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AFiT/DS/ENG/98-02 Abstract 

In many estimation problems, it is desired to estimate system states and parameters simulta- 

neously. However, inherent to traditional estimation architectures of the past, the designer has had 

to make a trade-off decision between designs intended for accurate state estimation versus designs 

concerned with accurate parameter estimation. This research develops one solution to this trade- 

off decision by proposing a new architecture based on Kaiman filtering (KF) and Multiple Model 

Adaptive Estimation (MMAE) techniques. This new architecture, the Modified-MMAE (M3AE), 

exploits the benefits of an MMAE designed for accurate parameter estimation, and yet performs at 

least as well in state estimation as an MMAE designed for accurate state estimation. The M3AE 

accomplishes the simultaneous estimation task by providing accurate state estimates from a single 

KF designed to accept accurate parameter estimates from the MMAE. Additionally, an M3AE ap- 

proximate covariance analysis capability is developed, giving the designer a valuable design tool 

for analyzing and predicting M3AE performance before actually implementing the M3AE and con- 

ducting a time-consuming full-scale Monte Carlo performance analysis. Finally, the M3AE archi- 

tecture is applied to two existing research examples to demonstrate the performance improvement 

over that of conventional MMAEs. The first example involves a simple second-order mechanical 

translational system, in which the system's natural frequency is the uncertain parameter. The sec- 

ond example involves a 13-state nonlinear integrated Global Positioning System/Inertial Navigation 

System (GPS/INS) system, in which the variance of the measurement noise affecting the GPS out- 

puts, is the uncertain parameter. 

xvu 



Modified Multiple Model Adaptive Estimation (M3AE) 
for Simultaneous Parameter and State Estimation 

Chapter 1 - Introduction 

1.1  Overview 

This research focuses on adaptive filtering for the simultaneous estimation of both states and 

parameters for linear, dynamic, sampled-data systems. The proposed architecture employs two sep- 

arate filters operating simultaneously to produce accurate state estimates under any foreseen system 

"operating condition." Under this new architecture, the parameter estimator is designed and tuned 

for estimating the system's uncertain parameters (for example, its current operating condition) and 

is optimized for distinguishing between possible hypothesized operating conditions (for example, 

typical applications involving parameter estimation are event detection and Failure Detection and 

Isolation). In contrast, the state estimator is designed and tuned for providing accurate state estima- 

tion, conditioned on the measurements and knowledge of the parameters provided by the parameter 

estimator. Figure 1 depicts this adaptive filtering concept (notice the forced separation between 

state and parameter estimation, versus treating the state-and-parameter estimation problem as one 

big nonlinear estimation problem). The measurements, z, and parameter estimates, ä, are used by 

the state estimator to generate x under all feasible operating conditions. 

Various techniques previously used for state and parameter estimation were researched as po- 

tential candidates for implementation in this new architecture. The four that are briefly described in 

Section 1.2 are the: Chi-Square test; Generalized Likelihood Ratio (GLR) testing; Multiple Model 

Adaptive Estimation (MMAE); and Distributed Kaiman Filtering (DKF). Of those investigated, the 
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Figure 1. Simultaneous Parameter and State Estimation Using Separate Filters 

MMAE technique was the strongest candidate and pursued in this research effort. A more detailed 

description of MMAE theory is presented in Chapter 2. 

The Modified-Multiple Model Adaptive Estimation (M3AE) technique has resulted from this 

research and is an enhancement in the evolution of MMAE architectures. MMAE architectures have 

been successfully used for both state and parameter estimation in the presence of uncertain parame- 

ters [2,3,14,15,21,41,46,47,54,78]. The MMAE provides the designer a multiple-Kalman-Filter 

(KF) environment designed to provide accurate state estimation despite the uncertain parameters 

varying over a continuous region of the parameter space (though the MMAE conceptually assumes 

a discrete-valued or discretized parameter space, as explained in Chapter 2). MMAE's designed 

specifically for parameter estimation are typically concerned with applications involving event de- 

tection, such as detecting the onset of interference on a Global Positioning System (GPS) satellite 

signal [78], the tracking of targets despite the onset of maneuvers [32,33,41], or events associated 

with Failure Detection and Isolation (FDI) applications [2,3,5,13-15,21,46,53,54,56]. 

However, inherent to traditional MMAE architectures of the past, the designer has had to make 

a trade-off between an optimal design for state estimation versus a design concerned with accurate 

parameter estimation [35]. An M3AE architecture exploits the benefits of an MMAE designed for 



accurate parameter estimation, and yet performs at least as well in state estimation precision as 

an MMAE designed for accurate state estimation. The M3AE architecture is straightforward and 

provides an excellent design option for designers concerned with applications in which both accurate 

parameter and state estimation is the design goal. Thus, the different classes of problems where the 

M3AE is appropriate are those that require accurate estimation of both the parameters and the states, 

such as FDI and problems involving requirements for accurate state estimation during event changes 

affecting the system's operating condition. Figure 2 displays this architecture which offers enhanced 

design flexibility in optimizing each estimator for its intended purpose. The architecture involves a 

single KF designed to accept the parameter estimate provided by an MMAE designed for parameter 

estimation. Since the goal of the MMAE "block" is accurate parameter identification, the elemental 

filters are designed and tuned such that their resulting hypotheses are as distinguishable as possible 

from each other. This increases the MMAE's ability to detect event changes in the system accurately. 

Many MMAE options exist for this purpose. In addition to a "standard" fixed-bank MMAE, Lund's 

MMAE with Inter-Residual Distance Feedback (IRDF) technique [35], and Moving-Bank MMAE 

architectures [5,19,20,23,31,46,48,75,77] are strong candidates for detecting event changes in the 

system and are further discussed in Chapter 2. 

Note that, the M3AE architecture provides one solution to the simultaneous parameter and esti- 

mation challenge which preserves linearity of the state estimation portion of the problem by treating 

the parameters fundamentally differently from the states. Other methods include treating the un- 

known parameters as additional state variables, but this leads to a nonlinear estimation problem as 

solved approximately by extended Kaiman filters or higher order nonlinear filters, but typically with 

nonnegligible biases in the parameter estimates [44,45]. Furthermore, such a nonlinear filter for- 

mulation typically requires a priori parameter statistical information or direct physical knowledge 

about the unknown parameter. Thus, it is preferable not to treat parameters simply as additional 



State variables to be estimated within the category of state-and-parameter estimators that do treat 

parameters differently from states, there are two different subcategories. First, there are algorithms 

with a single Kalman-like filter, from which a single residual vector is used as input to a parameter 

estimator, and then those estimated parameters are put back into the single state estimator. Maxi- 

mum likelihood estimators and least squares estimators of this form have been used for many years 

[45]. However, it is difficult to provide quick and accurate responsiveness to true parameter changes 

with such an architecture. The second type of algorithm is based upon multiple models (i.e., mul- 

tiple hypotheses of parameter values) and is composed of multiple Kaiman filters in parallel, with 

residuals from each to be used to provide more rapid and precise tracking of changing real-world 

parameters. Therefore, the M3AE is a strong candidate for simultaneous state and parameter esti- 

mation, since it inherently combines the best attributes of both forms of architectures within this 

preferred category of estimators. 

z 

X 

MMAE 

> 
a 

State Esti mator 

Figure 2. M3AE - MMAE-Based Parameter Estimator and KF-Based State Estimator 

Given the fixed bank MMAE structure chosen for this research, Lund's IRDF algorithm (whose 

primary purpose is to keep filter residuals of the individual elemental filters within the MMAE "dis- 

tant" for the purpose of fast and reliable discrimination) is a strong candidate for implementation in 

this research, since the successful operation of the MMAE depends heavily on the distinguishability 



of the models used in, and the tuning of, the elemental filters. This is appropriate for an MMAE pro- 

ducing a parameter estimate ä, as proposed in the M3 AE architecture, but may not be as appropriate 

for an MMAE designed for state estimation (despite that being the intent of Lund's original work) 

since the state tracking capability of the MMAE may suffer [35]. Although this effort has focused 

on a fixed-bank MMAE architecture, further research using moving-bank MMAE architectures is 

highly recommended. 

Finally, given an accurate parameter estimate describing the current system operating condi- 

tion, the M3AE's additional purpose is to estimate the system states accurately. Therefore, as shown 

in Figure 2, the measurements z, and the MMAE-produced parameter estimate ä, are simultane- 

ously provided to a single KF which has been designed and tuned specifically for state estimation 

performance (note that the single state estimator could have different dimension and tuning charac- 

teristics than any of the elemental filters in the MMAE). Thus, the goal of simultaneous parameter 

and state estimation is achieved in a relatively straightforward manner. 

In addition to the goal of providing accurate state estimation in the face of uncertain parameter 

variations, an additional objective of this research is to provide the designer with a useful tool for 

analyzing and predicting M3AE performance. Typically, a covariance analysis tool has been avail- 

able for analyzing and predicting performance for linear systems driven by white Gaussian noise, 

and whose available measurements are linear and corrupted by white Gaussian noise. One run of 

such a covariance analysis generates the time history of the covariance of the true estimation errors 

committed by a given Kaiman filter in a specified "truth model" environment. Additionally, since 

the covariance expressions are independent of the actual measurement time history, a covariance 

analysis may be accomplished without actually running a simulation. Thus, one particular use for 

covariance performance (sensitivity) analysis is to perform Kaiman filter tuning before applying it 

to real-time use [43]. Covariance analysis tools are essential in the initial design process since time 



consuming multi-run Monte Carlo studies may be avoided until a viable design option is chosen and 

detailed performance analysis is required. 

Designers employing MMAE-based systems have had filter-computed state estimation error 

and parameter estimation error covariance expressions available for making design decisions, but 

at least a single Monte Carlo run was required to generate the actual measurement histories and el- 

emental filter probabilities required to solve those covariance expressions [44] (see Section 3.3 for 

further discussion). Any new and viable architecture should have a similar tool available to design- 

ers. As shown in Figure 3, a designer developing a system based on the M3AE architecture may 

conduct an approximate covariance analysis of the M3AE state estimates after a single Monte Carlo 

run on the MMAE-based parameter estimator within the M3AE architecture. The single Monte 

Carlo run provides the time histories of the parameter estimates, ä(U), the MMAE-computed er- 

ror covariance, Pa{U), and their associated elemental filter probabilities, Pj{U). This information 

is then provided to the approximate M3AE covariance analysis tool, which produces the required 

covariance analysis information to conduct a performance or sensitivity study of the M3AE. The 

theory supporting this new approximate covariance analysis tool is presented in detail in Chapter 3. 

As shown in Figure 3, the approximate covariance analysis tool allows efficient iterative loop- 

ing to the left of the dashed line, before final full-scale Monte Carlo analysis is accomplished. The 

effectiveness of the approximate covariance analysis will be demonstrated by comparing it to the 

corresponding full-scale Monte Carlo analysis results from two applications presented in Chapter 4. 
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Figure 3. Performance Analysis Tool for M3AE 

1.2 Background 

One common application area of parameter estimation and event detection is FDI, where the 

goal is to detect the onset of a failure and its associated failure type accurately. This section briefly 

discusses FDI and presents the four techniques mentioned earlier (Chi-Square, GLR, MMAE, and 

DKF) from an FDI perspective. This is done to provide a common frame of reference for comparing 

the techniques, even though the two examples presented in Chapter 4 are concerned with parameter 

estimation and event detection, not FDI explicitly. 



Failure detection algorithms typically analyze multiple information sources to determine if a 

fault has entered a system. A fault could range from a bias on an incoming measurement to a hard 

failure of an entire subsystem. Each failure detection algorithm differs in function and complexity. 

They range from simple algorithms to detect the existence of failures in the system, to complex al- 

gorithms which detect, isolate and recover from faults. However, despite the differences in various 

algorithms, the fundamental objective of failure analysis is to determine failures based on discrep- 

ancies between different information sources [80]. 

Thus, failure analysis depends on the availability of multiple information sources providing 

redundant information, projected into the same reference frame. Multiple information is critical, 

since with only one source of information, failed operation is not easily distinguished from normal 

system operation. Additionally, if the information is not transformed into a common reference frame, 

there is no common basis for comparison [28]. Note, however, that the examples presented in 

Chapter 4 are not FDI-related and as such, do not rely on multiple information sources. 

Identification of failure types is also critical to failure analysis and subsequent fault recovery. 

In general, a thorough failure mode analysis must be performed in any given application, in order 

to provide an adequate set of hypotheses to use as a basis for the FDI system. Analogously, with 

regard to this research, a thorough event analysis is required to serve as a basis for the elemental 

filter selections within the MMAE structure. Then, for effective fault recovery, corrective feedback, 

determined from failure mode analysis, is often required. For example, if a measurement bias is 

identified, corrective feedback enables the system to "remove" the bias for continued operation. 

Given this basic understanding of failure analysis, this section presents the general theory be- 

hind four design options including the Chi-Square Test, GLR testing, DKF, and MMAE based tech- 

niques. Additionally, the drawbacks to using Chi-Square Test, GLR Testing, and DKF are presented, 



compared to the benefits of an MMAE based architecture. Each technique is evaluated with respect 

to its ability to conduct effective FDI. 

1.2.1   The Chi-Square Test 

The following section parallels the discussion presented in [77]. The Chi-Square testing al- 

gorithm assumes a Kaiman filter is used to blend the multiple information sources and calculates 

a random variable x(h) based on the filter outputs [51,64,66,68,76]. The Chi-Square test uses 

information from Kaiman filter measurement residuals, r(U) = z(U) — H(£j)x"(?~") (where H(ij) 

is the measurement matrix used within the filter and x(t~) is the filter's predicted state value at 

time £j before the measurement at U is incorporated), to decide whether a failure has occurred. If 

the filter model matches the "truth" model, then the residuals will be a zero-mean white Gaussian 

process with known residual covariance, A(U) = H(£;)P(i~)HT(£j) + R(t,) (where P(£~) is the 

conditional covariance of x (U) before the measurement z(£;) is taken and processed, and where 

R(£i) is the covariance of the measurement noise) [43]. If the residuals r(ij) have larger magni- 

tudes than anticipated by the filter-computed residual covariance A(ti), a mismatch between the 

truth and filter-assumed model has occurred, implying the onset of a failure. These increased mag- 

nitudes may appear as a nonzero mean or a change in the covariance of the residuals. The chi-square 

random variable, x(*fe)» provides a test statistic that puts a quadratic penalty on variations in the 

residuals. Thus, given m-dimensional residuals, r(ti): 

X(tfc)   =       ]T    r^A-^Mii) (1) 
i=k-N+l 



is a Chi-Square random variable with Nm degrees of freedom, where N is the size of a window 

sliding across the residual values (used to make decisions based on the most recent N residuals). 

Note that this test relies only on information in the residuals. 

If the system is operating normally (no failure - the H0 hypothesis), then x(tk) should remain 

relatively small. However, if a failure occurs (the Hi hypothesis), the statistics associated with r(£j) 

should grow larger than anticipated through A(£j), and x(tk) should increase in size. Thus, failure 

detection is accomplished by using a simple detection rule, based on a predetermined threshold 

value T > 0, of the form: 

x(tk)   >   T       =>       FAILURE 

X(tk)   <   T       =>       NO FAILURE (2) 

Note that the size JV of the averaging interval window and the threshold T are design parameters. It 

is the designer's goal to determine an acceptable trade-off between false alarms (declaring Hi when 

actually Ho) and missed alarms (declaring Ho when actually Hi), noting that as T increases, the 

probability of false alarm decreases, but the probability of missed alarms increases. 

Previous work indicated the Chi-Square test as a highly effective and consistent failure detec- 

tion technique [56,76,80,81]. However, the algorithm is unable to perform failure isolation or re- 

covery. Moreover, for this research effort "parameter" isolation and estimation is required for input 

into the state estimator. 

1.2.2   Generalized Likelihood Ratio (GLR) Testing 

The following section parallels the discussion presented in [77]. The GLR test is similar in 

nature to the Chi-Square test, but with the added benefit of failure detection and isolation. It is 

designed to distinguish between different types of failures and to estimate the magnitudes of the 

failure types [66,74,80,81]. Like the Chi-Square test, the GLR test can exploit the residuals of 
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a Kaiman filter as its basis for failure analysis and FDI. The GLR test also does a threshold test, 

however, it compares a generalized likelihood ratio function, l(U, 9) (generated from the ratio of the 

log-likelihood of possible hypotheses), to a predetermined threshold to determine whether or not a 

failure has occurred. It is derived from the GLR equations described below [56,76,80-82]. 

The hypotheses are established with a Kaiman filter based on Ho (no failure) and matched 

filters based on Hi (a specific failure type added to the system). The ratio of the log-likelihood of 

the two hypotheses will be used to generate a generalized likelihood ratio function, l(ti, 9), to be 

defined explicitly later in this section (see Equation (14)), which is used to declare failures via: 

l(U,6)   >   T       =>       FAILURE 

l(ti,9)    <   T       =»       NO FAILURE (3) 

If l(ti,6) is less than the predetermined threshold, T, then Ho is declared true. Similarly, Hi is 

declared true if l(U,9) is greater than T. The parameter 9 is the unknown time of the failure. The 

remainder of this section describes the derivation of the GLR algorithm for a single, step failure. 

The following are the model equations upon which a Kaiman filter might be based: 

x(U) = *(*», *i-i)x(ti_i) + Gd(ti_i)wd(tj_i) (4) 

with discrete measurements described by: 

z(ti) = H{ti)x(ti) + v{ti) (5) 

The matching filters are designed for failure detection, not state estimation, and are based upon: 

x{ti) = *(ti, U-iMU-i) + Gd(ti-i)wd(ti_i) (6) 

z(U) = H(ti)x(ti) + v(U) + d(UMU, 9)u (7) 

where 
d(tj)        =    failure vector 
n(ti,9)    =    failure function 
v =    unknown size of the failure 
9 =    unknown time of the failure 
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Comparison of Equations (5) and (7) indicate that the matching filter characterizes failures 

by modeling them as variations in the actual measurements beyond the variations caused by the 

dynamics of the system or measurement noise, as indicated by the failure offset term, d(ti)n(ti, 9)u. 

Although the failure is modeled as a bias on the measurement, this model can also represent changes 

in the states caused by real world anomalies. The failure function term, n(ij, 9), indicates the time 

of the failure onset, 9, within a predetermined sliding "window" of time, and the type of failure 

that has occurred; i.e., ramp offset, step offset, etc. A sliding window of predetermined length is 

used to avoid a growing set of hypotheses and slides in time to cover all the data collected (as the 

window slides in time, the oldest data in the window is discarded as the new data enters the filter - 

maintaining the same total amount of information). The v term is the magnitude of the failure and 

can be estimated by the GLR algorithm and can also be used for corrective feedback. The column 

vector, d(ij), specifies which of the measurement signals has the failure. In general, the likelihood 

ratio function, l(U, 9), is based on maximum likelihood estimates of 9 and v. The goal of the GLR 

algorithm is to identify the failure signal by recognizing variations in the residuals from their normal 

operating values. 

The Kaiman filter residuals r(ij) are defined as 

r(*0 = z(U) - H(U)x(tr) (8) 

and the residuals for each hypothesis are described by 

H0    :    T(U) = T°{U) 

Hi    :   r(ti) = r°(ti) + g(ti,ö)i/ (9) 

When the system is operating under normal conditions, the Kaiman filter tracks the true states, 

and r°(£j) is zero-mean white Gaussian noise with covariance A(U) = H(tj)P(£~)H(i,)T+R(£i). 

When a failure occurs, a signal of unknown magnitude, g(t{,9)u, will be present in the residuals. 
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This signal is the failure residual offset and found through 

g(ti, 9) = -H(ti)f(U, 9) + d{ti)n(tu0) (10) 

where the recursive failure quantity f (£j, 9) is given by 

f(ti+1,9) = *(ti+1, U) [I - K (U) H (*<)] f (<i, Ö) - *(*i+1, ti)K(ii)d(ti)n(ii, Ö) (11) 

Note that the GLR algorithm is a function of the overall system behavior (3> and H) and Kaiman 

filter gain K as shown in Equations (10) and (11). If the failure is assumed to occur at the beginning 

of the sliding window discussed earlier, then Equations (10) and (11) can be simplified by setting 

n(ti,9) = 1 for alii,: 

g(*0 = H(*0f (U) + d(U) (12) 

f(ti+i) = *(*i+i,tO[I - K(ti)H(ti)]f(ti) - *(ti+i)ti)K(ti)d(ti) (13) 

The primary reason for this simplification is to reduce the computational burden associated with 

calculating several GLRs based on different values of 9. However, the consequence of this simpli- 

fication is a delay in detecting the failure caused by waiting for the failure to reach the beginning of 

the sliding window. The Kaiman filter outputs combined with the matching filter model determines 

the magnitude of the generalized likelihood ratio function defined as 

'<*■»> = i$ <14) 

where 

S(U,9)   =   ^gT^A-^-Mt,-) (15) 

is essentially the correlation of the observed residuals with the abrupt change signatures given by 

g(*i, 9) for the different hypothesized types and times of occurrence. Furthermore, 

C(ti,9)   =   J2gT(tj,9)A-1(tj)g(tj,9) (16) 
3=1 
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is interpreted as the amount of information present in z(*i),..., z(U) when an abrupt change occurs 

at time 9. In both Equations (15) and (16), A(tj) is given by 

A(tj) = H(tj)P(tJ)HT(tj) + R(tj) 

and the maximum likelihood estimate (MLE) of the unknown magnitude of the failure, u, is found 

by 

The residual covariance A(i,) and the residuals are combined in Equations (10) and (11) or 

Equations (12) and (13) to form a linear combination of the residuals S(ti,6) and a deterministic 

value C(U, 6) defined in Equations (15) and (16). Finally, the decision rule given by Equation (3) 

is used to determine the system's failure condition. 

Thus, the GLR algorithm involves a single Kaiman filter, a matched filter, and the likelihood 

calculation. It determines failures by observing changes in the filter residuals and calculates the 

likelihood of each possible event by correlating the residuals with the corresponding failure signa- 

ture. Figure 4 depicts an example of a multiple GLR test with a bank of matched filters designed for 

the no failure and step failure modes. The Kaiman filter provides its residuals to the bank, wherein 

each filter is tuned to a certain type of failure mode. Each matching filter's output is tested against 

a hypothesis, H^, corresponding to each hypothesized failure mode. An MLE is computed for each 

specific hypothesis. Each MLE is fed into the common test logic algorithm, similar to Equation (3), 

to determine the correct hypothesis. 

14 



r 
FDI BLOCK | 

Sensors Kaiman 
Filter No Fail Test i r^ 

Fail? 11 

Step 

\ Bank of Matching Filters      j 

Correctio • 

Figure 4. Multiple GLR Testing 

One of the key benefits of the GLR test is the need for only one Kaiman Filter. Additionally, 

only one matching filter is required for each failure type, since the algorithm estimates unknown 

variables, such as the magnitude of the failure type, in the FDI process. This is a great computational 

load benefit, especially in comparison to other multiple model techniques. 

Even though GLR has been successfully applied to a wide variety of FDI applications [56,66, 

76,80,81], there are some limitations which include: 

1. It has difficulty handling any parametric changes which may occur in the model due to changes 

in the system's operating condition. Thus, it is difficult for the GLR to model the dynamic nature 

of a system and its sensors to represent their behavior in the presence of failures. Therefore, 

typical GLR tests lack robustness since they are unable to detect parametric changes while 

looking for additive changes. 

2. While detection of abrupt changes is a GLR's strength, detection of ramp failures is difficult. 
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An unacceptable time delay may occur since the ramp-corrupted signal is slowly moving away 

from the desired signal and takes more time to cross the failure threshold [76]; thus, depending 

on the length of the sliding window, the GLR test may fail to detect the failure. An additional 

drawback is that 'windowing' the estimate of 6 leads to a direct reduction in the accuracy of 

the estimate of the size of the failure, v. 

3. Windowing may also cause an unacceptable delay in the identification of failures. 

A direct comparison between the M3AE and GLR/chi-square was not accomplished in this 

research effort. However, White [78] accomplished an indirect comparison of conventional MMAE- 

based techniques with a GLR/chi-square based technique applied to an FDI study performed by 

Vasquez [76] on a GPS/INS based system. The following observations were made: 

1. Both methods were effective at detecting interference failures (represented by increased 

measurement noise variances), but the GLR/chi-square based scheme suffered from much larger 

time delays as compared to the MMAE. 

2. The GLR/chi-square scheme also experienced large time delays when returning to a nominal 

no-fail declaration after receiving a large amount of interference, as compared to the MMAE. 

3. Additionally, the GLR/chi-square algorithm suffered from its inability to detect/identify ramp 

failures adequately. 

In summary, the GLR/chi-square failure testing scheme experienced unacceptable time delays 

compared to the MMAE-based techniques, especially in the face of bias-like failures. 

1.2.3   Multiple Model Adaptive Estimation (MMAE) 

The Kaiman filter's ability to produce accurate estimates of the true states of a physical system 

is limited by how well its internal dynamics model adequately describes the true system dynamics. 
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This implies that the correct values of the parameters which describe the dynamic system (for ex- 

ample, the coefficients of the system differential equations) must be embedded in the filter model; 

however, some of these parameters are often unknown to the designer and/or changing in time. One 

method of dealing with this situation is through Multiple Model Adaptive Estimation (MMAE) [2,3, 

15,22,36,44,46]. A promising alternative for FDI rests in the application of the MMAE technique. 

MMAE, like GLR and Chi-Square tests, exploits Kaiman filter residual information, but it does so 

using multiple Kaiman filters, each based on a specific hypothesis. The major strength of MMAE 

rests in its rapid response to changes in the real world. The MMAE algorithm [2,3,14,15,19,20,22, 

22,30,33,35,36,38,41,44,45,49-51,53,54,57,68-70] naturally exploits the capabilities of paral- 

lel processing. By running multiple filters in parallel, residual information at each update is used to 

reconfigure the system rapidly to failures. Unlike the GLR algorithms which implement only a sin- 

gle Kaiman filter (and model failures using matching filters), the MMAE employs multiple Kaiman 

filters to model the dynamic nature of the system (and its sensors) and to represent performance in 

the presence of specific hypothesized parameter (failure) conditions. However, an inherent trade- 

off exists between accurate parameter estimation, and accurate state estimation. Specifically, if one 

tunes the MMAE bank for optimal parameter estimation, then these same tuning values will often 

result in less than optimal state estimation. This is addressed in Chapter 2. Many researchers have 

focused on exploiting the capability of MMAE to provide state and parameter estimation as well as 

attempting to blend them ideally [2,3,5,14,15,17-22,26,27,32-35,41,43-47,50,53,54,57,67-73]. 

The MMAE's basic structure is shown in Figure 5. It is composed of a bank of Kaiman filters, 

called elemental filters, which each use their own unique model to develop an estimate of the current 

states, Xj, independent of the other filters. Each elemental filter then uses this estimate, along with 

the current measurement, z, to form its residual, Vj — the difference between the measurement and 

the filter's prediction of the measurement before it arrives, based on its hypothesized model. The 
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residuals from the filters are used by the hypothesis testing algorithm as a relative indication of how 

close each elemental filter model is to the true model; the smaller the residual (or scaled residual, as 

discussed next), the closer that filter model represents the true model. The hypothesis testing algo- 

rithm first scales the residuals to account for anticipated magnitudes under its presumed hypothesis 

being correct by forming rJ(ii)Aj1(i,;)r:,(i,;) (where Aj(ti) = Hj(ii)Pj(i~)Hj(ii) + ~Rj(U) is 

the residual covariance as computed by the j-th elemental filter), and then computes the conditional 

probability, pj, for each of the hypotheses modeled in the bank of Kaiman filters, conditioned on the 

measurement history observed up to that time (see equations in the Chapter 2). Each filter's state 

estimate, x.j, is blended together through a probability weighted average based on the conditional 

probability, pj, ofthat filter modeling the true system operating condition. This blending allows for 

partial failures in a sensor or combinations of failure types, or parameter values between the discrete 

parameter point values used to define each hypothesis. A high probability of almost one indicates 

that a filter is extremely accurate in its modeling and will almost completely determine the final 

blended estimate, while all other model estimates will receive almost zero weighting. 

From a parameter estimate standpoint, monitoring the elemental filter residuals or the condi- 

tional probabilities will provide insight into the operating condition of the system. Additionally, it 

will be shown in Section 2.1 that the parameter estimate ä can be found directly via a probability- 

weighted average of the discrete a.j values associated with each elemental filter, as a best estimate 

of the current system operating condition. It is important to note, that the number of elemental fil- 

ters will affect the granularity of the parameter estimation and ultimately the accuracy of the state 

estimation. 

A benefit to the MMAE structure, as opposed to a GLR, is its inherent ability to handle ramp- 

type failures, even though its elemental filters might only be based on constant -offset hypotheses. 
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This is true since, as the ramp magnitude grows in time, blended estimates should indicate the effects 

of the actual ramp on the various elemental filters. 

Additionally, a significant benefit of MMAE is that the bank of Kaiman filters, if well designed, 

can span the failure space. As long as the system is affected by a failure within the scope of the 

failure field, the filter is able to detect the occurrence of that failure; therefore, within the scope of 

the failure space, MMAE is a very effective FDI algorithm [44,47,49,53,54]. 

A major drawback of the MMAE is the potential for a large number of Kaiman filters to span a 

realistic failure space adequately, creating a computational burden. If the MMAE is not implemented 

with a spanning set of filters, pertinent failure modes may not be modeled, resulting in poor residuals 

and limited accuracy of the blended state estimates. The same effect is possible if the discretization 

of the failure space is too coarse. 

The MMAE concept and the various methods used to enhance MMAE performance will be 

explained in greater depth in Chapter 2. 

1.2.4   Distributed Kaiman Filtering (DKF) 

An alternative to the stand-alone or "centralized" Kaiman filter is the distributed Kaiman fil- 

ter (DKF). This section focuses on the DKF method developed by Carlson [8-10,37]. The DKF, 

also called the federated filter, is another parallel structure like MMAE and a brief comparison of 

these algorithms will be presented after the basic structure of the DKF is introduced. DKF is based 

on simple and effective "information-sharing" methodology. The basic procedure involved in this 

information-sharing is [37]: 

1. Divide the total system information among several component filters. 

2. Perform local time propagation and measurement update processing (adding local sensor 

information when available). 
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3. Recombine the updated local information into a new total sum. 

For example, in the multi-sensor navigation system shown in Figure 6, sensor measurements 

are sent to local filters (LF), which operate autonomously and possibly at different data rates. Each 

local filter receives sensor data from a "main sensor" such as the INS and an independent sensor 

such as the radar altimeter. Thus, this local filter holds part of the total system information. The 

remainder of the system information is contained in a master filter (MF). The information from the 

local filters is then "fused" with information in a master filter to form a full solution based on all 

of the system information. Depending on the DKF configuration being used, the MF may provide 

feedback to the LF's by resetting the initial conditions of the LF's. This reset may or may not contain 

the fused solution. The goal is to duplicate the performance of a single centralized filter for the same 

problem. 

The advantages of the federated filter's information sharing technique are [37]: 

• The distributed nature of the federated filter allows parallel processing in the local filters, 
possibly increasing total system throughput (measurements processed per second). 

• System throughput is also increased by using local filters for data compression. 
• System reliability is improved by maintaining multiple local solutions usable as backups. If a 

local filter gets corrupted, information from other local filters or the master filter can be used to 
restart the corrupted local filter. 

• The federated filter allows the ability to detect difficult sensor faults, in particular slowly- 
deteriorating sensor data or 'soft faults', which may be difficult to do in the centralized Kaiman 
filter. Moreover, in the event of undetected faults, estimates in other local filters do not get 
corrupted. 

• System development, test and maintenance costs can be reduced by using multiple local filters, 
since the local filters should be of lower dimension and complexity than one inclusive centralized 
Kaiman filter. Furthermore, adding a new sensor simply involves developing a new local filter 
and integrating it with the master filter, versus upgrading one, typically complex, centralized 
Kaiman filter. 

In Figure 6, there are s local filters and one master filter, totaling r = s + 1 filters. Note that 

each sensor sends measurements to a local Kaiman filter which can operate independently as shown, 

or with information 'feedback' from the MF to each LF (not shown for simplicity). 
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When comparing MMAE and DKF it is important to note the following differences 

• The elemental Kaiman filters in an MMAE process all the measurements in the system and differ 
from one another according to their discrete assumed values of the parameter vector a. The local 
Kaiman filters in a DKF process the measurements from a "main sensor" and an independent 
sensor and differ from each other according to their components of the measurement vector z. 

• The structure of the DKF master filter differs from a standard Kaiman filter as it only propagates 
its state estimates and covariances using inputs from the local filters - as opposed to making 
updates based on the raw sensor data. In fact, depending on which DKF information fusion 
scheme is employed (see [9,10] for details of the various fusion schemes), the MF may not 
propagate anything and may simply be used to fuse the LF solutions. 

The remainder of this section provides a brief description of Carlson's development which 

applies information-sharing principles in its use of multiple LF's and one MF [8], Let the full (global) 

filter solution (as would be computed by a single centralized Kaiman filter) be described by the state 

vector x/ and the covariance matrix P/. Analogously, let the kth(k = 1,2,..., s) local filter solution 

be denoted by xfc and Pfc, and the master filter solution by xm and Pm. Then two key assumptions 

are made concerning the following DKF development: 1) the measurement errors from each of 

the sensors are statistically independent; and 2) the errors in LF and MF solutions are statistically 

independent. 

These assumptions seem rather bold and quite probably impossible to verify in a real-world 

application, especially since the MF is fed by all the LF's and it will thus have errors that will gen- 

erally be correlated with the LF errors. Additionally, when using error state space Kaiman filters 

as in the GPS/INS example in Chapter 4, the above assumptions imply that the errors in the differ- 

ence measurements are independent. This independence is difficult to accept since the filters are 

utilizing the same measurement sources for the difference measurements, resulting in correlation 

between the errors. However, in practice, DKF algorithms have yielded useful performance despite 

the violation of these assumptions [8,10]. 

Now, if it is also assumed that the LF's and MF all have the same state dimensionality (this is 

not a practical assumption as the filters may be chosen to have a different number of states, but is 
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used here to demonstrate the general idea) and given that assumptions 1 and 2 above hold, the LF 

and MF solutions can be optimally combined by the following additive information algorithm [9, 

10]: 

P71   =   p-i + pri+p-i + ... + Pa-i 

PJ1*,   =   p-^ + P^xj+P^xa + .-. + P;1^ (18) 

where P_1 is the information matrix for the jth filter at time t~ or tf and it is assumed that all cross- 

correlation terms among filters are zero as mentioned above. Now, starting with the full solution 

matrix, this solution can be divided so that the local filters and the master filter each receive share 

fractions ßj of the total information 

PJ1    =   P^+P^+P^ + .-. + P;1 

= P71/3m + P71/?i + P71/?2 + --- + P71/?s 

and P"1 = Pfßj or P, = Pfßj1 (19) 

where the "conservation of information" principle [8-10,37] requires that the share-fraction values 

sum to unity 
m,s s 

Hßj   =   /?m + £/3fc = l (20) 
3=1 fc=i 

so that the LF's and MF fractions can be recombined to yield the total correct solution per Equation 

(18). Note that the index k includes the LF's (k = 1,2,..., s) and the index j includes both the LF's 

andtheMF(j = m; l,2,...,s). 

Next, consider the propagation of the covariance matrix for each filter. This process can be 

performed by each component filter independently, in parallel, assuming the common process noise 

information is divided in the same way as the fused solutions; so we have just imposed another 
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assumed constraint. Thus, the standard covariance propagation equation can be employed 

Pj(tr) = *J-(ti,ti_1)PJ-(t+)$J(ti,ti_1) + Gdj(ti-i)Qdj(ti.l)Gl(U-i) (21) 

where the j (j = m; 1,2,..., s) subscript represents both the LF's and MF values of <fr, Gj, and Qd. 

Again it is assumed that the LF's and MF are all full-sized; so the state transition matrices 3>fc and 

<frm are equal to <&/, and the noise distribution matrices Gdfc and Gdm equal Ga/. The process 

noise covariance matrices Qdfc and Qdm are governed by the information-sharing rules 

Qd"/1  = Qd"m + Qd"i1 + Qd"21 + --- + Qd-1 

and QJ/ = Q~}ßj or Qdj = QdfßJ1 (22) 

Thus, given the components Pj and Qdj, obtained by Equations (19) and (22), we can propagate 

the solution, component-wise, and form the solution P/ 

Epj^r+i) = EKp/^^^^J+Gd/Qd/^^j/ 
i=i 

i-i 

m,s 

EßJ1 

3=1 

[*fPf(tf)*] + Gd/Qd/G^]-1 = PjHt^)     (23) 

Finally, for measurement update process, each local filter incorporates discrete measurements 

Zk from the kth LF Measurement information is added to each LF by 

pfc       -   pfc     +HfcRfc Hfc 

>-i+^+ Pfc'^fc+HfcR^Zfc (24) 

where the superscript '+' refers to post-measurement values and the '-' refers to pre-measurement 

values. The fusion algorithm in Equation (18) is then used to find the total solution, i.e., the solution 

that would be found by a single Kaiman filter processing all of the A; = 1,..., s measurement sets. 

In summary, the federated filter solution will provide the same estimates as that of a single, 

centralized Kaiman filter, and is globally optimal when certain assumptions are satisfied: 
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1. Each filter employs a single ßj value for all of the full-system states and process noises. 

2. Equations (19) and (22) are valid. 

3. The information fusion and reset equations (which include Zero, Fusion, and No Reset - see 

[9,10]) are performed after every measurement cycle. 

4. All filters have the same dimensions and thus the same state-space formulation for the common 

sensors states (the ENS in this discussion). 

However, in actual practice, some deviations from these assumptions can be made, with small 

loss of optimality [8-10,37]. First, the federated filter can be implemented such that the local filters 

are of minimum size, where each local filter (filter k) contains only the common sensor (INS) states 

and the states unique to the kth sensor. Thus, the Pfc, 3?fc, Qdfc, and Gat matrices contain only the 

appropriate common and local kth sensor error state partitions of the full matrices. The ßj fraction 

values are presumed to apply only to the common states, since only those states are shared among 

the LF's and the ME Finally, depending on the DKF implementation mode chosen (see [9,10] for 

detailed descriptions of implementation options), the MF may contain only common sensor states, 

or it may additionally contain some LF sensor error states. In this case, the Pm, 3>m, Qdm. and 

Gdm matrices will contain the appropriate partitions, and the ßm fraction values will be applied 

accordingly. 

Also, there are several reasons for not wanting to perform the fusion/reset process after every 

measurement update: 

• Reduce the computation load caused by the fusion and reset operations. 
• Reduce database loads between LF processors and the MF/fusion processor. 
• Eliminate the requirement to synchronize the fusion/reset operations with the LF measurement 

update cycles. 
• Prevent corrupting all the LFs and MF with bad data from one of the local filters. 
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Carlson has shown that the multi-step fusion/reset process can be performed in the same way as 

the single-step process [8-10,37]. As in other implementations of standard Kaiman filters, the LFs 

may be designed to perform updates to the MF at reduced rates. However, the MF will ignore some 

information that could in principle be used. Thus, operating the LF's and MF independently over 

several time steps is equivalent to ignoring an available measurement at each inner step, a suboptimal 

(since the MF uses only part of the information potentially available to it) but computationally 

effective approach. 

The DKF may be a viable alternative to the MMAE recommended solution, but was not pur- 

sued any further. Nevertheless, it should be considered a strong candidate for further investigation 

for implementation in this new architecture. 

1.3  General Approach 

The problem of estimating both parameters and states, effectively, is the focus of this research. 

The new M3AE architecture (shown in Figure 2) for adaptive filtering using MMAE and Kaiman 

filtering techniques is proposed, developed, and tested. It simultaneously provides : 

• Parameter estimation for sampled-data systems from the MMAE portion 
• State estimation for sampled-data systems from the additional single Kaiman filter within the 

M3AE structure. 

The new architecture, M3AE, provides an enhanced multiple model approach to accurate state 

and parameter estimation, with better performance than obtainable from previous methods. The 

elemental filters within the MMAE portion of the algorithm may have different tuning (and even 

structure and state dimension) than the single filter used to produce accurate state estimates, since 

this MMAE algorithm is devoted to the goal of accomplishing hypothesis testing effectively. In 

parallel, there is a state estimator that is devoted to high precision state estimation, as shown in 

Figure 2. Two previous research examples [69,70,78] are used to evaluate the performance of the 
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M3AE architecture. The M3AE outperforms the conventional MMAE and nonadaptive filters used 

in previous research, as shown in the examples presented in Chapter 4. 

For parameter estimation, an MMAE based technique is pursued. The focus is accurate pa- 

rameter identification, not state estimation; i.e., the parameter estimator is designed and tuned for 

estimating the current system "operating condition," optimized for distinguishing between possible 

hypothesized conditions rather than being optimized for state estimation performance. Sheldon's 

research [69,70] provides an effective method for choosing the discrete parameter values from the 

continuous parameter space to be used as a basis for the elemental filters, versus previous ad hoc 

trial and error methods. Moreover, the discretization is optimized for parameter estimation in the 

M3AE, versus being optimized for state estimation in the conventional MMAE. This discretization 

yields improved M3AE performance in both parameter and state estimation. Additionally, Lund's 

multiple model estimation with Inter-Residual Distance Feedback (IRDF) technique (directed to- 

ward model discrimination, not state estimation precision) is used for distinguishing the "correct" 

current system operating model in an enhanced manner via on-line tuning of filter gains (see Section 

2.3). IRDF can be used much more effectively in the M3AE architecture than in the conventional 

MMAE architecture for which it was originally formulated, as will be shown in this research. 

Additionally, given an accurate parameter estimate, it is desired to estimate the system states 

accurately. Thus, the single Kaiman filter state estimator within the M3AE must be designed and 

tuned for good state estimation, once told the unknown parameters ä, of the system, by the MMAE 

portion of the M3AE architecture. 

Finally, given an M3 AE-based design, an evaluation tool is essential for predicting performance 

as well as for filter tuning. Therefore, a new approximate covariance analysis tool is developed and 

implemented for the M3AE architecture. Figure 3 shows how this tool could be used during the 

design process. 
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Two examples demonstrate the M3AE's performance improvement over that of conventional 

MMAE's from previously published results. The first example involves a simple second-order me- 

chanical translational system, in which the system's undamped natural frequency is the uncertain 

parameter. The second example involves a 13-state nonlinear Global Positioning System/Inertial 

Navigation System (GPS/INS) integration, in which the variance of the measurement noise affect- 

ing the GPS outputs is the uncertain parameter. 

1.4 Summary 

Chapter 2 presents conventional MMAE theory in more detail and sets the foundation for the 

analytical development of the M3AE architecture presented in Chapter 3. Chapter 2 also summa- 

rizes various adaptations to the basic MMAE technique including: Sheldon's optimal parameter 

discretization technique [69,70], Lund's IRDFMMAE [35], moving-bank MMAE [20,37,46,68], 

and hierarchical MMAE [50,73]. 

An MMAE-based architecture provides the foundation upon which the M3AE is laid. Chapter 

3 develops the explicit recursions related to the new M3AE architecture which solves the problem 

of estimating states and parameters simultaneously. It provides the analytical development asso- 

ciated with the new M3AE architecture. Additionally, an approximate covariance analysis tool is 

developed for the M3 AE architecture which gives the designer the ability to analyze and predict sys- 

tem performance before actually implementing the M3AE or conducting a full-scale Monte Carlo 

analysis of its capabilities for a given application. 

The MMAE-based parameter estimator in M3AE architecture is designed using Sheldon's op- 

timal parameter discretization technique which assumes steady state, constant-gain Kaiman filters 

[69]. However, in actual practice, many systems never achieve steady state since they are nonlinear 

and possibly unstable or astable. Therefore, Chapter 3 also presents an extension to Sheldon's opti- 
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mal parameter discretization technique for unstable or astable, or time-varying and possibly nonlin- 

ear, problems using a finite horizon assumption and constrained optimization techniques to generate 

an approximate solution to the parameter discretization problem. 

The MMAE-based parameter estimator is further enhanced through Lund's IRDF method ap- 

plied to sampled-data measurements case. Chapter 3 develops the discrete-time IRDF, which will 

be shown to be more useful when applied to the M3AE architecture than to the standard MMAE, 

for which it was developed originally. 

To demonstrate the M3AE's performance improvement over previously published results in- 

volving conventional MMAE's, two examples are developed and their results presented in Chapter 

4. The first example involves a simple second-order mechanical translational system, in which the 

system's undamped natural frequency is the uncertain parameter. The second example involves a 

13-state nonlinear integrated GPS/INS system, in which measurement noise affecting the GPS out- 

puts is the uncertain parameter. The results demonstrate application of the theory, the viability of 

performance predictions, and the actual performance achievable with an M3AE compared to con- 

ventional MMAE and other methods. Finally, Chapter 5 presents the conclusions derived from this 

research and proposes areas for future research. 
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Chapter 2 - MMAE Development 

This chapter describes the MMAE in greater detail to set the foundation for development of the 

M3AE architecture in Chapter 3. The MMAE was originally proposed by Magill to provide accurate 

state estimation under parameter variations [36]. MMAE techniques have been investigated since 

the early seventies with a significant increase in research occurring subsequent to the development 

of microprocessors and distributed computation [2,3,14,22,36,44,46]. This section will present the 

fundamentals of the MMAE algorithm in detail and various techniques that have been researched 

to enhance the performance of the MMAE concept, including Sheldon's optimal discretization of a 

continuous parameter space for the basis of MMAE elemental filter designs, Lund's inter-residual 

distance feedback technique for enhanced parameter estimation, Moving-Bank MMAE, and hierar- 

chical structures. 

2.1 MMAE Fundamental Development 

The basic concept of MMAE was presented in Section 1.2.3 under the assumptions listed below 

[44,46,75]: 

• The sampled-data system is adequately represented by linear stochastic state models for a 
given parameter vector value, resulting in Gaussian probability density functions, and can be 
described equivalently by linear stochastic difference equations [44,46]. If nonlinear models are 
required to describe the system adequately, then extended Kaiman filters would replace the linear 
Kaiman filters in the MMAE structure and the associated probability density functions would 
be approximated as Gaussian. This simplifying assumption enables nonlinear modeling while 
recognizing the potential suboptimality in assuming Gaussian densities. 

• The uncertain parameters to be estimated affect the system matrices or the statistics of the noises 
entering the system. This assumption covers a very broad class of problems since only the choice 
of measurement sources and choice of state variables are considered fixed. 

• A parameter value typically varies over a continuous range of parameter space. Thus, parameter 
values will have to be discretized to some level of resolution for feasible implementation. Clearly, 
poor choices in discrete values for a continuous parameter would result in poor modeling by the 
MMAE elemental filters and thus poor estimation from the entire MMAE algorithm itself. This 
results because there might not be an elemental filter within the MMAE bank that has a good 
model of the system's current behavior. Sheldon's research provides a clear method for choosing 
the discretization required for a design problem [70]. His technique is used in the two examples 
presented in this research. 
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Given the assumptions listed above, the development presented in [44,46,53,54] is closely 

followed. Let a denote the vector of uncertain parameters in a given linear stochastic state model 

for a dynamic system (the equations describing this model are presented below). These parameters 

can influence the matrices defining the structure of the model or depict the statistics of the noises 

entering it. In order to make simultaneous estimation of states and parameters tractable, it is as- 

sumed that a can take on only one of Nf discrete representative values (discretizing an originally 

continuous parameter space will be described in detail in Section 2.2). 

More explicitly, let the model corresponding to a; be described by an "equivalent discrete-time 

model" ([44,45]) for a continuous-time system with sampled-data measurements: 

Xj-(ti) = $j-(ti,*i_i)xj(*i_i) + Bdj(ii_i)u(ti_i) + GAj(U-i)vfdj(ti-i) (25) 

z(ti) = Hj(ti)xj(ti) + vjfe) (26) 

where: 

x     =     n-dimensional system state vector 

3?    =     state transition matrix, the discrete equivalent 

of the system dynamics matrix 

Bd =     discrete equivalent of the system control input matrix 

u     =     deterministic control input vector 

Gd =     discrete equivalent of the noise input matrix 

Wd =     discrete-time zero-mean white Gaussian dynamics 

driving noise vector with covariance Qd(*i) at each U 

z     =     m-dimensional measurement vector 

H    =     system output matrix 
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v     =     discrete-time zero-mean white Gaussian measurement 

noise vector with covariance R(U) at U; v is assumed independent of Wd 

Note, x(to) is modeled as Gaussian, with mean XJO and covariance PJO, and is assumed independent 

ofwjj and Vj. In general, a could affect <&, Bj, Gj, H, Qj, R, or even add biases to Wj and/or v. 

The algorithms developed in this research explicitly handle all cases except for added biases, while 

the examples to follow in Chapter 4 focus on changes in parameters affecting <fr, Ga, and R. 

Based on this model, the Kaiman filter propagation and update equations are given by Equa- 

tions (27)-(32) with the addition of the subscript j on all variables save z and u. More explicitly, 

the propagation equations are 

*i(*D = *j(*i, *i-i)*j(*£i) + Bdi(ti_1)u(ti_1) (27) 

Pj(*D = *j(M;-i)PA+-i)<l?J(Mi-i) + GviU-JQdjiti-JGKti-i) (28) 

and the update equations are 

Aj(ti) = Kj(U)Pj(tr)iq(U) + Rj(U) (29) 

Kj(U) = Pjit^Hj^Aj^U) (30) 

*i(*+) = *i(*D + Kj(ii)[z(ti) - HjiU^it-)] (31) 

P*(tf) = Pj(*D - K^H^P^r) (32) 

Next, define the hypothesis conditional probability, Pj(U), as the probability that a assumes 

the value a.j (for j = 1,2,..., NF), conditioned on the observed measurement history to time U: 

Pj(U) = Prob[a = aj-|Z(<i) = Z<] (33) 
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then it can be shown [3,36,43,44] that Pj(U) can be evaluated recursively for all j via the iteration 

pjM   =       ^)M(«.-.)^lai^-i)Pjfa-i) (34) 

J2k=i /z(toia,z(t«-,)(z«lafc> Zi_i)pfe(tj_i) 

in terms of the previous values of pi(tj-i),... ,p/v,.-(*t-i) and the conditional densities for the cur- 

rent measurement z(t») to be defined explicitly in Equation (37). The initial probability distribution 

forpj(io), for j = 1,2,..., Np, is chosen based on any prior information available; for example, if 

each model is equally likely, the a priori distribution could be set topj(to) = l/iV>, for j = 1,2,..., 

NF. 

Notationally, the measurement history Z(ij) is made up of partitions z(*i),..., z(ij) that are 

the measurement vectors available at the sample times ti,...,U. Similarly, the realization Z, of the 

measurement history vector has partitions zi,... ,Zj. Furthermore, the Bayesian minimum mean 

square error (MMSE) estimate of the state is the probability-weighted average 

NF 

x(i+)    =   E{x(ti)\Z(ti) = Zi} = J^xj(tf)Pj(ti) (35) 

where if.j(tf) is the state estimate generated by a Kaiman filter based on the assumption that the 

parameter vector equals a.j. 

Thus, the MMAE algorithm is composed of a bank of Nf separate Kaiman filters, each based 

on a particular value of the parameter vector (ai,..., a#F), as shown in Figure 5 in Section 1.2.3. 

When the measurement realization z{U) = H(tj) + v(U) becomes available at U, the residuals 

ri(ij),..., TNF(ti) are generated in the 7v> filters, as shown in Equation (36): 

vj(ti) = zi-Hj(ti)kj(t-) (36) 
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and used to compute pi(t,),... ,PN,,(ti) via Equation (34). Each numerator density function in 

Equation (34) is given by 

/z(«,)|a,Z(ti_,)(ZilaJ'Zi-l)=/3iexP{-} 07) 

where 

ß 1  
Pj     (27r)W2|Aj(ti)|

1/2 (38) 

and the expression in the brackets is 

{;} = {-\r](ti)Aji(ti)rj(ti)} (39) 

and where m is the measurement vector's dimension and Aj(U) is the residual covariance matrix at 

time t{ calculated in the jih Kaiman filter as in Equation (29). The denominator in Equation (34) is 

simply the sum of all the computed numerator terms and thus is the scale factor required to ensure 

that all Pj(U) values sum to one. 

Note, to allow for changing parameter values, some ad hoc compensations suggested by May- 

beck are [44]: 

1. Put artificial lower bounds on the hypothesis conditional probabilities to avoid estimator lockup. 

Otherwise once the true parameter is identified, the algorithm can become locked to a single 

filter output, and mismatched filter estimates can drift significantly from true state values. 

2. Add pseudonoise of appropriate strength to the filter models - this causes each Kaiman filter 

to generate state estimates sufficiently close to the true states to allow adaptation to parameter 

changes. However, care must be taken to avoid adding too much pseudonoise (to guard against 

divergence), which could mask differences between good and bad models and thus incapacitate 

the filter's abilities to identify parameter values correctly. If divergence should occur, then the 

divergent filters could be restarted by using the nondivergent filters. 

3. Match each elemental filter to a time history of parameter values rather than to just one constant 
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value [11,44,51,82] - but this would require N)? elemental filters at sample time U, which 

would be impractical for actual implementation. 

4. Use Markov models for parameter variation [ 11,44,55] - but then the designer has to evaluate 

the probability state transition matrix for that Markov model, and that is usually significantly 

more difficult than establishing a good lower bound, as suggested in (1) above. 

5. Moving-bank MMAE (presented in Section 2.4) [18,20,23,46,48,68] is a method which avoids 

the potentially large number of elemental filters required for an MMAE with parameters that 

can assume many different values. 

One expects the residuals of the Kaiman filter based on the best model to have the mean- 

squared value most in consonance with its own computed Aj(U), whereas "mismatched" filters 

have larger residuals than anticipated through Aj(U). Therefore, Equations (29)-(37) most heav- 

ily weight the filter based on the most likely assumed parameter value. However, the performance 

of the algorithm depends on there being significant differences in the characteristics of residuals 

in "correct" versus "mismatched" filters. Each filter should be tuned for best performance when 

the "true" values of the unknown parameters are identical to its assumed value for these parame- 

ters. One should specifically avoid the conservative philosophy of adding considerable dynamics 

pseudonoise, often used to open the bandwidth of a single Kaiman filter to guard against divergence, 

because this tends to mask the differences between good and bad models. However, if, as a result of 

such tuning, one of the filters should diverge (which is indicated by residuals with large magnitudes 

or the term computed in Equation (37) being large), then it can be restarted with the current state 

estimate from the MMAE as computed from the nondivergent filters. Note, the Interacting Multiple 

Model (IMM) [5] uses this concept after every sample period by restarting every elemental filter in 

the bank to XMMAE(^). if lower bounds are used rather than Markov models to account for para- 
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meter variations in time (see the ad hoc compensations presented near the beginning of this section). 

This concept may provide good results for state estimation, but for parameter identification, a subtle 

change in parameter value may not be detected. 

Additionally, given the conditional probability distribution, either the Bayesian or maximum a 

posteriori (MAP) methods are used to calculate state and parameter estimates. The Bayesian method 

produces a state estimate which is the conditional mean of the state vector x. The conditional mean 

x is: 

XMMAE(^)   =   52*j(tt)Pj{ti) (40) 
3=1 

where XMMAE(*,) denotes the estimate at time U following the measurement update. Similarly, 

terms with (t~) denote estimates at time £j prior to the measurement update. The corresponding 

parameter estimate (the conditional mean of a), can be generated as 

NF 

äMMAE(ii)   =   ^a-jPjiU) (41) 

Alternatively, the MAP method chooses the state (and similarly the parameter estimate) as the values 

in the model with the highest probability: 

XMAP-MMAE(^) = *,•(£+)   for j such that pj(U) = max\pk(U)] (42) 
k 

and similarly for aMAP-MMAE(*i)- 

Finally, note that the hypothesis conditional probabilities, in Equation (34), at time U are func- 

tions of the hypothesis conditional probabilities at time U-\. Due to the recursive nature of the 

calculations, it is essential that an artificial lower bound be established for Pj(U) [22,44,46,53, 

54] to allow for parameter variability (or else a Markov model for such variations should be incor- 
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porated). Without this lower bound, the hypothesis conditional probability of a filter with a totally 

invalid parameter set for some period of time, a,, may go to zero and remain zero for all time: once 

Pj(U-i) reaches zero, Pj{U) and all subsequent p/s would be zero. Thus the j-th filter is essen- 

tially removed from the bank. Should the actual system change its characteristics so that the true 

parameter set a matches &j at some future time, pj{U) would remain at zero and the MMAE would 

produce undesirable results. Even for very small Pjfo-i) (versus actually zero), it would take many 

sample periods for the probability weight to flow into pj. 

The residual of the j-th filter plays a major role in determining pj(U). The performance of 

the algorithm is dependent upon a significant difference between the residual characteristics in the 

"correct" and the "mismatched model" filters. If this criterion is satisfied, then as evident from 

rJ^A-1^)!^) assumes the Equations (34) and (37), the filter with the smallest value of 

largest conditional hypothesis probability. Thus the hypothesis probability algorithm is consistent 

with the heuristic intuition that the residuals of a well-matched filter should be smaller (relative to 

the filter's internally computed residual covariance, Aj ) than the residuals of a miss-matched filter. 

However, if in fact, the residuals instead are consistently of the same magnitude, then Equation (34) 

and (37) result in growth of the pj associated with the smallest value of |Aj|. The |Aj| values are 

independent not only of the residuals, but also of the "correctness" of the Np models, and so such a 

result would be totally erroneous. This further emphasizes that it is important not to add too much 

pseudonoise during tuning, since this tends to mask differences between good and bad models. 

Alternate Computation of Probabilities.  Whether a Bayesian or MAP form of algorithm is 

used, the pj probabilities are computed according to Equation (34), with the first numerator term 

given by Equation (37). However, it has been frequently noted [2,3,44,50] that the /3 • term defined 

in Equation (38) has nothing to do with the identification of the "correct" parameter value (system 

operating condition for example), but that all useful information pertaining to "correctness" of pa- 
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rameter value is confined to the quadratic within the exponential, denoted as the likelihood quotient, 

Lj(ti) = r](tt)Aj1(ti)rj(ti) (43) 

As discussed earlier, if it should occur that the likelihood quotients were essentially the same for 

all j, then the probability calculations of Equation (34) would be driven by those elemental filters 

with the smallest value of | A;|. This is an artificial and incorrect bias, since for example, a sensor 

failure would be modeled by zeroing out a row of the measurement matrix Hj(U), and this might 

well cause an improper bias towards falsely identifying such sensor failures. 

One ad hoc method for remedying this situation is to remove the ßj term from Equation (37). 

The result would no longer be a proper density function, since the area under it would no longer be 

unity. However, because of the scaling effect of the denominator of Equation (34), the computed 

Pj(ti) values would still sum to one. Removing the artificial predisposition to declaring sensor 

failures may well justify such an ad hoc change to the probability calculations in some applications. 

This, however, is not pursued in this research. 

2.2 Sheldon's Optimal Parameter Discretization 

The following section parallels the discussion presented in [77]. For MMAE to be successful, 

it is critical that the true parameter lie within the bank's range of coverage for adequate parameter 

estimation, and it is desirable to have it "close" to one of the elemental filters for improved estima- 

tion. Thus the level of discretization of a continuous parameter space directly impacts the ability 

of the filter bank to "surround" the parameter value and its ability to minimize the "distance" be- 

tween the true parameter value and one assumed by an elemental filter. Before Sheldon's work [69, 

70], ad hoc methods were used by designers for choosing the level of discretization. For example, 

one ad hoc method for choosing the coarseness of discretization was to vary one parameter of the 

truth model in one direction of the parameter space at a time, until the elemental filter, based on the 
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nominal parameter point, yielded unacceptable levels of degraded performance [18,20,44,68,70]. 

Sheldon [69] instead chose optimally discretized parameters by minimizing one of three cost func- 

tions, depending on design goals of good state estimation, parameter estimation, or state control. 

Consider the first case, in which the cost functional, C, represents the average value of the mean 

squared estimation error, where the average is taken as the true parameter ranges over the entire 

admissible parameter set: 

c -  r*;  ™ 
where 

/  da   =     /       ... /     /    da\da2-..da^P 
JA JANP    JA2 JA\ 

where Np is the number of scalar parameters (the dimension of a), and where W is a weighting 

matrix chosen by the designer to place emphasis on certain states. Also, A is the admissible set of 

parameter values, where each parameter varies over a continuous bounded range. A five-step algo- 

rithm was developed by Sheldon which allows the designer to approximate and minimize the cost 

functional numerically [69]. This procedure is accomplished prior to the real-time implementation 

of the MMAE and provides the designer with the optimal choice for the discretization level. The 

basic question being addressed is, "If allowed Nf discretized points (where Np is preselected) in 

the parameter space, where should they be placed in order to yield optimal MMAE performance 

relative to the chosen cost function C?" In general, the three cost functions described above will 

yield different discretizations; so the designer must determine which cost criterion is most pertinent 

to the problem at hand. 
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In the M3AE architecture, the MMAE's purpose is parameter estimation, therefore, the cost 

functional for parameter estimation [69], 

c = TT* (45) 

is required. The following summary is taken from Sheldon's dissertation [69] and highlights his 

assumptions, concepts, and presents his design algorithm used in this research. 

Some assumptions, besides those stated earlier for the MMAE development, are required to 

bound the problem and form the basis for the mathematical development. 

• The structure of the plant is known except for an NP -vector of parameters, which is assumed to 
be a member of an infinite set. 

• The set is bounded and connected so that it makes sense to integrate over the set numerically, in 
order to find the mean square error. 

• There are a finite number of filters available for the estimation. 
• Pseudo -probabilities are calculated by Equation (34), 

Pj(U)   =    ^Np 
/z(ti)|a,Z(t<-i)(z»laj,Zt_1)pj(tj_i) 

Xjfc=l /z(ti)|a,Z(ti_1)(Zt|afc> Zj_i)pfc(*i-l) 

for j = l,2,...,Nf. The probabilities are referred to as pseudo-probabilities since it is impossible 
to have an infinite bank of filters, hence the MMAE algorithms might be calculating the 
probability that each filter is the correct one, when in fact none of them are. 
The Bayesian estimate formulations in Equations (40) and (41), 

NF 

XMMAE(it
+)     =    53x,-(tt)Pi(ti) 

j=\ 

NF 

äMMAE(*i)     —     /]&jPj{U) 
3=1 

are used to calculate the estimate. 
The MMAE system converges to the model closest, in the Baram-sense (in the information 
measure of Baram [4]), to the true parameter value with probability 1. 
The development assumes steady state, constant-gain filters (i.e., the K/s do not vary with time). 
However, Sheldon points out that the filters in the MMAE do not have to be steady state Kaiman 
filters. But for this development to apply, the filters must have the same structure as a Kaiman 
filter. Therefore, any other method to calculate a constant gain that produces a stable estimator 
may be used [70]. For example, in the second problem researched in Chapter 4 (an unstable, 
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nonlinear, integrated GPS/INS problem using extended Kaiman filters), a nominal trajectory 
point is chosen as the basis for defining the system matrices for determining a "pseudo "-constant 
gain value. Once the gains are calculated, the Sheldon algorithm may be applied using a finite 
horizon assumption to generate an approximate solution, since the system never achieves steady 
state. The finite horizon is chosen by the designer, who must choose how much of a finite period 
of time is of real concern, physically, in a given problem. This approach will be discussed further 
in Chapter 3 with the results of this technique presented in Chapter 4. 

Given these assumptions, the goal is to minimize the cost functional 

_   L£([a(t)-ä(t)]TW[a(t)-a(()]}da 
= h^  (46) 

Since the admissable parameter set is assumed constant for a given problem, only the numerator 

of Equation (46), 

/ £{[a(i) - a(i)]TW[a(i) - a(*)]}da   =    f tr (W£?{[a(t) - a(i)][a(t) - ä(i)]T}) da 
•>A JA 

(47) 

needs to be minimized. This simply entails a sensitivity analysis into the effect of parameter varia- 

tions in the elemental filters of the MMAE. 

The error autocorrelation equations are derived from the standard Kaiman filter equations (25) 

and (26) based on the design model hypothesizing the parameter value a,, 

Xj(*t) = *j(*t.*t-i)xj(*i-i) + Gdj-fa-Owdjfc.!) (48) 

z(ti) = Hj(ti)xj(ti) + Vj(ti) (49) 

which varies from the actual truth system based on the true parameter ax: 

xT(*t) - *T(*i,*i-i)xT(ti-i) + GdT(ii-i)wdT(ii_1) (50) 

zT(U) = HT(ii)xT(ii) + vT(ti) (51) 
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Given these standard equations, the estimation error vector is given by 

xj(*r) = xj(*r)-TxT(tr) (52) 

where T denotes a transformation matrix from the true state space to the model state space, which 

allows reduced order filter designs. 

The appropriate MMAE filter selections are made using the one-step prediction model of the 

state estimate Xj(£~) [4]. Sheldon then derived the one-step prediction model from the standard 

Kaiman filter equations in terms of the estimation error vector Xj (t~), to produce the autocorrelation 

matrix equation (the time arguments, (U), are dropped for convenience) [70]: 

E 

where 

__X        -T 
X  ■ Xrp = Tj{U)= TnVfe-.OT'1, + GoQoGj 

T = $j (I - KJ-HJ-)   TA# - * -Kj-AH 

(53) 

(54) 

-TGdT   *jKj 
GdT 0 

and 

Qo   = 
QdT    o 

0     RT 

TA$   =   */r-T$T 

AH   4   HJT-HT 

If T is a contraction, as U —> oo, Tj (U) approaches a constant matrix which is the steady state error 

prediction autocorrelation, and is denoted T^ ■ The upper left partition of Tj(U),E 
Xj 

is ^   , the autocorrelation of the estimator prediction error for the jth filter, and E 

is calculated by: 

xi W 
iT 

E { W tr w*: (55) 
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This value can be calculated at any point in the parameter space once the filter to which the MMAE 

converges is identified. Given that there are sufficient conditions for the MMAE to converge [4], it 

will converge to the k,h filter governed by [70]: 

ek = mm{£j:j = l,...,NF} (56) 

where £j is defined as the proximity of the jth filter generated by [4] as: 

^logelAjl+tr^A^ljHj    AH]rf[Hi   AH]T + RT]} (57) 

given 

A^HJ-PJHJ + RJ (58) 

Sheldon developed a five-step algorithm allowing the designer to approximate and minimize 

the cost functional given in Equation (44) or (46) numerically [69]: 

1. Start by describing the system in terms of the parameter vector a, specifying the structure of 

the truth system and the filters to be implemented in the estimator. 

2. Choose NF , the number of filters to be implemented in the estimator. 

3. Choose a representative parameter set to begin the minimization. The set should be chosen 

based on which cost functional is being minimized: 

- For the cost function that penalizes state estimator errors, a reasonable choice can be 
obtained by plotting the optimal estimation error autocorrelation, Equation (55), for a 
coarse discretization of the parameter space assuming a, = ax at each point. The larger 
tr [Wvl/-] is, the closer the representative parameters should be. 

- For the cost function that penalizes parameter estimator errors, a reasonable choice may 
be made by equally dividing the admissible parameter region into NF equal intervals and 
then choosing the midpoint of each interval as the representative parameter set. 

4. Use a numerical integration technique to evaluate Equation (44) or (46) for any given choice of a 

representative parameter set. The functional evaluations required at each interval are calculated 

with Equation (53). The information required to set up Equation (53) is based on the proper 

filter selection per Equation (57).  Note, for the cost functional pertaining to the parameter 
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estimator, the value ofä needed in Equation (46) is the value of a forming the basis of the filter 

selected at the evaluation point. 

5. Step 4 generates a numerical approximation to the value of C(a) for a prespecified choice 

of parameter vector a. The problem becomes a vector minimization problem, and a vector 

minimization technique can be used to minimize C(a) using the procedure in step 4 to evaluate 

the functional for each parameter vector. 

To avoid estimator lockup, Sheldon extended his work to account for the design practice of 

placing lower bounds on the elemental filter probabilities, pj. The lower bounds, pmin, are used to 

ensure that the system is adaptable to true parameter value changes [70]. The parameter estimate is 

then given by 

ä(*t)   =   ^2^jPj(U) 

NF 

=     ^{l-(NF-pmin)}a
sel(ti)^+J2^(4)Pmin (59) 

where asel indicates the filter-assumed parameter value selected via Equation (56), i.e., the klh filter 

to which the MMAE converged in the "Baram sense" [4]. The cost function in Equation (46) is now 

solved using a(£j) from Equation (59). 

This algorithm was implemented using MATLAB [40] for the examples given in Chapter 4. 

MATLAB code was developed and written to generate the required parameter sets for each example. 

A modified Simpson's rule [77] was the numerical integration technique used, and the vector mini- 

mization was accomplished using MATLAB's constrained optimization techniques which are based 

on Sequential Quadratic Programming (SQP) [40]. This will be discussed further in Chapter 3. 
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2.3 Inter-Residual Distance Feedback (IRDF) 

The common assumption used when employing MMAE techniques, is that the parameters 

take on only a finite number of different values. An MMAE's successful operation depends on the 

distinguishability of the models used and the tuning of the filters based on the parameters chosen. 

There must be significant differences in the characteristics of the residual in the "correct" versus 

"mismatched" filters. Each filter should be tuned for best performance when the "true" values of 

the unknown parameters are identical to its assumed value for these parameters. When Kaiman 

filters are used in the bank, conservative tuning should be avoided to prevent the residuals from 

becoming too close together and affecting the discrimination property of the filter bank. For fast 

and reliable discrimination, the residuals should be as distinct as possible [35,44]. 

Lund has proposed a modification to the MMAE concept and has successfully demonstrated 

it, by simulation, for a second order single-input single-output (SISO) system [34,35]. The method, 

Inter-Residual Distance Feedback (IRDF), provides for on-line modification of the elemental filters 

for the purpose of maintaining the discrimination property of the MMAE filter bank. The method 

modifies the elemental filters to keep the predicted measurements from becoming too close in "some 

sense", thus affecting the distinguishability of the elemental filters and thereby the properties of the 

MMAE algorithm. The elemental filters are modified by detuning the filters through modulation 

of either the dynamic driving noise covariance Q^ or the new information KjTj directly. Recall 

that Kj is the jth elemental filter gain matrix and Tj is the residual vector of the jth elemental 

filter. Modulation is governed by a scalar quantity computed from a distance measure between the 

residuals. 

Additionally, Lund stresses the trade-off problem in the MMAE concept between that of dis- 

crimination versus state tracking. Tracking is the ability of the filter to predict the state x(ij) and 

output Zj given Zj_i. Thus, the trade-off problem is the desire for good tracking capabilities when 
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the true system equals one of the models, versus the desire for the residuals of the various elemen- 

tal filters to be distant from each other, which enables fast and reliable model discrimination. The 

side of the trade-off which is favored depends on how strongly each filter updates its state estimates 

from the measurements. Specifically, if small Kaiman filter gains are used to de-emphasize the mea- 

surement information, then the residuals of the various elemental filters will tend to be more distant 

from each other. However, this trade-off doesn't impact the M3AE architecture as much as a conven- 

tional MMAE since the MMAE portion of the M3AE architecture is not responsible for generating 

the state estimates. Moreover, a conventional fixed-bank MMAE with parameter space discretized 

(by Sheldon's methodology from Section 2.2) for ä performance versus x performance, enables the 

designer to exploit the enhanced discrimination information and send a "good" parameter estimate, 

ä, to the single Kaiman filter within the M3AE that is itself designed for state estimation. Therefore, 

this combined enhancement could show substantial improvement over conventional MMAE's. 

Following Lund's [34,35] development, let the model for each elemental filter be denoted by 

Mj from the set M = {MUM2,..., MNF), and within the limitations of reduced-order modeling, 

Mj describes the true system, S*, when operating in mode j. As in Equation (33), the MMAE 

calculates the probability of each model based on the discrete-time measurement history 

Pj(ti) = Prob[S* = Mj\Z(U) = Zi] (60) 

For a properly designed MMAE, it is expected that, when S* — Mj, 

Lj(ti)«Lk(ti),^k^j (61) 

given 

Lj(ti) = rJ(U)A.J1(ti)rj(U) 

which should denote regular behavior of the residuals. Furthermore, pjfa) should increase towards 

one, and the mismatched filters' probabilities should decrease towards zero, if the condition of 

Equation (61) continues over several measurements. However, if S* £ M or the filters are not 
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tuned properly, it is possible that 

Li(U) « L2(U) « ... « LN,,(ti) (62) 

and, recalling Equation (37), Pj(U) will be directly influenced by |Aj(tj)|, j = 1,..., NF. Thus, 

pfc(ii) should increase if |Afc(ij)| < I Aj{U)\, k ^ j, while the otherPj{U) should decrease. Since, 

for Kaiman filters, |Aj(£j)| is not dependent on which model is correct, improper solutions are 

possible even when using valid models [35,44]. Hence, the conditions shown in Equation (62) 

should be avoided through care taken in the development of the algorithm and the tuning of the 

elemental filters. This highlights the fact that the filters in the bank should not be tuned totally 

independently [44], and that the distance between residuals should be large enough for inter-residual 

distinguishability (distant residuals achieve fast and reliable discrimination [35]). Lund defines the 

following quadratic 

JjkiU) = rJk(ti)TjkTjk(U), j^k (63) 

as the squared distance measure of the residual, where the inter-residual difference is Tjk(ti) = 

Tj(U) - rfc(ii), j ^ k, and Tj(U) is the residual in the jth Kaiman filter at time U (rj(U) = 

Zj — Hf(ii)xj(i~)), and Tjk is a positive definite scaling matrix. Note that Tjk does not have to 

be diagonal but is often chosen as such for simplicity. The main principle of this method is to keep 

JjkiU) above some specified limit, J°fc(*i), by adjusting filter gains. Note that, if the condition 

in Equation (62) is present as a result of large dynamics noise strengths, then the filter gains will 

become large, and 

rjk(U) = Hfc(ti)xfc(ir) - Hj(ti)-kj(tr) =*• 0, and in turn Jjk(ti) =» 0 (64) 

which again emphasizes the point that elemental filters should not be tuned independently. 

A general way to keep the inter-residual distance measure, Jjk{U), above some specified limit 

is to vary the dynamics noise strengths, Q^, and thus adjust the filter gains. In the general filter 

continuous-time propagation equation, for the case of continuous-time measurements (Section 3.6 
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develops the sampled-data measurement version) as actually developed by Lund [35]: 

Pj(t) = Fj^Pjit) + Pj(t)FJ(t) + Gj(t)Qj{t)G](t) - Pjimj^Rj'im^Pjit) (65) 

Qj would be replaced by 

Q'j(t) = r](t)Qj,j = l,...,NF (66) 

where the modulating parameter, r/(t) e [r?min, 1.0]. This is a reasonable constraint since the goal is 

to detune the elemental filters from their nominal operation so as to enhance residual distinguisha- 

bility, because during nominal operation, the tracking capability of each elemental filter is assumed 

to be adequate. A value r}(t) > 1 would decrease distinguishability and thus hamper parameter esti- 

mation. Finally, the lower bound ?7min > 0, must be chosen such that the system maintains stability 

and the modulation would prevent the tracking capability of the most valid filter from becoming too 

poor [35]. Lund suggests using r/min = 0, provided that the system maintains its stability. 

Additionally, in Lund's continuous-time measurement development, the time derivative of the 

modulating variable rj(t) is given by 

V(t)    =    t{jjk(t)-fjk(t)},    Condi 
=    0, Cond 2 

(67) 

(68) 

where 
Cond 1 :    V(t) € [Vmin, 1.0] 

Cond 2:    V(t) = Vmin AND £ [jjk(t) - J°k(t)} < 0 OR 

ri(t) = lAms{jjk(t)-J°k(t)}>0 

These conditions provide anti-integration-windup [35], of importance whenever considering an al- 

gorithm incorporating an integrator, as in the case for Equation (67). The constant, £ is selected to 

provide proper attenuation of noise on r](t). Lund's ad hoc guideline for picking a reasonable value 

for £ involves looking at the time constants associated with the MMAE filters during all operating 
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conditions. Then choose £ such that l/£ is larger than the largest filter time constant. This ensures 

that the adaptation of 77(f) will be slower than the filter settling time [35]. 

Furthermore, the lower inter-residual difference limit, J?fc, is chosen such that adequate event 

detection is achieved. One ad hoc method for determining its value involves investigating actual 

inter-residual differences, Jjk, from a sample run providing desirable performance before IRDF is 

applied. An initial J?fe is then chosen based on analysis of actual Jjk values seen throughout the 

sample run (the mean value of Jjk is a "good" first choice for J%). 

Once initial values of r]min, £, and fjk are chosen, simulations must be conducted to determine 

if the system meets desired performance requirements. If not, these values must be "tuned" based 

on insights gained during analysis of the simulation results, until desired performance is achieved. 

Decreasing the strengths decreases the Kaiman filter gains and in turn increases the value of the 

distance measure given by Equation (63). Thus, smaller strengths lead to more distinguishability, 

i.e., a larger Jjk(t). For example, if Jjk(t) is less than the desired Jjk(t), Equation (67) will decrease 

rj(t) which should, in turn, help drive Jjk(t) to the desired value for increased distinguishability. 

However, a drawback in this technique occurs since the modulated process noise strength, Q'-(i), 

is a function of time and its value is only known in real-time operation, and thus filter gains cannot 

be precomputed, even for linear models. 

Lund proposed a simplification to this method for linear models by modulating the new infor- 

mation Kj(t)rj(t) by rj(t) instead of Qj(t), as shown by the following equation: 

K'j(t)rj(t) = r1(t)Kj(t)rj(t) (69) 

The filter gains, K,-(£), are now precomputable and only the modulation is computed on-line [35]. 

Also, modulating Kj(t) versus Qj(t) will yield quicker adaptation response since there isn't any 

wait for the filter state covariance Pj(t) equations to traverse their transients before the correspond- 

ing filter gains are thereby changed. Thus, direct modulation of the new information is a viable 
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option and Lund recommends that it can be readily accomplished for steady state elemental filters. 

However, Lund points out that, for extended Kaiman filters and higher order filters, there is less 

benefit to this approach, since filter gains are computed on-line anyhow [35], but the quicker adap- 

tation response is still achieved. 

A final concern discussed by Lund is the lack of guaranteed stability for all the elemental 

filters without placing restrictions on the choice of the modulating parameter, rj(t). An approach is 

presented in [35] which requires extensive simulations in the case of extended Kaiman filters. When 

considering the Lund-type MMAE (either for a conventional MMAE or for the MMAE portion of 

the M3AE), the stability problem is best handled by considering Figure 2 on page 3, in which the 

MMAE using IRDF could optimize parameter identification and a single Kaiman filter (linear or 

extended) would be used to generate the final state estimate, given ä. If some of the elemental 

filters go unstable as a result of the IRDF modulation, then they would be reset by the stable filters 

as discussed in Section 2.4, where the blended estimate of the stable filters was used as the initial 

condition for the filters being reset. 

IRDF is inherently directed toward model discrimination, not state tracking [20]. Thus, Lund's 

technique to ensure distant residuals for fast and reliable model discrimination should be an effective 

method for enhancing parameter estimation. Moreover, in the M3AE structure, unlike the conven- 

tional MMAE architecture, this beneficial impact does not have to be traded off against the desire 

not to use artificially low Q (or K) values when generating a precise state estimate. 

2.4 Moving-Bank MMAE 

To avoid the potentially large number of elemental filters needed for an MMAE bank, (for 

example, if there are two uncertain parameters and each can assume 10 possible values, then 102 = 

100 separate filters must be implemented, even if the parameters are treated as unknown constants), 
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the concept of a "moving bank" of fewer filters has been investigated [18,20,46,68]. The moving- 

bank MMAE is identical to the full-bank estimator discussed previously, except NF corresponds to 

the smaller number of elemental filters in the moving bank rather than the total number of possible 

discrete parameter vector values. In the example above, one might choose the three discrete values of 

each parameter that most closely surround the estimated value, requiring 32 = 9 separate elemental 

filters, rather than 100. This is depicted in Figure 7. 
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Figure 7. Bank Definition for Moving-Bank MMAE for a Two-Dimensional Parameter Space 
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Which particular /v> filters are in the bank at a given time can be determined by one of the 

five decision mechanisms presented later in this section, with the intention of keeping the true value 

of the parameter in the bounds of the bank. For some of the decision mechanisms, the parameter 

estimate is used to center the bank of filters. If the parameter estimate is found to move, then the 

bank of filters will move within the parameter space as shown in Figure 8, thus hopefully tracking 

the true parameter. 
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Figure 8. Moved Moving-Bank MMAE 
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For some of the decision mechanisms, it may appear that the true parameter lies outside the 

bounds of the current bank; so the bank must expand to the coarsest level of discretization to attempt 

to bring the true parameter value into the bank, as illustrated in Figure 9. Note that moving the bank 

and expanding the bank are two separate decisions. 
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Figure 9. Expanded Moving-Bank MMAE 

It is critical that the true parameter lie within the bank's range of coverage for adequate para- 

meter estimation, and it is desirable to have it "close" to one of the elemental filters for improved 

estimation. Thus the level of discretization of a continuous parameter space directly impacts the 

ability of the filter bank to "surround" the parameter value and its ability to minimize the "dis- 
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tance" between the true parameter value and one assumed by an elemental filter, as discussed in 

Section 2.2. 

Five decision logics have been investigated by Maybeck and others in previous research ef- 

forts for keeping the moving-bank centered about the estimated parameter value [18,20,44,46,68]: 

1) residual monitoring, 2) parameter position monitoring, 3) parameter position and velocity moni- 

toring, 4) probability monitoring, and 5) parameter estimation error covariance monitoring [46]. A 

brief summary of each follows. 

Residual Monitoring. Recall the likelihood quotient given by Equation (43): 

Lj(ti) = vJ(ti)Ajl(ti)vj(ti) 

In the case of scalar measurements, this is the current residual squared, divided by the filter-computed 

variance for the residual. When the true parameter value does not lie in the center of the moving- 

bank region, some of the NF likelihood quotients (the ones corresponding to the &j values most 

distant from the true parameter value) can be expected to exceed a threshold level T, the numer- 

ical value of which is set in an ad hoc manner during performance evaluations. Thus, a possible 

detection logic would indicate that the bank should be moved at time U if 

mm{L1(ti),L2(ti),...,Lj(ti)} >T (70) 

Moreover, the elemental filter based on a.j nearest to the true parameter value should have the small- 

est likelihood quotient, thereby giving an indication of the direction to move the bank. Although 

this logic would respond effectively to a real need to move the bank, it would also be prone to false 

alarms induced by single large samples of measurement noise. 

Parameter Position Estimate Monitoring. Another means of keeping the true parameter value 

in the region bracketed by the moving bank is to keep the bank centered (as closely as possible in 

view of the discrete values that a is allowed to assume) on the current estimate of the parameter. 

55 



This estimate was shown in Equation (41) as: 

ä(ti)=E{a\Z(ti) = Zl} = J2s'jPj(ti) (71) 

If the distance from the parameter value associated with the center of the bank to a(fj) becomes 

larger than some chosen threshold, a move of the bank in that direction is indicated. Since a(£;) 

depends on a history of measurements rather than just the single current measurement, this technique 

is less prone to the false alarms discussed in the previous method. 

Parameter Position and 'Mlocity" Estimate Monitoring. If the true parameters are slowly 

varying, past values of ä(ij) can be used to generate an estimate of parameter "velocity". This, along 

with the current position estimate EL(U), can be used to compute a predicted parameter position, one 

sample period into the future. If the distance between the bank center and that projection exceeds 

some selected threshold, the bank can be moved in anticipation of the true parameter movement. 

This has the advantage of putting some lead into parameter estimation, but one must be aware of 

the additional error variance in a prediction (thus a higher level of uncertainty and erratic bank 

movement) over the variance of the preceding (updated) filter estimate. 

Probability Monitoring. The conditional hypothesis probabilities, pj (U), are another indication 

of the correctness of the parameter values SLJ assumed by the elemental filters of the current bank. 

If any of these rise above a chosen threshold level, the bank can be moved in the direction of the SLJ 

associated with the highest Pj(ti). In this scheme, the bank seeks to center itself on the elemental 

filter with the highest conditional probability weighting. Again, since pj(U) depends on a history 

of measurements, this method should not be as sensitive to single bad samples of measurement 

corruption as is the case under residual monitoring. 

In addition to the four decision logics presented above, Li has proposed a "Variable Structure" 

MMAE [30,31].  Once a decision has been made to move the bank, the basic concept involves 

increasing the number of filters in the bank as well as the size of the bank in parameter space, 
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temporarily, until enough information is processed to determine which elemental filters should be 

terminated. The advantage to this scheme lies in its potential to reduce the chance of inappropriate 

and nonsystematic bank motion [30]. 

Parameter Estimation Error Covariance Monitoring. This concept is discussed last because it 

has a somewhat different purpose than deciding when and in what direction to move the bank. Here 

it is also possible to change the size of the bank by altering the discretization level of the parameter 

space as shown in Figure 9. For example, initial acquisition can be enhanced by choosing the 

values ai,..., a^, so that they coarsely encompass all possible parameter values, rather than use 

a small bank and force it to seek a true parameter value that may well be outside the region of its 

assumed parameter values. Then, once a "good" parameter estimate has been achieved with this 

coarse discretization, the size of the bank can be contracted and the smaller bank centered on that 

good value. To help make such a contraction decision, it would be useful to monitor the parameter 

estimation error conditional covariance, computable [44] as 

Pa(«i)    =   £{[a-äft)][a-ä(*0]T|Zft) = Zi} 
NF 

=   X>J-&(*0][ai-ä(tO]T-Pi(*i) (72) 

When an appropriately chosen scalar function (norm) of this matrix falls below a selected threshold, 

the bank can be contracted about the parameter estimate. 

If the true parameter value were to change (move), such that the true value was now outside the 

"boundary" of the current bank, then the bank would need to expand. One method of determining 

whether or not to expand the bank involves the likelihood quotient Lj(U), defined in Equation (43) 

and used in the preceding "Residual Monitoring" section. If all the Lj(U)'s exceed a predetermined 
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threshold, indicating none of the elemental filters have a good hypothesized a^ value, then the bank 

should expand [77]. 

2.5 Hierarchical Structure 

Maybeck and his students have researched multiple failures for reconfigurable flight control 

via MMAE methods [12,14,15,21,22,29,50,53,54,71,72]. If a multiple model algorithm were 

based upon all possible single and double failures of K sensors, it would require one elemental filter 

for the fully functional status, K single-failure elemental filters, and K!/[(K-2)!2!] double-failure 

filters. To avoid this computational burden, the idea of the "moving-bank" leads to the concept of 

a hierarchical structure that requires at most only (K+l) elemental filters to be on-line at any given 

time: the same number used when only single failures are modeled. Figure 10 illustrates such a 

hierarchical structure. 

At "Level Zero", there are K elemental filters specifically designed for one of the single-failure 

conditions and one configured for the fully functional system (denoted as ao in the figure). Upon 

confirmation that failure "k" (any of the possibilities 1,2,...,K) has occurred, a new MMAE bank 

is brought on-line from memory at "Level One" and replaces the original "Level Zero" MMAE. 

It would consist of K+l elemental filters (where K+l=NF in the previously used notation): one 

designed for the kth single-failure condition (denoted afc), K-l configured for the double-failure 

condition of the known kth failure plus one of the remaining possible failures (denoted a^), and 

one designed for the fully functional (ao) system to allow for using future measurements to change 

the decision that the first failure, had, in fact, occurred. 
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Figure 10. Hierarchical Modeling - Level 0 and Level 1 MMAE Banks 
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2.6 Summary 

The theory and development behind the MMAE and various adaptations have been presented 

in this chapter. Many options exist for combining the above methods. Of those presented, Sheldon's 

parameter discretization technique and Lund's IRDF are pursued in this research. With this founda- 

tion, the M3AE formulation can now be developed in Chapter 3. The focus of the MMAE portion 

of the architecture is on parameter estimation. The state estimation is produced via a separate stan- 

dard Kaiman Filter, fed with the ä from the MMAE portion, and tuned for precise state estimation 

performance. 
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Chapter 3 - M3AE Development and Performance Analysis 

This chapter develops the explicit recursions related to the new M3AE architecture which 

solves the problem of estimating states and parameters simultaneously. It provides the analytical 

development associated with the new M3AE architecture shown in Figure 11. Additionally, an ap- 

proximate covariance analysis tool is developed for the M3 AE architecture which gives the designer 

the ability to analyze and predict system performance before actually implementing the M3AE or 

running a full-scale Monte Carlo analysis of it. 

z 

X 

MMAE 

 > 

a 

State Esti mator 

Figure 11. M3AE - MMAE-Based Parameter Estimator and KF-Based State Estimator 

A covariance analysis tool (for linear systems driven by white Gaussian noise, which have 

measurements taken by sensors described by linear models corrupted by white Gaussian noise) has 

been available for nonadaptive Kaiman filter designers. A single run of the covariance analysis 

generates the entire time history of the covariance of the true estimation errors committed by the 

Kaiman filter. This provides a valuable design tool since initial performance analysis and subsequent 

filter tuning can be accomplished quickly without any knowledge of the explicit samples of the 

measurement history [43]. The covariance expressions for the discrete-time model formulation of 

the Kaiman filter based on a "truth model" are: 

P(i-)   =   *P(iti)*T + Gd(t,_1)Qd(^_1)Gj(ti_1) (73) 
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K(U)   =   P(t-)nT(U)[H(tl)P(t-)HT(ti) + R(ti)}   l (74) 

p(0 = p(tr)-K(toH(top(tr) (75) 

Notice, that knowledge of the measurement history is not required to solve these expressions, and 

as such, they can be completely precomputed. Covariance analysis can also be developed [43] for 

Kaiman filters based on reduced-order, simplified models rather than "truth models," but the focus 

of this development is on the covariance analysis for filters based on very good models or "truth 

models." 

A similar tool has been available for conventional MMAE's as well. The fundamental condi- 

tional covariance expressions of x(tj) and a(U) for an MMAE are [44]: 

P(i+)    =   E {[xfe)-x(tt)] [x(tO-x(t+)]T |Z(t<) = Z,} 

=   E PiM {*>&) + [%&)-*&)] ft(tf)-x(tf )f} (76) 

NF 

Pa(ti)    =   £{[a-a(i*)] [a-a(ti)]
T \Z(U) = Z.} =J^ [a,-a(tO] [aJ-a(ti)]TPj(*i) (77) 

3=1 

where Pj(tf) is the state error covariance computed by the elemental filter based upon a.j, Xj(tj) 

is the corresponding elemental filter state estimate, and St(tf) and a(ij) are the MMAE estimates 

of states and parameters, respectively. Notice, however, that in contrast to the single nonadaptive 

Kaiman filter, neither of these expressions can be precomputed since knowledge of pj(ti), Xj(ti), 

x(tf), and a(tj) is required. However, a one-run Monte Carlo simulation could provide repre- 

sentative measurement history information (thus providing representative values for pj(U), Xj(tj), 

x(i+), and a(£j) for all time, conditioned on that measurement time history, Zj) upon which a co- 
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variance analysis could be accomplished, thereby avoiding time consuming multi-run Monte Carlo 

studies in the initial design process (see Section 3.3 for further discussion). 

A designer developing a system based on the M3AE architecture could also benefit from such a 

covariance analysis tool. Therefore, an approximate covariance analysis tool has been developed for 

the M3AE architecture, as shown previously in Figure 3, and presented in detail in Section 3.4. As 

with an MMAE design, an M3AE designer may conduct an approximate covariance analysis after 

only a single Monte Carlo run on just the MMAE-based parameter estimator. The single Monte 

Carlo run provides a representative time history of the parameter estimates ä(£;), filter-computed 

error covariance Pa(*i), and the associated elemental filter probabilities Pj(U). This information 

is then provided to the approximate M3AE covariance analysis tool, which produces the required 

covariance analysis information to conduct a performance or sensitivity study of the M3AE for 

making design decisions. 

The fixed-bank MMAE parameter estimator used in the M3AE structure can be based on an en- 

hanced Sheldon parameter discretization technique which is presented in Section 3.5. Additionally, 

the fixed-bank MMAE can use Lund's inter-residual distance feedback (IRDF) technique, modified 

for a discrete-time representation of the system, which is discussed in Section 3.6. 

3.1  M3AE Architecture 

The M3AE architecture is fairly simple and provides an excellent design option for designers 

concerned with applications in which accurate parameter and state estimation is the design goal. 

Figure 11 displays this architecture which offers enhanced design flexibility in optimizing each 

estimator for its intended purpose. The architecture involves a single KF (designed and tuned for 

high-fidelity state estimation) that accepts the parameter estimate provided by a fixed-bank MMAE, 

designed for precise parameter estimation. 
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Since the goal of the MMAE "block" is accurate parameter identification, the elemental filters 

are designed using Sheldon's parameter discretization algorithm, specifically using the cost func- 

tion devoted to minimizing parameter estimation errors. To enhance filter distinguishability further, 

Lund's IRDF algorithm (whose primary purpose is to keep filter residuals "distant" for the purpose 

of fast and reliable discrimination of parameter values) is implemented in the fixed-bank MMAE. 

This is appropriate for an MMAE producing a parameter estimate ä, as in the M3AE architecture, 

but may not be as appropriate for an MMAE designed for state estimation, since the state tracking 

capability of the MMAE may suffer [35]. 

3.2 Assumptions 

In addition to the underlying assumptions associated with the standard Kaiman filter and MMAE 

theory (see Section 2.1 and [43-45]), the following assumptions pertaining to the M3AE architec- 

ture are emphasized: 

1. The structure of the problem is known and modelling techniques have provided a suitable 

mathematical description in the form of linear difference equations driven by known inputs 

and white Gaussian noise sequences. Additionally, the measurements taken by sensors are well 

described by linear models corrupted by white Gaussian noise. 

2. To facilitate the future implementation of Assumption 1 in an on-line, digital computer 

environment; a discrete-time representation of the system dynamics is chosen and represented 

by the following linear stochastic difference equation associated with the parameter value a.j: 

Xj(tt) = *,-(ti,*t-i)xj(ti_i) + Bd^ti-ijufc-i) + Gdj(ti-i)wdj(*t-i) (78) 

upon which available discrete-time measurements are modeled by the following linear equation: 

z(U) = Hj(ti)xj(U) + VjiU) (79) 
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It is assumed that wj and v are independent, zero-mean, white Gaussian noise processes with 

covariance kernels: 

E{wd(ti)wJ{tk)} = Qd(ti)6ik (80) 

E{v(ti)v'T{tk)} = R(ti)6ik (81) 

where Qd(*t) is positive semi-definite and K(U) is positive definite for all t{. Additionally, 

the initial conditions on the states are known, in general, with some uncertainty, and x(in) is 

also described as a Gaussian random vector independent of wj and v, with known mean and 

covariance: 

E{x(t0)} = x0 (82) 

£{[x(i0) - xo] [x(to) - xo]T} = Po (83) 

where Po is positive semi-definite. 

3. This development assumes that the control input is exactly known to the filter. 

4. Given that the problem to be solved contains uncertain parameters, a, a complete determination 

of affected system matrices such as 3>, Bj, Ga, H, Qa, and R is typically not possible because 

of observability issues. However, for this development, the parameters to be estimated are 

assumed identifiable. 

5. The unknown parameters are assumed to vary much slower than unknown states and in many 

cases may be time-invariant. Thus, any estimate of uncertain parameters should take advantage 

of knowledge concerning slow (if any) variability of the parameter from one time sample to the 

next. 
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6. Uncertainties in the measurement matrix H(U) are obviously possible, and are considered in 

the general development to follow. However, for many problems, it is usually not necessary 

to estimate parameters in H(ij). For example, in problems in which the state space model 

is expressed in physical variables, the measurement matrices are generally known better than 

<&(tt,ii-i). Bd(tj-i), or Gd(ti-i) [42]. Furthermore, parameter uncertainties in H(t,) are 

difficult to distinguish from uncertainties in <£(£;,£;_i) or Bd(tj-i) or Gd(tj_i), in that 

alternative state space models with equivalent input/output characteristics may differ from each 

other in one having uncertain parameters in H(*t) (alone or in <S?(U,ti-i), Bd(tj-i), and 

Gd(ti-i) as well), whereas another may have no uncertainties in H (£*). This usually becomes 

apparent after investigations into measurement, z(ij), and control, u(£j), time histories. 

Therefore, it's usually convenient to avoid parameter uncertainties in H(tj) [44]. Note that both 

examples presented in this research do not contain uncertain parameters in H(U) (see Chapter 

4). 

7. Uncertainties in the input noise matrix Gd(^) are not included since [1,44] found that they 

could be equivalently treated as uncertain parameters in the dynamics noise covariance matrix 

Qd(*i). 

8. In the recursive filter implementation accomplished, it is assumed that the uncertain parameter 

values remain essentially constant between time increments. 

9. Complete coverage of the parameter space is typically not possible. Therefore, a range of values 

is chosen based on an examination of the physics involved in the problem. In turn, the MMAE 

elemental filter models are based on a limited subset of parameter values chosen from a finite 

subset of discrete values. This has the benefit of limiting potential computational burdens. 
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10. The theory is developed based on full-order, linear truth models. Obviously, in actual practice, 

this is not always possible. Therefore, some deviations from these assumptions occur with an 

associated loss of "optimality." 

3.3 Theory and Evaluation 

Given the assumptions presented above, this section develops the theory supporting the new 

M3AE architecture and the associated conditional covariance expressions. Following the MMAE 

development of Chapter 2, let a denote the vector of uncertain parameters in a given model. As- 

suming a Kaiman filter based system, a is allowed to affect any or all of the <&, Bd, Gj, H, Qd, 

and R system matrices. 

The parameter estimate ä and its error covariance Pa are provided by the "box" designed for 

parameter estimation in Figure 1 of Chapter 1 and Figure 11 of this chapter (given the criteria and 

assumptions stated earlier). The development for this M3 AE based architecture assumes an MMAE- 

based parameter estimator. Thus a £ RNp, and then via Sheldon discretization [70], a is allowed 

to assume one of NF (number of filters) values, &3for j = 1,2,...,NF within that NP -dimensional 

space. Paralleling Maybeck's development in [44], the conditional mean and covariance of a at time 

U are 

&(U)   =   E{a(U)\Z{ti) = Zi}= /'a/a|Z(ti)(a|Zi)da 

/■ 
a 

NF 

Np 

^2pj(U)6(a-&j) 
j=i 

da 

=   Yl^PiiU) (84) 

and 

Pafe)   =   S{[a-a(tO][a-S(ti)]
T|Z(ti) = Zi}=^[aj-a(ti)][aj-a(ti)]

TpJ-(ti) (85) 
NF 

.7=1 
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where &j and pj are the predefined parameter vector discrete value and its associated probability for 

a given elemental filter, for j = 1,2,..., N?. It is important to note that neither of these calculations 

require knowledge of St(tf) or the associated state error covariance P(tf) produced by the MMAE, 

as given by [44]: 
N,- 

x(t+) = E{x{U)\Z(U) = Zi} = Yl*M)Pj&) (86) 
i=i 

P(t+)   =   E {[x(ti)-x(t+)] [x{U)-Z{ttJ\T \Z(U) = Zi} 

=   Y,Pifc) {*M) + [x,-fe)-x(tf)] [xJ(ti)-«(t+")]T} (87) 

where x.j(tf) is the Kaiman filter-computed state estimate based on a,, and Pj(tf) is the Kaiman 

filter-computed state error covariance based on a,. Note that Equations (84) - (87) cannot be pre- 

computed since knowledge of the measurement history is required. 

The goal of the M3AE architecture is to provide accurate state and parameter estimation si- 

multaneously. Therefore, given the MMAE-supplied parameter estimate ä, and the measurements 

z, a state estimator is required to generate X.M
3
AE- Thus the M3AE architecture, developed in this 

research, implements a standard Kaiman Filter tuned for state estimation, based upon an assumed 

parameter value given by &MMAE{U)- 

Under the assumptions stated, the conditional state error covariance of a standard Kaiman filter 

is equal to the unconditional covariance of the estimation error [43]. Thus, under normal circum- 

stances, the covariance is completely precomputable, without any knowledge of the actual measure- 

ments taken. However, in this new architecture, an analysis is required to determine the impact of 

providing the state estimator an updated parameter estimate at each time sample. Therefore, an ap- 

proximate evaluation of the error covariance committed by the new architecture is presented next, 
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with the intent to be able to predict the state estimation performance of the M3AE before actually 

building the M3AE and conducting a full-scale Monte Carlo analysis of it. 

3.3.1   Evaluation of M3AE Associated Errors 

The objective of this section is to develop a good approximate evaluation of the state estima- 

tion error conditional covariance matrix for the new M3AE architecture. The conditional covari- 

ance should provide a direct indication of how well the M3AE architecture performs when affected 

by uncertain parameters. As stated above, this development assumes a Kaiman filter form of the 

state estimator. It further assumes that the parameter values, a, affecting the system are actually 

characterized by the true parameter values, ax- Also note that the following development assumes 

parameter variations occur only in the <fr, Bd, or H system matrices. However, the formulation is 

readily extended to parameter variations in the Qd or R noise matrices, and this is presented later 

in Section 3.3.2. 

The true system is described by 

x(t,;aT)    =   *(ti,ij-i;aT)x(ii_1;aT) + Bd(ii-i;aT)u(ti_i) + Gd(ti_i)wd(tj-i) (88) 

z(ti;aT)    =   H(ti;aT)x(ti;aT) + v(ii) (89) 

and the Kaiman filter based on parameter value a is described by 

x(>~;a)    =   $(ij,*i_i;a)x(£1t_1;a) + Bd(ij-i;a)u(ii_i) 

x(tf; a)    =   x(tr; a) + K(fc; a) [z(fc; aT) - H(fc; a)x(*r; a)] 

(90) 

(91) 

where 

and 

K(i;;a) = P(*-;a)HT(ti;a)A-1(*i;a) 

Afa; a) = Hfo; a)P(tt~; a)HT(i;; a) + Rfc) (92) 
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and where the propagation relations for the covariance are described by; 

P(*r;a) = *(ti,ti_1;a)P(tt1;a)*T(ti,ti_1;a) + Gd(t<_i)Qd(ti_1)G3'(*i_1) (93) 

and the corresponding measurement update is given by 

P(t+;a) = P(i-;a) -K(ii;a)H(ii;a)P(ir;a) (94) 

Also, note that this development assumes that the control input is exactly known to the filter. For 

eventual implementation, a U-D covariance factorization form or square root filter [43,44,59,60] 

might actually be used, but this research will continue to develop filter algorithms in the forms of 

Equations (90) - (94). 

Given the above foundation and assumptions, the state estimation error of the new filter con- 

ditioned on a, is defined by: 

GM
3
AE(U) = X-M

3
AE(U) ~ X-True(U) (95) 

where it is again emphasized that full order models are assumed in this development. Note that a 

generalized approach using reduced order filter models is possible, and the technique is discussed 

in [43], in which the state estimation error would have the form: 

^M3AE.reduced(U) = C(U)xM3AE(ti) - CTrue{ti)xTrue(U) (96) 

where C(ij) is an c-by-n linear transformation and CrrUe(*i) is an c-by-nT linear transformation, 

with c being the critical quantities related to the filter states and n is the dimension of the filter 

design model, and «T is the dimension of the truth model. Equation (96) with c — n and C(£j) = I 

is most directly related to Equation (95). 

The error before and after measurement update at the ijth measurement is defined as follows: 

eM3AE(t~)     =    XM
3AE(t~) ~ XTrueiU) (97) 

eM3AE(4)     =    StM3AE{tf)-XTrue{ti) (98) 

and the error covariances before and after incorporating the tjth measurement are denoted as 

peM3AE(t~;aT,a) and PCM3ylE(^;aT,a), respectively, where this notation highlights the depen- 
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dence of these values on the particular choices of ax (T denotes True) in the truth model and a 

in the single Kaiman filter state estimator within the M3AE. The eventual goal is to evaluate or ap- 

proximate these matrices explicitly for a = &MMAE{U)- These are given by: 

p«»M-«,ii5(
tr;aT»a)    -   E{eM3AE(t-)eM:iAE(t-)T\aT,a.}- 

E{eM-AE(t~)\aT,si}E{eM3AE(t-)T\aT,a} (99) 

peM3^E(^;aT,a)   =   E{eM3AE(tf)eM*AE(tt)T\a.T,a}- 

E{eMsAE(tf)\aT,a}E{eM3AE(tf)T\aT,a} (100) 

Notice that, appropriate to a performance analysis, these are unconditional covariances versus con- 

ditioned on a specific sample of the measurement history vector. The notation E{ ■ |ax, a} is meant 

to convey the fact that the truth model is based on ax whereas the single state estimator within the 

M3AE is based on a (eventually to be evaluated at a = a.MMAE{U))- The first term on the right 

hand side of the covariance equations shown above is the correlation, \I>e 3 (£j;ax,a), at either 

t~ or tf. The next section will focus on deriving a first order approximation to *eJw3/lE (U\ ax, a), 

in order to develop a viable design tool for predicting system performance. The second term, 

£{eM3 4£(*r)}£{eM3AE(*r)T|ax,a} 

is the mean of the error times itself transposed. It is a "bias-like" term, and as in other covariance 

performance analyses, may well be ignored for expediency [44]. However, its derivation and impact 

are presented in Section 3.3.1.3. 

3.3.1.1   The Correlation, $eM3j4E(U\ ax, a) 

This section derives a first order approximation to the correlation, ^eM3AE(U] ax,a), based 

on a truncated series representation of errors, and using a single sample of the measurement-time 

history data to evaluate some of the component expressions. This approximation will in turn be used 

as the basis for the approximate covariance analysis tool developed for the M3AE architecture. The 
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approximations are required in order to develop a viable covariance analysis capability for design 

expediency. The alternative to this approximation is to conduct a time-consuming multi-run Monte 

Carlo analysis to determine PeM,AK(*i;aT,ä) properly, but it is desired to have an approximate 

covariance of errors prior to such a full-scale Monte Carlo evaluation of the M3AE, in order to 

enhance iterative design decision-making. 

The parameter estimation error is defined as: 

ea(ti) = a(ti)-aT(*i)' (101) 

where, as stated earlier, it is assumed that the parameter values do not change from one time sample 

to the next. Given that the parameter estimate vector is supplied by an MMAE, the parameter 

estimation error term is the same term presented in [44], where the conditional covariance of the 

parameter was shown to be 

Pa(*i)    =   £{[aT-S(tO] [aT-a(*0]T |Zft) = Z<} =£ [a^-aft)] [aT;-S(tO]TP;fe) 
i=\ 

(102) 

where pj (U) is the hypothesis conditional probability associated with the j-th elemental filter within 

the MMAE: 

PjiU)   A   Prob{a = aj|Z(ti) = Z,-} 

= /»(tQ|a,z(t<-t)(zt|aj,Zi-1)pj(ti_1) 

Efc=i /zCtOkz^-ofctK, 7,i-i)pk{ti-i) 

starting from some appropriate initial condition, such as Pj{t0) = ■$- for j = 1,2,..., A^. 

Given this foundation for the new M3AE architecture, a first order approximation to the state 

estimation error described by Equation (95) is developed. The goal of using this approximation is 

to develop a viable design tool to predict potential system performance before a full-scale Monte 

72 



Carlo analysis of the M3 AE is conducted. This first order error approximation is given by a truncated 

series representation, truncated to first order. Letting 

e*F(*t)U=aT = [XtfF(*i)|a=aT - XT(*i)] (104) 

be the state estimate error in a Kaiman filter based on the true parameter value, the following ex- 

pression is obtained: 

&M
3
AE{U)    =    eKF(ti)\a=a.r+ ^2  Qa    '   |a=aT [ak(U) - OTk(ti)] 

fc=l 

N 

=   e/<-F(tj)|a=aT+ ^2 
A d-kKF{ti) 

k=\ 
dak 

i=aT
eak{ti) (105) 

since Q^' = 0. Np is the number of uncertain parameters involved in the problem (i.e., the 

dimensionality of the parameter space). 

The first term on the right is the error in the state estimate coming out of a single Kaiman filter 

assuming that the true values of the parameters are known exactly. Given the assumptions stated for 

this development, the mean of this error is zero [43]. The second term on the right accounts for the 

fact that the parameters are not exactly known. This first order error expression (Equation (105)) is 

used to develop the correlation approximation below. 

The correlation approximation of the error is, to first order, 

*eM3/VE(ii;aT,ä)   £*   E Ifc-1 /T 

LKF{u)\— + v mm\ i)|a=aT+ 2-<        da,  *   |a=aT
ea, {U, 

1=1 

(106) 
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Equation (106) can be rewritten as: 

*eAfS/lG(*.-:aT,ä)    £   £{(m + n)(m + n)T} 

=   2?{mmT + mnT + nmT + nnT} 

=   £{mmT} + £{mnT} + £{nmT} + £{nnT} (107) 

where m = e*F(*OI«=aT and n = £ ^f^Ua.^^). 
fc=i 

The first term on the right in Equation (107) is 

£{mmT} = ^{(e^F(ii)|a=aT) (e^F(^)|a=aT)T} (108) 

which is equivalent to the conditional covariance of the state estimate error 

Pmm     =     ^{(e^F(^)|a=aT)(e/CF(ti)|a=aT)
T}- 

E {eKF(ti)U=aT} E {eKF(U)\^ar} (109) 

(since E {eKF(ti)\a=aT} = 0) when the parameter vector values are the true values. This leads to 

the standard Kaiman Filter propagate and update equations given below: 

Pmm(tr;aT)   =   *(*i,<i-i;aT)P(ttt1;aT)*T(ti,*i_i;aT) 

+Gd(ii_1)Qd(*i_1)Gj(ii_1) (HO) 

Pmm(it
+;aT) = P(tT;&r)-K(ti\*r)ia(ti;*r)P(ti-,*r) (111) 

If the cross correlation terms of Equation (107) are zero, then the overall correlation, 

*eM3AE (U; ax, ä), will be simplified greatly. Therefore, consider the third term on the right side of 

Equation (107): 

£{nmT}   =   E^^^I^^U^BK^I^A (112) 
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In considering Equation (112), note that eak(U) as defined in Equation (101) is a direct function 

of the measurement history random vector, Z(U), whereas [eK-F(*i)|a=a.r] 
is independent of Z(^) 

[43]. Thus, given that these latter two random variables are independent, the following Theorem 

from [52] applies: 

"Let Yi and Y2 be independent random variables with joint density f(y\,y2). Let g (Yi) and 

h (Y2) be functions of Yi and Y2, respectively. Then 

E[g(Y1)h(Y2)}   =   EbiY^EMYi)} (113) 

provided the expectations exist." 

Therefore, since eKF(U)Ia=aT 
is independent of Z(U), it is also uncorrelated with a function 

of Z(ij), namely eak(ti). Thus 

( N 

^(E^ip^^C^UleKH^lLa.} (114) 

0 

since 

E {eKF{ti)\a=&T} = 0 

Consequently, the cross correlation terms (£{mnT) and £{nmT}) of Equation (107) are zero, 

simplifying *eM3AE(^; aT,a). 

Finally, the last term on the right hand side of Equation (107) leads to: 
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£{nnT}    =   E< 
2->        dak '   |a=aTeafc(*i) 1 * 
fc=l / 
Nr \ T 

^       dal      |a=aTea, \H) 
.1=1 

EX 
\k=ll=l 

=   E \ rr d*KF(U)dyjKF(ti)'
T 

dak 
a \a=aT

eak{ti)eai[ti) 

NP  Nr rfdZKF(ti)dyiKF(ti)'
T
l 

NP NP 

(115) 

1^1^E\—~fak ^ la=aT|^{ea,(ti)eai(tO} (116) 

using the same type of uncorrelatedness arguments stated earlier, where E {eak {U)eai (U)} is equiv- 

alent to the k,lth (for all k = 1,..., NP, and / = 1,..., NP) entry of the correlation matrix, 

E{ea(ti)ea(ti)T}. This matrix is now approximated with the conditional expectation of the same 

quantities, conditioned on a single sample of the measurement time history: 

£{ea(^)ea(*t)
T}   s*   E {[aT-afe)] [aT-S(ii)]T |Z(fc,Wr) = Z< } 

=   J2 i^j-aiti)} [aTj-a(ti)]TPj(*0 (117) 

where the last equality is from Equation (102), and where a(t{) is given by Equation (84) and pj(ti) 

comes from Equation (103). Also, in Equation (116), the E { ^g^ ^"g^ |a=aT | term has 

been previously developed in [42,44] and is presented in Section 3.3.1.2. 

Note that the above development focused on the first term (the correlation) of the covariance 

peM3^E(^;aT,ä)    =   *eM3ylB(*i;aT,ä)- 

E{eM^AE(t~)\aT,ä}E{eM^AE(t~)rT\aT,ä} (118) 
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where there is no conditioning on a single sample of the entire measurement history Z(i;,uv) = 

Zj (where UJT is a single elemental outcome of the experiment) within the resulting expressions, 

the unconditional covariance, Pa(it), was approximated with Pa|Z(ii|Z(ij) = Zj) (where the 

ur term has been suppressed from this point forward) as computed on only a single sample of 

measurement-time history data from a single Monte Carlo simulation of the MMAE. Alternatively, 

tne Pa|z(*t|Z(*i) = Zi) values could be averaged over a multi-run Monte Carlo simulation to form 

a sample-statistic approximation to Pa(^) that is a better approximation to the true ensemble aver- 

age than Pa|z(*i|Z(tj) = Z*) itself (i.e., averaging over the NR runs, or conceptually running an 

approximation to the integration as Pa(t) = / [Pa|Z(i|Z(i) = Z)] /z(Z(t))rfZ), but this is unde- 

sirable because of tool expediency. It is desired to be able to evaluate Equation (118) approximately 

without requiring a full-scale Monte Carlo simulation. Otherwise, the designer may as well do a 

complete multi-run Monte Carlo analysis of the M3AE! Therefore, the M3AE approximate covari- 

ance analysis tool approximates Pa(<x) with the Pa|z(*i|Z(tj) = Zj), which is the best representa- 

tion of Pa(ij) for all U that can be computed by the MMAE on a one-run Monte Carlo simulation. 

Also note that there is no corresponding filter-computed indication of the mean error from a 

single Monte Carlo run, in distinction to the filter-computed Pa|z(*ilz(*i) = Zj). Therefore an 

approximate mean error value is not available, so SbeM3AB(ti;aT,a) may serve as an approxima- 

tion as well as an upper bound to PeM3AE{U; ai, ä), and in turn provides a good approximation to 

the expected performance for a proposed M3AE. However, äs stated earlier, Equation (116) is not 

precomputable since a(t,) and pj(U) are required at each sample time. Thus a single Monte Carlo 

run of the MMAE-based parameter estimator is required to produce a(tj), Pa(*t), and Pj(U) for 

input into this algorithm. Once accomplished, the M3AE approximate covariance analysis may be 

conducted. So in summary, the final equation used in the M3AE approximate covariance analysis is 
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=   RHS of Eq. (108) + RHS of Eq. (116) (119) 

The recursions associated with these terms are presented in the next section. Section 3.3.1.3 then 

presents an alternative method for evaluating the last term in Equation (118), rather than invoking 

the approximation of Equation (119). The M3AE covariance analysis tool itself is described in more 

detail in Section 3.4 

3.3.1.2  Approximate Covariance Recursions: Uncertainties in 3>, Bj, and H 

This section presents the complete propagation and update recursions pertaining to 

E \da,Kda!^ la=aT} for use in Equation (116). The recursions were originally developed 

to provide the iterative maximum likelihood solution to the simultaneous state and parameter esti- 

mation problem, accounting for possible parameter variations in the <J>, Bd, and, H system matrices 

[42]. These equations are not intended for on-line usage of the M3AE, but to provide an approximate 

indication of potential performance before the M3AE is actually implemented. This development 

parallels that of [42,44]. 

The recursions are developed in the following manner. First the standard Kaiman filter equa- 

tions are listed, followed by their partials with respect to the uncertain parameter, ak, for k = 1,2,..., 

NP. Once such partials are evaluated, products of such partials can be formed and expectations can 

be taken, to generate E {^%^^^|a=aT}. Finally, the expressions needed for the covari- 

ance matrix recursions are presented. 
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The standard Kaiman filter propagation equations are: 

XKFVT)    =   *(*i,*i-i)x^F(iti) + Bd(*t-i)u(ii-i) (120) 

P(t-) = ^(tt,ti_1)P(il
+_1)*

T(*i,^-i) + Gd(ti-1)Qd{t.i_1)Gj(ti-i) (121) 

A(ti)   =   H(^)P(^)HT(^) + R(ti) (122) 

where Equation (122) is included here for convenience, rather than in the update equations. Their 

associated partials (suppressing the time arguments equal to i,_i and the KF subscript on x on the 

right hand sides of the following equations) are readily formed as: 

dxKF(tr) fc+     0*_,      dBd 

—7T^   =   *^—+ 1T-*   +U^U (123) dak dak      dak dak 

a  *      =   -TT-P+*T+^^— *T + *P+-^- (124) 
dak dak dak dak 

-M - w^^^w+mw^™ 

for fc = 1,2,..., Np. Note that ^ and ^ must be known for all k and ^- = 0, since at time 

U, control inputs through time U-\ have already been applied and cannot be changed, even for 

feedback control [44]. 

Finally, the desired relations for propagating the expressions for the covariance matrix forward 

in time are (suppressing the time arguments equal to tj-i, the KF subscript from HKF, and short- 

ening "a = ax" to "ax" on the right hand sides of the following equations): 
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£(dxKF(ti )dxKF(ti ) T 

[      dak da, |a=a-i' 

dBA„.     T       ÖBJ 

W*{xu|ar}'öSr+a^£?{ux   la"}-^T 
,APfax+  T.    \OBj     3Bd     f   dx+T,    1    T 

E{x(t-)x(i-)T|a=a.r}   =   ^{x+x+T|aT}^T + BdJE;{uuT|aT}BT 

+$E {x+uT|aT} Bj + BdE {ux+T|aT} *T       (127) 

+*£{trT'-}Bl+i^{uuTk}Bj 

+^E{ux+TU}*T (128) 

where Equations (127) and (128) are required to define certain terms in Equation (126). Also note 

that, once Equation (128) is computed, its transpose will also be used. If the expectations involving 

u(tj) are required, they are evaluated in one of two ways [44]. If \i(U) is completely precomputed 
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(especially if it is zero), then 

£{u()T|aT}=^u£{()T|a,r} (129) 

and the following recursions are required to evaluate all necessary terms (suppressing the time ar- 

guments equal to i,_i, the KF subscript from SLKF, and shortening "a = ax" to "ax" on the right 

hand sides of the following equations): 

£{xKF(i+)|a=a.r}   =   *£{x+|aT}+Bdu (130) 

-    Wi)^E {Mtt)\ar} (131) 

whereD(£;)= I — K(ij)H(ti).Butiffeedbackcontrolisimplemented,thenu(ii) = —C(ij)x(£+), 

and the expectations become: 

E {u ()T |aT} => -CE {x+ ()T |aT } (132) 

E {uuT|aT} => CE {x+x+T|aT} CT (133) 

for which recursions have already been developed. 

To incorporate the measurement at time U, the standard Kaiman filter state equations are: 

K(ti) = P(i")HT(ii)A-1(ti) (134) 

r^fzi-H^x^t:)] (135) 

xKF(t+) = xKF(tr) + K(ti)rj (136) 

P(t+)   =   P(tr)-K(U)H(U)P(t-) (137) 

=   D(ii)P(i-)DT(ti) + K(*0R(«i)KT(*0 (138) 
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and their associated partials are (suppressing the KF subscript on xKF on the right hand sides of 

the following equations): 

dak 

^dHT(ti 
dak 

A.-\u)rj 

(139) 

dP(t. +\ 

dak 
W^ft, . P(^ft) _ KftJ^Ptt) „40, 

Again, taking products of terms as in Equation (139) and applying the expectation operation yields 

the desired covariance matrix relations as (suppressing the time arguments equal to tit the KF sub- 

script on SLKF, and shortening "a = aT" to "aT" on the right hand sides of the following equations) 

[44]: 

E\dkKF{tt)dkKF{ttY.        1 
\      dak dat 

&T j =   BE 
dxKpfa ) dxKrit: 

dak da. |a—a-p DJ 

D 
dp- 
dak 

Hx+P 

Dl^ar+P-afl' 

+ 

dai dai 

oak ) dak 

,-i 

Kfip-H* 
dai 

-iT 

XX1 
ÖHT_T 

la-r dai 
KJ (141) 
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K^(^Ä"*'TU}+P_HT^) (142) 

£ {x(i+)x(*+)T|a=aT} = £ {x(ir)x(*-)T|a=a,.} + KAKT (143) 

3.3.1.3  Bias Term, E{BMBAE(ti)\a.T,ä}E{eM3AE(ti)
T\arr,a.} 

The first term of the conditional covariance, PeM3AE(U), of Equations (99) and (100) 

determined in Section 3.3.1. All that remains is evaluation of the bias teTmE{eM*AE(tij\&T,ä}* 

£{eMM£(£i)T|aT, ä}. This term shall be developed here, although it may not be used in the M3AE 

approximate covariance analysis if one chooses to lower the computational burden by using Equa- 

tion (119) in place of Equation (118). Looking at the first component of this term yields the follow- 

ing, using Equation (105): 

was 

£{eA,3^)|aT,ä}    3   file^U+^^U^ft 
k=x      da* 

E{eKHU)\a=aT}+Elf:^Mla=aTeakiti) 
[ti   dak 

*=*Teak(U) > (144) 

since E {eKF(ti)\a=ar} = 0. Therefore 

E{eM3AE(U)\^ä}   ~   f^E^^l^^U)} 

W p 

E* fdxKF(ti) 
dak 
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ion Note the first term on the right-hand-side of Equation (145) was previously presented in Equati 

(131). If either term E {^M|a=a.r| or E {eak(U)} were zero, the task would be simple and 

complete, since then PeA/3/iE(^;aT,ä) = *eM3^;aT,ä), as already computed. In other words, 

the prior development in Section 3.3 would provide not just an upper bound on PeM3>lp (U), ignoring 

the nonzero second term in Equations (99) and (100), but would be a more accurate representation 

since the second terms would truly be zero. However, in general, neither ^^|a=aT nor ea-k(U) 

are zero mean processes. Nevertheless, two special cases involving the eak (U) term warrant further 

discussion. 

Case 1. If the parameter space is only made up of discrete points, such that the true parameter 

may only assume one of the discrete points at any time, and the MMAE is set up such that it has 

that point in its filter bank, then eak (U) will have a zero mean error in steady state [4]. This is due 

to the fact that the MMAE ä will converge to that true parameter value under these conditions [4]. 

Note, however, this situation does not occur for most problems of interest. 

Case 2. Given the more practical case, where a discretized parameter space is considered, 

Baram [4] showed that, under the assumptions stated in Section 3.2, the MMAE output will con- 

verge to the filter which is "closest" to the true value from a specific information distance measure 

standpoint. The error, eak(ti), may not be zero, but its steady state value can be found directly by 

simply subtracting the "closest" filter's assumed value of a., = ac (C for "closest") from the true 

value of aT(ii) and then taking the k-th scalar component. Thus 

E{eak(ti)}   =   E{aCk(ti) - aTk(ti)} 

=   ack(U) - aTk(ti) (146) 
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since aCk(U) and ark(U) are known. Therefore, given the discussion above, Equation (146) is 

equivalent to: 

eat (U) = ackiU) - aTk(U) (147) 

Therefore, the "known" value of eak(U) replaces E{eak{U)}and is used in Equation (145) directly. 

This argument also holds for MMAE's which place lower bounds on the elemental filter probabil- 

ities to avoid estimator lockup. For this type of MMAE, the &{U) computed by Equation (59) is 

subtracted from the true value of aT(ij) to determine eak (ti) for k = 1, 2,..., NP. 

If it is desired to account for the "bias" term, E{eMzAE(ti)\eLT,ä}E{eMiAE(ti)T\aT,ä}, 

Equation (145) and its transpose are used to write (suppressing the conditioning, "|aT,a" from 

both sides of the equation for convenience): 

E{eMsAE(U)}E{eM3AE(ti)T}   =   gg E {^g^ j E I ^^ \ * 

E {eak(U)} E {eai(U)} (148) 

(149) 

As mentioned earlier, mean effects are generally present, but often ignored in covariance per- 

formance analyses, since it is mainly desired to get an upper bound on potential performance in as 

quick a manner as possible. Therefore, the M3AE approximate covariance analysis tool can ignore 

E{eM3AE(ti)}E{eM3AE(ti)T} and use just *eM3AE(^;aT,a) versus PeM3AB(ti;aT,a), i.e., us- 

ing Equation (119) versus Equation (118). 

3.3.2   Uncertainties in Qd and R 

The development of Section 3.3.1.2 is now modified to address design problems in which the 

uncertain parameters affect either the dynamic noise covariance, Qd, or the measurement noise 
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covariance, R. The only difference in the algorithms presented here versus Section 3.3.1.2 lies in 

the evaluation of the partial derivatives in each relationship. The equations in this section are much 

simpler to develop and implement. Again this presentation will parallel [44]. The computations for 

propagating forward in time are simply (again, suppressing the time arguments equal to i,_i and 

shortening "a = aT" to "aT" on the right-hand-side of equations): 

F I dxKFft) d*KF(tT)* \ Jdx+C?X+T       , 

which is only the first term from Equation (126). Equations (127) and (128) are no longer required, 

and 

a =   $-x— *T + Gd-^Gj (151) dak dak dak    
d v     ' 

Incorporating the measurement update, yields the following relations [44]: 

h{      dak äS        la=aT/    "    D£t"~ö^ to U=aT/D 

tW*)A-1{u)em (152) 
dak da 

to replace Equation (141), where 

f = ^»-^ 
am . m,fjmmt,)+?m 

ami . m)amiD,{u)+K{tl)amK^ 
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and Equations (142) and (143) are no longer required. 

3.4 M3AE Design Tool 

This section discusses in more detail how the designer would use the approximate covariance 

analysis tool developed for the M3AE architecture. This tool gives the designer the ability to ana- 

lyze, tune, and predict system performance before the M3AE is constructed and subjected to a full- 

scale Monte Carlo analysis. Figure 12 is a repeat of Figure 3 and shows in general how a designer 

developing a system based on the M3AE architecture could conduct an approximate covariance 

analysis after only a single Monte Carlo run on just the MMAE-based parameter estimator within 

the M3AE. 

(^ Start/) 

Build Models 
and Code 
Software 

Perform single 
Monte Carlo 
run on MMAE: 

a» Pa> Pj 

Perform M3AE 
Covariance 
Analysis 

Tune and/or 
modify state 
and/or parametei ■ 
estimator 

NO 

Performance" 
Meets SpecJ?/' yFS 

Validate through 
M3AE Monte 
Carlo Analysis 

Figure 12. Performance Analysis Tool for M3AE 
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The designer should accomplish the following steps for a viable design: 

1. Design the MMAE based on Sheldon's 5-step algorithm for parameter estimation presented in 

Section 2.2. Note that the constant-gain, steady state filter restriction has been eliminated by 

using a finite horizon assumption and conducting a constrained optimization, as described more 

fully in Section 3.5. The finite horizon limits the number of the iterations required to generate 

the solution to the discrete time Lyapunov equation presented in Section 2.2. The length of the 

horizon is ad hoc and based on what finite period of time (finite horizon) is of physical concern 

for the problem. Section 3.5 discusses these modifications to Sheldon's work. 

2. Enhance the fixed-bank MMAE design by using Lund's IRDF techniques applied to discrete- 

time problems (see Section 2.3). The algorithm for implementing IRDF for discrete-time 

systems is presented in Section 3.6. 

3. Design the Kaiman filter for state estimation using the common techniques discussed in [43, 

44]. However, in designing this Kaiman filter, it is important to realize that the Kaiman filter 

will receive real-time, parameter estimates from the MMAE, in addition to the measurements, 

at each sample time. 

4. Code the MMAE in software and conduct a single Monte Carlo run to generate the time histories 

of the parameter estimates, afc), filter-computed Pa(tj), and the associated elemental filter 

probabilities, pj(ij). 

5. Code the state estimator system matrices and associated system noises into the M3AE 

covariance analysis tool. 

6. Perform the covariance analysis. 



7. If the performance meet specifications, conduct a thorough multi-run Monte Carlo analysis 

on the entire M3AE design. If performance does not meet specification, tune and/or modify 

the state and/or parameter estimator (using a greater number NF of points in the parameter 

space discretization, for example), depending on where the problem areas exist. For example, 

if an event detection design was generating too many false alarms, then investigations into 

the MMAE would be appropriate. Moreover, if state estimation precision was not meeting 

specifications, the structure of the second term on the right-hand-side of Equation (119) (namely, 

Equation (116)) provides useful insights into which parameters should receive the designer's 

attention in order to provide the desired benefit to particular states of concern. Such sensitivity 

information is especially useful for making good design decisions. 

After modification and/or tuning is accomplished, Steps 4-7 should be repeated until perfor- 

mance meets specifications. 

3.5 Enhanced Sheldon Parameter Optimization 

As discussed in Section 2.2, Sheldon's original development assumes steady state, constant- 

gain filters (i.e., Kj does not vary with time). Sheldon focused on performance at steady state, 

since, at steady state, the MMAE would have converged to the "best" discrete parameter value (in 

the Baram distance measure sense). If problems with time invariant system models and stationary 

noises are considered only, then the steady state Kaiman filter will be a constant-gain Kaiman fil- 

ter. However, the filters in the MMAE do not have to be steady state Kaiman filters, but for the 

development to apply, the filters must have the same structure as a Kaiman filter. Therefore, any 

other method to calculate a constant gain that produces a stable estimator could be used [70]. If the 

linear (or linearized) system model for a given application is astable or unstable, then steady state 

conditions are not achievable. Instead, a physically motivated finite horizon is used for assessing 
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performance, and it is assumed that the MMAE will converge to the "best" parameter estimate (best 

in the Baram distance measure sense) within that finite horizon period of time. The length of the 

finite horizon is motivated by the designer's physical insights into how many sample periods into 

the future the discretization algorithm should look when performing its vector minimization. Thus, 

for the second problem researched in Chapter 4 (an unstable, nonlinear, integrated GPS/INS prob- 

lem using extended Kaiman filters), a nominal trajectory point is chosen as the basis for defining 

the system matrices for determining a "pseudo "-constant gain value. Once the gains are calculated, 

the Sheldon 5-step algorithm may be applied using a finite horizon assumption to generate an ap- 

proximate solution, since the system never achieves steady state. Thus the designer must decide the 

length of the finite horizon for the problem at hand. The finite horizon assumption is implemented 

in software during the generation of the solution to the discrete time Lyapunov equation 

E{   %     K"T   XT
T
]}   

=   ri(*0=YrJ-(ti_1)T
T + G0QoGg' (156) 

presented earlier in Section 2.2. Thus, the finite horizon limits the number of the iterations required 

to determine an adequate solution. 

Finally, Sheldon's cost functional for parameter estimation, given in Equation (46), is mini- 

mized using a constrained-range optimization technique. The constrained-range optimization tech- 

nique restricts the search range of the minimization to the admissible parameter space. This allows 

the minimization to search in a smaller, acceptable region (which is problem dependent), for the 

"best" values to minimize the cost functional. 

This enhanced Sheldon algorithm was co-developed with Vasquez [77] and implemented us- 

ing MATLAB [40] for the examples given in Chapter 4. MATLAB code was developed and written 
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to generate the required parameter sets for each example. A modified Simpson's rule [77] was the 

numerical integration technique used, and the vector minimization was accomplished using MAT- 

LAB's constrained optimization techniques which are based on Sequential Quadratic Programming 

(SQP). Specifically, the command "constr" in MATLAB's Optimization Toolbox performs con- 

strained nonlinear optimization for multivariable functions [39], 

3.6 Discrete-Time IRDF 

This section develops the Lund algorithm for the sampled-data measurement case. Lund's orig- 

inal development for the continuous-time measurement case was presented in Section 2.3. Specifi- 

cally, this section develops the algorithm for implementing the discrete-time modulation parameter, 

rj(ti), that is analogous to r)(t) of the original Lund IRDF concept. 

Recall from Section 2.3, that a general way to keep the inter-residual distance measure, Jjk{U), 

above some specified limit was to vary the dynamics noise covariances, Qdj(U), and thus adjust 

the filter gains. For the sampled-data measurement case, the filter propagation and update equations 

for covariances and gains are 

pi(*7+i)    =   &jPj(tt)*J + Gdj(ti)Qdj(ti)Gl(ti) (157) 

Pi(*++i)    =   Pi^r+iJ-K^ti+OH^ti+OP,-^) (158) 

K,(*i+1)   =   Pi^jHjC^JfH^ti+OP^tr^jHj^^ + R^^)]-1 (159) 

and Qdj(U) is replaced by 

Qdj(U) = v(ti)Qdj(ti), j = l,...,NF (160) 

where the modulating parameter, 77^) e fomin,1.0], which is analogous to the continuous-time 

measurement case (see Section 2.3 for discussion on r)(t)). 
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Lund's proposed simplification of modulating the new information Kj(ti)rj(U) by 77^) for 

the sampled-data measurement case is shown by the following equation: 

K$(tt)r,-(ti) = T1(ti)Kj(ti)Tj{ti) (161) 

The filter gains are now precomputable and only the modulation is computed on-line [35]. 

Additionally, in Lund's continuous-time measurement development, the time derivative of 

the modulating variable 77(f) was given in Section 2.3 by Equation (67). For the discrete-time- 

measurement equations, the derivative of 77(f) is replaced by the increment of 77^) defined as 

A7?(fi)    =    ^{jjk(ti)-J%(ti)],    Condi (162> 

=    0, Cond2 
where 

Cond 1 :    TJ(U) € [7?min, 1.0] 

Cond2:    V(U) = *7min 
AND Z {jjk(U) ~ J%(U)} < 0 OR (163) 

V(U) = 1 AND £ [jjk(U) - J0k(ti)} > 0 

As in the continuous-time measurement case, "Condition 2" operations again provide anti-windup 

compensation. Note that the 77min, f, and J?fe values are determined in the same manner as for the 

continuous-time measurement case presented in Section 2.3. 

At each update cycle, the new modulation value is defined as: 

V(U) = v(U-i) + &V(U) (164) 

The residuals are also required at tt to compute Arjfc). Then this computed 77^) gets applied to 

Equation (160) and incorporated into Equation (157) for the next propagation to ti+i. The algorithm 

for implementing this discrete-time modulation value is shown in Figure 13. The algorithm first 

picks the two elemental filters which are the "closest" to the true value. This is determined by 

looking at the elemental filter probabilities, pj(U). The two filters with the greatest Pj(fj)'s are 

considered the closest in the "Baram sense" [4] to the true value. IRDF's goal is to ensure that 

these two elemental filters are as "distant" as possible from each other (increasing distinguishability 
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Figure 13. Modulation Parameter Calculation 
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between filters) by modulating filter gains. Equation (162) is used to calculate Ar}(U) at each time 

sample. Once Ar](ti) is determined, it is compared against the conditions listed in Equation (163). 

If Condition 1 is met, Ar?(i;) is added to the previous value oft](ti-i) according to Equation (164). 

If Condition 2 is met, the value of 77 doesn't change: 

V(U) = V(ti-i) (165) 

Then rj{ti) is used to modulate either the dynamic driving noise covariance Qdj(U) or the new 

information Kj(ti)rj(ti) as discussed above. Therefore, Equation (157) becomes: 

Pj(tr+1) = *iPi(t+)*J + Gd^Q^OGdito) (166) 

or K'jiU) replaces Kj(U) in the measurement update equations. The discrete time difference equa- 

tions are used in the research examples presented in Chapter 4. 

3.7 Summary 

The M3AE architecture has been developed in this Chapter. It is based on a fixed-bank MMAE 

used for parameter estimation and a single Kaiman filter used for state estimation. The placement of 

the MMAE's discrete parameter points (used as the basis for defining elemental filters) is chosen by 

using Sheldon's parameter optimization algorithm [69], modified herein to be applicable to a wider 

class of problems than originally proposed. The distinguishability of the elemental filters has been 

further enhanced by employing Lund's IRDF techniques applied to the discrete-time, fixed-bank 

MMAE [35]. 

Additionally, a valuable approximate covariance analysis design tool has been developed to 

assist the designer in predicting potential performance for an M3AE-based system. Parameter vari- 

ations in any of the *, Bd, Gd, H, Qd, and R system matrices are possible. An approximate 

covariance analysis may be accomplished after conducting only a single Monte Carlo run on the 

MMAE-based parameter estimator. The "square of the mean" term subtracted from an error corre- 
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lation matrix to form the error covariance, PeM3/1 „.(*,), can be ignored for most problems, especially 

if one is interested in expediency and only an upper bound on performance. 

Two examples are presented in Chapter 4, to illustrate the effectiveness of the covariance analy- 

sis tool, as well as highlight the overall performance of an M3AE-based system. 
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Chapter 4 - M3AE Evaluation 

The new M3AE architecture solves the problem of estimating states and parameters simulta- 

neously. To demonstrate the M3AE's performance improvement over previously published results 

involving conventional MMAE's, two examples are developed and their results presented in this 

chapter [69,78]. The first example involves a simple second-order mechanical translational sys- 

tem, in which the system's undamped natural frequency is the uncertain parameter [69]. The second 

example involves a 13-state nonlinear integrated GPS/INS system, in which measurement noise af- 

fecting the GPS outputs is the uncertain parameter [78,79]. The results demonstrate application of 

the theory and performance predictions discussed in previous chapters. 

This chapter is separated into two major sections - one for each example. Both examples use 

MMAE banks made up of three elemental filters, where the state models used in the elemental filters 

are the same as the state model used in the single Kaiman filter (used for state estimation) within 

the M3AE algorithm. Additionally, there is no order reduction between the truth and filter mod- 

els, and only one parameter value is changing in each example. Both examples are implemented in 

FORTRAN using the Multiple Model Simulation for Optimal Filter Evaluation (MMSOFE) soft- 

ware package [58-60,62,63,78]. Sheldon's optimum parameter discretization algorithm, the M3AE 

approximate covariance analysis tool, and data reduction is accomplished using MATLAB [39,40]. 

4.1  Second Order System with Uncertainties in # and Qd 

The second order problem presented below is the same example Sheldon considered in his re- 

search [69,70]. The uncertain parameter is present in F, B, and G of the continuous-time model, 

and thus in the 3>, Bj and Qd matrices of the equivalent discrete-time model [43], as will be shown. 

However in this example, the input u(i) is assumed 0. Therefore, the impact of an uncertain para- 

meter in Ba is not investigated in this example. This section is presented as follows: 
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1. System description - since each example comes from past research, the problem descriptions 

will be taken from previously published works. 

2. M3AE design tool implementation, results, and analysis - discussion of the results from the 

7-step algorithm of Section 3.4. Additionally, the impacts of implementing the enhanced 

Sheldon's optimization algorithms and Lund's discrete-time IRDF in the M3AE architecture 

are analyzed. Finally, the section finishes with a comparison between the M3AE approximate 

covariance analysis and actual results. 

3. M3AE Analysis - includes comparisons between actual results from a 10-run Monte Carlo 

simulation of the M3AE and that of a conventional fixed-bank MMAE ("Sheldon-discretized" 

for state estimation, as opposed to the MMAE within the M3AE that is "Sheldon-discretized" 

for parameter estimation). 

4. Summary - summarizes the major themes discovered during the analysis of the test case. 

4.1.1   System Description 

The following system description comes directly from [69]. The true system is an ideal me- 

chanical translational system. It is a continuous-time system which is modelled by the second order 

linear equation: 

c(*)=F(t)x(t) + B(i)u(t) 

±i(t) 
x2(t) 

0       1 
__fc      _b_ 

m m 

Xl(t) 
X2(t) + 0 

L   m   J 
U(t) 

(167) 

(168) 

where xi is the position in meters and x2 is the velocity in meters per second. Restating in more 

general terms, wn denotes the undamped natural frequency, J^, and £ denotes the damping ratio, 

2Vifcm' 
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To frame the system in a stochastic setting, a dynamics driving noise term is added to the model 

to produce 

x(t) = F(t)x(t) + B{t)u(t) + G{t)w{t) 

xi(t) 
x2(t) 

0 1 
'2    -2Cw„ -oJt 

xx{t) 
x2(t) 

+ 
U>Z 

u(t) + 
UZ 

w(t) 

(169) 

(170) 

with 

and 

E{w(t)w(t + T)} = Q6{T) 

Q = 0.01 cm2 sec 

The units of Q may seem strange at first glance since w has units of cm/sec2, but they are valid 

since u?n has units of radians2/sec2 and 8{T) carries units of (time)-1. The damping ratio is set 

to C = 0.01 and the natural frequency, un, is allowed to vary from 27r (~ 6.28) to 2Ü7T (~ 62.83) 

radians per second. These values of Q, (, and un, were chosen to accentuate the differences between 

models by increasing the sensitivity to changes in natural frequency. Larger damping ratios such as 

C = 0.707 result in a system for which there is a less distinguishable difference between models 

based on different un values, so a multiple model technique may not be warranted. The Q is chosen 

to provide enough system energy for convergence of the adaptation process, yet not so much as to 

swamp out the system with noise effects. 

The system is implemented with an equivalent discrete-time model of the form [43]: 

x(*i) = *(fi,ti-i)x(ti_i) + Bd(ti_i)u(ti_i) + Gd(ti_1)wd(ti_i) (171) 

where 
U — ij_i = 0.01 sec V i 
$(ti, ti-i) = the state transition matrix associated with F(i) 
Bd(*i-i) = Jli^iU^B^dT 

and Wd(tt-i) is a discrete-time white Gaussian noise process with zero mean and covariance kernel 
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where 

Q. i(«i-i)    =    /'  *(ii,r)G(T)Q(r)G(r)T^T(ii,T)rfr (172) 

Noisy measurements are available at each sample instant and are described by the equation 

x{U)   =   H(*t)x(ti) + v(U) (173) 

<U)  =   [io] 
XX(ti) 

X2(ti) 
+ v(ti) (174) 

where v(U) is a zero-mean white Gaussian noise process with covariance kernel 

E{[v{ti)][v(ti))}    =   { ^    £j£ 

and 

R(U) = 0.01 cm2       V« 

Notice the truth model has the same structure as the filter models, with the only difference being 

in the value of u>n, therefore the transformation matrix T of Equation (52) is the identity matrix. 

Additionally, a lower bound probability of pmin = 0.01 is used in all the test cases shown. The value 

of 0.01 was determined experimentally. In general, too small a lower probability bound may slow 

the response of the MMAE to the onset of a changing parameter, while larger lower bound values 

may reduce the total amount of probability available for assignment to the MMAE's elemental filter 

with the "closest" &j to the true parameter ap, in the "Baram distance measure sense." 

Finally, the state model used in the M3AE's single Kaiman filter (which has a purpose of ac- 

curate state estimation) is the same as the MMAE's elemental filters. The only difference is that 
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the single Kaiman filter code has been modified to accept the M3AE's MMAE-supplied parameter 

estimate at each sample time. 

4.1.2   M3AE Design Tool Implementation, Results, and Analysis 

This sections describes the results from implementing the M3AE 7-step design process of Sec- 

tion 3.4. Additionally, the impacts of implementing the enhanced Sheldon optimization algorithm 

and Lund's discrete-time IRDF on the M3AE are investigated and analyzed. Finally, a comparison 

between the M3AE approximate covariance analysis and actual results from a 10-run Monte Carlo 

simulation is presented. 

4.1.2.1   Sheldon Parameter Optimization Algorithm 

Sheldon's parameter optimization algorithm (see Section 2.2 and 3.5 for algorithm details) is 

implemented in MÄTLAB [40], For this problem, both an unconstrained and constrained-range op- 

timization technique are employed. After a comparison of the two methodologies, the constrained- 

range optimization (using "constr " from MATLAB's Optimization Toolbox [39]) using a 50-sample- 

period finite horizon is implemented in the optimization to determine the elemental filter parameter 

values used in this research example, even though the constrained-range optimization and finite 

horizon are not required for this second order, linear, stable system (Table 1 compares the results 

of both optimization techniques). The motivation to do so is twofold. The first reason is expedi- 

ency, since the constrained-range optimization and finite horizon limited the parameter search space 

and the number of iterations required to solve the Lyapunov equation shown in Equation (53) dur- 

ing the minimization. The second reason is that it provides verification of the above implementa- 

tion, since the second example to follow involves a 13-state nonlinear, unstable system in which 

the constrained-range optimization and finite horizon are required to determine the appropriate ele- 

mental filter parameter values. Additionally, as mentioned above, for the test cases examined in this 
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example, a lower bound (pmin = 0.01) is placed on the elemental filter probabilities. Therefore, 

Equation (59) is used to solve for the a(tj) used in the cost function in Equation (46). 

The constrained-range optimization with the 50-sample finite horizon produces results which 

are comparable to the unconstrained optimization, as shown in Table 1 below. 

Table 1. Parameter Choices for State and Parameter Estimation 

State Estimation Case 
u)n (rad/sec) 

Filter Unconstrained Constrained 
1 18.51 22.88 
2 35.30 37.89 
3 53.09 54.43 

Parameter Estimation Case 
u>n (rad/sec) 

Filter Unconstrained Constrained 
1 12.77 13.44 
2 28.64 28.40 
3 49.67 49.90 

The results from the constrained-range optimization are used in this example. Figure 14 displays the 

results of the constrained-range optimization used in the parameter estimation case. The valleys in 

the curve provide the optimal locations for placing the elemental filter a/s. However, if aT is near 

any of the peaks in the curve, it is anticipated that parameter and state estimation performance will 

be poor [69]. Furthermore, notice the differences in the parameter discretization values between the 

optimized state estimation versus the optimized parameter estimation cases. As Sheldon points out 

in his research [69], the potential exists for the true parameter, aT, to be "closer" in the "Baram dis- 

tance measure sense" to an elemental filter's a; in the MMAE "Sheldon-discretized" for optimized 

state estimation performance than to an elemental filter's a; in an MMAE "Sheldon-discretized" for 

optimized parameter estimation performance (note that from this point forward, the following three 
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abbreviations are used for convenience: closest - "closest" in the "Baram distance measure sense"; 

MMAE/SDSEP - MMAE "Sheldon-discretized" for optimized state estimation performance; and 

MMAE/SDPEP -MMAE "Sheldon-discretized" for optimized parameter estimation performance). 

If this were to occur, the MMAE/SDSEP will produce more accurate parameter estimates as well as 

more accurate state estimates than an MMAE/SDPEP. Therefore, it is expected for these cases, that 

the M3AE may not perform as well as a conventional MMAE/SDSEP. Such a case is investigated 

and the results are discussed in Section 4.1.3. 

4.1.2.2   Lund's Discrete-Time IRDF 

The M3 AE's MMAE is implemented in the Multiple Model Simulation for Optimal Filter Eval- 

uation (MMSOFE) [62] software program. MMSOFE is a FORTRAN-based program developed 

for evaluating various types of MMAEs. 

An initial run of the "Sheldon-discretized" MMAE developed above is conducted to deter- 

mine an approximate value for the inter-residual differences between the MMAE elemental filters, 

and thus to determine the inter-residual distance measure J°jk. The minimum modulation parame- 

ter' ^mim and the attenuation, £, are chosen following the guideline presented in Section 2.3. If the 

system remains stable, [35] recommends setting 77min equal to zero, otherwise, iterating on r/min 

downward from one by orders of magnitude is recommended to get a "good" 77min. Next the initial 

Jjk chosen is the average value of the inter-residual differences between filters once good perfor- 

mance (in distinguishability) is achieved. Finally, £ is chosen to provide proper attenuation of the 

T)(U). In this case, £ [on the order of 0.7] provides a useful smoothing to Equation (162), whereas 

significantly smaller values cause undue sluggishness of response. Then a sensitivity analysis is 

conducted using various combinations of Jj., 7?min, and £ until the desired performance is achieved. 

For this problem, it was observed that larger values off (0.7 < f < 1) and fjk (3 < J°. < 5) lead 
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to degraded M3AE's state estimation performance without any improvement in parameter estima- 

tion performance, while smaller values of £ (£ < 0.7) and J°fc (J°fc < 3) had negligible impact on 

the state and parameter estimation performance. (In fact it was difficult to distinguish the perfor- 

mance between an M3AE's with IRDF versus an M3AE's without IRDF in both state and parameter 

estimation performance.) Table 2 displays the final results for this example. 

Table 2. Lund IRDF Tuning Parameters 

Jjk "rain i 
Values Chosen 3.0 0.0 0.7 

Next, Lund's IRDF technique, adapted for the discrete-time case as discussed in Section 3.6, 

is implemented in the MMAE with the tuning values shown in Table 2. These tuning values lead to 

enhanced parameter estimation performance with minimal impact on the M3AE's state estimation 

performance, as will be shown later in this section. 

Figures 15-18 compare the outputs from a 10-run Monte Carlo simulation of the MMAE 

(tuned for optimized parameter estimation, and with aT = 32.0) before and after Lund's discrete- 

time IRDF is applied. The top plots in Figures 15 and 16 present the parameter estimate performance 

(dotted line) versus the true parameter value (the solid line) for a representative sample run from 

the 10-run Monte Carlo simulation. The bottom plots represent the mean error (dotted line) and the 

mean ±1 standard deviation (dashed line) values from the 10-run Monte Carlo simulation, where 

the error is defined as: 

ea(*t) = ^MMAE{U) - aT(*i) (175) 

Notice that both plots in Figure 15 indicate that the MMAE-supplied parameter estimate converges 

to the &j closest to aT in the "Baram distance measure sense," namely u>n = 28.40 rad/sec. The 
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Figure 15. MMAE/SDPEP Without IRDF Parameter Estimation Performance: Test Case 1 
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plots indicate little blending, thus the resulting bias in the estimate. The plots in Figure 16 indicate 

a change once IRDF is incorporated. The top plot indicates the same trends as the top plot in Figure 

15, but this is only a single-run time history. Notice the parameter estimates in the bottom plot (10 

run Monte Carlo simulation). The resulting parameter estimate is a close to a zero-mean estimate, 

indicating a more accurate parameter estimate for input into the M3AE's state estimator, on average. 

Figure 18 shows the impact to the state estimation performance after implementing IRDF, as 

compared to Figure 17. Note that this is the blended state estimate from the MMAE designed for 

best parameter estimation. These plots are shown to emphasize the negative impact to an MMAE's 

state estimation performance when implementing IRDF, even though this configuration would not 

typically be used for state estimation. The top plots in Figure 17 and 18 indicate the MMAE's 

blended state xx estimation performance, whereas the bottom plots indicate the MMAE's blended 

state x2 estimation performance. Notice that the scales on all such state estimation performance 

plots are the same for easy comparison. Each plot contains 5 curves representing the following: 

• The solid trace represents the zero (assumed mean) ± one filter-predicted sigma bound for the 
error in the blended estimate of each state variable. 

• The dotted line represents the actual 10-run mean value of the error for each state variable. 
• The dashed line represents the 10-run mean ± one sigma error for each state variable. 

Additionally, to assist in analyzing the state plots, a performance measure representing the tem- 

porally averaged root-mean-square (RMS(e)) of the state estimation error, eu)(ii) = x^U) - 

xtrue„(U), is given by: 

RMS{e)   =    j±-   g 
1 * «or— 

i=0     \ 

Nr, 

l*runs -, J2e-^) <176) 

where: 
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■Etrue^ \ti) 

N 
Lü 

N 1 v samp 

filter-computed estimate of a given state for a given sample 
{uj) of the stochastic process 
truth model value of the same state for that sample (w) of 
the process 
number of time histories in the Monte Carlo simulation 
single time history run number 
the number of sample periods in each time history 

These measure values pertain to errors at both tf and t{ and are indicated in the upper left of each 

plot with "RMS =...". 

Notice how the MMAE/SDPEP 's state estimation performance suffers with IRDF, as evident 

from Figure 18 and the increase in the temporally averaged RMS state estimation errors associated 

with the IRDF case shown in Table 3 below. 

Table 3. IRDF's Temporally Averged RMS State Estimation Errors 

State 
Xl 

X-2 

Before IRDF 
0.1626 
11.98 

IRDF 
0.9102 
33.07 

Percent Increase (%) 
459.8 
176.0 

Notice however, as mentioned above, that the IRDF-based MMAE's parameter estimate has a mean 

error closer to zero than does the non-IRDF-based MMAE, indicating a better estimate of the true 

parameter value. This confirms the discussion in Section 2.3 concerning the trade-off between state 

and parameter estimation performance, and this example clearly indicates the benefit to be gained 

with the M3AE architecture (discussed in more detail in Section 4; 1.3.1). The M3AE's state estima- 

tion performance, given ä from the IRDF-based MMAE, is generally just as good as the state esti- 

mation performance produced by the MMAE "Sheldon-discretized" for optimized state estimation. 

Where significant blending occurs in the estimation of ä, the estimate itself is more representative 

of the true parameters than any of the a, values used for the basis of the elemental filters, and the 

M3AE single filter state estimate can then substantially outperform the precision achievable with a 
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conventional MMAE. However, without MMAE blending of the parameter estimates, the M3AE's 

state estimation performance provides no clear advantage over existing MMAE techniques. 

The effects of IRDF are further emphasized after reconducting the above test case with r)(U) 

artificially set to zero, rather than just letting 7?min be zero, causing Q'dj(ti) = v(ti)Qdj(U) = 0 

throughout the simulation. This is not a practical test in determining system performance, since 

setting the Q^(*i)'s to zero has the effect of reducing the elemental filter gains below anything rea- 

sonable compared to that which would be obtained via conventional tuning methods. As a result, 

the MMAE state estimation performance suffers greatly, as evident from Figure 19, which plots the 

MMAE's blended state estimation performance. The associated RMS values of the state estima- 

tion errors are shown in the Table 4 below. Yet, even in this extreme case, the parameter estimate 

performance shown in Figure 20 is comparable to that of the MMAE without IRDF implemented, 

as shown in Figure 15. Moreover, of greater significance, the corresponding M3AE's state estima- 

tion performance is "comparable" to the MMAE/SDSEP 's state estimation performance, as will be 

shown in Section 4.1.3. 

Table 4. IRDF's Temporally Averged RMS State Estimation Errors (rj(ti) = 0) 

State Before IRDF IRDF Percent Increase (%) 
Xi 0.1626 1.889 1061.7 
X2 11.98 60.55 405.4 

However, the negative impact of intentionally setting rj(ti) artificially to zero, is evident upon 

closer inspection of the top plot in Figure 20 where, during the majority of the simulation, the ä is 

equal to ± £ a/s from the 3 MMAE elemental filters (the obvious value of 30.58, the average of 

13.44,28.40, and 49.90 from Table 1, all of which are also separately evident in the top plot of Figure 

20). This is evident upon inspection of Figure 21 which indicates the elemental filter probabilities 
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associated with that sample run. Obviously, the elemental filters are sharing the probability equally 

during the majority of the run, indicating the MMAE has become "lost" since none of the "detuned" 

elemental filters are providing adequate estimates. All elemental estimators have residuals that look 

equally bad, and so a probability of 5 is assigned to each. Thus, the main reason good parameter 

estimation occurs is that the | J2 aj = 30.58 parameter estimate value happens to be very close to 

aT = 32.0 in this particular example, and this should not be misinterpreted as effective performance 

by the estimator. 

4.1.2.3   MZAE Covariance Analysis 

The M3AE approximate covariance analysis tool is implemented in MATLAB. This section 

provides the results from conducting the M3AE approximate covariance analysis. Eight test cases 

are conducted to compare performance between the M3AE architecture and a conventional fixed- 

bank MMAE/SDSEP. The eight test cases are listed in Table 5. 

The first seven test cases keep the true value of the ton parameter a-p, fixed throughout the 

simulations. Test case 1 is chosen as a baseline to compare to the results from Sheldon's dissertation 

[69]. Test cases 2 and 5 set ax equal to the same value as the second elemental filter's parameter 

value, a2, in the MMAE/SDSEP and MMAE/SDPEPs respectively. Test cases 3, 4, 6, and 7 place 

the true parameter value midway between the two adjacent elemental filters' a/s, for each set of 

parameter discretization values (see the comments in Table 5), so that no single elemental filter has 

the correctly assumed parameter value. Finally, test case 8 investigates the M3AE's ability to handle 

a small step change in the true parameter value from 35.0 to 30.385 at the U = 3 second point. 

These values were chosen due to their proximity to the MMAE/SDSEP and MMAEJSDPEP second 

elemental filter's a2 values. 
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Table 5. M3AE Test Cases 

Test Case un = aT Comments 
1 32.00 Sheldon example (all cases have pmin = 0.01) 
2 37.89 a2 = aT for State Optimized a :    22.88   37.89   54.43 
3 30.385 Midpoint between first 2 elemental filters: £i±ai 
4 46.16 Midpoint between last 2 elemental filters: a'^^ 
5 28.40 a2 = aT for Parameter Optimized a :    13.44   28.40   49.90 
6 20.92 Midpoint between first 2 elemental filters: SJ-±SI 

7 39.15 Midpoint between last 2 elemental filters: **+'** 
8 vanes Step change in aT from 35.0 to 30.385 at U = 3 seconds 

A one-run Monte Carlo simulation is conducted on the M3AE's MMAE only, generating the 

time histories for the parameter estimates a(U), the filter-computed covariance Pa(*t), and the asso- 

ciated elemental filter probabilities pjfc) for each test case. These time histories are then supplied 

to the M3AE approximate covariance analysis tool. Four representative test cases (1, 2, 5, and 8) 

are discussed in this section. The remaining four test cases (3, 4, 6, and 7) provided no additional 

insight into the M3AE performance and thus are not presented. Figures 22-25 present the results 

from test cases 1, 2, 5, and 8. These plots are then compared to the actual results obtained from 

each test case for which a complete 10-run Monte Carlo simulation of the M3AE is conducted; see 

Figures 27, 36, 34, and 43 on pages 128, 142, 138, and 152, respectively. 

In each case, the M3AE approximate covariance analysis tool performs well in predicting the 

expected performance of the M3AE, as compared to the actual results from each 10-run Monte Carlo 

simulation of the M3AE. In general, however, predictions associated with state x\ are more accurate 

than state X2, especially after each measurement update. This is directly attributable to the problem 

setup. Notice that in Equation (174), a direct measurement of the position is available at each sam- 

ple time, whereas no such direct measurement is available for the velocity state. Additionally, the 

"further" away aT is from the closest MMAE's elemental filter parameter value, a,, the larger the 
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Figure 22. M3AE Covariance Analysis: Test Case 1 
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Figure 23. M3AE Covariance Analysis: Test Case 2 
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Figure 24. M3AE Covariance Analysis: Test Case 5 
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bias in the parameter estimate, &MMAE- This larger bias directly impacts the M3AE approximate 

covariance analysis tool since the first order error term in Equation (105) will start to dominate, 

versus the situation when the bias in the MMAE supplied parameter estimate aMMAE is small, in 

which case the zero order term dominates. This is evident upon inspection of the M3AE approx- 

imate covariance plots and the parameter estimate plots. As shown in test cases 1, 5, and 8, the 

approximate covariance prediction error is small when the true parameter value a? is close to the 

blended parameter estimate &MMAE, and grows larger as the true parameter value a? moves away 

from the blended parameter estimate HMMAE, as in test case 2. This is expected and is indicative of 

the degradation in performance of an estimator based on an incorrect or "biased" parameter value. 

If this "bias-like" or "mean-like" term becomes the predominate portion of * = P + mmT, then 

the technique discussed in Section 3.3.1.3 could be implemented to account for the cases in which 

»T is far from the nearest a.j. This case strongly motivates trying to reduce the bias in the estima- 

tion of parameters, and specifically Chapter 5 will recommend extending research to moving-bank 

forms of MMAE and M3AE to accomplish this purpose. 

4.1.3   Simulations and Performance Analysis 

This section summarizes the results from the test cases described in Section 4.1.2.3. In each 

test case, a 10-run Monte Carlo simulation is conducted and a comparative analysis is accomplished 

between the following three architectures: 

1. An    MMAE    "Sheldon-discretized"    for    optimized    state    estimation    performance 

(MMAE/SDSEP) 

2. An M3AE implemented without IRDF (with internal MMAE/SDPEP) 

3. An M3AE implemented with discrete-time IRDF (with internal MMAE/SDPEP) 
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Thus, (1) and the MMAE within (2) represent conventional MMAEs, optimally discretized for state 

or parameter estimation performance, respectively. The single state estimator within the M3AE in 

(2) can be compared to the blended state estimate from either (1) or (2), and this will be done in 

the following discussion. Finally, (3) will show the impact of IRDF, as compared to (2) and to the 

conventional MMAE's of (1) and (2). 

Even though eight test cases were conducted, only the four test cases mentioned earlier are 

examined in detail in this section. Several types of plots are presented upon which the analysis is 

based. The state estimation performance plots presented are: 

1. The MMAE/SDSEP's blended output state estimation performance (10-run Monte Carlo 

simulation) for states xi and #2- 

2. The M3AE's MMAE/SDPEP  (designed without IRDF) blended output state estimation 

performance (10-run Monte Carlo simulation) for states x\ and x^. 

3. The M3AE's MMAE/SDPEP /IRDF (designed with IRDF) blended output state estimation 

performance (10-run Monte Carlo simulation) for states x\ and X2. 

4. The M3AE (designed without IRDF) single-filter state estimation performance (10-run Monte 

Carlo simulation) for states x\ and X2. 

5. The M3AE/IRDF (designed with IRDF) single-filter state estimation performance (10-run 

Monte Carlo simulation) for states x\ and x^. 

Note that the MMAE/SDSEP /IRDF (designed with IRDF) is not investigated in this effort, since 

its purpose in the M3AE architecture is to enhance the MMAE-based parameter estimation perfor- 

mance. Additionally, state estimation performance typically suffers when IRDF is implemented, as 

will be shown in the results presented later in this chapter. The intended comparisons to be accom- 
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plished between the various state estimation performance plots are as follows: plots 4 «=> 2 «=> 1, 

and 5 <=> 4, and 3 <=> 2, while simultaneously considering parameter plots (listed below) for all the 

cases. 

In addition to the state estimation performance plots, the parameter estimation performance 

plots are considered simultaneously. The plots presented are: 

1. A representative sample plot from each architecture for the MMAE's blended parameter 

estimate performance versus aT (one-run Monte Carlo simulation). 

2. The MMAE's parameter estimation performance (10-run Monte Carlo simulation). 

Table 6 summarizes the plots generated for each test case versus the three architectures listed 

above. The figure numbers associated with each case are listed in the columns. 

Table 6. Summary of Plots 

Architecture 
MMAE Blended 

State Est. 
M3AE 

State Est. 
Parameter 
Estimation 

M6AE without IRDF 17,36,31,40 27, 34,43 15,37,45 
MdAE with IRDF 18,19,32,41 28, 29, 35,44 16,20,38,46 
MMAE/SDSEP 26, 33,42 30, 39, 47 

Besides the first test case, the basic flow of the figures is as follows: three figures depicting 

the blended MMAE state estimation performance; two figures depicting both M3AEs (without and 

with IRDF) state estimation performance; and finally, three figures depicting the MMAEs parameter 

estimation performance. In addition to the plots provided for each test case, a table summarizes 

the temporally averaged RMS values of the state estimation errors. However, extreme care should 

be taken when reviewing these values.  Short regions of high-variance data tend to increase the 
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temporally averaged RMS value of the state estimation errors for a given plot. Thus, the plots should 

be used as the primary indicator of performance, whereas the RMS values provide only a gross 

indication of state estimation performance, since any amount of high-variance data may adversely 

skew the results. 

4.1.3.1   Test Case 1: aT = 32.0 

This test case was selected to serve as a baseline during the M3AE development. It is the same 

test case presented in Sheldon's research example [69]. An analysis of the actual state and parame- 

ter estimation performance is presented. First the state estimation performance will be analyzed, 

followed by the parameter estimation. 

State Estimation Performance. Figures 17, 18 (see pages 107 and 108), and 26 show the plots 

from each MMAE's blended state estimation performance. The temporally averaged RMS state 

estimation errors from each plot are summarized in Table 7 below. 

Table 7. Test Case 1: MMAEs' Temporally Averged RMS State Estimation Errors 

State 
MMAE/SDPEP 
without IRDF 

MMAE/SDPEP 
with IRDF 

Conventional 
MMAE/SDSEP 

Xi 0.1626 0.9102 0.3986 
X2 11.98 33.07 17.22 

Notice that, even without the M3AE implemented in this case, the MMAE/SDPEP (without 

IRDF) outperforms the conventional MMAE/SDSEP. This is opposite to the scenario discussed ear- 

lier in Section 4.1.2.1. In this test case, aT is closer to an elemental filter's a, in the M3AE's 

MMAE/SDPEP than to any elemental filter's a., in the MMAE/SDSEP. Thus, not only is the para- 

meter estimation performance better (as shown in the Parameter Estimation subsection below), but 

the state estimation performance is also better. Additionally, note that the MMAE/SDPEP /IRDF's 
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Figure 26. MMAE/SDSEP State Estimation Performance: Test Case 1 
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results further emphasize the negative impact of applying IRDF to an MMAE if its intended purpose 

is to provide accurate state estimation. For example, Figure 18 on page 108 (compared to Figure 

17 on page 107) clearly indicates the deterioration in the MMAE/SDPEP /IRDF's blended state es- 

timate performance, starting at approximately 4.2 seconds. 

Furthermore, notice in Figures 17 and 15, at approximately 7.7 seconds, a small section of 

high-variance data representing degradation in both the state and parameter estimation performance. 

Upon closer inspection of Figure 17, the filter-predicted standard deviation in x2 errors has de- 

creased inappropriately, thus the MMAE "thinks" performance has improved even though it has 

not. Therefore, the MMAE is underestimating its own errors and the resulting true errors grow sub- 

stantially larger than they are at the other times as well. 

Next, note that the M3AE state estimation performance with or without IRDF is better than the 

conventional MMAE/SDSEP, as shown in Figures 27 - 29 (as compared to Figures 17-19, respec- 

tively). The temporally averaged RMS state estimation errors from each plot are summarized in 

the Table 8. Furthermore, notice the significant improvement in the M3AE/IRDF's state estimation 

performance as compared to the conventional MMAE's (implemented with IRDF) state estimation 

performance. In fact, it performs almost as well in state estimation performance as the M3AE im- 

plemented without IRDF. This performance improvement results from providing accurate blended 

parameter estimates to the single Kaiman filter in the M3AE architecture, as discussed in the next 

section. Clearly, all of the M3AEs outperform the MMAE/SDSEP. Also, notice that the greatest im- 

provement in state error performance of the M3AE over the MMAE/SDSEP occurs in state xx at 

the update cycle, for the reasons expressed at the end of Section 4.1.2.3 - i.e., a direct measurement 

of the position is available at each sample time providing an accurate measurement update. Direct 

measurements of xx (that are reasonably precise) should cause x\ estimation errors to be insensitive 

to bad parameter estimates, whereas x2 estimates (with velocity not measured directly) should be 
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more sensitive to bad parameter estimates. However, as shown in Figures 27 and 28, state x2 ex- 

periences an improvement in its state estimation performance and its ± one filter-predicted-sigma 

performance (the standard deviation of the estimate error), as compared to Figures 17 and 18. This 

is anticipated and is a direct result of using a more accurate parameter estimate (than any of the 

MMAE's a.j values) in the single Kaiman filter state estimator. Finally, as shown in Figure 29 and 

Table 8, there is significant improvement in the M3AE's state estimation performance relative to 

the MMAE/SDPEP implemented with IRDF and r){U) = 0. This is a direct result of providing 

the M3AE's single Kaiman filter a decent blended parameter estimate throughout the simulation, 

shown in Figure 20 on page 113. 

as 

Table 8. Test Case 1: M3AEs' Temporally Averged RMS State Estimation Errors 

State 
MdAE 

without IRDF 
UdAE 

with IRDF 
MdAE with 
IRDF, T} = 0 

Xi 0.1256 0.1379 0.2850 
X2 10.96 13.70 14.58 

Parameter Estimation Performance. Figures 15, 16, 20 (see pages 105, 106, and 113), and 30 

show the plots of each MMAE's blended parameter estimation performance. As mentioned earlier in 

Section 4.1.2.2, the plots in Figures 15 and 16 indicate two different levels of parameter estimation 

performance, with IRDF yielding considerable benefit. Notice the mean errors in the parameter 

estimates shown in the bottom plot in each figure. There exist distinct biases in the parameter 

estimates from the MMAE/SDSEP (notice the plots in Figure 30, which indicate that the majority of 

the probability weight is given to the MMAE/SDSEP's second elemental filter's, a2 = 37.89, which 

is closest to aT in the "Baram distance measure sense," resulting in a bias in the parameter estimate), 
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Figure 27. M3AE Without IRDF State Estimation Performance: Test Case 1 
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Figure 28. M3AE With IRDF State Estimation Performance: Test Case 1 
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Figure 29. M3AE With IRDF State Estimation Performance: Test Case 1, rj(ti)=0 
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Figure 30. MMAE/SDSEP Parameter Estimation Performance: Test Case 1 
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the M3AE's MMAE designed without IRDF, and in the first 4.2 seconds of the M3AE's MMAE 

designed with IRDE However, after about 4.2 seconds, the mean error in the M3AE, designed with 

IRDF, tends towards zero (indicating better parameter estimation performance). This is a direct 

result of blending the MMAE/SDPEP 's a2 and a3 parameter values. Further notice, that this is 

the same point in the simulation where the state estimation performance from the blended MMAE 

estimate starts to deteriorate (see Figure 18 on page 108). This highlights the trade-off problem 

previously addressed in Chapters 1 -3 concerning the difficulty involved in trying to provide accurate 

state and parameter estimates simultaneously. Additionally, the variance in the error grows larger 

after 4.2 seconds, but a zero-mean error with a large variance is preferred over a nonzero-mean error 

with a small variance, since in the real world the true parameter value is not known and any unknown 

bias may have a substantial negative impact on parameter estimation performance (and thus on the 

state estimation performance by the single Kaiman filter within the M3AE). This is evident upon 

inspection of the resulting M3AE/IRDF's state estimation improvement, shown in Figure 28, over 

the MMAE/SDPEP /IRDF shown in Figure 18. Finally, despite setting ^{U) = 0 throughout the 

simulation, the bottom plot in Figure 20 indicates that the parameter estimation performance of the 

MMAE/SDPEP /IRDF provides good parameter estimates. Thus, as discussed above and shown in 

Figure 29, the M3AE produces good state estimation performance. 

Summary. Overall, this test case clearly shows the benefits of the M3AE architecture in esti- 

mating both parameters and states. The biggest benefit is seen in the M3AE with IRDF, since this 

architecture produces a "near-zero-mean-error" blended parameter estimate, which in turn improves 

the state estimation performance. Additionally, the approximate M3AE's covariance analysis shown 

in Figure 22 on page 117, indicates an upper bound on performance as compared to the actual per- 

formance shown in Figure 27 on page 128. This is a direct result of the bias in the MMAE/SDPEP 

without IRDF's parameter estimate shown in Figure 15 on page 105. Furthermore, the M3AE clearly 
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outperforms the conventional MMAE/SDSEP and the M3 AE's MMAE/SDSEP in state and parame- 

ter estimation performance for this test case. Finally, the M3AE designed without IRDF has slightly 

better state estimation performance than the M3AE with IRDF, but the M3AE implemented with 

IRDF provides the best overall parameter estimation performance for this test case due to the im- 

proved MMAE/SDPEP with IRDF's blending of the elemental filter parameter values. 

4.1.3.2   Test Case 2: aT = 37.89, and Test Case 5: aT = 28.40 

In these test cases the true parameter values, aT = 37.89 and aT = 28.40, exactly match the 

second elemental filters' parameter values, a2 = 37.89 in the MMAE/SDSEP and a2 = 28.40 in the 

MMAE/SDPEP. These cases provide the worst and best case scenarios for the M3AE architecture. 

Performance is the worst when the true parameter value, aT = 37.89, is close to the largest peak in 

the Sheldon optimization curve shown in Figure 14 on page 102, for optimized parameter estima- 

tion performance - thus poor parameter estimation performance is anticipated from the M3AE for 

this particular value of aT. Performance is the best when the true parameter value aT = 28.40 ex- 

actly matches the second elemental filters' a2. Again, an analysis of the actual state and parameter 

estimation performance is presented. 

State Estimation Performance: Test Case 2. Figures 31-33 show the plots from each MMAE's 

blended state estimation performance. The temporally averaged RMS state estimation errors from 

each plot are summarized in Table 9 below. 

Table 9. Test Case 2: MMAEs' Temporally Averged RMS State Estimation Errors 

State 
MMAE 

without ERDF 
MMAE 

with IRDF 
Conventional 

MMAE/SDSEP 
Xl 0.8524 1.532 0.1775 
X2 36.05 60.42 12.51 
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Figure 31. MMAE/SDPEP Without IRDF State Estimation Performance: Test Case 2 
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Figure 32. MMAE/SDPEP With IRDF State Estimation Performance: Test Case 2 
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Figure 33. MMAE/SDPEP State Estimation Performance: Test Case 2 
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Clearly, the conventional MMAE/SDSEP outperforms the other two MMAEs. This is expected 

since the conventional MMAE's second elemental filter's parameter value a2 matches aT exactly. 

As anticipated from knowledge of the Sheldon optimization curve shown in Figure 14 on page 102, 

both MMAE/SDPEPs suffer in this test case since aT is located approximately halfway between the 

two closest elemental filters' a/s in the bank. Thus, not only is the state estimation performance 

better for the MMAE/SDSEP, but the parameter estimation performance is also better (as shown 

in the Parameter Estimation subsection below). Additionally, note that the MMAE/IRDF's state 

estimation results are poor in this case, which is due to the decrease in the Kaiman filter gains 

during the modulation of Qd^i). Decreasing Qd(tO tells the system to "trust" its internal dynamics 

model relatively more than the measurement updates entering the system, compared to the case 

without such decreased Qd(*i). Thus, for this test case, the filters' internal dynamics model of the 

system is degraded even further with the modulation of Qd(*i), causing even poorer state estimation 

performance, since even less weight is placed on the good measurements. This is shown clearly in 

Table 9 and Figures 31 and 32. 

Next, note the M3AE state estimation performance with or without IRDF, as indicated by the 

plots in Figures 34 and 35, and by the temporally averaged RMS state estimation errors from each 

plot shown in Table 10 below. 

Table 10. Test Case 2: M3AEs' Temporally Averged RMS State Estimation Errors 

State 
MaAE 

without IRDF 
M3AE 

with IRDF 
Xl 0.1836 0.3476 
X2 22.14 25.82 
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Figure 34. M3AE Without IRDF State Estimation Performance: Test Case 2 
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Figure 35. M3AE With IRDF State Estimation Performance: Test Case 2 
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Clearly, the conventional MMAE/SDSEP performs better in state estimation performance than the 

M3AE, as expected since poor parameter estimates are provided to the single Kaiman filter in the 

M3AE. However, notice that the state estimation performance improvement in using the M3AE ver- 

sus a stand-alone MMAE (with or without IRDF) "Sheldon-discretized" for parameter estimation 

performance, as seen in Table 9. Also note the similar performance between the two M3AEs. Fig- 

ures 34 and 35 indicate almost identical state estimation performance between both versions of the 

M3AE. The exception occurs in state xr for the three regions (starting at approximately 1.3 seconds, 

5.7 seconds, and 9.4 seconds) shown in Figure 35. In these regions, the mean errors and the asso- 

ciated error variances are larger than the corresponding errors in Figure 34 (without IRDF), which 

tends to drive the temporally averaged RMS state estimation errors upward, as shown in Table 10. 

State Estimation Performance: Test Case 5. The temporally averaged RMS state estimation 

errors for the MMAEs and the M3AEs for this test case are summarized in Table 11. In this case, 

both MMAE/SDPEPs clearly outperform the MMAE/SDSEP, as anticipated since aT matches a2 

exactly. The small differences between the MMAE/SDPEP with IRDF and without are due to the 

effects of the modulation of the dynamics driving noise Qd(i;) in the elemental filters. However, 

notice the M3AEs' performance for both cases, which indicates the state estimation performance of 

the M3AEs is virtually the same, as anticipated. 

Table 11. Test Case 5: Temporally Averged RMS State Estimation Errors 

State 
MMAE 

without IRDF 
MMAE 

with IRDF 
Conventional 

MMAE/SDSEP 
MdAE 

without IRDF 
MaAE 

with IRDF 
Xi 0.1140 0.1409 0.2139 0.1051 0.1065 
X2 7.630 8.496 12.29 7.519 7.693 
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Also note, that the only figure shown for this test case is a single plot of the M3AE's state estimation 

performance as shown in Figure 36, since no additional insight is gained by displaying the other 

figures associated with this test case. This figure is presented in order to compare the actual perfor- 

mance of the M3AE to that predicted by the M3AE's approximate covariance analysis tool shown 

in Figure 24 on page 119. These figures highlight the improvement in the prediction capability of 

the M3AE's approximate covariance analysis tool when the bias in the parameter estimate is small. 

Parameter Estimation Performance: Test Case 2. Figures 37 - 39 show the plots of each 

MMAE's blended parameter estimation performance. Again notice that, in each case, the top plots 

in these figures indicate that the MMAE-supplied parameter estimate converges to the a^ closest to 

aT in the "Baram distance measure sense," as anticipated (for both MMAE/SDPEP s, the closest 

elemental filter is a3 = 49.9, whereas the MMAE/SDSEP 's closest elemental filter is a2 = 37.89). 

Notice, however, that the MMAE/SDPEP's parameter estimate, ä, is slightly lower than the 49.9 

value associated with a3, while the MMAE/SDSEP's parameter estimate, ä, is slightly higher than 

the 37.89 value associated with a2; this is anticipated and is a direct result of placing a minimum 

probability on each of the MMAEs' elemental filters. Furthermore, notice the mean errors in the 

parameter estimates shown in the bottom plot in each figure. There are large biases in the pa- 

rameter estimates from both MMAE/SDPEP s, as expected, given the value of aT relative to the 

MMAE/SDPEP elemental filters' assumed a/s. 

Parameter Estimation Performance: Test Case 5. As anticipated, the parameter estimation is 

much better in both MMAE/SDPEP s as compared to the MMAE/SDSEP. Just the opposite occurs in 

this test case as compared to test case 2. In this test case, the MMAE/SDSEP experiences the bias 

while both MMAE/SDPEP s have zero-mean-error estimates. 

Summary. Clearly, the conventional MMAE/SDSEP outperforms both M3AEs in this test case 

2, as was anticipated. However, this test case again highlights the performance improvement in state 
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Figure 36. M3AE Without IRDF State Estimation Performance: Test Case 5 
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Figure 38. MMAE/SDPEP With IRDF Parameter Estimation Performance: Test Case 2 
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Figure 39. MMAE/SDSEP Parameter Estimation Performance: Test Case 2 
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estimation as a result of using the M3AE architecture - the M3AE state estimation performance is 

significantly better than that of either of the M3AEs' MMAEs "Sheldon-discretized" for parameter 

estimation. 

Additionally, test case 2 uncovers an important concern in the initial MMAE/SDPEP design. 

If it is anticipated that aT will be near a peak in the Sheldon optimization curve the majority of the 

time, then the optimization should be reaccomplished, after "fixing" one of the parameter values 

to the anticipated aT. This should in turn improve the parameter estimation performance and the 

subsequent state estimation performance in the M3AE. 

Furthermore, note that the approximate M3AE's covariance analysis shown in Figure 23 on 

page 118 is "biased high" compared to the actual performance shown in Figure 34. Therefore, this 

case could warrant using the M3AE approximate covariance analysis tool with Section 3.3.1.3's 

bias term evaluation as an approximation to the total & (since now mmT would dominate P in 

* = P + mmT) to evaluate the achievable M3AE state estimation accuracy for such a worst case 

ay far from any a/s in the current discretization. 

Finally, test case 5 provides results which are just the opposite of those seen in test case 2, which 

was anticipated given the location of aT in this test case. This further emphasizes the importance 

in the placement of discrete parameters in the parameter space for defining the elemental filters in 

the bank. Furthermore, this concern, plus other similar concerns, will support a desire to consider 

moving-bank versus fixed-bank M3AE algorithms, as will be discussed further in Chapter 5. 

4.1.3.3   Test Case 8: aT = 35.0 and 30.385 

In this test case the true parameter value, aT, undergoes a step change from 35.0 to 30.385, 

three seconds into the simulation. These values represent a small change in parameter value un 

which may occur due to a minor perturbation affecting the system. The purpose of this test case 
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is to investigate the M3AE's ability to handle parameter changes. Again, an analysis of the actual 

state and parameter estimation performance is conducted, with an emphasis placed on performance 

during the step change in the parameter value. 

State Estimation Performance. Figures 40 - 42 show the plots from each MMAE's blended 

state estimation performance. The temporally averaged RMS state estimation errors from each plot 

are summarized in Table 12 below. 

Table 12. Test Case 8: MMAEs'Temporally Averged RMS State Estimation Errors 

State 
MMAE 

without IRDF 
MMAE 

with IRDF 
Conventional 

MMAE/SDSEP 
xx 0.1231 0.5701 0.2482 
x2 10.86 27.79 14.65 

The MMAE/SDSEP provides good state estimation performance, but it is difficult to deter- 

mine when the step change occurs. However, upon closer inspection of Figure 42, an increase in 

the "spread" of the mean and the mean ± one sigma values starts at U = 3. This occurs since 

the MMAE/SDSEP does not compensate for the decrease in the true parameter value adequately. 

The MMAE/SDSEP's second elemental filter (a2 = 37.89) receives the majority of the probability 

weighting throughout the simulation, even though the true parameter value decreases - this is evi- 

dent upon inspection of the top plot in Figure 47 on page 157, where the parameter estimate &MMAE 

remains equal to a2 throughout the majority of the simulation. 

The M3AE's MMAE, implemented without IRDF, performs the best in state estimation and 

also adapts to the step change in the true parameter value aT which occurs at U = 3 seconds into 

the simulation. State estimation performance also improves, which is expected since the new value 

of aT = 30.385 is very close to a2 = 28.40 (consider Figure 45 on page 155). For this specific 
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Figure 40. MMAE/SDPEP Without IRDF State Estimation Performance: Test Case 8 
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Figure 42. MMAE/SDSEP State Estimation Performance: Test Case 8 
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case, the step change of aT at U = 3 seconds, also yields a new aT value further from any aj in 

the MMAE/SDSEP (see Figure 47 on page 157), so its state estimation performance degrades at the 

point where the MMAE/SDPEP s and the M3AE's state estimation performances improve. Such is 

clearly not always the case. 

Finally, the M3AE's MMAE, implemented with IRDF, performs the worst in state estimation 

performance, as expected. In addition, there is almost a 1.3 second delay before the step change 

becomes obvious, as shown in Figure 41. The delay is a direct result of u^nglRDF to dehiöduläte 

the filter gains, which tends to decrease the state estimation performance, as was shown in the 

previous test cases. 

Next, note the M3AE state estimation performance, with or without IRDF, as indicated by the 

plots in Figures 43 and 44, and by the temporally averaged RMS state estimation errors from each 

plot shown in Table 13 below. 

Table 13. Test Case 8: M3AEs' Temporally Averged RMS State Estimation Errors 

State 
MdAE 

without IRDF 
M3AE 

with IRDF 
Xx 0.1222 0.1374 
X2 10.42 12.59 

Again, both M3AEs outperform the MMAE/SDSEP, and both indicate the onset of the step change 

in aT as shown in Figures 43 and 44. However, the M3AE implemented without IRDF, provides a 

much more obvious indication of the step change than the M3AE implemented with IRDF Never- 

theless, the fact that the M3AE, implemented with IRDF, even indicates the step change is signifi- 

cant since the M3 AE's MMAE, implemented with IRDF, did not indicate the immediate onset of the 

step change in aT. This further highlights the state estimation performance benefit associated with 
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Figure 43. M3AE Without IRDF State Estimation Performance: Test Case 8 
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Figure 44. M3AE With IRDF State Estimation Performance: Test Case 8 
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providing a good parameter estimate SLMMAE (as discussed below) to the M3AE's single Kaiman 

filter tuned for accurate state estimation performance. 

Parameter Estimation Performance. Figures 45 - 47 show the plots of each MMAE's blended 

parameter estimation performance. As in the previous test cases, notice that the top plots in these 

figures indicate that the MMAE-supplied parameter estimate converges to the &j closest to aT in 

the "Baram distance measure sense," as anticipated (for the MMAE/SDPEP s, a2 = 28.40, while 

for the MMAE/SDSEP, a2 = 37.89). Notice the mean errors in the parameterestimates shown in 

the bottom plot in each figure. There exist distinct biases of different magnitude for all time in the 

parameter estimates from all three MMAEs. Thus, all three filters look somewhat oblivious to the 

parameter change. However, some interesting conclusions can be drawn from this example. For 

instance, in looking at Figure 45, notice that the parameter estimation "cleans up" at t = 3 seconds 

due to the step change. But this is coincidental and it would not really be fair to claim improvement, 

since if the step change had been in the reverse direction (i.e., from 30.385 to 35), the state and 

parameter estimation performance would have degraded in both of the MMAE/SDPEP s, whereas 

the state and parameter estimation performance would have improved in the MMAE/SDSEP. This 

emphasizes the discussion presented earlier concerning the proximity of the MMAE's closest a_,- to 

aT, and will motivate the desire (discussed more fully in Chapter 5) to consider moving-bank versus 

fixed-bank M3AE algorithms in practice. Also notice that, as discussed in test case 1, those areas 

in the simulation where the state estimation performance of the M3AE's MMAE, designed with 

IRDF, is poor (see Figure 41, from 3 to 4.3 seconds), the parameter estimation error performance is 

good (see Figure 46, especially from 3.4 to 4.3 seconds, where the mean errors are "small" while 

the associated a and RMS values are large). This further highlights the trade-off problem facing 

standard MMAEs as previously addressed in Chapters 1-3 and test case 1, concerning the difficulty 

involved in trying to provide accurate state and parameter estimates simultaneously. 
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Figure 45. MMAE/SDPEP Without IRDF Parameter Estimation Performance: Test Case 8 
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Sumtnary. Both M3AEs outperform the conventional MMAE/SDSEP in state and parameter 

estimation performance for this test case. Additionally, note that the approximate M3AE's covari- 

ance analysis shown in Figure 25 on page 120 compares favorably (including predicting the step 

change) to the actual performance shown in Figure 43, especially at the measurement update times, 

(tf) (as opposed to the propagate times (t~); however, the overall approximate covariance analysis 

provides a good upper bound indication of actual performance). Furthermore, this test case shows 

the potential benefit of the M3AE architecture in estimating both parameters and states even after 

undergoing a step change in the true parameter value. Finally, this test case particularly draws at- 

tention to the need for removing or reducing the biases in estimating ä, which will in turn improve 

the state estimation performance of the M3AE. Moving-bank M3AE versus fixed-bank M3AE will 

address this issue directly. 
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4.2  13-State Integrated GPS/INS with Uncertainties in R 

The 13-state integrated GPS/INS problem presented below is the same example White re- 

searched in his thesis [78]. The integrated GPS/INS system is flown through a simulated tanker 

flight profile with a mission duration of 3900 seconds. Only 100 seconds of the 3900-second mis- 

sion is investigated in this example, since it is not the intention of this research to provide an in-depth 

sensitivity analysis of the M3AE architecture to all potential real-world flight scenarios from takeoff 

to landing. The 100 seconds used in the research occur during a straight and level leg of the flight 

profile from 700 to 800 seconds. During this period, the M3AE's ability to handle the effects of 

interference on the GPS signals is investigated. Thus, there is only one uncertain parameter in this 

problem and it is the variance of the measurement noise affecting the four GPS measurements. Ad- 

ditionally, the majority of the test cases conducted during this example vary aT stepwise throughout 

the simulation, representing various levels of interference. Furthermore, IRDF is ineffective in this 

example and not implemented in two of the three test cases presented. However, a brief discussion 

addressing its performance is presented in test case 2 to follow. Finally, given the foundation pro- 

vided in the first example, the presentation format in this section (versus Section 4.1) is as follows: 

1. System description - presents models for the INS, radar altimeter, and GPS. Additionally, a 

description of the expected events (i.e., the GPS signal interference) is presented. 

2. Enhanced Sheldon optimization - presents results for both state and parameter discretizations. 

3. Simulations and performance analysis - presents analysis of the M3AE versus the 

MMAE/SDSEP and MMAE/SDPEP for each test case. As mentioned above, the impact of 

IRDF is addressed in the second test case only. Finally, a comparison of the approximate M3AE 

covariance analysis tool versus actual performance is presented. 
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4. Summary - summarizes the major themes discovered during the analysis of the test case. 

4.2.1   System Description 

The following system description comes directly from [78] with three modifications. In a joint 

effort with [77], these modifications include reduction of the truth model from 62 to 13 states, dele- 

tion of differential GPS to yield conventional GPS, and deletion of the pseudo-lites. The main ele- 

ment of the GPS/INS being monitored for parameter variations in its model is the GPS, specifically 

with respect to the amount of interference/jamming corruption (measurement noise) that enters the 

GPS receiver. The INS, barometric altimeter and radar altimeter also provide measurements to the 

Kaiman filter. The following measurements are available: four satellite vehicle (SV) pseudoranges, 

altitude from the barometric altimeter and height above ground level from the radar altimeter. 

A block diagram representing the integrated GPS/INS configuration is shown in Figure 48. 

The true aircraft position is generated by the trajectory profile generator PROFGEN [58] and is 

provided to the performance evaluation tool during an MMSOFE simulation run. The GPS satellite 

vehicle (SV) positions are given by actual satellite data recorded on 4 May 1991 and are combined 

with the true aircraft position to obtain true ranges, which are modified with appropriately modeled 

noise to provide pseudoranges measurements for use by the GPS. 

Each navigation system generates measurements that are representable as perturbations from 

the true range, and the final difference measurements are then formed by subtracting the GPS mea- 

sured ranges from their corresponding EMS-calculated ranges. The extended Kaiman filter (EKF) 

equations propagate estimates of the GPS/INS error states and use the measurements to update those 

state estimates. Finally, these state estimates are used to correct the INS-indicated position at each 

sample time. The truth and filter models consist of 13 states (11 INS states and 2 GPS states) with 

details to follow. 
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4.2.1.1   INS Models 

The INS Truth and Filter Models. This section presents the truth and filter models used for 

the INS. The INS is a strapped-down wander azimuth system based on the Litton LN-93. The 

manufacturer, Litton, developed a 93-state error model [25] describing the error characteristics of 

the LN-93. The error states <5x used in the full model may be separated into 6 categories: 

6x = [6xJ Sxl 6x36x4 6x? 6XQ]
T (177) 

where 6x is a 93-dimensional column vector and: 

• <5xi represents the "general" error vector containing 13 position, velocity, attitude, and vertical 
channel errors; the first nine states are those of the standard Pinson model [65] of INS error 
characteristics. 

• <5x2 consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-correlated errors, 
and "trend" states. These states are modeled as first order Gauss-Markov processes. 

• 6x3 represents gyro bias errors. These 18 states are modeled as random constants. 
• <5x4 is composed of accelerometer bias error states. These 22 states are modeled in the same 

manner as the gyro bias states. 
• 6x5 depicts accelerometer and gyro initial thermal transients. The 6 thermal transient states are 

first-order Gauss-Markov processes with w5 = 0 so as to account for just the initial transient 
effects. 

• <5x6 models gyro compliance errors. These 18 error states are modeled as biases. 

The original truth model state space differential equation is given by 

<5xi 
(5X2 
<5x3 

6x4 
6x5 

6x6 

>    = 

F11 F12 F13 F14 F15 F16 
0 F22 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 F55 0 
0 0 0 0 0 0 

6x1 Wi 

6x2 w2 

< 
6x3 
6x4 > + < 

0 
0 

6x5 0 
6x6 0 

(178) 

This 93-state error model is a highly accurate LN-93 representation, but the high dimensionality of 

the state equation makes the model prohibitively CPU-intensive (computationally, and in terms of 

storage) for projects examining a large number of problem variations. The work of Negast [61 ] ad- 

dressed the reduction of the INS error-state model while preserving enough fidelity to be considered 

a viable truth model. 
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A reduced-order model is used for both the truth and filter model in this research and is defined 

in Equation (179): 

6x\ 
Sx2 

F(red)ll     F(re<f)12 

0 F(red)22 £} + {S} 

Note that the submatrix indices used in representing the 13-state model are not identical to those 

used in outlining the 93-state INS error model. This difference is indicated by the notation F^) for 

reduced order. The relationship between the two models is shown in Appendix A. Therefore, the INS 

filter model is comprised of 11 states (the first nine being the standard Pinson error model states): 

3 platform misalignment errors, 3 velocity errors, 3 position errors, and 2 states for barometric 

altimeter stabilization. 

The INS Measurement Model. The only measurement model associated directly with the INS 

is that for barometric altimeter aiding. The altimeter aiding is used to compensate for the instability 

inherent in the vertical channel of the INS. The altimeter output AltBaro is modeled as the sum of 

the true altitude ht, the error in the barometric altimeter ShB, and a random measurement noise v 

of variance RBaro = 3500 ft2. Similarly, the INS-calculated altitude AltINS is the sum of the 

true altitude and the INS error in vehicle altitude above the reference ellipsoid, 6h. A difference 

measurement is used to eliminate the unknown true altitude, hu resulting in Equation (180): 

6z     =     AltiNS - AltBaro 
=   [ht + 6h] - [ht + 6hB - v] (180) 
=   6h — 6hB + v 
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INS error in vehicle altitude above the reference ellipsoid, 6h, and total barometric altimeter corre- 

lated error, 6hB, are states 10 and 11 in the 11-state INS model. See Appendix A for the models and 

numerical values of the model parameters. 

4.2.1.2   The Radar Altimeter Model 

A radar altimeter is incorporated into this application because of the intent of generating a 

precision landing system. A GPS-aided baro-inertial system does not have sufficient accuracy in the 

vertical direction for this purpose, so the additional accurate input from a radar altimeter is used. The 

measurement equation of the radar altimeter is based on the difference between the INS-predicted 

altitude AltJNs and the radar altimeter measurement AltRaU: 

6z   =   AltINS - AltRaU 
=   [ht + 6h] - [ht - v] (181) 
=   6h + v 

The errors in the radar altimeter are modeled as white noise with no time-correlated component. 

This may be a rather crude model, but should be sufficient to demonstrate performance trends. Note 

that no additional states are required with the addition of this radar altimeter model. 

The radar altimeter measurement noise variance RRaH is a function of aircraft altitude above 

ground level (AGL) and will be the same in the truth and filter models. The radar altimeter noise's 

altitude-dependent variance [24] is given by 

RRait = {[0.01]2 * [AGLtrue]2} + 0.25 ft2 (182) 

4.2.1.3   GPS Models 

The GPS generates user position based on "known" ranges to satellites at "known" positions. 

The satellites themselves transmit their position in space (in the form of ephemeris data) as accu- 

rately as it is known and the exact time (also a best estimate) at which the transmission is sent. The 
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actual range information is calculated based on knowledge of the satellite position and the finite 

propagation speed of the electromagnetic radiation emitted from the satellite. 

The 30-State GPS System Model. The GPS model used in this work was developed by past 

researchers at AFIT [16,61,76]. The dynamics and measurement equations for the full 30-state 

system model are presented in this section. Five types of error sources are modeled in the GPS state 

equations. The first error type, user clock error, is common to all SV's. The remaining four error 

types are unique to each SV The first two states represent user clock errors and are modeled as: 

XUclk,, 

XUclkdr 

0   1 
0   0 

XUclk,, 

XUclkdr 

where 

XUdkh 

%Uclkdr 

=   range equivalent of user clock bias 
=   velocity equivalent of user clock drift 

(183) 

The initial state estimates and covariances for these states were chosen to be consistent with previous 

AFTT research [7,16,61,76] and are: 

and 

XUclkSto) 
XUclkdMo) 

Pf/cZfcfl,C/dfcdr(*o)      = 
9.0 x 1014 ft2 0 

0 9.0 x 1010 ft2/sec2 

(184) 

(185) 

Because these error sources are a function of the user equipment, they are common to all the SV's. 

Recall that each of the remaining error types is specific to each SV, denoted by a subscript j. 

The second error type is the code loop error 6PRdoop.. The code loop is part of the user 

equipment shared by all the SV's, but its error magnitude is relative to each SV The third GPS 
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error type is the result of atmospheric interference with the electromagnetic (EM) signals broadcast 

by each Sy specifically, ionospheric and tropospheric delay, 6PRioTlj, and 8PRtrop.. The code 

loop error, tropospheric delay, and ionospheric delay are all modeled as first-order Gauss-Markov 

processes with time constants shown in Equation (186). All three are driven by zero-mean white 

Gaussian noise with strength shown in Equation (189). The fourth error source is due to inaccuracies 

of the clocks on board the individual SV's, 6PRSdkj. The final GPS error source is based on line- 

of-sight errors between the SV's and the receiver, 6xSi, 6ySj, and 8zSj. 

SPRci, 
ÖPRtrapj 

ÖPRiorij 

" -1 
0 
0 

0 
1 

500 
0 

0 
0 

1 
1500 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 ' 
0 
0 

'    SPRclj    ' 
01  -tttropj 

SPRion. 

Wclj 

VJtropj 

SPRsdk, >        = 0 0 0 0 0 0 0 < SPRsdkj f + 1 0 
6xSj 0 0 0 0 0 0 0 6xSj 0 
6ySj 

0 0 0 0 0 0 0 6ySj 0 
6zSj 

Ü 0 0 0 0 0 0 Szs. 0 

(186) 

with initial covariance values given by 

PGPS 

0.25 ft2 0 0 0 0 0 0 
0 1.0 ft2 0 0 0 0 0 
0 0 1.0 ft2 0 0 0 0 
0 0 0 25 ft2 0 0 0 
0 0 0 0 25 ft2 0 0 
0 0 0 0 0 25 ft2 0 
0 0 0 0 0 0 25 ft2 

(187) 

(where all but the PGPS(3,3) term have stationary characteristics. Though this value may seem 

strange, it was taken directly from [61]) and noise means and strengths given by 

E[wGPs(t)] =0 (188) 
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£[wGPs(*)w£ps(t + T)]     = 

0.5 0 0 0 0 0 0 
0     0.004 0 0 0 0 0 
0 0 0.004 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

ft2 /sec • S(T) 

(189) 

The full 30-state GPS dynamics matrix is not shown explicitly but may be easily constructed by 

augmenting Equation (183) and four copies (one for each SV) of Equation (186). 

The GPS Truth Model and Filter Design Models. Research has shown [56,61 ] that the two user 

clock error states provide a sufficient filter model for GPS. The primary argument is that the errors 

modeled for the 28 other GPS states (assuming four SV's) are small when compared to the user 

clock errors which are common to all SV's. By increasing the dynamics driving noise and re-tuning 

the filter, the overall performance of the integrated navigation system can be maintained. The GPS 

truth and filter models used in this research are given by Equation (183) plus noise: 

XUclk„ 

XUclkdr 

0   1 
0   0 

XUdkb 

XUclkdr 

+ Wdkb 

wclkdr. 
(190) 

The GPS Measurement Model. The pseudorange measurements available to the GPS receiver 

are the sum of the true range, several error sources, and a random noise: 

PRGPSj = PRt, + SPRcloopj + SPRtropi + SPRion. + 6PRSdk. + 8PRUclk - Vj       (191) 

where 
PRGPSJ      =   GPS pseudorange measurement, from SVj to user 
PRtH =   true range, from SVj to user 
6PR cloopj range error due to code loop error 
SPRtropj = range error due to tropospheric delay 
SPRionj = range error due to ionospheric delay 
ÖPRscikj — range error due to SVj clock error 
6PRUcik = range error due to user clock error 
Vj = zero-mean white Gaussian measurement noise, Rj = 9 ft2 
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Because PRt is not available to the filter, the difference between GPS pseudorange and INS- 

indicated pseudorange will be taken eventually to eliminate this term. First, the satellite position 

vector Xs and the user position vector Xu are defined as: 

Xt,= Vu 
Zu 

x5 

Xs 

Vs 
zs 

(192) 

where the superscript e denotes coordinates in the earth-centered earth-fixed (ECEF) frame. The 

pseudorange from the user to the satellites calculated by the INS, PRINS, is the difference between 

the GPS/INS-calculated user position, XUt and the satellite position given by the ephemeris data, 

X5: 

PRINS |Xf/ -Xs| 
X\J 1   XS 

yu >   - {   VS 
zu t ZS 

(193) 

An equivalent form of Equation (193) is: 

PRINS = V(xu - xs)2 + (yu - ys)2 + (zu - zs)2 (194) 

With perturbations representing errors in X[/ and Xs, Equation (194) can be written in terms of the 

true range via a truncated first-order Taylor series: 

PRINS =   PRt + 8Pfi/w4Xs,X'/) 
dXs 

"^ dXu (Xs,Xt,) 

(Xs,X(y)nom 

■SXu 

6XS 

(195) 

The solution for PRINS is found by evaluating the partial derivatives of Equation (194) to get: 
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PRINS=   PRt \PRir 
Sxv - Vs-W 

PR, ■%/ 
,*■■>—*", 

\PRlNS 6zu 

+ XS — XJI 

\PRlNs\ 
6xs + ,y*-y 

PR, 
1 Sys + 

(196) 
. zs—zu . 
\PRtNs\ Szs 

Finally, the truth model GPS pseudorange difference measurement is given as: 

6z =   PRINS-PRGPS 

Xs—Xv • 8xy — 

■Sxs + 

[" ys-yu ' 
\PRlNS\ 

ys-yu 
_\PR,NS\_ 

■6yu - 

■6ys + 

Zs-Zir 
\PRlNS\ 

x$ — Id 
\PRlNS\ 

\PRlNs\ 

zs-z,, 
\PR,NS\\ 

8z\ u 
(197) 

6zs 

-6PRdoop - 6PRtrop - SPRion - SPRsdk ~ öPRudk + v 

The user position errors in Equation (197) can be derived from the first three (position error) states 

of the filter or truth model using an orthogonal transformation [6]. 

The reduced order truth and filter design measurement models for the GPS measurement do 

not contain terms for the errors due to code loop variations, atmospheric delays, satellite clock 

deviations, or errors in ephemeris-given satellite position. The filter GPS measurement model can 

be written as: 

6z   = 
XS -Xu 

\PRINS\ 
■ Sxr 

ys-yu 
.\PRINS\_ 

6yu 
zs -zu 
\PR INSl 

6zu - 6PRudk + v 

(198) 

4.2.1.4  Event Models 

This section discusses the methods used to model the event changes in the MMSOFE simula- 

tions. Interference/jamming is modeled as a sudden increase in the measurement noise associated 

with all four SV's, resulting in lower carrier-to-noise ratios, C/NQ, in the GPS receiver. This event is 

induced in all SV measurements because interference/jamming is assumed to occur at the receiver, 
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which will affect all four channels simultaneously. The interference noise variance, Rint, is added to 

the truth model measurements' Rj values (see discussion of Equation (191)) to simulate real-world 

interference and will be allowed to take on selected values within the interference parameter space 

spanned by the MMAE filter bank. Emphasis will be placed on demonstrating the capability of 

MMAE to detect and identify interference events of unspecified magnitude quickly. GPS jamming 

is used to refer to the total loss of useful GPS transmissions due to very large signal interference. A 

GPS jamming event is well-modelled (and much more easily modelled) via very large measurement 

noise. When the MMAE algorithm detects very large diagonal elements in real-world measurement 

noise covariance matrix R, then the corresponding measurements will be very lightly weighted by 

the elemental Kaiman filters; the effect is essentially the same as if those measurements were never 

received, hence the use of the term "interference/jamming." The system measurement noise co- 

variance matrix is given by: 

R = 

RR alt 

RGPS 

RGPS 

RGPS 

RGPS 

RBQ 

(199) 

where RGPS is the product of the nominal GPS measurement noise variance, RQ, and either a true 

multiplier, at, or a filter-assumed multiplier, a,. 

r,       _ f atRo    ,   for truth model 
^^'XajRo   ,   for filter models (20°) 

Previous research [61,76,78] determined reasonable choices for the nominal GPS measurement 

noise and the range for the noise multiplier as: 

Ro = 9 ft2 

1 < atd < 2000 <201) 
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Since the GPS measurement noise will be chosen as the scalar parameter for estimation, future 

notation will indicate values for the minimum and maximum allowable parameter values as: 

amax = 2000 

Table 14 show the three test cases used in the performance analysis. The entries in the table 

represent the interference levels (multiplier values on the four diagonal terms of RT corresponding 

to the GPS measurements) for each case and the time in seconds when a parameter change occurs 

(this will be discussed further in Section 4.2.3) 

Table 14. Simulated Test Cases (Interference Noise Variance Multiplier Levels) 

Time 
Case 1 

at value: 
Case 2 

at value: 
Case 3 

at value: 
700 1 1 1000 
718 1 750 500 
760 1 1 1 

4.2.2   Sheldon Parameter Optimization Algorithm 

Recall that Sheldon's parameter optimization algorithm (see Sections 2.2 and 3.5 for algorithm 

details) is implemented in MATLAB [40]. For this 13-state nonlinear, unstable system example, 

only the constrained-range optimization (using "constr" from MATLAB's Optimization Toolbox 

[39]) using a 20-sample finite horizon (20-samples represents 20 seconds for this problem, which 

provides a reasonable projection into the future for an aircraft navigation system flying straight-and- 

level) is implemented to determine the appropriate elemental filter parameter values. Additionally, 

for the test cases examined in this example, a lower bound (pmin = 0.001 chosen quite small, due to 

the large range of the parameter space and the very coarse discretization of the parameter space so 

that large probabilities are not artificially assigned to very poor parameter/state estimates by such 
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lower bounding) is placed on the elemental filter probabilities. Therefore, Equation (59) is used to 

solve for the ä(U) used in the cost function in Equation (46). 

The results of conducting the enhanced Sheldon's constrained-range optimization, with the 

20-sample finite horizon, is shown in Table 15, where the unknown parameter is the variance of 

the measurement noise, RQPS in Equations (199) and (200). Additionally, Figure 49 displays the 

results of the constrained-range optimization used in the parameter estimation case.   The range 

of the optimization was from RGPS= 9 ft2 to 18000 ft2. The minimum value, RQ = 9 ft2, 

represents "normal" operation when no interference to the GPS signal is occurring. The maximum 

value, Rma.x = 18000 ft2, represents an increase in the measurement noise by a factor of 2000 

(i.e., measurement noise Rmax = RQ * 2000), and is assumed to be the highest level of real-world 

interference that will be encountered. The valleys in the curve provide the optimal locations for 

placing the elemental filter a/s. Although difficult to see on Figure 49, the first minimum occurs at 

R = 9 as in Table 15, and the next two minima are also given in Table 15 for the case of optimizing 

for parameter estimation performance. As discussed in the 2-state example, if aT is near any of 

the peaks in the curve, it is anticipated that parameter and state estimation performance will be poor 

[69]. Also recall from Section 4.1, that the following three abbreviations are used for convenience: 

closest = "closest" in the "Baram distance measure sense"; MMAE/SDSEP = MMAE "Sheldon- 

discretized" for state estimation performance; and MMAE/SDPEP = MMAE "Sheldon-discretized" 

for parameter estimation performance. 

Table 15. Parameter Choices for State and Parameter Estimation 

Filter 
State 

Estimation Case 
Parameter 

Estimation Case 
1 9 9 
2 8176 3998 
3 17369 12578 
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Figure 49. Autocorrelation Curve For Constrained-Range Parameter Discretization - Example 2 
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Notice that in both the state and parameter estimation cases, the first elemental filters have the 

same value. These are the filters which are tuned for "normal" operation when no interference is 

occurring. Since this represents "normal" operation, it was decided to forre one of the elemental 

filters in either MMAE to be based on this parameter value. Therefore, after "fixing" the value of 

the first elemental filter, each constrained-range optimization algorithm (for either state or parameter 

discretization) determines the remaining two filters' parameter values based upon which of the two 

optimization algorithms are implemented. 

4.2.3   Simulations and Performance Analysis 

Three test cases are conducted to compare performance between the M3AE and a conventional 

fixed-bank MMAE/SDSEP. The three test cases are listed in Table 16, which shows the actual mag- 

nitudes of the measurement noise seen during the simulation. This is simply a repeat of Table 14, 

with the entries multiplied by Ro = 9 ft2. Additional test cases were conducted, but provided no 

further insight into the M3AE's performance, and thus are not presented or discussed. 

Only the first test case keeps the parameter fixed throughout the simulation (representing nor- 

mal operation), while the remaining two cases experience step changes (sudden increases or de- 

creases in the measurement noise due to interference) in the true parameter value as shown in Table 

16. 

Table 16. M3AE Test Cases: True RcPS Values (ft2) 

Time Case 1 Case 2 Case 3 
700 9 9 9000 
718 9 6750 4500 
760 9 9 9 
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Recall from the first example, that the M3AE provides the greatest parameter and state estima- 

tion performance benefit over the MMAE/SDSEP when "good" blending of the MMAE elemen- 

tal filters' parameter estimates is achieved ("good" blending is defined as blending that produces 

a near-zero-mean-error parameter estimate). Given that this 13-state GPS/INS example uses only 

three elemental filters and a coarse discretization, any MMAE "blending" of state and parameter 

estimates is difficult to achieve. Of all the test cases actually investigated, test case 2 best demon- 

strates the case when "good" blending occurs, and highlights the strength of the M3AE architecture. 

Finally, test case 3 is intended to demonstrate some aspects of the ability of the M3AE to handle mul- 

tiple step changes in RGPS and also to emphasize that, without "good" blending, the M3AE doesn't 

show significant improvement over a stand-alone MMAE. 

In each test case, a 10-run Monte Carlo simulation is conducted on the following two architec- 

tures: 

1. An MMAE "Sheldon-discretized" for optimized state estimation performance 

2. An M3AE implemented without IRDF, with its internal MMAE "Sheldon-discretized" for 

optimized parameter estimation performance. 

Additionally, in the second test case only, an additional 10-run Monte Carlo simulation is conducted 

on an M3AE implemented with discrete-time IRDF. IRDF is not implemented in each test case, since 

for this example problem, Lund's IRDF technique provided no additional performance benefit, as 

will be shown in the analysis in test case 2. 

A comparative analysis is accomplished between these architectures. The same types of plots 

used in the first example (see Section 4.1.3) are presented here to aid in the analysis. Only the three 

position states are plotted (i.e., aircraft latitude, longitude, and altitude). The top plots in the state 

estimation performance figures indicate the MMAEs' and M3AE's state estimation performance in 
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latitude, the middle plots indicate the state estimation performance in longitude, and the bottom 

plots indicate the state estimation performance in the altitude channel. Each plot contains 5 curves 

representing the following: 

• The single solid line (which is generally located between all the other traces) represents the actual 
10-run mean value for the error in the estimate of each state variable. 

• The two other solid traces represents the zero ± one filter-predicted sigma bound for the error 
in each state variable's estimate. 

• The dot/dashed line represents the 10-run mean ± one sigma residual for the error in the estimate 
of each state variable. 

The top plots in parameter estimation figures present the parameter estimate performance (dot- 

ted line) versus the true parameter value (the solid line) for a representative sample run from the 10- 

run Monte Carlo simulation. The bottom plots represent the mean error (solid line) and the mean 

±1 standard deviation (dotted line) values from the 10-run Monte Carlo simulation. 

Table 17 summarizes the plots generated for each test case versus the architectures listed above. 

The figure numbers associated with each case are listed in the columns. 

Table 17. Summary of Plots 

Architecture 
MMAE Blended 

State Est. 
M^AE 

State Est. 
Parameter 
Estimation 

M6AE without IRDF 50, 56, 66 52, 58, 68 53, 60, 69 
MJAE with IRDF 62 63 64 
MMAE/SDSEP 51,57,67 54,61,70 

As in the first example, a table summarizes the temporally averaged RMS values of the state 

estimation errors. Recall that the plots should be used as the primary indicator of performance, 

whereas the temporally averaged RMS values provide only a gross indication of state estimation 

performance, since any amount of high variance data may adversely skew the results. Finally, the 
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results of the approximate M3AE covariance analysis is presented after discussion of the M3AE's 

state and parameter estimation performance, for each of the three test cases. 

4.2.3.1   Test Case 1: aT = 9.0 

In this test case, the true parameter value, aT = 9.0, is fixed throughout the simulation. This 

case represents a normal operating environment in which no interference is occurring. Also, notice 

that each MMAE's first elemental filter parameter value, ai, matches the true parameter value, 

aT = 9.0. An analysis of the actual state and parameter estimation performance is presented next, 

followed by a comparison of the performance of the M3AE's approximate covariance analysis versus 

actual M3AE performance. 

State Estimation Performance. Figures 50 and 51 show the plots from each MMAE's blended 

state estimation performance. Figure 52 shows the M3AE state estimation performance. The tem- 

porally averaged RMS state estimation errors from each plot are summarized in Table 18 below. 

Table 18. Test Case 1: Temporally Averged RMS State Estimation Errors (ft) 

State 
MMAE/SDPEP 
without IRDF 

Conventional 
MMAE/SDSEP 

MdAE 
without IRDF 

Lat 1.224 1.224 0.8897 
Long 1.189 1.189 0.8969 
Alt 2.839 2.838 2.319 

In this test case, the figures and the table indicate that all the MMAEs perform the same dur- 

ing the simulation. This is anticipated since each MMAE has the same parameter value, ai, in its 

first elemental filter. Therefore, all but 0.002 of the probability weight is given to the first elemental 

filter in each MMAE which accounts for the nearly identical state estimation performance. Addi- 

tionally, notice that the M3AE's state estimation performance is essentially the same as that of the 
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Figure 50. MMAE/SDPEP Without IRDF State Estimation Performance: Test Case 1 
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Figure 52. M3AE Without IRDF State Estimation Performance: Test Case 1 
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MMAEs, which is anticipated since no "good" blending of the estimates is occurring. A compari- 

son of the plots confirm that the state estimation performance is similar between the architectures. 

Furthermore, notice that the filter-predicted sigma performance in the M3AE is slightly larger than 

the MMAE/SDPEP. This is a direct result of providing the M3AE's single filter a biased-high R 

value. Finally, the initial transients shown in the M3AE state estimation plots are due to the fact 

the actual simulation is started at time equal to 700 seconds, with initial conditions set to zero (this 

could be corrected by giving proper initial conditions or starting the simulation earlier) and should 

be ignored in performance comparisons. 

Parameter Estimation Performance. Figures 53 and 54 show the plots of each MMAE's 

blended parameter estimation performance. Notice in both configurations that the parameter esti- 

mate is biased. This is a direct result of applying the minimum probability technique to the MMAEs. 

The resulting bias is exactly equal to: 

bias = (0.998a! + 0.001a2 + .001a3) - aT (202) 

The bias is larger in the MMAE/SDSEP versus the MMAE/SDPEP because the discrete parameter 

values in the MMAE/SDSEP are larger than the corresponding discrete parameter values in the 

MMAE/SDPEP This attribute has caused some researchers [44,46, 50, 73]to impose the lower 

bounds on pj{U) computations within an MMAE (to preclude "lockout" as discussed in Section 

2.1), but then to set those Pj{U) values to zero in Equation (40) or (41) (and then rescaling the 

remaining Pj(ti)'s to add to one) for enhanced performance. 

MZAE Approximate Covariance Analysis. Figure 55 shows the results of the approximate 

covariance analysis (the three seconds of missing data at the end of this plot is a function of the 

software code and occurs in all the covariance analysis plots shown in this example). In this test 

case the M3AE approximate covariance analysis compares closely with the M3AE's single-filter- 

predicted a values (versus the true a values) of Figure 52, but only indicates a performance upper 
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Figure 53. MMAE/SDPEP Without IRDF Parameter Estimation Performance: Test Case 1 
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bound on the M3AE's real state estimation performance. This "over-approximation" is partly due 

to the "zeroth" order term of the covariance analysis tool (as given by Equation (108)) being too 

large by itself, and partly the addition of the first order term (as given by Equation (116)); due to 

any bias in the parameter estimate. Although it may seem strange that the "zeroth" order term is 

itself too large, since the M3AE is using an EKF for the single state estimator rather than a linear KF, 

there is no proof that the filter-predicted error variance will match the true error variance (as is the 

case for a truth-model-based linear Kaiman filter). This may also account for potential differences 

between the M3AE approximate covariance analysis results versus actual performance. Thus for 

this example, the M3AE approximate covariance analysis tool will most likely overestimate the 

M3AE's actual performance in each test case. 

Summary. Since all of the MMAEs tested in this case had an identical elemental filter, which 

received the majority of the probability weight throughout the simulation, the resulting state and 

parameter estimation performances were essentially identical. The resulting M3AE performance is 

comparable to the MMAE performance, as anticipated. 

4.2.3.2   Test Case 2: aT = 9.0, 6750.0, 9.0 Sequentially 

In this test case, the true parameter value undergoes a step change at the 718 second point 

in the simulation. It remains at the new true value, aT = 6750.0 until the 760 second point in 

the simulation, upon which normal operation is returned. This sudden increase in the RQPS value 

would simulate the instant "turn on" of a GPS signal interference source. Given MMAEs with 

only three elemental filters and the resulting coarse discretization, this value of aT = 6750.0 is 

investigated since it provides a region in the parameter space where MMAE "blending" of the 

parameter estimates occurs with some consistency. 
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In addition to the analysis of the actual state and parameter estimation performance, the impact 

of Lund's IRDF is presented, followed by a comparison of the performance of the M3AE's approx- 

imate covariance analysis versus actual M3AE performance. 

State Estimation Performance. Figures 56 and 57 show the plots from each MMAE's blended 

state estimation performance. Figure 58 shows the corresponding M3AE state estimation perfor- 

mance. The temporally averaged RMS state estimation errors from each plot are summarized in 

Table 19 below. 

Table 19. Test Case 2: Temporally Averged RMS State Estimation Errors (ft) 

State 
MMAE/SDPEP 
without IRDF 

Conventional 
MMAE/SDSEP 

MÖAE 
without IRDF 

Lat 2.372 2.074 1.388 
Long 3.108 2.742 2.144 
Alt 12.32 12.1 8.337 

In this test case, the figures and the table indicate that the MMAE/SDSEP has slightly bet- 

ter state estimation performance than the MMAE/SDPEP The MMAE/SDPEP performs better than 

might be originally anticipated (given its parameter discretization values) due to the "good" blend- 

ing of the estimates. The impact of this blending on the M3AE state estimation performance is much 

more apparent. For example, notice the significant improvement in the altitude state (the bottom 

plot in the figures) in the M3AE versus either MMAE. There are much smaller deviations in the 

mean error occurring during the interference period as compared to the same period in both of the 

MMAEs. Further notice that, during the remaining sections of the simulation (without real-world 

interference), performance is essentially the same for all the architectures, as anticipated given the 

results shown in test case 1. 
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Figure 56. MMAE/SDPEP Without IRDF State Estimation Performance: Test Case 2 
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The other significant distinction between performance in the M3AE versus both of the MMAEs 

is the slow ramping of the filter-predicted standard deviation and true error mean ± one sigma 

performance curves in the M3AE, versus the sharp rise in the corresponding curves in each of the 

MMAEs. This is again most evident in the altitude state. The sharp rise for the MMAEs is due 

to the "sudden switch" in the probability weighting to a different elemental filter (from elemental 

filter one to filter two, which more accurately represents this level of interference) in both MMAE 

filter banks. Despite the onset of interference, an accurate blended parameter estimate is provided 

to the M3AE's state estimator, as evident by the near-zero-mean error and small mean ± one sigma 

performance. The M3 AE's state estimator does "react" to the interference as evident by the increase 

in the mean ± one sigma performance throughout the interference region. The slow rise is directly 

attributable to the standard propagate and update cycles in a Kaiman filter. Recall, Equations (28) - 

(30), and (32) in Chapter 2; since R increases, the gain K decreases, and the benefit to the resulting 

update, ~P(tf), value is smaller than for the previous update cycle. In turn, P(i~) will grow until this 

transient period is over, thus the gradual increase in the slope of the covariance curves. Furthermore, 

notice that when the interference is removed at the 760 second point, all the architectures react and 

return to normal operation in approximately seven sample periods. 

As a final indication of the M3AE's state estimation performance for this test case, an additional 

10-run Monte Carlo simulation is conducted, with ä from the internal MMAE replaced by aT in 

the M3AE's single Kaiman filter. The test run will indicate the best possible performance that is 

achievable in this test case, given that the filter knows aT exactly. Figure 59 plots the results. Notice 

that there is only a slight performance improvement over the M3AE, given ä, shown in Figure 58. 

This clearly highlights the potential benefit of the M3AE architecture: it is very close to the ultimate 

bound of performance of a state estimator artificially given exact knowledge of the true parameter. 

Furthermore notice that, the filter-predicted a performance overestimates the true error variance. 
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Figure 59. M3AE State Estimation Performance Given aT: Test Case 2 
191 



Again this is due to the fact that when using EKFs, there is no proof that the filter-predicted a 

performance will match the true error variance performance (even if the true parameter values were 

known). 

Parameter Estimation Performance. Figures 60 and 61 show the plots of each MMAE's 

blended parameter estimation performance. Notice in the bottom plot in Figure 60, the effect of 

blending on the MMAE/SDPEP' s parameter estimation performance. During the region of the in- 

terference, a near-zero mean error is achieved. The exception occurs at the point where the interfer- 

ence is turned off. The sudden upward spike in the parameter estimate mean error, occurs since the 

majority of the probability weighting is given to the third elemental filter in the bank, which has the 

largest RGPS value and subsequent smallest initial [rj(tj) Aj1^)^-^)] value, giving the bank the 

false impression that it has the best estimation performance. However, the MMAE/SDPEP quickly 

responds, once the residuals indicate that this performance is incorrect, and subsequent estimation 

performance improves. 

Notice in Figure 61, that the MMAE/SDSEP has an undesirable bias present in the parameter 

estimate. This is a direct result of the MMAE/SDSEP placing the majority the probability weight 

on a single elemental filter, corresponding to a2 = 8176. Therefore, even though state estimation 

performance is acceptable, this biased parameter estimate is not. 

Lund's Discrete-Time IRDE Recall that IRDF's purpose is to increase the distinguishability be- 

tween elemental filters in an MMAE bank. After several attempts at varying the tuning parameters, 

Jjk> ^min. and £. it became apparent that IRDF provides little if any improvement in filter distin- 

guishability and subsequent parameter estimation performance in this example problem. This is 

directly due to the nature of this problem which includes a coarse discretization over a large para- 

meter space (thus distinguishability is inherent in the problem), an uncertainty in R, and very small 
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Qd values (very close to zero in most of the elements). Therefore, any modulation of the dynamics 

driving noise has little if any impact on parameter estimation performance. 

This is evident upon inspection of Figures 62 - 64 and Table 20. The IRDF tuning parameters 

used in this test case example are: j9k = 10,000, r?min = 0.0, and f = 0.7; however, note that all the 

tuning parameters investigated in this case ([300 < jj. < 15,000], [0 < ?7min < 0.5], and [0.5 < 

£ < 0.9]) provide similar results. First notice that the MMAEs blended and subsequent M3AE 

results are virtually the same. Thus, for this 13-state GPS/INS example problem, a comparison 

between the various architectures and IRDF is not accomplished in the other test cases. 

Table 20. Test Case 2: Temporally Averged RMS State Estimation Errors (ft) 

State 
MMAE 

without IRDF 
MMAE 

with IRDF 
M^AE 

without IRDF 
MJAE 

with IRDF 
Lat 2.372 2.309 1.388 1.387 

Long 3.108 2.99 2.144 2.139 
Alt 12.32 12.22 8.337 8.331 

M3AE Approximate Covariance Analysis. Figure 65 shows the results of the approximate co- 

variance analysis. Notice, in this test case, that the M3AE approximate covariance analysis provides 

an accurate prediction of the actual M3AE filter-computed a performance of Figure 58 throughout 

the simulation (again, since the "zeroth-order" term, which is also given by the filter-computed a 

performance of Figure 59, dominates the first order correction term for ä ^ aT but, by itself, is an 

overestimate of the true error standard deviation), but it is not as close to predicting the true mean 

±ler performance. Additionally, in this example, the actual trajectory information related to the 

flight profile is not provided to the approximate covariance analysis tool for expediency. Instead, 

the time varying parameters related to the aircraft position are approximated by replacing them with 

the fixed values associated with the flight profile at the 750 second point (this in not inherent to the 
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use of the tool and was not discussed in Chapter 3, or really necessary to the use of the tool). A more 

accurate reflection of the covariance performance is achievable by incorporating the trajectory in- 

formation into the approximate M3AE covariance analysis tool (this could become very important, 

especially when longer flight profiles and more dynamic maneuvers are simulated). However, even 

given this flight profile restriction, the covariance analysis results still reflect a good upper bound 

indication of expected performance for this example. Additionally, as discussed in the previous test 

case, the use of EKFs and the effects caused by the "zeroth-order" term of the approximate covari- 

ance being itself too large, tend to prevent an accurate prediction of the true mean ±1<T performance. 

Summary. This test case highlights the performance benefits associated with the M3AE ar- 

chitecture. Given good MMAE/SDPEP blending to produce near-zero-mean-error parameter esti- 

mates, the M3AE state estimation performance should be better that the associated MMAE/SDSEP 

state estimation performance. Moreover, it is very close to the ideal performance bound on state 

estimation, as though parameter estimation errors were perfectly zeroed out. 

4.2.3.3   Test Case 3: aT = 9.0, 9000.0, 4500.0, 9.0 Sequentially 

In this test case, the true parameter value undergoes three step changes at the 700,718, and 760 

second points in the simulation. It initially starts the simulation at the parameter value aT = 9.0, 

then at U = 700 seconds, aT undergoes a step change to a high level of interference equal to 9000.0, 

at which point the GPS measurements are assumed to be "poor" in this test case. This test case 

demonstrates the impact on the M3AE's performance when MMAE/SDPEP accurate blending is 

not present during the majority of the simulation. Again analysis of the actual state and parameter 

estimation performance is presented, followed by a comparison of the performance of the M3AE's 

approximate covariance analysis versus actual M3AE performance^^ Estimation Performance. 

Figures 66 and 67 show the plots from each MMAE's blended state estimation performance. Figure 
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68 shows the M3AE state estimation performance. The temporally averaged RMS state estimation 

errors from each plot are summarized in Table 21 below. 

Table 21. Test Case 3: Temporally Averged RMS State Estimation Errors (ft) 

State 
MMAE/SDPEP 
without IRDF 

Conventional 
MMAE/SDSEP 

MdAE 
without IRDF 

Lat 2.442 2.052 1.844 
Long 3.379 2.854 3.098 
Alt 13.04 13.19 12.87 

In this test case, the figures and the table indicate that state estimation performance in both 

the MMAEs is similar. There is a small performance benefit with the M3AE architecture is this 

test case also, but that is due to the problem setup. The MMAE/SDPEP's elemental filters a's 

are closer to aT for longer periods of time than the MMAE/SDSEP's elemental filters a 's (recall 

test case 8 in Section 4.1). Good blending (indicated by the parameter estimate having a zero- 

mean bias as in test case 2) is absent during the majority of the simulation; therefore, the M3AE's 

state estimation performance does not significantly improve over that of the MMAE, as in test case 

2 above. Furthermore note that, even though the M3AE does not produce a significant increase 

in state and parameter estimation performance, it doesn't deteriorate performance either. Finally, 

notice that the initial transients shown in plots are due to the fact that the initial parameter value was 

at aT = 9.0, then at U = 700 seconds, aT undergoes a step change to 9000.0. Again the slow rise 

in the mean ±kr performance is directly attributable to the standard propagate and update cycles 

in elemental filters. Finally notice that the effects of the step change at t{ = 718 seconds are not 

visible, since the mean ±la performance is still growing towards steady state values from the initial 

step change from 9.0 to 9000.0 at t{ = 700 seconds. 
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Blended Errors in feet Case 3:m 
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Figure 66. MMAE/SDPEP Without IRDF State Estimation Performance: Test Case 3 
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Blended Errors in feet Case 3:s 
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Figure 67. MMAE/SDSEP State Estimation Performance: Test Case 8 
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Single Filter Errors in feet Case 3:m 
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Figure 68. M3AE Without IRDF State Estimation Performance: Test Case 8 
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Parameter Estimation Performance. Figures 69 and 70 show the plots of each MMAE's 

blended parameter estimation performance. Notice in the bottom plot in Figure 69, that "blend- 

ing" of the parameter estimates is occurring; however, there is a distinct bias in all but 10 seconds 

of the simulation. Furthermore, notice in the top plot of Figure 69 that, for the first 18 seconds, the 

parameter estimate is approximately equal to a2 = 3998.0, which is due to the fact that the true 

parameter value was at aT = 9.0, up until U = 700 seconds. Then, once the initial transient has 

passed, the MMAE/SDPEP switches to the elemental filter closest to the aT = 9000.0, which is 

a3 = 12,578.0. Additionally, the parameter estimate in Figure 70 reflects the parameter value of 

the elemental filter closest in the "Baram distance measure sense" to the MMAE/SDSEP second 

elemental filter, a2 = 8176.0. The state and parameter estimation in this test case suffers as a direct 

result of the coarse discretization of the parameter space. 

M3AE Approximate Covariance Analysis. Figure 71 shows the results of the approximate 

covariance analysis. As in test case 2, the M3AE approximate covariance analysis provides a good 

indication of the filter-computed a plots and subsequent upper bound on the expected M3 AE state 

estimation performance throughout the simulation. 

Summary. This test case indicates that the M3AE performs just as well in state estimation 

performance as the MMAE/SDSEP, despite not having the benefit of accurate parameter estimates. 

Since effective blending does not take place most of the time in this case, the M3AE does not out- 

perform the MMAE/SDSEP, as it did in the preceding case. 

4.3 Summary 

The M3AE architecture demonstrates significant performance potential for estimating both pa- 

rameters and states simultaneously. In most cases the M3AE outperforms the conventional MMAE 

tuned and discretized for state estimation. The exceptions occur when the true parameter value is 
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Figure 69. MMAE/SDPEP Without IRDF Parameter Estimation Performance: Test Case 8 
206 



18000 

16000 

14000 

a) 12000 

CO 

> 10000 
B 

£ 800° CO 
CO 
Q. 

6000 

4000 

2000 

700 

True Versus MMAE Supplied Parameter - Sample Run Case 3:s 

710 720 730 740 750 760 770 780 790 800 

x10 

700 

Mean Error +/- 1 Sigma in Parameter Estimate 

710        720        730        740        750        760 
Time (sec) 

770 780 790        800 
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Covariance Analysis Results 
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Figure 71. M3AE Covariance Analysis: Test Case 3 
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closer to a parameter value used for the basis of an elemental filter in the conventional MMAE 

than to any discrete parameters in the elemental filters in the M3AE, resulting in a larger bias in 

the M3AE's parameter estimate. This yields a single state estimator based on an incorrect parame- 

ter value and thus results in degraded performance. The M3AE results indicate that the better the 

parameter estimate, the better the state estimation performance. This is accomplished when there 

is effective blending in the MMAE/SDPEP within the M3AE, providing an ä substantially closer 

to the true a? value than any of the discrete a.j values used as the basis for that MMAE's elemen- 

tal filters. Thus, accounting for or minimizing the parameter estimation bias with a consistently 

"well" blended parameter estimate is the next logical step required to improve the overall M3AE's 

state and parameter estimation performance. The next chapter will address an effective means of 

ensuring that such blending does take place consistently. 
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Chapter 5 - Conclusions and Recommendations 

5.1  Conclusions 

A new contribution has been made in solving the problem of estimating states and parameters 

simultaneously, for linear, dynamic, sampled-data systems. The M3AE architecture is one solution 

to eliminating the typical trade-off decision faced by engineers in developing designs intended for 

accurate state estimation versus designs intended for accurate parameter estimation. 

The M3AE architecture uses a combination of existing multiple model and Kaiman filter-based 

methods to provide the accurate state and parameter estimation given parameter variations in any 

of the $, Bd, Gd, H, Qd, and R system matrices. The M3AE exploits the benefits of an MMAE 

designed for accurate parameter estimation, and yet performs at least as well in state estimation 

as an MMAE designed for accurate state estimation. The M3AE accomplishes the simultaneous 

estimation task by providing accurate state estimates from a single KF designed to accept accurate 

parameter estimates from the MMAE within its architecture. 

To assist the engineer in designing an M3AE for a given sampled-data problem, a seven-step 

technique was developed. This technique gives the designer the ability to analyze, tune, and pre- 

dict system performance before the M3AE is constructed and subjected to a full-scale Monte Carlo 

analysis. Several contributions were made during the development of this algorithm. 

1. Sheldon's five-step algorithm [69, 70] for determining the best parameter discretization 

for an MMAE was enhanced to account for linearized (versus purely linear), unstable or 

astable systems which may never attain steady state. The extension involves using a finite 

horizon assumption and a constrained-range optimization to solve the minimization in order to 

determine the best parameter discretization for a given problem. 
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2. Lund's IRDF technique [34,35], which increases the distinguishability between elemental filters 

in an MMAE bank, was extended for discrete-time systems, resulting in enhanced M3AE 

parameter estimation. 

3. Finally, the most significant contribution was the development of an approximate M3AE 

covariance analysis design tool, based on a first order approximation to the error in the M3AE's 

state estimate. The approximate M3AE covariance analysis design tool assists the designer 

in predicting M3AE performance after conducting only a single Monte Carlo simulation on 

the MMAE-based parameter estimator. The approximate M3AE covariance is itself sometimes 

approximated by its upper bound, the corresponding approximate error correlation, because of 

the computational savings of so doing. However, the accuracy of the results is very dependent 

upon the accuracy of the MMAE-supplied parameter estimate. A large bias in the parameter 

estimate causes the approximate M3AE covariance analysis design tool to produce a larger- 

than-expected prediction of covariance performance. If it is desired to account for the bias, the 

"square of the mean" term, E{eM3AE(ti)\aT,ä}E{eM3AE(ti)
r\aT,ä}, may be subtracted 

from the approximate error correlation matrix, *eA,3/1E(*i;aT,ä), to form the more accurate 

approximate error covariance, PeA/3/,E(*i; ax,a). 

To verify this new architecture's expected performance, the M3AE architecture, algorithm, 

and approximate covariance analysis tool were validated against two examples. The results demon- 

strated the application of the theory and performance achieved with an M3AE compared to con- 

ventional MMAEs. The M3AE, in general, outperformed the conventional MMAE tuned and dis- 

cretized for state estimation. The most significant improvement in state estimation performance oc- 

curred between the M3AE/IRDF versus the MMAE/SDPEP/IRDF. The improvement occurs since a 

blended "near-zero-mean error" parameter estimate is provided to the M3AE's state estimator. Fur- 

211 



thermore, when blending does not occur, the subsequent MMAE/SDPEP (with or without IRDF) 

state estimation performance is similar to the M3AE's state estimation performance, since both have 

biased estimates. The M3AE's state estimation performance also suffered when the true parameter 

value was closer to a discrete parameter value used for the basis of an elemental filter in the con- 

ventional MMAE bank (discretized for state estimation performance) than to the discrete values in 

any of the elemental filters in the M3AE's MMAE bank (discretized differently for best possible pa- 

rameter estimation performance), resulting in a larger bias in the M3AE's parameter estimate. The 

resulting state estimation performance suffered since the state estimates were based on a "biased" 

parameter estimate. Accounting for the bias estimates with effective MMAE blending is the next 

logical step in increasing the M3AE overall performance in state and parameter estimation. 

Moreover, the cases in which the M3AE performed most significantly better than the MMAE 

were the cases in which blending of two or more elemental filter outputs occurred, rather than one 

elemental filter receiving essentially all the probability weight. Thus, the ä from the MMAE within 

the M3AE algorithm would be substantially different from (and better than) any of the hypothesized 

a.j values used as a basis for that MMAE's elemental filters. To produce such blending of multiple 

elemental filters in practice, the discretization of the parameter space must be fine enough that a 

single elemental filter does not typically absorb essentially all of the probability weight. (If any ele- 

mental filter does absorb essentially all the probability weight, then the M3AE's single filter will be 

virtually indistinguishable from that elemental filter and the corresponding MMAE in performance). 

Such a need for fine discretization (while not requiring and inordinate number of elemental filters 

to cover the entire admissible parameter space), along with the previously mentioned need to reduce 

the bias in the parameter estimation, argue strongly for M3AE to be applied to moving-bank versus 

fixed-bank, multiple model adaptation. 
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5.2 Recommendations 

The M3AE architecture developed in this research is a viable solution to the problem of esti- 

mating states and parameters simultaneously. However, there are certain areas that warrant further 

research. 

1. The M3AE provides the greatest improvement in state and parameter estimation when filter 

blending occurs. M3AE results indicate that, the better the parameter estimate, the better the 

state estimation performance. Thus, there is strong motivation to try to reduce any bias in the 

parameter estimate. The first alternative is to implement an MMAE parameter estimator bank 

with a finer discretization requiring more elemental filters. However, this could quickly become 

an unreasonable computational burden. Therefore, replacing the M3AE's fixed-bank MMAE 

with a moving-bank MMAE should further enhance parameter and subsequent state estimation 

performance. 

2. The bias term, E{eM^AE(ti)\aT,ä}E{eM3AE(ti)
T\aT,ä}, was ignored in the approximate 

M3AE covariance analysis tool for expediency and the desire to determine only an upper 

bound on the approximate covariance. However, accounting for this term may assist in some 

performance evaluations. Therefore, investigations into the impact of augmenting the M3AE 

approximate covariance analysis tool with the bias term is recommended. Accounting for the 

bias term should provide a better approximation to the total covariance and, in turn, provide 

a better indication of the achievable M3AE state estimation accuracy, especially for the worst 

case scenarios in which the true parameter value, aT, is far from any of the MMAE elemental 

filter's assumed a/s in the current discretization. 

3. The examples studied in this research investigated the M3AE's performance with only one 

parameter value changing in time. Cases with more than one unknown parameter value should 
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also be investigated to verify the M3AE's ability to handle multiple parameters effectively. 

4. The M3AE architecture is a strong candidate for implementation in estimation problems. The 

next logical extension is to apply the M3AE architecture to control problems involving trackers, 

regulators, proportional plus integral (PI) controllers, or other control techniques. In addition to 

applying the M3 AE architecture to a control problem, investigation into parameter uncertainties 

involving the Bd system matrix has yet to be accomplished and is highly recommended. 
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APPENDIX A - Model State Definitions and System Matrices 

This appendix contains a tabular listing of the 13-state GPS/INS reduced-order model. The 

LN-93 error-state dynamics matrix F and the process noise matrix Q as provided by Litton are 93- 

by-93 arrays containing a large number of elements that are identically zero [25]. The non-zero 

elements of the Litton model that apply to the reduced-order 13-state model are included in Tables 

22 through 27. 

Table 22. Reduced-Order System Model States 

State 
Number 

State 
Symbol 

Definition LN-93 
State 

PLS 
State 

1 sex X-component of vector angle from true to computer frame 1 1 
2 sey Y-component of vector angle from true to computer frame 2 2 
3 69z Z-component of vector angle from true to computer frame 3 3 
4 <f>x X-component of vector angle from true to platform frame 4 4 
5 4>v Y-component of vector angle from true to platform frame 5 5 
6 4>z Z-component of vector angle from true to platform frame 6 6 
7 6VX X-component of error in computed velocity 7 7 
8 svy Y-component of error in computed velocity 8 8 
9 6VZ Z-component of error in computed velocity 9 9 
10 6h Error in vehicle altitude above reference ellipsoid 10 10 
11 6hß Total baro-altimeter correlated error 23 11 
12 SPRudk GPS User clock bias - 12 
13 SDucik GPS User clock drift - 13 
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Table 23. Elements of the Dynamics Submatrix F (red) 11 

Element Term Element               Term 
(1,3) ~Pv (1,8) -CRY 
(2,3) Px (2,7) CRX 
(3,1) Pv (3,2) -Px 
(4,2) -nz (4,3) \ly 
(4,5) Uinz (4,6) —uin„ 
(4,8) -CRY (5,1) nz 
(5,3) -nx (5,4) -Uin, 
(5,6) ^in* (5,7) CRX 
(6,1) — ily (6,2) i ix 

(6,4) wm„ (6,5) ~UinT 

(7,1) -2VyQy - 2VZQZ (7,2) 2vvnx 
(7,3) 2vzny (7,5) -Az 

(7,6) Ay (7,7) -VZCRX 
(7,8) 2QZ (7,9) -pv - 2QV 

(8,1) 2VxQy (8,2) -2VXÜX - 2Vznz 

(8,3) 2vzQy (8,4) Az 

(8,6) Ax (8,7) -2ÜZ 

(8,8) -VZCRY (8,9) Px + 2^x 
(9,1) 2vxtiz (9,2) 2VVQZ 

(9,3) -2vyny - 2vxnx (9,4) — Ay 
(9,5) Ax (9,7) Pv + 2Qy + VXCRX 

(9,8) —px — 2Q.x + VyCfty (9,10) 2g0/a 
(10,9) 1 

Px,y 

^^x,y,z 

x<y,z 
x>y>z 

CRX,RY 

9o 
a 

Components of angular rate, nav reference frame to earth-fixed frame 
Components of angular rate, earth-fixed frame to inertial frame 
Components of angular rate, nav reference frame to inertial frame 
Components of vehicle velocity vector in earth-fixed coordinates 
Components of specific force in the sensor reference frame 
Components of earth spheroid inverse radii of curvature 
Equatorial gravity magnitude (32.08744 ft/ sec2) 
Equatorial radius of the earth (6378388 m) 
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Table 24. Elements of the Dynamics Submatrix F(red)12 

Element    Term    Element    Term 

(9,11)        k2       (10,11)       kx 

Table 25. Elements of the Dynamics Submatrix F(re^22 

Element    Term 

(11-11)       -ß6h. 

Table 26. Elements of Process Noise Submatrix Q(red)n 

Element Term Element Term 
(4,4) <?v (7,7) ^IA, 

(5,5) Qv„ (8,8) Q^, 
(6,6) <?v (9,9) QvA, 

Table 27. Elements of Process Noise Submatrix Q(red)22 

Element       Term 

(11,11)     2ß6haih_ 

h,2 
ßshc 

'°x,y,z 

a6hc 

■ \ertical channel gains, see LN-93 documentation [25] for equations 
; Barometer inverse correlation time (r = 10 min; ß = -) 
: PSD value of gyro drift rate white noise (6.25e-10ff£) 

: PSD value of accelerometer white noise (1.037e-7^s) 
: Variance of barometric altimeter correlated noise (10000/i2) 
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