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PREDICTION OF ATMOSPHERIC MTF AND APPLICATION TO IMAGE
RESTORATION, BASED ON METEOROLOGICAL DATA

Fourth Quarterly Report

The Third Quarterly Report contained a statistical model for predicting size
distribution of coarse aerosols (radius > 0.16 pm) according to weather forecast. This
appiics to arid or semi-arid regions in which the soil is dry so that soil-derived
particulates are uplifted by the wind. The smaller fine particulates are then modelled
with MODTRAN or LOWTRAN 7.

A detailed comparison of aerosol MTF prediction with aerosol MTF
measurement indicates the reliability of this model is excellent, except for extreme cases
defined in The Third Quarterly Report in which the aerosol size distribution model does
not hold. Unfortunately, quantitative results of this comparison of MTF prediction
with measurement are not yet complete. Qualitatively, they indicate the coarse aerosol
size distribution prediction is excellent.

Here, a statistical model for predicting coarse aerosol size distribution according
to weather for areas in which soil moisture prevents much uplifting of soil-derived
particulates is presented in Appendix 1. This pertains to climates which are not arid or
semi-arid.

Appendix 2 contains a step-by-step procedure to calculate aerosol MTF, based
on predicted aerosol size distribution (n(x) in step 10) and hardware field-of-view and
dynamic range.! Step 12 in it can be used to predict atmospheric transmission T,
according to weather ,where

T,= exp[- A'Lc[l,n(x),z']dz'. ¢}
In (1), o is medium extinction coefficient calculated in step 12, and L is path length.

Thus, the aerosol size distribution models for arid and non-arid regions can be used in



Apependix 2 to predict both aerosol MTF and atmospheric transmission according to
meteorological coditions.

Finally, the image restoration work has continued, and a comparison of various
techniques with which to restore images degraded by atmospheric blur is enclosed as
Appendix 3. These techniques apply to visible and thermal infrared wavelengths, and
are based upon predicted or measured atmospheric MTF. The improved Wiener filter
presented in The First Quarterly Report yields best results when turbulence blur is
significant. When aerosol blur is more dominant, a variety of techniques all yield
similar results. In all cases, the inclusion of aerosol blur in the atmospheric MTF yield

restoration limited by hardware alone, as if there were no atmospheric blur.

Reference
1. D. Sadot and N. S. Kopeika, "Imaging through the atmosphere: practical
instrumentation-based theory and verification of aerosol MTF," J. Opt. Soc.

Amer. A, vol. 10, pp. 172-179, Jan. 1993.
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Statistical model for aerosol size distribution parameters according to weather parameters

Department of Electrical and Computer Engineering
Beer Sheva, Israel 84105

ABSTRACT

Predictions of atmospheric transmittance in desert aerosol environments using MODTRAN code
diverge significantly from measured data. Good prediction of the desert particulate size
distribution is required in order to predict atmospheric scattering and absorption parameters. It is
also essential to the prediction of the aerosol atmospheric modulation transfer function which is
often the dominant component of the overall atmospheric MTFE.! Recently? an effort to predict
statistics but not size distribution according to simple weather parameters has been made for
coarse desert aerosols. A quantitative analysis of the desert particulate size distribution models
was also performed3. In this research the size distribution parameters measured by optical
counters are related to weather parameters. Known statistical and analytical models such as
MODTRAN relate the size distribution parameters only to relative humidity for continental
atmospheres. Although humidity has a significant role in the prediction of aerosol size statistics,
other weather parameters are seen here to strongly influence also the size distribution parameters.

Comparisons such as the above can be used to predict under which conditions the MODTRAN
aerosol models have good or poor accuracy. It is also hoped that they will lead to improvements
in MODTRAN, improving the accuracy of the humidity dependence as well as by incorporating

I. Dror and N. S. Kopeika
Ben Gurion University of the Negev
other meteorological parameters into the MODTRAN prediction models.
|
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1. Introduction

The aerosols that are suspended in the atmosphere are a major factor that influence the quality of
images that are propagating through the atmosphere. Scattering and absorption of light rays by
the suspended aerosols contribute to the loss of contrast of the received image, forward light
scattering in the direction of the image propagation also reduce the atmospheric modulation
transfer function (MTF) and cause to image blur.

Prediction of the aerosol size distribution can lead to the prediction of the scattering and
absorption coefficients and also the scattering phase function of the atmospheric propagating
medium. These properties characterize the extinction coefficient of the atmosphere as well as the
MTF of the atmosphere.

2. Experiment

The particulate size distribution of the atmosphere was measured over the radius range of 0.16
to 10 um using a PMS CSASP-100 optical particles counter. The optical counter was located at a
height of 25 m above ground. Integration time of half an hour was chosen and every half an hour
the average particulate size distribution was recorded. Meteorological parameters were also
measured close to the PMS location and the half hour average of the temperature, relative
humidity, wind speed, wind direction and solar flux were also recorded. The measurements were
taken at the Ben-Gurion University of the Negev in Beer-Sheva, Israel. Data was collected form
June 1991. Both PMS counter and Campbell Scientific meteorological station were connected to
a personal computer. :

Since this research is trying to relate the aerosol particulate size distribution parameters to
simple weather parameters, the integration time selected for counting and classifying particles
according to their size was to be shorter than the meteorological time constants. On the other
hand, a short integration time leads to a particulate size distribution curve with insufficient data
which is hard to fit to a known size distribution model. In our measurements an integration time
of half an hour was chosen as a compromise between the need for a smooth size distribution curve
and the need to measure the aerosol statistics under stationary meteorological conditions.

- Fig. 1. describes the changes in the standard deviation of the temperature during a typical summer

day. The standard deviation here is calculated for measurement time periods of half an hour.
Fig. 2 shows the changes in the standard deviation of the relative humidity during the same day.
These figures show that the most rapid changes .occur after sunrise and sunset. In our
measurements the standard deviation of the temperature did not exceeded 2°C and that of the
relative humidity did not exceed 5 %. In most of the cases the standard deviations were much
more less than these values.
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Fig. 1. Half hour standard deviation of air temperature as a function of time during a typical
summer day.
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Fig. 2. Half hour standard deviation of relative humidity as a function of time during a typical
summer day. : ' B '

3. Data Analysis

The deviations in the aerosol size distribution are large. The aerosols in the area of our
measurements consist of a large variety of aerosol sources. Aerosol chemistry and area
meteorology are described in detail in ref. 2. The aerosol sources are urban and rural, marine,
haze, industrial and desert dust aerosols that are transferred from the Sahara desert and from the
Arabian desert* during dust storms,



Fig. 3. describes two extreme aerosol size distributions that were measured during the year
1992. The differences between the two extreme cases is about two orders of magnitude. The
lower curve is not continuous because particles at several radii were not counted during an
integration period of half an hour. Fig. 4. shows the normalized standard deviation of the
measured aerosol at each radius. The standard deviation ranges from 0.5 at radius of 0.16 um to
12 at radius of 10 um. The aerosol size distribution consists of several distributions that can be
modeled by superposition of lognormal distributions.> The standard deviation of the particle count
is smaller for small radii than for high radii since the low, or fine mode of the aerosol distribution
consists mainly of local aerosols while the large aerosol population contains also particles that are
transported from remote areas. The local aerosols are less affected by changes in the weather
parameters while the larger particles are very sensitive to the wind speed and to the wind direction
which, in some cases, yields information concerning the source of the remote aerosols.

A simple size distribution that can characterize the coarse aerosol size distribution is the Junge

power law distribution.® The size distribution is defined by only two parameters A and o
dn
— Ar-u ].
0 (1)

ris the particle radius and n is the particulate number concentration.
The advantage of this size distribution is that a measured size distribution can be fitted to this
model by a simple one variable linear regression.

In our analysis the measured size distributions were fitted to Junge power law models. The data
were separated into two major groups. One consists of the measured data during the summer
season from May to October. This corresponds to arid and semi-arid regions. The second group
consisted of data that was measured during the winter season, starting from November until April.
This corresponds to wet, non-arid regions.

The climate in our region is such that there are two major seasons. Summer is the hot and dry
season with no participation at all. Winter is the colder season. All participation is during this
season.

3.1 A model for the summer season

Fig. 5. describe the average particulate size distribution and the power law fit. All 6000
measurements of the aerosol size distribution from May 1992 to October 1992 were fitted to the
power law distribution and the values of o and A were extracted. The average square of the
correlation coefficient R was 0.95.

The power law size distribution parameters A and o were related to the weather parameters that
were measured nearby the particulate counter using multiple linear regression analysis. The
summer model obtained for A is given by: .

A=a,+a,rh+a,rh’ +a,rk’ +a,ri’ )
were 1h is the relative humidity. The coefficient of the model are given in table 1.



Table 1. Summer model for the prediction of the parameter A.

4 a; (%) a3 ay

1.917 -0.128 4.61-103 6.85-10°5 3.73-107

The model obtained for o was the following:

o =b,+b rh+b, rh+b,ws 3)
were ws is the average wind speed in m/s. The coefficients for the prediction of o are given in
table 2.

Table 2. Summer model for the prediction of the parameter o.

by b, b, b,

2.68 2.3-103 8.16-105 -2.65:102

The A parameter in this model depends only on the relative humidity. Other dependencies were
weak and insignificant. The parameter o depends also on the average wind speed. Fig. 6 describes
in an ascending order the measured o and the modeled o. From this figure it is shown that there is
a good agreement between the measured parameter and the modeled parameter except for
extreme weather conditions. Fig. 7. shows the measured parameter A in ascending order and the
modeled parameter. The model gives good correlation here too except for extreme weather
conditions.

Figs. 8. show typical measured particulate aerosol distributions (solid lines) and predicted size
distribution according to the measured weather parameters (dashed lines). The curves shows that
there is a very good agreement between the measured data and the model for the parameters o
and A under a variety of weather conditions.
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Fig. 3. Average aerosol size distribution curve and size distributions with the property of
minimum and maximum number of particles that were measured.
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Fig. 4. Normalized standard deviation of the aerosol size distribution.
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Fig. 5. The measured average particulate size distribution and its power law fit.
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Fig. 8a. Measured particulate size distribution and the modeled size distribution.
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Fig. 8b. Measured particulate size distribution and the modeled size distribution.
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Fig. 8c. Measured particulate size distribution and the modeled size distribution.

42A inodel for the winter season

A similar approach for modeling the aerosol size distribution for the winter season which is the
wet and rainy season in our area was used. The two parameters of the power law model for the
aerosol size distribution were related to weather parameters. The major difference between the
two seasonal models is that for the winter season, not only were the measured weather parameters
necessary but also the history of some of them. The model here is based on about 5000 different
measurements of the aerosol size distribution during winter seasons.

The model for In A is the following:
nA=a,+a,rh+a, thu +a, (thu )’ +a, ws+ a,ws 2 +a, (wsu )* +a, tm+ay sf  (4)

where rh is relative humidity, rhy is the last 24 hour average of the relative humidity, ws is the
wind speed in m-s-! wsa4 is the 24 average of the wind speed, tm is the temperature in ° C, and sf
is the solar flux in kwatt-m2,

The following model was obtained for o

O = by, +b, th+b, thas +b, (rha )* +b, ws +b,ws s +b, (wsu )* +b, tm+bysf (5
Fig. 9 show an example of the measured aerosol size distribution and the modeled size distribution

according to the weather parameters and the 24 hour averages of the wind speed and the relative
humidity.
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Fig. 9. Measured particulate size distribution and the modeled size distribution for the winter
season.
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5. Conclusions

The major conclusion of this research is that the coarse aerosol size distribution parameters can be
predicted according to simple meteorological parameters. A strong statistical relation exists
between the aerosol size distribution curve and the local weather. Although the Junge power law
distribution is not accurate since it does not model the size distribution at radii that are smaller
than 0.1 um and the fine details of the curve are lost, it can model roughly the aerosol size
distribution and it is very easy to extract its two parameters A and o even if the aerosol histogram
is composed of relatively low counts of particles. The strong statistical dependence of the power
law distribution on local weather parameters show us that in most cases the statistics of the
aerosols are influenced by the local weather. There are few exceptions, mainly when the aerosol
size distribution consists of particles such as desert dust particles or marine particles that are
transported from other areas.

Introducing the history of the meteorological parameters such as the previous 24 hours average of
the wind speed and that of the relative humidity was very significant to the winter model and
contributed significantly to the correlation of the model with measurement.
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Calculating Practical Aerosol MTF

Mie scattering, absorption and extinction coefficients
Mie phase function

1. Define the following parameters

m - relative refractive index (complex).
A - radiation wavelength (meters).
a - particle radius (meters).

a .
x= - size parameter.

p=xm
0 - scattering angle (steradians).
1L = coso.
n(x) = particle size distribution

2. Create the spherical Bessel functions, which satisfy the recurrence relations

2n+1
zn-1(p) + zunr(p) = np za(p), (D

J _
(2” + I)ZEZn(P) =n Zn—l(p) - (” + 1)2n+1(p): (2)

where z, is either j,, 0T ¥, From the first two orders

. . sinp cosp
Jolp)=—= idp)=—=~===, 3
0 P 1 pz 0 (3)
cosp cosp sinp
yolp)=-—+ nlp)=-—--— 4
0 N i pz D 4

higher-order fiinctions can he senerated hv recurrence.

3. Create the spherical Bessel functions of the third kind (Hankel functions) | _
ha(p) = j,(p) =iy, (p). (5)



4.  Create the Riccati-Bessel functions

¢,(p)=pJn(p), £,(p)=pha(p). ®

5. Calculate the scattering parameters a,, and by,

- m9,(p)9,(x)-9,(x) 0, (p) -
n= ' ? )
m9,(p)E,(x) =&, (x) 9, (p)
_ 0a(p) 9, (x) =mo,(x) 0, (p)
bn - ' (8) .
¢,(P)E,(x) - mE,(x),(p)
6.  Calculate the Mie scartering , extinction 'an(l absorption efficiency factors
Qsc(m,x) — Z 2n+1) (!anl +[b,ll ) 9)
X ?l-— .
0,,(mx)== z(zn +1)Re{an+b,}. (10)
rg:
ans Qe\r Q (11
7. Create the angle-dependent functions which satisfy the recurrence relatlons
2n-—1 i on
T = -1 K- — _.lnn—Z’ | (12)
Tn=nU T, — (” + 1)7'511—1’ (13)
where ty=0and 7 =1.
8. Calculate the complex amplitudes of scattered electric fields
] = 2n+1
Sl(m’x’e): 2_—(Gn7tn+bn'cn)» - (14)
n:m(n + 1)
> 2n+1
S2(m,x,8) = ¥ ———(bu7ta+antn) (15)
n:ln(n + 1)
where §; and S, are components perpendicular and parallel to the scatter plane.
9. Calculate the dimensionless intensity parameters (for scattered light only)
ir(x,m,0) = 557, - (16)
i2(x,m,0) = 5,53 : : (17),

10.  Use the measured atmospheric particle size distribution to calculate the medium'’s scartering
coefficient (scattenn0 Cross section per unit volume)



Sa[x-r”(x’)] = J'l:k"3J5°x2n.(x)Qsc(x)dx. | (18)

11.  Calculate the medium's phase function
' ' ‘ 2n

P(e)=ngll(x)[i1(9)+iz(9)]dx, (19
a N .
which obeys the normalization condition: :
o P(6)dw =4z (20)

where the integration is with respect to solid angle over all directions correspondm0 to all
space around a point.

12. Calculate the medium'’s extinction coefficient (extinction Cross section per unit volume)
o[A.n(x)]=mk=3 3 x2n(x) 0, (x)dx, (21)

13.  Calculate the medium's absorption coefficient (absorption cross section per unit volume}
Aa[l,n(x)] =nk3; > x2n(x () Qs (X)dlx, (22)

Atmospheric absorption - spatial frequency dependence

14, Calculate aerosol MTF including absorption spatial frequency dependence

2 2 ‘
Ma(fa) =€Xp{—- Sa Z[%) }'exp €Xpy— Sa Z[l'— (ff_aj ] - exp{_ Sa Z} (_ Aaz) ’ fa' < f.ru

ac

'exp{— SaZ}'eXP{[l— exp{— Saz}](_ Aaz)}’ fa> fac.
- (23)

15.  Calculate the new MTF asymptote at high spatial frequencies = M, (oo) (differing from the

atmospheric transmittance), and calculate the effective oprical depth
T == In[ Mo(=)]. (24)

Practical aerosol MTF

16.  Approximate the medium's phase function by a Gaussian form (not necessary)' ' : .
- P(6)=4 o, exp{— apez}. - (25)

17.  Calculate the "classical” aerosol MTF using the effective optical depth



. ). 2
K(fa)=exp —(j)Teﬁv[l—exp[— T f“.ﬂdz' ) (26)

Determine the main instrumentation limitations:

a - Finite angular spatial frequency bandwidth - f_ max.

b - Finite field of view - ©'yax.

¢ - Dynamic range limitation - minimal detected received irradiance, which is related to maximal
angle of detected scattered light - ©"p .

d - SNR limitation - minimal detected received irradiance, which is of hloher intensity than the

background noise - ©"ax-

Choose the worst case between (18b) - (18d), obtaining the instrumentation limitation of maximal
angle of recorded scattered light - © o = min {O' fax» ©' ' max : ©'" max +

Calculate the "classical” specific intensiry function for the case of an infinite plane-wave

1 jflmax
1(9):(7 5 ) dfgexp(-0f,) K(f,). (27)
LT @ rax

. In case where the system's MTF is known, (27) can be replaced by

1(0) = (z1 7 Jd £oexp(= 8 £,) K(£,)- Mol f.) (272
) — oo

where Mo( f a) is the system MTF.

Calculate the practical aerosol MTF by inverse Fourier transforming the specific intensity function

PMTF,(7,)= T do-explj6 7,)1(6). 8)

~ Omax
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Comparison between high-resolution restoration techniques
of atmospherically distorted images

D. Sadot, S. R. Rotman, and N. S. Kopeika
Department of Electrical and Computer Engineering
Ben-Gurion University of the Negev

Beer-Sheva, Israel

Abstract

A system approach is applied to overcome atmospheric degradation of remotely sensed
images. A comparison is presented between different filtering techniques for restoration of
distorted images for both the visible and thermal infrared spectral regions. Restoration methods
include spatial and spatial frequency filters. Best results are obtained by using a fractal model
to describe the image's power spectral density for scenes in the visible spectral range.
Atmospheric effects are best modeled by a noisy spatial frequency filter composed of an
average component described by the average atmospheric and hardware modulation transfer
function, and a noisy component modeled by the atmospheric point spread function's power
spectral density. The most impressive restorations in the visible range are achieved by
combining between the last and the fractal model for the object's power spectral density. In the
thermal range, however, several restoration techniques yielded very good results, with no one
technique most advantageous over the others. The methods presented here are capable of
yielding real-time image restoration with resolution limited essentially only by the hardware.

itself in both wavelength regions.



1. Introduction

Imaging through the atmosphere has progressed significantly in the last decade, in both
the visible and infrared spectral ranges. It is the atmosphere which usually limits image quality,
particularly for long atmospheric paths. The main atmospheric distortions are caused by optical
turbulence, and scattering and absorption by particulates in the atmosphere. The main effect of
the turbulent medium over long exposures is to produce wavefront tilt, which causes image
shifts at the image plane. These can be whole image shifts, or different shifts of different parts
of the image, depending on the isoplanatic patch, according to the turbulence parameters
(turbulence strength, inner and outer scales). The image distortions caused by the wavefront
tilt (typically on the order of tens or maybe hundreds of microradians) can be partially
compensated for either by adaptive optics techniques or by using sufficiently short exposure

time, less than the characteristic fluctuation time (usually a few milliseconds). Another way is

- by using a wavefront sensor to construct the image phase in addition to image intensity, and

therefore restore the image in a deterministic way!. This is, however, not practical for real time
restoration. Turbulence distortion effects are characterized in both short and long exposures by
modulation transfer functions (MTFs)?3. These are statistical averages of turbulence random
processes which have, in addition, a nonnegligible short-time variance which affects
significantly image blur. In addition to turbulence, there are scattering and absorption effects
produced by molecules and aerosols in the atmosphere.'These cause both attenuation and
image blur, according to the atmospheric aerosol MTF#. Unlike turbulence, the aerosol MTF
affecting the image is also related strongly to instrumentation limitations68: on the angles of
light scatter actually recorded in the image. Thus, aerosol effects can be approkimated by an

MTF of limited long-time variation, according to weather conditions.

Here, image processing techniques are aided by the knowledge of the corruption from
which the image has suffered while propagating through the atmosphere. These techniques are
preferable rather than standard blind-deconvolution techniques, as long as the corrupting

medium, i.e. atmosphere, is modeled sufficiently accurately. One way of modeling the



atmospheric distortions is by the average atmospheric MTF. In this technique, atmospheric
effects are modeled by a deterministic filter. This method yields good restoration results when
atmospheric MTF does not vary too much, particularly when turbulence effects are not
dominant. This is the case in the thermal range, or while only low spatial frequencies are
involved. When turbulence is dominant, however, modeling atmospheric MTF by a
deterministic filter is insufficient, due to significant MTF variance. Atmospheric effects in that
case should be modeled by a noisy spatial frequency filter including an average component
described by the average atmospheric MTF, and a noisy -component which contains the MTF
variance.

The power spectral density (PSD) of the original picture is often required in order to
apply the restoration filter to the corrupted image (as in the standard Wiener filter, for
example). One way of estimating this term is by rigorously assuming that it equals the image's
PSD. This is of course not true, but in many cases this is a sufficiently good assumption. To
check this issue, one can restore the image iteratively. This process should stop when restored
images converge. Usually, it happens after one or two iterations. Another way of estimating
the object's PSD is by assuming it obeys a fractal model. It will be shown here that using a
fractal estimation model yields very good results for visual images.

In this paper, the fractal dimension estimation process is presented, Then, the improved
Wiener filter technique is introduced. This is followed with other spatial filtering restoration
techniques. Results of the different methods will be compared, including some examples of

restored thermal images as well as visible images.
2. Fractal model

If it were possible to know characteristics of the original background with which one
was dealing, one could potentially design more efficient and effective algorithms to perform the
restoration. In this paper, we describe the restoration of images for natural scenes. It has been

proposed that natural scenes are fractal in nature; pictures taken in the visual spectral range



will also be fractall® (in contrast to infrared images which tend to be modeled by Markov

random fields!!,

Our restoration of the scenes based on their similarity to fractal models is performed as

. . . . 1
follows12, Fractal scenes in the visual regime have power spectra with a — frequency

: . . 1 L
dependence. We assume that even in real natural pictures, the — behavior will be correct for

wide bands of frequencies. The types of blurring which occur will affect the higher frequencies
much more than the lower frequencies. We rather arbitrarily assume that the corruption has
only occurred to the highest frequencies for which 0.1% of the energy of the picture is found;

although this seems minuscule, in a large number of picture distortions this is indeed where the

. . . 1 .
major changes occur. The remaining power of the lower frequencies are fit to — where n is

f

determined by a least-square fit of the log of the radial power to the frequency. We then

assume that the higher frequencies in the original picture originally followed the same —

f
dependence before corruption. These frequencies are then restored.

Results of images restored by using best fits between the object's PSD to fractal model
are presented in Fig. 1. It is clear that scene's resolution is improved. This method yields very
gobd results for pictures which include relatively "natural" scenes. However, when the scenes
become more "man-made”, restoration efficiency decreases. In the thermal range, however, the
fractal model completely failed, as demonstrated in Fig. 2. Both "man-made"!2 and thermal
images!! are known not to be fractal in nature, but rather Markovian; thus failure of a fractal

method is not unexpected.
3. Improved Wiener filter

The improved Wiener filter!3 is based on the standard Wiener filter!4, with an
additional noise model deriving from the atmospheric MTF variance. As explained in the
introduction, the atmospheric MTF derives from both turbulence and aerosol forward

scattering effects. While aerosol MTF is fairly constant as long as atmospheric conditions do



not vary too much, turbulence MTF changes with time due to it's ilt jitter characteristic. These
tilts are random and their temporal power spectra are usually limited to several tens up to a few -
hundred hertz under ordinary atmospheric conditions. The image distortions caused by
atmospheric MTF are thus regarded as the sum of a deterministic and a random filter!5.16, The
deterministic filter includes aerosol®9 and average turbulence MTFs2-5, Whﬂe the random filter
includes the noise component induced on the imaging system, both by the turbulence MTF
variance and hardware!3, Stated mathematically, the atmospheric ﬁlter is determined by
h'=h+n (1)

where h' is the instantaneous atmospheric point spread function (PSF), h is the average
atmospheric PSF, and #, is an additive random component with zero expectation. Using this
model, the image received at the imaging system after propagating through the atmosphere is:

8(x,y) = (h(x,))+n(x,))® f (x,5) +ny(x,) 2)
where g is the received image, f is the object, x and y are transverse spatial coordinates, and n,
is an additive noise imposed by the instrumentation, including optics, digitization, electronics
etc., but not by the atmosphere. Fourier transforming (2) yields:

G(u,v)=[H(u,v)+ N;(u,v)]: F(u,v)+ N, (u,v) 3)
where G, H, F, N; and N, are Fourier transforms of g, 4, f, n; and n, respectively, and u and v
are spatial frequency coordinates. The received image thus is a sum of a deterministic part G,

and a random part N

G=G+N 4)
where Gl(u,v) = H(u,v)- F(u,v) (5)
and N(u,v)= F(u,v)~N1(u,v)+N2(u,v). (6)

The improved Wiener filter is defined similarly to the standard Wiener filter, differing by the
noise component which includes an additional term imposed by the atmosphere!3

2
M(u,v)= |H(u,v) [ @

H(u,v) -(IH(u,V)2|+[Smm(H,V)’*'S,,Z,,z(u,v) / Sﬁf (”:V)])




where M is the restoring filter, H(u,v) is the average atmospheric MTF, Smm(u,v), :
Snznz(u,v), and § ﬁe(u,v) are the power spectral densities of f, n;, and n,, where p; and g,

are the inverse Fourier transforms of N; and N, in (6).

Assuming independence between aerosol and turbulence effects, the term H(u,v) can be

measured or calculated by a multiplication of the turbulence MTF (ei;her short or long

exposure case) and aerosol MTF. Turbulence MTF can be evaluated with the knowledge of
standard meteorological parameters using a Cﬁ prediction model!7 (verified independently by

U.S. Amiy Night Vision Laboratory) or IMTURB or PROTURB (U.S. Army Atmospheric

Sciences Lab.), and the aerosol MTF® can be evaluated according to knowledge of particle size

distribution, which can also be predicted via LOWTRAN, MODTRAN, or other models!8, The

term 4 (u,v') can be estimated either by using the received image G(u,v) or by using

estimation models of the object's PSD, which has been shown to obey a fractal model in the
visible range, and a Markovian model in the thermal range!!. The term S, (u,v) is assumed
to be constant for all spatial frequencies since the additive noise n, is assumed to be white
noise. This assumption is commonly used and very practical, and it has a relatively weak effect

mm(”"’) is very important, since it includes the random part of

on the Wiener filter. The term §

the atmospheric distortions. One way of estimating Smm(”"’) is by a direct measurement. By

using the relation

Sn (w,9) = E(NY (u,v)}, ®)

and the Fourier transform of (1), i.e.,
Nl(u,v)=H'(u,v)—H(u,v), ©)
it follows that Spn equals the variance of the instantaneous atmospheric MTF: .
S (w,v)= E{H? (u,v)} - H? (u,v). | - (10)

Since the contribution to the random part of the atmospheric MTF is due mainly to turbulence
rather than aerosols, in (8)-(10) atmospheric MTF refers to turbulence only. However, in (7),
H(u,v) includes aerosol MTF in addition to turbulence MTF since it refers to the avefage
atmospheric MTF. The variance of H' can be evaluated by calculating both terms of the right

hand side of (8). This can be carried out by measuring a series of instantaneous atmospheric



MTFs, and evaluating the average of both the MTF and its square. This is, however, not a very
practical way, particularly when real time image restoration is concerned.

An alternative way of obtaining Smm(u,v) is by evaluating both terms of the right hand

side of (10). The second term HZ is the square of the turbulence MTF which can be predicted!’
or measured. The first term E { H '2} was evaluated analytically!? and yields:
E{H'2(u,v)} o H? (u,v)|f H2 (' v H W' +u,v' +v) H (1 —u,v'—v)du' dv'. (11

Equation (11) determines the expected value of the squared MTF, or in other words the Point
Spread Function's Power Spectral Density. The integral in (11) can be evaluated numerically
with the use of the average turbulence MTF only.

- Examples of restored images using this technique, obtained over a 6.5 km horizontal

path length through the atmosphere, are presented in Fig. 3. The restoration was carried out by

the use of (7). The term H (u,v) was the measured atmospheric MTF. The term § 4 (u,v) was
estimated by best fit to a fractal model. Obtaining the term § 4 (u,v) from the received image
iteratevely yielded less impressive results. The term Smnz(u,v) was assumed to be white noise

and the term Smm(“"’) was evaluated via (11). Restoration time was only about 2 seconds per

frame. This can be shortened to a fraction of a second, using parallel processing techniques
already available. Therefore restoration via this method can be in real time. There is a distinct
improvement in fine details of the images, even though the image's SNR is not degraded
significantly. This is so in spite of the severe imaging conditions (long horizontal distance),
where turbulence isoplanatic patch was less than image size, and standard Wiener filters failed
completely in trying to restore the image, as can be seen in Fig. 4. In the standard Wiener filter,
Snn(u,v) refers to white noise only.

The improved Wiener technique yielded very good results in the thermal range too (8-
12 pm spectral window), and restoration for a picture obtained over a 2 km horizontal path
length through the atmosphere, using this technique, are presehted in Fig. 5. The term
S 5 (u,v) was estimated from the received image, and no iteration was needed (restoration
converged after the first iteration). Since the thermal images involved significantly lower
resolution than those in the visible range (due to instrumentation Hmitations), the main

atmospheric distortions were due to aerosol rather than turbulence MTF. Therefore, as



explained previously, MTF variance was significantly weaker and restoration was possible
using an average :tmospheric MTF (rather than instantaneous), as demonstrated at the bottom
right of Fig. 5. This is important while considering real time restoration since atmospheric
MTF can be estimated once to create an efficient restoration filter which can be used for a
large set of images. The fact that atmospheric MTF in the thermal range is relatively static

causes relatively impressive restoration results using standard Wiener filters (which failed in the

visible range). An example can be seen in Fig. 6.
4, Constrained filter

The constrained filter!4 uses a prior knowledge about the picture corruption i.e.
atmospheric distortions, in addition to many kinds of constraining conditions, in order to
achieve best restoration performance. The constraining conditions can also depend upon prior
knowledge about the target. In that case, improved restoration results are expected, but the
filter must be adapted to the kind of scene which is to be restored. Here, a more general
condition is used, which is restoration using the atmospheric MTF, under the condition of
maximal smoothness. This condition minimizes noise effects due to the high frequency
enhancement which overcome MTF degradation. The smoothness, however, causes limited

performance on sharp edges restorations.

We assume that H (u,v) is the average atmospheric MTF, the original picture is of

dimensions MxN , and the MTF and PSF are of dimensions JxK. Each matrix is padded with

zeros to obtain (M +2J)x(N +2K ) matrix size. A two dimensional second order derivation

is defined by the Laplacian matrix

0 1 0
[1]=]1 -4 1|~ (12)
0 1 0 - | |

The mathematical form of the constrained filter is given by:14



1 IH(u,v)2l

_ (13)
H@v) (p427)(N +2K)(lH(u,V)2|+%IL(“’V)IZ)

M(u,v) =

where L(u,v) is the Fourier transform of [I], and A is obtained by Lagrange multipliers
technique, or can be evaluated iteratively. An example of image restoration, obtained over a
6.5 km horizontal path length through the atmosphere, using the constrained filter is presented
in Fig. 7. It is clear that in the restored image additional details are resolvable which can not be

seen in the original picture, such as the two horizontal bars at the bottom of the picture.
5. Modified Backus-Gilbert filter

.The modified Backus-Gilbert filter!? is a spatial domain filter. It is assumed that the
atmospheric point spread function is a finite impulse response (FIR), and so is the restoring
filter. Here, in the examples to be shown it is assumed that the PSF's dimensions are 15x15
pixels. Two criteria in the restored image are implemented. These are image sharpness, in order
to resolve details as fine as possible, and minimum noise variance. Image sharpness is obtained
by narrowing the restored PSF as much as possible.

Defining the atmospheric PSF as h(x, y) and the restoring filter as m(x, y), the
restored PSF is defined as

h(x,y) =r(x,y) @ m(x,y). (14)

In order to achieve perfect restoration, };(x,y) should be as close to an impulse as possible.

One possible measure of a narrow restored PSF is a minimized second moment, i.e. .
R = E{[2h(x,y)dxdy } —min (15)

2

where r? = x2 + y2 represents the coast of spread of i;( X, y).

The requirement of minimizing noise variance can be stated mathematically as:
v = E{#2(x,y)} - min ~ (16)

where A(x,y)=n(x,y)®©m(x,y) (17)

is the noise of the restored image.
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Since minimizing average spread R and minimizing noise variance V can not be
achieved simultaneously, a tradeoff between resolution and noise must be accomplished, and a
compromise is by minimizing the weighted sum:

F=(1-A)R+AV->min, ' (18)
where A should be selected according to the restoration requirements, blur versus noise. A
detailed mathematical description of solving (18) is presented in Ref. 19.

An example of image restoration, for the same scene as in Fig. 3, using the modified
Backus-Gilbert filter, is presented in Fig. 8. Another example is in the thermal range, where
this filter yielded very good restoration results. This is demonstrated in Fig. 9 for the same

scene as in Fig. 5.

6. Discussion

A comparison between the different restoration techniques indicates that the filter of
best performance is the improved Wiener filter. This is explained by the use of the atmospheric
model as a noisy filter, due to turbulence jitter characteristics. Thus, when dealing with high
resolution visible and near infrared imaging through long distances, atmospheric distortions
need no longer be treated as a deterministic filter represented by average MTF, but can now be
modeled as an inherent part of the noise in the received image. Determining this random part is
essential to achieving improved restored images, and a method of doing so is pfesented here.
This method can be used to help overcome the jitter characteristic of turbulence, and is capable
of real time image restoration via parallel processing transputers. As turbulence effect.;
becomes weaker, such as in the thermal image example, the advantage o'.f this method
diminishes, and standard Wiener filter performance is fairly good. The original picture's power
spectral density, for visible images, is best estimated using a fractal model. This model yielded
very good results using both the fractal estimation filter and the improved Wiener filter. This
model failed completely when used to restore thermal images. It is expected that, due to
energy transfer considerations, thermal images will obey instead a Markovian power spectral

density model. Thermal images restoration thus is a subject for further investigation, using the
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Markovian model. In cases where a smooth image, rather than a sharp but noisy one is
required, the constrained filter can be used to satisfy this condition. This is also the case when
using the modified Backus-Gilbert filter, which has also the advantage of shorter computation
time. In any case where turbulence is not too dominant, the last two filters yield impressive
results (as in the thermal range). However, as atmospheric MTF variance increases, it is

strongly recommended to use the improved wiener filter, which indeed yielded the best results.
Conclusions

Restorations of visible and thermal images distorted by the atmosphere are presented
based upon atmospheric MTF. Such restoration techniques are fundamental and include both
spatial and spatial frequency filters. In the restored images it is generally quite possible to see
detail almost as small as possibly resolvable by instrumentation, i.e. pixel size. In the visible
image examples, pixel size at 6.5 km horizontal distance is ~7 cm. Examples for finest
resolvable details are poles in a fence and antenna bars(~ 7 cm). In the thermal images, pixel
size at 2 km is ~62 c¢m, and examples of finest resolvable details are windows whose size is
about the same. This means that, essentially, all atmospheric blur is removed in the restoration
process, and the distant object scene is observed as if there were no atmosphere. This can only
be possible by considering the atmospheric MTF properly, including the significant role played
by aerosol MTF. Such restoration does not depend on target shape. It is a fundamental image
correction, which can be followed by other image processing techniques as required. In the
visible range an improved Wiener filter designed specifically for imaging through the~
atmosphere, together with a fractal estimation model for the object's power sp’.ectral density,
appears to give excellent results. In the thermal infrared, where turbulence effect is less severe,
several different filters each give excellent results. There are cases where turbulence is not so
severe, and aerosol MTF plays the most important role in determining the atmospheric MTF,
such as in the case of thermal imaging, and the image restoration task is much easier since the
atmospheric MTF then is nearly deterministic. Here, however, the correction is for both

aerosol and turbulence derived blur.
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Fig. 1.

Fig. 2.
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Figuré captions

Restoration of two scenes at 6.5 km horizontal distance (visible wavelengths) using
fractal PSD best fit. |
Restoration of a thermal (8-12 um) image of a scene at 2 km horizontal distance
using fractal PSD best fit.

Improved Wiener filter restoration, using fractal PSD estimation of scenes of Fig. 1.
Standard Wiener filter restorations of scenes of Fig. 1.

Improved Wiener filter restoration of a thermal (8-12 pm) image at 2 km horizontal
distance.

Standard Wiener filter restoration of the thermal image of Fig. 5.

Restoration of scene at 6.5 km horizontal distance (visible wavelengths) using
constrained filter.

Restoration using modified Backus-Gilbert filter of scene of Fig. 3.

Restoration of a thermal image using modified Backus Gilbert FIR filter (same scene

as Figs. 5 and 6).
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