the general validity 
of a reasoning process based on examples by generating a 
sequence of significant examples and by applying revision 
procedures on the models (Johnson-Laird, 1983). 
Revision processes triggered by inductive mechanisms are 
an important aspect of learning. The research focused on 
the elaboration of a computational model of learning 
based on theory revision. The main objective of the work 
was to prove the validity of two particular Machine 
Learning systems: whether they are able to simulate the 
very complex phenomena related to the process of 
acquiring concepts of naive physics by creating these 
conceptualizations and refining them on the ground of 
new evidences. This could be useful in order to supply an 
artificial experimental laboratory where to test some of 
the mental models proposed by the psychologists, by 
observing   the   variations   in   the   behaviour   of   the 

computational models, monitoring the process of concept 
acquisition and refinement. 

The proposed computational model considers learning as a 
process of formation and revision of a logical theory, 
where a logical theory is viewed as a set of conditions 
that are necessary and sufficient to explain a number of 
observations in a given environment. To be useful a 
theory must be able to explain past events and also 
predict future situations in the same environment. 

A set of concept definitions constitutes a theory: theories 
are represented as sets of facts and rules, both strict and 
defeasible, sufficient for proving or explaining how an 
instance of a concept meets the concept definition. The 
instances from which a theory is inferred are called the 
training examples: these may be positive or negative. If 
we assume that the only source of knowledge available is 
represented by a set of examples and no prior knowledge 
can be exploited, the process of formulating a new theory 
is bound to be progressive. Starting from contingent 
observations, it is not possible to define concepts that are 
regarded as true. New observations can point out the 
inadequacies in the current formulation of the concepts. In 
such a case, a process of theory revision should be 
activated. Revisions of a logical theory are caused by a 
shift in the language and a change in the number and 
meaning of the involved concepts. In the proposed 
computational model the theory is refined incrementally: 
this is necessary when either incomplete information is 
available at the time of the generation of the initial theory 
or the nature of the concepts evolves dynamically. 

Artificial learning systems can be roughly subdivided into 
batch and incremental, depending on whether all the 
examples used to train the system are completely 
available at learning time (batch) or not (incremental). 
Incremental learning systems maintain the inferred set of 
concept definitions consistent with all data (examples or 
observations) and have to store all previous data as soon 
as any backtracking is involved. In order to simulate the 
cognitive models of conceptual change in children 
learning elementary dynamics, two Machine Learning 
systems were used: ATRE and INTHELEX. The former is 
a batch system, while the latter is a fully incremental 
learning system. 

The aim of the study was to see whether learning systems 
which learn from positive and negative examples by 
inductive inferential mechanisms could reproduce the 
changes in the concept of force observed in children. It 
has been suggested that children develop their concept of 
force on the basis of their interpretations of observations 
and information from their cultural background. Given 
some empirically derived hypotheses about the 
development of the concept of force, it was possible to 
extract the kinds of observations and/or information that 
are needed for the development to take place. These 
observations were used to validate the inferential power of 
the above mentioned learning systems. 

Two experiments were run. In the first experiment, since 
ATRE can realize a shift in the representation language, 
the aim was that of discovering whether the system was 
able to relate the concept of force corresponding to 
"internal force in stationary and moving objects" to that 
corresponding to "acquired force in moving objects only". 
For humans the problem of learning dependent concepts 
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is related to the possibility of having an ontology. For 
machine learning systems the two ways of solving this 
problem are to supply the system a graph representing the 
concept dependency or to leave the system discover the 
dependency while it learns the concepts. ATRE uses both 
the approaches and some interesting results have been 
obtained related to the autonomously defined order by 
which it generalizes the concepts. 

The second experiment concentrated on the process of 
theory revision; INTHELEX was used to emulate the 
transitions occurring in the human learning process when, 
starting from an empty theory and providing just an 
observation a time, it is possible to model and to monitor 
the refinement process of a theory. Some initial 
interesting results have been obtained although a direct 
comparison with the children acquisition mechanisms is 
not possible. 

The batch system allowed us to point out how the 
formulation of the naive concepts of force is based in part 
on everyday experience, observations and verbal 
information and to prove that the dependence between 
some basic concepts of force can be modeled by a shift in 
the representation language. The incremental learning 
system, compared to the batch learning system, seems to 
be more accurate in performing the conceptualization 
process, for two basic reasons: 

a) changes of the initial theory caused by a new 
observation go through a process of refinement and it 
is not necessary to re-start the whole learning process 
from the beginning when a new instance is presented; 

b) it can take into account temporal relations albeit in a 
very simplistic way. 

Both learning systems were able to produce from 
examples concepts related to the two models of "internal" 
and "acquired" force which were found in the 
developmental studies, although it is clear that students 
create their concepts only on the basis of observations or 
only being told about "force". The two systems tried to 
develop the two models of force through generalization 
and specification mechanisms. This may be compared 
with the phenomenon of "tuning" in conceptual change: 
indeed, both systems try to maintain coherence in the 
logical theory through their operators. This is an initial 
very simple form of conceptual change, although only a 
process of restructuration of knowledge should be 
considered a real conceptual change. 

A PSYCHOLOGICAL PROCESS MODEL OF THE 
SOLUTION OF MECHANICS PROBLEMS BY 
ELEMENTARY   SCHOOL   STUDENTS 
(Stella Vosniadou, Christos Ioannides and Aggeliki 
Dimitracopoulou) 

The present project is based on collaborative and 
interdisciplinary work with a team of computer scientists 
from the LIPN (Daniel Kayser and Marc Champesme). 
The psychology team worked on a model that explained 
the solution of mechanics problems by elementary school 
children while and the computer science team validated 
this model by constructing a computer program. In 
previous work (Ioannides and Vosniadou, 1993; 
submitted) we used the theoretical model and 
methodology described in a series of studies on knowledge 
acquisition in astronomy (Vosniadou and Brewer, 1992; 

1994; Vosniadou, 1994), to investigate the development 
of the concept of force. The results showed that it is 
possible to classify approximately 70% of the students in 
our sample as making use of one relatively well-defined 
mental model of force which they used in a logically 
consistent way to answer a number of questions about 
force. More specifically, six mental models of force were 
identified. These models were used in different frequencies 
by students ranging in age from 5 years (kindergarten) to 
15 years (9th grade). These models are described in the 
previous section "Mental models of force". 

In the present work we used these models to see if they 
could explain 5lh grade students' responses to problems 
in mechanics, such as the one presented in Figure 2. 

These two stones are just standing there. Is there a force exerted on 
them ? 

Figure 2: Question 1. 

The results showed that children's responses could be 
explained by assuming that the students used one of four 
models of force. When they gave responses such as "Yes, 
a force is exerted on the stones because they are 
big/heavy, etc." we assumed that they used the internal 
force model. On the contrary, if they said "No force is 
exerted on the stones because they do not move", we 
assumed that they used the acquired force model. Some 
students said that there is no force exerted on the stones 
"because the man does not push them". We assumed that 
these responses indicated use of the push/pull model, 
according to which a force is exerted when an (usually 
animate) object pushes or pulls another (usually 
inanimate) object. Finally, some students said that the 
force of gravity is exerted on the stones (force of gravity 
model). Students' responses to question 1 and the 
assumed mental models assigned to their responses are 
presented in Table 2. 

Table 2: Students' responses to question 1. 

Response    types Assumed   mental 
model 

% 

1. Yes, a force is exerted 
on both stones 
because they are 
big/heavy they have 
weight/force 

Internal force 18.4% 

2. No force is exerted on 
the stones because 
they are not moving 

Acquired force 26.5% 

3. Yes, a force is exerted 
on both stones 
because the earth 
pulls/attracts them 

Force of gravity 20.3% 

4. No force is exerted on 
the stones, because 
the man does not 
push them/exerts 
effort. 

Push/pull 30.6% 

6. Other 4.2% 
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The results of this study also showed that the above 
mentioned models of force were not mutually exclusive 
and that the probability of activating them was influenced 
by the verbal and pictorial content of the specific 
questions asked. There were noticeable changes in the 
frequency of use of the different models in the different 
questions by the same subject population. The co- 
existence of different models of force in the same subject 
raised the issue of internal consistency. In previous work 
(Vosniadou & Brewer, 1992; 1994; Ioannides & 
Vosniadou, submitted) we have argued that students are 
consistent in their use of not more than one mental model 
of the earth, of the day/night cycle, or even of force. Are 
the present findings contradictory to our previous claims? 

We believe that it is possible to explain the present 
findings if we assume that in the conceptual system of 
the 5lh grader force is categorised differently for animate 
versus inanimate objects, as shown in Figure 3. If the 
.child considers the question to apply to animate objects, 
then the push/pull model is used. If, on the other hand, 
the question is interpreted to belong to animate objects, 
the internal or acquired force models are used. Such an 
interpretation would make it possible for the same child 
to use either the "animate" or the "inanimate" models of 
force in different contexts, but not in the same context. 
Our results confirmed this prediction. 
The possibility of internal inconsistency still is possible, 
however, in the case of use of the two inanimate models 
of force even in different contexts. However, an 
examination of the data showed that only one child made 
use of both the internal and the acquired models of force 
(the internal force model in questions 1 and 2, and the 
acquired force model in question 3). All the other children 
were consistent in their use of only one "inanimate" 
model of force. 

All Entities 

etc. 

Abstract 
Entities 

Objects^^to be affected by 
earth's attraction, 
gravity 

Animate        iT     i——i    ^ J—-+J        Inanimate 

Force       /NJPorce 

Push/PÜIfl     p;—£__    X, 

Gravity 

Internal 
force 

Acquired 
force 

Figure 3: Assumed Categorization of the Concept of 
Force (for elementary school children). 

The above leave unsolved the problem of how the mental 
model of the force of gravity is used. It appears to us that 
the gravity model comes through instruction to be added 
to the existing conceptual system of the 11 year old child 
and to be interpreted to apply to physical objects in 

general. Thus, the gravity mental model can theoretically 
take the place of any animate or inanimate model of force. 
When contextual cues lead to the activation of the gravity 
model, the search stops there and the other mental 
models of force are not utilized. We understand that this 
is a very preliminary treatment of the notion of gravity. 
We know from previous work that there are various 
misconceptions of gravity. These issues are further 
investigated in ongoing work. 

To conclude, force can be categorised in different places in 
the conceptual system of a 5th grader. It can appear under 
inanimate objects either as an inherent internal property 
(internal force) or as an acquired property (acquired force). 
It can appear under animate objects as the force exerted by 
a person's push or pull. Finally it may appear as a 
property of physical objects to be affected by the earth's 
attraction (gravity). These alternative representations of 
force become available as information comes through 
observation and from the culture in the form of systematic 
or unsystematic instruction. In previous work we 
described some of the beliefs and presuppositions about 
force that underlie these representations. In the present 
work we note that the different representations of force are 
associated with different contexts of use. Depending on 
the nature of the question and on the context, the student 
activates selected pieces of his or her prior knowledge to 
eventually create a specific mental representation of force 
on the basis of which he or she provides a response. 
We believe that this work succeeds in capturing 
important aspects of the concept of force in young 
children, both in terms of how it is related to assumed 
underlying beliefs and presuppositions and in terms of its 
relationship to other concepts and categories. 

A COGNITIVE MODEL OF ELEMENTARY 
SCHOOL STUDENTS' SOLUTION OF THREE 
PROBLEMS   IN   MECHANICS 
(Daniel Kayser and Marc Champesme) 

Modelling the knowledge state of students is an important 
objective for theoretical and practical (e.g. pedagogical) 
reasons. The model needs be validated and the best 
validation consists in implementing it and run the 
computer program on various questions in order to check 
whether the answers are identical - or at least, 
analogous - to those provided by the students. 
In this section, we report on the experiment described in 
the previous section. The data have been analyzed by 
Cognitive Psychologists and the resulting models have 
been implemented jointly with Computer Scientists 
specialized in Knowledge Representation. 

The  Language 
Recent work in Artificial Intelligence shows that the 
most difficult problem is to find appropriate trade-offs 
between the efficiency (of the inference procedures) and 
the expressiveness (of the representation language). 
Therefore, in this research, we attempt to tailor the 
expressiveness to the exact needs of the model, 
care being constantly taken that the algorithms using the 
knowledge represented remain tractable. 
Early works in Knowledge Representation, such as 
KRL (Bobrow & Winograd, 1977; Lehnert and Wilks, 
1979) also originated from a collaboration between AI and 
Cognitive  Psychology.  But their  purpose  was  more 
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ambitious, because they aimed at a general framework for 
knowledge, therefore requiring maximal expressiveness, 
while we aim here at the minimal expressiveness 
compatible with the data. 

The main line of further research (e.g. the KL-ONE 
family of languages (Brachman & Schmölze, 1985) 
followed by terminological and description logics) has 
emphasized on formal limitations in expressiveness in 
order to remain compatible with polynomial-time 
inferential mechanisms (a synthesis can be found in 
(Gottlob, 1996)). 

More recently, research concerned with biological 
plausibility, as e.g. (Shastri, 1993) — notice being taken 
that biologists contest the relevance of this work, see 
discussion following (Shastri & Ajjanagadde, 1993) — 
have opened other insights in the efficiency vs. 
expressiveness trade-off. Papers by Fahlman (1979) and 
Shastri might have inspired very indirectly the present 
study. 

Terminological Component 
Concepts are structured in an ordinary "is-a hierarchy", 
with multiple inheritance. Relations between concepts are 
represented by roles, which may have cardinalities. Less 
common, but still very important (e.g. in order to define 
at least a weak notion of consistency), is the ability to 
express the disjointness of concepts. Obviously, every 
statement of the language is translatable into first-order 
predicate logic, the reciprocal being false. 

Assertional Component 
The student is given a text from which (s)he is supposed 
to build a representation. For example, a sentence such 
as: "a man pushes a stone" is assumed to  create an 
instance M of man, an instance S of stone, and an 
instance P of push having as arguments respectively M 
andS. 

The assertion of an entity may be direct (entity supposed 
to be created while reading the text) or indirect (existence 
asserted as the consequent of an inference rule, see below). 

Inference Rules; Inference Engine 
The students also entertain beliefs of the form, e.g. "when 
an agent xxx, then yyy"; this corresponds to the classical 
notion of inference rules. 

Representing Several Models 
Every piece of knowledge belongs to one or several of the 
mental models identified (see second section). A large part 
of the "is-a hierarchy" is model-independent (a stone is a 
physical object in every model), but some critical areas do 
depend on the model, e.g. the ontological nature of force. 

We therefore associate to the internal representation of 
every concept, role, and rule, a vector of boolean 
values. The dimension of the vector is the number of 
models identified (currently, a dozen of them). 
Technically, we first provide the computer with the list of 
the names of all mental models. Each name is assigned an 
index in the vector. Then comes the description, in the 
language of the information (terminological component 
and inference rules) supposed to be valid in every model. 
It is compiled and stored with a vector filled with "true". 
We then repeat a sequence composed of a list of the 
names of the model(s), followed by statements considered 
valid only in the models named in the list; the boolean 

vector accordingly sets to "true" only the corresponding 
indices. Once all descriptions have been processed, we 
begin a "session" intended to simulate the behaviour of a 
student. 

Implementing the Models in the Language 
The implementation of the psychological models has 
been a long process with several feedbacks between 
Computer Scientists (CS) and Cognitive Psychologists 
(CP). 

The first reason is that, from the CS point of view, a 
large part of the CP theories remains implicit, either 
because it constitutes the common knowledge assumed in 
the cultural background of CP, or because CP do not 
consider making it explicit as a valuable effort. 

Another reason is that CS implementation resulted in 
making some aspects of the psychological theory more 
explicit, raising new important questions which needed be 
answered without ambiguity, and in some cases this led 
to some changes in the modelization (cf. subsubsection 
"Adding Psychologically Essential Features" in this 
section). 

Refining the Ontology 
Implementation first requires, once the representation 
formalism is designed, to translate the psychological 
theory into that formalism. Now the theory was initially 
expressed in very heterogeneous forms, ranging from 
rather general theoretical statements to concrete responses 
of students in natural language extracted from the 
experimental data. 

The first proposed implementation was strongly guided 
by the most explicit parts of the theory. Therefore, it 
corresponded to a rather literal interpretation of the 
psychological data: many concepts were created in an 
attempt to capture all subtleties of the psychological 
models. In view of this preliminary modelisation, CP's 
feedback led to a pruning of the hierarchy of concepts, 
resulting in a clarification of which concepts were the 
most important, and what they meant. 
After this clarification, all concepts were classified into 
three main categories: physical objects, which denote 
the concrete objects of the real world (e.g. human, 
stones...), propositions, which express statements 
about physical objects and abstract entities like 
measures which are neither concrete objects, nor 
statements about physical objects. 

After these clarifications were completed, only minor 
changes revealed necessary in the ontology. 

Adding Psychologically Essential Features 
During the refinement of the first implementation, it 
turned out that some characteristics of the psychological 
models of the students were not represented accurately. As 
these features were considered as essential from the CP 
point of view, the CS had to modify their proposal. 

This fact must be pointed out as an important result of 
this work, since these features were not explicitely stated 
in the initial model provided by CP, and would perhaps 
remain unnoticed otherwise. Another important point is 
that, although the representation issues constitute in 
general difficult problems for AI research, a careful 
analysis of the psychological model showed that several 
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features could eventually be represented, at least in this 
case, in a rather simple way. 

Validation 
Internal Validation 
A compiler transforms the language into an internal form, 
performs several syntactic verifications (e.g. checks the 
well-formedness of the chain of roles), and goes beyond: 
using partition and exclusive statements, it checks 
that an entity does not inherit from two entities declared 
as incompatible with each other. Such checks proved 
useful to point at problems that were overlooked when 
writing the models. 

A student can shelter simultaneously inconsistent beliefs, 
but in a given situation, (s)he should not use beliefs 
generating inconsistencies. Therefore, during a session, 
care is taken that every newly created entity is compatible 
with the is-a hierarchy, and obeys the cardinality 
restrictions declared in the relation statements. 

External Validation 
The above controls are more debugging aids than genuine 
validation. It is by far more important to compare the 
output of the program with the behaviour of a student 
supposed to work under the model(s) selected for a given 
session. 

Obviously, some differences are irrelevant, as are also 
some similarities between student and computer answers. 
What matters is whether, for every situation in the 
domain of investigation, the computer outputs a result 
considered as plausible from a student supposed to use the 
corresponding model(s). Of course, this judgment is 
theoretically biassed, since the models identified exist 
only in the theory. A better test, which has been used in 
(Chaignaud, 1996), consists in coding the student 
reactions in a way formally indiscernible from computer 
outputs, and to evaluate statistically whether experts are 
able to discriminate between human and computer 
protocols. Even this method is not completely immune 
to criticism. Anyhow, validating cognitive models raises 
deep epistemological issues, which we are not willing to 
develop further here. 

Model Selection 
After having declared which model(s) S the student is 
supposed to have access to, we describe the situation as a 
list of entities. 

Introducing entities triggers inference rules. The 
information relevant to this process (both the existence of 
"is-a" links propagating the search for the rules, and the 
rules themselves) is indexed by the set M of models in 
which it is assumed to hold. Three cases are to be 
considered: 

• M and S are disjoint: nothing happens; 
• M contains S: the information is used; 

•0cMnScS; here, we need to know more about the 
influence of the context over the behaviour of the 
student. The only empirical data at hand being 
probabilistic, we select at random, obeying to the 
probabilities measured by CP, the (unique) model in 
which the student is assumed to reason in this case, 
and the decision of using or not the information is 
taken accordingly. 

CONCLUSION 
This research had two kinds of benefits: 

• globally, models of the knowledge of students have 
been hypothesized, specified in a precise way, tested, 
and machine learning systems have been run in order 
to reproduce the acquisition of some concepts; 

• locally, each team has taken advantage of the presence 
of the others in the following way: 

• the Psychologists have been forced to refine 
their models, and to resolve some 
inconsistencies which were not perceptible 
before the Computer Scientists had to 
implement them; 

• the analysis of the Psychologists has in turn 
influenced the design of a knowledge 
representation language having, per se, 
interesting features in terms of 
expressiveness and efficiency; 

• finally, the researchers in Machine Learning 
have been able to test their ideas on theory 
revision on real data. 

Several other works concerning the change in 
understanding have been conducted in "taskforce 1". They 
are described in (Kayser & Vosniadou, in preparation). 

Now that we have stronger tools to represent the 
knowledge state of a student, promising perspectives are 
opened to ask new questions about the evolution of this 
knowledge state under the influence of teaching, and the 
answer to these questions has obviously a great 
importance for Education. 
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ABSTRACT 
A useful way to explain the notions of implicit and 
explicit learning in ACT-R is to define implicit learning 
as learning by ACT-R's learning mechanisms, and explicit 
learning as the results of learning goals. This idea 
complies with the usual notion of implicit learning as 
unconscious and always active and explicit learning as 
intentional and conscious. Two models will be discussed 
to illustrate this point. First a model of a classical 
implicit memory task, the SUGARFACTORY scenario by 
Berry & Broadbent (1984) will be discussed, to show 
how ACT-R can model implicit learning. The second 
model is of the so-called Fincham task (Anderson & 
Fincham, 1994), and exhibits both implicit and explicit 
learning. 

Keywords 
ACT-R,   implicit   learning, 
acquisition, instance theory. 

INTRODUCTION TO  ACT-R 
Knowledge   Representation 
ACT-R (Anderson, 1993; Anderson & Lebiere, in press) is 
a hybrid production system architecture for cognitive 
modeling. It is a hybrid architecture because it works at 
two interdependent levels: a symbolic level and a 
subsymbolic level. Each level is divided into a procedural 
and declarative component. 

Symbolic Level 
Declarative knowledge consists of chunks. Chunk 
structures are composed of a number of labeled slots, each 
of which can hold a value which can also be another 
chunk. Each chunk is an instance of a particular chunk 
type, which defines the name and number of slots. 
Procedural knowledge consists of productions. A 
production is a condition-action pair, which specifies the 
action to be taken if a particular condition is satisfied. 

ACT-R is a goal-directed architecture. At any time, a goal 
is selected as the current focus of attention. Goals are 
organized on the goal stack, on which a goal can be stored 
(pushed) and later restored (popped). ACT-R operates in 
discrete cycles. At the start of each cycle, each production 
is matched against the state of the current goal. The 
productions that match enter the conflict set. A 
production is selected from the conflict set. The rest of the 
production condition can specify a number of chunk 
retrievals from declarative memory. If the retrievals are 
not successful, then the next production in the conflict set 
is selected. If the retrievals are successful, then the 
production action is executed. The action can modify the 
current goal, push it on the stack or pop it and restore a 
previous goal. 

Subsymbolic Level 
At the symbolic level, ACT-R operates in discrete, 
deterministic steps, but the subsymbolic level provides a 
measure of continuity and randomness. The previous 
section left two points unspecified: how are productions 
ordered in the conflict set, and if several chunks match a 
particular declarative retrieval, which is selected? 

The productions are selected in order of decreasing 
expected utility. The current goal is assigned a value, or 
gain, equal to the worth of successfully achieving it. To 
each production is associated the probability and cost of 
achieving the goal to which it applies. The expected 
utility of a production applied to a goal is equal to the 
gain of the goal times the probability of success of the 
production, minus its cost. Noise is also added to the 
expected utility of a production, making production 
selection stochastic. 

If several chunks satisfy a declarative retrieval, then the 
most active one is retrieved. The activation of a chunk is 
the sum of a base-level activation and an associative 
activation. The associative activation is spread from the 
sources of activation, which are the components of the 
current goal, to all related chunks in memory. Noise is 
added to each activation, making the retrieval of chunks 
stochastic. If no chunk activation reaches a retrieval 
threshold, then the retrieval fails. Furthermore, chunks 
which only partially match the retrieval pattern can also 
be retrieved, but their activation level will be penalized by 
an amount proportional to the degree of mismatch 
between the retrieval pattern and the actual chunk values. 

Finally, the time to retrieve a chunk from memory is an 
exponentially decreasing function of its activation level. 
Therefore, although ACT-R operates in discrete cycles, the 
latency of each cycle, which is equal to the sum of the 
time to perform all the chunk retrievals plus the action 
time of the successful production, is a continuous 
quantity. Whereas the specification of an ACT-R model at 
the symbolic level has a precise, algorithmic quality, its 
operation at the subsymbolic level matches the 
stochasticity and continuity of human performance. 

Learning 
The previous section describes the performance of ACT-R 
assuming a certain state of knowledge. However, to 
provide an adequate model of human cognition, it is also 
necessary to specify how that knowledge was acquired. In 
ACT-R, knowledge is learned to adapt the system to the 
structure of the environment (Anderson, 1990; Anderson 
& Schooler, 1991). 

Symbolic Learning 
When a goal is popped, it becomes a chunk in declarative 
memory.     That (and the encoding  of environmental 
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Stimuli) is the only source of declarative knowledge in 
ACT-R. The chunk resulting from a goal represents the 
statement of the task addressed by the goal and usually its 
solution. Therefore, the next time that task arises, its 
solution, depending upon the activation of the chunk, 
might be directly retrieved from declarative memory 
instead of being recomputed anew. 

Productions are created from a special type of chunk called 
dependency. When a goal is solved through a complex 
process, a dependency goal can be created to understand 
how it was solved (e.g. which fact was retrieved or which 
subgoal was set). When that dependency goal is itself 
popped, a production is automatically compiled to 
embody the solution process. Thus the next time a 
similar goal arises, the production might be available to 
solve it in a single step instead of a complex process. 

Symbolic knowledge is learned to represent in a single, 
discrete structure (chunk or production) the results of a 
complex process. Subsymbolic knowledge is adjusted 
according to Bayesian formulas to make more available 
those structures which prove most useful. 

Subsymbolic Learning 
When a production is used to solve a goal, its probability 
and cost parameters are updated to reflect that experience. 
If the goal was successfully solved, then the production 
probability is increased. Otherwise, it is decreased. 
Similarly, the production cost is updated to reflect the 
actual cost of solving that goal. Declarative parameters 
are adjusted in the same way. When a chunk is retrieved, 
'its base-level activation is increased. The strength of 
association between the current sources and the chunk is 
also increased. 

Subsymbolic knowledge does not result in new conscious 
knowledge, but instead makes the existing symbolic 
knowledge more available. Chunks which are often used 
become more active, and thus can be retrieved faster and 
more reliably. Productions which are more likely to lead 
to a solution and/or at a lower cost will have a higher 
expected utility, and thus are more likely to be selected 
during conflict resolution. 

IMPLICIT     LEARNING     IN    THE    SUGARFACTORY 
TASK 
Introduction 
In contrast to rule-based approaches that conceptualize 
skill acquisition as learning of abstract rules, theories of 
instance-based learning argue that the formation of skills 
can be understood in terms of the storage and deployment 
of specific episodes or instances (Logan, 1988; 1990). 
According to this view, abstraction is not an active 
process that results in the acquisition of generalized rules, 
but that rule-like behaviour emerges from the way specific 
instances are encoded, retrieved and deployed in problem 
solving. While ACT-R has traditionally been associated 
with a view of learning as the acquisition of abstract 
production rules (Anderson, 1983; 1993), we present a £ 

simple ACT-R model that learns to'operate' a dynamic 
system based on the retrieval and deployment of specific 

•instances (i.e. chunks) which encode episodes experienced 
during system control. It is demonstrated that the ACT-R 
approach can explain available data as well as an 
alternative model that is shown to be based on critical 
assumptions. 

The Task 
Berry & Broadbent (1984) used the computer-simulated 
scenario SUGARFACTORY to investigate how subjects 
learn to operate complex systems. SUGARFACTORY is a 
dynamic system in which participants are supposed to 
control the sugar production sp by determining the 
number of workers w employed in a ficticious factory. 
Unbeknown to the participants, the behavior of 
SUGARFACTORY is governed by the following equation: 

spt = 2 * ■sp. 't   "*T-1 

The number entered for the workers w can be varied in 12 
discrete steps l<w<12, while the sugar production 
changes discretely between 1<S/J<12. To allow for a more 
realistic interpretation of w as the number of workers and 
sp as tons of sugar, these values are multiplied in the 
actual computer simulation by 100 and 1000, 
respectively. If the result according to the equation is less 
than 1000, sp is simply set to 1000. Similarly, a result 
greater than 12000 leads to an output of 12000. Finally, a 
random component of + 1000 is added in 2/3 of all trials 
to the result that follows from the equation stated above. 
Participants are given the goal to produce a target value of 
9000 tons of sugar on each of a number of trials. 

The models 
Based on Logan's instance theory (1988; 1990) Dienes & 
Fahey (1995) developed a computational model to account 
for the data they gathered in an experiment using the 
SUGARFACTORY scenario. According to instance theory, 
encoding and retrieval are intimately linked through 
attention: encoding a stimulus is an unavoidable 
consequence of attention, and retrieving what is known 
about a stimulus is also an obligatory consequence of 
attention. Logan's theory postulates that each encounter 
of a stimulus is encoded, stored and retrieved using a 
separate memory trace. These separate memory traces 
accumulate with experience and lead to a „gradual 
transition from algorithmic processing to memory-based 
processing" (Logan, 1988, p. 493). In the following, we 
contrast the Dienes & Fahey (1995) model (D&S model) 
with an alternative instance-based ACT-R model and 
discuss their theoretical and empirical adequacy. 

Algorithmic   Processing 
Both models assume some algorithmic knowledge prior to 
the availability of instances that could be retrieved to 
-solve a problem. Dienes & Fahey (1995, p. 862) observed 
that 86% of the first ten input values that subjects enter 
into SUGARFACTORY can be explained by the following 
rules: 

(1) If the sugar production is below (above) target, then 
enter a workforce that is different from the previous 
input by an amount of 0, +100, +200 (0, -100, -200). 

(2) For the very first trial, enter a work force of 700, 800 
or 900. 

(3) If the sugar production is on target, then respond with 
a workforce that is different from the previous one by 
an amount of -100, 0, or +100 with equal probability. 

While this algorithmic knowledge is encoded in the D&F 
model by a constant number of prior instances that could 
be retrieved in any situation, ACT-R uses simple 
production rules to represent this rule-like knowledge. The 
number of prior instances encoded is a free parameter in 
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the D&S model that was fixed to give a good fit to the 
data reported below. There is no equivalent parameter in 
the ACT-R model. 

Storing   Instances 
Logan's instance theory predicts that every encounter of a 
stimulus is stored. The D&F model, however, does only 
store instances for those situations, in which an action 
successfully leads to the target; all other situations are 
postulated to be forgotten immediately by the model. 
Moreover, the D&S model uses a „loose" definition of the 
target that was unavailable to subjects: While subjects 
were supposed to produce 9000 tons of sugar as the target 
state in the experiment, a loose scoring scheme was used 
to determine the performance of the subjects. Because of 
the random component involved in the SUGARFACTORY, 
a trial was counted as being on target if it resulted in a 
sugar production of 9000 tons with a tolerance of ±1000. 
The D&M model stores only instances that are successful 
in this loose sense and thus uses information about a 
range of target states that subjects were not aware of. 
ACT-R, on the other hand, encodes every situation, 
irrespective of its result. The following chunk is an 
example for an instance acquired by the ACT-R model as a 
restored goal. 

(transitionl23 9 
ISA transition 
STATE 3 000 
WORKER 8 
PRODUCTION 12000) 

The chunk encodes a situation in which an input of 8 
workers, given a current production of 3000 tons, led to 
subsequent sugar production of 12000 tons. While the 
model developed by Dienes & Fahey (1995) stores 
multiple copies of instances, ACT-R does not dublicate 
identical chunks. 

(p retrieve-episode 

~goal> 
isa transistion 

■• '■' state =state I 
production =production *- 

=episode> 
isa transition 

■•:•:■ state =state I---- - -- - --- 
i:* production =production fc- 

worker =workerI 

(GOALCHUNK 
isa transition 

 I state 2000 
—I production 9000 

worker nil) 

(Episode007 
isa transition 

--I state 1000 
-H production 8000 
—I worker 5) 

goal> 
worker H Match 

I 1 Partial Match 

Figure 1. Matching process in the Sugar Factory model 

Retrieving   Instances 
In the D&F model each stored instance „relevant" to a 
current situation races against others and against prior 
instances representing algorithmic knowledge; the first 
instance after a finishing post determines the action of the 
model. An instance encoding a situation is regarded to be 
„relevant", if it either matches the current situation 
exactly, or if it is within the loose range discussed above. 
As with the storage of instances, memory retrieval in the 
D&F model is again based on specific information not 
available to subjects. Retrieval in the ACT-R model, on 
the other hand, is governed by similarity matches between 

a situation currently present and encodings of others 
experienced in the past (see Buchner, Funke & Berry, 
1995 for a similar position in explaining the performance 
of subjects operating SUGARFACTORY). On each trial, a 
memory search is initiated based on the current situation 
and the target state '9000 tons' as cues in order to retrieve 
an appropriate intervention or an intervention that belongs 
to a similar situation. The production rule retrieve- 
episode (figure 1) is used to model the memory 
retrieval of chunks based on their activation level. 
Instances which only partially match the retrieval pattern, 
i.e. which do not correspond exactly to the present 
situation, will be penalized by lowering their activation 
proportional to the degree of mismatch. As a parameter of 
the ACT-R model, normally distributed activation noise is 
introduced to allow for some stochasticity in memory 
retrieval. 

As figure 2 shows, the use of instances over the initial 
algorithmic knowledge increases over time, resulting in 
the gradual transition from algorithmic to memory-based 
processing as postulated by Logan (1988, p. 493). 

Theoretical   Evaluation 
While both models of instance-based learning share some 
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Figure 2. Relative use of instance retrieval per trial 

striking similarities, the theoretical comparison has 
shown that the D&F-model makes stronger assumptions 
with respect to the storage and the retrieval of instances 
that can hardly be justified. Dienes & Fahey (1995) found 
out that these critical assumptions are essential to the 
performance of the D&F model(p. 856f): 
„The importance to the modeling of assuming that only 

correct situations were stored was tested by determining 
the performance of the model when it stored all instances. 
... This model could not perform the task as well as parti- 
cipants: The irrelevant workforce situations provided too 
much noise by proscribing responses that were in fact 
appropriate ... If instances entered the race only if they 
exactly matched the current situation, then for the same 
level of learning as participants, concordances were 
significantly greater than those of participants". 

Since the ACT-R model does not need to postulate those 
critical assumptions, this model can be regarded as the 
more parsimonious one, demonstrating how instance- 
based learning can be captured by the mechanisms 
provided by a unified theory of cognition. 
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Figure 3. Results of the experiment, ACT-R model and 
D&F model 

Empirical   Evaluation 
While the theoretical analysis of the assumptions 
underlying the two models has favoured the ACT-R 
approach, we will briefly discuss the empirical success of 
the models with respect to empirical data as reported by 
Dienes & Fahey (1995). Figure 3 shows the trials on 
target when controlling SUGARFACTORY over two 
phases, consisting of 40 trials each. ACT-R slightly 
overpredicts the performance found in the first phase, 
while the D&F model slightly underpredicts the 
performance of the subjects in the second phase. Since 
both models seem to explain the data equally well, we 
cannot favour one over the other. 

Figure 4 shows the performance of the models in 
predicting the percentage of times („Concordance") that 
the subjects gave the same (correct or wrong) response in 
a questionaire as they did when controlling 
SUGARFACTORY. Again, both models seem to do a 
similar good job in explaining the data, with no model 
being clearly superior. Although space limitations do not 
allow for a detailed discussion, the picture illustrated by 
these two empirical comparisons remains the same after 
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several additional model comparision tests. We are 
currently running an experiment, exploring different 
predictions of the models in more details. 

Conclusion 
We discussed and compared a simple ACT-R model to an 
approach based on Logan's instance theory with respect to 
their ability to modeling the control of a dynamic system. 
While both models were similar in their empirical 
predictions, the ACT-R model was found to require fewer 
assumptions and is thus preferred over the model proposed 
by Dienes & Fahey (1995). Generally, ACT-R's 
integration of an activation-based retrieval process with a 
partial matcher seems to be a very promissing starting 
point for the development of an ACT-R theory of 
instance-based learning and problem solving. 

IMPLICIT AND EXPLICIT LEARNING IN THE 
FINCHAM  TASK 
The learning mechanisms in ACT-R are all quite basic, 
and can be used in several different ways to achieve 
different results. The idea of a learning mechanism as an 
integral part of an architecture has properties in common 
with the psychological notion of implicit learning. Both 
types of learning are considered to be always at work and 
not susceptible to change due to development or great 
variation due to individual differences. One of the defining 
properties of implicit learning, the fact that it is not a 
conscious process, is harder to operationalize within the 
context of an architecture for cognition. The closest you 
can get in an architecture is the notion that implicit 
learning is not guided by learning intentions, but is rather 
a by-product of normal processing. The SUGARFACTORY 
model discussed in the previous section is an example of 
implicit learning, since ACT-R uses old goals that are 
stored unintentionally to improve its behavior. 

Explicit learning, on the other hand, is tied to intentions, 
or goals in ACR-R terms. Since there are no learning 
mechanisms that operate on goals, explicit learning can 
best be explained by a set of learned learning strategies. 
An example of a learning strategy to improve 
memorization of facts is using rehearsal to improve base- 
level learning. Base-level learning increases the activation 
of a chunk each time it is retrieved. If this increase of 
activation through natural use is not enough for the 
current goals, rehearsal can be used to speed up the 
process. By repeating a fact a number of times, its base- 
level activation can be boosted intentionally. 

In this section we will discuss a paradigm for skill 
learning that involves both an implicit and an explicit 
strategy. The implicit strategy corresponds to instance- 
based learning, and the explicit strategy to rule-learning. 
Figure 5 shows an overview of this paradigm. First we 
assume that a participant has some initial method or 
algorithm to solve the problem. Generally this method 
will be time-consuming or inaccurate. Each time an 
example of the problem is solved by this method, an 
instance is learned. In ACT-R terms an instance is just a 
goal that is popped from the goal stack and is stored in 
declarative memory. Since this by-product of performance 
is unintentional, it can be considered as implicit learning. 

Figure 4. Concordances    for the experiment and both 
models 
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Figure 5. Diagram that illustrates the learning scheme 
used in the Fincham-task model 

Other types of learning require a more active attitude from 
the participant. If the initial method is too time 
consuming, the participant may try to derive an re- 
representation of the information needed for the task to 
increase efficiency, which we will call, using Johnson- 
Laird's (1983) terminology, a mental model. If the initial 
method leads to a large number of errors, the participant 
may try to deduce or guess new relationships in the task 
in order to increase performance. The next step, from 
mental model to production rule, can only be made if the 
mental model is simple enough to convert to a production 
rule. Both the application of mental models and firing 
new production rules will create new instances. So 
regardless of what is going on due to explicit learning, 
implicit learning keeps accumulating knowledge. 

So, if we have that many ways of learning, what type of 
learning will we witness in a particular experiment? To be 
able to answer this question we go back to the principle 
of rational analysis. According to this principle, we will 
principally witness that type of learning that will lead to 
the largest increase in performance. If we have task in 
which it is very hard to discover relationships or mental 
models, learning can probably be characterized primarily 
by implicit instance learning. Tasks in which there are 
too many instances too learn, but in which relationships 
are more obvious, will probably be better explainable by 
rule and abstraction learning. The SUGARFACTORY task 
is an example in which it is very hard to discover the 
rules that govern the system due to the influence of the 
previous sugar production and random factor in the 
output. 

The Flncham Task 
An example of a task in which both rule learning and 
instance learning are viable strategies is described by 
Anderson & Fincham (1994). In this task, participants 
first have to memorize a number of facts. These facts are 
in the form of 

"Hockey was played on Saturday at 3 and then on Monday 
at 1." 

We will refer to these facts as "sport-facts" to prevent 
confusion with facts and rules in the model. A sport-fact 
contains a unique sport and two events, each of which 
consists of a day of the week and a time. After having 
memorized these facts, participants were told the facts are 
really rules about the time relationships between the two 
events. So in this case "Hockey" means you have to add 
two to the day, and subtract two from the time. In the 
subsequent experiment, participants were asked to predict 
the second event, given a sport and a first event, or predict 
the first event, given the sport and the second event, So 
participants had to answer questions like: "If the first 
game of hockey was Wednesday at 8, when was the 
second game?" In  this   paradigm,  it  is  possible  to 

investigate evidence for both rule-based learning and 
instance-based learning. Directional asymmetry, evidence 
for rule-based learning, can be tested for by first training a 
sport-fact in one direction (by predicting the second event 
using the sport and the first event), and then reverse the 
direction (by predicting the first event using the sport and 
the second event) and look how performance in the reverse 
direction relates to performance on the trained direction. If 
the performance is worse in the reverse direction, this is 
evidence for the use of rules. Evidence for instance 
learning can be gained by presenting specific examples 
more often than other examples. Better performance on 
these specific examples would indicate instance learning. 
Anderson & Fincham (1994), and later Anderson, 
Fincham & Douglass (1997) performed five variations on 
this basic experiment. The basic findings we will focus 
on are as follows: 

• In general, reactions times improve according to the 
power law of practice, starting at around 35 seconds for 
the first few trials and improving to around 7 seconds 
at the third session. 

• There is evidence for rule learning as witnessed by 
directional asymmetry. However, the effect only starts 
at the third or fourth session, and is relatively small. 

• There is evidence for instance learning, since problems 
that are repeated more often than others are solved 
faster. 

• Although it can not be inferred directly from the data, 
participants report they use abstract versions of the 
rules, for example by memorizing "Hockey day +2" 
and "Hockey time -2". 

On basis of this evidence, Anderson et al. conclude that 
participants use four strategies: analogy, abstraction, rale 
and instance. The interesting question is what learning 
processes play a role in changing strategies. Each of the 
four strategies can be related to one of the learning stages 
from figure 5. 

The analogy strategy is the initial strategy: first the 
memorized example that has the same sport as the new 
trial is recalled, the relationship in this example is 
determined, and this relationship is mapped on the current 
trial. Analogy is not very efficient, since it consists of 
many steps. 

The abstraction strategy assumes the participant has 
created and memorized a mental model of the sport that 
corresponds to the current trial, like "Hockey day +2". 
The strategy involves retrieving and applying the 
abstraction, which is easier and faster than the analogy 
strategy. 

The rule strategy assumes a production rule has been 
learned that can fill in the answer directly. An example of 
this rule is (variables are indicated by italics): 

IF   the goal is to find the day of the second event 
the sport is hockey 
and the day of the first event is dayl 
AND dayl plus two days equals dayl 

THEN put dayl in the second event slot of the goal 

The rule strategy is more efficient than the abstraction 
strategy, since it requires only a single step in stead of 
two. 
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Figure 6. Overview of the four strategies in the Fincham 

The instance strategy assumes the answer can be given 
using a previous example. This previous example must 
be the same as the current trial. So an instance may 
contain the following information: 

iteml434 
isa instance 
sport hockey 
type day 
left Sunday 
right tuesday 

To use the instance strategy, it is sufficient to retrieve the 
right instance. This will of course only succeed if this 
instance is present in memory and is retrievable. 

An ACT-R Model 
We will now briefly discuss the ACT-R model of the task 
and its results. A more extensive discussion can be found 
in Taatgen & Wallach (in preparation). Figure 6 shows a 
schematic diagram of the implementation of the four 
strategies. 

The analogy, abstraction and rule strategies are performed 
in a subgoal, that focuses on calculating either the day or 
the time. The instance strategy attempts to retrieve one of 
these subgoals, and fill in the answer directly in the 
topgoal. So learning instances is an implicit process in 
ACT-R, since past goals are always stored in declarative 
memory, an reoccurrence of the same goal just increases 
the activation of that goal. Knowledge for the other two 
strategies has to be acquired in an explicit fashion. An 
abstract mental model of a sport is no automatic by- 
product of the analogy strategy, so an explicit decision 
must be made to memorize an abstraction. To learn a new 
production rule in ACT-R, a special dependency structure 
must be created in declarative memory, which is also an 
explicit decision. In the current model, learning a new 

task as modeled in ACT-R 

production rule is only successful if there is already an 
abstraction present in declarative memory, else it is too 
difficult to collect the necessary information. 

Results of the Model 
In this paper we will only discuss results of the model on 
the second experiment of Anderson & Fincham (1994). In 
this experiment, participants had to learn eight sport-facts. 
In the first three days of the experiment, four of these 
sport-facts were tested in a single direction: two from left 
to right and two from right to left. On each day 40 blocks 
of trials were presented, in which each of the four sport- 
facts was tested once. On the fourth day all eight sport- 
facts were tested in both directions. On this day 10 blocks 
of trials were presented, in which each of the eight sport- 
facts was tested twice, once for each direction. Figure 7 
shows the latencies in the first three days of the 
experiment, both the data from the experiment and from 
the model. The fit between the model and the data is quite 
good (R2=0.94). 

100 120 

Figure 7. Latencies in experiment 1 for days 1-3 
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The results on day 4 can be summarized in the following 
table: 

Data Model 

Same direction, practiced 

Reverse direction, practiced 

Not practiced 

8.9 sec 8.4 sec 

10.9 sec 9.3 sec 

13 sec 16 sec 

Both in the data and in the model there is a clear 
directional asymmetry, since items in the practiced 
direction are solved faster than reversed items. The fact 
that unpracticed items are slower than the reversed items 
indicates that rule learning can not be a sufficient 
explanation for all of the learning in the first three days of 
the experiment. 

Figure 8. Strategy use in experiment 1 for days 1-4 

Figure 8 shows how the model uses the four strategies in 
the course of the experiment. At the start of the 
experiment, analogy is used most of the time, but both 
the abstraction and the instance strategy gain in 
importance after a few blocks of trials. The rule strategy 
only appears later, and only plays a minor role during the 
first day. At the start of the second day, there is a large 
shift toward using rules at the expense of instances. This 
can be explained by the fact that the activation of a large 
portion of the instances has decayed between the two days, 
so that they can not be retrieved anymore. Since only few 
rules are needed for successful performance, they receive 
more training on average and are less susceptible to decay. 
Note that the abstraction strategy remains relatively stable 
between the days since it also less susceptible to decay 
than the instance strategy. This pattern is repeated at the 
start of the third day, although the instance strategy looses 
less ground due to more extended training of the 
examples. At the start of the fourth day, the frequency of 
use of the analogy strategy goes up again, since there are 
no production rules for the new four sport-facts. The 
abstraction strategy can take care of the reversed items 
though, so in that case the expensive analogy strategy is 
not needed. This explains the fact that reversed items are 
still faster than completely new items. 

Except for a model of this experiment, the model has 
successfully modeled two other experiments as well, 
using the same parameters. The following additional 
phenomena could successfully be explained: 

• The reaction time for examples that are repeated more 
often is shorten, since instance learning is more 
successful and the facts it represents have a higher 
activation. 

• Directional asymmetry increases between day 2 to 4, 
but decreases again on day 5. The model can explain 
this by the fact that by day 5 the instance strategy 
starts dominating the rule strategy. 

• The results of the model concur with participant's 
reports on whether they use a rule or an example to 
solve a particular trial. 

Conclusions 
The ACT-R architecture is an ideal platform to study 
implicit and explicit learning. It not only allows insights 
in both types of learning separately, but, more 
importantly, also in the interaction between them. 

REFERENCES 
Anderson, J. R. (1990). The adaptive character of 

thought.   Hillsdale, NJ: Erlbaum. 

Anderson, J. R. (1993). Rules of the mind. Hillsdale, 
NJ: Erlbaum. 

Anderson, J.R. & Fincham, J.M. (1994). Acquisition of 
Procedural Skills From Examples. Journal of 
experimental psychology: Learning, Memory, and 
Cognition, vol. 20, no. 6, 1322-1340. 

Anderson, J.R. , Fincham, J.M. & Douglas, S. (1997). 
The role of Examples and Rules in the Acquisition of 
a Cognitive Skill. Journal of experimental 
psychology: Learning, Memory, and Cognition, vol. 
23, no. 4, 932-945. 

Anderson, J. R. & Lebiere, C. (in press). The atomic 
components of thought. Mahwah, NJ: Erlbaum. 

Anderson, J. R., & Schooler, L. J. (1991). Reflections 
of the environment in memory. Psychological 
Science, 2, 396-408. 

Berry, D. & Broadbent, D.A. (1984). On the relationship 
between task performance and associated verbalizable 
knowledge. The Quarterly Journal of Experimental 
Psychology, 36A, 209-231. 

Büchner, A., Funke, J. & Berry, D. C. (1995). Negative 
correlations between control performance and 
verbalizable knowledge: Indicators for implicit 
learning in process control tasks? The Quarterly 
Journal of Experimental Psychology, 48A, 166-187. 

Dienes, Z. & Fahey, R. (1995). Role of specific instances 
in controlling a dynamic system Journal of 
Experimental Psychology: Learning, Memory, and 
Cognition, 21 (4), 848-862. 

Johnson-Laird, P.N. (1983). Mental Models: Towards a 
Cognitive Science of Language, Inference, and 
Consciousness. Cambridge, MA: Harvard University 
Press. 

Logan, G.D. (1988). Toward an instance theory of 
automatization. Psychological Review, 95,492-528. 

Logan, G.D. (1990). Repetition priming and 
automaticity: Common underlying mechanisms? 
Cognitive Psychology, 22, 1-35. 

Taatgen, N.A. & Wallach, D. (in preparation). Models of 
rule and instance-based skill learning. 

/£<? 



Poster Abstracts 



Separation of logical and calculation capabilities 
in a problem solving task 

Jean-Bernard Auriol - Jean-Louis Dessalles 
Departement Informatique - ENST 

46, rue Barrault, 75013, Paris - France 
auriol@inf.enst.fr - dessalles@enst.fr 

ABSTRACT 
We present herein a model based on a strict separation 
between logical and calculation capabilities, designed to 
mimic aspects of human problem solving behaviour. Our 
model has been designed to be simple and 
psychologically plausible. We have tested our approach 
on the Tower of Hanoi task by comparing the results 
provided by our model with the performance of novice 
subjects. We also compared these results with the 
performance of a few other computational models. These 
comparisons are quite promising. 

Keywords 
problem    solving,    logical 
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knowledge,    procedural 

INTRODUCTION 
In (Johnson-Laird and Byrne, 1991), convincing 
evidence is presented that seems to undermine the 
existence of human logical capabilities. Mental models 
(Johnson-Laird, 83) would explain experimental results 
on logical problem solving tasks much better than logical 
models do. Evidence from the observation of natural 
conversations (Dessalles, 1993) suggest however that the 
ability we have to argue with each other in everyday 
verbal interactions relies on genuine logical capabilities. 
Our hypothesis is that the same logical capabilities are 
involved in problem solving. We propose that the 
problem solving behaviour of subjects can be partly 
explained by the joint operation of two separate sets of 
capabilities: logical and calculation capabilities. 

THE MODEL 
Calculation Capabilities 
Calculation Knowledge Representation: Operators 
The representation of calculation knowledge is based on 
operators. An operator takes the following form: 

(State 1, Operation, State 2) 

where State 2 results from the application of Operation 
to State 1. Operators are able to propose in sequence all 
existing legal steps from a given situation. An operator 
can be applied recursively, up to a given search depth, by 
taking one of the resulting states it has proposed as a new 
starting state. 

Preference 
We postulate a contextual preference for operators; in a 
given context, the operator will propose legal steps in a 
given order. 

Reversibility 
Operators are reversible in two ways. Given a resulting 
state, an operator can propose legal steps leading to this 
state and the associated starting state. Given a step, an 

operator can propose a starting state in which this step 
would be legal. 

Logical Capabilities 
The role of the logical part of the model is to evaluate 
situations and design goals. Its specific form is motivated 
by independent studies, particularly conversation 
modelling (Dessalles, 1993). 

Logical Knowledge Representation 
Logical knowledge is represented by first-order logical 
rules, in an extension of the negative conjunctive normal- 
form: 

List of terms =» Mod 

Each term in the list is in conjunction with the rest of the 
list, and Modality (noted 'Mod') is either Undesirable 
or False. Facts are stored in memory with no specific 
order, in the following basic form: 

(Fact, Truth Value) 

where Truth Value can be either 'true' or 'false'. Facts 
with an unknown truth value are not stored in memory. 

Saturation Detection 
The first capability that we put forward for the logical 
part of our model is the systematic detection of rule 
saturation. A rule is said to be saturated when all the 
terms of the rule are known to have the truth-value with 
which they appear in the rule. Depending on the 
modality, an undesirable or paradoxical situation will be 
detected in this case. We call such a situation a 
problematic situation. 

Counter-Factual Production 
To get out of a problematic situation, the subject has to 
change the truth-value of one term of the saturated rule. 
This is done by producing a counterfactual. A 
counterfactual is a term with a truth-value that is known 
to be false but that cancels the problematic aspect of the 
current situation. This counter-factual generation can be 
done repeatedly until the situation is no longer 
problematic. 

Coupling logical and calculation capabilities 
Problem representation 
The problem representation is split into two parts. In the 
logical part, the situation is represented by facts. In the 
calculation part, the situation is represented by states. 
Goals are represented by undesirability rules in the 
logical part, and are not represented in the calculation 
part. 
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Goal-Oriented, Preference-Oriented Exploration 
The strategy used to solve the problem is to explore the 
search space until reaching a state where the current 
undesirability is no longer saturated. It can be written in 
the following form: 

OPERATORS: EXPLORE PROBLEM SPACE WITHIN SEARCH 
DEPTH 

IF CURRENT UNDESIRABILITY SATURATED 
CONTINUE EXPLORATION 

ELSE 
PLAY PROPOSED MOVE(S) 
IF NEW UNDESIRABILITY NEW_UND 

CURRENT UNDESIRABILITY = NEW_UND 
ELSE 

STOP 

With a restricted search depth, the set of reachable states 
is limited. It often happens that all of them are 
uninteresting. In this case, the preferred move of the 
operator will be played, and the search process will start 
again from the new state reached. After a few steps made 
along according to mere preference, and if no interesting 
state is reached, the search stops: this is a dead end. 

Getting Out of Dead End: 'Counter-factual' and Operator 
Reversibility 
A dead-end situation is characterised by the fact that the 
current undesirability is out of reach of the operator. The 
strategy used to get out of dead ends can be sketched this 
way: 

SELECT A TERM OF THE CURRENT SATURATED RULE 
INVERT THE TRUTH VALUE OF THIS TERM 
IF A NEW RULE BECOMES SATURATED 

REPEAT THE PROCESS 
ELSE 

CALL OPERATOR WITH 
CURRENT STATE AS STARTING STATE 
DESIRED STATE AS ENDING STATE 

TURN SITUATION RETURNED BY OPERATOR 
INTO UNDESIRABILITY RULE 

RE-START SEARCH PROCESS 

EXPERIMENTS 
Our experiment is based on the comparison between 
solutions given by our model and by human subjects. We 
performed a step by step comparison between both 
solutions. In order to be able to compare the solutions 
after the first difference in move, our solution is bound to 
follow the subject's solution. At each step, our model 
computes its next move, which we compare to the human 
move. The human step is always the one played. 
Differences are counted, and whenever the erroneous 
move was chosen due to operator preferences, the 
involved preference is inverted. 

We tested the system on 40 protocols, produced by seven 
novice subjects, and totalling 1462 steps. We also tried 
different others models. Besides random strategies (pure 
random, random without moving the same disk twice, 
preferences replaced by random1), we experimented with 
a model inspired by (VanLehn, 1991). 

In this latter model, three steps out of four are forced 
steps. Each time the model moves Disk 1, the next 
allowed move is to take the only other legally moveable 
disk and to put it on the only legal peg. Each time the 
model moves Disk 2, the next allowed step is to put Disk 
1 back on it. The model chooses the optimal move for 
each unresolved move. Without correction, this algorithm 
always gives the optimal solution. 

RESULTS AND DISCUSSION 
For each model, we computed the percentage of correctly 
predicted moves out of the total number of moves. The 
results obtained after these trials are: 

Random: 33.68% 
Random without backtrack: 68.88% 
Our model without preferences: 73.76% 
Inspired by VanLehn: 78.66% 
Our model: 80.71% 

The results given by models involving random may vary 
by 1%. Results given by our model also vary by 0.7% 
around the value we give, because initial preferences are 
fixed at random. The results of the VanLehn inspired 
model do not vary. 

The differences between the three first models and ours 
are significant (chi2 = 15.49, p < 0.0005, for the 
comparison between our model and the random and logic 
model). The difference between our model and the 
VanLehn inspired model is not significant (chi2 = 1.51, 
p < 0.25). The VanLehn inspired model gives good result 
principaly because it takes avantage of task specific 
constraints. Yet, the VanLehn inspired model generates 
by itself only the optimum solution, and cannot be, as 
such, a good model of human behaviour. 

The comparison with the three random models is 
interesting. Our model without preferences is much better 
that random alone and is significantly better than random 
without backtrack. This confers an independent 
validation to the logical part of our model. Also, the 
results given by the complete model are better than those 
obtained by replacing preference by random, which 
indicates that, on the calculation side, preferences better 
account for human behaviour than random choices do. 
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ABSTRACT 
This paper presents a numeric rather than symbolic 
approach to the chunking problem. The application area 
is the expert recall of chess board configurations. It is 
shown that a relatively low number of 'skilled' chunks is 
enough to explain the chess players recall of chess 
positions. 

Keywords 
Chunking, mental images; neural networks 

INTRODUCTION 
Chess players' recall of chess positions has been one of 
the major experimental paradigms in basic cognitive 
skills research (Chase and Simon 1973, Djakov, 
Petrovski and Rudik, 1926, de Groot 1965, 1966). In this 
research it was shown that expert chess players are 
superior to novices in recalling real game positions but 
not essentially better in recalling their randomized 
versions. The finding has been generalized over a large 
number of cognitive skills and it has proven to be very 
stable. 
Perhaps the only issue of real concern has been the 
number of chunks experts have to learn to achieve their 
skill. Simon and Gilmartin (1973) argued that they must 
have learned, at least, 50,000 to 100,000 chunks. The 
evidence was based on simulation. However, Holding 
(1985) noticed that in these models the locations of the 
pieces were absolutely coded. Consequently, it was 
possible to assume that much lesser a number of chunks 
could explain the performance of the subjects. 
Saariluoma (1994) and Gobet and Simon (1996) have met 
the criticism by showing that chess players recall is 
impaired by transposition of the chunks on a chess board, 
which is critical to Holding's (1985) argumentation. 
Another, theoretical presupposition in the original Simon 
and Gilmartin (1973) argumentation is the reliance on 
symbolic modeling. It might be possible that the whole 
philosophy of symbolic modeling is not adequate 
approach to the problems of human memory. As is well 
known various types of neural networks have challenged 
very deeply the idea of symbolic modeling. The evidence 
is today vast and it should be discussed in the context of 
chess players' memory recall as well. 
In this paper one specific type of neural network model is 
used to simulate chess players' recall. The outcome of 
simulation shows that if neural networks are used the 
number   of  chunks   could   be   reduced   substantially. 

Thinking of the large support neural network models 
have in modeling human memory processes, the neural 
simulation makes it necessary to rethink the explanatory 
validity of Simon and Gilmartin (1973) argumentation 
and all models of the same type. 
In this experiment, the framework differs very much from 
the traditional symbolic setting. For example, the chunks 
are how numeric and real-valued; and rather than 
expanding, they become more and more specialized as 
the training goes on. This view of chunks is in contrast 
with the original chunk idea. 

ADAPTATION ALGORITHM 
There are various neural network algorithms for pattern 
classification and feature extraction tasks available (see 
Bishop, 1995). The following approach' is specially 
tailored for self-organizing search of correlation 
structures. In statistical terms, it is a special combination 
of cluster analysis and principal component analysis; the 
resulting set of features can also be interpreted as 
sparsely coded, non-orthogonal factors. 

The memory structure is a derivation of the Kohonen 
self-organizing map (Kohonen, 1984). There are N nodes, 
each of which is characterized by a prototype vector Ö,, 
where \<i<N. The dimension of the vectors is n. The 
prototype vectors should represent the observed input 
vectors as accurately as possible - to reach this goal, the 
standard self-organization algorithm has been modified: 
rather than constructing only a set of N cluster centers 
characterized by the prototype vectors, the prototype 
vectors are interpreted now as 'coordinate axes' in the 
input data space, spanning a rather low-dimensional 
subspace. The algorithm can be implemented as follows. 

1. Take the next input vector sample / . 

2. Select the node with the best correlation with the 
input vector /, that is, determine the 'winner' 
index c such that the absolute value WA, where 

T 
*Pc =@i f . reaches its maximum value. 

3. Calculate the 'neighborhood' parameter hci 

between the network nodes / and the winning 
node c. This parameter has value near 1 if the 
nodes are 'near' each other in the net, and lower 
value otherwise, as presented in (Kohonen, 1984). 

' The analysis and other applications of the algorithm are presented in 
Hyötyniemi (1997) and (1998). 
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4. Apply the Kohonen type adaptation (Kohonen, 
1984) of the network using the vector <pc ■ f as 
input. That means, for each network node i update 
the vector 0, as 0; <- 0, + yhci \<pcf -0,). The 
parameter y is a decaying function of time to 
assure that the network finally converges. 

5. Normalize the feature vectors: 0,-<-0; I^0;T0, 
for all 1 < i < N . 

6. Eliminate the contribution of the feature number c 
by setting f <-f -<j)c-8C. 

7. If m features have not yet been extracted, go back 
to Step 2, otherwise, go to Step 1. 

After the network has converged, the prototype vectors 
represent features that can be used to construct the input 
patterns. That means, given an input vector /, find the 
sequence of <p, values as presented in Steps 2-7 above 
(ignoring the updating steps 3 - 5), so that the estimate 
for/can be constructed as a weighted sum of the features 

In this context, it is assumed that the extracted features 
are the chunks, conveying the dependency relations 
between the input elements. The number N stands for the 
capacity of the long-term memory, while the parameter m 
is the size of the short-term memory. It is also assumed 
that at any instant only the references to the static 
memory structures and the respective weights are 
operated on. 

SIMULATION EXPERIMENTS 
To apply the presented algorithm, the input data is first 
coded appropriately. This means that one must present 
the chess piece configuration as a vector of real numbers. 
The coding is now location-based and rather trivial. 

It is assumed that the lower-level processing has 
produced the component level constructs, that means, the 
visual image has been analyzed and atomic information 
about the board has been extracted - these information 
atoms are now something like 'white king in gl', etc. For 
simplicity and for generality, it is assumed that each of 
these information atoms spans a dimension of its own in 
the input data space - this means that the input vector is 
768 dimensional (six pieces of two colors, together 12 
alternatives, for each of the 64 board locations). 
Naturally, this coding is far from optimal - the 
complexity of different modalities is changed to the high- 
dimensionality of the input vector space. 

In the experiments, 5000 samples were iteratively used 
for training the network model. These samples were 
successive piece configurations during real chess games, 
given in random order. The simulation was implemented 
in a Matlab environment. The huge size of the data 
structures made the simulations rather capacity- 
demanding. 

Three chunk models were extracted: the first with only 9, 
the second with 25, and the third with 100 chunk 
prototypes available, so that N -9,N =25, and N= 100, 
respectively. Five chunks were used to reconstruct the 

observed configuration, that means, m = 5. There were 
500 additional game positions for testing purposes. To 
visualize the high-dimensional vectors representing the 
board and the chunks, the numerical values of the vector 
elements were thresholded - that means, if the value of 
the element exceeded 0.5, it was assumed that the 
corresponding piece was there; otherwise its contribution 
was ignored. No rules of chess were incorporated - in 
principle, it is possible that, say, two white kings will be 
displayed simultaneously, but because of the 'skilled' 
chunk prototypes, this seldom happens2. 

CONCLUSIONS 
In the presented approach, the chunks are not 'crisp' - 
rather, their constituents have continuous (or fuzzy) 
values. This is one reason why scalability seems to apply, 
so that allocating more resources results in better 
reconstruction of the piece locations. For the 868 chunks, 
the average recall rate was about 75%. 

Because of the numerical nature of the chunks, they are 
flexible and they can be added together in a natural way. 
Due to the possibility of combining chunk prototypes, a 
rather low number of 'skilled' chunks seems to be 
enough to reach relatively high level of accuracy. 
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ABSTRACT 
In this article we present an interactive activation simula- 
tion framework for mental image reinterpretation. By 
varying central parameters in this framework, two quali- 
tatively different models have been emulated: One in 
which reinterpretation is obtained via a series of symbolic 
inference steps, and one in which reinterpretetation is 
driven by parallel operations on a depictive mental im- 
age. The simulations are run with the following objec- 
tives: 1. To minimally verify that the models can produce 
reinterpretations. 2. To verify that the parametric rela- 
tionships predicted by the models hold in the face of 
empirical constraints on the simulation outcome. 3. To 
expose unforeseen parametric constraints which are en- 
tailed by the two models. 

INTRODUCTION 
When we close our eyes and mentally image a capital 
'X', superimpose a capital 'H' on it, and recognize a 
"bow tie" in the resulting image, we generate, manipu- 
late, and reinterpret mental images. Psychological ex- 
periments on human performance reveal interesting 
anomalies in how easily mental images are reinterpreted. 

Are mental images reinterpretable because they supple- 
ment symbolic structures with new affordances? These 
and related matters lie at the heart of 'the imagery debate' 
(e.g., Kosslyn 1994; Pylyshyn, 1981). This article inves- 
tigates the role of visual versus symbolic representations 
as a mediating factor in mental reinterpretation tasks. 

Two models of mental image reinterpretation have been 
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Figure 1. The visual system with its major subsystems at different levels of processing. 
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compared using McClelland & Rumelhart's interactive 
activation model (1981; 1994/1988) as a parametric 
framework. Our ambition has been to keep the set of 
working hypothesis concerning the neural architecture 
and processing style employed to a minimum, and in- 
stead explore the gaps which are left unspecified by em- 
pirical data. 

Both models are discrete and deterministic, and can be 
conceived of as a set of constraints on inter-parameter 
dependencies within the envelope of the simulation 
framework. The two models stipulate that different 
parametric relations should hold in order for the simula- 
tion outcome to conform to the empirical constraints. 
Simulation outcome is measured as the relative confor- 
mance with empirically based constraints on how reinter- 
pretation performance should change when simulation is 
switched from perceptual to mental mode. 

Experimental data on mental image reinterpretation 
Contrary to the classical findings on mental image rein- 
terpretation difficulties, Finke, Pinker and Farah (1989) 
demonstrated that mental images can be as easy to rein- 
terpret as perceptual images when the interpretations 
generated comprise verbal descriptions of geometric 
patterns contained in the image. Two types of reinterpre- 
tations seem to be involved: Geometric reinterpretations, 
when the composite image is described in simple geo- 
metric terms, for example, "two adjacent triangles point- 
ing towards each other", and symbolic reinterpretations, 
in which the image is freely associated with an object or 
concept, for example, "a bow tie". In experiment 1 
(Finke et al. 1989) relative performance rate for symbolic 
reinterpretations was on the average 30-50% of the pos- 
sible total produced during imagery and perception. As 
opposed to this, up to 80-90% of the geometric reinter- 
pretations were detected in the mental images proper. 

VISUAL VERSUS SYMBOLIC REPRESENTATIONS 
In a very general sense, qualitatively different styles of 
computation is afforded by symbolic representations as 
opposed to visual representations, with the main differ- 
ence being that of accessibility in a linked versus a di- 
rectly addressable data structure. 

We operationalize these different assumptions, and 
would like to examine whether visual representations are 
needed as a mediating link between old and new interpre- 
tations in an interactive activation model. We have two 
possible hypothesis: 

1. The subjective experience of "seeing mental images" 
is a non-functional side-effect of symbolic knowl- 
edge being activated in associative long term mem- 
ory. No "real" image is formed in the visual buffer 
during imagery, so mental reinterpretations have to 
be based on inferences using "lateral" associations 
between symbolic representations. 

2. A mental image is recreated in the visual buffer, and 
this image plays a pivotal role in mental reinterpre- 
tation. In this case, it is the image that drives process- 

ing towards a new interpretation, while the image's 
symbolic content acts as a source for indexing and 
sustaining, and thereby locking, the current interpre- 
tation. 

Methodology 
We evaluate the two representational hypothesis by 
freely exploring parametric variants of a simulation 
framework (Fig. 1) and by evaluating these variants 
against the empirical constraints of Finke, Pinker and 
Farah (1989). Simulation outcomes depend at the outset 
on the parameter constraints imposed by the individual 
models plus the following minimal assumptions about the 
neural architecture and processing style of the human 
visual system: 

• Visual subsystems are hierarchically organized into 
processing levels. 

• Adjacent processing levels in the visual system 
communicate with each other reciprocally. 

• Visual processes operate in cascade. 

• Mental imagery reuses parts of the visual system. In 
particular, images formed during mental imagery are 
assumed to reside in the visual buffer. 

What is measured? 
Keeping exploration of the parameter space within the 
envelope of the simulation framework and within the 
parametric constraints imposed by a particular model, 
simulation of the models should substantiate that when- 
ever the system's transition behavior between perceptual 
and mental modes conforms to the empirical constraints, 
the parametric relations predicted by the models hold. 
Based on the interdependencies which can be detected 
when simulation results are systematically plotted against 
parameter combinations, the soundness of the two models 
can be evaluated and additional properties which neces- 
sarily follow from the two models can be exposed. 

For a preliminary analysis of our simulation results, see 
www.ida.liu.se/~ritko 
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ABSTRACT 
The serialist-holist learning style distinction has received 
renewed interest due to its predictive power with regard to 
students' responses to new learning situations. In 
particular, individual differences in students' computer use 
indicate an area where knowing about style differences is 
of theoretical interest and practical import. This study 
concerns the differing responses of students to a computer- 
based logic program - Hyperproof - where serialist-holist 
style differences emerge spontaneously in the proofs 
produced by students. Proof style and strategy change are 
found to relate to independent measures of reasoning 
ability. These different strategies are analysed in terms of 
working memory load, and this points towards potential 
methods of modelling the serialist-holist learning style. 

Keywords 
Serialist-holist, reasoning, working memory, learning. 

INTRODUCTION 

Students use different strategies when they solve 
problems. Certain patterns of behaviour in new learning 
situations have been expressed in terms of the serialist- 
holist distinction. However, the environments where these 
differences have been diagnosed and observed have been 
complex, subjective, and lengthy, hence assessing 
contributing factors that influence performance has been 
difficult. 
Currently, we have been studying a computer-based 
environment for problem-solving called Hyperproof 
(Barwise & Etchemendy, 1994) where serialist and holist 
strategies emerge spontaneously. This environment has the 
advantage over previous studies of learning strategies in 
that it is a constrained context within which variables can 
be manipulated, and detailed data on performance can be 
collected as students' interactions with the problem are 
logged by the computer. 
This paper presents the background necessary for 
modelling serialist-holist learning styles, and offers a 
preliminary model of the interaction between changing 
problem requirements and strategy selection. Modelling 
differences in strategies within the restricted domain of 
Hyperproof will help to define what the serialist-holist 
distinction means from a cognitive perspective. 

THE SERIALIST-HOLIST DISTINCTION 
Pask (1976) used the serialist-holist distinction to describe 
the different strategies used by students in new learning 
situations.  Serialists concentrate on concrete instances 

within the learning framework, building up an overall 
understanding of the situation by forming links between 
low-level features. In contrast, holists prefer to focus on 
the global structure of the learning situation, filling out 
the details once the structure has been explored. 
Roughly speaking, the serialist is a 'bottom-up' learner, 
whereas the holist's approach is 'top-down'. 
Versatile students will select the strategy that is most 
appropriate to the task, and this requires a combination 
of awareness of the task constraints and of the 
individual's own resource limitations and aptitudes. 
Pask has found that most students are inflexible in their 
approach to problems - a student that always uses one 
particular strategy when solving problems is said to 
have a learning 'pathology'. 
These differences have proved to be ubiquitous and 
pervasive in a variety of different learning situations. In 
research on human-computer interaction, for example, 
the distinction does much to classify and predict the 
different responses of students to alternate interfaces 
(for a review see Helander, 1990, pp.541-5 80). Though 
important to learning, little computational or cognitive 
research has been directed towards defining or 
describing the different processes that underly each 
learning strategy. 

HYPERPROOF 
Hyperproof is a multimodal computer-based tool 
designed to teach first order logic through the dual 
presentation of a graphical situation and sentential 
descriptions of elements of the situation. The graphical 
situation is made up of objects of varying size and 
shape taking up positions on a chess-board. One 
particular type of problem requires the student to 
concretise an abstract situation: in order to solve the 
problem, the student must express graphically 
information that is given in a sentential (propositional 
calculus) form. A simple example of this type of task is 
illustrated in Figure 1. 
In this problem the student is required to display all 
situations that are consistent with the given 
information. In short, the several ways that the labels 
'a' and 'b' and the predicate information 'object a is a 
dodecahedron' and 'a and b are in the same row' have 
to be illustrated one after another in the graphical part 
of the window. There are two distinct strategies by 
which all the situations can be constructed. One method 
will apply all pieces of sentential information 
simultaneously in each situation, thus the strategy is a 
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Figure 1: The Hyperproof problem. 

case-by-case method and therefore serialist. The 
alternative method applies one piece of information at a 
time, with the second piece of information being 
superimposed onto the situation formed from applying the 
first sentential expression. As this proof is less concrete, it 
is interpreted as reflecting a holist strategy. This latter 
method is akin to constructing nested assumptions in a 
logical proof. 

TOWARDS A COMPUTATIONAL MODEL 
Serialist and holist strategies, as described with respect to 
the problem in Figure 1, have been observed in the proofs 
of students on a Hyperproof course (Cox, Stenning & 
Oberlander, 1994; Monaghan, 1998). These different uses 
of strategy have been related to an independent measure of 
reasoning ability (derived from the analytic reasoning 
section of the USA graduate recruitment exam (GRE)). 
Two Hyperproof problems solved under exam conditions 
were analysed. These questions contained as a main 
subtask the above type of problem, one question requiring 
the construction of three situations, the other requiring 
nine situations to be indicated. Students using a serialist 
strategy on the simpler problem and a holist strategy on 
the complex problem were better GRE reasoners than 
other groups, including the 'pathological' students who 
rigidly used only one strategy on the Hyperproof problems 
(F(3, 18) = 5.69, p<0.01). This suggests that there are 
general strategic approaches to complex problem solving 
situations that are more successful than others. 

A preliminary model of the Hyperproof problem assessed 
the working memory load at each step in the proofs as a 
result of applying the different strategies. The holist 
strategy minimises working memory load, but more steps 
in the proof are required: seven to the serialist's five for 
the Figure 1 example. For students that are good at solving 
problems, strategy choice seems to be a pay-off between 
working memory load and the effort required to structure 
the solution. For simple problems, like the one illustrated, 
a serialist method may be more efficient. For more 
complex problems, a holist proof will reduce the working 
memory load. 

The Hyperproof environment provides a suitable domain 
for studying serialist-holist strategies from a 
computational perspective. It also allows for a study of 
learning pathologies and strategy change under different 
conditions. A cognitive model of serialist-holist strategy 

use will have implications for several areas of 
cognitive science research. Principally, it will provide 
a formalism of what the different strategies mean from 
a computational perspective allowing better provision 
of resources in areas such as human-computer 
interaction. Also, insight into the cognitive properties 
of substeps in problem-solving procedures would 
result (Catrambone, 1996). Finally, the cognitive 
properties of external representations during problem- 
solving can be assessed (Scaife & Rogers, 1997). 
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ABSTRACT 
We investigated the degree of discounting and 
augmentation of a target cause given varying frequencies 
of a competing cause. Several experiments showed that 
greater frequencies by which the competing cause 
covaried with the effect resulted in greater discounting or 
augmentation of a target cause. These competition size 
effects cannot be explained by current attribution theories 
in social psychology, but can be accounted for by a 
feedforward connectionist framework (Van Overwalle, 
1998). 

Keywords 
Connectionism, Causal Judgments, Blocking. 

INTRODUCTION 
According to Kelley (1971), perceivers take into account 
not only how a possible factor covaries with the event, 
but also how this factor competes with rival factors that 
serve as alternative explanations. Despite the central 
place accorded to the covariation principle in attribution 
theory, Kelley (1971) argued that this principle in itself is 
insufficient to explain how perceivers select between 
competing causes. To account for such competition, 
Kelley (1971) proposed two complementary principles of 
discounting and augmentation. 

The discounting principle specifies that if the influence of 
a cause is clearly established, perceivers will disregard 
other possible causes as irrelevant. The opposite tendency 
is described in the augmentation principle which specifies 
that if the inhibitory influence of a cause is firmly 
established, perceivers will overestimate the strength of a 
facilitatory cause to compensate for the inhibitory effect. 

Our major question was whether discounting and 
augmentation of a target cause would be influenced by the 
frequency (or size) by which the competing cause 
covaried with the outcome. Based on a novel feedforward 
connectionist approach of causality (Van Overwalle, 
1998), we predicted that greater frequencies would result 
in greater discounting or augmentation. Such competition 
size effect is not anticipated by current attribution 
theories in social psychology. 

METHOD 
In three experiments, the strength of competition was 
manipulated by varying how often the competing cause 
covaried alone with its outcome : Either one time (small 
size) or five times (large size). In contrast, the frequency 
of the target cause remained constant throughout all 

conditions. Type of competition was manipulated by 
pairing the competing cause with an outcome that was 
either similar to the target outcome (discounting) or 
opposite (augmentation). In addition, we manipulated 
the order in which the target information was presented 
(backwards or forwards) and the format of presentation 
(sequential trial-after-trial or summarized in short 
sentences). 

RESULTS 
Our results confirmed the feedforward connectionist 
account. First, in all experiments, we found that a higher 
frequency of covariation of a competing cause reliably 
increased the amount of discounting and augmentation of 
a target cause. These results are problematic for statistical 
models based on the notion of probability (e.g., Cheng & 
Holyoak, 1995) or of constraint satisfaction (Read & 
Marcus-Newhall, 1993). Second, the size effects were 
stronger when the information was presented in a 
sequential format, which is consistent with the 
feedforward connectionist view that the most natural way 
of processing causal information occurs on a trial-by-trial 
incremental basis. Third, there were no differences 
between forward and backward competition, supporting 
the notion that missing factors must be coded as absent as 
proposed by Van Hamme and Wasserman (1994). 
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We were interested in understanding and comparing 
how ACT-R (Anderson & Lebiere, in prep.) and 
SOAR (Newell, 1990) could each model a given 
dataset. We analyze and compare two models in 
their ability to account for a classical 2 person 
game, including the effort necessary to create and 
run them. In comparing the models and their results 
we provide two sample models and start to explore 
the potential role of abstract models and different 
types of data. 

Game description. In two player, 2x2 games 
each player can choose one of two alternatives in 
each round. The players are rewarded according to a 
payoff matrix. The prisoner's dilemma is an exam- 
ple of such a 2 person game. 

We used data from a classical experiment (Suppes & 
Atkinson, 1960) of how people learn when they 
play a normal form, two player 2x2 game with a 
nontrivial unique mixed strategy equilibrium. Table 
1 shows the payoff matrix used in the experiment 
that we model here. This matrix has a unique mixed 
strategy equilibrium point, that is, a stable set of 
strategies, when Player 1 chooses option Al with 
probability 1/3 and player 2 chooses option A2 
with probability 5/6. Figure 1 shows the empirical 
choice frequencies of option A for player 1 (Al) and 
player 2 (A2) aggregated in 5 blocks with 40 rounds 
each, of 20 pairs of participants playing the game 
for 200 rounds (Erev & Roth, 1998). 

ACT-R model. Figure 2 shows the structure of 
the ACT-R model used to account for this data. For 
a full description of the ACT-R model see Bracht, 
Wallach and Lebiere (1998). The model consists of 
two simple productions for each player representing 
the options available: 
Rulel: If Player 1 chooses => choose Option A. 
Rule2: If Player 1 chooses => choose Option B. 

In every round, both of these productions are appli- 
cable for each player modeled. ACT-R's subsym- 
bolic cost learning mechanism learns the relative 
payoff of each production rule and updates their ex- 
pected gain based on the outcome of the round. In 
general, ACT-R selects the production rule with the 

Player   2 
Option   A 

Player   1    Option   A      2 4 

Option   B 

6, 0 

Dieter P. Wallach 
Saarland University 

66041 Saarbrücken, Germany 
dwallach@cops.uni-sb.de 

Rounds (blocks) 

Figure 1. The evolution of strategies in the 
subjects on the Table 1 payoff matrix 

Option   B      3, 3 1, 5 

Table 1. Payoff matrix used by the models here. 

Update Update 
Figure 2. Description of the ACT-R model. 

highest expected gain. Two architectural parameters 
were used to fit the model to the data (expected gain 
noise and number of previous production applica- 
tions). The model with the same parameter settings 
has also been applied successfully to data from three 
other experiments taken from Erev and Roth (1998). 

SOAR model. The easiest way to explore a SOAR 
model of this task is to create an abstract model. An 
abstract model is based on an information process- 
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ing model or architecture. It predicts what a running 
model would do, without implementing the internal 
behaviors (e.g. Langley, 1996; Ohlsson & Jewett, 
1994). 

An abstract model of the simplest SOAR model 
could start with a single operator representing each 
choice. Each round, an operator is randomly chosen 
to apply. After each round, the expected values of 
each of the four payoffs occurring can be computed 
for each player. Operators that do better than the 
average payoff can be duplicated through a reflec- 
tion-like process (not specified, but similar to the 
process in Bass et al., 1995). Various other ways of 
duplicating operators are possible (e.g. duplicate 
operators as many times as their payoff). In SOAR 
these processes are determined not by the architec- 
ture but by knowledge. It is fairly straightforward to 
implemented a program to compute the expected 
population of operators on each round. The results 
of this program are shown in Figure 3. While this 
model is not currently based on a running Soar 
model, creating such a model should be straightfor- 
ward. Deriving its predictions is much simpler as an 
abstract model, for programming an interface to 
record multiple rounds and games would be less 
straightforward. 

Figure 3. The evolution of strategies in the two 
models on the Table 1 matrix. 

Comparisons 

Model fit. As Figure 1 shows, the ACT-R model 
captures the general tendencies in the empirical data 
quite nicely. In addition to this short term predic- 
tion, the model converges asymptotically to the 
equilibrium of classical game theory in the long 
term (after >1500 rounds). The initial Soar model, 
on the other hand, does not match the subject data 
(short term) nearly as well, but instead appears to 
quickly converge to near the equilibrium. 
Effort. Both models took about the same time to 
implement (4-5 hours), including the ability to 

automatically run and trace the model. Both models 
can run 200 rounds of 20 subject pairs in under 30s. 
Abstract models. The Soar model would not be 
as easy to run if it was implemented in Soar produc- 
tions. It would not be straightforward to implement 
an abstract version of the ACT-R model based on 
its current mechanism, but it is easy to create an 
abstract model of the operator population model in 
ACT-R (as a rule population), or an ACT-R model 
directly based on this principle. The difficulty of 
creating abstract models within each architecture 
varies by task, but appears to be generally easier in 
SOAR. Creating full models appears, however, to be 
more difficult. In this task, the SOAR architecture 
appears to have less to say than ACT-R because it 
lacks architectural mechanisms to account for the 
learning observed here. While the Soar model does 
not match nearly as well (yet), it allows the space 
of possible models to be explored quite quickly 
(about 5 min. per model). 

Conclusions 

These results are very interesting, for they start to 
suggest possible trade-offs in modeling; between 
abstract and information processing models, and 
between architectures. This work also emphasizes 
the role of usability as a necessary precondition for 
explorations of this kind. 
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ABSTRACT 
Illusory correlation occurs when perceivers make an 
erroneous judgment of a relation between two or more 
unrelated categories. In this study, subjects read 
information about members of 4 groups, which differed in 
size : Group A contained twice as much behaviors as 
group B, group B twice as much as C and so on. The 
behavioral information about these groups was identical, 
in that 33% of the behaviors engaged in by the members 
were undesirable and 67% desirable. Preliminary results 
show that a greater amount of members in each category 
leads to a decrease of the illusory correlation effect. 
These results can be readily accounted for by a 
feedforward connectionist framework (Van Overwalle, 
1998). 

Keywords 
Illusory Correlation, connectionism. 

INTRODUCTION 
Illusory correlation occurs when perceivers make an 
erroneous judgment of a relation between two or more 
unrelated categories. The original demonstration by 
Chapman (1967) showed how subjects overestimated the 
co-occurrence of long words in the context of a list of 
relatively short words. Presumably, the distinctiveness of 
the long word pairs led to a more thorough processing, 
which led to the illusory correlation effect. 

Hamilton and Gifford (1976) applied this mechanism to 
the formation of group stereotypes. In their study subjects 
read statements about members of a majority group, 
labeled A, and a minority group, labeled B. Both groups 
revealed the same ratio of desirable to undesirable 
behaviors. After reading the statements, subjects 
overestimated the frequency of negative behaviors by 
group B members and also had a more negative 
impression of group B. According to Hamilton and 
Gifford, the less frequent and therefore more distinct 
undesirable group behaviors apparently received more 
extensive encoding. This probably led to greater 
accessibility in memory, leading to errors in frequency 
estimation and impression formation. 

Recently several studies challenged the distinctiveness- 
paradigm (Smith, 1991, Fiedler, 1991). These studies 
claim that the phenomenon is not so much the 
consequence of mere distinctiveness of the stimuli, but 
simply reflects the general working of the human 
memory. Although this critique is well elaborated, it 
leaves certain question unanswered. The aim of the 
present   research   is   to   answer   these   questions   by 

approaching the illusory correlation phenomenon form a 
connectionist angle. 

The aim of the present research is to approach the illusory 
correlation phenomenon from a connectionist angle. Our 
connectionist approach depicts learning as a gradual 
process, during which associations between group 
membership and desirability are formed instantaneously. 
Every time a member of a certain group performs a 
(un)desirable behavior, the association between that 
group and (un)desirable behavior in general becomes 
stronger. As more learning takes place, these associations 
become stronger and are easy to discriminate, so the 
perceiver can form a relatively correct impression of a 
group based on these associations. However when these 
associations between group membership and desirability 
are weak, they are hard to discriminate and judgments 
will be prone to illusory correlation effects. Therefore, 
the main prediction of our connectionist model is that an 
increase in the amount of behaviors will lead to a 
decrease in the illusory correlation effect. Although 
apparently trivial, this effect is not a straightforward 
prediction of the distinctiveness hypotheses or any other 
recent model. 

METHOD 
Methodology and instructions followed the Hamilton and 
Gifford (1976) paradigm. Table 1 summarizes the 
distribution of the behavioral information for the 4 
groups. 

Table 1 

Number of desirable and undesirable behaviors 

assigned to each group 

Group : B D 

Desirable behaviors 16     8      4      2 

Undesirable behaviors      8      4      2       1 

Subjects sat at individual computers and were told that 
the experiment concerned "the way people process and 
retain information". Furthermore they were told that they 
would receive information concerning four groups (A, B, 
C and D), these groups represented groups in the real 
world and that group A was bigger than group B, group B 
bigger than group C and so on. Finally they were told to 
read each statement carefully.   Each statement remained 
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on the screen until the subject pushed the space bar. After 
reading all statements, subjects completed a filler task, a 
free recall task, a group assignment task, a frequency 
estimation task and a group evaluation task. 

RESULTS 
Overall, the results confirmed our hypotheses. We 
expected that groups with more members (or behaviors) 
would be less subject to illusory correlation. Specifically 
this means that as the groups became smaller, group 
evaluations would become less favorable and relatively 
more undesirable behaviors would be attributed to these 
groups. 

Likability Ratings. The main effect of group was 
significant, F(3, 72) = 4,62, p < ,005, revealing as 
expected that groups were rated less favorable as they 
became smaller. 

Frequency Estimation. There was no significant main 
effect of group (p > ,1). However, contrast analyses show 
that subjects tended to attribute less undesirable behaviors 
to Group A than to other groups, F(l, 24) = 3.93, p < .06. 
This might indicate that only for group A the association 
between group membership and desirability was well 
established, enabling subjects to make a fairly accurate 
judgment. 

Group Assignment. Analyses showed that subjects were 
more likely to assign desirable as opposed to undesirable 
behaviors to group A, F(l,24) = 4.419, p < .05. This 
confirms our prediction that for group A the associations 
between group membership and desirability are strong 
and therefore easy to discriminate. As subjects 
experienced more desirable group A behaviors then 
undesirable, the association between group A and 
desirable behavior is stronger than the association with 
undesirable behavior, leading to a tendency to assign 
more desirable behaviors to group A. The contrast 
analyses show the reverse effect for group D, in that more 
undesirable as opposed to desirable behaviors were 
assigned to this group, although this was only marginally 
significant, F(l,24) - 3.841, p = .06. This is probably due 
to the fact that there was only 1 undesirable behavior in 
group D, which would have made it very distinctive. 

Free Recall. Two separate proportions were used : 
General free recall reflects the recalled behaviors 
regardless of whether they were correctly associated with 
a group. Correct free recall reflects only those behaviors 
correctly assigned to a group. 

With respect to general free recall we see as predicted 
that relatively more undesirable behaviors are attributed 

to groups B,C and D in comparison with group A, F(l, 
57) = 5.11, p < .03. This can be due to the overall 
response bias to attribute negative behaviors to smaller 
groups in parallel with the likability of those groups. As 
stated before, this confirms our prediction that the 
associations between group membership and desirability 
are weak for the smaller groups, leading to illusory 
correlations. 

There is however another possible explanation. 
According to our connectionist model, during learning 
strong associations tend to suppress weaker associations 
(competition effect). For instance, that would mean that 
the strong association between group membership and 
desirability for group A would suppress the associations 
of the unique behaviors with that group. This would be 
less the case for the smaller groups, where the 
associations between group membership and desirability 
are weaker. As a result, more unique behaviors should be 
recalled by the subjects as the groups become smaller. In 
fact this is partly confirmed by the data for correct free 
recall : undesirable behaviors were recalled better than 
desirable for group D, F(l, 57) = 5. 82, p < . 03. 
However, the data for the other groups show no sign of 
this competition effect as recall is weak in all these cells. 
This is nonetheless an important aspect of connectionist 
learning models, as it easily explains distinctiveness 
effects. Hence further research into this matter is 
required. 
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Abstract. We present a computational 
approach to the acquisition of problem 
schemes by learning by doing and to their 
application in analogical problem solving. 
Our work has its background in automatic 
program construction and relies on the con- 
cept of recursive program schemes. In con- 
trast to the usual approach to cognitive 
modelling where computational models are 
designed to fit specific data we propose a 
framework to describe certain empirically 
established characteristics of human prob- 
lem solving and learning in a uniform and 
formally sound way. 

1    Introduction 
The use of analogies is a powerful and ubiquitous 
strategy in human reasoning and problem solving. A 
lot of (symbolic, connectionist &; hybrid) computa- 
tional models have been proposed with the aim of 
getting more precise insights in the underlying pro- 
cesses (Anderson & Thompson, 1989; Falkenhainer, 
Forbus, & Gentner, 1989; Hummel & Holyoak, 1997) 
and with the aim of exploiting this strategy in AI 
applications (cf. case based reasoning). 

Most of the computational models are focusing on 
analogical access and mapping thereby neglecting two 
crucial aspects of analogical problem solving: (1) gen- 
eration of problem representations which are suitable 
for analogical problem solving (i.e. problem schemes), 
and (2) solving a target problem by adapting a - not 
necessarily isomorphical - source problem. 

The model proposed by Anderson and Thomp- 
son (1989), for example, relies on schemes for rep- 
resenting the structure of problems and solutions 
which are available to the system from the beginning. 
Thereby the authors suppose that the system has 
already knowledge about the structure of the prob- 
lem domain. But the crucial deficit of novices is that 
they have no knowledge about the structural charac- 
teristics relevant for problem solving (Novick, 1988; 
Schmid & Kaup, 1995). Otherwise, there would be 
no need for analogical problem solving. The problem 
could be solved by applying already acquired automa- 
tisms (production rules) or abstract schemes. 

The examples Anderson and Thompson (1989) give 
for analogical transfer are restricted to generalized 
problem isomorphs, i.e. identical structures where 
predicate and operation symbols can be substituted 
in a unique way. There is no statement whether 
the model could be extended to adaptation of non- 

isomorphical structures. In everyday reasoning, avail- 
ability of isomorphical source problems is the ex- 
ception. Empirical studies demonstrate that people 
also can use partially isomorphical source problems 
(Pirolli & Anderson, 1985; Schmid & Kaup, 1995). 

We are proposing a framework for analogical prob- 
lem solving which overcomes the limitations described 
above: First we present our concept of problem 
schemes and a method for inferring such schemes from 
problem solving experiences. Than we describe our 
approach to analogical transfer which works for both 
isomorphical and non-isomorphical source problems. 

2    Induction of Problem Schemes 

The central concept of our approach is the notion 
of recursive program schemes (RPSs; see Schmid & 
Wysotzki, 1998 for the formal definitions). An RPS 
represents the structure of a problem as (recursive) 
equation. On the left side the name of the RPS and 
its parameters are given. The right side represents a 
operations together with their conditions for applica- 
tion. An RPS representing the knowledge of clearing 
a block is 

clear-one-block(x, s) = if cleartop(topof(x)) then put- 
table (topof(x)) else s. 

The variable s ("situation variable") represents the 
current problem state (for example on(A, B), on(B, 
C), cleartop(A)). This RPS can only be applied if one 
block is lying on block x. For the problem state given 
above it can be applied to block B only. An RPS 
representing the knowledge of clearing an arbitrary 
block in a tower is 

clearblock(x, s) = if cleartop(x) then s else put- 
table (topof(x), clearblock(topof(x, s))). 

The representation format of an RPS simultaneously 
catches the structure of a problem and its executable 
solution strategy (cf. Rumelhart & Norman, 1981). 

In our program IPAL (Schmid & Wysotzki, 1998) 
we are modelling the acquisition of RPSs by a two- 
step process: In a first step some initial states of a 
problem are solved by applying predefined produc- 
tion rules using heuristic search. That is, without ex- 
perience in a problem domain the system has to use 
a general purpose strategy which can be inefficient 
because search may lead to dead ends and there is 
need for backtracking. The solution sequences found 
for the initial states are composed into a so called 
initial program generalizing over the application con- 
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ditions of the predefined production rules and over 
the constants occuring in the initial states. 

An initial program which represents the experience 
with towers up to three blocks is 

if cleartop(x) then s else 
if cleartop(topof(x)) then puttable(topof(x),s) 
else if cleartop(topof(topof(x))) 
then puttable(topof(x), 

puttable(topof(topof(x)),s)). 

Building initial program corresponds roughly to 
chunking and refinement of production rules. 

By using a method for inductive program synthesis ' 
initial programs can be generalized to RPSs (Schmid 
& Wysotzki, 1998). The general idea of our algorithm 
is to identify a pattern and a substitution in the ini- 
tial program which makes it possible to reproduce 
the whole structure. For the initial program given 
above the pattern is if cleartop(x) then s else put- 
table (topof (x), m) with the substitution x <- topof(x). 
If found, the pattern and substitution are extrapo- 
lated to an RPS. This process describes a fundamen- 
tal aspect of human intelligence: the ability of induc- 
tion as for example described by (Holland, Holyoak, 
Nisbett, & Thagard, 1986). 

3    Transformation Based Adaptation 
RPSs formally are elements of a term algebra. That 
means, they represent syntactical structures only. The 
semantics of an RPS is gained by interpretation of 
the symbols in accordance to some domain model. 
Thereby an RPS represents the class of all struc- 
turally identical problems. This is a characteristic ex- 
tremely suitable for analogical reasoning. 

In IPAL already inferred RPSs are stored in mem- 
ory. An RPS can be "unfolded" to an initial program 
again. If a new initial program is gained by investigat- 
ing some problem states, the memory is checked for 
an RPS whose corresponding initial program is sim- 
ilar to the new one. In that case inference of a gen- 
eral solution strategy for the problem (represented by 
an RPS) can be omitted and the known RPS can be 
adapted to the new problem instead. 

In our approach mapping and adaptation is per- 
formed by means of tree transformation. An initial 
program of an already known RPS is transformed to 
a new initial program by substitution, insertion and 
deletion of symbols. The set of transformations can 
than be applied to adapt the known RPS. Two ini- 
tial programs are isomorphical if one can be trans- 
formed into the other by a set of unique substitutions 
only. We give an example of adaptation in the non- 
isomorphic case (see fig. 1). To transform "clearblock" 
into "factorial" we have to perform the unique sub- 
stitutions cleartop/equalQ, s/1, puttable/mult. Addi- 
tionally we have two transformations for the "topof" 
symbol: substitute topof/pred and delete topof. By 
using contextual information, we can decide at which 
position in the RPS topof has to be deleted (in the 
first argument of puttable rsp. mult). 

Fig. 1. Initial programs for (a) factorial and (b) clearblock 
("g" represents the conditional "if-then-else"; fi stands for 
"undefined") 

4    Discussion and Further Work 

We believe that our framework can be of use for the 
cognitive modeling community for two reasons: (1) it 
addresses the problem of scheme acquisition often ne- 
glected in computational approaches, (2) the notion 
of RPSs as representation format makes it possible 
to describe the structural characteristics of problems 
in a way which makes it possible to perform precise 
analyses of the structural similarity of problems. This 
can be useful to construct source-target relations for 
empirical studies of the conditions of successful adap- 
tation in analogical problem solving. 
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ABSTRACT 
A categorization of three types of knowledge which can 
be relevant for the control of dynamic systems is sugges- 
ted. These are (1) input-output knowledge, (2) structural 
knowledge which is subdivided in knowledge about 
effects and knowledge about dependencies, and (3) 
strategic knowledge. The assumptions are embedded in 
the theoretical framework of the ACT-R theory. An ACT- 
R model of the early stages of knowledge acquisition, and 
its implications for future research are described. 

Keywords 
knowledge acquisition, causal relations, ACT-R, dynamic 
system 

INTRODUCTION 
This contribution deals with the control of dynamic 
systems of the following type: There are about 2-4 input- 
variables which are exclusively controlled by the problem 
solver, and about the same number of output-variables 
whose values depend on the values of input- and output- 
variables. The systems are modelled by simultaneous 
linear equations. In order to minimize the variability of 
domain specific knowledge, the variables have phantasy 
names. As a consequence, only general prior knowledge, 
e.g. knowledge about causal relations, can be brought to 
bear in the problem solving process. Fig. 1 shows a 
simple example of such a system. 

Input Output 

Ka Wonal 

i ' / 

Li 1U lan 

Fig. 1: A simple dynamic system 

The control of dynamic systems is a form of complex 
problem solving. Unlike many other problem solving 
tasks, the effects of the operators are not explained in the 
instructions. The problem solver has to induce them by 
analyzing self generated state-action-state sequences. 

Many authors assume, that controlling systems effectively 
requires structural knowledge. The notion of structural 
knowledge comprises knowledge about the variables and 
their causal relationships. But the results concerning the 
relation between structural knowledge and control 
performance are inconsistent. In some studies subjects 
report considerable structural knowledge, but fail to attain 

the goals for system control (Schoppek, in prep.). In other 
studies subjects are successful in controlling the system 
but can hardly report anything about its structure (Berry 
& Broadbent, 1984). There is, however, also evidence for 
a convergence of structural knowledge and control perfor- 
mance (Funke, 1992). It is obvious, that the construct of 
structural knowledge is too undifferentiated to account for 
the diversity of the results. 

TYPES OF KNOWLEDGE FOR SYSTEM CONTROL 
As a step towards an integrative explanation of these 
results I want to suggest a theoretical distinction of three 
different types of knowledge which can be relevant for 
the control of dynamic systems. 

(1) Input-output knowledge (I-O-knowledge) represents 
interventions and their effects. These may be stored either 
external or in declarative memory. In early exploration 
phases I-O-knowledge is the material from which 
structural knowledge is induced. With extended practice, 
successful I-O-sequences can be recalled directly from 
declarative memory. A third possibility of using I-O- 
knowledge is the successive adjustment of an input- 
pattern without any induction of general rules. 

(2) Structural knowledge is subdivided in two types: 
knowledge about effects (E-knowledge) and knowledge 
about dependencies (D-knowledge). E-knowledge is 
supposed to be acquired from an early stage of practice 
with the system. It can be induced quite easily from state- 
action-state sequences, provided that an appropriate 
input-strategy is applied. E-knowledge can be represented 
by solitary chunks. It is sufficient to answer most of the 
questionnaires that have been used to assess structural 
knowledge. 

But the exact control of a dynamic variable requires 
knowledge about its dependencies. It is possible to search 
memory for all E-chunks containing the goal-variable in 
its output slot, but this is an error-prone procedure. In this 
situation an output-centerd integration of E-knowledge 
would be more effective. This is the hypothetical D- 
knowledge. Successful problem solvers seem to have 
access to this type of knowledge since they have no 
difficulties in quickly considering all dependencies of an 
output variable. D-knowledge can be deducted from E- 
knowledge, but this is an additional process. Thus 
deduction and use of D-knowledge takes more effort than 
induction of E-knowledge. 

(3) Strategic knowledge comprises knowledge about how 
to acquire structural knowledge, (e.g. the strategy of 
isolated variation of conditions), and knowledge about 
certain input-strategies (e.g. the compensation of side- 
effects). 
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The three types of knowledge are differing in their 
generalizability. I-O-knowledge is only applicable for a 
single system and is goal specific. Structural knowledge 
refers to a single system, too, but is unspecific with 
respect to the goal states. Finally, strategic knowledge can 
be applied in the exploration and the control of many 
different systems. 

THEORETICAL INTEGRATION 
The assumptions are embedded in the theoretical 
framework of the ACT-R theory (Anderson, 1993). All 
the types of knowledge are supposed to consist of both 
declarative and procedural elements, whose parameters 
change with use according to ACT-R. Thus the 
theoretical distinction could serve as a link between the 
content-independent assumptions of the ACT-R theory 
and more specified models of system control. 

EMPIRICAL SUPPORT 
The assumptions are largely consistent with the data. 
Dissociations between verbalizable knowledge and 
control performance can be explained by the notion that 
most tasks for assessing structural knowledge can be 
solved with E-knowledge whereas successful system 
control requires more than access to single E-chunks. 
Findings that initial dissociations disappear with extended 
practice (Sanderson, 1989) are also in line with this 
explanation. Seemingly inconsistent results of tutoring 
structural knowledge, which were found in experiments of 
our workgroup are interpretable in terms of different 
focuses of the training procedures. A training which 
focused on D-knowledge (Preußler, 1997) lead to 
improved control performance whereas a training which 
focused on E-knowledge did not (Schoppek, in prep.). 

ACT-R MODEL 
I started to put these deliberations into practice in form of 
an ACT-R model which handles the static system 
depicted in fig. 2. At present the model is able to explore 
the system. It induces positive effects on the base of self 
generated data and creates single E-chunks for every 
detected effect. With this knowledge the model can 
produce judgements about effects in a fact-retrieval 
paradigm. Finally the model can use its E-knowledge to 
obtain simple goal states. 

The main problem in this early stage of model 
construction is to find an appropriate representation of 
new causal knowledge. As indicated above, the model 
creates a new chunk for every detected effect. The chunk- 
type has three slots: „input", „output", and „factor". This 
takes into account that judgements about causal relations 
cannot be explained by the assumption of simple 
associations between cause and effect (Waldmann, 1996). 

In the fact-retrieval task the model exhibits no effect of 
the number of outputs that are affected by an input (e.g. 
judgements of „Eltan-Ordal" and „Bulmin-Fontil" take 
the same time, although Bulmin affects only one output 
whereas Eltan affects three). 

In a preliminary experiment five subjects explored the 
static system shown in fig. 2 and then processed the fact- 
retrieval task with pairs of variable-names. In contra- 
diction to the model, there seems to be a fan effect: The 

judgements for the effects of input „Eltan" (fan 3) take 
longer than the judgments for the effects of „Bulmin" and 
„Dulan" (fan 1). This might, however, be due to the fact, 
that the judgements were based on a secondary verbal 
representation of a rather sensorimotor primary represen- 
tation of the effect. Indeed, four of the five subjects 
reported that they memorized the effects in terms of 
locations and that memorizing the names was an 
additional demand. In the main experiment it will be 
tested if there are different effects depending on the 
presentation of spatial cues. 

Bulmin 

Dulan 

Grilon 

Eltan 

\    / 
Murol 

\y 
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/N^* 
/   /»> Ordal 

/   ^f 
/s^ 

6^ Sugol 

Fig. 2: Static system controlled by the model 

OPEN QUESTIONS 
Thus even the initial representation of single causal 
relations can be regarded as an open question. A more 
serious problem is posed by the question, how the hypo- 
thetical D-knowledge is transformed into productions. 
Experienced problem solvers obviously dispose of such 
fairly complex productions. 

Despite all those open questions I hope to have pointed 
out that there is a long way between the acquisition of 
single effect-chunks, including their application in fact- 
retrieval tasks, and the integrated use of this knowledge 
for the determination of input-values in order to obtain 
specific goal states. 
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INTRODUCTION 
The status of polysemy as a source of lexical ambiguities 
is still not clear neither among linguists, nor among com- 
putational semanticists. Here, we take a step outside of 
the classical debate among homonymy and vagueness 
and we postulate that polysemy is at the origin of most of 
the cases of ambiguity. 

In this paper, we focus on a particular kind of polysemy 
that we call usage polysemy. Unlike other kinds of poly- 
semy, usage polysemy cannot be reduced to operations of 
sense composition and selection. Usage polysemy takes 
place when a polysemous lexical unit has several closely 
related interpretations, corresponding to different uses 
and none can be said to be 'the right one'. It will be fur- 
ther defined in section THEORETICAL AND 
EMPIRICAL APPROACHES. Our aim is to design a 
cognitive model for the computation of usage polysemy, 
and to implement it as an expert agent cooperating with 
other agents in a Natural Language Processing (NLP) 
architecture. 

We present our model in the PELEAS MODEL section. 
We designed it on the main postulate that interpreting 
usage polysemy is a process similar to translating an 
ambiguous expression. We also present the set of soft- 
ware pieces we developed around our model, along with 
a qualitative evaluation we have conducted at the time 
being. At last, in the CONCLUSION section, we give our 
temporary conclusion about our model. 

THEORETICAL AND EMPIRICAL APPROACHES 
A widely spread opinion among computational linguists 
is that polysemy is a false problem, and the ambiguities it 
generates are but artefacts produced by our models. The 
argument is that we, human beings, never fail when in- 
terpreting polysemy. But what to think about sentences 
like "The mother cell splits into two new identical cells"? 
Which is the right interpretation for "mother": generating, 
antecedent, prior, ruling or causal source? As a matter of 
fact, a human reader does hot feel annoyed when reading 
such a sentence, because he/she unconsciously handles all 
the different interpretations simultaneously. We will 
show thereafter that this example falls in a particular 
category of polysemy we call usage polysemy, which, 
indeed, is not a problem once we do not require the right 
interpretation for a polysemous word. 

Different kinds of polysemy 
Lexical ambiguity has been abundantly studied and mod- 
elled by computational linguists. But what is usually 
referred to as 'polysemy' is described as functional poly- 
semy by Prince and Bally-Ipsas (1991). It involves se- 

mantic features as much as syntactic ones in order to 
resolve the lexical ambiguities it generates, by restricting 
the selection of the concept which is compatible with the 
context. An other category of polysemy is described by 
Rastier (1996) as sense polysemy' and involves linguistic 
devices known as isotopy and isosemy in differential 
semantics. The last kind of polysemy we can distinguish 
involves also sociolinguisties data, as conventional uses 
of words, tropes and topo'i. This is precisely this category 
we study here. 

Usage polysemy 
Our framework is composed of polysemous word occur- 
rences for which there are no syntactic / semantic neces- 
sary and sufficient conditions, nor intralinguistic isotopy 
relationships allowing us to discriminate between the 
different possible interpretations. This means that all 
interpretations are closely related conceptual points of 
view on the word's meaning. They differ only by slight 
shades of meaning for the word's usage. These shades 
can be established in discourse, on a cultural basis. 

Such phenomena have been observed by Tanaka and 
Umemura (1994) to occur frequently for common words 
(representing approximative^ 30% of the lexicon for any 
given language). Common words are not terms: they are 
not used as items of a nomenclature but rather in the 
everyday discourse. 

usage polysemy of common words may arise in a various 
set of situations: (i) usage transfers, when a word is used 
outside of its most usual application field, mostly in order 
to illustrate a technical concept; (ii) deliberate sense 
overlapping, when an author play with the lexical ambi- 
guity due to polysemy in order to describe a complex 
situation in a limited textual space; (iii) joker words: 
when a common word is so much used inside a linguistic 
community that its semantic contents becomes too ge- 
neric; and (iv) plays on words referring to cultural refer- 
ences shared by the locutors. 

Interpretation and translation 
The most adapted linguistic theory for studying usage 
polysemy seems to be the differential semantics theory. 
However, it is loo fuzzy to be implemented straight away, 
and does not account for the influence of sociolinguistic 
data on the behaviour of lexical units. Sticking to the 
interpretation paradigm of the differential theory, we 

The original 'polysemie d'acception' could be better 
translated into 'polysemy of linguistic aspects of the 
senses' 
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postulated that interpretation is similar to translation in a 
certain way. That is why we observed a team of technical 
translators resolving problems raised by cases of usage 
polysemy. Their procedure seems to be incremental and 
hierarchical: (i) to find a general semantic direction by- 
probing the global context, (ii) to restrict the set of possi- 
ble interpretations by finding textual markers in the local 
context, (iii) to list valid and plausible interpretations by 
using inhibition and reinforcement, and (iv) to produce a 
synthesised translation. 

THE PELEAS MODEL 
The mode! we designed is called PELEAS (Pyramids and 
Ellipses as Lexical Entries in Ambiguous Sentences). It is 
a lexicon driven by lexical entries, but each entry pwns 
semasiological substructures. 

Description of the model 
The model was designed as a dynamic lexicon, it does not 
contain all possible interpretations of a word, but rather 
computes them from a minimalist static representation of 
well acknowledged uses. That is why it is Constituted of a 
static part (this representation) and a dynamic part, which 
handles the salience attribution process. This model is in 
the same trend of representations as the Generative Lexi- 
con of Pustekovsky (1991) and Edgar of Prince (1994) 
Our model differs from the Generative Lexicon because it 
does not try to specify the relationships between a word 
and its description further than "the descriptors of a word 
lexically co-occur in the close context of its occurrences". 
It also differs from Edgar by taking the sociolinguistics 
context into account, and by allowing a kind of variable 
depth reasoning. 

Each entry is stored as a hierarchical graph where each 
level corresponds to a particular kind of description: (i) 
notions are 'general semantic directions', (ii) domains 
mark the influence of the activity fields on the discourse, 
(iii) conceptual views are partial concepts, and (iv) fea- 
tures are pertinent properties of these concepts. Included 
in the static representation are contextual conditions and 
semantic constraints. Contextual conditions are a set of 
rules for initial salience attribution corresponding to very 
particular and well-known influences of some morpho- 
syntactic markers for this entry interpretation. 

The edges between a parent node and its children nodes 
correspond to an is-described-by or is-specialised-by 
relationship. The semantic constraints are the edges be- 
tween sibling nodes. They can be either neutral (co- 
validity of descriptions), reinforcement connectors (im- 
plication / increase of salience between two nodes), or 
inhibition connectors (opposition / decrease of salience). 

Interpreting a polysemous word becomes, in our model, 
attributing salience rates to each node of the lexical 
structure. We use four symbolic rates: (i) ignored, mean- 
ing "not pertinent in this context", (ii) valid, meaning 
"possible but not very important", (iii) salient, meaning 
"important" and (iv) negated, which means "important 
but in a negative way". We use a salience propagation 
algorithm, initiated by the triggering of the contextual 
conditions. This algorithm is similar to the resolution of a 
system of non-linear recurring equations of k variables, 
which converges in k steps, if k is the number of descrip- 

tor nodes in the descriptive structure of a lexical entry. It 
terminates, in the worst case, in as many steps as there 
are nodes in the descriptive structure. 

Implementation of the model 
Wc have implemented this model in a pack of three soft- 
ware pieces: first, an engine, LightPeleas, managing the 
descriptive structures of a lexicon and applying the 
propagation algorithm on request. Then, a graphical edi- 
tor, Melisande, to build and modify descriptive structures. 
And finally, Bard, a corpus parser that helps up to gather 
raw material for building the descriptive structures. 

We implemented the engine LightPeleas as an ActiveX 
control. It publishes in the operating system 29 classes 
allowing the manipulation of any item from an entry to a 
single node or edge. Entries are stored on disk in a format 
we called PDL (Peleas Description Language). In order 
to help us use the interpretation given by LightPeleas for 
an entry, the output is a set of salient or negated concep- 
tual views pondered by a "hint" between Ü and 1. It 
evaluates the plausibility of each interpretation (0 means 
'perhaps', and 1 means 'rather sure') 

So far, we used our system to build five descriptive 
structures (for 'mother', 'father', 'to devour', 'life' and 
'little') and conducted a test with twenty-two sentences. 
The results we obtained were all sets of propositions with 
meaningful interpretations for the first or two first 
'guesses'. 

CONCLUSION 
So far, we have delimited a kind of lexical ambiguities 
and their sociolinguistic cause: usage polysemy. We 
designed a model for its processing based on the obser- 
vation ot some tranclci*rxrc' t^At»Q\/ir»iir xtiic mnHpi Jc 
implemented and presents encouraging results so far 
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ABSTRACT 
ESQIMO is a computational model for analogy solving 
based on a topological formalism of knowledge repre- 
sentation. The source and the target analogs are repre- 
sented as simplicial complexes and the analogy solving is 
modeled as a topological deformation of these complexes 
along a polygonal chain. 

Key Words: Analogy solving, Algebraic topology, Simpli- 
cial complexes, IQ-tests. 

TOPOLOGY FOR KNOWLEDGE REPRESENTATION 
A representational formalism for analogy must allow the 
explicit expression of the features involved in similarity. 
M. Johnson (Johnson, 1987) argues that mental images are 
too close to perception and that logic approaches are too 
syntactic and arbitrary for representational purposes. He 
proposes to use a topological structure to represent and 
solve metaphors (which he considers to be the generaliza- 
tion of analogies (Lakoff and Johnson, 1980)). 

Simplicial Complexes 
Cognitive models use different models of space (Freska, 
1997; Johnson, 1987) and the central question is in the 
choice of the basic spatial entities in a spatial representa- 
tion of knowledge. We take here the elementary spatial 
entities to be simplicial complexes. 

A simplicial complex is a couple (V,K) where V is a set 
of elements called vertices and K is a set of finite parts 
of V such that if s e K, then all the parts s' C s be- 
longs also to K. The elements of K are called simplexes. 
The dimension of a simplex s is equal to Card(s) - 1. 
All complexes with dimension < 2 are graphs. Thus, sim- 
plicial complexes generalize semantic networks and allow 
the expression of hierarchies like in a relational graph. 

The Q-Analysis 
Atkin proposed the Q-Analysis (Atkin, 1981) to repre- 
sent a binary relation A between two sets with a simplicial 
complex. Let A be the incidence matrix of a binary rela- 
tion A C A x B. Let a (E A, the set SA of bi such that 
(a, bi) € A. All the elements bi can be taken as vertices to 
represent the element a as a simplex. The whole matrix A 
can then be represented as a simplicial complex contain- 
ing all the simplexes representing each element a; € A, 
we note it KA(B, A) (see figure 1). Likewise, we can rep- 
resent A-1 with the dual simplicial complex. 

A a\ «2 0-2 

bi I 0 1 
&2 0 1 1 
b3 1 1 1 

(a) Incidence matrix of the 
binary relation A 

(b) Simplicial representa- 
tion of A 

Figure 1: Representation of a binary relation 

Extension of Q-Analysis 
We extend the Q-Analysis to allow the representation of 
sets of predicates as a simplicial complex too. We can 
take a set of predicates P = {pit ...,p„] and represent the 
binary relation X c Ax P such that (aj,pj) G A if Pj(aj) 
holds. 

In this representational formalism, the same simplex is 
associated to elements of .4 that cannot be distinguished 
with the predicates of P available in the system. More- 
over, two simplexes that have a smaller fc-simplex in com- 
mon are said to share a fc-face. In terms of representation, 
it means that they have k features in common. 

THE ESQIMO SYSTEM 
A representational system is composed of a data structure 
and programs operating on it corresponding to reasoning 
tasks. We try now to model a simple analogy solving task 
using the representational structure proposed before : we 
chose the typical IQ-test problem. The system has to find 
an element D such that it completes a four-term analogy 
with three other given elements .4, B and C. 

The analogy is solved in 3 steps: find a relation RAB be- 
tween .4 and B. find the domain of C to apply RAU, build 
D = RAB(C). 

Representing the Problem 
IQ-tests are given in terms of geometrical elements so that 
they can express many properties and stay simples.  We 
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took the following properties of shape: round, square, tri- 
angular; color, white, black; and size: big, small. Accord- 
ing to our formalism, we build the complex C(Ct) repre- 
senting all the properties. The figures of the test are seen 
as relations between the set of properties and the elements 
of the figures, so we represent them also as sub-complexes 
C(A),C(B) and C(C) of C(fi). Note that this formaliza- 
tion does not depend on the geometrical nature of the ele- 
ments. 

ESQIMO's Algorithm 
To find RAB we look for a transformation TAB between 
C(A) and C(B) along a polygonal chain from C(A) to 
C(B) in C(fl). A Polygonal chain is a sequence of Sim- 
plexes belonging to the same complex and where two suc- 
cessive Simplexes have a non empty intersection. An ele- 
mentary step linking at to cri+i in a chain is then viewed 
as an elementary transformation TCi i(7i+1. 

If there are several such chains, then there are several pos- 
sible relations between A and B. To minimize the number 
of solutions, we give a higher priority to chains that are 
short and of higher dimension. Indeed, they correspond to 
transformations with less steps, and with more properties 
conserved at each step. 

When TAB is found, we use the same algorithm to de- 
termine TAC- This second transformation is used to de- 
termine the domain of C{C) on which we can apply 
TAB- Several strategies have been implemented (Valen- 
cia, 1997) considering only the things that changed be- 
tween C(A) and C(C), or considering only the invariants 
between them, or some other hybrid methods. Finally, we 
can apply TAB to this domain and build C(D). The trans- 
lation of C(D) into a geometrical element of the universe 
is then easy. 

C(A). C(B) 

C(C) \    )      .;    ..--•  c(D) 

Figure 2: Analogy solving with ESQIMO 

Remarks 
The description of the properties of each figure in terms 
of predicates can be a problem for properties such as posi- 
tion. In that case, we can take only relative positions into 
account. Moreover, our transformations could be called 
0-degree since they preserve the minimum of topological 
properties along a chain. The next step of this modeliza- 
tion would be to pair higher-order structures. 

CONCLUSION 
Different computational models have been developed to 
model analogy solving and are based on different rep- 
resentational structures.   Among them, the ANALOGY 

system proposed by Evans (Evans, 1968) uses rules, the 
SME system proposed by Falkenhainer to illustrate Gen- 
tner's theory for analogy (Falkenhainer et al., 1989; Gen- 
tner, 1983) uses prepositional structures, the ARCS sys- 
tem developed by Thagard and Holyoak to simultaneously 
satisfy the structural, semantic and pragmatic constraints 
uses neural networks and COPYCAT uses semantic net- 
works with asynchronous parallelism. Like in SME, we 
focused on the structural constraint introduced by Gentner 
(Holyoak and Thagard, 1989) and we modeled the steps 
of analogy solving like in the ANALOGY system. 

Our contribution lies in the search for a new representa- 
tional structure (Valencia, 1997) that can be justified in 
terms of the naturality of a diagrammatic representation 
(Glasgow et al., 1995). Like in the COPYCAT project, 
we are concerned with the mechanisms of enrichment of a 
representation through analogy and our formalism can be 
seen as an intermediate structure between a symbolic and 
an analogical approach. 

ESQIMO has been implemented in the ML program- 
ming language, the various strategies experimented 
and some solving examples are given in details at 
http://www.lri.fr/~erika. 
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