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Abstract

Two new linear reconstruction techniques are developed to improve the resolution

of images collected by ground-based telescopes imaging through atmospheric turbulence.

The classical approach involves the application of constrained least squares (CLS) to the

deconvolution from wavefront sensing (DWFS) technique. The new algorithm incorporates

blur and noise models to select the appropriate regularization constant automatically. In all

cases examined, the Newton-Raphson minimization converged to a solution in less than 10

iterations. The non-iterative Bayesian approach involves the development of a new vector

Wiener filter which is optimal with respect to mean square error (MSE) for a non-stationary

object class degraded by atmospheric turbulence and measurement noise. This research

involves the first extension of the Wiener filter to account properly for shot noise and an

unknown, random optical transfer function (OTF). The vector Wiener filter provides superior

reconstructions when compared to the traditional scalar Wiener filter for a non-stationary

object class. In addition, the new filter can provide a superresolution capability when the

object's Fourier domain statistics are known for spatial frequencies beyond the OTF cutoff.

A generalized performance and robustness study of the vector Wiener filter showed that MSE

performance is fundamentally limited by object signal-to-noise ratio (SNR) and correlation

between object pixels.
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Linear Reconstruction

of Non-Stationary Image Ensembles

Incorporating Blur and Noise Models

I. Introduction

1.1 Problem Statement

Since before the time of Galileo and Newton, man has used optical devices to form

images of distant objects. The term image refers to the two dimensional picture associated

with the light or irradiance collected by an imaging system such as the eye, a camera, or

telescope. The term object denotes the light or radiant exitance that caused the image to be

formed. A perfect optical system will produce an image that is identical to the object within

the limits of diffraction. In reality, a loss of resolution may occur due to blur associated with

distortions in the optical device or randomness in the imaging medium. An image may also

be distorted by noise due to low light level or limitations in the recording device. The imaging

scenario describes the degradations affecting an optical system in a given application. For

example, images collected using a ground-based astronomical telescope are degraded by the

turbulent atmosphere and film-grain or electronic detector noise.

With the widespread availability of computers, the concept of a digital image has

become important. A digital image is an array of real or complex numbers which represents

a sampled version of the two dimensional continuous image described above. The elements

of an image array are known as pixels. In this mathematical form, a distorted image can

be manipulated by a computer using a variety of techniques [41]. Image reconstruction

refers to digital image processing techniques that attempt to recover an accurate object

estimate based on a priori knowledge of the imaging scenario. Statistical estimation theory

plays an important role in many modern reconstruction algorithms. This theory can be

divided into two main approaches: classical and Bayesian [43]. In a classical approach, the
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parameter of interest is assumed to be a deterministic but unknown constant. In contrast,

the unknown parameter is assumed to be a random variable in a Bayesian approach. Here,

the random parameter is described by a known prior probability density function (PDF), and

the goal is to estimate a particular realization. Common optimization criteria for Bayesian

estimators include minimizing mean square error (MSE) between parameter and estimate

as well as maximizing a posteriori probability. Both classical and Bayesian estimators can

sometimes be difficult to implement,- requiring multidimensional integration or intensive

iterative optimization. In many cases, constraining the estimator to be linear allows for

substantial simplification and ease of analysis. Two well-known linear methods are least

squares and linear minimum MSE estimation, also known as the Wiener filter [43].

Least squares is a classical estimation method first used by Gauss to study planetary

motions in 1795 [43]. The goal is to find the object estimate that minimizes the squared error

between the given distorted image and some deterministic image model. No probabilistic

assumptions are made about the data [43]. Actual performance is dependent on two factors:

the noise properties of the distorted image and the image model accuracy. For example, low

light images degraded by atmospheric turbulence are not good candidates for least squares

processing when the image model or blur cannot be estimated accurately. In this case, a

wavefront sensor (WFS) can be used to provide an accurate estimate of the pupil plane

phase aberration. The phase measurement can then be used to estimate the blur function.

This technique is known as deconvolution from wavefront sensing (DWFS) [10, 17,66] and

is based on the least squares paradigm. A statistical noise model is not incorporated in

the traditional DWFS estimator to suppress noise effects. The standard solution is to use

a regularization constant in the estimator denominator [20]. The regularization constant is

adjusted by the user based on perceived image quality.

The Wiener filter minimizes MSE between the true object and object estimate [43]. It

was first derived for two dimensional images by Helstrom [29] and Slepian [80]. Their research

followed the paradigm established in the seminal work by Norbert Wiener with stationary

time series [94]. Here, the object and noise are assumed to be wide sense stationary random

processes. In this dissertation, the term stationary will refer to a wide sense stationary
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random process. A two dimensional stationary random process has a constant mean and

autocorrelation that is only dependent on the distance between pixels, not the individual

pixel locations [62]. In the Fourier domain, a stationary random process has uncorrelated

spatial frequency components [62]. Since the Fourier components are uncorrelated, the

Wiener filter reduces to a simplified scalar form which weights each distorted image spatial

frequency independently to produce the estimated object spectrum. However, many practical

image ensembles are non-stationary [39] and have correlated Fourier components [62]. For

example, consider the image of a satellite in low-earth orbit as collected by a ground-based

telescope. Multiple images of the satellite are collected from different perspectives as it passes

over the observation site. Thus, the mean object is a blurred version of the true satellite

against the black background of space. Clearly, this object random process is not constant

mean. In addition, it is not uncommon to use a support constraint when processing these

images which generates a non-stationary image domain covariance [14]. The scalar Wiener

filter is not capable of incorporating complete object and noise Fourier domain correlations.

Thus, it is sub-optimal with respect to MSE for non-stationary image ensembles.

As noted above, nonlinear classical and Bayesian estimation techniques often involve

multidimensional integration and intensive iterative optimization. Linear techniques can

offer advantages related to computational savings and analysis, often at the expense of

performance. Thus, the desire to enhance the performance of linear reconstruction techniques

is the key motivation for solving the problem addressed in this dissertation:

Develop enhanced linear reconstruction filters for non-stationary image ensembles
incorporating a priori blur and noise models. Investigate performance limitations
associated with imaging through atmospheric turbulence.

Both a classical and a Bayesian approach are addressed in this dissertation. The classical

approach involves the application of constrained least squares (CLS) to DWFS. CLS incor-

porates a priori knowledge of the imaging scenario to constrain the set of possible object

estimates. The new algorithm incorporates blur and noise models to select the appropriate

regularization constant automatically [11]. No ad hoc regularization adjustment is required.

CLS processing of DWFS data is demonstrated using simulated satellite objects degraded by

atmospheric turbulence and measurement noise. Measurement noise is defined as the com-
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bined contribution of shot noise and signal-independent detector noise [14]. The Bayesian

approach involves the development of a new vector Wiener filter which is optimal with re-

spect to MSE for a non-stationary object class degraded by atmospheric turbulence and

measurement noise. Here, the term vector alludes to the dependence of each estimated

Fourier component on other distorted image Fourier components. It should be noted that

the general Wiener filter is the steady-state constant-gain version of the Kalman filter for

shift-invariant image models and stationary noise models [43]. Thus, it is valid to refer to the

new vector Wiener filter as a Kalman filter when the noise is non-stationary. However, pre-

vious image processing research has included reference to a Wiener filter in this application.

Pratt proposed a generalized vector Wiener filter that is optimal with respect to MSE for

non-stationary object ensembles in signal-independent noise [63]. This theory was extended

to images degraded by both known blur and signal-independent noise [65,76]. The research

presented in this dissertation will use the term Wiener filter when referring to this image

reconstruction application. This work involves the first extension of this theory to account

properly for shot noise [14]. Vector Wiener filter performance is also investigated when blur

statistics are substituted for exact knowledge of the blur function [12,13].

This dissertation is organized into seven chapters. Chapter I presents the justification

for pursuing the suggested study, details the problem to be solved, and outlines significant

results. Chapter II contains background material associated with atmospheric turbulence

and image reconstruction. Chapter III outlines a new CLS processing technique for DWFS.

Chapter IV contains the complete derivation of a new vector Wiener filter which incorporates

model-based statistical knowledge of object, blur, and noise. Chapter V illustrates vector

Wiener filter performance on astronomical images degraded by atmospheric turbulence and

noise. Chapter VI presents vector Wiener filter performance and robustness data for gen-

eralized object and blur models. Conclusions and recommendations for further research are

found in Chapter VII. Mathematical details not included in the main text are compiled in

the Appendices.
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1.2 Justification for Conducting the Proposed Research

Today, the United States faces an ever-growing number of potential adversaries with

satellite launch capability. Clear, resolvable images of space objects from ground-based

telescopes are an absolute requirement to determine an opponent's intentions in space. Thus,

the Air Force has a requirement for high resolution imagery of earth-orbiting objects as part

of its space surveillance mission. In general, two broad classes of techniques are used to

increase Fourier domain signal-to-noise (SNR) ratio in astronomical images: (1) pre-detection

processing via adaptive optics (AO) [27] and (2) post-detection processing such as speckle

imaging [44,47,50].

AO compensates for atmospheric turbulence-induced wavefront aberrations in real time

before the light is detected at the image plane. The important components of an AO system

are the deformable mirror (DM), wavefront sensor (WFS), and actuator control computer

[74]. Voltages applied to the DM actuators allow its figure to be changed in real time.

The WFS senses the aberrations in the incoming wave by measuring gradients in small

subapertures of the telescope pupil [91]. This information is then sent to the actuator control

computer which adjusts the DM to apply an estimate of the conjugate of the wavefront

aberration. The correction imposed by the DM cancels out the aberration, leading to a

narrower blur or point spread function (PSF) and an improved image. This process must

occur at speeds on the order of the rate of change of the wavefront aberration to be effective

[91]. Typically, these speeds range from approximately tens of Hertz to a few hundred Hertz

[91]. Figure 1.1 illustrates the installation of an AO system on a ground-based telescope.

The first work to address the post-detection processing of images degraded by atmo-

spheric turbulence was speckle imaging [44, 47, 50]. The term speckle refers to the data,

which consist of a set of short exposure, speckled images. In this context, short exposure

refers to a sufficiently short integration time to freeze an individual realization of the at-

mospheric turbulence-induced aberration in the image measurement. In this technique, the

object is usually estimated by first estimating the modulus and phase of its Fourier trans-

form. Labeyrie showed that the squared modulus of the object Fourier transform could be

estimated from a large set of short exposure images [47]. The method requires an ensemble
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Figure 1. 1 Diagram of a typical AG system as part of a large telescope.
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Figure 1.2 Block diagram of the speckle imaging process.

of reference point source images along with the data set. The reference images are used to

estimate the Fourier transform of the atmospheric-optical system PSF or optical transfer

function (OTF). The squared modulus of both data and OTF estimates are averaged to

reduce noise. Then, the average squared modulus of the OTF estimates is used in a decon-

volution procedure to estimate the squared modulus of the object. This estimation scheme is

possible because the squared modulus of the OTF is non-zero out to the diffraction-limited

cutoff of the optical system [74]. While Fourier modulus information can be extracted us-

ing the above technique, phase information is usually required to form a usable image [74].

Two methods are commonly used to extract the Fourier phase from the data ensemble: the

Knox-Thompson [44] and bispectrum [50] methods. Both methods are based on the fact that

certain higher order moments of the complex Fourier transform of speckled images contain

encoded information about the object phase. Figure 1.2 gives a block diagram of the speckle

imaging process.
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A third class of imaging techniques involves the combination of both AG and post-
detection processing and is known as hybrid imaging [74]. A notable hybrid technique is

DWFS [10, 17, 66]. In DWFS, a WFS is used to measure the pupil plane phase aberration

associated with each short exposure image. The phase measurement is used to estimate the

OTF. The short exposure image and OTF estimate can then be used to estimate the ob-

ject via a deconvolution filter. The DWFS technique was first proposed by Fontanella [10],

extended by Fried [17], and further developed by Primot et al. [66]. Primot et al. also

conducted the first performance analysis of DWFS [66]. A variant of their estimator was

later validated on astronomical data [20]. Welsh and Von Niederhausern further investigated

DWFS performance by incorporating an optimal wavefront phase estimate [93]. Roggemann

et al. [75] showed that the Primot estimator was biased and suggested a related unbiased

estimator. Roggemann and Welsh also derived an SNR expression for DWFS [73] and con-

ducted further comparison with speckle imaging and traditional linear deconvolution [92].

Figure 1.3 gives a block diagram of the DWFS process.
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Speckle imaging techniques generally incorporate a deconvolution filter to estimate the

object modulus [74]. AO compensated images also benefit from linear reconstruction to

deconvolve blurring due to the attenuation of high spatial frequencies in the compensated

images [70,72]. Typical linear reconstruction methods such as the inverse and pseudo-Wiener

filters [21] require an explicit estimate of the OTF. A priori knowledge of the object class and

noise is typically not used to deconvolve compensated images. CLS processing of DWFS data

and the vector Wiener filter offer the potential to use statistical model-based information

about the OTF and noise to improve images from Air Force ground-based surveillance sites.

As of this writing, no sources have been found in the literature which document the use of

CLS estimation to process DWFS data. However, Primot et al. note the potential of such

a scheme in their key paper [66]. Similarly, no sources are available which document the

use of a Fourier domain linear minimum MSE estimator to process non-stationary image

ensembles degraded by random blur and shot noise. Several researchers have addressed

the problem of image reconstruction in the presence of random blur but only in the image

domain [4,25,26,87]. The potential benefits of statistical model-based PSF information has

been mentioned by prominent researchers in the area of blind deconvolution. Schulz [77]

has recommended the use of PSF statistical models in his algorithms when this information

is available. However, his work and the work of other researchers in this field have not

considered the degrading PSF as a random quantity [31,33,48,77,81]. Thus, the research

outlined in this dissertation makes a unique contribution to a critical Air Force mission and

the field of image reconstruction.

1.3 Approach

The problem statement is addressed in two ways. This two-prong approach is consistent

with the natural classical-Bayesian division prevalent in statistical estimation theory [43].

First, the application of CLS to DWFS is investigated. CLS represents a classical estimation

approach since the object is assumed to be a deterministic, yet unknown quantity. Only the

constraint incorporates model-based statistical information. Second, a new linear Bayesian

estimator, referred to as the vector Wiener filter, is derived. In this case, model-based

statistical knowledge of object, blur, and noise is assumed.
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The traditional DWFS deconvolution filter given by Primot et al. [66] provides un-

acceptable noise amplification when processing low light image ensembles. The standard

solution is to add a parametric regularization constant [20] or SNR term [75] to the filter

denominator. These approaches are analogous to CLS [37] and the parametric Wiener fil-

ter [211, respectively. The regularization is adjusted by the user based on the perceived image

quality. Thus, the resultant object estimate does not satisfy any mathematical optimality

criterion. In this dissertation, a modified CLS estimation scheme is developed which provides

optimal processing of noisy DWFS data [11]. Here, optimal refers to the object estimate

which minimizes a CLS objective function incorporating DWFS data. Unlike previous CLS

algorithms [37,71], this approach incorporates ensemble average data directly to reduce noise

effects. The solution uses the Lagrange multiplier technique [21,37]. A closed form solution

for the object estimate is obtained which is analogous to the traditional DWFS deconvolution

filter [20,75] with the Lagrange multiplier serving as a regularization constant. An iterative

approach based on Newton-Raphson minimization [40, 71] is used to find the appropriate

regularization constant. The iteration incorporates the statistics of both the OTF and noise.

CLS processing of noisy DWFS data relies on WFS hardware and iterative processing

to deconvolve turbulence effects. A non-iterative Bayesian approach to the reconstruction

of astronomical images is also developed, known as the vector Wiener filter. As noted

previously, a scalar filter weights each Fourier component of the distorted data independently.

In contrast, a vector filter incorporates many Fourier components of the distorted image

to estimate a given Fourier component of the object. The appropriate weighting of each

component is determined by the object, OTF, and noise correlations. First, a vector Wiener

filter is derived that properly accounts for a random OTF and shot noise effects [14]. This

new linear filter has the advantage of incorporating object, OTF, and shot noise correlations

between different spatial frequency components. When a scalar Wiener filter is applied to

a non-stationary image ensemble, this correlation information is not used. The result is a

sub-optimal solution with respect to MSE when compared to the vector Wiener filter. Next,

vector Wiener filter performance is investigated for both a fixed and random OTF [12-14].
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Finally, filter performance and robustness are examined for generalized object and blur

models.

This research effort relies on theoretical analysis and Monte Carlo simulation. The

Monte Carlo simulation for the atmospheric turbulence-degraded images is based on a

Fourier-series based phase screen generator developed by Dr. Byron Welsh [89]. This new

phase screen generator properly models the spatial and temporal correlations between wave-

front phase screens based on von Karman statistics [89]. However, this study is only con-

cerned with the spatial correlation of the OTF. Thus, the temporal capability of the phase

screen generator is not used. Performance comparison between the scalar and vector Wiener

filters is an important part of this study. Here, estimator performance is based on visual

image comparison, MSE, and mean square phase error (MSPE). MSE at a given image pixel

is defined as the expected value of the squared difference between the true object and the

object estimate at that pixel. Similarly, MSPE for a given Fourier component is the expected

value of the squared difference between the true object phase and the estimated object phase

for that Fourier component.

1.4 Scope and Assumptions

Two new applications of model-based statistical knowledge to linear filter theory are

presented in this dissertation. The primary study variables are the object class, light level,

detector read noise variance, and turbulence strength. The emphasis here is on analysis and

simulation.

In the discussion presented in Section 1.3, the object irradiance distribution was as-

sumed to be a random process with known spatial frequency statistics. The concept of a

random object in image reconstruction is not new [29,63, 80] and is critical to a Bayesian

development. In Chapters IV and V, perfect a priori knowledge of the object class statistics

is assumed. For example, one common class of astronomical objects is the binary star pair.

A priori knowledge could include the number of components (two), ratio between primary

and secondary component irradiance, and object support. In this case, exact knowledge of

the true object irradiance distribution is unavailable since the filter has no knowledge of the

1-11



component separation or orientation. In general, the statistical object model can be viewed

as a constraint on the filter output [43]. Clearly, the object statistics can never be known

perfectly in a real application. Thus, filter robustness is studied in Chapter VI.

1.5 Significant Contributions and Results

This section highlights overall contributions and results associated with this disserta-

tion research. Here, the logical questions "What is new?" and "What is important?" are

answered. The respective chapters are listed to aid the reader in finding topics of interest.

* Chapter III outlines a new application of CLS to the DWFS processing of low light

images. The technique is practical and computationally inexpensive. In all cases exam-

ined, the Newton-Raphson iteration converged to a solution in less than 10 iterations.

" Chapter IV presents the derivation of a new vector Wiener filter incorporating the

semi-classical model of photoelectric light detection. The filter uses complete OTF

and shot noise statistical models.

" Chapter V presents the first application of second order OTF statistics between dif-

ferent spatial frequencies in a Wiener filter. These OTF statistics are associated with

imaging through atmospheric turbulence.

" Chapter VI contains the first performance study to establish quantitative limits on the

vector Wiener filter associated with object and OTF statistical models. The object

spatial SNR and correlation coefficient provide a fundamental limit on vector Wiener

filter MSE performance. For some object classes, the OTF SNR also limits MSE

performance.

" Chapter VI contains the first robustness study of the vector Wiener filter with respect

to object model error. Error in the object spatial SNR produces a substantial increase

in MSE.
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1.6 Summary

In this chapter, the dissertation problem has been presented, which is to develop linear

filters for non-stationary image ensembles incorporating blur and noise statistical models.

This research is justified based on the Air Force requirement for clear, resolvable images of

space-based objects. Linear reconstruction provides an important function by deconvolving

images processed via more sophisticated techniques and hardware. The approach outlined

in this dissertation is to investigate both CLS processing of DWFS data and a new vector

Wiener filter. Both techniques incorporate blur and noise statistics. In addition, the vector

Wiener filter relies on model-based statistical knowledge about the object class. Before

presenting these techniques in Chapters III and IV, the next chapter provides important

background regarding atmospheric turbulence and key image reconstruction methods.
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II. Background

2.1 Introduction

The primary objective of this chapter is to review background material related to gen-

eral image reconstruction concepts and, more specifically, the reconstruction of astronomical

images. The image degradation model associated with a noisy, turbulence-degraded image

is introduced as well as information about atmospheric turbulence. Unless otherwise noted,

this image model will be used throughout the dissertation. The rest of the chapter will

briefly review some important classical and Bayesian techniques in image reconstruction. In

each case, the strengths and weaknesses of past research will be highlighted.

The rest of this chapter is organized as follows. Section 2.2 presents the image degrada-

tion model. Atmospheric turbulence theory is reviewed in Section 2.3 with emphasis on ex-

pressions for the optical transfer function (OTF) statistics. Classical estimation schemes are

addressed in Section 2.4 to include least squares, maximum likelihood (ML), and Gerchberg-

Saxton iteration. Section 2.5 introduces Bayesian estimation concepts to include the Wiener

filter, Kalman filter, and maximum a posteriori (MAP) estimation. Section 2.6 provides

a brief summary of the chapter and relates this past research to the work outlined in this

dissertation.

2.2 Image Degradation Model

The standard model for a noise-free linear shift-invariant imaging system can be written

as [22]

i(x,y) = h(x,y) * o(x,y), (2.1)

where i(x, y) is the noiseless image, h(x, y) is the impulse response or point spread function

(PSF) associated with the blur, o(x, y) is the object, (x, y) is a discrete point in the image

domain, and * denotes convolution. Taking the Fourier transform of both sides of Eq. (2.1)

yields

I(u, v) = H(u, v)O(u, v), (2.2)
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where a capital letter denotes the discrete spatial Fourier transform of an associated lower

case quantity and 1-((u, v) is the Fourier transform of h(x, y) also known as the OTF. The

point (u, v) denotes a discrete spatial frequency.

The OTF for a diffraction-limited full aperture is a deterministic, tapered low-pass fil-

ter. Random aberrations in the optical system pupil due to atmospheric turbulence further

degrade performance, resulting in a more attenuated OTF, especially at high spatial frequen-

cies [22]. To complicate matters, the noiseless image i(x, y) is typically not available. An

image model must account for additional degradation due to the detection process. Photon-

matter interactions in light detectors are random and require a statistical description. The

semi-classical model is based on three assumptions about photon statistics [74]:

1. The probability of occurrence of a single photoevent in a small area dA during a time

interval dt is

P(1, dt, dA) = 77 dt dA i(x, y, t), (2.3)

where i(x, y, t) = h(x, y, t) * o(x, y, t), dA is small compared to the coherence area of

the light, dt is short compared to the coherence time of the light, and 77 is the quantum

efficiency of the detector.

2. The probability of more than one photoevent occurring in the area dA during time

interval dt is very small compared to the probability associated with either one or zero

photoevents.

3. The number of photoevents K occurring in non-overlapping space or time intervals is

statistically independent.

Based on these assumptions, the random variable K is governed by Poisson statistics [23,74].

Poisson random process sample functions consist of sets of Dirac delta functions [62].

Thus, a photon-limited image is defined as [74]

K

d(xy) = (x - x,y - y), (2.4)
n=1
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where (xn, yn) is the location of the nth photoevent in the image plane and K is the total

number of photoevents making up the image. Randomness is associated with the number

and location of the photoevents. The randomness considered by the semi-classical model

is referred to as photon or shot noise and is a form of signal-dependent noise. Signal-

dependent refers to the situation in which the strength of the noise depends on the number

and distribution of photoevents [74]. Photon noise typically imposes more severe limitations

than diffraction, especially at low light levels. The Dirac delta functions of Eq. (2.4) are

discontinuous in the image domain, which presents difficulties when conducting statistical

analysis. Thus, we are motivated to analyze imaging performance in the Fourier domain via

the Fourier transform of Eq. (2.4) which can be written as

K

D(u, v) = exp {-j27r(uxn + vy )}. (2.5)

Signal-independent noise is also present in many detectors used for image collection. For

example, charge-coupled device (CCD) detector output is degraded by signal-independent

additive noise known as read noise [74]. In this dissertation, signal-independent noise will

be represented by the random variable np having the following statistical properties:

1. np is zero mean.

2. np is spatially uncorrelated with uniform variance ,2.

3. np is statistically independent of K and (xn, Yn).

An image model which properly accounts for both signal-dependent and signal-independent

noise can now be written as [74]

K Pd(x, y)= EJX-XY-Y)+E pJx-p Y p), (2.6)
n=1 p=1

where (xp, yp) is the location of the pth image pixel, P is the total number of pixels in the

detector array, and d(x, y) now represents a detected image as collected by a CCD detector.
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The corresponding Fourier domain expression can be written as

K P

D(u, v) = exp {-j21r(uxn + vy,)} + E np exp { -j27r(uxp + vyp)}. (2.7)
n=1 p=l

Equation (2.7) is a key expression used to model noise effects in this dissertation.

To investigate both constrained least squares (CLS) processing of deconvolution from

wavefront sensing (DWFS) data and the vector Wiener filter, a vector-matrix expression

is needed for Eq. (2.6). The new expression includes an additive noise vector n which

incorporates both shot and read noise effects based on writing the total noise as the difference

between the detected image and the image degraded by the PSF only, denoted n(x, y) =

d(x,y) - i(x,y) [14,37]. Thus, Eq. (2.6) can now be written as [14]

d = Ho + n, (2.8)

where d and o are P-length vector versions of the functions d(x, y) and o(x, y), respectively.

The matrix H is a P x P block-circulant matrix representing the shift-invariant PSF. H and

o are properly ordered to perform the discrete convolution of Eq. (2.1) [21, 37]. Equation

(2.7) can also be written using this vector-matrix notation such that

D = 7- G O + N, (2.9)

where D, 0, and N are P-length vector versions of the Fourier domain functions D(u, v),

O(u, v), and N(u, v), respectively. The notation G represents an entrywise or Hadamard

product [35] and H is a P-length vector containing the OTF. Equations (2.8) and (2.9) are

key expressions in the development of CLS processing of DWFS data and the vector Wiener

filter in Chapters III and IV, respectively.

The next section reviews atmospheric turbulence theory. Expressions for the mean and

spatial correlation of the turbulence-degraded OTF are presented. These OTF statistics will

play an important role in both CLS processing of DWFS data and the vector Wiener filter.
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2.3 Atmospheric Turbulence

An undergraduate Physics textbook provides the necessary tools to predict the resolu-

tion of an imaging system. Theoretically, the minimum resolvable angle seen by a telescope

is limited by diffraction and can be expressed as

= 1.22A (2.10)

where 0 is the minimum resolvable angle in degrees, A is the mean wavelength of the incident

light, and D is the diameter of the aperture. The overline notation denotes the expectation

operator applied to the designated quantity. As noted in the previous section, ground-based

imaging systems rarely achieve diffraction-limited performance. Instead, the atmosphere

imposes a fundamental limit on spatial resolution. Atmospheric turbulence affects imaging

systems by causing both spatial and temporal random fluctuations in the index of refraction

of the atmosphere. These index of refraction fluctuations impose random phase aberrations

on the incoming light [23,69]. The primary consequence of these random phase aberrations

is a general broadening of the PSF which manifests itself as blurring and lowered resolution

when compared to the system predicted by Eq. (2.10).

Atmospheric turbulence is caused by turbulent air motion. The source of this air

motion is the heating and cooling of the Earth by the sun. Large air masses gain heat

directly from the sun during the day. At night, heat is also coupled to these air masses

as the Earth cools. As a result, large-scale temperature variations are produced. These

temperature variations lead to pressure differences which result in large scale air motion.

Initial large scale air motions break down into smaller and smaller scale motions until the

atmosphere is distributed into randomly sized pockets of air, each with its own temperature,

as shown in Fig. 2.1. These pockets of air are called turbulent eddies [69]. Since the index

of refraction of air is dependent on temperature, the atmosphere has a non-uniform index of

refraction.

2.3.1 Turbulence Statistics. Atmospheric turbulence creates a medium which has a

non-uniform or random index of refraction associated with the distribution of the turbulent
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Figure 2.1 Turbulent eddies and their effects on an incoming unperturbed plane wave.

eddies. Thus, statistical models are required to understand turbulence effects fully. Tur-

bulence modeling has received much attention in the literature. However, most published

research flows from the key results by Kolmogorov [45], Tatarskii [83], and Fried [15,16]. Kol-

mogorov provided a statistical model related to spatial structure in turbulent air flows [45].

Tatarskii used Kolmogorov's results to model wave propagations through random index of

refraction distributions [83]. Fried applied and extended Tatarskii's work to optical propa-

gation problems [15, 16].

Kolmogorov theory gives a mathematical description for index of refraction fluctuations

[45]. The index of refraction spatial power spectral density (PSD) provides a frequency

domain statistical model for the number and size of the turbulent eddies and can be written

as [74]

K(K) = .033C(Z)K-, _ < K < 2_.L - - (2.11)
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where the superscript K denotes the Kolmogorov spectrum, K is the scalar wavenumber, C'n

is a measure of turbulence strength called the structure constant, and the subscript n denotes

the atmospheric index of refraction [23]. The constants L, and 1o denote the outer and inner

scale, respectively. These quantities represent the characteristic dimension of the largest

and smallest turbulent eddies [74]. In many practical systems, the turbulence strength is a

function of the distance from the imaging aperture, denoted by z. Equation (2.11) is not

a useful model for the index of refraction PSD when K -+ 0 because of the non-integrable

singularity at K = 0. An alternate form known as the von Karman spectrum is finite for all

K> 0 and can be expressed as [74]

V 0.033C2(z)
(D ) = (K 2 + K2) 11/ 6 ' (2.12)

where Ko = 2ir/Lo and the superscript V represents the von Karman spectrum. The von

Karman statistical model will be used in theoretical development and simulation throughout

this dissertation.

Equation (2.12) is important in deriving statistical models for the turbulence-induced

perturbations on a propagating wavefront. Two limiting cases are commonly studied: near

field and far field. In the near field case, only the perturbations affecting the wavefront

phase are considered. Under the far field assumption, both amplitude and phase effects

are modeled. Here, it is assumed that the wavefront amplitude perturbations are negligible

compared to the phase perturbations. This assumption is commonly used in a standard

geometrical optics model [74]. Thus, only the near field case is considered in this dissertation.

Using a layered turbulence model and assuming the index of refraction fluctuations are a

Gaussian random process [15, 23, 74], it is possible to derive an expression for the spatial

correlation function of the phase perturbations. Consider an incident wavefront and let

¢(x, y) indicate the wavefront phase perturbations in the optical system pupil. Then the

spatial correlation of ¢(x, y), denoted R((Ax, Ay), is [74]
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ROxy; x', y') =E [q(x, y)O(x',y')]

RV (Ax, Ay) =3.089(2,7r)-
5 /6 [ (L(Ax) 2 ± (Ay)2'\] /6

R ( 25/6 F[(11/6)] [K(r,)2

xK5 /6 [( Ax) + ( Ay)

(2.13)

where E[.] denotes the expectation operator, Ax = x - x', Ay y - y', (x, y) and (x', y')

are discrete points in the pupil plane, F[(.)] is the Gamma function, K5/6 [(.)] is the Bessel

function of the second kind of order 5/6, and r, is the Fried's parameter defined as [74]

ro = 0.185 Cz) dz 3/5 (2.14)

The Fried parameter can be interpreted as the seeing cell or aperture size beyond which

further increases in optical system diameter result in no further increase in resolution [74].

The spatial correlation function given in Eq. (2.13) is the key statistical quantity used to

model the effect of atmospheric turbulence on imaging system performance.

While knowledge of the phase correlation function greatly enhances our understanding

of turbulence effects, a related quantity known as the phase structure function is of interest

in many applications. The phase structure function, denoted DOO(Ax, Ay), is defined as [23]

D¢¢(Ax, Ay) = 2ROO(0, 0) - 2R¢¢(Ax, Ay). (2.15)

Substituting the von Karman phase correlation function of Eq. (2.13) into Eq. (2.15) yields

[74]
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As shown below, Eq. (2.16) is an important quantity in the derivation of first and second

order OTF statistics.

2.3.2 Optical Transfer Function Statistics. In Section 2.2, the semi-classical model

for light detection was introduced, as shown in Eq. (2.4). This model incorporates Dirac

delta functions which are discontinuous in the image domain. Therefore, statistical analysis

is more straightforward in the Fourier domain. To incorporate model-based information

about the blur or optical system PSF in this alternate domain, OTF statistical expressions

are needed. The random OTF 'J-(u, v) is defined as [74]

Sv) W(Uf, vf) * W(u\f, v~f (2.17)
NF

where f is the optical system focal length, u = x/(f), v = y/(Xf), NF = W(O, 0) *W(O, 0),

* denotes the two dimensional correlation operation, and W(x, y) is the generalized pupil

function which incorporates the phase aberrations such that [74]

W(x,y) = Wp(x,y)exp{jo(x,y)}. (2.18)

WP(x, y) is a real-valued function describing the unaberrated pupil.

The mean OTF can be derived using two distinct approaches [74]. The first approach

relies on an interferometric view of imaging and the Van-Cittert-Zernike Theorem [23]. The

second uses a thin screen model and proceeds directly from Eq. (2.17). Regardless of the
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approach taken, the result is the straightforward expression [74]

W(u, v) = H a(U, v)H4(u, v), (2.19)

where 7-a(U, v) is the transfer function due to the atmospheric turbulence and 7-o(u, v) is the

transfer function associated with the aberration-free optics. Fried derived both long exposure

and short exposure expressions for 1La(U, v) [15]. The term "long exposure" refers to the

situation in which the imaging system has been exposed to many independent realizations

of the atmospheric turbulence. Here, the term "short exposure" refers to the case in which

wavefront tilt has been removed. Fried's long exposure derivation relies on the assumption

that the phase perturbation q(x, y) is a stationary Gaussian random process [74]. After a

change of variables and simplification, the final expression for the long exposure OTF is [74]

aLE (U, V) = e 1(2.20)

The short exposure or wavefront tilt-removed transfer function 'HasE (u, v) is also of interest.

Here, the residual phase after tilt removal 0r(x, y) can be written as [74]

0r(x, y) = q(x, y) - (axx + ayy), (2.21)

where ax and a. are coefficients describing the tilt of the wavefront phase over the pupil. In his

derivation of 'HasE (u, v), Fried assumed that qr(x, y) was uncorrelated with tilt coefficients

ax and ay [15]. While this assumption is not strictly valid from a mathematical viewpoint,

the correlation is small when D/tr is large [74]. Thus, the short exposure OTF can be

written as

'HaSE (U, V)= exp {-2 (D¢¢(u~f, v~f) 2  x ! 2f2 a2) (U2+V (2.22)

Equations (2.20) and (2.22) provide theoretical expressions for the first order OTF statis-

tics. The mean OTF was applied to the reconstruction of atmospheric turbulence-degraded

images as early as 1967 [80]. Second order OTF statistics have also been applied to such
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problems as speckle imaging [23, 47, 74]. In this application, the speckle transfer function

E{ 7-((u, v) 2} is an important theoretical quantity. However, the value of a priori knowledge

of the correlations between different OTF spatial frequencies has yet to be explored. In this

case, we require the complete second order statistical quantity

RW,(u,v; u', v') = E [H(u, v)H*(u', v')], (2.23)

where the superscript * denotes a complex conjugate. Following the same technique used to

derive an expression for the speckle transfer function [74], the OTF correlation function is

exp {-1 (D¢¢(Af-/u - + v 2 ) + D¢¢(Af vu'2 + v12)}RnHw(u, v; u', v') 2 Y2

JJJJ f WP,(X, y)WP(x - UAf, y - v~f)

×WP(x',y')WP(x' - u'Af,y' - v'Af)

" exp {- (D¢¢ ( /(x - x')2 + (y- y') 2 )

+DOO (y/(X - x' - uAf ± U'Af) 2 ± (y y, - v>.f + vV)2

-DOO (V/(x - X/- UAf) 2 + (y -, - VAf)2 )

-DOO (V(x - x' + u'Af) 2 + (y -y' + VA f)2) )M
×dx dy dx' dy'. (2.24)

Equation (2.24) can be evaluated numerically to give theoretical values for the OTF correla-

tions between any two arbitrary spatial frequencies (u, v) and (u', v'). However, simulation

via random phase screen generator and optical system models offers a significant decrease in

computational complexity over numerical evaluation. A phase screen generator and Monte

Carlo simulation are used to generate the required OTF statistics in this dissertation.

The next section reviews classical estimation techniques important in processing turbu-

lence degraded images. These techniques include least squares estimation, Gerchberg-Saxton

algorithms, and ML estimation. In each case, basic theory and past research related to as-

tronomical imaging are reviewed.
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2.4 Classical Estimation

2.4.1 Least Squares. Consider an inverse problem based on the image model given

in Eqs. (2.8) and (2.9). A simple approach involves ignoring the noise and assuming no

a priori knowledge about the object. This method, known as unconstrained least squares

(ULS), has an objective function [43]

J(6) = lid - H6112, (2.25)

where d and o are vector versions of the detected image and object, respectively. The matrix

H is a block-circulant matrix representing the shift-invariant PSF. The notation 11 * 112

represents the Euclidean norm of a column vector, i.e. Ilal 2 = aTa, and the superscript

T denotes the matrix transpose operator. The estimate that minimizes Eq. (2.25) is the

well-known expression [43]

6 = (HTH)-_ HTd (2.26)

when the matrix H is full rank, thus the invertibility of HTH is guaranteed. Geometrically,

6 is the orthogonal projection of d onto the subspace spanned by the columns of H, as shown

in Fig. 2.2. If H is a square matrix and has full rank, Eq. (2.26) reduces to the intuitive

form

6 = H-'d. (2.27)

Recall that H is a block-circulant matrix and is diagonalized by the discrete Fourier trans-

form. Thus, the Fourier domain equivalent to Eq. (2.27) is the scalar inverse filter which can

be expressed as [41]

6(uv) - D(u,v) (2.28)

Consistent with the original objective function given at Eq. (2.25), the inverse filter incor-

porates no prior knowledge about the object or noise. In addition, Eq. (2.28) is not valid

at spatial frequencies (u, v) where 7-(u, v) = 0. Even when the OTF is non-zero, the filter

amplifies noise at high spatial frequencies [41]. Despite these drawbacks, a modified inverse

filter is commonly applied to deconvolve AO compensated images [72]. An iterative imple-
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Figure 2.2 Geometrical interpretation of ULS estimation. (a) Subspace spanned by the
linearly independent column vectors of the full rank matrix H. (b) The object
estimate 6 is the orthogonal projection of the detected image d onto the sub-
space shown in (a). The quantity e denotes the error between data and object
estimate.

mentation, known as the Van Cittert method [2], is also available. The iterative approach

can be advantageous for two reasons: (1) the iterations can be stopped before convergence

and excessive noise amplification, and (2) no matrix inversions are required [2].

Due to the ill-conditioned nature of the previous inversion problem, the ULS solution

is corrupted by high spatial frequency noise. Constraints can be used to improve estimator

performance by incorporating a priori knowledge. Some signal processing applications use

rigid linear constraints which reduce the size of the solution subspace. A typical linear

constraint can be written as [43]

Ao = b, (2.29)

where A is a known full rank matrix and b is a known vector. Figure 2.3 illustrates the

geometrical interpretation associated with CLS. Note that the constrained solution 6, can

be viewed as a projection of the unconstrained solution 6 onto the constraint subspace [43].
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Figure 2.3 Geometrical interpretation of CLS estimation with a rigid linear constraint.
The constrained solution 6, is a projection of the unconstrained solution 6
onto the constraint subspace.

Linear constraints provide a useful illustration of CLS estimation. However, rigid prior

knowledge of the true object may not be available when processing astronomical images.

Instead, a flexible constraint such as smoothness can be used with Lagrangian minimization.

Hunt [37] incorporated a quantitative smoothness measure by minimizing

11 C611 2, (2.30)

subject to

Ild - H61 12 = E {flnJ 12} (2.31)

where n is the measurement noise and C is a matrix incorporating a smoothness measure

such as the two dimensional Laplacian [21]. A straightforward Lagrangian minimization

yields the solution [37]

Co (H TH ± YCTC)' H Td, (2.32)
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where -y = 1/A and A is a Lagrange multiplier. Equation (2.32) is identical to Tikhonov-

Miller regularization [59,86]. Thus, the CLS estimator is valid for a space-variant PSF and

corresponding iterative techniques similar to the Van Cittert method are available [2]. When

H and C are block circulant, the Fourier domain version of Eq. (2.32) takes the convienent

scalar form [37]
"H*(u, v)D(u, v)

(u, v) = FH(uv)12 ±yJC(uV)12' (2.33)

where C(u, v) is the Fourier transform of the smoothness measure. The smoothness measure

provides regularization which is controlled by -y. The optimal Lagrange multiplier A can be

found using a Newton-Raphson minimization based on the statistics of the noise process n

in Eq. (2.31) [37]. Thus, a practical version of the CLS filter in Eq. (2.33) is iterative. The

filter provides fidelity to the "rough" inverse filter solution while satisfying the "smooth"

constraint.

There are many variants on CLS estimation that have been used in image recon-

struction to include weighted least squares [87], constrained total least squares [36], and

regularized constrained total least squares [58]. Recently, a new CLS estimation algorithm

addressed optimal use of object model information [71]. In practical applications, the object

model could be a low resolution image of the object. This work, also known as model-based

CLS, is important because it provides a simple method for incorporating object model in-

formation using a CLS-based algorithm. CLS estimation has also been applied to images

degraded by random blur [3]. As of this writing, CLS estimation has not been applied to

noisy DWFS data.

Least squares estimation provides a set of straightforward techniques which can in-

corporate some a priori knowledge about the imaging scenario. In general, no probabilistic

assumptions are made about the data. In many practical applications, some sort of iterative

technique is needed to find a useful solution. Another class of iterative techniques which does

not require a priori probabilistic information about the data will now be discussed. These

techniques are based on the Gerchberg-Saxton phase recovery algorithm [19].

2-15



2.4.2 Gerchberg-Saxton Algorithms. In 1972, Gerchberg and Saxton introduced a

simple iterative algorithm for the recovery of a complex wave function from only modulus

measurements [19]. The method depends on the Fourier transform relationship given by

the Van Cittert-Zernike Theorem [23]. The input data are the modulus measurements from

source and pupil planes as might be available in electron microscopy [19]. The algorithm

begins with an initial guess of the wave function phase. This phase guess is combined with

the measured source plane modulus data and then Fourier transformed to the pupil plane

domain. Here, the measured pupil plane modulus data is imposed on the new function and

the result inverse Fourier transformed back to the source domain. The measured amplitude

data is imposed again in the source domain and the process repeated until a suitable conver-

gence criterion is met. The algorithm is based on the fact that a change in amplitude alone

in one domain of the Fourier transform results in a change in both amplitude and phase

distributions in the other domain [19]. Fienup [7] modified the Gerchberg-Saxton algorithm

to address the phase retrieval problem in speckle imaging [47]. The problem here is to find

an object consistent with measured Fourier modulus data. In finding an estimate of the

object, the Fourier domain phase is "retrieved" in the process. The Fienup solution, known

as the error reduction algorithm, involves Fourier transforming back and forth between do-

mains, satisfying the constraints in one before returning to the other. Figure 2.4 shows a

block diagram of this simple technique. The technique and related extensions, such as the

input-output algorithm [7], have been applied to turbulence-degraded images [8].

The general Gerchberg-Saxton approach can be applied to any problem in which par-

tial constraints (data or a priori information) are available in each of two domains [9]. Thus,

problems such as blind deconvolution can be addressed via this paradigm. The term blind

deconvolution refers to an image reconstruction problem in which the degrading PSF is un-

known. Figure 2.5 gives the block diagram of a blind deconvolution algorithm first proposed

by Ayers and Dainty [1]. In this application, no knowledge is available about the PSF or

object except the degraded data and image domain constraints. Two modified inverse filters

are used to find an object and PSF simultaneously that are consistent with the data and

constraints. A similar algorithm has been investigated which replaces the modified inverse
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Figure 2.4 Block diagram associated with the error reduction algorithm.

filters with pseudo-Wiener filters [5]. This algorithm has also been successfully extended to

incorporate multiple data frames [60].

Gerchberg-Saxton algorithms provide a powerful alternative to least squares processing

in many imaging applications. However, as with most iterative algorithms involving non-

convex objective functions, convergence to a global "best" solution is not guaranteed. The

error reduction algorithm, as applied to the phase retrieval problem, is known to stagnate

after a few iterations [9]. Solution uniqueness is also a concern [78]. Iterative blind decon-

volution based on the Gerchberg-Saxton approach is also known to suffer from convergence

problems and sensitivity to the choice of an initial estimate [46]. A classical method which

introduces statistical assumptions about the data is now discussed. Here, statistical analysis

will be important to understanding algorithm performance.

2.4.3 Maximum Likelihood. Let us now consider an image reconstruction problem

in which the probability density function (PDF) of the detected data d, denoted pd(d; o, H),

2-17



6=

Satisfy Satisfy
Function Function

Constraints Constraints

Initial Guess 6 1

Figure 2.5 Block diagram associated with Ayers-Dainty iterative blind deconvolution.

is known. Here, the semi-colon indicates that the PDF is parameterized by o and H. The

ML principle can be stated as [43]:

Given a realization of d and the PSF matrix H, find 6 which maximizes Pd (d; o, H).

In general, the ML estimate is obtained by evaluating the likelihood function using the

data realization d and then searching for the appropriate 6. When the likelihood function

is continuously differentiable in o and convex, the ML estimate may be determined by

differentiating pd(d; o, H) with respect to o, setting equal to the zero vector, and solving

for o. ML estimation is a popular technique because it is a "turn-the-crank" procedure [43]

for complicated estimation problems. ML estimation is also closely related to least squares

when the likelihood function is Gaussian distributed. In this case, the ML and weighted

least squares estimators are identical when the weighting matrix is chosen as the inverse of

the data covariance matrix [43].

In some cases, the ML estimator cannot be found by taking the analytic derivative of

the likelihood function. Another advantage of ML estimation is that 6 can always be found

by maximizing the likelihood function numerically. A straightforward grid search can be used
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if o is known to exist on a finite interval. However, when processing imagery, the unknown

parameters represent irradiance values, which do not always exist on the required finite

interval. Thus, iterative maximization methods must be used. Some commonly used iterative

maximization techniques are Newton-Raphson [40], gradient descent [41], and expectation-

maximization (EM) [6] algorithms. The EM algorithm is of particular interest in processing

astronomical images because it is well suited to vector parameters. The EM algorithm is

built on the hypothesis that some data sets allow easier determination of the ML estimate

than the data d. This new data set y is known as the complete data, while d is known as the

incomplete data. The standard procedure is to assume that there is a many-to-one complete

to incomplete data transformation. Thus, the EM strategy is to trade the difficult problem

of maximizing pd(d; o, H) for the easier problem of maximizing py(y; o, H). Since y does

not really exist, the algorithm incorporates the following iterative expectation-maximization

procedure:

1. Expectation (E) Evaluate EyId[ y(y; Ok, H)] using the kth object estimate. The no-

tation EAIB denotes the conditional expected value of the random variable A given

B.

2. Maximization (M) Use the kth conditional expectation from the previous step to

generate Ok+l.

3. Repeat the expectation step using Ok+l.

The EM algorithm is guaranteed to converge to at least a local minimum under some mild

mathematical conditions [6, 43].

ML estimation in all its various forms has been widely applied in image reconstruction

to include astronomy [51, 68,81], tomography [79], fluorescence microscopy [32, 34], and a

variety of blind deconvolution problems [33,48, 77,85]. As noted above, iterative maximiza-

tion techniques, such as the EM algorithm, are widely used to generate the ML estimate.

These iterative techniques are not guaranteed to converge to a global maximum [43]. Instead,

ML algorithms may suffer convergence problems due to numerical inaccuracies, sensitivity

to local minima, and the choice of an initial estimate. Convergence problems are a special
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concern in the blind deconvolution application [46]. Finally, ML estimation requires the

maximization of a random likelihood function. Thus, predictive performance analysis can

be difficult.

ML estimation is a powerful statistical technique which relies on knowledge of the

data PDF. In the section below, Bayesian estimation, which relies on statistical assumptions

about data and object, is discussed. The Bayesian techniques reviewed in this chapter include

the Wiener filter, Kalman filter, and MAP estimation. Once again, basic theory and past

research related to astronomical imaging are reviewed.

2.5 Bayesian Estimation

2.5.1 Wiener Filter. The main drawback to ULS processing and the inverse filter

is sensitivity to noise. This deficiency is no surprise since ULS does not take into account

noise effects. In contrast, the Wiener filter incorporates a statistical description of object

and noise such that the object estimate 6 can be written as [64]

6 = RooHT(HRooHT + Rn,)-'d, (2.34)

where R. = E[ooT] is the object correlation matrix and Rnn = E[nnT] is the noise corre-

lation matrix. In general image reconstruction applications, the mean object, denoted U, is

non-zero. Equation (2.34) is derived based on minimizing mean square error (MSE) between

the true object irradiance o and 6. The object estimate 6 is constrained to be linear to the

related detected data d, thus producing a mathematically tractable non-iterative solution.

In this application, the object statistical model is static. A more general form could allow

for a dynamic object model [43]. When object and noise are stationary, Roo and Ran are

block Toeplitz matrices [62]. These correlation matrices can be made to approximate block

circulant matrices and, therefore, are diagonalized by the discrete Fourier transform [21].

The result is a Fourier domain scalar Wiener filter given as [21]

)= 7*(u, v)D(u, v)

=JH(u'V)J2 +9n(, (2.35)
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where g9(u,v) = E[IN(u, v)1 2] and 9,(u, v) = E[JO(u, v)121 are the noise and object PSDs,

respectively. This approach has been used in many imaging applications to include enhance-

ment of scanning electron micrographs [49], multichannel processing [18], image recogni-

tion [52], and deconvolution of AO compensated images [72]. The scalar Wiener filter is

suboptimal with respect to MSE for non-stationary object ensembles. Since many object

ensembles are non-stationary in the mean and may be non-stationary with regard to co-

variance, the filter may not incorporate valuable a priori information about a given object

class.

Pratt [63] proposed a generalized vector Wiener filter that is optimal with respect to

MSE for non-stationary object ensembles in signal-independent noise. Pratt's Wiener filter

theory has been extended to images degraded by both blur and signal-independent noise.

The resultant Fourier domain filter expression can be written as [76]

0} = ROO7" * {"dROO-d* + RNN} D, (2.36)

where Roo = E[OOH is the spatial frequency correlation matrix of the object, RNN =

E[NNH] is the spatial frequency correlation matrix of the signal-independent noise, 7H td

is a diagonal matrix of known OTF elements, and the superscript * denotes the complex

conjugate of the matrix elements. The role of the object correlations between different spatial

frequencies has not been extensively studied. In addition, Eq. (2.36) does not consider a

random OTF due to atmospheric turbulence.

Imaging through atmospheric turbulence is a severe manifestation of the broader prob-

lem of randomness in the pupil function of an optical system. A random pupil function can

be caused by a number of factors such as camera movement relative to an object, dust par-

ticles on optical surfaces, or turbulence in water. Wiener filter theory has been applied to

images degraded by random blur. Slepian [80] extended the Helstrom scalar Wiener filter

to incorporate the first order OTF statistic E[7-(u, v)] and the second order OTF statistic

E[[7"h(u, v) 2] associated with atmospheric turbulence. Ward and Saleh [87,88] investigated

an iterative Wiener filter for one dimensional data. Guan and Ward modified this itera-

tive Wiener filter to process two dimensional images [25] and investigated a closely related
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geometrical mean filter [26]. This previous work does not investigate the role of OTF correla-

tions between different spatial frequencies. In addition, shot noise effects are not considered.

The Wiener filters given in Eqs. (2.34)-(2.36) incorporate static statistical models. Both the

Wiener and Kalman filters can also incorporate dynamic models. In the next section, the

Kalman filter in adaptive image reconstruction is briefly discussed.

2.5.2 Kalman Filter. The Wiener filter given in Eq. (2.34) is based totally on

knowledge of the data autocorrelation and their cross-correlation with the object. Also,

changes in the object model with respect to time are not considered. General Wiener-

Kalman filter theory can provide an adaptive image reconstruction capability when dynamic

statistical models are available. The seminal work by Woods and Radewan [96] led to a two

dimensional reduced update scalar Kalman filter (RUKF). Here, only the pixels in a small

neighborhood of the current pixel are updated. It is assumed that a pixel is uncorrelated

with other pixels outside this neighborhood called the update region [42]. The RUKF has

been applied to deconvolution-type problems [95]. More recent advances in Kalman filter

processing of two dimensional data involve a reduced order model (ROM) representation [42]

and the ROM Kalman filter [97]. A two dimensional Kalman filter has also been investigated

for images degraded by random blur [67]. However, the necessary dynamic object state model

is not available in many applications.

The next section introduces a Bayesian technique which is closely related to the ML

estimator. However, the MAP estimator incorporates a prior PDF associated with the object.

2.5.3 Maximum A Posteriori. The MAP estimation principle can be stated as

follows [43]:

Given a realization of d and the PSF matrix H, find 6 which maximizes the
posterior PDF po(old; H).

The posterior PDF is a conditional distribution. Maximizing po(oId; H) has been shown

to minimize a "hit-or-miss" cost function which assigns no penalty for small errors and

maximum penalty for all errors in excess of a threshold J [43]. This cost function can be
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expressed mathematically as [431

Cost(E) = ji < 6 (2.37)1 6 l> J

where the variable e represents error and 6 > 0. If 6 is made very small, this cost function

assigns the same penalty for all errors and no penalty for no error.

The posterior PDF can be written in a more intuitive form. Using Bayes rule [62],

p(old; H) becomes

po(old; H) = pd(d; HIo)po(o) (2.38)
Pd (d; o, H)

Thus, maximizing the numerator of Eq. (2.38) is equivalent to maximizing the posterior

PDF. Notice that pd(d; Hlo)po(o) is very similar to the ML likelihood function given in

Section 2.4.3 except that the object is now considered a random process with known prior

PDF po(o). As in the ML case, a candidate MAP estimate can be found by evaluating

pd(d; Hjo)po(o) at the given data realization, differentiating with respect to o, setting equal

to the zero vector, and solving for o. When a closed form solution is not practical, the

MAP estimate can be found via iterative maximization methods such as gradient ascent

algorithms [24,38] and the EM algorithm [28]. Iterative MAP estimation can suffer from the

same numerical convergence problems noted for ML estimation in Section 2.4.3.

2.6 Summary

This chapter provided background material related to image reconstruction. The em-

phasis here is on the deconvolution of astronomical images. Thus, the image degradation

model associated with atmospheric turbulence, shot noise, and detector read noise was re-

viewed as well as statistical theory related to atmospheric turbulence. The rest of the chapter

presented important classical and Bayesian estimation techniques, most of which involve it-

erative optimization. While these techniques are powerful, drawbacks related to convergence

and ease of analysis do exist. Current linear reconstruction methods, such as the scalar

Wiener filter, do not improve Fourier domain signal-to-noise ratio (SNR). In addition, the

application of object, OTF, and noise correlations between different spatial frequencies has
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not been investigated. In the rest of this dissertation, two techniques which bridge the gap

between linear processing and nonlinear iterative optimization are presented: CLS process-

ing of DWFS data and the vector Wiener filter. The vector Wiener filter provides a useful,

non-iterative complement to nonlinear iterative optimization. The complete vector Wiener

filter is derived in Chapter IV with performance data given in Chapters V and VI. First,

Chapter III presents a novel application of CLS post-detection image processing.
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III. Constrained Least Squares Incorporating Wavefront Sensing

3.1 Introduction

In this chapter, a technique for processing noisy deconvolution from wavefront sens-

ing (DWFS) data based on constrained least squares (CLS) estimation is presented. The

new algorithm selects a value for the regularization constant which is consistent with the

ensemble-averaged data and a constraint [11]. This problem is solved using the Lagrange

multiplier technique [21,37]. A closed form solution for the object estimate is obtained which

is analogous to the traditional DWFS estimator [20,75] with the Lagrange multiplier serving

as a regularization constant. An iterative approach based on a Newton-Raphson minimiza-

tion [40,71] is used to find the optimal Lagrange multiplier. The iteration incorporates the

statistics of both the optical transfer function (OTF) and noise. The sample results given

here demonstrate that CLS estimation provides high quality processing of noisy DWFS data

automatically. No ad hoc tuning of the regularization constant is necessary. CLS object

estimates are compared with those processed via manual parameter selection. In all cases,

the new technique provides images with comparable resolution. In addition, the algorithm

is computationally inexpensive, converging to a solution in less than 10 iterations [11].

The rest of this chapter is organized as follows. Section 3.2 reviews the traditional

DWFS estimator. In Section 3.3, a CLS algorithm is derived which incorporates a new

constraint based on the ensemble-averaged DWFS data. Section 3.4 gives sample results

associated with various imaging conditions, while Section 3.5 provides a brief summary.

3.2 Traditional Estimator

Raw DWFS data consists of an ensemble of short exposure images and corresponding

estimates of the wavefront phase from a wavefront sensor (WFS). The phase estimates qi(x, y)

can be used to generate an estimate of the OTF 'Hi(u, v) via a normalized autocorrelation

of the generalized pupil function as shown in Eq. (2.17). The subscript i refers to the ith

realization, while the tilde denotes a quantity estimated directly from information provided
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by WFS hardware. The DWFS estimator suggested by Primot et al. [66] can be written as

O(u, v) = (*(u,v)1') (3.1)

where (X(u, v)) is defined as

1L

(X(u,v)) = x(u, V), (3.2)

I(u, v) is the noiseless image Fourier spectrum and L is the number of images in the ensemble.

Equation (3.1) does not provide acceptable reconstructions due to residual noise in the OTF

estimation process. When detector noise is present, I(u, v) is not available and the detected

image Fourier spectrum D(u, v) must be substituted in Eq. (3.1). The standard solution

is to incorporate a regularization constant e in the filter denominator which gives the new

estimator [20,93]
0 ~*(u, v)D(u, v) (33

&(u,v)V= 2) +

The regularization constant e is adjusted in a completely ad hoc manner by the user based

on the perceived image quality.

In the next section, a CLS algorithm is derived which takes advantage of noise reduction

through ensemble averaging by directly incorporating (7 *(u,v)D(u,v)) and (19i(u,v)12).

Thus, the objective function used to derive this estimator takes on an unfamiliar form when

compared to more traditional CLS applications in image processing [21,37,71].

3.3 Modified Constrained Least Squares Formulation

3.3.1 Problem Statement. This CLS estimation problem can be stated as follows:

"Given the DWFS-derived estimate (W*(u,v)D(u,v)), the ensemble-averaged magnitude-

squared OTF estimate (17)(u, v) 2, and statistical models for the OTF and noise, find the

CLS optimal estimate of the object that caused the detected image ensemble." To accomplish
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this task, consider finding an object estimate 8 that minimizes

(II[-IC611 2, (3.4)

subject to the constraint

II (! Td) - (H/T /H)6J2 = E{1H TnHI2 }, (3.5)

where C is a block-circulant constraint matrix which enforces prior knowledge of the true

object such as smoothness or support and !i is the block-circulant estimated PSF matrix for

the ith realization. Here, the (H*(u, v)D(u, v)) and (1H(u, v)1 2) quantities are incorporated

in the constraint function directly. Also, the MSE associated with the measurement is now

E{IHTnIH2} instead of the norm-squared of the noise E{lIIn12} used previously [21,37]. Even

though Eqs. (3.4) and (3.5) are unfamiliar with respect to traditional CLS applications in

image processing [21,37,71], it will be shown that the associated Fourier domain filter has

the same general form as Eq. (3.3).

3.3.2 Closed Form Solution. The appropriate objective function J(6, A) for the

Lagrange minimization can be written as

J(6, A) = CTcT (HfT Hf)C6 + A {II(-fT d) - (H T f)6H12 - E{IIH T nH 2}}, (3.6)

where A is a Lagrange multiplier [21,37]. Since the Lagrangian in Eq. (3.6) is quadratic, it

can be minimized by differentiating J(6, A) with respect to 6, setting the derivative equal to

zero, and solving for 6. Applying the appropriate vector-matrix identities [56] to take the

derivatives in Eq. (3.6) yields

6 = ((frft)(ftTfi)+ YCT (fI T fj)C)' (HT H)(fIT d), (3.7)

where -y = 1/A. It is not computationally efficient to evaluate Eq. (3.7) directly since C

and H are large matrices for standard-sized image arrays. However, these matrices are
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block circulant. Block circulant matrices are diagonalized by the discrete Fourier transform

allowing the transform domain equivalent of Eq. (3.7) to provide the simpler scalar form

[21,37]

6 (u, V) - K (v))+c I(u, v) 2' (3.8)

where C(u, v) is the Fourier transform of the constraint c(x, y) associated with the matrix

C. When C(u, v) = 1 for all spatial frequencies (u, v), Eq. (3.8) is identical to Eq. (3.3).

However, Eq. (3.8) will accommodate a general Fourier domain constraint function which

can be tailored to prior knowledge or a specific application.

3.3.3 Newton-Raphson Iterative Solution. Instead of tuning -Y manually, a Newton-

Raphson technique is used to find the parameter value which minimizes the objective function

J(6, A) given in Eq. (3.6). To implement the Newton-Raphson technique, the derivative of

J(6, A) with respect to A is required. This derivative is straightforward to derive and given

by OJ(6,A)_
M6 -- II(HT d) - (!HT f1)O]JJ2 - E{jjH Tnj 2}. (3.9)

This iteration can also be accomplished with respect to the i' parameter [37]. However, the

required derivative is not as straightforward as Eq. (3.9) [37, 71]. The first norm-squared

term in Eq. (3.9) is a function of the DWFS data and the object estimate. It can be com-

puted conveniently using the Fourier domain quantities (H*(u, v)D(u, v)) and (If-(u, v) I).

However, the second norm-squared term E IIHTn 12} is not a function of the DWFS data

and must be derived.

Rewriting E{ I IHTnj 2 in the Fourier domain using Parseval's Theorem [21] yields

E{IIH TnI 2} = E {E, 7*(u, v)N(u, v)12}

= E{E 7.(*(u, v) (I(u, v) - D(u, v))12}

= E 1, *(u, v)(7(u,v)O(u,v)- D(u, v))12}. (3.10)
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Substituting the image model given in Eq. (2.7) into Eq. (3.10) introduces the noise statistics

such that

E{IIH TnJJ} = E{-Z 7(*(uv)(K7(uv)O,(uv)
'V

K

- E exp[-j2w(ux, + vyn)]
n=1

P 21

- n, exp{-j21r(uxp + vyp)}) (3.11)
p= 1

where (x,, y,) is the location of the nth photoevent in the image plane, (xp, yp) is the loca-

tion of the pth image pixel, and K is the average number of photoevents per image. The

normalized object spectrum O,(u,v) = O(u, v)/K has also been introduced to the above

expression. Now the linearity property can be used to move the expectation inside the sum-

mation over spatial frequencies (u, v) in order to evaluate one term of Eq. (3.11). At this

point, the right side of Eq. (3.11) can be simplified using standard techniques for evaluat-

ing expectations of doubly stochastic Poisson random processes [74]. These techniques use

nested conditional expectations over the random quantities (xn, Yn), K, and 7- [74]. Nine

sub-terms of Eq. (3.11) are evaluated below:

1. E{(K) 2 On(u, v) 12 I-(u, v)14}. Here, the only random quantity is 7-(u, v) 4 . Thus, the

K and On(u, v) terms are brought outside the expectation yielding the final result

Term 1 = (K)2 On(u, v)1 2E{J-(u, v) 4}. (3.12)

2. -E {-On(u, v) v(u, V)u2?i(u, v) l1 exp[j27r(ux, + VYn)]}. The random quantities

underlying this expectation are (xn, Yn), K, and X-. Bayes rule [62] can be used to

rewrite the joint probability density function (PDF) in the first term using conditional

PDFs. These conditional PDFs translate to conditional expectations such that the

second term can be written as
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Term 2 = -KO,(u,v)

x En ("v(u,V)I2H(u,v)EKI {Ex,,yIK,H [E=exp[j2r(uxn +vy)]] }).
(3.13)

The innermost expectation Ex,,yIK,He] has been evaluated previously [74]. The result

is repeated below as

ExnYn g,[]= KH* (u, v)O*(u, v), (3.14)

where the e notation represents the argument of the innermost expectation in Eq. (3.13).

Substituting Eq. (3.14) into Eq. (3.13) and evaluating the remaining nested conditional

expectations gives the final result for the second term

Term 2 = (K)2 1"(u, v)1'EJJH(u, V)14}. (3.15)

3. -E I KOn(uV)IH((,V) 2 1L(uV)ZELinp exp[j2r(uxp + vyp)]}. In Chapter II, the de-

tector read noise random variable np was assumed to be zero mean and statistically

independent of K and 'H. Thus, the third term is zero.

Term 3 = 0. (3.16)

4. -E {-KO*(u,v)t-L(u, v) 2"H*(u,v) E-n1 exp[-j27r(uxn + vyn)]}. Term 4 is the complex

conjugate of Term 2 above. Thus, the final result for the fourth term is

Term 4 = -(K) 2 On(u, v) 12E{l (u, v) 4}. (3.17)

5. E { -(u, v)2g12  - 1 -=1 exp[-j27r(u(xn - Xm) + v(yn - Ym))]}. The random quanti-

ties underlying this expectation are (xn, y n), (Xm, Yin), K, and -L. As with the second
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term above, conditional expectations can be used to rewrite the fifth term such that

Term 5 = E, (I'(u, v) I2EKIN {E..,Y,yx7,ymJKW r0i}) - (3.18)

Here, 9 represents the double summation shown in the first line of 5 above. The

innermost expectation EXn3YnXm,?mIK,)W4O] has been evaluated previously [74]. The result

is repeated below as

Exn)Ynxm)YmIK,7i46] = K + (K' - K)IOn(U, V)I2 I1-(U, V)I2 . (3.19)

To evaluate the expectation over K, recall that the image photon count is Poisson

distributed which implies that k2= (R) 2 + Y [62,74]. Thus, the final result for Term

5 is

Term 5 = KEI~I(u,V) 12 1 + (K)IOn(u, v)I2 E{I~I(u, v)1'1. (3.20)

6. EB {I-((u, V) 12 (EK 1 exp[-j27r(uxn + VYn)]) (E' 1 n7, exp[j27w(uxp + Vyp)]) }. The sixth

term is zero since np is zero mean and statistically independent of (Xni Yn), K, and X1

Term 6 =0. (3.21)

7. -E {KO*(u, v)I'Ji(u, v)127H*(u, v) Z,' l1 pexp[-j2r(ux + vyp)]}. The seventh term is

zero since np, is zero mean and statistically independent of K and 'H.

Term 7 = 0. (3.22)

8. E {= n-(,vp2(L ~ exp[-j2r(uxp + Vyp)] ) 'n= exp[j27r(uxn + vyn)]) }. The eighth

term is the complex conjugate of the sixth term. Thus,

Term 8 = . (3.23)
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9. E{I I(u,v)12 Z'-,Ep 2 fl nnexp[-j2r(u(x, -xq)+v(yp - yq))]}. First, recall that 'H

and np are statistically independent. Therefore, the ninth term can be written as

P PTerm 9 = E I ITH(u, V)l12} E E rtpnqexp[-j27r(u(xp - xq) + v(yp -y,))] (3.24)
Tp=i q=1

The second expectation in Eq. (3.21) has been evaluated previously [74] for the as-

sumptions given in Chapter II such that the final result for Term 9 can be expressed

as

Term 9 = P2E{I 'H(u, v)12}. (3.25)

Adding the nine sub-terms presented above gives the result for a single spatial frequency

of Eq. (3.11):

E {LJH* (u, v) N(u, V)121 = (Y + Po,,) E I H(u, V) 12} (3.26)

Summing the result in Eq. (3.26) over all spatial frequencies gives the final result

E{1H T ni12 } =(KW + PoT2) 1: B {1i(u, V) 121. (3.27)

If the OTF statistics are unavailable in Eq. (3.27), the OTF estimate data can be substituted,

which yields

E{I T I12} ( + pocr2) I (97u v)12). (.8
"a V

The result given in Eq. (3.28) is used in Eq. (3.9) to find the current derivative of J(6, A) with

respect to the Lagrange multiplier A. This derivative is then used in the Newton-Raphson

iteration to update the value of A and generate an object estimate using Eq. (3.7) or its

Fourier domain equivalent Eq. (3.8). The iteration continues until the object estimate meets

a pre-determined stopping criterion. A variety of criteria can be used to stop the Newton-

Raphson iteration [40]. Since the goal is to minimize the Lagrangian given in Eq. (3.6), the

iteration is stopped when J(6, A) is sufficiently small. All CLS images shown in this chapter

were processed until J(6, A) < 0.001. For applications in which the appropriate value for the

Lagrangian is unknown, the algorithm can terminate when the change in A has stabilized
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from iteration to iteration. In the next section, sample results are presented to illustrate the

technique.

3.4 Sample Results

In this section, sample results are presented which illustrate CLS processing of DWFS

data. A variety of imaging conditions are investigated by varying turbulence strength, light

level, and detector read noise variance. Data is presented for uncompensated and adaptive

optics (AO) compensated images of a representative satellite object.

3.4.1 Assumptions. The satellite object shown in Fig. 3.1 was used to generate all

data in this chapter. The detector array was 256 x 256 elements for a total of P = 65536

pixels. The satellite was 10m in length and in low earth orbit at a range of 500km. The

diameter of the telescope was 1m with both imaging and wavefront sensor wavelengths set

at A = 500nm. The simulated spectral bandwidth was ±5 % of A, with the object assumed

to have the same spectral signature as the sun. The WFS subaperture size was 10cm for a

total of 60 subapertures within the entrance pupil. The AO system model had 1.2 actuators

per ro.

Atmospheric turbulence and detector noise effects were modeled using an existing com-

puter simulation [74]. For each data realization, the simulation created a random phase

screen with the appropriate turbulence statistics [89], calculated the true OTF, and formed

a detected image realization di(x, y). At the same time, a WFS model was used to generate

a phase estimate qi(x, y), which was then used to compute the estimated OTF. Finally,

the required quantities 1i*(u, v)Di(u, v) and I[h(u, v) 2 were accumulated and the process

repeated 150 times to generate the ensemble averages. The simulation incorporates an in-

tensity splitter which sends 40% of the photons to the image plane and 60% to the WFS.

Integration times of 10ms were used for both WFS and imaging system. A range of object

brightness was modeled using four visual magnitude levels m, = +2, +4, +6, and +8. The

visual magnitude allows astronomers to compare object brightness in the night sky [57].

A step in visual magnitude indicates a corresponding factor 2.5 change in brightness, with

smaller values of m, indicating brighter objects [57]. The resulting photoevents per inte-
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Figure 3.1 Satellite compute redrn sed to test CLS agrtmprformance. Negative
image shown for clarity.

Table 3.1 Average Photoevents per Integration Time.

m, KW K
2 20,215 1,040,430
4 3,234 166,469
6 518 26,635

18 1 83 1 4,262]

gration time for these cases are presented in Table 3.1, where kw is the average number of

photoevents across an individual WFS subaperture.

3.4.2 Uncompensated Images. Figure 3.2 gives the detected short exposure im-

age and CLS algorithm output associated with excellent seeing conditions (r, = 20cm), a

moderate light level satellite object (m, = +4), and detector read noise representing a high

quality CCD detector (a,. = 15 electrons per pixel). A single short exposure image is given

in (a) to illustrate shot noise and detector read noise effects. Clearly, this image is degraded

by the detection process. After CLS processing of the DWFS data as shown in (b), image

resolution is greatly enhanced. In this case, the CLS algorithm automatically selected the
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(e)(f

Figure 3.2 CLS algorithm comparison with manual parameter selection, r, = 20cm, m,
+4, or = 15 electrons per pixel. (a) Single short exposure image. (b) CLS
algorithm estimate, y = 0.0015, 4 iterations. (c), (d), (e), and (f) manual
parameter selection, e = 0.1, 0.01, 0.0001, and 0.00001, respectively.
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regularization parameter -y = 0.0015 in 4 iterations. In (c), (d), (e), and (f) the regular-

ization parameter e associated with the traditional DWFS estimator given in Eq. (3.3) was

selected manually. For images (c) and (d), e > -y. For images (e) and (f), e < 7. Notice

that the quality of the CLS image in (b) is as good or better than the manual images. Thus,

Fig. 3.2 illustrates that the CLS algorithm selected a reasonable value for - in this case.

Now consider a brighter object and different seeing conditions. Figure 3.3 gives the

detected image and CLS algorithm output associated with changing turbulence strength and

a brighter satellite object (m, = +2). The CCD detector read noise remains unchanged from

the previous case. Images (a) and (c) provide the detected image data for the r, = 10cm

and 20cm cases, respectively. Images (b) and (d) give the corresponding CLS algorithm

output. Here, y = 0.000012 for the r, = 10cm case and -y = 0.000067 for the r, = 20cm

case. The CLS algorithm provides more regularization or "smoothing" as r, increases. This

observation is consistent with the form of Eq. (3.28), where better seeing conditions lead to

larger values for the quantity E,,, (0f(u, v) 12). In general, larger values for the quantity

U,v (19i(u, v) 12) lead to larger -y values and more noise smoothing.

While r, influences CLS algorithm performance, object brightness provides a more

severe limit. Not only does shot noise degrade the short exposure data, it also restricts WFS

accuracy. Without a sufficiently accurate OTF estimate, DWFS performance is severely

degraded. To illustrate these limitations, consider Fig. 3.4. Here, r, = 10cm and detector

read noise remains unchanged from the previous cases. Images (a), (c), and (e) show the

short exposure data for object brightness cases m, = +4, +6, and ±8, respectively. In (c)

and (e), noise dominates the data realization to the point that no satellite image is visible.

Images (b), (d), and (f) give the corresponding CLS estimates where -y = 0.00027, 0.0093,

and 0.8180, respectively. As object brightness decreases, the output images are more blurred.

This effect is consistent with a relatively large -y value and deconvolution using a poor quality

estimate of the OTF.

To emphasize the limitations imposed by shot noise further, consider Fig. 3.5. Here,

r, = 10cm and m, = +4. Detector read noise variance is adjusted such that image (a) was

collected with a low noise array (a, = 10 electrons per pixel) and image (b) with a high
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(c) (d)

Figure 3.3 CLS algorithm output versus atmospheric turbulence strength, m, ±2, or,
15 electrons per pixel. (a) Detected image, r, = 10cm. (b) CLS estimate,

= 10cm, -y = 0.000012, 4 iterations. (c) Detected image, r = 20cm. (d)
CLS estimate, r. = 20cm, y = 0.000067, 4 iterations.
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(a) (b)

(c) (d)

Figure 3.5 CLS algorithm output versus detector read noise strength, r, 10cm, m,
+4. (a) Detected image, or = 10 electrons per pixel. (b) CLS estimate, ar = 10
electrons per pixel , -y, = 0.00014, 4 iterations. (c) Detected image, orr = 30
electrons per pixel. (d) CLS estimate, or = 30 electrons per pixel, -y = 0.00097,
4 iterations.

noise array (a, 30 electrons per pixel). Images (b) and (d) give the corresponding CLS

estimates where ) = 0.00014 and 0.00097, respectively. Notice that an increase in read noise

strength does not have the drastic effect on image quality observed in Fig. 3.4. Detector

read noise does not affect the accuracy of the OTF estimate provided by the WFS. Thus,

the effect on algorithm output is less pronounced.

3.4.3 Adaptive Optics Compensated Images. DWFS processing can also be applied

to AO compensated images. Here, the algorithm deconvolves atmospheric turbulence effects

associated with the residual error between the true phase perturbation and the phase imposed

by the deformable mirror (DM). As noted earlier, the ratio between DM actuator number
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(c) (d)

Figure 3.6 CLS algorithm output for AG compensated images, m, +4, or= 15 electrons
per pixel. (a) Detected image, r, = 10cm. (b) CLS estimate, r,, = 10cm,

y 0.0048, 4 iterations. (c) Detected image, r = 20cm. (d) CLS estimate,
r= 20cm, -y = 0.0039, 4 iterations.
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and r, was fixed at 1.2. Thus, the number of actuators will change as r, is adjusted. Two

AO systems associated with r, = 10cm (57 DM actuators) and r, = 20cm (13 DM actuators)

are modeled. Figure 3.6 illustrates CLS algorithm performance on AO compensated images

when m, = +4 and detector read noise is or = 15 electrons per pixel. Images (a) and (c)

give examples of raw AO compensated data when r, = 10cm and 20cm, respectively. Images

(b) and (d) show the corresponding CLS estimates, where -y = 0.0048 in (b) and y = 0.0039

in (d). The CLS algorithm does a good job of noise suppression for AO compensated images

for the same reason noted above in the discussion associated with Fig. 3.3. Here, AO

compensation leads to larger values for the quantity ZUt) (I7 (u,v)12) in Eq. (3.28) and

larger y values.

3.5 Summary

A CLS estimator that incorporates noisy DWFS data, noise statistics, and OTF statis-

tics was investigated. For a particular choice of Fourier domain constraint, the estimator

selects the regularization parameter automatically. No ad hoc tuning is necessary to reduce

high spatial frequency noise effects in the DWFS image. The CLS estimator uses a Newton-

Raphson iteration to select a Lagrange multiplier which minimizes an objective function.

The objective function uses ensemble-averaged data directly, which aids in noise suppres-

sion. The sample results show that the new algorithm produces DWFS images comparable

in quality to manual regularization with minimal computational expense. While turbulence

and detector read noise strength impact algorithm performance, shot noise imposes a fun-

damental limit on the deconvolution process. Finally, the CLS estimator was derived to

incorporate a general Fourier domain constraint. Thus, other constraint functions can be

used based on the specific application.

In the next chapter, a non-iterative Bayesian deconvolution filter is derived. Unlike

this CLS approach, the vector Wiener filter incorporates object, OTF, and noise correlations

between different spatial frequencies. Chapters V and VI will further explore the value of

this model-based information for several applications related to astronomical imaging.
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IV. Vector Wiener Filter Analysis

4.1 Introduction

In this chapter, a Fourier domain vector Wiener filter is derived which incorporates

complete object, blur, and noise correlation statistics. The derivation extends the original

work by Pratt [63] to account properly for a random optical transfer function (OTF) and

measurement noise. This analysis is consistent with related research which showed that

shot noise is correlated with respect to spatial frequency [54]. The amount of correlation

depends on the product of the mean OTF and the mean object spectrum at a difference

frequency. This linear filter can provide a useful alternative to nonlinear iterative techniques

when appropriate statistical models are available.

Chapter IV is organized as follows. Section 4.2 outlines the complete derivation of

the new filter for both random and deterministic OTF cases. Section 4.3 gives a signal-to-

noise ratio (SNR) interpretation to the estimator. In Section 4.4, theoretical filter mean

square error (MSE) expressions are derived for the vector Wiener filter, scalar Wiener filter,

and the unfiltered data. These expressions are important for demonstration and analysis in

Chapters V and VI. Section 4.5 provides alternate filter expressions which incorporate the

mean and covariance of the random quantities. Finally, some comments are made in Section

4.6 regarding the optimality of the new filter expressions. The chapter ends with a brief

summary in Section 4.7.

4.2 Fourier Domain Filter Derivation

In Chapter II, the potential performance advantages associated with the vector Wiener

filter were noted for non-stationary image ensembles. However, short exposure images col-

lected through atmospheric turbulence are blurred by an unknown random OTF. In addition,

measurement noise further degrades optical system resolution. Equation (2.36) does not ac-

count for these factors and must be extended for this imaging application.
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4.2.1 Wiener-Hopf Expression. Let us consider an N x N image array. Based on

the Fourier domain vector-matrix image model expression given in Eq. (2.9), the objective

is to find an N 2 x N2 Fourier domain filter matrix MR such that

6= MRD, (4.1)

where the MSE

62 = E[(O - 6 )H(0 - 6)] (4.2)

is minimized. Using the matrix trace operator Tr{.} [35], Eq. (4.2) can be written as

2 =E[Tr{(o - o)(o - )H]. (43)

Substituting Eq. (4.1) into Eq. (4.3), bringing the expectation operator inside the trace

operator, and expanding the expression yields

2 =Tr {Roo - MRRHD - RODM H + MRRDDMH}, (4.4)

where Roo = E[OOH] is the object Fourier domain autocorrelation matrix, ROD = E[ODH]

is the object-detected image Fourier domain cross-correlation matrix, and RDD = E[DDH] is

the detected image Fourier domain autocorrelation matrix. To find the filter transformation

matrix MR that minimizes e2, take the derivative of Eq. (4.4) with respect to MR, set this

derivative equal to the zero matrix, and solve for MR. The resultant derivative is [35]

19MR = -2RoD + 2RDDM H = 0. (4.5)DMR

Thus, the linear minimum MSE Fourier spectrum estimate is

0 = ROD(RDD)- 1 D, (4.6)

where the transformation MR = ROD(RDD) -1 satisfies a Wiener-Hopf equation [43].
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4.2.2 Object-Detected Image Cross-correlation. To write the new vector Wiener

filter expression, the Fourier domain correlation matrices ROD and RDD must be derived

using the image model given in Eq. (2.7). First, consider the cross-correlation between the

object spatial frequency (u, v) and detected image spatial frequency (u', v') denoted

ROD(U, v; u', v') = E[O(u, v)D*(u', v')]. (4.7)

Substituting Eq. (2.7) into Eq. (4.7) and writing as the sum of two terms yields

RoD(u, v; u', v') = E O(u, v) E exp {j27r(u'x + v'Y)}]
n=1

+ E O(uv) nexp{j2wr(u'x,+v'yp)} (4.8)

The second term in Eq. (4.8) is zero because np is both independent of 0 and zero mean.

The first term can be evaluated using nested conditional expectations following the technique

presented in Refs. [23] and [74]. The random quantities are the object spectrum, the OTF,

the total number of photoevents K, and the photon arrival location (xn, yn). Bayes rule [62]

can be used to rewrite the joint probability density function (PDF) in the first term using

conditional PDFs. These conditional PDFs translate to conditional expectations such that

ROD(u, v;u', v') = Eo [E~j1O (EIHOIEnYI,, [O(u, v)
K

x Eexp{j27r(u'xn +v'yn)}]})], (4.9)
n2=1

where the notation EAIB denotes the conditional expected value of the random event A

given B. An expression similar to the innermost conditional expectation of Eq. (4.9) has

been evaluated previously [74]. The derivation details in this case are given in Appendix A. 1

with the final result written as

Exn,YnIK,?,O O(u,,v) Eexp{j27r(u'X +V'Y)} = K *(u',v')O(u,v)O*(u',v'), (4.10)
=1
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where the normalized object Fourier spectrum O (u, v) is defined as

O"(uV) = o(u, v) _ O(uv) (4.11)
0(0,0) R *

Evaluation of the remaining nested expectations is trivial since K, 'H, and 0 are all mutually

independent. This mutual independence converts all the nested quantities into an uncoupled

product of expectations, which gives the following expression for Eq. (4.7)

ROD(U, v; u', v') = g 7*(u', v')E [O(u, v)O*(u', v')], (4.12)

where W(u, v) is the mean OTF. Clearly, the expectation above is the object Fourier domain

autocorrelation, except for a normalization factor associated with O(u, v). Thus, Eq. (4.11)

can be used to write Eq. (4.12) as

K W*(u', v')E [O(u, v)O*(u', v')] = (K)2 W* (u', v')E [On(u, v)O(u', v')]. (4.13)

Finally, Eq. (4.7) becomes

ROD(U, v; u', v') = (EK) 2 W* (u', v')Rono (u, v; u', V'), (4.14)

where Roo, (u, v; u', v') is the autocorrelation between the (u, v) and the (u', v') spatial fre-

quencies of the normalized object Fourier spectrum. Equation (4.14) can be expressed using

the vector-matrix notation introduced in Chapter II. Note that the functional dependence

of the OTF on the spatial frequency (uI, v') is equivalent to multiplying a particular column

of the matrix Roo, by W*(u', v'). This process is equivalent to multiplying by the diagonal

matrix Hd such that the final result for the object-detected image Fourier domain correlation

matrix is

ROD = (K)2 Roooo*d. (4.15)
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4.2.3 Detected Image Autocorrelation. To complete the derivation, the correlation

between detected image spatial frequencies (u, v) and (u', v') denoted

RDD(U, V; U', V') = E [D(u, v)D* (u', v')] , (4.16)

must be derived. Substituting the image model given in Eq. (2.7) into Eq. (4.16) and

expanding the expression within the expectation yields

K< K
RDD (U, V; U', V') =E 1: exp 1-j2r(uxn - U'Xm, + V~ - V'Ym,)}

P P

+ 1: flpfnqexp {-j21r(ux, - UXq +VYp -V'Yq)}]
p=1 q=1

R(1 (u, v; u', v') + R ( U, V; u', ), (4.17)

where the cross terms are zero because np is zero mean and independent of K, H-, and 0.

Consider the first term, R(1)(u, v; u', v'), and write using nested conditional expectations

[23, 74] as before which yields

R(1)(u, v; u', v') = E0 1o(EIOEnnmmKO

K K
X [E 1: exp {-j2r(UXn - U'Xm, + VYn - V'Ym)}] 1)]. (4.18)

n=1 m=1

The double summation in EXnYnXm5YmIK,H,o has two types of terms: K terms in which n = m

and K 2 - K terms in which n =4m. Thus, Exn,Yn,xm,,ym..IK,H,O in Eq. (4.18) can be rewritten

in a different form:

EXn)YnXmVmIK,W ,O exp f{-j27w(uxn - U'Xm + V~ - V'Ym,)

KK

+ ~nYnXmVmK~lO K KZ exp {-j27r(UXn - U'Xm + VYn - V/'Ym)}] .(4.19)
Ln=1 m=1 n54m
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The derivation details associated with Eq. (4.19) are given in Appendix A.2 with the final

result written as

EXnYnXm,Vm,,o [.] = (K2 
- K)On(u, v)O*(u', v')7(u, v)7/*(u', v')

+ KT(u - u', v - v')On(u - u', v - v'), (4.20)

where the 9 notation represents the bracketed quantity on the left side of Eq. (4.19). With

Eq. (4.20) in hand, the remaining conditional expectations can be evaluated as before by

noting the mutual independence of K, 'H, and 0, which leads to

R() (u, v; u', v') = (K2 -k K) Ronoo (u, V; u', v')RH(u, v; u', v')

+ r 7(u - u',v - v')-O,(u - u',v - v'), (4.21)

where RHH(u, v; u', v') is the autocorrelation between (u, v) and (u', v') spatial frequencies of

the OTF and On(u, v) denotes the normalized mean object spectrum. The random variable

K is conditionally Poisson distributed, given 'H and 0 [74]. Therefore, the second moment

of K can be written as [62,74]

E[K 2] = K-2 -g+ (F) 2. (4.22)

Using Eq. (4.22), Eq. (4.21) can be written in its final form:

R(u)(u, v; u', v') = (-K) 2Roo(u, v; u', v')Rnw(u, v; u', v')

+ KH(u - u',v - v')-n(u - u',v - v'). (4.23)

The second term in Eq. (4.17) was evaluated previously [74] for the assumptions given in

Chapter II such that
) ; u', V') = PV,( - u', v -, '), (4.24)
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where P = N2 is the number of pixels in the detector. Combining the results from Eqs. (4.23)

and (4.24) gives the final expression for RDD(U, v; u', v'):

RDD(U, V; U', V') = (K) 2RO,0 . (u, v; u', v')RHH (u, v; u', v')

+ K !(u - u',v - v')- u',v - v')

+ Po 5(u - U', v - v'). (4.25)

Equation (4.25) can be written conveniently using vector-matrix notation as before, which

yields a compact expression for the matrix RDD

RDD = (K) 2Roo, G RHi + RNN, (4.26)

where the measurement noise Fourier domain autocorrelation between (u, v) and (u', v')

spatial frequencies is defined as

RNN(U, V; U', V') = R W7(u - u', v - v')-6 (u - u', v - v') + PaO'6(u - u', v - v'). (4.27)

4.2.4 Final Result. Returning to Eq. (4.6), inserting the results given in Eqs. (4.15)

and (4.26), and dividing through by the scalar (R) 2 give the final expression for the extended

vector Wiener filter [14]:

0) = Ro~0o.d {Ro~o 0 Run + K 2 RNN} D, (4.28)

where the elements of the matrix RNN are defined in Eq. (4.27). Equation (4.28) is the

main result of this section and the subject of discussion and experimentation in Chapters

V and VI. Equation (4.28) is new and has only recently been applied to images degraded

by a random OTF and measurement noise [12-14]. If the OTF is deterministic and known,

Eq. (4.28) can be written in the following form:

S= R0 0 7( {H d* O O1'd + K-2 RNN} D, (4.29)
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where the deterministic OTF is substituted for the mean OTF when defining the Fourier

domain noise autocorrelation matrix RNN.

4.3 Signal-to-Noise Ratio Interpretation

It is convenient to express the measurement noise Fourier domain correlation in terms

of SNR quantities. Multiplying RNN by the scalar R-2 as required by Eq. (4.28) yields

E-2RNN(U, v; u', v') = Y_'(U - , -_) (U - u', V - V')

+ [Pu2/(K)2] 5(u - u', v - v'). (4.30)

The single frame image spectrum SNR is defined as [74]

SNRj (u, v) = E[ID(u, v)1] (4.31){Var[D(u, v)]}'/ 2 '

and was calculated previously for an image degraded by measurement noise, yielding [74]

SNRi(u, v) = {7O(u V) Ia1[.(u, v)] 1 (4.32){ 1o.(U, V) 12ar[H(u, v)] + k1 + pO,'/(Y)2}1/'

where Var[e] denotes the variance of the bracketed expression. The last two quantities in the

denominator of Eq. (4.32) are related to the shot noise and the signal-independent detector

read noise, respectively. Consider the following SNR expressions [90]

SNRk = (4.33)

SNRr- (4.34)

where SNRk is associated with the shot noise and SNR, is associated with the detector read

noise. Equations (4.33) and (4.34) were used previously to rewrite the single frame image

spectrum SNR [90]. In the same way, the measurement noise Fourier domain correlation in
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Eq. (4.28) can be written as

-K-2RNN(U, V; U', V') SNRk 2W(u - u', v - v')-O(u - u', v - v')

+ SNR7-26(u - u',v - v'). (4.35)

These SNR quantities control the amount of regularization provided to each spatial frequency

correlation component by the vector Wiener filter. When the measurement noise is low (i.e.,

high light level and minimal detector read noise), negligible regularization occurs and the

filter is faithful to the data. When the measurement noise is high (i.e., low light level

or significant detector read noise), regularization is applied based on the spatial frequency

correlation of the shot noise and the strength of the uncorrelated detector read noise. Under

extremely high noise conditions, the vector Wiener filter will smooth the data, but always

consistent with the known object Fourier domain statistical model. In the next section,

MSE expressions are introduced which will be important for filter performance comparison

in Chapters V and VI.

4.4 Mean Square Error Expressions

The vector Wiener filter given in Eq. (4.28) minimizes the scalar MSE as given in

Eq. (4.2). Thus, filter performance can be analyzed by examining the statistics of the zero

mean error between the true and estimated Fourier spectra E = 0 - 0. The error correlation

matrix R,, associated with a Fourier domain linear minimum MSE filter can be written as [43]

= E [(0 - 6)(O - 0)H]. (4.36)

In Eq. (4.1), a linear estimator model was considered which incorporated a specific vector

Wiener filter transformation matrix MR. Here, the same linear model will be used but with

an arbitrary transformation matrix Mx such that Eq. (4.1) becomes

6 = MxD. (4.37)
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Substituting Eq. (4.37) for 0, expanding terms, and evaluating the expectation yields [14,43]

R, = Roo - Mx7dRoo - RooWdM H + Mx (Roo G Rn- + RNN) M H. (4.38)

For the vector Wiener filter transformation MR given in Eq. (4.28), Eq. (4.38) reduces to

R = = Roo - MR-dRoo (Vector Wiener Filter). (4.39)

A similar expression is also available for the analogous scalar Wiener filter whose diagonal

transformation matrix Ms has non-zero elements defined as

Ms (u, v) = W*(u, v)

E[l (u, v)12] + (r+ P ) g(u,v)' (4.40

where 9,(u, v) is the PSD of the object as used in Eq. (2.35). The error correlation matrix

associated with the scalar Wiener filter is

= Roo - Ms'ldRoo - Roo-ldM + Ms (Roo G R%, + RNN) MS

(Scalar Wiener Filter). (4.41)

Finally, it is often of interest to know the baseline error statistics associated with the un-

filtered detected image. When Mx = I, where I is the identity matrix, Eq. (4.37) gives

6 = D as required and the error correlation matrix becomes

R,= Roo - -dRoo - Roo d + (Roo 0 RHH + RNN)

(Detected Image). (4.42)

Equations (4.39), (4.41), and (4.42) are only dependent on the statistics of the object class,

OTF, and noise. Thus, a theoretical performance study based on these error statistics is

possible without running a Monte Carlo simulation. In the next section, two alternate vector

Wiener filter expressions are derived which incorporate mean and covariance statistics.
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4.5 Alternate Filter Expressions

The vector Wiener filter given in Eqs. (4.28) and (4.29) is a function of correlation

matrices. In many statistical signal processing and image processing texts, Bayesian linear

minimum MSE filters are expressed in terms of mean and covariance [41,43]. Thus, two

complementary vector Wiener filter equations are given below in the interest of completeness.

Let us now reconsider the form of the random object realization 0. Such a random

vector can always be written as a function of its mean 0 and a random, zero mean component

AO yielding

O =O+ AO, (4.43)

where AO is zero mean with covariance matrix Coo. In general, a complex covariance

matrix is defined as [62]

Cxx = E [(X - X)(X - X)H], (4.44)

where X is a complex random vector with mean X. The object estimate vector can now be

written as

6 = +A6

-0 + MAD, (4.45)

where AD = D - D, D is the mean detected image vector, and Mc is a new filter trans-

formation matrix. Following analysis similar to that given in Eqs. (4.1)-(4.5) produces a

Wiener-Hopf expression incorporating covariance matrices

AO = COD (CDD) - 1 A D, (4.46)

where COD is the cross-covariance between object and detected image and CDD is the au-

tocovariance of the detected image. The analysis in Section 4.2 will now be used to find

expressions for COD and CDD.
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By definition, the matrix COD can be written as [62]

COD = ROD - DH . (4.47)

The matrix ROD was derived above and is given in Eq. (4.15). Previous analysis has shown

that the mean detected image vector is D = K '-HdOn [74]. Substituting Eq. (4.15) and the

mean detected image Fourier spectrum into Eq. (4.47) yields
-E)2 -- * a -H-

COD = Roooo - (k o n H

=- ( )2 _--* -H

= (g) 2 CooTid. (4.48)

The matrix CDD can also be written in a form which incorporates RDD and D such that [62]

CDD=RDD-DD. (4.49)

RDD was derived above and is given in Eq. (4.26). Substituting Eq. (4.26) and the mean

detected image Fourier spectrum into Eq. (4.49) yields

CDD - ( K)2Roo RHH + RNN - (On ( ) ® (WW'), (4.50)

where W denotes a P-length vector containing the mean OTF elements as noted in Chapter

II. Equation (4.50) can be rewritten in terms of covariance matrices using the general form

shown in Eqs. (4.47) and (4.49). Combining Eq. (4.48) with the modified form of Eq. (4.50)

gives an alternate filter expression incorporating covariance matrices

6 = On + Conord

(Cnx (D CH + CWH O n (. ) + c0~0,, ( i rti" ± CNN)

x (D - EK4On), (4.51)
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where CNN = RNN since the measurement noise is zero mean and RNN is defined as given

in Eq. (4.27). When the OTF is deterministic and known, Eq. (4.51) becomes

0) = K On + co,o0 ,,u* (-dCoo* CK2cNN) - (D - K idOn). (4.52)

The next section provides some brief comments related to the optimality of the new vector

Wiener filter. Here, the linear constraint will be investigated with respect to the underlying

PDFs associated with object and noise.

4.6 Comments on Filter Optimality

The vector Wiener filter is optimal with respect to MSE or error variance, regardless of

the stationarity of the underlying random processes. The scalar Wiener filter is only optimal

in this sense when object and noise are stationary. Here, an "optimal" filter is one that

provides the minimum error variance for a particular imaging scenario and filter class. The

filter class referred to here is the class of Bayesian linear filters only. A nonlinear estimator

may exist that provides an ensemble of solutions with less error variance than the vector

Wiener filter as illustrated in Fig. 4.1. In the context of this figure, the vector Wiener filter

is guaranteed to provide minimum error variance among the class of linear Bayesian filters

represented by the small circle marked "Linear", not the larger circle marked "General".

As noted in Chapter II, linear minimum MSE estimators have been extensively studied

and applied to a wide variety of signal processing problems [43]. This body of knowledge

reveals one important case in which the linear estimator is optimal with respect to MSE for

the class of all Bayesian filters. This situation exists when the noise and object are Gaussian

distributed and statistically independent [43]. However, this case does not apply to the

image model given in Eq. (2.6) since the shot noise is not independent of the signal. The

rest of this section will investigate the effect of the semi-classical model on the optimality

of the vector Wiener filter. Section 4.6.1 will review key background details related to the

linear Bayesian estimator. Section 4.6.2 presents the signal-independent noise case. Finally,

Section 4.6.3 outlines optimality issues related to the semi-classical image model.
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Vector Wiener Filter

Linear

Always Optimal

Figure 4.1 The vector Wiener filter is optimal with respect to minimum error variance
only among the class of linear filters represented by the small circle marked
"Linear". Further statements with respect to optimality require assumptions
regarding object and data distributions.
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4.6.1 Background. By definition, the Bayesian minimum MSE estimator is the

mean of the posterior PDF, represented by EoID[OID ] [43]. If Eo1 D[OID] can be shown to

be linearly related to the data, then the vector Wiener filter must be the minimum error

variance filter over the class of all Fourier domain Bayesian minimum MSE filters. This

special case is analogous to constraining the "best" estimator to exist within the small

circle marked "Linear" in Fig. 4.1. Thus, to understand these optimality issues fully, the

conditions under which EOID[OID] is linearly related to the data must be investigated. To

lay the groundwork for this investigation, consider two jointly complex Gaussian random

vectors X and Y whose vector [XTyT]T can be described as

where the notation K" denotes a random quantity with Gaussian distribution, given mean

vector, and given covariance matrix. An equivalent representation of Eq. (4.53) is that the

joint PDF px,y (X, Y) is Gaussian. Since a Gaussian PDF, real or complex, is completely

described by its mean and covariance, Eq. (4.53) provides a complete statistical description.

Further, it has been shown that if px,y(X, Y) is complex Gaussian as described in Eq. (4.53),

the conditional PDF pyix(YIX) is also complex Gaussian with mean [43]

Eyix[YX] = Y + Cyx (Cxx) -1 (X - X). (4.54)

Equation (4.54) is the mean of the posterior PDF and also the Bayesian minimum MSE

estimator of Y. Thus, if X and Y are jointly complex Gaussian, Eylx[YIX] is linearly

related to X. When the vector D is substituted for X and the vector 0 is substituted for

Y, Eq. (4.54) can be viewed in terms of the image model given in Eq. (2.9), repeated as

D =7 (® O + N, (4.55)
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and the vector Wiener filter given in Eq. (4.52). Therefore, if D and 0 are jointly complex

Gaussian, the general Bayesian minimum MSE estimate is linear to the data and the vector

Wiener filter is the general minimum error variance estimator.

Under what conditions are D and 0 jointly complex Gaussian? The following dis-

cussion will answer this question based on statistical assumptions about the general linear

model given in Eq. (4.55).

4.6.2 Signal-Independent Noise. Let us take a step back from the image degrada-

tion model first given in Chapter II and assume that the OTF is deterministic. In addition,

let us assume that the complex noise vector N is independent of 0 and Gaussian distributed.

This assumption is used in many image processing applications [41] but is not consistent with

an image degraded by shot noise or the image model in Eq. (2.6). The joint PDF PD,O(D, 0)

can be rewritten in terms of conditional and marginal PDFs such that [62]

PD,O(D, 0) = PDIo(DIO)po(O). (4.56)

Since the noise has a Gaussian PDF and 1H is deterministic, PDJo(DJO) is also Gaussian

distributed. Thus, if po(O) is Gaussian distributed, the joint PDF is Gaussian [62] and the

vector Wiener filter is the general Bayesian minimum error variance filter.

4.6.3 Semi-Classical Model. While the Gaussian distributed signal-independent

noise case is valid in many applications, it does not adequately represent low light imaging

of atmospheric turbulence-degraded images. Here, shot noise and the randomness of the

OTF introduce dependence on the signal. To consider this case, it is helpful to rewrite the

OTF in the following form

-Hd =-- R'd + A 'd, (4.57)

where A-(d is a diagonal matrix representing a realization of the random OTF component.

Now Eq. (4.55) can be rewritten using Eq. (4.57) such that

D = HdO + NT, (4.58)
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where the total noise is defined as NT = A'1dO + N and is dependent on the object via

the random OTF and shot noise components. Even if the object PDF po(O) is Gaussian

distributed, the joint PDF PD,O(D, 0) will not be Gaussian since NT is not strictly Gaussian

and is dependent on the object. Further, the signal dependence of the noise precludes the

existence of any case where PD,o(D, 0) is Gaussian distributed regardless of the choice of

noise or object PDF. Thus, in a strict sense, no statements about the optimality of the vector

Wiener filter can be made outside of the class of Bayesian linear filters.

However, in a limiting sense, the vector Wiener filter approaches optimality across the

class of all Bayesian filters when two conditions are present: the average photon count K

grows large and the OTF covariance grows small. In Appendix B, it is shown that PDJO(DJO)

approaches a complex Gaussian distribution when the total photon count K is sufficiently

large, via a Central Limit Theorem argument [23,62]. For most practical images, K is very

large, on the order of 1,000 to 1,000,000 photoevents. This value is more than adequate for

valid application of the Central Limit Theorem [62]. The additional assumption of small

OTF covariance supports the argument that NT approaches a Gaussian distribution. In

addition, these two conditions yield the signal-independent noise case. Thus, when po(O)

is Gaussian, the joint PDF approaches a Gaussian distribution, and the vector Wiener filter

can be viewed as essentially optimal for all Bayesian minimum error variance filters. The

two conditions noted above represent imaging under high light level conditions where an

accurate estimate of the turbulence-induced OTF is available.

4.7 Summary

In this chapter, a Fourier domain filter was derived which incorporates object, blur, and

noise statistical models. This analysis extends the vector Wiener filter to account properly for

both shot noise and detector read noise as modeled in Eq. (2.7). The shot noise correlation

depends on the product of the mean OTF and the mean object spectrum at a difference

frequency [14,54]. The theoretical optimality of the vector Wiener filter was also investigated

with respect to assumptions about the underlying distributions of the data and object. When

the detected image is degraded by signal-dependent shot noise and a random OTF, the vector
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Wiener filter is only guaranteed to be the minimum error variance estimator among the class

of linear Bayesian filters.

In the next chapter, simulated binary star data is processed with the vector Wiener

filter. The binary star represents an important astronomical imaging application. These

results include data degraded by both a fixed and a random OTF.
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V. Vector Wiener Filter Processing of Binary Star Pairs

5.1 Introduction

In the previous chapter, a Fourier domain vector Wiener filter was derived which in-

corporates complete object, blur, and noise correlation statistics. Equation (2.7) was used in

the derivation to model all degradation effects in the detected image. This model is consis-

tent with an image degraded by atmospheric turbulence, shot noise, and detector read noise.

In this chapter, the vector Wiener filter is used to process an important non-stationary

astronomical object class, the binary star pair. The goal is to study vector Wiener filter

performance when the object and optical transfer function (OTF) statistics are known ex-

actly. Here, performance is compared against the scalar Wiener filter using mean square

error (MSE), a correlation coefficient, mean square phase error (MSPE), and image real-

izations for both a deterministic and random OTF. In all cases, the vector Wiener filter

provides reconstructions that are superior to those of the scalar Wiener filter. The results

also illustrate the superresolution capability of the vector Wiener filter. In this dissertation,

superresolution is defined as the extension of the detected image Fourier spectrum to regions

where no data was measured [55].

Chapter V is organized as follows. Section 5.2 provides general details of the Monte

Carlo simulation used to generate the data to include information about the random object,

measurement noise, and performance metrics. Sections 5.3 and 5.4 present the data and

conclusions associated with the deterministic and random OTF cases, respectively. The

chapter ends with a summary in Section 5.5.

5.2 Simulation

In this section, details of a simulation used to study vector Wiener filter performance

are provided. The term simulation is used to refer to Monte Carlo experiments involving the

repeated application of the filter to random draws of object, OTF, and measurement noise.

The discussion here includes details associated with random object and measurement noise.
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5.2.1 Random Object. To compare vector and scalar Wiener filter performance,

a class of simple non-stationary random objects is needed with Fourier domain statistics

that can be derived analytically. The data generated for this study are based on a pair of

Gaussian functions with locations that are random. Figure 5.1 shows (a) 16 x 16 and (b)

32 x 32 detector array object realizations that can be expressed mathematically as [22]

o(x,y) = hpexp _7r ((X XP) (y

+ hexp{7 ((X-X-0,+(Y -Y'))} (5.1)

where (xp, yp) is the location of the primary function, (xS, YS) is the location of the secondary

function, hp is the peak irradiance of the primary, ha is the peak irradiance of the secondary,

wp is the primary width parameter, and w, is the secondary width parameter. The func-

tion locations (xP, yp) and (x,, y,) are independent, uniformly distributed random vectors

restricted to a W by W pixel region in the center of the image plane. For example, W = 1

requires both functions to be located at the center of the image plane, and the object realiza-

tion is deterministic. Since the function locations have a uniform distribution, the parameter

W can also be viewed as the dimension of a spatial domain support constraint. As shown

in Fig. 5.1, the normalized peak irradiance of the primary is hp = 1 and the secondary is

ha = 0.5. Both primary and secondary functions have width parameters wp = ws = 0.5

pixels for the 16 x 16 detector array in (a) and wp = w, = 1 pixel for the 32 x 32 detector

array in (b). In both cases, the width parameters were chosen to simulate unresolved point

sources.

The object Fourier domain statistics are straightforward to derive for the Gaussian

binary star pairs. The mean object spectrum is [14]

-(u, v) = W 2sinc(Wu, Wv) [hpwp exp{-lr(wP(u 2 + v2))}

+ hsw8 exp{-7r(w,(u2 + v2))}] , (5.2)
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Figure 5.1 Sample binary star object realizations (hp = 1, h8  0.5 pixels), (a) 16 x 16
detector (wp = ws= 0.5 pixels), (b) 32 x 32 detector (wp = w = 1 pixel).

where the sinc function [22] is the Fourier transform of the uniform probability density

function associated with a rectangular support constraint of dimension W. The correlation

of (u, v) and (u', v') object Fourier components can be expressed as [14]

Roo(U,v; U', V') =W 2sinc(W(u -u'), W(v -v'))

10 is 2020

[h~w~exp{-rw(u 2 ± u+ ± + v'2)}

+h wexp{_'rw(u 2±+u'2 ±v2= + v'2)}]

+ W 4 sinc(Wu, Wv)sinc* (Wu', Wv')hphswpw8

x [exp{-ir(Wp(U2 + v2) + w8 (u'2 + v'2))}

+ exp{-r(w8 (u2 + v2) + Wp(U'2 + v12))}]. (5.3)

Equations (5.2) and (5.3) provide the object Fourier domain statistics for all experiments.

Each experiment trial begins by generating a new random object realization which is a

member of the ensemble with these statistics.

5.2.2 Measurement Noise. Equation (4.35) suggests a measurement noise Fourier

domain correlation matrix which is the sum of two components. The shot noise component is

the product of the mean OTF and the mean object spectrum at a difference frequency with

a scaling factor SNR 2 . The component associated with the uncorrelated detector read noise

increases the diagonal elements by a scaling factor SNR 2. Thus, the measurement noise is
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correlated with respect to spatial frequency. Since the scalar Wiener filter does not exploit

this information, the vector Wiener filter should have an advantage in noise suppression.

Each experiment trial generates a detected image which is corrupted by both shot noise

and detector read noise. Both noise sources can be varied independently using the K and

o- parameters which correspond directly to light level and detector read noise, respectively.

An individual trial begins by generating a normalized object realization and scaling to the

selected light level as given by K. A noiseless image is then created by multiplying the

object spectrum and OTF. A Poisson random number generator is used to corrupt the

noiseless image by using its irradiance values as mean parameters in the Poisson distribution.

Finally, zero-mean Gaussian random numbers with standard deviation o', are added to model

signal-independent detector read noise. This process is repeated many times to constitute a

complete experiment.

5.2.3 Performance Metrics. To compare filter performance properly, metrics must

be used that provide a realistic performance measure. MSE, a correlation coefficient, and

MSPE are used to compare vector and scalar Wiener filter performance in this chapter. Each

of these performance metrics provides a different method of comparison between the true

and estimated object spectra.

5.2.3.1 Mean Square Error. Consider the definition of the error correlation

matrix R,, presented in Eqs. (4.39)-(4.42). The diagonal elements of R,, represent the

theoretical MSE of the respective filter. This data is presented in two forms in this chapter.

First, consider the average MSE defined as

= pTr {RE}, (5.4)

where P is the number of pixels in the detector array as before. Second, consider a MSE

metric given as a function of radial spatial frequency p via radial averaging. This quantity

is denoted e2 (p). Radial averaging is the process of averaging a two dimensional function

along concentric circles to produce a one dimensional plot. All MSE data in this chapter is
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normalized by the error associated with the detected image. This normalization forces the

MSE data values to be between 0 and 1 when the filters provide improved performance with

respect to the detected image. Here, the subscripts V, S, and D denote MSE associated

with the vector Wiener filter, scalar Wiener filter, and detected image, respectively.

The previous paragraph presented theoretical MSE metrics. Experimental MSE data

can be collected via Monte Carlo simulation. Here, the average squared error per realization

is computed and then accumulated over a large ensemble of images created under identical

statistical conditions. The average squared error as calculated for the ith experiment trial is

6 1(0 i)H(o - (5.5)

The pertinent sample statistics are the mean of Eq. (5.5) and variance of the mean defined

as [84]
1 L

-L(L -1)1 )2 _ (j) (5.6)

where L is the number of images in the ensemble. The theoretical average MSE metric

represented by Eq. (5.4) and the experimental average MSE of Eq. (5.5) were within =ao-2

in all cases. Thus, the Monte Carlo simulation used to generate other performance metrics

was shown to perform accurately with respect to MSE [14].

5.2.3.2 Magnitude and Phase Error. In some cases, MSE may be a misleading

quality indicator with respect to the human observer [82]. Clearly, filter estimates can be

compared visually. However, visual comparison is only valid for individual realizations.

Additional metrics are needed which reflect performance over a complete ensemble. In the

Fourier domain, magnitude and phase play very different roles. In fact, phase plays the more

important role in many situations [61]. The scalar Wiener filter cannot compensate for phase

distortions due to noise which leads to less deblurring as noise increases [41]. In contrast,

the vector Wiener filter incorporates some a priori knowledge of the true object phase, which

can help compensate for noise without excessive smoothing. Thus, a separate comparison of

magnitude and phase error performance is needed to understand the value of additional a

5-5



priori object information. Also, the metrics given below will be important in demonstrating

filter performance beyond the OTF cutoff frequency.

A correlation coefficient between true and estimated Fourier spectra has been used

previously to compare estimation performance [92]. In this chapter, the following correlation

coefficient between O(u, v) and 6(u, v) is used and can be written as

-Wo(u, (O(u, v)O*(u, v)) (5.7)
,v J ,(u, V)12)(16(u, v)= 1.)

I-yod(u,v)l takes on values between 0 and 1. A value close to one implies the filter is

doing a good job of reconstructing that Fourier component. Now consider the phase of the

reconstructed object spectrum. MSPE is defined as

S2(U, v) = ((q0 (u, V)- 0(u, V))2), (5.8)

where 0 (u, v) is the phase of the true object spectrum and 0(u, v) is the phase of the esti-

mated object spectrum. Both -Yo6 and o2 are two dimensional functions. Direct comparison

of two dimensional functions is difficult. However, Fourier spectra exhibit a high degree of

radial symmetry. This symmetry allows for radial averaging of 7o6 and O2. The data in

Sections 5.3 and 5.4 associated with these two metrics will be presented in one dimensional

form using radial averaging.

5.3 Deterministic OTF

The vector Wiener filter derivation given in Eq. (4.28) assumed a random OTF and

incorporated a statistical description of this quantity. However, much valuable information

can be gained from scenarios in which the OTF is deterministic and known as shown in

Eq. (4.29). All results presented in this section incorporate a known OTF. In all cases, a

square pupil function is used to compute the fixed OTF via Eq. (2.17). The point spread

function (PSF) associated with the square pupil is a sinc2 (x, y) pattern with the width of

the first zero crossing given by [22]
2Al = -z (5.9)
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Table 5.1 Measurement Noise Cases

K SNRk SNR,
10000 100 278
1000 32 28
750 27 21
500 22 14
250 16 7
100 10 3

where Al is the width of the first zero crossing, A is the imaging wavelength, z is the

observation distance, and D is the square pupil dimension. To study the effect of the OTF

on filter performance, the OTF cutoff frequency is changed by adjusting D. Since it is more

convenient to express these quantities in a normalized pixel space, Eq. (5.9) becomes

Alp = 2N (5.10)

where Alp is the width of the first zero crossing in pixels, N is the length of one side of the

detector in pixels, and Dp is the square pupil dimension in pixels. In all cases, Dp will be

used to identify the pupil size and corresponding PSF-OTF for each case.

Table 5.1 provides corresponding K, SNRk, and SNRr values for cases of interest in

this section. The detector size here is 16 x 16 pixels with detector read noise fixed at a, = V5

electrons per pixel in all cases. K = 10000 photoevents represents high light level and low

noise. Note that SNRk and SNRr provide an indication of the relative contribution of the two

noise effects in each case. For instance, when K = 10000 photoevents, SNRk is much lower

than SNRr, which implies detector read noise will not have a large impact on performance.

When K = 100 photoevents, SNR, is lower, indicating detector read noise will play a more

significant role. All MSE plots in this section were generated via Eq. (5.4). The 1Io6(P)I

and W2 (p) plots were generated via Monte Carlo simulation where L = 100,000 images.

As presented in Section 5.2, W represents the square dimension in the center of the

image plane where the random binary Gaussian object components are allowed to exist.

Thus, W represents the amount of randomness associated with the object ensemble. Figure
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5.2 compares scalar and vector Wiener filter normalized average MSE performance as a

function of W when the pupil size is Dp = 6 pixels and K = 10000 photoevents (SNRk = 100,

SNR, = 278). First, note that the vector filter provides lower MSE over a large range of W

values. This improved performance is due in large part to the a priori object Fourier domain

correlation information used by the new filter. The scalar filter has access only to the object

power spectral density (PSD), which is equivalent to the diagonal values of the Roo matrix.

Since the object ensemble is non-stationary, Roo has non-zero off-diagonal elements. The

scalar filter cannot incorporate this valuable information and, therefore, is no longer optimal

with respect to MSE as evidenced by Fig. 5.2.

It should also be noted that the MSE associated with the vector Wiener filter increases

as the support constraint dimension W increases. Matson noted similar performance for

iterative algorithms [54]. His analysis showed that applying support constraints can provide

both a superresolution effect and variance reduction in the noisy Fourier data [54]. Support

constraints provide variance reduction by maintaining Fourier domain correlations in the

data which provide weighted interpixel averaging [54]. The weights are associated with the

Fourier transform of the support function. Thus, as support increases, the Fourier trans-

form of the support function narrows, providing less averaging and degraded performance.

Similarly, the vector Wiener filter also provides interpixel averaging based on enforcing de-

graded data Fourier domain correlations. As W increases, support size increases and the

Fourier transform of the support function narrows. The off-diagonal elements of Roo are

reduced, which results in a filter transformation matrix with less off-diagonal structure. Less

off-diagonal structure in the filter transformation matrix is analogous to less interpixel av-

eraging as each Fourier component is estimated. In the limit, when no support constraint is

used, the filter transformation matrix is diagonal and no interpixel averaging occurs. Hence,

the MSE performance of the vector and scalar Wiener filters is the same for W = 16 pixels

in Fig. 5.2.

Figure 5.3 shows a single detected image realization with the associated filter outputs

for W = 8 pixels, pupil size Dp = 6 pixels, and K = 10000 photoevents (SNRk = 100,

SNR, = 278). Each mesh plot is normalized to a peak value of unity for visual comparison.
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Figure 5.2 Normalized average MSE, 'VeT/eD and /s/ D, versus support constraint dimen-
sion W. Pupil size Dp = 6 pixels and K = 10000 photoevents (SNRk = 100,
SNRr = 278).

Clearly, the vector filter produces a sharper output which more closely resembles the true

object realization, as suggested by the MSE data. The mean object in (b) and the PSF in

(c) are provided for the convenience of the reader and later reference.

As noted in the discussion associated with Fig. 5.2, the vector Wiener filter can provide

superresolution. Figures 5.4 and 5.5 illustrate this idea by comparing vector filter 17o(0 P)j

and Wo2(p) with those associated with the scalar filter. In both plots, the pupil size is Dp =

6 pixels, the support constraint dimension is W = 8 pixels and K = 1000 photoevents

(SNRk = 32, SNRr = 28). Note that the light level has been reduced, compared to the

results depicted in Figs. 5.2 and 5.3. In addition, the spatial frequency unity represents the

OTF cutoff frequency. The scalar filter cannot provide superresolution since it sets spatial

frequencies beyond the OTF cutoff to zero [41]. Thus, Iyo 6(P) for the scalar filter drops

sharply beyond the cutoff frequency. However, the vector Wiener filter is able to maintain

a high correlation coefficient at these same frequencies. Figure 5.5 supports the idea of

a superresolution effect since o2 (p) associated with the vector filter is much lower beyond
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Figure 5.3 Normalized mesh plots showing the improved performance characteristics of the
vector filter on binary Gaussian function objects. (a) True object realization,
object randomness parameter W = 8 pixels, (b) mean object, (c) PSF, pupil
size Dp = 6 pixels, (d) detected image K = 10000 photoevents (SNRk = 100,
SNR, = 278), (e) scalar filter estimate, (f) vector filter estimate.
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Figure 5.4 Radially averaged 1-Yo¢l as a function of normalized spatial frequency p for the
scalar and vector filters. The spatial frequency at unity corresponds to the
OTF cutoff frequency for a Dp 6 pixel pupil function. Support constraint
dimension W = 8 pixels and K 1000 photoevents (SNRk = 32, SNRr = 28).

unity spatial frequency. As noted above, the a priori object knowledge incorporated in the

vector Wiener filter provides superresolution, since W is associated with a spatial domain

support constraint. This support constraint is incorporated directly in Roo and 0. Support

constraints have a long research history as a means to superresolve data in the Fourier

domain [54,55].

Now reconsider the form of the vector Wiener filter given by Eq. (4.28) and the scalar

Wiener filter given by Eq. (4.40). It is obvious that neither filter incorporates detected image

information beyond the OTF cutoff frequency. At those high spatial frequencies, the vector

filter relies exclusively on object statistical information. In contrast, the scalar filter is not

capable of incorporating this knowledge. Instead, the frequency components beyond the

OTF cutoff are set to zero. Thus, the vector filter should continue to perform better than

the scalar filter as the OTF cutoff frequency is adjusted lower. Figure 5.6 shows filter MSE

performance as a function of the pupil size Dp when W = 8 pixels and K = 1000 photoevents

(SNRk = 32, SNR, = 28). Figure 5.6 shows that the vector filter provides lower MSE than
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Figure 5.5 Radially averaged MSPE, o2, as a function of normalized spatial frequency p
for the scalar and vector filters. The spatial frequency at unity corresponds to
the OTF cutoff frequency for a Dp = 6 pixel pupil function. Support constraint
dimension W = 8 pixels and K = 1000 photoevents (SNRk = 32, SNR = 28).
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Figure 5.6 Normalized average MSE, 7V/eD and i1/eD, versus pupil size Dp. Support
constraint dimension W = 8 pixels and K = 1000 photoevents (SNRk = 32,
SNR = 28).

the scalar filter in all cases. As in Fig. 5.2, this MSE performance is the combined result of

both a superresolution effect and enforcing detected data Fourier domain correlations.

In Chapter II, the vector Wiener filter was derived based on the image model given in

Eq. (2.7) with the idea of properly modeling all noise effects. Thus, we are clearly interested

in the performance of this new vector filter as measurement noise becomes more dominant.

Figure 5.7 provides MSE performance as a function of K for W = 8 pixels and pupil size

Dp = 6 pixels. Clearly, the performance of both filters improves as light level increases.

However, it must also be noted that the vector filter reduces MSE by a wider margin as light

level increases. At K - 100 photoevents the vector Wiener filter provides an additional 15%

decrease in MSE below the baseline established by the scalar filter. At K = 1000 photoevents

the decrease in MSE is 37%. This trend is expected since the off-diagonal elements of the

measurement noise Fourier domain correlation matrix RNN are due to the shot noise. As

light level is reduced, shot noise is less dominant and RNN becomes more diagonal, which

minimizes the importance of the off-diagonal elements. As noted before, it is access to the
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Figure 5.7 Normalized average MSE, 4 /2D and AS/eD) versus R. Support constraint
dimension W = 8 pixels and pupil size Dp = 6 pixels.

off-diagonal components of the correlation matrices which provides the difference between

the vector and scalar Wiener filters. Figures 5.8 and 5.9 also illustrate the superior noise

suppression of the vector Wiener filter for which the support constraint dimension W and

pupil size Dp are unchanged from Fig. 5.7. The I[Yo(P)I and p2(p) metrics are superior across

all noise cases with a superresolution effect still visible beyond the OTF cutoff frequency.

Figure 5.10 provides detected image and filter outputs when K = 500 photoevents

(SNRk = 22,SNR, = 14). The scalar filter simply smoothes the noisy data and, therefore, is

not able to resolve the two object components in (e). In contrast, the vector Wiener filter

resolves the components in (f). Note how the object Fourier domain statistics enforce the

support constraint imposed by the parameter W. The next section illustrates vector Wiener

filter performance when the OTF is random and associated with atmospheric turbulence.
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Figure 5.8 Radially averaged 1-Yool as a function of normalized spatial frequency p for the
scalar and vector filters. The spatial frequency at unity corresponds to the
OTF cutoff frequency for a D,, = 6 pixel pupil function and support constraint
dimension W = 8 pixels. The v and s designators differentiate between vector
and scalar filter traces.
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Figure 5.10 Normalized mesh plots showing the effect of measurement noise on filter per-
formance. (a) True object realization, object support constraint dimension
W = 8 pixels, (b) mean object, (c) PSF, pupil size D, = 6 pixels, (d) de-
tected image, K = 500 photoevents (SNRk = 22, SNR = 14), (e) scalar filter
estimate, (f) vector filter estimate.

5-17



0 .8,

0.6.,

S0.4-,

S0.2,

0

35
30

25" 40

201 30
' .os15" 20

10'

0 0

Figure 5.11 Mean object used to generate the random OTF data (W = 10 pixels).

5.4 Random OTF Due to Atmospheric Turbulence

In this section, the OTF is random and associated with atmospheric turbulence. Since

our objective here is to study the effect of turbulence on the vector Wiener filter, the object

support constraint is fixed at W = 10 pixels and the images are photon-limited (a, = 0

electrons per pixel). Figure 5.11 gives the mean object associated with this constraint. All

data in this section is based on a 32 x 32 image array. A priori knowledge of the imaging

scenario is assumed in all cases. Therefore, perfect knowledge of the OTF statistics 1 -d and

R-HH is available. However, no knowledge is assumed about the individual OTF realizations.

Within the Monte Carlo simulation, a random OTF is generated via Eq. (2.17) using

the von Karman statistics and a Fourier series-based phase screen generator [89]. The pupil

plane residual phase aberration 0r(x, y) is due to tilt-removed distortions. Thus, a rudimen-

tary, first order AO system is simulated. The OTF statistics were collected by repeatedly

creating independent, random OTF realizations using the phase screen generator, removing

tilt, and then averaging over an ensemble of size 10000. The optical system pupil is square

with dimension D. Fried's parameter r, is used to indicate turbulence strength [23]. Four

turbulence strength cases are examined using D/r, = 1, 2,4, and a diffraction-limited OTF.

The ratio between the turbulence outer scale L, and r, is fixed at L0 /r, = 100. Thus, the

largest turbulent eddies are two orders of magnitude larger than the seeing cell size. Figure
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5.12 gives tilt-removed OTF statistics as a function of the radially averaged spatial frequency

variable p for the cases noted above. The normalized spatial frequency p = 1 is associated

with the diffraction-limited cutoff of the optical system as before.

Recall the vector and scalar Wiener filter expressions given in Eqs. (4.28) and (4.40).

Here, it can be seen that the mean OTF plays a key role in selecting the amount of data infor-

mation in the final reconstructions. As the OTF is attenuated, performance will be degraded

as the filters rely on the object model to recover spatial frequencies [12,13]. Increasing OTF

variance should also degrade filter performance. A metric is needed to combine information

about the OTF mean and variance into a single quantity. OTF SNR is defined as

SNR.(u, v) = V(uv)] (5.11)VVar['H(u, v)]

Figure 5.13 gives SNRH as a function of the radially averaged spatial frequency variable p.

Notice when D/r = 4, SNRW(p) < 1 across a broad band of spatial frequencies. In contrast,

SNRH(p) > 1 out to the diffraction-limited cutoff of the optical system in the other cases.

This observation will be useful in predicting filter performance with regard to the results

given below.

As noted earlier, our primary objective is to investigate the performance of the vector

Wiener filter with regard to atmospheric turbulence. However, some performance trends

associated with light level should be noted. Figure 5.14 gives the vector Wiener filter nor-

malized average MSE versus K for the four turbulence strength cases. Both vector and

scalar Wiener filter data are presented for comparison. As expected, MSE increases as light

level decreases [14]. In cases where more light is available, the randomness associated with

atmospheric turbulence is the dominant effect. Also note the performance degradation be-

tween D/ro = 2 and 4. This trend is also expected based on the increased attenuation of the

mean OTF and increased OTF variance as shown in Fig. 5.12. However, the relative size of

the increase in MSE shown in Fig. 5.14 seems to separate D/ro = 4 from the other cases.

Two questions naturally arise from this observation:
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Figure 5.12 Tilt-removed OTF statistics due to atmospheric turbulence versus radially
averaged spatial frequency p (von Karman turbulence statistics Lo/r = 100,
D/ro = 1, 2, and 4). (a) Mean, (b) variance. The OTF due to diffraction is
provided as a reference to the reader in (a).
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Figure 5.13 Tilt-removed OTF SNR, SNRH(p), due to atmospheric turbulence versus radi-
ally averaged spatial frequency p (von Karman turbulence statistics L,/r, =
100, D/r,0 = 1, 2, and 4). Note that SNRH(p) < 1 when p > 0.3 in the
D/r,0 = 4 case.
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limited OTF and D/ro - 1, 2, and 4. The v and s designators differentiate

between vector and scalar Wiener filter traces.

1. Is there a limit to how much GTE randomness the vector Wiener filter can handle

before performance is severely degraded?

2. Can SNRM be used to predict vector Wiener filter performance?

To address the questions posed above, consider the normalized MSE at individual spa-
tial frequencies. Figure 5.15 shows radially averaged normalized MSE for the four turbulence

strength cases under high light level conditions (K =10000 photoevents). In general, the

normalized MSE associated with both filters increases as p increases. This trend is due to

the attenuation of the OTE and increased noise effects at high spatial frequencies. However,

note the jump in MSE that occurs when p 0.2 to 0.4 in the D/r0 = 4 case. Return-
ing tethat SNR(p) falls below one when p 0.3 for this case. In

contrast, the other three turbulence strength cases exhibit a much more gradual increase

in MSE with p. Thus, the vector Wiener filter seems to perform differently with respect

to MSE when SNR(p) < 1. Also, note that the scalar Wiener filter seems to follow the

same trends except that its performance is more degraded. The vector Wiener filter has a
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Figure 5.15 Normalized MSE, e (p)/eD(p) and s (p)/eD(p), for the diffraction-limited
OTF and D/ro = 1, 2, and 4 (K = 10000 photoevents). The v and s designa-
tors differentiate between vector and scalar Wiener filter traces. Filter MSE
performance is severely degraded at radial frequencies p where SNRH(p) < 1
in the D/ro = 4 case.

particular advantage at high spatial frequencies due to interpixel averaging provided by the

object statistical model.

Now consider a change in light level. Figures 5.16 and 5.17 provide the same data as

Fig. 5.15 except light level has been drastically reduced (K = 1000 and 500 photoevents,

respectively). Thus, MSE has increased across most spatial frequencies. However, the general

trends with respect to SNRH(p) remain. SNRi(p) = 1 is a relevant performance indicator

for this object class, even at low light level.

Let us now examine the MSPE performance of the filters with respect to atmospheric

turbulence and shot noise. Figures 5.18 and 5.19 provide p2 traces plotted versus radially

averaged spatial frequency p. The vector Wiener filter produces reconstructions with less

MSPE due to superresolution and Fourier data variance reduction associated with the a priori

object statistics. As with the MSE above, note the substantial jump in MSPE in Fig. 5.18
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5-24



2.5

'2- Dfro 47- I v*

1.5 ,

S.-.- / s. -- - - - -

..../.

. / /
CS,' / / /

/ /

I / ,

I I Iu r =]

:,, . .::::: .... v Diffraction Limit

0 0.2 0.4 0.6 0.8

Normalized Radial Frequency, p

Figure 5.18 MSPE data W 2 (p). Turbulence strength traces (K =10000 photoevents).

The v and s designators differentiate between vector and scalar Wiener filter

traces.

between turbulence strength cases Dro = 2 and 4. In this plot, =10000 photoevents,

which represents a high light level. This observation lends additional support to the use

of SNRH(p) as a performance indicator for the vector Wiener filter. Figure 5.19 shows the

same type of data except light level is varied and Dlro = 2. Light level has a minimal effect

on V2(p) when K=10000 and K=5000 photoevents. Once again, the vector Wiener filter

provides superior performance across all cases. However, the greatest performance gains are

associated with spatial frequencies where SNRH(p) > 1.

Figure 5.20 shows detected image and filter outputs when D/ro -- 4 and K=1000

photoevents. The scalar filter simply smoothes the atmospheric turbulence-degraded data in

(e). In contrast, the vector Wiener filter produces a sharper and better resolved reconstruc-

tion in (f). These image realizations illustrate a superior reconstruction even when filter

performance has been degraded due to the strength of the atmospheric turbulence.
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Figure 5.19 MSPE data W 2(p). Light level traces (D/r, = 2). The v and s designators
differentiate between vector and scalar Wiener filter traces.

5.5 Summary

Binary star simulation results show that the vector Wiener filter provides superior

reconstructions when compared to the scalar Wiener filter for non-stationary object ensem-

bles. Comparisons were conducted while varying the object support constraint dimension

W, the support of the OTF, and the measurement noise level. In addition, a superreso-

lution capability of the vector filter was illustrated by examining performance beyond the

OTF cutoff frequency. Vector Wiener filter performance was also studied for photon-limited

images degraded by atmospheric turbulence. Random OTFs associated with tilt-removed

atmospheric turbulence cases were generated using a Fourier series-based phase screen gen-

erator [89]. This experiment was the first application of complete OTF correlation statistics

to the reconstruction of turbulence-degraded images [12, 13]. Comparisons were conducted

while varying the turbulence strength and light level. The vector Wiener filter was superior

to the scalar Wiener filter with respect to normalized MSE and MSPE across all cases exam-

ined. However, substantial performance degradation was noted at spatial frequencies where
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Figure 5.20 Normalized mesh plots showing the improved performance characteristics of
the vector Wiener filter on photon-limited binary star objects degraded by
atmospheric turbulence. (a) True object realization, (b) mean PSF (D/ro =
4), (c) random PSF, (d) detected image (R = 1000 photoevents), (e) scalar
filter estimate, (f) vector filter estimate.

5-27



SNRH(p) < 1. Finally, individual filter output realizations were presented to demonstrate

vector Wiener filter capabilities graphically.

The object irradiance distribution was assumed to be a random process with known

first and second order Fourier domain statistics. Clearly, the vector Wiener filter is not

applicable in situations in which no information is available about the type of objects to be

imaged. The next chapter investigates the performance and robustness of the vector Wiener

filter for generalized object and OTF statistical models. The objective is to study conditions

under which the new filter is most useful.
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VI. Vector Wiener Filter Performance and Robustness Study

6.1 Introduction

In Chapter V, vector Wiener filter performance was investigated for an important as-

tronomical object class, the binary star pair. In that case, the new filter outperformed the

scalar Wiener filter over a wide range of imaging conditions. However, these conclusions

are limited since only binary stars and optical transfer functions representing atmospheric

turbulence were examined. In this chapter, performance and filter robustness will be inves-

tigated for generalized object and optical transfer function (OTF) models. The objective

is to draw conclusions about the application of the vector Wiener filter in general imaging

scenarios. The following questions are of primary interest:

1. How do the object statistics limit filter performance?

2. How do the OTF statistics limit filter performance?

3. How robust is the vector Wiener filter to errors in the object statistical model?

The statistical models and resultant mean square error (MSE) data are based on a 16 x 16

pixel image array in all cases.

This chapter is organized as follows. Section 6.2 presents the object and OTF general-

ized statistical models. Section 6.3 reviews the filter expressions and relevant MSE metrics.

Section 6.4 gives performance data as key object and OTF model parameters are varied.

Here, all statistical models are assumed to be accurate and known. Section 6.5 gives ro-

bustness data when error is introduced to key object model parameters. Finally, Section 6.5

summarizes the chapter and highlights the major conclusions.

6.2 Generalized Models

To pursue this study, object and OTF statistical models are used which can represent

a variety of imaging scenarios. These models are based on parameters that control the mean

and covariance of the respective random process. The discussion below defines object and

OTF generalized statistical models, key parameters, and supporting assumptions.
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6.2.1 Object. An object statistical model for use in the vector Wiener filter is

defined by the Fourier domain mean and covariance, denoted O(u, v) and Coo(u, v; u', v'),

respectively. However, Fourier domain quantities can be difficult to visualize. Thus, the

generalized object model used in this study is defined via the image domain statistics 5(x, y)

and C0o(x, y; x', y'). These quantities are then transformed to the Fourier domain using the

vector-matrix expressions [64]

U = F(6.1)

and

Coo= FCooFH, (6.2)

where 0 and U are P x 1 ordered column vectors representing Fourier and image domain mean

objects, respectively; Coo and C,, are P x P Fourier and image domain object covariance

matrices, respectively; F is the P x P Fourier transformation matrix; H denotes a matrix

Hermitian transpose; and P is the total number of pixels in the image array. An arbitrary

element of the matrix F is defined as [64]

Y(x,y;u,v)=exp j N (UX+vY) (6.3)

where an N x N square detector array is assumed and N = Vl-.

With the relationship between image and Fourier domain statistics defined, the follow-

ing important question remains: "What is a representative object model?" In general, the

mean object provides low spatial frequency information about the object class. A Gaussian

function, centered at the origin, can represent this low pass characteristic. As noted in the

previous chapter, support constraints have been widely used in image reconstruction algo-

rithms [41, 54]. A mean object based on a Gaussian function and incorporating a support

constraint can be written as

exp{-7 ((x2 + y')/cowo)} (x, y) E support region
-5(x, y) 0 0 (6.4)

0 else
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Figure 6.1 Mesh plots showing mean object, -(x, y), for mean object width parameter,
w, = 0.5. Support constraint dimension (a) W = 10 pixels, (b) W = 16 pixels.

where the support region is a W x W pixel rectangular area in the center of the image array,

ao, is a mean object normalization constant, and wo is the mean object width parameter.

The mean object normalization constant was chosen such that the e-1 width of the Gaussian

function is N/2 pixels when w, = 0.5. In addition, the mean object is normalized such that

E'(x,y) = 1000, (6.5)
X~y

which is associated with an average photon count K = 1000 photoevents and a moderate

light level as noted in Chapter V. Figure 6.1 illustrates this mean object model for w, = 0.5.

The support constraint dimension is W = 10 pixels in (a) and W = 16 pixels in (b).

Clearly, the object covariance will vary widely depending on the particular imaging

problem. However, standard image covariance models do exist [41]. The object covariance

used in this study is based on a two dimensional, first order Markov model and is defined as

o- = (x, y)o,(x', y')p' (x, y) and (x', y') E support region{0 elseC"(,y; X', y') = 1, es (6.6)

where uo(x, y) is the object standard deviation at the pixel (x, y), Po is the object correlation

coefficient, and d = (x - x') 2 + (y - y,)2 is the Euclidean distance between arbitrary pixels.
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Table 6.1 Object Model Parameters

Parameter Description Default High Low
W Support Dimension 10 16 N/A
wo Mean Width 0.5 0.9 0.1

SNRo Image Domain SNR 2 or 5 10 0.5 or 2

Po Correlation Coefficient 0.5 0.9 0.1

The object standard deviation o-0(x, y) is determined based on an image domain signal-to-

noise ratio (SNR) metric such that

Oro(X) = -5(x, y)/SNRo (x, y) E support region (6.7){(0 else

where SNRo is assumed to be uniform across all object pixels. The incorporation of a support

constraint in the model ensures that the object covariance is non-stationary. The object

covariance is also controlled by the SNRO and po parameters. As SNRO increases, the model

provides more precise information about the object realizations. As Po --* 1, the object pixels

are more highly correlated. Table 6.1 lists the key object model parameters including values

which represent high, low, and default cases in the performance and robustness studies.

6.2.2 Optical Transfer Function. The object statistics described in the previous

section are directly dependent on model parameters as listed in Table 6.1. Once the object

model parameters are selected, the mean and covariance are transformed to the Fourier

domain as described in Eqs. (6.1) and (6.2). A similar model is also required for the OTF.

In this case, the statistics will be defined directly in the Fourier domain. Both the mean and

covariance elements are assumed to be real numbers. This assumption is consistent with an

OTF ensemble representing imaging through atmospheric turbulence [74].

The mean OTF is a low pass filter which attenuates high spatial frequencies, yielding

a blurred image. As noted above, this characteristic can be represented using a Gaussian
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Figure 6.2 Mesh plot showing the mean OTF, 1(u, v), for mean OTF width parameter,
wH = 0.5.

function. Thus, the mean OTF is defined as

W(u, v) = exp {-7r ((u2 ±v2)/aHwH)}, (6.8)

where aH is a mean OTF normalization constant and wH is the mean OTF width parameter.

As with a, above, aH was chosen such that the e-1 width of the Gaussian function is N/2

pixels when wn = 0.5. Figure 6.2 illustrates the mean OTF when wH = 0.5.

The OTF covariance model is the same as the object covariance model without a

support constraint. Thus, CH.i(u, v; u', v') is defined as

CX-t(u, v; u', v') = o'H(u, v) UN (u', v') pd, (6.9)

where orH(u, v) is the standard deviation of the OTF at the spatial frequency (u, v), pH is the

OTF correlation coefficient, and d = (u - u')2 + (v - v') 2 measures the relative distance

between arbitrary spatial frequencies. In the previous chapter, the OTF SNR, SNRH, was

used to predict performance limits associated with processing binary star images collected

through atmospheric turbulence. One objective of this chapter is to study performance

further with respect to the SNRH metric. Thus, SNRH will be used to define the OTF
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standard deviation in Eq. (6.9) via a simple manipulation of Eq. (5.11) which yields

IR(u, V) 1(6.10)
SNR-H(u, v)

As illustrated in Fig. 5.13, a realistic SNRH function is infinite at (u, v) = (0, 0) which reflects

a non-random DC value. The function then rolls off to a smaller value at a higher spatial

frequency depending on the attenuation of 7(u, v) and the relative value of oa(u, v). For the

purposes of this study, it is assumed that arn(u, v) < 1 for all spatial frequencies (u, v). This

assumption is consistent with a realistic random OTF realization as defined in Eq. (2.17).

Based on these characteristics and assumptions, SNRH is modeled via the function

SNR(u,v) + (u,v), (6.11)SN~nu, ) -u2 + V2

where PH is an OTF SNR normalization constant and pH is an OTF SNR roll-off parameter.

The OTF SNR normalization constant & was chosen such that Eq. (6.11) is unity at one-

half the maximum radial frequency when p% = 0.5. Thus, /n controls the spatial frequency

at which SNRH falls below unity as illustrated in Fig. 6.3.

Table 6.2 lists the key OTF model parameters including values which represent high,

low, and default cases in the performance and robustness studies. The default value wH = 0.5

represents moderate attenuation of the object high spatial frequencies by the mean OTF.

OTF covariance associated with the default values pH = 1.0 and pH = 0.5 represent moderate

randomness and correlation. The term moderate refers to blur imposed by imaging through

the turbulent atmosphere under good seeing conditions. This information, as well as the

object parameters in Table 6.1, are an important reference to the reader with respect to the

performance data given in Section 6.4. The next section reviews the filter expressions and

relevant MSE metrics used in Sections 6.4 and 6.5.

6.3 Filter Expressions and Mean Square Error Metrics

As noted in the previous section, the mean object photon count is fixed at K = 1000

photoevents. The impact of changing light level is well understood, based on the data and
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Figure 6.3 OTF SNR, SNRH, versus radial spatial frequency, p. The OTF SNR roll-off
parameter, pH, controls the spatial frequency at which the SNRH function falls
below unity.

Table 6.2 Optical Transfer Function Model Parameters

Parameter Description Default High Low
wW Mean Width 0.5 0.9 0.1
An SNR Roll-Off 1.0 3.0 0.1
P_ Correlation Coefficient 0.5 0.9 0.1
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discussion in Chapter V. Thus, light level is not a variable in these studies and a general

form of the vector Wiener filter, defined as

0 = RoO d f{Roo G RH + RNN} 1 D, (6.12)

is applicable. Equation (6.12) is equivalent to Eq. (4.28) since Roo, - Roo/(K) 2. All image

realizations are assumed to be photon-limited for these studies. Thus, a, = 0 electrons per

pixel and an arbitrary element of the Fourier domain noise autocorrelation matrix is

RNN(U, v; u', v') = !?(u - u', V - - U', v - v'). (6.13)

The analogous scalar Wiener filter is defined via Eq. (4.40) as before.

In Chapter V, two MSE metrics were used to compare the performance of the vector

and scalar Wiener filters. In this chapter, only average MSE is used. This approach supports

efficient presentation of large amounts of data. Thus, in this chapter, the term MSE refers

exclusively to average MSE as defined in Eq. (5.4). The required theoretical error correlation

matrices are generated using Eqs. (4.39), (4.41), and (4.42). In addition, vector Wiener filter

MSE is normalized with respect to the scalar Wiener filter and detected image MSE. As in

Chapter V, the subscripts V, S, and D denote MSE associated with the vector Wiener filter,

scalar Wiener filter, and detected image, respectively.

6.4 Performance Study

The objective of this study is to establish quantitative limits on vector Wiener filter

performance as key object and OTF model parameters are varied to represent a variety of

imaging conditions. Here, all statistical models are assumed accurate and known without

error as the parameters change. In other words, the filters have knowledge of the true imaging

scenario and are adjusted accordingly. Section 6.4.1 outlines the important assumptions

associated with this work while Section 6.4.2 presents both object and OTF model data.
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6.4.1 Assumptions. There are two additional assumptions associated with the

object and OTF statistical models which pertain to the performance study. First, the mean

object width parameter is fixed at w, = 0.5. This assumption is valid since a change in mean

object size in the image domain can be viewed as altering the optical system magnification.

Second, the mean OTF width parameter is fixed at w- = 0.5 for all performance study data.

The role of the mean OTF in filter performance is relatively straightforward as established

in Chapter V. Thus, the second order statistical quantities are of primary concern in this

study.

6.4.2 Data. Based on the assumptions noted above, this study will concentrate on

object and OTF statistical model parameters which impact the covariance. The important

object parameters are the support constraint dimension, W, the SNR parameter, SNRo, and

the correlation coefficient, Po. The following plots will illustrate typical vector Wiener filter

performance for a variety of imaging conditions.

Figure 6.4 shows vector Wiener filter MSE, normalized with respect to the scalar

Wiener filter MSE, as a function of the support constraint dimension, W. Here, P. = 0.5

and the OTF is non-random (SNRN = oo for all spatial frequencies (u, v)). The data shows

that vector filter normalized MSE increases as W increases and SNRo decreases. In Chapter

V, it was shown that a rectangular support constraint has an important impact on vector

filter performance for binary star pairs. Support constraints provide variance reduction

by maintaining Fourier domain correlations in the data which provide weighted interpixel

averaging [54]. This data clearly illustrates the value of interpixel averaging in improving

vector filter MSE when object SNR is low. In the SNRo = 2 case, performance improvement

over the scalar filter is less than 10% when no support constraint is used. When W = 8

pixels, this factor improves to more than 20%. Also note the importance of SNRo on vector

filter MSE. Figure 6.4 shows that the vector filter provides over 40% less MSE than the

scalar filter when SNRo = 10 and no support constraint is used.

Figure 6.4 illustrated the importance of object support on filter MSE performance,

especially when W is small. Many objects cannot be confined to a small support region and

are better represented by a larger W value. Thus, the support constraint dimension is fixed
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Figure 6.4 Normalized average MSE, 4y/As, versus support constraint dimension, W, po =
0.5. The OTF is non-random (SNRH = o for all spatial frequencies (u, v)).

at W 10 pixels for the remaining data plots to represent a typical object class. Figure

6.5 gives normalized MSE as a function of the object SNR parameter, SNRo. Once again,

the OTF is non-random (SNR- = co for all spatial frequencies (u, v)). First, consider the

MSE normalized with respect to the scalar filter in (a). Here, vector filter MSE approaches

to within 10% of the scalar filter when po = 0.1. Note that the normalized MSE begins to

decrease slightly when SNRo < 2 and Po = 0.1 or 0.5. When SNR, > 2, both filters perform

well, with the vector filter providing greater MSE improvement as SNRo increases. When

SNRo < 2, MSE increases significantly for both filters, but the scalar filter performance

degrades faster than the vector filter. Thus, the object spatial SNR provides a natural per-

formance threshold in these cases. The data in (a) also shows that a high object correlation

coefficient can have a substantial effect on MSE. When po = 0.9, the vector filter offers

approximately 20% more MSE improvement over the scalar filter than in the po = 0.1 or

0.5 cases. In (b), the MSE is normalized with respect to the detected image. In almost all

cases, the vector filter provides at least 20% improvement. As in (a), the MSE decreases

when SNRo < 2 and Po = 0.1 or 0.5. Here, the detected image MSE is increasing much
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faster than the vector filter MSE. In general, the vector Wiener filter provides the best MSE

performance when SNRo > 2 and Pa is high. This MSE improvement can be as much as 80%

over the scalar filter and 90% over the detected image when SNRo = 10.

Now consider Fig. 6.6 in which normalized MSE is presented specifically as a function

of the object correlation coefficient, P,. As before, the OTF is non-random (SNRH = c

for all spatial frequencies (u, v)). The data in (a) is normalized with respect to the scalar

filter. Note that P, = 0.9 provides 20-30% improvement over p0 = 0.1 regardless of the SNRo

case. Also, the object correlation coefficient seems to provide the greatest MSE performance

boost over the scalar filter when P, > 0.5. In (b), the vector filter MSE data is normalized

with respect to the detected image. The plot shows that P, has the most impact on MSE

performance when SNRa is low. High object SNR reduces the relative contribution of the

object covariance function, Ca(x, y; x', y'), to the object correlation function, Raa(x, y; x', y').

Hence, Pa has little effect on vector filter MSE when SNRo = 10 in (b). In general, low

object SNR and Pa > 0.5 are conditions under which the object correlation coefficient has

the greatest effect on filter MSE performance.

For the object model parameters investigated above, the OTF was non-random (SNRW =

cc for all spatial frequencies (u, v)). Now consider a random OTF and investigate filter MSE

performance with respect to the OTF model parameters. The key parameters in this case

are the OTF SNR roll-off parameter, ,i%, and the OTF correlation coefficient, pH. Figure

6.7 presents MSE as a function of the OTF SNR roll-off parameter, P-H. In (a), the vector

Wiener filter MSE data is normalized with respect to the scalar filter with the object model

parameters fixed at the default values (W = 10 pixels, SNRa = 2, Pa = 0.5). Note that

vector filter MSE performance improves greatly when ILH decreases below 0.5. In fact, the

vector filter MSE drops by approximately 50% in this case. At first glance, the data in (a)

would seem to indicate that low OTF SNR improves filter MSE performance. In reality,

both vector and scalar filters experience an increase in MSE as pg falls below this threshold.

However, the scalar filter MSE increases more dramatically than the vector filter MSE as

shown via the raw MSE data in (b). Here, only the pH = 0.5 case is shown. The vector
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Figure 6.6 Normalized average MSE, (a) 7v/js, and (b) T2/ejD, versus the object correla-
tion coefficient, Po. The object support constraint dimension is fixed at W = 10
pixels. The OTF is non-random (SNRH = oc for all spatial frequencies (u, v)).
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Wiener filter is able to maintain much better performance for low OTF SNR due to the a

priori object information provided by the statistical model.

Now consider the same type of data in Fig. 6.8 in which the object model parameters

are now less favorable to vector filter processing (W = 16 pixels, SNRo = 0.5, Po = 0.5) and

Pn= 0.5. As before, the vector filter MSE data is normalized with respect to the scalar filter

in (a). Note that the MSE still decreases for low p values. However, the effect is minimal

compared to the previous plots. As shown via the raw data in (b), the vector filter MSE

increases just as fast as the scalar filter with decreasing p-H. In this case, the object spatial

SNR is below the performance threshold established earlier and the support constraint has

been removed. Thus, the object model cannot compensate for the increased randomness

in the OTF. In general, the vector Wiener filter provides the best MSE performance when

pn > 0.5. This performance threshold corresponds with the OTF SNR function falling

below unity at normalized radial frequency p = 0.5. Thus, this data seems to be in general

agreement with the binary star data in Chapter V. For a typical object class, vector Wiener

filter MSE increases dramatically when SNRh falls below unity at the mid and high spatial

frequencies.

In Fig. 6.7 (a), changing the OTF correlation coefficient seemed to have little impact

on filter MSE. This performance trend is confirmed in Fig. 6.9 in which normalized MSE is

given versus the OTF correlation coefficient, ph. In (a) and (b), the vector Wiener filter MSE

is normalized with respect to the scalar filter and detected image, respectively. Regardless

of the pH value, the plot traces are almost flat. This performance is relatively consistent

across a variety of object classes. Thus, pH has minimal impact on filter performance.

6.5 Robustness Study

In some applications, the statistical models may only approximate the true imaging

scenario. This situation is usually caused by a lack of a priori knowledge about the problem,

especially with regard to the object model. The objective of this study is to investigate the

robustness of the vector Wiener filter to error in key object model parameters. The required
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Figure 6.7 (a) Normalized average MSE, 7v/js, and (b) raw average MSE data, 7v, versus
the OTF SNR roll-off parameter, pH. Object model parameters: W = 10
pixels, SNRo = 2, Po = 0.5.
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the OTF SNR roll-off parameter, pN. Object model parameters: W = 16
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6-17



theoretical error correlation matrix can be written as

H H MH
R, = Roo - MWROD - RODM w + MwRDDM,) (6.14)

where Roo, ROD, and RDD are based on the true model parameters. The filter transforma-

tion matrix M, is dependent on the corrupted model parameters. The rest of the section is

outlined as follows. Section 6.5.1 gives the important assumptions associated with this work

while Section 6.5.2 presents the data.

6.5.1 Assumptions. There are several additional assumptions associated with the

object and OTF statistical models which pertain to the robustness study. First, it is assumed

that the OTF model is known with reasonable accuracy. Thus, only the object model

parameters are studied. This assumption is valid since an ensemble of bright star images is

often used to obtain an accurate estimate of the atmospheric-optical system OTF for use in

linear deconvolution [72,74]. These same point source images could also be used to estimate

the OTF SNR. Therefore, the mean OTF width parameter and OTF correlation coefficient

are fixed at wN = 0.5 and pH = 0.5, respectively. Second, the object support constraint

dimension and the mean object width parameter are fixed at W = 10 pixels and w, = 0.5,

respectively. Here, it is assumed that these parameters are also known with reasonable

accuracy. Thus, this robustness study will concentrate on the object SNR parameter, SNRo,

and the object correlation coefficient, po. These parameters are associated with the object

covariance. It is this part of the object statistical model that may not be readily available

in some imaging applications. Finally, percent error is used as an independent variable in

the study. This metric is defined as

Percent Error = (Pw Pt) X 10, (6.15)

where pw is the corrupted model parameter and Pt is the true model parameter. In all

cases shown below, the true parameter values are SNRo = 2 and p, = 0.5. Percent error is

displayed from -100% to +100% in all cases. When the normalized MSE is unity, the vector
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Wiener filter provides the same MSE as the scalar filter or detected image for that error

magnitude.

6.5.2 Data. First, consider error in both the object SNR parameter, SNR0 , and the

object correlation coefficient, po. Figure 6.10 gives normalized MSE as a function of percent

error in both SNRo and Po. As in the previous study, the vector filter MSE is normalized with

respect to the scalar filter in (a). Notice the substantial difference in performance between

the W = 0.1 and In = 1.0 and 3.0 traces. This difference is associated with the OTF

SNR performance threshold first established in Fig. 6.7. Clearly, vector filter performance

degrades as error is introduced into these parameters. In fact, the MSE performance ratio

between vector and scalar filters is greater than 90% when the error magnitude is greater

than 60% in the /IH = 1.0 and 3.0 cases. Now consider the vector filter MSE normalized with

respect to the detected image in (b). The performance trends here are similar to (a) except

the filter MSE is much larger when the parameters are underestimated in the gL = 1.0 and

3.0 cases.

The previous plots revealed the sensitivity of the vector Wiener filter to simultaneous

error in the two key parameters which control object covariance. Figures 6.11 and 6.12 show

vector filter normalized MSE for error in only one parameter. In both figures, the plot at (a)

is normalized with respect to the scalar filter and the plot at (b) is normalized with respect

to the detected image. In each plot, only the ILH = 1.0 case is shown. Clearly, the SNRo

parameter generates the largest proportion of the MSE shown in Fig. 6.10. Thus, SNRo is

more sensitive to error than po. In fact, Fig. 6.12 shows that error in the po parameter never

degrades vector filter performance such that the normalized MSE is greater than unity.

6.6 Summary

In this chapter, filter performance and robustness were investigated for generalized

object and OTF models. The objective was to draw quantitative conclusions about the

application of the vector Wiener filter in general imaging scenarios. The performance study

involved examining vector and scalar filter MSE performance as key statistical model param-

eters were varied. In all cases, the model parameters were assumed known without error.
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Figure 6.10 Normalized average MSE, (a) 2 and (b) T2r/eD, versus percent error
in the object SNR parameter, SNRo, and the object correlation coefficient,
Po. OTF model parameters: w- = 0.5, pH = 0.5. True parameter values:
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In contrast, the robustness study involved introducing error to the filter-assumed object

statistical model.

The results of the performance study showed that vector Wiener filter MSE perfor-

mance can be limited by both object and OTF statistical models. An object support con-

straint is extremely advantageous to vector filter processing since interpixel averaging is

enhanced. The object SNR parameter, SNRo, and the object correlation coefficient, pa, pro-

vide a fundamental limit on filter MSE. When SNRo < 2 and Pa < 0.5, the vector filter

provides only marginal improvement in MSE over that of the scalar filter. However, P, > 0.5

can help compensate for low object SNR in many cases. The OTF SNR can also provide

a limit on filter MSE performance for some object classes. In these cases, the OTF SNR

roll-off parameter, pH, must be large enough to boost the OTF SNR above unity at the mid

spatial frequencies. For the data shown here, the vector Wiener filter provides the best MSE

performance when [N > 0.5. However, the vector Wiener filter can continue to perform well

below this OTF SNR threshold if the object SNR is high. Finally, it was shown that the

OTF correlation coefficient, PN, has minimal impact on filter normalized MSE.

The robustness study investigated the effect of error in the filter-assumed object model

parameters. These results showed that the vector Wiener filter is less robust than the

scalar Wiener filter with respect to these errors. This effect was anticipated, since the

vector filter better exploits the real world information about the imaging scenario provided

by more detailed statistical models. In general, simultaneous error in the SNRo and P,

parameters resulted in marginal performance improvement over the scalar filter when the

error magnitude was greater than 60%. The greatest impact on performance was associated

with error in the object spatial SNR.
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VII. Conclusions and Recommendations

7.1 Major Results

The major results of this research effort are the following:

1. Development of a new constrained least squares (CLS) algorithm for deconvolution

from wavefront sensing (DWFS) processing of low light images.

" Computationally inexpensive. In all cases examined, the Newton-Raphson itera-

tion converged to a solution in less than 10 iterations.

" Shot noise imposes the fundamental performance limit.

2. Derivation of a new vector Wiener filter incorporating the semi-classical model of pho-

toelectric light detection.

" Yields superior reconstructions with respect to mean square error (MSE) and

mean square phase error (MSPE) when compared to the scalar Wiener filter for

binary star objects.

" Provides superresolution when the object's Fourier domain statistics are known

for spatial frequencies beyond the optical transfer function (OTF) cutoff.

3. Quantitative results showing the performance and limitations of the vector Wiener

filter when applied to binary star images degraded by atmospheric turbulence.

" First application of second order OTF statistics between different spatial frequen-

cies in a Wiener filter.

" Filter MSE performance degraded for spatial frequencies at which the OTF signal-

to-noise ratio (SNR) is less than unity.

4. Quantitative results showing performance limits on the vector Wiener filter associated

with generalized object and OTF models.

* The object SNR parameter, SNRo, and the object correlation coefficient, po, pro-

vide a fundamental limit on filter MSE. When SNRo < 2 and Po < 0.5, the vector

filter provides only marginal improvement in MSE over the scalar filter.
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e For a typical object class, the OTF SNR must be above unity for normalized

radial frequencies p > 0.5.

5. Quantitative results showing the robustness of the vector Wiener filter with respect to

object model error.

" Simultaneous error in the object SNR parameter, SNRo, and the object correlation

coefficient, Pa, resulted in marginal performance improvement over the scalar filter

when the error magnitude was greater than 60%.

" The greatest impact on vector Wiener filter performance was associated with error

in the object spatial SNR.

7.2 Discussion

The previous chapters introduced two new linear reconstruction techniques which com-

plement existing linear filters and more intensive iterative optimization schemes. The first,

CLS incorporating wavefront sensing, is practical for large image arrays and easy to ap-

ply when wavefront sensor (WFS) hardware is available. The algorithm is fundamentally

limited by shot noise effects in the phase estimates. In addition, the CLS algorithm tends

to underestimate the regularization constant for small data ensembles (< 50 images). The

second technique, a new vector Wiener filter, offers superior performance over the existing

scalar Wiener filter for non-stationary image ensembles. However, computational complex-

ity severely limits the practical application of this filter, since reconstruction of an N x N

array involves the inversion of an N2 x N2 matrix. For a 256 x 256 image array, this means

inversion and storage of a 65536 x 65536 matrix! For the vector Wiener filter to be widely

applicable, methods must be found to speed the computational process and reduce memory

requirements. The next section offers some ideas for future work related to these limitations.

7.3 Recommendations for Future Work

Two primary areas remain to be explored with regard to these linear filter schemes.
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7.3.1 Alternate Constraint Functions. In Chapter III, the Fourier domain con-

straint function C(u, v) = 1 was used in the CLS algorithm such that the manual regular-

ization constant e and the inverse of the Lagrange multiplier -y were equivalent. Alternate

constraint functions, such as the two dimensional Laplacian or a support constraint, should

be investigated. A different constraint function may provide better algorithm performance

for smaller ensemble sizes.

7.3.2 Sparse Matrix Tools. In many cases, the object, OTF, and noise correla-

tion arrays may be well approximated by relatively sparse matrices. A sparse matrix is a

special class of matrix that contains a significant number of zero-valued elements [53]. This

important property leads to:

1. Reduced memory requirements since only the non-zero entries and their locations in

the original matrix need be stored.

2. Reduced computation time by eliminating operations on zero elements.

MATLAB supports sparse matrix computations, including a number of iterative methods for

solving simultaneous linear equations [53]. These techniques could be applied to the vector

Wiener filter solution to expand the practical computational limits of the filter.
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Appendix A. Derivation of Key Conditional Expectations

This appendix presents the derivations of two important conditional expectations in Chapter

IV. As an aid to the reader, the following additional information about the semi-classical

model of photoelectric light detection is provided.

1. The random variable K, the number of detected photoevents in an image realization,

obeys Poisson statistics and is described by the probability density function (PDF) [74]

PK(K; A)= (f f A(x, y)dx dyexp{ f f A(x,)dxd (A.1)

where A represents the area associated with an individual detector element and A(x, y)

denotes the rate function. The rate function is proportional to the noiseless image

irradiance i(x, y).

2. The random arrival location of the nth photoevent (xn, yn) has a PDF related to A(x, y)

which can be written as [74]

A(xn, yn) (A.2)
= fA A(x, y) dx dy(

The mean number of photoevents occurring in the differential area dx dy is A(x, y) dx dy

[74].

A.1 Equation (4.10)

In this section, Eq. (4.10) is derived and repeated below

Exn,ynK,'H,o O(uv) E expf{-j27r(u'xn +v'yn) = Kh*(u',v')O(u,v)O*(u',v'). (A.3)
n=1

The reader should recognize that the left side of Eq. (A.3) is the expected value of a function

of the random variable (xn, yn). Recall, that the definition of such an expectation is [62]

Ex[g(x)] = Jg(a) Px(a) da, (A.4)
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where a is a dummy variable of integration. Rewriting the left side of Eq. (A.3), using

Eq. (A.4), yields

EXYy, g,,o[*] = O(u, V) J E exp {-j27r(u'xn + v'Yn)})

X pX,Y (Xn, Yn Ig, -H,O0) dx,, dyn, (A.5)

where the * notation represents the bracketed expression in Eq. (A.3). Since both integration

and summation are linear operations, the order of Eq. (A.5) can be rearranged such that

K

EX.YnK,,OO1= O(uv)E U (J Px, (Xn, YnIKH, 0)
n=1

x exp {-j2r(u'xn + v'yn)} dxn dyn). (A.6)

The PDF associated with the photoevent arrival location was given in Eq. (A.2) above.

Substituting this expression for px,Y, (xn,ynJK, H, 0) into Eq. (A.6) yields

Exay O(ugV),\Xn, Yn)

f f A(xny) dxn _yn n=1
x exp {-j2r(u'xn + v'yn)} dxn dyn). (A.7)

The integral in the parenthesis is the Fourier transform of the rate function. If A(u, v)

denotes the Fourier transform of A(x, y), Eq. (A.7) can be written as

0(u,v) K
= f A(xn, yn) dxn dyn A*(u,v), (A.8)

where the complex conjugate of A(u', v') is introduced based on the positive sign of the

complex exponential kernel. Recall that the mean number of of photoevents occurring in the

differential area dx dy is A(x, y) dx dy. Thus, the integration over this quantity in Eq. (A.8)

is equal to the average number of photoevents per image K. Also note that A(u, v) can be

normalized such that

An(u,v) - A(u,v) (A.9)
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Thus, Eq. (A.8) now becomes

K

=xy ZK, 0O(u, v) A*(u', v'). (A.10)

Finally, recall that the rate function A(x, y) is proportional to the noiseless image i(x, y).

Thus, in the Fourier domain we can write [74]

A (u, v) = 'H (u, v)O0(u, v). (A. 11)

Making this substitution in Eq. (A.10) and noting that EK 1 can be replaced with the

variable K yields the final result as stated in Chapter IV

=xnI,, KH~* (u', v')O(u, v)O* (u', v'). (A.12)

A.2 Equation (4.20)

In this section, Eq. (4.20) is derived and repeated below

E~n,YnXm,YmK,lH,O []=(K 2 - K)On(u, v)O*(u', v')7-(u, v)z* (u', v')

+ K7-((u - u', v - v')O0,,(u - u',v - v'), (A.13)

where the o notation in Eq. (A. 13) represents the bracketed expression on the left side of

Eq. (A.14) above. Let us begin with Eq. (4.19) repeated here as

Exn)Yn,Xm,YmIK,'HO exp {-j27r(uxn - U'xm + V~n - V'Ym)

E,,YnIK,,O exp I{-j27((u - U') Xn + (V - V') Ym)}j1n~

K K
+ E~n)Yn,XmYMIK,W,O z EZ exp {-j2r(ux,, - U'Xm + vyn - ('ml A.14)

The derivation can be divided into two parts: the ni = m and n 5 m terms.
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A.2.1 n = m Term. First, rewrite the n = m term using the general expectation

definition given in Eq. (A.4) such that

K
E~n,YnK,?,On.=m = f(E exp {-j2i-((u - u')Xn + (V -'Y,,I

X px,,Y, (xiynK,]-,O0) dXn dyn. (A.15)

As in A.1 above, let us rearrange terms, substitute the rate function A(x, y) for the PDF, and

recognize that the resultant integral is the Fourier transform of A(x, y), such that Eq. (A.15)

becomes K A (u - u, v - v )( . 6
Exn,YnIK,7HOn=m = E A Y ' 'En1y l,"~o . --. (A.16)

n=1

Now writing Eq. (A. 16) in terms of the normalized Fourier domain rate function and replacing

the summation with the variable K yields

Exn,YnIK,N,On=m = KAn(u - u', v - v'). (A.17)

Finally, replacing the rate function with the OTF and object spectrum quantities gives the

n = m term

EXnYn KP,=m = K7-(u - u', v - v')On(u - u', v - v'). (A.18)

A.2.2 n =A m Term. As noted in Chapter II, one of the key assumptions asso-

ciated with the semi-classical model is that the number of photoevents occurring in non-

overlapping intervals are statistically independent [74]. Thus, we can split the joint PDF

PXn,Yn,X,,Ym(Xn, y,, Xm, Ym) into two marginal PDFs such that

Px,Yn,xm),ym (xn, Yn , Xm, Ym) = Pxn,Yn (xn, Yn) Pm,y, (Xm , Ym) . (A.19)

Using this product of marginal PDFs and writing the n : m term using Eq. (A.4) gives
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Exn~ynxm~ymIK,?iOn~m =WK - K)

" (J exp1-j2r(UXn + -VYn)}

x(J f exp { j27r(u'xm + 'v'ym)}

X Pxm 1YM(XM YM) dxmdym). (A.20)

As before, substitute the rate function A(x, y) for the PDFs and note that the integrals are

Fourier transforms which yields

Exn7Ynxm,YmIKjW)On~m =-" (K 2 - K) A(u, v)A*(uI, v') (A.21)

Finally, normalizing and replacing the rate function with the OTF and object spectrum

quantities gives the n: m term

Exn,Yn,xm,YmIK7Hn96m = (K 2 - K)On(u, V)On*(u', V')7-(u, V)H~*(uI, V') (A.22)

Now combining Eqs. (A.18) and (A.22) gives the Chapter IV result

E~nYnhxm,YmIKHo[.= (K 2 - K)On (u, V)On*(u', v')H-(u, v)H~* (u', v')

+ K7- (u - u', v -V') On(U -u', v -V'), (A.23)
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Appendix B. Detected Image Probability Density Function

In this appendix, it is shown that PDIO(D O) approaches a Gaussian distribution for large

photoevent counts K based on the Fourier domain image degradation model given in Eq. (2.7)

and repeated here as

K P

D(u, v) = exp {-j27r(uxn + vyn)} + E np exp {-j27r(uxp + vyp)}. (B.1)
n=1 p=

In general, 0 is random. Therefore, the conditional probability density function (PDF)

given a specific "realization of the random object is considered. A given realization for the

underlying optical transfer function (OTF) H is also assumed.

Let us consider the second term first and rewrite using Euler's identity [23] as

P

n, exp {-j2r(ux, ± Vyp)} = nRe[exp {-j27r(uxp + vyp)i)
p=p

+ j npIm [exp {-j27r(uxp + vyp)}]

( npCos [-27r(uxp + vyp)])

+ j ( np Sin [-27r(uxp + vyp)] .(B.2)

Now recall that the detector read noise np was assumed to be a zero-mean, uncorrelated,

Gaussian random variable with uniform variance o. Thus, the real and imaginary parts of

Eq. (B.2) are sums of scaled Gaussian random variables of the form

Re rp exp {-j27r(uxp + vyp)}1 = kin1 + k2n 2 + ... + kpnp, (B.3)

and

Im np exp {-j27r(uxp + vyp)} = ln, + 12n 2 + ... + lpnp, (B.4)
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where the real constants kp and lp are cosine and sine functions, respectively. Written in

this form, both the real and imaginary parts of the second term of Eq. (B.1) are Gaussian

distributed, since scaled sums of statistically independent Gaussian random variables are

also Gaussian distributed [30]. Thus, the complex random variable

P

E npexp {-j27r(uxp + vyp)}, (B.5)

is Gaussian distributed.

Now consider the first term of Eq. (B.1). Here, the Gaussian nature is less obvious since

the underlying PDF associated with the random arrival location (xn, yn) is not Gaussian [74].

As before, let us rewrite in terms of real and imaginary parts using Euler's identity such that

the first term of Eq. (B.1) becomes

n=1 (n=1KK

Z~~~~~~ j :Iexp {-jjr2ux + 'yn) + (Veep-~~ ± Y n)}J

(n=

E Cos [-27r(uxn + VYn)])

+ E Sin [-27r(uxn + VYn)I) (13.6)

In Chapter II, it was noted that non-overlapping photoevent arrival locations are statistically

independent based on the semi-classical model [74]. Thus, the real and imaginary parts in

Eq. (B.6) are sums of independent random variables. In fact, these quantities are the result

of large sums of independent random variables since K is on the order of 1,000 to 1,0000

for typical astronomical imaging applications. We argue that the first term of Eq. (B.1) has

an approximate Gaussian PDF based on the Central Limit theorem which can be stated as

follows [23, 62]:

Given N independent random variables xi with arbitrary PDFs (not neces-
sarily the same), we form their sum

X = X1 + X2 + ... + X,. (B.7)
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The random variable x has mean 77 = ri7 + ?72 +... + 7i, and variance a2  y + 0 ±
. + u 2 . The Central Limit theorem states that under certain general conditions,
x approaches a Gaussian distribution, with the same mean and variance, as N
increases.

When the xi are identically distributed, the general sufficient condition for application of

the theorem is that the means and variances of the random variables must be finite [23].

The sums of sines and cosines shown in Eq. (B.6) fit the requirements of the Central Limit

theorem in that the means and variances are guaranteed to be finite and K is very large for

typical applications. Ref. [62] states that n = 30 is sufficient in most applications in which

the random variables are independent and identically distributed. Thus, the first term of

Eq. (B.1)
K

E exp {-j2r(ux, + vyn)}, (B.8)
n1

approaches a Gaussian distribution for this imaging application.

Now combining the conclusions regarding the first and second terms of Eq. (B.1), it

can be seen that D(u, v) is the sum of two independent Gaussian random variables. Thus,

PDIo(DJO) is also Gaussian, since the sum of two arbitrary Gaussian random variables is

Gaussian distributed [30].
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