AFIT/GOR/ENS/98M-05

Solving Geometric Knapsack Problems using Tabu
Search Heuristics

THESIS

Christopher A. Chocolaad, B.S.
1st Lieutenant, USAF

AFIT/GOR/ENS/98M-05

Tiid GUATITY INGPECTED 4

Approved for public release; distribution unlimited

19980429 (45

THESIS APPROVAL

Student: Christopher A. Chocolaad, Lieutenant, USAF Class: GOR-98M

Title: Solving Geometric Knapsack Problems using Tabu Search Heuristics

Defense Date: 3 March 1998

Committee: Name/Title/Department

Advisor T. Glenn Bailey, Lt Col, USAF
Assistant Professor
Department of Operational Sciences

Reader Richard Deckro, DBA
Professor

Department of Operational Sciences // /’f’
Reader William B. Carlton, LTC, USA Z

Adjunct Professor
Department of Systems Engineering
US Military Academy

Disclaimer

The views expressed in this dissertation are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United States

Government.

AFIT/GOR/ENS/98M-05

Solving Geometric Knapsack Problems using Tabu
Search Heuristics

THESIS

Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of
Technology Air University In Partial Fulfillment for the Degree of

Master of Science in Operations Research

Christopher A. Chocolaad, B.S.
1st Lieutenant, USAF

Air Force Institute of Technology
Wright-Patterson AFB, Ohio

March, 1998
Sponsored in part by Air Force Studies and Analysis Agency

Approved for public release; distribution unlimited

Acknowledgments

I would like to thank my advisor, Lt. Col. Glenn Bailey, for every thing he has taught me and
for providing me with the opportunity to work on this subject matter. I am ever grateful for our
conversations, his advise and support.

I am thankful for the comments, as well as insights of Lt. Col. William Carlton and Dr.
Richard Deckro the readers of this thesis.

I wish to acknowledge the Air Force Studies and Analysis Agency for sponsoring and funding
this topic, which with out, this research would not have been possible.

Finally, I like to thank my family,especially my mom, for encouraging and supporting me.

v

Table Of Contents

Page

Acknowledgments v
Table Of Contents e v
Listof Tables viii
List Of Figures X
Abstract X
Chapter 1. INTRODUCTION e e 1
Chapter 2. AIRLIFTLOADINGPROBLEM 0., 2
2.1 Introduction 2
2.1.1 AirLiftLoadingModel 2

212 TabuSearch i 4

2121 Memory.........ccoiiiiiiiii . 4

2,122 StrategicOscillation 5

2.1.3 KnapsackProblems. e 6

2.1.3.1 SingleKnapsackProblem................ 6

2132 Multi(iimensional Knapsack Problem 6

2.1.3.3 Geometric Knapsack Problem 7

2.1.4 PackingProblems 8

2.1.5 ProblemDefinition 9

2.2 The Packing Heuristic it 11

221 Simple Tabu Thresholding 11

222 STT forthe Packing Problem 12

2221 TheMoveSet. i 12

2222 TheObjectiveFunction 14

2223 The Candidate ListProcedure 16

2224 The Improving Phase A 16

2225 TheMixedPhase i, 17

23 The Knapsack Heuristic [P o 17
23.1 CriticalEvent TabuSearch 17

232 Reactive TabuSearch 19

233 Computational Results 20

24 Geometric Knapsack Heuristic 22
24.1 Computational Results R R RETERRRy 23

25 Conclusion 23

2.6 Suggestions for Future Research. 24
Appendix A. PSEUDO CODE FOR PACKING HEURISTIC. 25
Al ImprovingPhase 25

A2 MixedPhase. 25
Appendix B. PSEUDO CODE FOR KNAPSACK HEURISTIC 26

vi

B.1 Main .. 26
B.2 Constructive Phase 26
B3 Destructive Phase 27
B.4 TransferPhase 27
Appendix C. CODE DOCUMENTATION, 28
Bibliography 29
L AP 37

vii

List of Tables

Table 1. Comparison of Reactive Tabu Search with Beasley - Chu’s GA

Table 2.

Comparision of ALP Heuristics (for 10 C-17 Sorties)

viii

Figure 1.

List of Figures

Geometric Knapsack Heuristic

X

AFIT/GOR/ENS/98M-05

Abstract

An instance of the geometric knapsack problem occurs in air lift loading where a set of cargo
must be chosen to pack in a given fleet of aircraft. This paper demonstrates a new heuristic to
solve this problem in a reasonable amount of time with a higher quality solution then previously
reported in literature. We also report a new tabu search heuristic to solve geometric knapsack
problems. We then employ our novel heuristics in a master-slave relationship, where the knapsack
heuristic selects a set of cargo and the packing heuristic determines if that set is feasible. The
search incorporates learning mechanisms that react to cycles and thus is robust over a large set of
problem sizes. The new knapsack and packing heuristics compare favorably with the beét reported
efforts in the literature. Additionally, we show the JAVA language to be an effective language for
implementing the heuristics. The search is then used in a real world problem of determining how

much cargo can be packed with a given fleet of aircraft.

Solving Geometric Knapsack Problems using Tabu
Search Heuristics

Chapter 1 - Introduction

The knapsack problem has wide application in array of industries. The problem occurs in
layout, cutting stock, scheduling and budget capital contexts. It is typically described as packing as
many elements of a set of items into a knapsack as possible, subject to one or more linear constraints
(such as weight), in order maximize the value of its contents. The geometric knapsack problem
extends this formulation by adding constraints that explicitly model the boundaries of the geometric
space of the knapsack and the individual items in the knapsack such that no overlaps occur [18].
This paper introduces a new technique for solving the geometric knapsack problem used for layout
or component packing. An instance of this problem occurs in air lift loading when a set of cargo
must be selected for packing a given fleet of aircraft, thus establishing a strong practical interest to
the existing theoretical aspects. In this context we develop a prototype heuristic to solve the air lift
loading problem for the USAF Studies and Analysis Agency. The organization of this paper is as
follows. Section 2.1 contains basic definitions and defines the problem. Section 2.2 describes the
packing heuristic and presents results. Section 2.3 describes the knapsack heuristic and presents
benchmarks against the best reported methods in the literature. Section 2.4 describes the geometric
knapsack heuristic and benchmarks against USAF Studies and Analysis Windows Air Lift Lbading

Model.

Chapter 2 - Air Lift Loading Problem

2.1 Introduction

A difficult problem facing the United States Air Force (USAF) is accurately and efficiently
planning the placement of equipment and personnel on military and Civilian Reserve Air Fleet
(CRAF) aircraft. The cargo generally fncludes trucks, helicopters, tanks, pallets, miscellaneous
equipment, hazardous material, and personnel. The aircraft moving the cargo can range from large
military transports (C-5, C-17, C-141) to tactical airlifters (C-130), to CRAF airplanes (Boeing
747, Airbus 400). The matching of cargo to aircraft is referred to as a load plan, and has several
competing objectives and constraints that change with different wartime scenariog For example,
NG [73] notes that a strategic mission might put priority on maximum utilization of aircraft, while
a tactical mission places more emphasis on ease of off-loading cargo. Additional constraints can
involve cargo height restrictions, allowable cabin load (ACL), axle weight restrictions, pounds-per-

linear-foot limits, and incompatible hazardous cargo.

2.1.1 Air Lift Loading Model

Cochard and Yost [21] describe the USAF’s first computer system, the Deployable Execution
System (DMES) developed in 1982, for helping load planners. DMES uses a modified cutting
stock heuristic suggested by Eilon and Christofides [31], and is based on Gilmore and Gomory’s
[37] cutting stock algorithm. DMES was rewritten and released as a standard USAF system in 1985
under the name of the Computer Aided Load Manifesting (CALM). Updates to the CALM program
include migrating it to different operating systems, adding additional aircraft types, and improving
the graphical user interface. No significant changes have been made to the loading heuristic itself.
However, since these systems are too cumbersome for large scale airlift planning, Yost and Hare

[102] developed an estimation technique for large scale planning. They compute an upper bound

2

with methods similar to DMES, and a lower bound with rule of thumb techniques, thus providing a
worst and best case.

The USAF Studies and Analysis Agency uses the Air Lift Loading Model (ALM) to estimate
airlift requirements for large scale war plans and exercise movements. ALM [95] uses one of
three modified cutting stock heuristics to load vehicles (these heuristics are similar to the heuristics
developed by Yost and Hare [102]). However, pallets and personnel are loaded the same way
regardless of which heuristic is selected, because in actual practical settings pallets must occupy

-predefined positions inside the aircraft [102].

The first heuristic, fill gap, attempts to fill the remaining space in the cargo compartment with
the next vehicle from a sorted list of vehicles. If the vehicle does not fit, the next vehicle on the
list is tried. The process continued until an item is found that does. ALM then repeats this process
with the next gap. The second heuristic, top-down differs from the fill-gap in that it selects the first
vehicle in the list and then looks for a gap big enough to hold it, thus giving priority to the loading
sequence. The third heuristic, ﬂoor-utilfz_ation, first sorts the vehicles by the ratio of ACL to floor
space, then proceeds to use the top-down algorithm with this list.

The inherent drawbacks of these techniques are documented by Cochard and Yost [21], and
Yost and Hare [102]. These heuristics only account for one objective (improving utilization of
cargo), and ignore other objectives such as ease of on-off-loading and prioritized cargo. In addi-
tion, these heuristic approaches do not handle odd shaped cargo well, do not guarantee balanced
loads, and have no way to add hazardous cargo constraints. Updates to ALM have been limited
to migrating the program from UNIX! to Windows 952, and adding a graphical user interface. No

work has been done to improve the selecting or packing heuristics themselves.

LUNIX is a trademark of Unix System Laboratories Inc.
2Windows 95 is a registered trademark of Microsoft Corporation.

3

2.1.2 Tabu Search

Tabu search is an intelligent problem solving approach that uses adaptive memory and respon-
sive exploration. Its adaptive memory contrasts with most other meta-heuristics which employ ei-
ther memoryless (simulated annealing and genetic algorithms) or rigid memory designs (branch and
bound) [40]. The emphasis tabu search places on responsive exploration is based on the premise
that a bad strategic choice will yield more information than a good random choice [44]. Tabu
search has proved very effective in solving a wide range of applications and for this reason forms
the foundation of this paper. We give a brief explanation of the specific tabu search characteristics
we employ; however, more thorough discussions of tabu search applications and characteristics are ,
found in [40,43,44].

Given a function f(x) to be optimized over a set X, tabu search iteratively proceeds from one
;solution to another until a chosen termination criterion is satisfied. Each 2 € X has an associated
neighborhood N (z) C X, and each solution ' € N(z) is reached from z by an operation called
a move. Tabu search modifies V(x) as the search progresses, effectively replacing it with a new
neighborhood. Such modifications use adaptive memory with move options that can be constructive
(constructive neighborhood) or destructive (destructive neighborhood). Exactly which solution to
admit to the neighborhood N*(X) can be found in several ways, the most common technique being
the classification of solutions within a specified horizon as “tabu” (exceptions are made if certain

criteria called the aspiration level is met) [40].

2.1.2.1 Memory
Tabu searches can utilize two different types of memory- short and long. The most commonly
used short term memory is recency based memory, which tracks solution attributes (as opposed to

solution values), from the immediate history of the search. Attributes that appear in recent solutions

become tabu active, while solutions containing some combination of tabu active attributes become
tabu themselves. This prevents solutions recently visited from belonging to N*(X') while at the
same time admitting new solutions with the desired characteristics [44].

Short term memory alone has the -ability to produce high quality solutions; however, the liter-
ature shows long term memory can substantially improve the search, even for short solution runs
[42]. The fundamental technique for implementing the long term approach is frequency based mem-
ory, which tracks the relative span any particular attribute has belonged to solutions, then penalizes
or rewards potential solutions. Two important concepts of long term memory are intensification
and diversification strategies. Intensification strategies encourage mbve choices in the regions that
have historically produced good solutions, while diversification strategies drive the search into un-

explored areas of X.

2.1.2.2 Strategic Oscillation

One method of balancing intensiﬁqation and diversification strategies is strategic oscillation
[43]. Sfrategic oscillation directs the search towards a critical condition that would otherwise stop
the search. However, strategic oscillation forces the search past the critical condition to a specified
level, then allows the search to return to the critical condition. An example of using strategic
oscillation is when the critical condition is defined as feasibility; once the boundary of feasibility is
reached the search will continue a select number of steps into the infeasible region before returning
to the feasible region (or vice-versa). The criteria for choosing the next move differs based on

whether the current solution is feasible.

2.1.3 Knapsack Problems

2.1.3.1 Single Knapsack Problem
The single knapsack problem or the zero-one knapsack problem (KP) models the selection of

n items with weight w and value p to be packed in a container of capacity b such that we:

n
Maximize Z D;T;
j=1
subject to

D> _wizj <b ()
J=1
Zj€ {0, 1} .

Martello and Toth [67] show KP to be NP-hard and provide a detailed discussion of this class of

problems as well as algorithms and heuristics to solve them.

2.1.3.2 Multidimensional Knapsack Problem
The multidimensional knapsack problem (MDKP), is a NP-hard problem with the same for-

mulation as the KP except (1) is substituted with

ijkxj <by, ke@{l,..q} @2
j=1 ‘

where g is the number of constraints. This can also be referred to as fhe loading problem, where
several different lengths of material are packed into vessels of fixed capacities. While the loading
problem can have many dimensions (e.g. length, weight, volume) the literature often assumes the
capacity requirements are additive [26,31]. Therefore when packing a container under a volume
constraint, the container mus’; be free to conform to the shape of the packed items, or conversely
the items must be fluid to conform to the shape of the container. Chu and Beasley [20] review in
detail both algorithms and heuristics to solve the MDKP. They note that effective optimal solution
algorithms have only been demonstrated on problems where ¢ is relatively small. For problems

where n and q are both large, existing exact and heuristic methods are of limited effectiveness.
6

Two new heuristics, a critical event tabu search by Glover and Kochenberger [42] and a genetic
algorithm by Chu and Beasley [20], show promise in solving problems of larger size. While neither
directly compare the two heuristics, both demonstrate great improvement over previous methods in

CPU time and solution quality.

2.1.3.3 Geometric Knapsack Problem

The KP and MDKP do not address the geometry of either the container or individual the items.
In other words, the shape of an item, and how that shape affects its ability to fit in the container is
not captured in MDKP. The geometric knapsack problem (GKP) extends the MDKP by explicitly
modeling the shape of each item and the container — in effect, removing the additivity relaxatioﬁ. :
For example, in one version of the GKP the position of the items is fixed; then, a optimal container
enclosing some subset of those items is selected [S].

In the present problem we consider the space and dimensions of the container as fixed withno -
items overlapping. The formulation repeats KP with two additional constraints. Following Cagan
[18] let Syoiar be the space (location and volume) bounding the container volume in R3. Also, let 7
S(z;) and S(z) be the space of the j and k cargo items, respectively, in %2 such that

S(y)N S =0 Vi#k)

S(z;) C Stotal Vz;. 4

Equation (3) states that one item can not occupy the same space as the other while (4) ensures the
items must be inside the cqntainer.

The heuristic techniques in the literature for the KP and MDKP are not effective for the GKP
because of the added geometric complexity. Cagan’s shape annealing heuristic combines the for-
malism of shape grammar that dictates permissible item orientation with simulated annealing. How-

ever, we need a heuristic that allows a more robust set of item orientation; thus, our approach to

GKP problem is to decompose it into a KP and a packing problem. The KP heuristic selects the
set of items to potentially pack while the packing heuristic optimizes the placement of the selected
items inside the knapsack. The solution found from the packing problem provides the updated con-

straint vector to the KP.

2.1.4 Packing Problems

In surveys of packing problems conducted by Coffman et al. [30], Dyckhoff [29], and Dowsland
and Dowsland [26], the majority of literature deals with lower dimensional packing problems with
regular shaped objects. Dowsland and Dowsland point out that the rectangular packing problem
is NP-complete; thus, non-rectangular problems are often not pursued due to the increasing com-
plexity. They also note that for three-dimensional problems, most approaches employ ad-hoc rules
based on common sense; resulting in, no single approach being seen as superior. Furthermore, prac-
tical experience shows that while these methods for three dimensional problems will out perform
manual methods on average, they are computationally expensive. Finally, Dowsland and Dowsland
note that a concerted manual effort will beat these algorithms in terms of packing density [26].

A recent exception to these heuristics for the three dimensional packing is the area of mechan-
ical design. Szykman and Cagan [85] extend the simulated annealing technology for two dimen-
sional VLSI layout by developing a simulated annealing based approach to packing three dimen-
sional objects into a container. They also employ their method to solve the three dimensional com-
ponent layout problem with the objective of achieving high packing density subject to fitting com-
ponents into a container that satisfies separation constraints. While similar to our need of packing
an aircraft at a high density while maintaining the separation constraints on the cargo, our approach

differs in that we maintain a balanced load on each aircraft and employ a tabu search meta-heuristic.

2.1.5 Problem Dfeﬁnition

Given a fleet of aircraft, how much cargo can be moved? Answering this question requires two
decisions: which cargo to place in each aircraft and the cargo’s placement inside. Selecting cargo
recalls the knapsack problem, where each piece of cargo has weight, volume, and value, while the
aircraft have a finite volume and weight limitation. Given m aircraft and a set of n cargo items with

a value p, the problem formulation is:

m n
Maximize Z Z DiTij 5)
i=1 j=1
Subject To
n
> Wezij < Woaytoas, € M ={1,...,m} (6)
=1
n
Z‘/ijij < Vpayloadi teM= {17-~"m} (7)
=1 o
Y zi;<1 jeN={1,.,n} 8®)
i=1
zi; = binary ieEM,jEN O]
where

- (10)

Formulation (5-10) without (7) is the multiple knapsack problem (MKP), shown by Martello and

s o 1 if cargo item j is assigned to aircraft ¢;
Y 71 0 otherwise;

Toth [67] to be in the NP-hard class of problems. Since the addition of constraint (7) makes the
problem multidimensional, we refer to (5-10) as the multidimensional multiple knapsack problem
(MMKP).

Arranging the set of cargo items selected for each aircraft imposes additional constraints on
MMKEP, since the available space and location of where cargo may be placed is fixed and cargo
cannot overlap. Following Cagan [18], let S;yq, be the space (location and volume) bounding the

payload volume in R3 of aircraft i. In addition, let S(z;;) and S(z;x) be the space of the j and &

cargo items, respectively, in aircraft 4 in & such that
S(ei) N S(aw) =0 Vi#k (11)
S(zij) C Stotal; Vi . (12) -
Equation (11) states that no cargo item can occupy the same space as another, while (12) restricts
individual cargo items to fitting within the space of the corresponding aircraft.

We call the new formulation (5-12) the geometric multidimensional multiple knapsack prob-
lem (GMMKP). We now extend the GMMKP formulation to the Air Loading Problem (ALP). First,
payload restrictions vary by location due to different floor strengths. Therefore let ¢ be a section of
aircraft ¢ that can sustain a maximum floor load of P;;, P(z,;) denote the loading of cargo item j,
and S(t;) the space section ¢; occupies inside aircraft 7 such that

Sti)NS(zij) =0 VP(zy) > P, (13)
Second, some cargo items must have separation constraints; e.g., two trucks cannot sit next to
each other. Let D, be the distance required between cargo items j and k, and define the function
L[S(zi;), S(x:x)] as the distance between cargo item j and k on aircraft 7 such that
L[S(zij), S(z)] =2 Djx. Vi # k. (14)
Third, packing arrangements must not cause the aircraft to destabilize by shifting the aircraft’s
center of gravity (c.g.) outside its design limits. Letting L.,, be the location of aircraft ¢’s c.g. when
packed, and Lgesign,.; aNd Lesign,...; be the location of the aircraft i’s maximum and minimum
design c.g., respectively,
Leg: < Liesignom, (15)
Leg; > Laesignm, -

We call the GMMKP with constraints (13-15) the ALP.

10

2.2 The Packing Heuristic

Theodoracatos and Grimsley [90] note that since the general packing problem belongs to the
NP-complete class of problems, and typically contains a large number of sub-optimal solutions, a
meta-heuristic is needed. Szykman and Cagan [85] use a simulated annealing approach to solve a
similar problem of three-dimensional component packing, while Theodorcatos and Grimsley use
simulated annealing to pack arbitrarily shaped polygons. However, Dowsland’s [27] experiment
with Glover’s [41] simple tabu thresholding on the rectangular packing problem shows promising

results, thus motivating our use of simple tabu thresholding to solve the packing portion of the ALP.

2.2.1 Simple Tabu Thresholding

Simple tabu thresholding (STT) is a local search method that avoids becoming trapped at local
optimum by allowing non-improving moves. A successful implementation requires a well defined
solution space, neighborhood structure and cost function. Glover [41] presents a detailed descrip-
tion of this method; only a brief overview is givep here. STT combines strategic oscillation with
a candidate list strategy: Strategic oscillation refers to the technique of orienting moves in relation
to a critical condition, and the candidate list strategy refers to the method used to pick the moves.
The STT method differs from other tabu search methods in that it has a greatly reduced reliance on
memory. Instead, it controls randomization using a candidate list strategy to fulfill functions other-
wise provided by memory; assigns probabilities to refiect evaluations of attractiveness by weighting
over near best intervals; and, judiciously selects the subset of moves from which intervals are drawn
[44]. |

STT consists of two alternating phases, an improving phase and a mixed phase. Both phases
partition the neighborhood moves into subsets, and only one subset is considered at each iteration.

The improving phase only accepts moves that improve the objective function (see A.1), while the

11

mixed phase (see A.2) accepts all moves. During the improving phase, a block random order scan
(BROS) chooses the subsets to search. BROS allocates each subset a position in a cyclic list, with
a total of M subsets. The improving phase searches the list sequentially, starting over again once
the cycle has been completed. BROS groups the subsets into & blocks; when the improving phase
encounters each block, the BROS shuffles the elements of that block. As long as £ does not divide
M, the BROS permits the resequenced elements to migrate. This effectively avoids cycling by
emulating a tabu list of approximately M [41]. The improving phase terminates when reaching a
local optimum, thus initiating the mixed phase.

The mixed phase begins by selecting a random tabu timing parameter ¢ between the specified
limits of iy and &max, and conducts a full random order scan (FROS) of M. FROS shuffies all of
the subsets M, ignoring the block groupings of the improving phase. The mixed phase searches the
list sequentially; if the mixed phase reaches the end of the list (this will only occur if ¢ is greater than
M), a BROS selects the remaining subsets to be searched. This phase continues for ¢ iterations, or

until an aspiration criteria is satisfied.

2.2.2 STT for the Packing Problem
In this section, we describe the STT packing heuristic. The packing heuristic checks the
feasibility of the MMKP. The knapsack heuristic then uses the solution of the packing heuristic as

the updated right hand side vector.

2.2.2.1 The Move Set

We base our move sets on Dowsland [27], where the neighborhood moves are apportioned by
assigning one subset to each cargo item in the layout; thus subset j contains all possible moves for
cargo item j. While the basic moves are borrowed from Szykman and Cagan [85], our STT differs

from their simulated annealing approach in that we evaluate each move before making it, and only

12

accept improving moves during the improving phase. We employ three types of moves in each
subset to perturb the layout- - transiate, rotate and swap moves.

Translate. Each translate move has a distance D associated with it,r where D ranges from
a minimum to a maximum value (multiple translate distances allows the algorithm to evaluate
steps of varying size). Theodorcatos and Grimsley [90] observe that the objective function for the
two-dimensional packing problem is based upon a polygonal area consisting of a bounding box
and penalties for polygonal overlap. Their experience with the their simulated annealing heuristic
suggest the size of the neighborhood set should be based upon the sum of the polygonal areas of

the cargo items. They provide the following relation to set the initial maximum distance for the

[3r, Area,,
Drnax - —‘%_CL (16)

When packing aircraft, cargo is not stacked on top of each other, so we limit translation of cargo

two-dimensional problem:

items to width and length direqtions. When evaluating a translate move, a cargo item is placed at
distance D e V, where V is defined as a unit vector.

Rotate. We limit the rotations to the vertical axis with three defined moves of 90, 180, and
270, degrees. In general, cargo can rotate a full 360 degrees; however, for those cargo items that
must rest inside the aircraft in a certain orientation the rotation is limited accordingly.

Swap. Swap moves switch an item’s centroid location. We employ one swap move in the
improving phase and multiple swaps in the mixed phase.

The cargo items all come from a standard database enabling us to model each cargo item as a
separate object using the object-oriented language JAVA3. By developing a separate class for each
general shape of cargo item, we enable each type to have a distinctive move set based on these three

categories.

3Java is a trademark of Sun Microsystems, Inc.

13

2.2.2.2 The Objective Function
Following Szykman and Cagan [85], our STT uses a multiple objective function F' of the
weighted sum form
F=Wof1+ Woafo+ ... + Wopfp (17
where f; is the value of the /th objective and W, is the weight for the Ith term. Maximizing packing
density constitutes the first term of the objective function

St
i
i1 5¢;

fi=
where Sy, is the area of the bounding box of the packed cargo, n; is the number of cargo items in
aircraft 7, and S, is area of the jth item. By minimizing the area the cargo occupies more cargo
items are packed into each aircraft, thus enabling higher values of (5). At each move cargo items

are allowed to overlap each other, permitting a more thorough search of the state space. To satisfy

(11) we employ a penalty function for overlap as our second term

n;—1 n;
=1 o% (18)
i=1 \k=j+1

where Oy, is the overlap between the jth and kth item. For simple shapes such as rectangular
blocks and cylinders, rapid geometric interference testing is possible by taking advantage of the
Manhattan geometry (where all objects are oriented perpendicular to each other) [87]. Generic
shapes, however, require more robust methods of computing geometric intersection.

For the two-dimensional case we model the cargo items as simple polygon objects (no over-
lapping edges allowed and not restricted to being convex). When each cargo item is instantiated, we
decompose or triangulate the cargo’s shape into v — 2 triangles (where v is the number of vertices of
the polygon) and store the resulting triangles as arrays of triangle objects. We triangulate the cargo
items by coding a JAVA version of Narkhede and Manoch [70] triangulation code, which is an O(v

log v) incremental randomized algorithm that in practice exhibits near linear time. We then employ
14

the methods described in Theodoracatos and Grimsley [90], Sedgewick [82], Foley et al. [33], and
Preparata [76] to compute the areas of overlap during the execution of the packing algorithm.
The third component of the objective function penalizes violations of (12) i.e., (items that

protrude from the aircraft) with the function

n;
3= Z P?
j=1
where n; is the number of cargo items in the aircraft <, and P is the protrusion of cargo item j from
the aircraft given by |
P; = Pyj 4+ Py; + Py

where P,;, P,;, and P,; are the lengths of protrusion of the jth cargo iterﬁ inthe X, Y, Z coordinate
directions, respectively.

Center of gravity (c.g.) calculations are made for the longitudinal axis only because c.g.
changes along the vertical or lateral axis are small and flight controls can combensate for any effect
on the stability of the aircraft. However, a longitudinal change in c.g. can cause aircraft instability.
For a detailed explanation of aircraft stability see Roskam [78]. We penalize violations of (15) with
a function based on the work of Amiouny ef al. [3]

f 4= dz;j
where d,;; is the distance cargo item j would have to move to put aircraft i’s c.g. inside the pa-
rameters of Lyesigny o, OF Ldesign....- We calculate d,; using conservation of momentum under the
assumption that the aircraft and cargo moments are in equilibrium. Specifically

Wrotal, Lc-g~Desi9n - Z;;:l,k;éj "VckLc.g.mg ok 1

where W4 15 total weight of aircraft 4 with cargo items j, and L., o is the location of cargo
item j’s c.g. We assume aircraft g-load is constant and that the items are homogenous; therefore, the

force from an individual item is a point load at the centroid of the item. Other loading heuristics in
15

the literature that consider balance are [3,15,98]. Amiouny ef a/. show the one dimensional balance
problem is strongly NP-complete and propose a heuristic based on moments. Wodziak and Fadal
[98] use a genetic algorithm to pack a balance load on a truck. Brosh [15] allocates cargo aboard a
civilian airliner using a sequence of linear programming problems whose solutions converge to the

optimum,

2.2.2.3 The Candidate List Procedure

Integers between 0 and n; — 1, representing the move set of each cargo item assigned to aircraft
1, populate the candidate list. The improving phase uses BROS to select moves, where the block
size for aircraft 7 is the Minimum(n; 5) when n; < 100; otherwise, the block size is 7. At the
beginning of the mixed phase, STT makes a FROS of the candidate list; if ¢ is gree;ter then n;, the
process reverts to a BROS after n; moves. Furthermore, our JAVA implementation represents the
candidate list procedure as an object. This allows the parameters of the candidate list procedure to

change at run time using the above logic, thus enabling concurrent packing heuristics to run.

2.2.2.4 The Improving Phase

The improving phase evaluates all potential moves in each cargo items move set, and selects
the overall best move based on the objective function value. We decrease Dpax at each iteration
of the improving phase based on the observation that as cargo items are packed more tightly, the
distances of improving moves decreases. If no improvi;mg moves are found in n; iterations, STT
exits the improving phase. If the current objective function value is the best found, STT keeps the

location and position of the cargo items.

16

2.2.2.5 The Mixed Phase
At the start of the mixed phase, Dy,ay is set to the original value found using (16). STT selects
a random move for each move subset visited, and exits the mixed phase after ¢ iterations, or if the

move results in the best solution found so far.

2.3 The Knapsack Heuristic

We solve a MDKP problem to obtain an upper bound on the ALP. The ALP has thousands
of items to be packed; however, there are only slightly more than 600 different types of items to
“choose from, thus effectively setting the maximum number of columns that will need to be updated
to 600. The volume of the items is not additive (due to shape) so we substitute total length for
volume in the relaxed problem. Additionally, we add a final constraint that limits the number of
pallets to be packed on the aircraft. The relaxed problem will then be a MDKP with a q of three
and_an effective n of 600. The literature shows tabu search and genetic algorithms to be the most
promising techniques to use to solve MDKPs [9, 20,42, 50,74]. In the literature Chu an;i Beasley’s
[20] genetic heuristic, and Glover and Kbchenberger [42] tabu search show the best results in terms
of solution quality and time for large MDKPs. Battiti and Tecchiolli [8] present a reactive scheme
that increases the performance of strict tabu search, thus motivating us to investigate a new heuristic
that combines Glover and Kochenberger’s critical event tabu search with Battiti and Tecchiolli’s

reactive tabu scheme.

2.3.1 Critical Event Tabu Search

Glover and Kochenberger’s [42] critical event tabu search uses strategic oscillation to alternate
between constructive and destructive phases (see B.1). The constructive phase adds items to the
knapsack while the destructive phase removes them. The search oscillates around the feasibility

boundary for span moves; starting at one span it increases to a limiting value, then returns to

17

one. The pattern repeats for a set number of total outer oscillations. A critical event is the, last
solution obtained before the search entering the infeasible region in the constructive phase, or the
first feasible solution after leaving infeasible space in the destructive phase. The parameters p1 and
P2 in the transfer phase (see B.4) control the amount of diversification of the search. Large values
of pl and p2 provide greater diversity by forcing the heuristic to search further away from the
feasibility boundary; conversely, small values encourage the heuristic to focus the search around
the last critical event. Recency and frequency information influence which items to add or drop in
the constructive and destructive phases. Recency information is stored in a first-in first-out queue
of length tabuTenure. When adding a solution to the queue the variable TABU_R; increases _
by one for each item j that composes the critical solution. Similarly TABU_R; decreases by one
once the solution leaves the queue. Frequency information is tracked in a similar manner; parameter
TABU_F; increases by one for each item j that is a member of a critical solution. Parameter k& -
manages the number of tabu-influenced add or drop moves made immediately after a critical event
by starting at one and increasing by one after 2 x tabuTenure moves until reaching the constant
KMAX. At this point k resets to one and repeats the process.

The variable RATIO; is the ratio of profit to surrogate; where surrogate; is the surrogate
constraint of item j. The heuristic utilizes three different surrogates depending on the feasibility
status of the current solution. The constructive phase (see B.2) chooses an item to add to the
container by selecting either the item that maximizes (20) when count_var > k, or maximizes
(21) when count_var < k.

(RATIO;, jez=0) (20)

(RATIO; — PEN_R xTABU_R; - PEN_F xTABU_F; jez=0). (1)

18

The destructive phase (see B.3) chooses an item to drop by minimizing (20, 21) using the same
criteria. We define PEN_Rand PEN _F as

PEN_R = Mazimum(RATIO;

PEN R
100000 x iterationCount’

initialization)

PEN_F =

Aspiration criteria generates two additional trial solutions at a critical event. In the constructive
phase, the search arrives at a point where the next move brings the heuristic to the infeasible region.
When such a move is imminent, candidate items are searched in order of decreasing profit for the
first one that can be added to the container while maintaining feasibility. A second solution is then
generated by retaining the regularly selected move that brought the heuristic to the infeasible region,
then searching for an item to drop in order of increasing profit. The trial solutions do not replace
the standard move choice; they just provide a solution for use if it improves the best one currently

known.

2.3.2 Reactive Tabu Search

Glover and Kochenberger start with initial values pl =3,p2 =17, t =7 and run the heuristic
for a fixed amount of outer oscillations. They then modify the parameters and restart the search,
recording the best solution obtained. Battiti and Tecchiolli [8] propose a fully automated reactive
mechanism for on-line determination of free parameters, thus allowing the heuristic to cover a wide
variety of problems while avoiding human trial and error adjustment [7]. They show in [9] the
reactive search is robust and efficient for multidimensional knapsack problems of both large and
small sizes. We adapt Battiti and Tecchioli’s technique to Glover and Kochenberger’s search. The
heuristic stores the critical events visited during the search and corresponding iteration numbers in
memory, so that after the last critical event one can check for repetition of critical solutions and

calculate the intervals between them. When the repetition of a critical event is greater than REP,

19

the tabuTenure is geometrically increased by ten percent. The number of iterations executed
after the last change in tabuTenure, stepsSinceLastChange, is then compared to the moving
average of the detected cycle length, moving Average; if the stepsSince LastChange is greater
than movingAverage the tabuTenure is decreased by ten percent. The variable chaotic tracks
the number of often repeated critical events; if chaotic is greater than the constant CHAOQOS an

escape sequence initiates.

2.3.3 Computational Results

We benchmark our results with problems obtained from [11] to demonstrate that our heuristic
is competitive in terms of quality and speed, and to show that a program written in JAVA does
not significantly affect the speed of the implemented heuristic. Our reported data was run on a
Digital DEC ALPHA with 64 megabytes of memory and a processor speed of 125mHz using SUN
Microsystems Just-In-Time compiler 1.1.4. (We also note that the code also ran on x86 and Sun
Sparc platforms with no debugging or additional coding). Table 1 compares our implementation to

Chu and Beasley’s genetic algorithm.

20

Table 1. Comparison of Reactive Tabu Search with Beasley - Chu’s GA

Problem Chu Beasley (C Code) Reactive(JAVA)
Average Average
q n a %Gap ABST AET NOPT %Gap ABST AET NOPT
5 100 0.25 0.99 9.6 3459 10 1.20 172 458
0.50 0.45 235 3473 10 0.56 237 431
0.75 0.32 269 361.7 10 0.43 136 413
5 250 0.25 0.23 50.7 682.0 8 0.38 40.0 1157
0.50 0.12 276.7 709.4 5 0.23 455 107.8
0.75 0.08 1959 763.3 5 0.13 346 102.1
5 500 0.25 0.09 264.6 12719 0.20 90.9 239.7
0.5 0.04 2913 13459 0.11 1277 2249
0.75 0.03 386.2 14126 0.06 91.7 210.6
10 100 0.25 1.56 97.5 384.1 2.16 31.0 578
0.5 0.79 973 4189 1.15 172 54.1
0.75 0.48 16.8 462.6 0.69 300 514
10 250 0.25 0.51 359.0 8709 093 762 1537
0.50 0.25 3422 9315 0.53 845 136.6
0.75 0.15 129.1 1011.2 0.29 317 1286
10 500 0.25 0.24 702.5 1504.9 0.46 156.1 3153
0.50 0.11 562.2 1728.8 0.25 1329 2827
0.75 0.07 937.6 1931.7 0.15 131.6 262.8
30 100 0.25 2.91 177.4 604.5 372 42.7 1057
0.50 1.34 118.0 782.1 1.97 39.7 957
0.75 0.83 90.1 9042 1.19 284 936
30 250 0.25 1.19 5829 1499.5 206 114958 262.1
0.50 0.53 901.5 1980.0 1.04 69.064 233.1
0.75 0.31 1059.3 24414 0.57 102.298 2235
30 500 0.25 0.61 1127.2 24377 1.14 2947 552.4
0.50 0.26 1121.6 31989 0.54 130.9 488.1
0.75 017 1903.3 3888.2 0.32 196.2 460.9

A B.S.T = average best-solution time(CPU seconds)

A E.T = average execution time (CPU seconds)

NOPT = number of instances (out of ten) the heuristic finds the optimal solution

Chu-Beasley’s GA run on a Silicon Graphics Indigo workstation (R4000,100MHz,48Mb main memory)
Reactive Tabu run on a Digital DEC Alpha

(125MHz, 64MB main memory using a JIT 1.1.4 Java Compiler)

Table 2 shows the result of our upper bound knapsack heuristic on three reference ALP’s
verses the USAF’s Windows ALM model. Each reference set has up to 610 different types of items

21

and up to 10,000 total items. The knapsack heuristic ran in a loop until either all available cargo

was packed, or until it ran out of available aircraft.

2.4 Geometric Knapsack Heuristic

Knapsack Heuristic |«

Array of Cargo, Overlap Penalty
Aircraft Protrusion Penality
Tabu Parameters C.G Penalty

Seperation Penalty

Packing Heuristic

Figure 1. Geometric Knapsack Heuristic

The Geometric Knapsack Heuristic (GKH) combines the knapsack and packing heuristic to-
gether in a master slave 'relationsliip.(see fi gure. 1). The knapsack heuristic selects potential cargo
to pack and the packing heuristic finds the optimal packing pattern for the selected cargo. The only
change to the knapsack heuristic is in how it updates the resource constraints.. The constraints that
are additive (for the ALP these would be weight and maximum number of pallets) are calculated
in the same manner as before but for non additive constraints (for the ALP these would be non-
protrusion (12), non-overlap (11), non c.g. violation (15), and non-separation violation (14)) the
packing heuristic is called. The right hand side for the non-additive constraints are initialized to
zero. If the best solution (recall we have not establish optimality) to the packing heuristic violates
any one of the non additive constraints the penalty from packing heuristic is subtracted from the re-

22

source vector of the knapsack heuristic. When the knapsack heuristic enters the destructive phase,

it will drop the cargo with violations because of (20, 21).

2.4.1 Computational Results

Table 2 shows the three reference ALP problems with the GKH as compared to the results
of Windows ALM (currently being used by USAF Studies and Analysis Agency). The MDKP is
an upper bound on the ALP since it only considers aggregate area and weight. We note that all
of the solutions obtained with our GKH are feasible, and on average less than half the equipment
recommended by ALM should be loaded. These results suggest that ALM may be overestimating
the amount of cargo that can be carried in a C-17, due to neglecting center of gravity limits. Further

analysis of the ALM loads need to be conducted to prove this hypothesis.

Table 2. Comparision of ALP Heuristics (for 10 C-17 Sorties)

Problem Size Equipment Taken

9398 ALM 92
MDKP (upper bound) 452

GKH 35

2711 ALM 75
MDKP (upper bound) 286

GKH 62

9398 ALM 92
MDKP (upper bound) 1451

GKH 16

2.5 Conclusion

We introduce a novel approach to solving geometric knapsack problems, using new tabu
heuristics for both the packing and multidimensional knapsack problem that compare favorably
with results reported in the literature. Our approach is effective for solving the real world problem
of determining which set of cargo to load aboard a given fleet of C-17 aircraft. Finally, we confirm

the use of JAVA as a programming tool for heuristic applications.

23

2.6 Suggestions for Future Research

Develop a knapsack heuristic that will handle the packing of multiple knapsacks. Currently,
the knapsack heuristic only finds the best set of items for a single knapsack. The possibility. exists
that a load master will have the opportunity to pack multiple aircraft at once. The multiple knapsack
heuristic would pick the best set of items for all the knapsacks.

The data for ALM is in flat files. Migrating this data to a relational data base would allow
easier manipulation of the data. Potentially load masters could change the value of an item in real
time, enabling last minute changes to deployments to be analyzed.

Parallel implefnentation of the heuristics, similar to [74], would provide a way to potentially
reduce the solution times of the heuristics. This would be particularly useful if the parallel imple-
mentation uses existing processors and tied them together through world wide web.

Incorporating a fast collision detection algorithm for three dimensional non-convex objects
would be a valuable improvement: The up coming release of Java 1.2 with the new 3-D API may
provide an easy method for doing this.

Explore using the packing heuristic on engineering design problems, like [87] does with there
simulated annealing packing heuristic.

Implement the packing heuristic on the world wide web for USAF load masters to evaluate
and potentially use. This would provide a cheap and innovative way of validating the heuristic with

respect to the air loading problem.

24

APPENDIX A - Pseudo Code For Packing Heuristic

A.1 Improving Phase

Procedure 1 Improving Phase

while Not at local Optimum do
Apply Candidate List Strategy by a Block Random Order Scan
if move is improving then
accept move
end if
end while

A.2 Mixed Phase

Procedure 2 Mixed Phase

Select a tabu timing parameter ¢

fori <= 0,7 <tdo
Apply Candidate List Stategy by a Full Random Order Scan
automatically accept move

end for

25

APPENDIX B - Pseudo Code For Knapsack Heuristic

B.1 Main

Procedure 3 Main

Require: Intializeallr <=0
Require: feasible <= true
Choose values for pl and p2
while outeroscilliations < MAXOSCILLIATION do
constructivePhase()
transferPhase()
destructivePhase()
transfer Phase()
outerQscilliations < oulerOscilliations + 1
end while

B.2 Constructive Phase

Procedure 4 Constructive Phase

countSpan < 0
while feasible = true do
if no component of z; of x can be increased from 0 to 1 except by violating feasiblity then
ifcz > cz* then
&z
end if
Sfeasible < false
else
choose an z; to increase from 0 to 1 such that the move maintains feasiblity
end if
end while
while feasible = false do
countSpan < countSpan + 1
if countSpan > span or all z; = 1 then
return
else
choose an z; to increase from 0 to 1
end if
end while

26

B.3 Destructive Phase

Procedure 5 Destructive Phase

countSpan < (
while (feasible = false) do
select an z; to change from 1 to 0
if solution is feasible then
if cx > ca* then
¢ <=2
end if
feasible < true
end if
end while
while (feasible = true) do
countSpan < countSpan + 1
if countSpan > span orall z; =1 then
return
else
choose an z; to decrease from 1 to 0
end if
end while

B.4 Transfer Phase

Procedure 6 Transfer Phase

if increasingSpan = true then
if (span < pl) and (p2 x span outerOscillilations then
span <= span + 1
else if (increasingSpan = true) and (span > pl) and (p2 outerOscillilations) then
span <= span + 1
if span > p2 then
increasingSpan < false
p2 < span — 1
end if
end if
else
if (span > pl) and (p2 outerOscillilations) then
span <= span — 1
else if (span < pl) and (p2 x span outerOscilliations) then
span < span — 1
if span < 1 then
increasingSpan < true
span < span + 1
end if
end if
end if

27

APPENDIX C - Code Documentation

28

Class Hierarchy

e class java.lang.Object
o class AFIT.Alm.Packing.CandidateListStrategy
° interface AFIT.Alm.Packing.Cargo
° class AFIT.Alm.Packing.Cargo2d (implements AFIT.Alm.Packing.Cargo)
B class AFIT.Alm.Packing Helicopter
W class AFIT.Alm.Packing.Vehicle
° class java.awt. Component (1mp1ements java.awt.image. ImageObserver
java.awt.MenuContainer, java.io.Serializable)
B class java.awt.Canvas
B class AFIT.Alm.Packing PackCanvas
B class AFIT.Alm.Packing.PackingCanvas
o class AFIT.Alm.Packing.Container
B class AFIT.Alm.Packing.BalancedContainer
B class AFIT.Alm.Packing. Aircraft
B class AFIT.Alm. Packing.SectionedAircraft
® class AFIT.Alm.Packing.C17 '
class AFIT.Alm.Knapsack.EquipmentAlm (implements java.io.Serializable)
class AFIT.Alm.Knapsack.Reader.EquipmentReader
class AFIT.Alm.Geometry. Geometry2d
class AFIT.Alm.Knapsack.GroupAlm (implements java.io.Serializable)
class AFIT.Alm.Knapsack.ID (implements java.io.Serializable)
class AFIT.Alm.Knapsack.Item
B class AFIT.Alm.Knapsack.Geometricltem
class AFIT.Alm.Knapsack.ItemComparator (implements java.io.Serializable)
class AFIT.Alm.Knapsack.Reader.KnapSolve
class AFIT.Alm.Knapsack.Reader. KnapsackReader
class AFIT.Alm.Geometry Matrix
M class AFIT.Alm.Geometry.Matrix2d
o class AFIT.Alm.Packing.Move
M class AFIT.Alm.Packing RotateMove
B class AFIT.Alm.Packing.SwapMove
B class AFIT.Alm.Packing. TranslateMove
o class AFIT.Alm.Packing.MoveSet (implements java.io.Serializable)
o class AFIT.Alm Knapsack MultidimensionalKnapsack
M class AFIT.Alm.Knapsack.ReactiveKnapsack
W class AFIT.Alm.Knapsack.GeometricKnapsack
o class AFIT.Alm.Packing.ObjectiveFunction (implements java.io.Serializable)
o class AFIT.Alm.Packing.Params

o 0 0 0 0 ©o

o 0 o0 ©°

0 0 06 06 06 0 0 °

© 0 0 o0 o

class AFIT.Alm.triangulate.PointT
class AFIT.Alm.Knapsack.Pointer (implements AFIT.Alm.Sort.Comparable)
class AFIT.Alm.Knapsack.QuantityPredicate (implements java.io.Serializable)
class AFIT.Alm.Knapsack.RTSParameters (implements java.io.Serializable)
class AFIT.Alm.Packing.Section
class AFIT.Alm.Knapsack.Slave (implements java.io.Serializable)
class AFIT.Alm.Packing. Tabu
class java.lang.Thread (implements java.lang.Runnable)
| class AFIT.Alm.Packing.SearchThread
B class AFIT.Alm. Packing.SearchViewer
class AFIT.Alm.triangulate.Triangle
class AFIT.Alm.triangulate. TriangulatePolygon
class AFIT.Alm.Knapsack.UnitAlm (implements java.io.Serializable)
class AFIT.Alm.Geometry.Vert2d

class AFIT.Alm.Packing.bestMove (implements java.io.Serializable)

Index of all Fields and Methods
A

Aircraft(double[], double[], int, double, double, double). Constructor for class
AFIT.Alm.Packing.Aircraft

allS_elected(). Method in class AFIT.Alm.Knapsack.Item

BalancedContainer(double[], double[], int, double, double). Constructor for class
AFIT.Alm.Packing.BalancedContainer
Instantiates a new Balanced Container

bestMove(). Constructor for class AFIT.Alm.Packing.bestMove
bestMove(). Method in class AFIT.Alm.Packing. MoveSet
Move the item by an absolute best Move.

C17(). Constructor for class AFIT.Alm.Packing.C17

Instantiates a C17 aircraft
calculateBounds(). Method in interface AFIT.Alm.Packing.Cargo
calculateBounds(). Method in class AFIT.Alm.Packing.Cargo2d

This method calculates the two dimensional bounding box of the cargo Item.
calculateBounds(). Method in class AFIT.Alm.Packing.Container

Calculates the bounding box of the container and updates the width and height
CandidateListStrategy(int). Constructor for class
AFIT.Alm.Packing.CandidateListStrategy

Constructs the class that encapsulates the candidate list strategy For move sets less

than 100, the minimum of (5,move set size) is used for the block size.
CandidateListStrategy(int, int). Constructor for class

AFIT.Alm.Packing.CandidatelistStrate
Constructs the class that encapsulates the candidate list strategy
Cargo2d(Cargo2d). Constructor for class AFIT.Alm.Packing.Cargo2d
Instantiates a new Cargo2d object with the same parameters as ¢

Cargo2d(double[], double[], int). Constructor for class AFIT.Alm.Packing Cargo2d
Instantitiates an new Cargo2d item.

cargoCGLocationX(Cargol[], double). Static method in class

AFIT.Alm.Packing. BalancedContainer
Determines the center of gravity location on the x axis of this container with array of
Cargo c in the current packing pattern

cgLocationX(Cargo[]). Method in class AFIT.Alm.Packing.BalancedContainer
Determines the center of gravity location on the x axis of this container with array of
Cargo c in the current packing pattern

checkTabu(). Method in class AFIT.Alm.Packing.Move
Checks to see if the move is tabu, after three calls to this method Tabu status is
removed
clearTabu(). Method in class AFIT.Alm.Packing. Move
Remove from the Tabu status
clone(). Method in class AFIT.Alm.Knapsack.Geometricltem
clone(). Method in class AFIT.Alm.Knapsack.Item
clone(). Method in class AFIT.Alm.Knapsack.ItemQrderedSet
clone(). Method in class AFIT.Alm.Packing.Vehicle
compareTo(Comparable). Method in class AFIT.Alm.Knapsack.Item
compareTo(Comparable). Method in class AFIT.Alm.Knapsack.Pointer
Container(double, double, double, double). Constructor for class
AFIT . Alm.Packing.Container
Instantiates a new rectangular shaped two dimensional container with the upper
left hand corner at pointx,y with dimensionswidth and height
Container(double[], double[], int). Constructor for class AFIT.Alm.Packing.Container
Constructs a new polyon shaped Container with cordinates (xPoints, yPoints) The
container must be convex or the protrusion mehtod will not work correctly.

decreaseQuantity(int). Method in class AFIT.Alm.Knapsack.ID
decreaseQuantity(int). Method in class AFIT.Alm.Knapsack.Item
doubleValue(String). Static method in class
AFIT.Alm.Knapsack.Reader.EquipmentReader

draw(). Method in class AFIT.Alm.Packing.SearchViewer

equals(Object). Method in class AFIT.Alm.Knapsack.ID
equals(Object). Method in class AFIT.Alm. Knapsack.Item
equals(Object). Method in class AFIT.Alm.Geometry.Vert2d
Determines whether two vertices are equal.
EquipmentAlm(). Constructor for class AFIT.Alm.Knapsack.EquipmentAlm
EquipmentReader(). Constructor for class
AFIT.Alm.Knapsack.Reader.EquipmentReader
execute(Object). Method in class AFIT.Alm.Knapsack.QuantityPredicate
execute(Object, Object). Method in class AFIT.Alm.Knapsack.ItemComparator
extentsOQverlap(Cargo). Method in class AFIT.Alm.Packing.Cargo2d
Return true if the bounding box overlaps Cargo item c.

feasible(). Method in class AFIT.Alm.Packing.ObjectiveFunction
Returns true if the current packing pattern is feasible
feasible(). Method in class AFIT.Alm.Packing.Tabu

Geometricltem(double, double[], int, double, double). Constructor for class
AFIT.Alm Knapsack.Geometricltem

Geometricltem(Geometricltem). Constructor for class
AFIT.Alm.Knapsack.Geometricltem
GeometricKnapsack(RTSParameters, ItemOrderedSet, double[], Aircraft). Constructor
for class AFIT.Alm.Knapsack.GeometricKnapsack
Geometry2d(). Constructor for class AFIT.Alm.Geometry.Geometry2d
getArea(). Method in interface AFIT.Alm.Packing.Cargo
getArea(). Method in class AFIT.Alm.Packing.Cargo2d

Get the area of the polygon
getBestSet(). Method in class AFIT.Alm.Knapsack. MultidimensionalKnapsack
getBestTime(). Method in class AFIT.Alm.Knapsack.MultidimensionalKnapsack

getBestValue(). Method in class AFIT.Alm.Knapsack. MultidimensionalKnapsack
getbestValue(). Method in class AFIT.Alm.Packing.Tabu
getCentroidX(). Method in interface AFIT.Alm.Packing.Cargo
getCentroidX(). Method in class AFIT.Alm.Packing.Cargo2d

Get the x cordinate location of the centroid
getCentroidY(). Method in interface AFIT.Alm.Packing.Cargo
getCentroidY(). Method in class AFIT.Alm.Packing.Cargo2d

Get the x cordinate location of the centroid
getCpuTime(). Method in class AFIT.Alm.Knapsack.MultidimensionalKnapsack
getcurrentValue(). Method in class AFIT.Alm.Packing. Tabu
getEquipment(). Method in class AFIT.Alm.Knapsack.UnitAlm
getGeometricltem(). Method in class AFIT.Alm Knapsack.EquipmentAlm
getGeometricltems(). Method in class AFIT.Alm.Knapsack.GroupAlm
getID(). Method in class AFIT.Alm.Knapsack.EquipmentAlm
getld(). Method in class AFIT.Alm.Knapsack.EquipmentAlm
getID(). Method in class AFIT.Alm.Knapsack.GroupAlm
getID(). Method in class AFIT.Alm.Knapsack.ID
getID(). Method in class AFIT.Alm.Knapsack.UnitAlm
getintValuelD(). Method in class AFIT.Alm Knapsack.ID
getIntX(). Method in interface AFIT.Alm.Packing.Cargo
getIntX(). Method in class AFIT.Alm.Packing.Cargo2d

Returns an int array of the x cordinates of the vertices
getIntY(). Method in interface AFIT.Alm.Packing.Cargo
getIntY(). Method in class AFIT.Alm.Packing.Cargo2d

* Returns an int array of the y cordinates of the vertices

getItem(). Method in class AFIT.Alm.Knapsack.EquipmentAlm
getltems(). Method in class AFIT.Alm.Knapsack.GrouypAlm
getlterations(). Method in class AFIT.Alm.Knapsack.MultidimensionalKnapsack
getlLength(). Method in class AFIT.Alm.Knapsack.EquipmentAlm
getlLoadedWeight(). Method in class AFIT.Alm.Knapsack.EquipmentAlm
getLocationX (). Method in class AFIT.Alm.Geometry.Vert2d
getLocationY(). Method in class AFIT.Alm.Geometry.Vert2d
getMaxAcl(). Method in class AFIT.Alm.Packing. Aircraft
getMaxX(). Method in interface AFIT.Alm.Packing.Cargo
getMaxX(). Method in class AFIT.Alm.Packing.Cargo2d
getMaxY(). Method in interface AFIT.Alm.Packing.Cargo
getMaxY(). Method in class AFIT.Alm.Packing.Cargo2d
getMinX (). Method in interface AFIT.Alm.Packing.Cargo
getMinX(). Method in class AFIT.Alm.Packing.Cargo2d
getMinY(). Method in interface AFIT.Alm.Packing.Cargo
getMinY (). Method in class AFIT.Alm.Packing.Cargo2d
getName(). Method in class AFIT.Alm.Knapsack.EquipmentAlm
getName(). Method in class AFIT.Alm.Knapsack.GroupAlm

getName(). Method in class AFIT.Alm.Knapsack.UnitAlm
getNextBROS(). Method in class AFIT.Alm.Packing.CandidateListStrategy
Returns the next move to make during an Improving phase based on a Block
Random Order Scan
getNextFROS(). Method in class AFIT.Alm.Packing.CandidateListStrategy
Returns the next move to make during a Mixed phase Based on a Full Random
Order Scan, until the move set is exhausted, then reverts to the Block Random Order
Scan
getNPoints(). Method in interface AFIT.Alm.Packing.Cargo
getNPoints(). Method in class AFIT.Alm.Packing.Cargo2d
Get the number of vertices in the polygon that represents the Cargo item
getNpoints(). Method in class AFIT.Alm.Packing.Container
Returns the array of number of points or vertices that make up the container
getNumberOfEquipmentTypes(). Method in class AFIT.Alm.Knapsack.UnitAlm
getNumberOfitems(). Method in class AFIT.Alm.Knapsack.GroupAim ‘
getNumberOfTriangles(). Method in class AFIT.Alm.triangulate. TriangulatePolygon
Returns the number of triangle objects in the triangulated polygon
getNumberQfUnits(). Method in class AFIT. Alm.Knapsack.GroupAlm
getNumberSelected(). Method in class AFIT.Alm Knapsack.Item
getNumT'ri(). Method in class AFIT.Alm.Packing.Cargo2d '
Get the number of triangles.
getOverlap(). Method in class AFIT.Alm.Packing.Vehicle
The overlap of the Vehicle with other Cargo items
getProtrusion(Cargo). Method in class AFIT.Alm.Packing.Container
The protrusion distance is calculated using P = Px + Py where Px is the distance in
the x direction that c is from the centroid of the container and Py is the distance in
the y direction ¢ from the centroid of the container.
getQuantity(). Method in class AFIT.Alm.Packing. Aircraft
getQuantity(). Method in class AFIT.Alm.Knapsack.GroupAlm
getQuantity(). Method in class AFIT.Alm.Knapsack.ID
getQuantity(). Method in class AFIT.Alm.Knapsack.ltem
getTriangles(). Method in class AFIT.Alm.Packing.Cargo2d
Get the Triangle array of this Cargo2d
getTriangles(). Method in class AFIT.Alm.triangulate. TriangulatePolygon
This returns an array of Triangles that contains the triangle vertice numbers.
getUnPackedSet(). Method in class AFIT.Alm.Knapsack.MultidimensionalKnapsack
getValue(). Method in class AFIT.Alm.Packing.Move
getVehicle(). Method in class AFIT.Alm.Knapsack.Geometricltem
getVertex0(). Method in class AFIT.Alm.triangulate. Triangle
getVertex1(). Method in class AFIT.Alm.triangulate. Triangle
getVertex2(). Method in class AFIT.Alm.triangulate. Triangle
getWeight(). Method in interface AFIT.Alm.Packing.Cargo
getWeight(). Method in class AFIT.Alm.Packing.Cargo2d
Gets the weight of this cargo item

getWidth(). Method in class AFIT.Alm.Knapsack.EquipmentAlm

getXLocal(). Method in interface AFIT.Alm.Packing.Cargo

getXLocal(). Method in class AFIT.Alm.Packing.Cargo2d
Get the x cordinates of the local space

getXpoint(int). Method in interface AFIT.Alm.Packing.Cargo

getXpoint(int). Method in class AFIT.Alm.Packing.Cargo2d
Get the x cordinate of the vertice index

getXpoints(). Method in interface AFIT.Alm.Packing.Cargo

getXpoints(). Method in class AFIT.Alm.Packing.Cargo2d
Get the x cordinates of the vertices

getXpoints(). Method in class AFIT.Alm.Packing.Container
Returns the array of xPoints that make up the container

getYaw(). Method in interface AFIT.Alm.Packing.Cargo

getYaw(). Method in class AFIT.Alm.Packing.Cargo2d
Returns the yaw in degrees

getYLocal(). Method in interface AFIT.Alm.Packing.Cargo -

getYLocal(). Method in class AFIT.Alm.Packing.Cargo2d
Get the y cordinates of the local space

getYpoint(int). Method in interface AFIT.Alm.Packing.Cargo

getYpoint(int). Method in class AFIT.Alm.Packing.Cargo2d
Get the y cordinate of the vertice index

getYpoints(). Method in interface AFIT.Alm.Packing.Cargo

getYpoints(). Method in class AFIT.Alm.Packing.Cargo2d
Get the y cordinates of the vertices

getYpoints(). Method in class AFIT.Alm.Packing.Container
Returns the array of yPoints that make up the container

GroupAlm(). Constructor for class AFIT.Alm.Knapsack.GroupAlm

hashCode(). Method in class AFIT.Alm.Knapsack.ID
hashCode(). Method in class AFIT.Alm.Knapsack.Item
hashCode(). Method in class AFIT.Alm.Knapsack.ItemOrderedSet
height(). Method in interface AFIT.Alm.Packing.Cargo
height(). Method in class AFIT.Alm.Packing.Cargo2d
The height of the bounding box of the cargo item
Helicopter(). Constructor for class AFIT.Alm.Packing Helicopter
Instantiates a Helicopter

I

ID(int, int). Constructor for class AFIT.Alm.Knapsack.ID
improvingMove(). Method in class AFIT.Alm.Packing.MoveSet

Move the Cargo item by a probalistic best move
improvingPhase(). Method in class AFIT.Alm.Packing.Tabu
increaseQuantity(int). Method in class AFIT.Alm.Knapsack.ID
increaseQuantity(int). Method in class AFIT.Alm.Knapsack.Item
initialize(). Method in class AFIT.Alm.Knapsack.Item
inside(double, double, double[], double[], int). Static method in class
AFIT.Alm.Geometry.Geometry2d
intersectArea(Cargo2d). Method in class AFIT.Alm.Packing.Cargo2d

The intersection area of this cargo item with another cargo item ¢
intersectArea(Cargo2d[]). Method in class AFIT.Alm.Packing.Cargo2d

The intersection of this Cargo item with array of Cargo items ¢
intersectArea(Cargo2d[]). Method in class AFIT.Alm.Packing.Vehicle

The intersectArea of the Cargo array with this Vehicle
intersectArea(Cargo[]). Method in interface AFIT.Alm.Packing.Cargo
intersectArea(Cargo[]). Method in class AFIT.Alm.Packing.Cargo2d

The intersection area of this cargo item with an array ofCargo items ¢
intersectAreaAll(Cargo2d[]). Static method in class AFIT.Alm.Packing.C 2d

The intersection area of all cargo items in array ¢
intersectAreaAll(Cargo[]). Method in interface AFIT.Alm.Packing.Cargo
intersectAreaAll(Cargo[]). Method in class AFIT.Alm.Packing.Cargo2d

The intersection of this Cargo item with array of Cargo items ¢
intValue(String). Static method in class AFIT.Alm.Knapsack.Reader.EquipmentReader
ItemComparator(). Constructor for class AFIT.Alm.Knapsack.ItemComparator
ItemOrderedSet(). Constructor for class AFIT.Alm.Knapsack.ItemOrderedSet

KnapsackReader(). Constructor for class AFIT.Alm.Knapsack.Reader.KnapsackReader
KnapSolve(). Constructor for class AFIT.Alm.Knapsack.Reader. KnapSolve

length(). Method in class AFIT.Alm.Packing.Container
Length of the bounding box

linesIntersect(double, double, double, double, double, double, double, double, Vert2d).
Static method in class AFIT.Alm.Geometry.Geometry2d

main(String([]). Static method in class AFIT.Alm.Packing.CandidateListStrategy
test stub for the class
main(String[]). Static method in class AFIT.Alm.Packing.Container
test stub for the class
main(String[]). Static method in class AFIT.Alm.Knapsack.Reader EquipmentReader
main(String[]). Static method in class AFIT.Alm.Geometry. Geometry2d
main(String[]). Static method in class AFIT.Alm.Knapsack.Reader.KnapsackReader
main(String[]). Static method in class AFIT.Alm.Knapsack.MultidimensionalKnapsack
main(String(]). Static method in class AFIT.Alm.Knapsack.ReactiveKnapsack
Matrix(). Constructor for class AFIT.Alm.Geometry Matrix ‘
Matrix2d(). Constructor for class AFIT.Alm.Geometry. Matrix2d
MatrixTransform(). Method in interface AFIT.Alm.Packing.Cargo
MatrixTransform(). Method in class AFIT.Alm.Packing.Cargo2d
Moves Cargo2d by its matrix.
maxy. Variable in class AFIT.Alm. Packing.Section
minY. Variable in class AFIT.Alm.Packing.Section
mixedMove(). Method in class AFIT.Alm.Packing. MoveSet
Makes a random swap or rotate move
mixedPhase(). Method in class AFIT.Alm.Packing. Tabu
Move(). Constructor for class AFIT.Alm.Packing. Move
move(). Method in class AFIT.Alm.Packing. Move
Move a Cargo object to some destination
move(). Method in class AFIT Alm.Packing .RotateMove
Rotate a Cargo object theta degrees around the z axis
move(). Method in class AFIT.Alm.Packing SwapMove
Swaps this item with another Item
move(). Method in class AFIT.Alm.Packing TranslateMove
Moves the Cargo Item by xDis,yDis
moveSet. Variable in class AFIT Alm.Packing.Cargo2d
The MoveSet for this cargo item
MoveSet(Cargo, Cargo[], ObjectiveFunction, double, double). Constructor for class
AFIT Alm.Packing .MoveSet
Constructs a new Cargo object.

MultidimensionalKnapsack(double[], double[], double[][]). Constructor for class
AFIT Alm Knapsack MultidimensionalKnapsack

MultidimensionalKnapsack(double[], double[], double[][], int, int, int). Constructor for
class AFIT Alm Knapsack MultidimensionalKnapsack

MultidimensionalKnapsack(ItemOrderedSet, double[]). Constructor for class
AFIT Alm.Knapsack MultidimensionalKnapsack

newSwapltem(). Method in class AFIT Alm.Packing SwapMave
Generates a new Item to swap with this item

noneSelected(). Method in class AFIT Alm Knapsack.ltem

numTri. Variable in class AFIT Aim.Packing Cargo2d

QObjectiveFunction(Cargo[], Aircraft). Constructor for class
AFIT Alm.Packing .ObjectiveFunction

Constructs a new ObjectiveFunction

objFunct. Variable in class AFIT Alm.Packing Tabu
objFunction(). Method in class AFIT Alm.Packing QbjectiveFunction
Evaluate the current Packing Pattern, this ignores the weights
objFunctionltem(Cargo). Method in class AFIT Alm.Packing QbjectiveFunction
Evaluate posistion of an item based on current posistion using weights
output(). Method in class AFIT Alm.Knapsack Item
output(PrintWriter, RTSParameters). Static method in class
AFIT . Alm.Knapsack RTSParameters
outputSet(PrintWriter, ItemOrderedSet). Static method in class
AFIT.Alm Knapsack ItemQOrderedSet

PackCanvas(Aircraft, Cargo[]). Constructor for class AFIT.Alm.Packing PackCanvas
PackingCanvas(Aircraft, Cargo[]). Constructor for class

AFIT Alm.Packing .PackingCanvas

paint(Graphics). Method in class AFIT Alm.Packing PackCanvas

paint(Graphics). Method in class AFIT . Alm.Packing.PackingCanvas

Params(). Constructor for class AFIT.Alm.Packing Params
Pointer(int, double). Constructor for class AFIT Alm Knapsack.Pointer

ReactiveKnapsack(RTSParameters, double[], double[], double[][]). Constructor for
class AFIT.Alm Knapsack ReactiveKnapsack _
ReactiveKnapsack(RTSParameters, ItemOrderedSet, double[]). Constructor for class
AFIT Alm Knapsack. ReactiveKnapsack
readEquipmentData(). Static method in class
AFIT Alm.Knapsack.Reader .EquipmentReader
readGroupData(). Static method in class AFIT Alm Knapsack Reader EquipmentReader
readUnitData(). Static method in class AFIT Alm.Knapsack.Reader.EquipmentReader
remove(Object). Method in class AFIT Alm.Knapsack ItemQrderedSet
resetNorms(). Method in class AFIT Alm.Packing ObjectiveFunction

Set the norms back to a constant value
rotate(double). Method in interface AFIT Alm.Packing Cargo
rotate(double). Method in class AFIT Alm.Packing.Cargo2d

This method rotates the Cargo item around centroidX and centroidY by theta
degrees and then updates the bounding box.
rotate(double). Method in class AFIT.Alm.Geometry.Matrix
rotate (double). Method in class AFIT.Alm.Geometry.Matrix2d
RotateMove (Cargo, double). Constructor for class
AFIT.Alm.Packing.RotateMove
Constructs a new Rotate move for Cargo item that will rotate theta
degrees around the z axis

RTSParameters (). Constructor for class AFIT.Alm.Knapsack.RTSParameters
RTSParameters (int, int, int, int). Constructor for class
AFIT.Alm.Knapsack.RTSParameters
run(). Method in class AFIT.Alm.Packing.SearchThread

Executes the packing search
run(). Method in class AFIT.Alm.Packing.SearchViewer

sameSign (double, double). Static method in class

AFIT.Alm.Geometry.Geometry2d
This method

The method uses the following code:!((a >= 0.0d)*(b >= 0.0d)) to
determine if a and b are the same sign.
SearchThread (Tabu, int, JCProgressMeter). Constructor for class
AFIT.Alm.Packing.SearchThread
Instantiates a new SearchThread

SearchViewer (Canvas, Aircraft, Cargo[], Params, FormattedTextField,
FormattedTextField, FormattedTextField, FormattedTextField,
FormattedTextField, FormattedTextField). Constructor for class
AFIT.Alm.Packing.SearchViewer
Section (double, double, double). Constructor for class
AFIT.Alm.Packing.Section
Section (double, double, double, String). Constructor for class
AFIT.Alm.Packing.Section
SectionedAircraft (Section[], int, double, double, double). Constructor
for class AFIT.Alm.Packing.SectionedAircraft
Instantiates a sectioned Aircraft.
setCentroid(double, double). Method in interface AFIT.Alm.Packing.Cargo
setCentroid(double, double). Method in class AFIT.Alm.Packing.Cargo2d
Set the centroid to the location x, and location y
setCentroid(Vert2d). Method in class AFIT.Alm.Packing.Cargo2d
Set the centroid of the cargo item to the vertice ¢
setEmptyWeight (double). Method in class AFIT.Alm.Knapsack.Equipmentalm
SetEquipment (ID[]). Method in class AFIT.Alm.Knapsack.UnitAlm
setHeight (double). Method in class AFIT.Alm.Knapsack.EQuipmentAlm
setId(int). Method in class AFIT.Alm.Knapsack.EquipmentAlm
setId(int). Method in class AFIT.Alm.Knapsack.GroupAlm
setId(int). Method in class AFIT.Alm.Knapsack.UnitAlm
setItem(Item). Method in class AFIT.Alm.Knapsack.Item
setLength (double). Method in class AFIT.Alm.Knapsack.EquipmentAlm
setlLoadedWeight (double). Method in class AFIT.Alm.Knapsack.EquipmentAlm
setLocation (double, double). Method in class AFIT.Alm.Geometry.Vert2d
setMatrixRotate (double). Method in interface AFIT.Alm.Packing.Cargo
setMatrixRotate (double). Method in class AFIT.Alm.Packing.Cargo2d
Rotate this Cargo2d Matrix by theta
setMatrixTranslate (double, double). Method in interface
AFIT.Alm.Packing.Cargo
setMatrixTranslate (double, double). Method in class
AFIT.Alm.Packing.Cargo2d
Translate this Cargo2d Matrix by x in the x direction and by y in
the y direction
setMatrixUnit (). Method in interface AFIT.Alm.Packing.Cargo
setMatrixUnit (). Method in class AFIT.Alm.Packing.Cargo2d
Set the transform matrix of this cargo item to the identity matrix
setMaxGrossWeight (double). Method in class
AFIT.Alm.Knapsack.EquipmentAlm
setMaxOuterSpan (int). Method in class
AFIT.Alm.Knapsack.MultidimensionalKnapsack

SetMoveSet (Cargo[], ObjectiveFunction, double, double). Method in class
AFIT.Alm.Packing.Cargo2d

SetName (String). Method in class AFIT.Alm.Knapsack.EquipmentAlm
SetName (String). Method in class AFIT.Alm.Knapsack.GroupAlm

SetName (String). Method in class AFIT.Alm.Knapsack.UnitAlm
setNomenclature (String). Method in class AFIT.Alm.Knapsack.EgquipmentAlm

setNomenclature (String). Method in class AFIT.Alm.Knapsack.GroupAlm
SetNomenclature (String). Method in class AFIT.Alm.Knapsack.UnitAlm

setNumberOfEquipmentTypes (int). Method in class
AFIT.Alm.Knapsack.UnitAlm
sSetNumberOfPassengers (int). Method in class AFIT.Alm.Knapsack.UnitAlm
setNumberQfUnits (int). Method in class AFIT.Alm.Knapsack.GroupAlm
SetProfitPerLBS (double). Method in class AFIT.Alm.Knapsack.EguipmentAlm
SetQuantity(int). Method in class AFIT.Alm.Packing.3ircraft
setQuantity(int). Method in class AFIT.Alm.Knapsack.ID
setQuantity(int). Method in class AFIT.Alm.Knapsack.Item
setTabu (). Method in class AFIT.Alm.Packing.Move
" Place on Tabu Status

setToBestFound(). Method in class AFIT.Alm.Packing.SearchThread

Sets the packing pattern to best found patter
setToBestFound (). Method in class AFIT.Alm.Packing.Tabu
setUnits(ID[]). Method in class AFIT.Alm.Knapsack.GroupAlm
setValue (double). Method in class AFIT.Alm.Packing.Move

Sets the value of this move
sSetWeight (double). Method in class AFIT.Alm.Packing.Cargo2d

Sets the weight of this cargo item
setWeightAccompanySupplies (double). Method in class
AFIT.Alm.Knapsack.UnitAlm
setWeightAmmo (double). Method in class AFIT.Alm.Knapsack.UnitAlm
SetWeightNonMobilEguipment (double). Method in class
AFIT.Alm.Knapsack.UnitAlm
sSetWeightNonMobilPallets (double). Method in class
AFIT.Alm.Knapsack.UpitAlm
SetWeights (double, double, double, double). Method in class
AFIT.Alm.Packing.ChjsctiveFunction

Set the weights for Ovelap penalty, Bounding Box Penalty,Protrision

Penalty, and Centr of Gravity penalties
setWidth (double). Method in class AFIT.Alm.Knapsack.EquipmentAlm
setYaw (double). Method in interface AFIT.Alm.Packing.Cargo
setYaw (double). Method in class AFIT.Alm.Packing.Cargo2d

Set the yaw in degrees
Slave (). Constructor for class AFIT.Alm.Knapsack.Slave
solve (). Method in class AFIT.Alm.Knapsack.MultidimensionalKnapsack
solve (Aircraft, ItemOrderedSet, int, int, int). Static method in class
AFIT.Alm.Knapsack.Slave
solve(int, PrintWriter, int, double[], double[], double[][]). Static
method in class AFIT.Alm.Knapsack.Reader.KnapSolve
solveKnapsack (File, File, RTSParameters). Static method in class
AFIT.Alm.Knapsack.Reader.KnapsackReader
solveRTS (int, PrintWriter, RTSParameters, double[], double[],
double[][]). Static method in class AFIT.Alm.Knapsack.Reader.KnapSolve
swap (Cargo). Method in interface AFIT.Alm.Packing.Cargo
swap (Cargo). Method in class AFIT.Alm.Packing.Cargo2d

This method swaps the location of this Cargo item to the location

of Cargo item c based on centroid position. :
SwapMove (Cargo, Cargo[], int, int). Constructor for class
AFIT.Alm.Packing.SwapMove

Constructs a new Swap move for Cargo item that will swap item with

another item between in the array cargoArray between the index of
minIndex and maxIndex

T

Tabu (Aircraft, Cargo[], int, int). Constructor for class
AFIT.Alm.Packing.Tabu
transform(double[], double[], double[], double[], int). Method in class
AFIT.Alm.Geometry.Matrix
transform(double[], double[], double[], double[], int). Method in class
AFIT.Alm.Geometry.Matrix2d
This transforms the arrays xcord and ycord by the transformatlon
matrix and outputs into tx and ty

transform(Vert2d([], Vert2d[]). Method in class
AFIT.Alm.Geometry.Matrix2d

translate (double, double). Method in interface AFIT.Alm.Packing.Cargo
translate(double, double). Method in class AFIT.Alm.Packing.Cargo2d

This method moves the Cargo item by deltaX in the x dlrectlon and
deltaY in the y direction

translate(double, double). Method in class AFIT.Alm.Geometry.Matrix
Lranslate(double, double). Method in class AFIT.Alm.Geometry.Matrix2d
IranslateMove (Cargo, double, double). Constructor for class
AFIT.Alm.Packing.TranslateMove
Constructs a new TranslateMove or Cargo item that will translate
the item xDis in the x direction and yDis in the y direction

PTriangle(int[]). Constructor for class AFIT.Alm.triangulate.Triangle
Instantiates a Triangle

triangleIntersect (Triangle, double[], double[], double[], double[]).
Method in class AFIT.Alm.triangulate.Triangle
Determines if this triangle intersects another triangle using the
methods described in Theodoractos and Grimsley's article The
optimal packing of arbitrarily-shaped polygons using simulated
annealing and polynomial-time cooling schedules in Computer Methods
in applied mechanics and engineering

TriangulatePolygon(int, int[], double[][]). Constructor for class
AFIT.Alm.triangulate.TriangulatePolygon
This instatiates the Triangulate Polygon Class.

U

unit (). Method in class AFIT.Alm.Geometry.Matrix
unit (). Method in class AFIT.Alm.Geometry.Matrix2d
UnitAlm(). Constructor for class AFIT.Alm.Knapsack.UnitAlm
unmove (). Method in class AFIT.Alm.Packing.Move
Undo the last move made by a Cargo object
unmove (). Method in class AFIT.Alm.Packing.RotateMove
Rotate a Cargo object negative theta degrees around the z axis
unmove (). Method in class AFIT.Alm.Packing.SwapMove
Undoes the swaps between this item with another Item
pomove (). Method in class AFIT.Alm.Packing.TranslateMove
Moves the Cargo Item by —-xDis,-~yDPis
updateExtents (). Method in class AFIT.Alm.Packing.Cargo2d
Update the cordinates of the Traingle array to the current location
updateExtents (double[], double[]). Method in class
AFIT.Alm.triangulate.Triangle
Updates the actual position of the bounding box of the Triangle.

upDateQuantityToNotSelected (). Method in class AFIT.Alm.Knapsack.ltem
upDateQuantityToSelected (). Method in class AFIT.Alm.Knapsack.Item

Vehicgle (double, double, double, double). Constructor for class
AFIT.Alm.Packing.Vehicle
Constructs a new vehicle with the upper left hand corner at point
x,y and with width and height of variables with the same name.
Yehicle(Vehicle). Constructor for class AFIT.Alm.Packing.Vehicle
Constructs a vehicle with the same dimensions of v
Vert2d (). Constructor for class AFIT.Alm.Geometry.Vert2d
Vert2d(double, double). Constructor for class AFIT.Alm.Geometry.Vert2d
Constructs and initializes a vertice at the specified (x, y)
location in the coordinate space.
Vert2d (Vert2d). Constructor for class AFIT.Alm.Geometry.Vert2d

width (). Method in interface AFIT.Alm.Packing.Cargo

width (). Method in class AFIT.Alm.Packing.Cargo2d
The width of the bounding box of the cargo item

width (). Method in class AFIT.Alm.Packing.Container
Width of the bounding box

X

X. Variable in class AFIT.Alm.triangulate.pPointT
x cordinate

X. Variable in class AFIT.Alm.Geometry.Vert2d
The x coordinate.

Y. Variable in class AFIT.Alm.triangulate.PointT
y cordinate

Y. Variable in class AFIT.Alm.Geometry.Vert2d
The y coordinate.

package AFIT.Alm.Geometry
Clasg. [ndex

1l Packages (Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Geometry.Geometry2d

java.lang.Object
|
+————AFIT.Alm.Geometry.Geometry2d

public abstract class Geometry2d
extends Object

+ Geometry2d()

Method Indey,

» inside(double, double, double[], double[], int)
» linesIntersect(double, double, double double, double, double, double, double Vert2d)
« main(String[])
« sameSign(double, double)
This method

The method uses the following code:! ((a >= 0.0d)~ (b >= 0.0d)) to -
determine if a and b are the same sign.

% Geometry2d

public Geometry2d()

$# sameSign

public static final boolean sameSign(double a,
v double b)

This method

The method uses the following code:!((a >= 0.0d)~(b >= 0.0d)) to
determine if a and b are the same sign.

Parameters:
a — a first number to compare
b - b second number to compare
Returns:
returns true if a and b are both the same sign false other
wise.

£ linesIntersect

public static final int linesIntersect (double x1,
double y1,
double x2,
double y2,
double x3,
double y3,
double x4,
double y4,
Vertad v)

@ inside

public static final boolean inside (double x,
double vy,
double xpoints][],
double ypoints[],
int npoints)

main

public static void main(String args[])

All Packages Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Geometry.Matrix

java.lang.Object
I
+——=—AFIT.Alm.Geometry.Matrix

public abstract class Matrix
extends Object

CONBFEIHCFOL [Hdex,

s Matrix()
MetHod

» rotate(double)

» fransform(double[], double[], double[], double[], int)
« translate(double, double)

« unit()

% Matrix

public Matrix()

@ unit

public abstract void unit ()

translate

public abstract void translate (double dx,
double dy)

£ rotate

public abstract void rotate (double theta)

@ transform

public abstract void transform(double x[1],
double yI[1,
double tx[],
double tyl],
int nvert)

ALl Packages Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Geometry.Matrix2d

java.lang.Object
I
——e .
|
+————AFIT.Alm.Geometry.Matrix2d

public class Matrix2d
extends Matrix

ConsEruckor Index
s Matrix2d()

Method Irndey,

» rotate(double)
s transform(double(], double[], double[], double[], int)

This transforms the arrays xcord and ycord by the transformation matrix and
outputs into tx and ty

o transform(Vert2d[], Vert2d[])
» translate(double, double)

» unit()

4 Matrix2d

public Matrix2d()

AefHods

@ translate

public void translate(double dx,

double dy)
Overrides:
translate in class Matrix
@ rotate

public void rotate (double theta)

Overrides:
rotate in class Matrix

@ unit

public void unit ()

Overrides:
unit in class Matrix

transform

public void transform(double xcordl[],
double ycordl[],
double tx[],
double tyll],

int nvert)

This transforms the arrays xcord and ycord by the transformation matrix and

outputs into tx and ty

Parameters:
xcord - Input x cordinates
ycord - Input y cordinates
tx - Output x cordinates
ty - Output y cordiantes

nvert - Number of Vertices in arrays

Overrides:
transform in class Matrix

@ transform

public void transform(Vert2d inf[],

Yert2d out[])
All Packages Class Hierarchy 11s Pag

Class AFIT.Alm.Geometry.Vert2d

java.lang.Object
I
+=———AFIT.Alm.Geometry.Vert2d

public class Vert2d
extends Object

The x coordinate.

LA
The y coordinate.

» Yert2d()
« Yert2d(double, double)

Constructs and initializes a vertice at the specified (x, y) location in the coordinate
space.

» Vert2d(Vert2d)
Method [ndeyx

« equals(Object)
Determines whether two vertices are equal.
» getl.ocationX()

» getLocationY()
« setLocation(double, double)

Variables

8 x

public double x
The x coordinate.

@y

public double y

The y coordinate.

Vert2d

public Vert2d(double x,
double y)

Constructs and initializes a vertice at the specified (x, y) location in the coordinate
space.

Parameters:
X - the x coordinate.
y - the y coordinate.

% Vert2d
public Vert2d (Vert2d v)

& Vert2d

public Vert2d()

& setLocation

public void setlLocation(double x,
double y)

@ getLocationX

public double getLocationX()

@ getLocationY

public double getLocationY ()

2 equals
public boolean equals(Object ob3j)

Determines whether two vertices are equal. Two instances of vert2d are equal if the

values of their x and y member fields, representing their position in the coordinate
space, are the same. '

Parameters:

obj - an object to be compared with this point.
Returns:

true if the object to be compared is an instance of Point and has the same
values; false otherwise.
Overrides:

equals in class Object

package AFIT.Alm.Knapsack

Class. lndex

EquipmentAlm
Geometricltem
GeometricKnapsack
GroupAlm |

g [0

te

ItemComparator
ItemOrderedSet
MultidimensionalKnapsack
Pointer

QuantityPredicate
RTSParameters
ReactiveKnapsack

Slave

UnitAlm

Class
AFIT.Alm.Knapsack.EquipmentAlm

java.lang.Object
I
+———=AFIT.Alm.Knapsack.EquipmentAlm

public class EquipmentAlm
extends Object
implements Serializable

ConsEtuckor. Index

» EquipmentAlm()
AMethod [ndex

» getGeometricltem()

« getID()

« getld()

» getltem()

« getLength()

« getLoadedWeight()

» getName()

» getWidth()

« setEmptyWeight(double)
« setHeight(double)

» setld(int)

» setLength(double)

« setL.oaded Weight(double)

» setMaxGrossWeight(double)
» setName(String)

» setNomenclature(String)

«» setProfitPerl.BS(double)
» setWidth(double)

@ EquipmentAlm

public EquipmentAlm()

& getltem

public final Item getItem()

@ getGeometricltem

public final GeometricItem getGeometricItem()

@ getID
public final Integer getID ()
@ setName

public final void setName (String n)

@ setld
public final void setId(int i)

& setLength

public final void setLength(double 1)

@ setWidth

public final void setWidth (double w)
@ setHeight

public final void setHeight (double h)
8 setLoadedWeight

public final void setLoadedWeight (double w)

@ setNomenclature

public final void setNomenclature (String s)
@ setMaxGrossWeight

public final vcid setMaxGrossWeight (double w)
@ setEmptyWeight

public final void setEmptyWeight (double w)
@ setProfitPerLBS

public final void setProfitPerLBS (double p)
& getName

public final String getName ()
& gétId

public final int getId()
& getLength

public final double getLength()
getWidth

public final double getWidth ()

@ getLoadedWeight

public final double getLoadedWeight ()

All Packages (Class Hierarchy This Package Previous Next Index

Class
AFIT.Alm.Knapsack.GeometricItem

java.lang.Object
I
+-———AFIT.Alm.Knapsack,Item
|
+————AFIT.Alm.Knapsack.GeometricItem

public class GeometricItem
extends Item

« Geometricltem(double, double[], int, double, double)
» Geometricltem(Geometricltem)

Method [ndey,

« clone()
+ getVehicle()

ConBFltHcEo

% Geometricltem

public GeometricItem(double profit,
double constraint|[],
int id,
double length,
double width)

Geometricltem

public GeometricItem(GeometricItem item)

Fthods

£ clone

public final Object clone()

Overrides:
clone in class Item
& getVehicle

public final Vehicle getVehicle ()

Class AFIT.Alm.Knapsack.GroupAlm

java.lang.Object
|
+—-———AFIT.Alm.Knapsack.GroupAlm

public class GroupAlm
extends Object
implements Serializable

» getGeometricltems()

» getID()

« getltems()

» getName()

» getNumberOfitems()

» getNumberQOfUnits()

« getQuantity()

» setld(int)

» setName(String)

» setNomenclature(String)
« sSetNumberQfUnits(int)
» setUnits(ID[])

Congkrucktors

% GroupAlm

public GroupAlm()

getItems
public final Item[] getItems()
@ getGeometricltems
public final GeometricIltem[] getGeometricItems()
@ getlD
public final Integer getID({()
@ getNumberOfltems
public final int getNumberOfItems ()
@ getQuantity
public final int getQuantity ()
& getName
public final String.getName()
@ getNumberOfUnits

public final int getNumberOfUnits ()

& setName
public final void setName (String s)
@ setld
public final void setId(int i)
@ setNomenclature
public final void setNomenclature (String s)

& setNumberOfUnits

public final void setNumberOfUnits (int u)

@ setUnits

public final void setUnits(ID u[])

1 Pagl Class Hieraxchy This Packagse PRrevious Next Index

Class AFIT.Alm.Knapsack.ID

java.lang.Object
I
+—=——-=AFIT.Alm.Knapsack.ID

public class ID
extends Object
implements Serializable

» ID(int, int)

AMethod [ndex

» decreaseQuantity(int)
» equals(Object)

* getID()

» getIntValuelD()

» getQuantity()

» hashCode()

« increaseQuantity(int)
» setQuantity(int)

CONBFIHCE OIS

public ID(int i,
int q)

FHods

& hashCode
public final int hashCode ()

Overrides:
hashCode in class Object

@ equals

public final boolean equals (Object object)

Overrides:
equals in class Object
£ getID

public final Integer getID{)
getIntValuelD
public final int getIntValueID ()
@ getQuantity
public final int ge£Quantity()
@ setQuantity
public final void setQuantity (int q)
@ increaseQuantity
public final void increaseQuantity (int q)
@ decreaseQuantity

public final void decreaseQuantity(int q)

All Packages Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Knapsack.Item

java.lang.Object
|
+-——-AFIT.Alm.Knapsack.Item

public class Item
extends Object

« aliSelected()

» clone()

» compareTo(Comparable)

» decreaseQuantity(int)

« equals(Object)

«» getNumberSelected()

» getQuantity()

» hashCode()

= increaseQuantity(int)

» initialize()

» noneSelected()

» output()

« setitem(Item)

» setQuantity(int)

» upDateQuantityToNotSelected()
« upDateQuantityToSelected()

@ clone

public Object clone ()

Overrides:
clone in class Object

@ getNumberSelected
public final int getNumberSelected ()
& setItem
public final void setItem(Item i)
@ initialize
public final void initialize ()
€ upDateQuantityToNotSelected
public final void upDateQuantityToNotSelected()
% upDateQuantityToSelected
public final void upDateQuantityToSelected()
@ getQuantity
public final int getQuantity ()
aliSelected
public final boolean allSelected()
@ noneSelected
public final boolean noneSelected()
@ setQuantity
public final void setQuantity (int q)
£ increaseQuantity
public final void increaseQuantity(int q)
@ decreaseQuantity

public final void decreaseQuantity (int q)

£ hashCode

public final int hashCode ()

Overrides:
hashCode in class Object

@ equals

public boolean equals (Object object)

Overrides:
equals in class Object

@ compareTo

public int compareTo(Comparable b)

& output

public final String output ()

Class
AFIT.Alm. Knapsack ItemComparator

java.lang.Object
|

+————AFIT.Alm.Knapsack.ItemComparator

public class ItemComparator
extends Object
implements Serializable

CoHSEIHCEOL. Index

» ItemComparator()

Method. llm’sx

» execute(Object, Object)

& ItemComparator

public ItemComparator ()

& execute

public final boolean execute (Object first,
Object second)

Class |
AFIT.Alm.Knapsack.ItemOrderedSet

AFIT.Alm.Knapsack.ItemOrderedSet

COHSEIHCROL. INndex,

« ItemQOrderedSet()

Method Index,

» clone()

» hashCode()

« outputSet(PrintWriter, ItemOrderedSet)
» remove(Object)

COHBFIHLEOIS

@ ItemOrderedSet

public TtemOrderedSet ()

2 clone

public synchronized Object clone()

£ outputSet

public static final void outputSet (PrintWriter out,

ItemQOrderedSet set)

remove

public final int remove (Object object)
@ hashCode

public final int hashCode ()

All Packages Class Hierarchy This Package Previous Next Index

Class
AFIT.Alm.Knapsack.MultidimensionalKn

java.lang.Object
I
+————AFIT.Alm.Knapsack.MultidimensionalKnapsack

public class MultidimensionalKnapsack
extends Object

» MultidimensionalKnapsack(double[], double[], double[][])
» MultidimensionalKnapsack(double[], double[], double[][], int, int, int)
» MultidimensionalKnapsack(ItemOrderedSet, double[])

AetHod [ndey,

L2

» getBestSet()

» getBestTime()

= getBestValue()

« getCpuTime()

» getlterations()

» getUnPackedSet()
» main(String[])

« setMaxQOuterSpan(int)
» solve()

% MultidimensionalKnapsack

public MultidimensionalKnapsack(l;ng;dg;gdﬁgL itemSet,
double rhs[])

% MultidimensionalKnapsack

public MultidimensionalKnapsack (double pl[],
double rhs|],
double c[]I[])

s¢ MultidimensionalKnapsack

public MultidimensionalKnapsack (double pll,
double rhs|],
double c[]1]],
int pl1,
int p2,
int t)

@ getBestValue

public final double getBestValue ()

@ getlterations

public final int getIterations()

@ setMaxOuterSpan

public final void setMaxOuterSpan (int mQ)
@ getBestSet

public ItemOrderedSet getBestSet ()

@ getUnPackedSet

public ItemOrderedSet getUnPackedSet ()
2 solve

public void solve ()

@ getBestTime

public double getBestTime ()

@ getCpuTime
public double getCpuTime ()

main

public static void main(String args[])

All Packaqges Class Hierarch his Package Previous

Class AFIT.Alm.Knapsack.Pointer

java.lang.Object
|
+—-——=AFIT.Alm.Knapsack.Pointer

public class Pointer
extends Object
implements Comparable

LIHCROL. [Hdex

« Pointer(int, double)
Aethod [ndex

» compareTo(Comparable)

ConBErictors

i Pointer

public Pointer (int pointer,
double objFunction)

Lhods

@ compareTo

public int compareTo (Comparable b)

Class
AFIT.Alm.Knapsack.QuantityPredicate

java.lang.Object
|
+-———AFIT.Alm.Knapsack.QuantityPredicate

public class QuantityPredicate
extends Object
implements Serializable

COHBFEIHCFOL INdex

» QuantityPredicate()

QuantityPredicate

public QuantityPredicate ()

& execute

public final boolean execute (Object object)

Class
AFIT.Alm.Knapsack.ReactiveKnapsack

java.lang.Object
|
+-———AFIT.Alm.Knapsack.MultidimensionalKnapsack
I

+-———AFIT.Alm.Knapsack.ReactiveKnapsack

public class ReactiveKnapsack
extends MultidimensionalKnapsack

ConSEtUCEOr Index,

« ReactiveKnapsack(RTSParameters, double[], double[], double[] m
« ReactiveKnapsack(RTSParameters, ItemOrderedSet, double[])

Aethod Index

« main(String[])

s ReactiveKnapsack

public ReactiveKnapsack (RISParameters param,
double pl1l,
double rhs([],
double c[][1)

& ReactiveKnapsack

public ReactiveKnapsack (RISParameters param,

ItemOrderedSet itemSet,
double rhs(])

£ main

public static void main(String args[])

Class
AFIT.Alm.Knapsack.RTSParameters

java.lang.Object
|
+—-———AFIT.Alm.Knapsack.RTSParameters

public class RTSParameters
extends Object
implements Serializable

=« RTSParameters()
» RTSParameters(int, int, int, int)

INetHod [ndex,

« output(PrintWriter, RTSParameters)

&% RTSParameters

public RTSParameters ()

%@ RTSParameters

public RTSParameters(int c,
int mC,
int r,
int mO)

£ output

public static final void output (PrintWriter out,
RISPRarameters p)

Class AFIT.Alm.Knapsack.Slave

java.lang.Object

I
+=---—AFIT.Alm.Knapsack.Slave

public abstract class Slave
extends Object
implements Serializable

« Slave()
Method Index,

» solve(Aircraft, ItemOrderedSet, int, int, int)

& Slave

public Slave ()

£ solve

public static final boolean solve(Zircraft a,
ItemOrderedSet set,
int min,
int max,
int loopCount)

Class AFIT.Alm.Knapsack.UnitAlm

java.lang.Object
| A
+——=-AFIT.Alm.Knapsack.UnitAlm

public class UnitAlm
extends Object
implements Serializable

» getEquipment()

» getID()

« getName()

» getNumberQfEquipmentTypes()
» setEquipment(ID[])

« setld(int)

« setName(String)

» setNomenclature(String)

» setNumberOfEquipmentTypes(int)

» setNumberQfPassengers(int)

« setWeight AccompanySupplies(double)
» setWeight Ammo(double)

» setWeightNonMobilEquipment(double)
« setWeightNonMobilPallets(double)

% UnitAlm

public UnitAlm()

@ getNumberOfEquipmentTypes

public final int getNumberOfEquipmentTypes ()

@ getID

public final Integer getID ()

 getName

public final String getName ()

@ getEquipment

public final ID[] getEquipment ()

& setName

public final void setName (String s)

@ setld

public final void setId(int i)

@ setNomenclature

public final void setNomenclature (String s)

setWeightAccompanySupplies

public final void setWeightAccompanySupplies (double w)
@ setWeightAmmo

public final void setWeightAmmo (double w)

@ setWeightNonMobilPallets

public final void setWeighthnMobilPallets(double w)

@ setWeightNonMobilEquipment

public final void setWeightNonMobilEquipment (double w)

setNumberOfPassengers

public final void setNumberOfPassengers (int p)

@ setNumberOfEquipmentTypes

public final void setNumberOfEquipmentTypes (int e)

& setEquipment

public final void setEquipment (ID e[])

This Package Previous Nezt Indesx

package AFIT.Alm.Knapsack.Reader
Class. lndex

* EquipmentReader
* KnapSolve
¢ KnapsackReader

Class
AFIT.Alm.Knapsack.Reader.EquipmentR

java.lang.Object
|
+——-—AFIT.Alm.Knapsack.Reader.EquipmentReader

public abstract class EquipmentReader
extends Object

« EquipmentReader()
Mettod [ndey,

» doubleValue(String)

+ intValue(String)

« main(String[])

» readEquipmentData()

» readGroupData()
« readUnitData()

GCOHERTHLFOL

% EquipmentReader

public EquipmentReader ()

£ main
public static void main (String args[])
% readGroupData
public static final Hashtable readGroupData ()
readUnitData
public static final Hashtable readUnitData ()
% readEquipmentData
public static final Hashtable readEquipmentData ()

doubleValue

public static final double doubleValue (String s)

intValue

public static final int intValue (String s)

ackage Class Hieraxrch

Class
AFIT.Alm.Knapsack.Reader.KnapsackRe:

java.lang.Object
I

+-———AFIT.Alm.Knapsack.Reader.KnapsackReader

public class KnapsackReader
extends Object

ConSErHCEor Index
« KnapsackReader()

AetHod [ndex

» main(String[])
» solveKnapsack(File, File, RTSParameters)

COHSFELHLFOr

s KnapsackReader

public KnapsackReader ()

% main

public static void main(String args[])

£ solveKnapsack

public static void solveKnapsack(File kFile,
File oFile,

RISParameters param)
All Packages & ierar Ihis Package PRrevious Next Index

ClaSs
AFIT.Alm.Knapsack.Reader.KnapSolve

java.lang.Object
I
+————AFIT.Alm.Knapsack.Reader.KnapSolve

public abstract class KnapSolve
extends Object

» KnapSolve()

AetHod [ridex,

» solve(int, PrintWriter, int, double[], double[], double[][])
« S0lveRTS(int, PrintWriter, RTSParameters, double[], double[], double[][])

ConBELHCEors

s¢ KnapSolve

public KnapSolve ()

solveRTS

public static void solveRTS(int prob,
PrintWriter out,

RISParameters param,
double pl[1],

double b(1],

double c[]11[])

& solve

public static void solve (int prob,
PrintWriter out,
int maxSpan,
double pl],
double b[],
double c[]1[])

All Packages

Inhis Packsge Previous Next Indesx

package AFIT.Alm.Packing
Inkertace [ndex

e Cargo
Class. [ndex.

Aircraft
BalancedContainer
Cl17
CandidateListStrategy
Cargo2d

Container

Helicopter

Move

MoveSet
ObjectiveFunction
PackCanvas
PackingCanvas
Params
RotateMove
SearchThread
SearchViewer
Section
SectionedAircraft
SwapMove

Tabu
TranslateMove
Vehicle
bestMove

Class
AFIT.Alm.Packing.BalancedContainer

java.lang.Object
|
+————AFIT.Alm.Packi c .
!

+————AFIT.Alm.Packing.BalancedContainer

public class BalancedContainer

extends Container

The class defines a Container in x y cordinate space that has methods that calculate the
Center of Gravity location along the x axis

Version:
1.1 15 FEB 1998
Author:

Christopher A. Chocolaad Air Force Institute of Technology

» BalancedContainer(double[], double(], int, double, double)
Instantiates a new Balanced Container

Method [ndex

« cargoCGLocationX(Cargo[], double)

Determines the center of gravity location on the x axis of this container with array of
Cargo c in the current packing pattern

» cgLocationX(Cargol[])
Determines the center of gravity location on the x axis of this container with array of

Cargo c in the current packing pattern

% BalancedContainer

public BalancedContainer (double xPoints[],
double yPoints(],
int npoints,
double cgqg,
double emptyWeight)

Instantiates a new Balanced Container

Parameters:
xPoints - Array of x cordinates that define the convex polygon representation
of this container

yPoints - Array of y cordinates that define the convex polygon representation
of this container

npoints - The number of vertices in the convex polygon
cg - Location of the center of gravity on the x axis when the container is
empty

emptyWeight - The weight of the container when it is empty
See Also:

Container

Lhods

@ cgl.ocationX

public double cgLocationX(Cargo c{])

Determines the center of gravity location on the x axis of this container with array of
Cargo c in the current packing pattern

Parameters:

¢ - The cargo array to base the center of gravity location on
Returns:

The floating point location of the center of gravity on the x axis
@ cargoCGLocationX

public static double cargoCGLocationX (Cargo cl[],
double TotalWeight)

Determines the center of gravity location on the x axis of this container with array of
Cargo c in the current packing pattern

Parameters:
¢ - The cargo array to base the center of gravity location on
Returns:

The floating point location of the center of gravity on the x axis

Class AFIT.Alm.Packing.bestMove

java.lang.Object
| .
+———=AFIT.Alm.Packing.bestMove

public class bestMove
extends Object
implements Serializable

% bestMove

public bestMove ()

All Packages Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Packing.C17

java.lang.Object
L———AEH LAlm.Packing.Coptainer
-!'———-EEII Alm.Packing.BalancedContainer
l—-——ag:t,alm,ngkigg,éi;g;gf;
L————AFIT,Alm,Packing,§gctiong§éircrgf;
l————AFIT.Alm.Packing.C17
public class C17

extends SectionedAircraft

Defines a C-17 sectionedaircraft

Version:
- 1.1 15 FEB, 1997
Author:

Christopher A.Chocolaad Air Force Institute of Technology
See Also:

SectionedAircraft

« C17()

Instantiates a C17 aircraft

@ C17

public C17()

Instantiates a C17 aircraft

-~

Class
AFIT.Alm.Packing.CandidateListStrategy

java.lang.Object
|
+————AFIT.Alm.Packing.CandidatelListStrategy

public class CandidateListStrategy
extends Object

Implements a Block-Random Order Scan and a Full-Random Order Scan as described in
Glovers 1995 article Tabu Thresholding: Improved Seaerch by Nonmontonic Trajectories.

Only the number of move sets is required, the block size can either be given or one will be
selected based on move set size.

Version:

1.0 October 31, 1997
Author:

Christopher A.Chocolaad

CONBFIHCEOL. INdex,

» CandidateListStrategy(int)
Constructs the class that encapsulates the candidate list strategy For move sets less
than 100, the minimum of (5,move set size) is used for the block size.

« CandidateListStrategy(int, int)
Constructs the class that encapsulates the candidate list strategy

AetHod [ridex,

« getNextBROS()
Returns the next move to make during an Improving phase based on a Block
Random Order Scan

» getNextFROS()
Returns the next move to make during a Mixed phase Based on a Full Random
Order Scan, until the move set is exhausted, then reverts to the Block Random Order
Scan

» main(String[])
test stub for the class

% CandidateListStrategy
public CandidateListStrategy (int m)

Constructs the class that encapsulates the candidate list strategy For move sets less
than 100, the minimum of (5,move set size) is used for the block size. For move sets
> 100, the block size equals (move set size/100)

Parameters:
m - move set size

% CandidateListStrategy

public CandidateListStrategy (int m,
. int bs)

Constructs the class that encapsulates the candidate list strategy

Parameters:
m - move set size
bs - block size

® getNextBROS

public final int getNextBROS ()

Returns the next move to make during an Improving phase based on a Block
Random Order Scan

@ getNextFROS

public final int getNextFROS ()

Returns the next move to make during a Mixed phase Based on a Full Random
Order Scan, until the move set is exhausted, then reverts to the Block Random Order
Scan

£ main
public static void main(String args[])

test stub for the class

Interface AFIT.Alm.Packing.Cargo

public interface Cargo

s calculateBounds()

» getArea()

« getCentroidX()

» getCentroidY()

» getIntX()

« getIntY()

« getMaxX()

» getMaxY()

» getMinX()

@ getMinY()

» getNPoints()

» getWeight()

» getXLocal()

« getX point(int)

» getXpoints()

» getYaw()

e getYLocal()

= getY point(int)

» get Ypoints()

» eight()

» intersectArea(Cargo[])

« intersectAreaAll(Cargo[])
» MatrixTransform()

» rotate(double)

« setCentroid(double, double)
» setMatrixRotate(double)
» setMatrixTranslate(double, double)
» setMatrixUnit()

« setYaw(double)

» swap(Cargo)

» translate(double, double)
» width()

@ translate

public abstract

@ rotate

public abstract
& swap

public abstract
@ setYaw

public abstract
@ getYaw

public abstract

 setCentroid

public abstract

8 getCentroidX
public abstract
@ getCentroidY
public abstract
@ getXpoints
public abstract
@ getYpoints
public abstract

@ getXpoint

CHods

void translate (double x,
double y)

void rotate(double theta)

void swap (Caxgo c)

void setYaw (double y)

double getYaw()

void setCentroid(double x,
double y)

double getCentroidX()

double getCentroid¥ ()

double[] getXpoints()

double([] getYpoints()

public abstract
@ getYpoint
public abstract
@ getXLocal
public abstract
& getYLocal
public abstract
& getNPoints
public abstract
@ setMatrixUnit
public abstract
setMatrixRotate

public abstract

double getXpoint (int index)

double getYpoint (int index)

double[] getXLocal()

double[] get¥YLocal ()

int getNPoints ()

void setMatrixUnit ()

void setMatrixRotate (double theta)

@ setMatrixTranslate

public abstract

void setMatrixTranslate (double dx,
double dy)

@ MatrixTransform

public abstract
@ calculateBounds
public abstract
2 intersectArea

public abstract

@ intersectAreaAll

public abstract

@ getIntX

void MatrixTransform()

void calculateBounds ()

double intersectArea(Cargo c[])

double intersectAreaAll (Cargo cl])

public abstract int[] getIntX()
getIntY

public abstract int[] getIntY()
@ getArea

public abstract double getArea()
@ getWeight

public abstract double getWeight ()
getMinX

pﬁblic abstract double getMinX()
@ getMinY

public abstract double getMinY ()
8 getMaxX

publig abstract double getMaxX()
@ getMaxY

public abstract double getMaxY(i
@ width

public abstract double width()
£ height

public abstract double height ()

All Packages Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Packing.Cargo2d

java.lang.Object
I
+————AFIT.Alm.Packing.Cargo2d

public class Cargo2d
extends Object
implements Cargo

Variable. Index,

« moveSet
The MoveSet for this cargo item
» numTri

+ Cargo2d(Cargo2d)

Instantiates a new Cargo2d object with the same parameters as ¢

« Cargo2d(double[], double[], int)
Instantitiates an new Cargo2d item.

Aethod [ndex

« calculateBounds()

This method calculates the two dimensional bounding box of the cargo Item.
» extentsOverlap(Cargo)

Return true if the bounding box overlaps Cargo item c.

» getArea()
Get the area of the polygon

» getCentroidX() :
Get the x cordinate location of the centroid
» getCentroidY() '
Get the x cordinate location of the centroid
* getIntX()
Returns an int array of the x cordinates of the vertices
» getIntY() .
Returns an int array of the y cordinates of the vertices
e+ getMaxX() '
« getMaxY()
» getMinX()
» getMinY()
« getNPoints()
Get the number of vertices in the polygon that represents the Cargo item
» getNumTri()
Get the number of triangles.
» getTriangles()
Get the Triangle array of this Cargo2d
L get W gight()
Gets the weight of this cargo item
» getXLocal() '
Get the x cordinates of the local space
» getX point(int)
Get the x cordinate of the vertice index
» getXpoints()
Get the x cordinates of the vertices
» getYaw()
Returns the yaw in degrees
« getYLocal()
Get the y cordinates of the local space
» getY point(int)
Get the y cordinate of the vertice index
« getYpoints()
' Get the y cordinates of the vertices
* height()
The height of the bounding box of the cargo item
» intersectArea(Cargo2d)
The intersection area of this cargo item with another cargo item ¢
« intersectArea(Cargo2d[])
The intersection of this Cargo item with array of Cargo items ¢
» intersectArea(Cargof])
The intersection area of this cargo item with an array ofCargo items ¢
« intersectAreaAll(Cargo2d[])
The intersection area of all cargo items in array ¢

» intersectAreaAll(Cargo[])

The intersection of this Cargo item with array of Cargo items ¢
» MatrixTransform()

Moves Cargo2d by its matrix.
« rotate(double)

This method rotates the Cargo item around centroidX and centroidY by theta
degrees and then updates the bounding box.
» setCentroid(double, double)
Set the centroid to the location x, and location y
» setCentroid (Vert2d)
Set the centroid of the cargo item to the vertice c¢
» getMatrixRotate (double)
Rotate this Cargo2d Matrix by theta
» setMatrixTranslate (double, double)

Translate this Cargo2d Matrix by x in the x direction and by y in
. the y direction
» setMatrixUnit () '
Set the transform matrix of this cargo item to the identity matrix
#+ setMoveSet (Cargo[], ObjectiveFunction, double, double)
« setWeight (double)
Sets the weight of this cargo item
» set¥aw (double)
Set the yaw in degrees
s gswap (Cargo)
This method swaps the location of this Cargo item to the location
of Cargo item c based on centroid position.
» translate(double, double) .
This method moves the Cargo item by deltaX in the x direction and

deltaY in the y direction
¢ updateExtents ()

Update the cordinates of the Traingle array to the current location
» width ()

The width of the bounding box of the cargo item

Variables

@ moveset
public MoveSet moveSet
The MoveSet for this cargo item

numTri

public int numTri

$ Cargo2d

public Cargo2d(double xPoints[],
double yPoints|[],
int npoints)

Instantitiates an new Cargo2d item.

Parameters:
xPoints — The x cordinates of the vertices
yPoints - The y cordinates of the vertices
npoints - The number of vertices

See Also:

Cargo, Tabu
% Cargo2d
public Cargo2d(Cargo2d c)
Instaﬁtiates a new Cargo2d object with the same parameters as
Parameters:

¢ - Cargo2d object to clone parameters from
See Also:

Cargo, Tabu

@ setMovesSet
public void setMoveSet(Q;;gg ?[], '
double maxDis)
@ width
public double width ()
The width of the bounding box of the cafgo item

Returns:
The width of the bounding box of this cargo item

height
public double height ()
The height of the bounding box of the cargo item

Returns:
The height of the bounding box of this cargo item

8 setWeight

public void setWeight (double w)

Sets the weight of this cargo item
@ getWeight
public double getWeight ()

Gets the weight of this cargo item

Returns:
Cargo Item weight

@ setCentroid
public void setCentroid(Vert2d c)
Set the centroid of the cargo item to the vertice c
@ setCentroid

public void setCentroid(double x,
double vy)

Set the centroid to the location x, and location y
Parameters: »
X — Cordinate of the centroid
y — Cordinate of the centroid
@ getIntx
public int[] getIntX()
Returns an int array of the x cordinates of the vertices
getInty
public int[] getIntY¥ ()
Returns an int array of the y cordinates of the vertices
& getyaw
public double getYaw ()

Returns the yaw in degrees

Returns:
yaw in degrees

@ setyaw

public void setYaw(double y)

Set the yaw in degrees

Parameters:
Yy = yvaw in degrees

@ getCentroidx
public double getCentroidX ()
Get the x cordinate location of the centroid

Returns:
x cordinate of the centroid

getCentroidy
public double getCentroidy ()
Get the x cordinate location of the centroid

Returns:
X cordinate of the centroid

getxXpoint
public double getXpoint (int index)
Get the x cordinate of the vertice index
Parameters:
index - The index of the x cordinate
Returns:
X cordinate of vertice index
@ get¥point
public double getYpoint (int index)
Get the y cordinate of the vertice index
Parameters:
index — The index of the y cordinate
Returns:
y cordinate of vertice index
@ getXpoints
public double[] getXpoints ()

Get the x cordinates of the vertices

Returns:
x cordinates of the vertices

@ getYpoints

public double[] getY¥points()
Get the y cordinates of the vertices

Returns:
y cordinates of the vertices

getxiocal
public double[] getXLocal()
Get the x cordinates of the local space

Returns:
x cordinates of local space of the vertices

@ get¥Ylocal
public double[] getYLocal()
Get the y cordinates of the local space

Returns:
y cordinates of local space of the vertices

getNPoints

public int getNPoints ()

.

Get the number of vertices in the polygon that represents the Cargo
item

Returns:
Number of vertices

getArea
public double getArea()
Get the area of the polygon

Returns:
The area of the polygon

-] getNumTri
public int getNumTri ()

Get the number of triangles. This should alwas be the number of
vertices minus 2

@ getTriangles
public Trianglel] getTriangles{()

Get the Triangle array of this Cargo2d

Returns:
The triangles of the Cargo2d

@ setMatrixUnit
public void setMatrixUnit ()
Set the transform matrix of this cargo item to the identity matrix
@ setMatrixRotate
public void setMatrixRotate (double theta)
Rotate this Cargo2d Matrix by theta
& setMatrixTranslate

public void setMatrixTranslate (double dx,
double dy)

Translate this Cargo2d Matrix by x in the x direction and by y in
the y direction

MatrixTransform
public final void MatrixTransform()
Moves Cargo2d by its matrix.
@ translate

public final void translate (double deltaX,
double deltay)

This method moves the Cargo item by deltaX in the x direction and
deltaY¥Y in the y direction

Parameters:

deltaX — deltaX is the distance to move the item in the x
direction

deltaY - deltaY is the distance to move the item in the y
direction

@ rotate

public final void rotate (double theta)

This method rotates the Cargo item around centroidX and centroidyY
by theta degrees and then updates the bounding box.

Parameters:
theta - theta is the angle in degrees to rotate the object

swap

public final void swap (Cargo c¢)

This method swaps the location of this Cargo item to the location
of Cargo item ¢ based on centroid position.

Parameters:
C - ¢ is the cargo item to swap locations with

calculateBounds
public final void calculateBounds ()

This method calculates the two dimensional bounding box of the
cargo Item. A retangle is greated with appropriate dimensions the
can be accessed by calling getBounds.

See Also:
getBounds

@ intersectArea
public double intersectArea(Cargo c[])

The intersection area of this cargo item with an array ofCargo
items c¢

Parameters:
¢ — Array of cargo items to check itersection with this cargo
item
@ intersectarea
public final double intersectArea (Cargo2d c)
The intersection area of this cargo item with another cargo item ¢

Parameters:
¢ — Cargo item to check for intersection

@ intersectArea
public double intersectArea (Cargo2d c[])

The intersection of this Cargo item with array of Cargo items c

Parameters:
¢ — The array to check for intersection
Returns:

Intersection area
intersectAreaall
public double intersectAreaAll (Cargo c[])

The intersection of this Cargo item with array of Cargo items c

Parameters:
¢ — The array to check for intersection

Returns:
intersection area
intersectAreaall

public static final double intersectAreaAll (Cargo2d cl])
The intersection area of all cargo items in array c¢

& updateExtents

public final void updateExtents ()

Update the cordinates of the Traingle array to the current location

See Also:
Triangle

extentsOverlap
public final boolean extentsOverlap (Cargo c)
Return true if the bounding box overlaps Cargo item c.

Returns:
True if the bounding box overlaps

8 getMinx
public double getMinX()

Returns:
The lowest x cordinate

@ getMiny
public double getMinY ()

Returns:
The lowest y cordinate

¥ getMaxx
public double getMaxX()

Returns:
The maximum x cordinate

8 getMaxy
public double getMaxY ()

Returns:
The maximum y cordinate

Class AFIT.Alm.Packing.Container

java.lang.Object
|
+-———AFIT.Alm.Packing.Container

public class Container
extends Object

A convex shaped container. This container works with the the Tabu class in the Packing
package. Has methods that detrmine if cargo are protuding from the container determine
the bounding box of the container and the centroid of the container.

Version:
1.1 January 11, 1998
Author:
Christopher A. Chocolaad Air Force Institute of Technolgy

« Container(double, double, double, double)
Instantiates a new rectangular shaped two dimensional Container with the upper
left hand corner at pointx,y with dimensionswidth and height

« Container(double[], double[], int)
Constructs a new polyon shaped Container with cordinates (xpoints, yPoints) The
container must be convex or the protrusion mehtod will not work correctly.

s calculateBounds()
Calculates the bounding box of the container and updates the width and height

« getNpoints()
Returns the array of number of points or vertices that make up the container

» getProtrusion(Cargo)

The protrusion distance is calculated using P = Px + Py where Px is the distance in
the x direction that c is from the centroid of the container and Py is the distance in
the y direction c from the centroid of the container.

» get X points()
Returns the array of xPoints that make up the container

« getYpoints()
Returns the array of yPoints that make up the container

» length()
Length of the bounding box

« main(String[])
test stub for the class
» width()
Width of the bounding box

@ Container

public Container (double xPoints[],
double yPoints|[],
int npoints)

Constructs a new polyon shaped Container with cordinates (xPoints, yPoints) The
container must be convex or the protrusion mehtod will not work correctly.

Parameters:
xPoints - the x coordinates.
yPoints - the y coordinates.

npoints - the number of points in xPoints and yPoints
See Also:
Tabu

Container

public Container (double x,
double vy,
double width,
double height)

Instantiates a new rectangular shaped two dimensional container with the upper
left hand corner at pointx,y with dimensionswidth and height

Methods

& getXpoints
public double[] getXpoints()
Returns the array of xPoints that make up the container
@ getYpoints
public double[] getYpoints()
Returns the array of yPoints that make up the container
@ getNpoints
public int getNpoints()
Returns the array of number of points or vertices that make up the container
@ length
public double length()

Length of the bounding box

Returns:
The length of the bounding box.

8 width
public double width()

Width of the bounding box

Returns:
The width of the bounding box.

@ getProtrusion
public double getProtrusion(Cargo c)

The protrusion distance is calculated using P = Px + Py where Px is the distance in
the x direction that c is from the centroid of the container and Py is the distance in
the y direction ¢ from the centroid of the container. Then the protrusion distance is

squared. Returns zero if no protrusion.

. Parameters:
¢ - cargo to check for protrusion
Returns:
The squared distance from the centroid to the protruding cargo
See Also:

Cargo
main
public static void main(String args[])
test stub for the class
L éalculateBounds

public void calculateBounds ()

Calculates the bounding box of the container and updates the width and height

Class AFIT.Alm.Packing.Helicopter

java.lang.Object
!
+-———AFIT,Alm,.Packing,Cargo2d
|

+————AFIT.Alm.Packing.Helicopter

public class Helicopter
extends Cargo2d

A Helicopter in two dimensional space, used to demonstrate non-convex packing

See Also:
Cargo2d

ConsEruckor. Index

+ Helicopter() _
Instantiates a Helicopter

% Helicopter
public Helicopter ()

Instantiates a Helicopter

All Packages Class Hierarchy This Pagkage Previous Next Index

java.lang.Object
|
+-——-~AFIT.Alm.Packing.MoveSet

Class AFIT.Alm.Packing.MoveSet

public class MoveSet
extends Object
implements Serializable

Moveset defines a set of moves to be made by Cargo item item for use with the Tabu

packing heuristic.

Version:

1.1 15 FEB 1998
Author:

Christopher A. Chocolaad

» MoveSet(Cargo, Cargo[], ObjectiveFunction, double, double)
Constructs a new Cargo object.

Aethod Index,

« bestMove()

Move the item by an absolute best Move.
» improvingMove()

Move the Cargo item by a probalistic best move
s mixedMove()

Makes a random swap or rotate move

COHSFIHCEOrS

¥ MoveSet

public MoveSet (Cargo item,
Cargo cargoArrayl],
piectiveFuncti £,
double minDis,
double maxDis)

Constructs a new Cargo object.

Parameters:
item - The Cargo item that this moveSet will be atttached to
cargoArray - The cargoArray that itemis a part of
f - Object Function used to evalute potential moves
minDis - The minimum distance allowed for a move
maxDis - The maximum distance allowed for a move
See Also:

Cargo2d, ObjectiveFunction, Tabu

improvingMove
public final boolean improvingMove ()
Move the Cargo item by a probalistic best move
@ bestMove
public final boolean bestMove ()
Move the item by an absolute best Move. The set is subsetof the improvingMove set
@ mixedMove
public void mixedMove ()

Makes a random swap or rotate move

All Packages (lass Hierarchy This Package Previous Next Index

Class
AFIT.Alm.Packing.ObjectiveFunction

java.lang.Object
|
+———-AFIT.Alm.Packing.ObjectiveFunction

public class ObjectiveFunction
extends Object
implements Serializable

Evaluates an array of Cargo Items and returns floating point number based on the defined
objective function

Version:

1.1 15 FEB 1998
Author:

Christopher A. Chocolaad Air Force Institute of Technology
See Also:

Tabu, MoveSet'

« ObjectiveFunction(Cargol[], Aircraft)
Constructs a new ObjectiveFunction

» feasible()

Returns true if the current packing pattern is feasible
« objFunction()

Evaluate the current Packing Pattern, this ignores the weights
» objFunctionItem(Cargo)

Evaluate posistion of an item based on current posistion using weights
» resetNorms()
Set the norms back to a constant value
» setWeights(double, double, double, double)
Set the weights for Ovelap penalty, Bounding Box Penalty,Protrision Penalty, and
Centr of Gravity penalties

% ObjectiveFunction

public ObjectiveFunction(Cargo items[],
Aircraft a)

Constructs a new ObjectiveFunction

Parameters:

items - Array of Cargo items that will be used to evaluated
a - Aircraft to evaluate

Aefhods

@ setWeights

public void setWeights (double ol,
double bb,
double p,
double cg)

Set the weights for Ovelap penalty, Bounding Box Penalty,Protrision Penalty, and
Centr of Gravity penalties

@ feasible
public final boolean feasible ()

Returns true if the current packing pattern is feasible

Returns:
True if the current packing pattern is feasible

@ resetNorms

public void resetNorms ()

Set the norms back to a constant value
@ objFunction
public final double objFunction()
Evaluate the current Packing Pattern, this ignores the weights
@ objFunctionItem

public final double objFunctionItem(Cargo item)

Evaluate posistion of an item based on current posistion using weights

Class AFIT.Alm.Packing.PackCanvas

java.lang.Object
l————java.awt.Component
l————java.awt.Canvas
i————AFIT.Alm.Packing.PackCanvas

public class PackCanvas
extends Canvas

Conskrucktor. Indey

» PackCanvas(Aircraft, Cargo[])

Method [ndex

» paint(Graphics)

PackCanvas

public PackCanvas (Aixcraft a,
Cargo c[])

@ paint

public void paint (Graphics g)

Overrides:

paint in class Canvas

Class AFIT.Alm.Packing.Params

java.lang.Object
l
+=-——=AFIT.Alm.Packing.Params

public class Params
extends Object

Params is used to connect a SearchViewer with a Tabu search

See Also:
Tabu, SearchViewer

COHSELUCEOL. [Hdex,

» Params()

42 Params

public Params ()

This Package Previous Next Index

Class AFIT.Alm.Packing.RotateMove

java.lang.Object
|
+———AFIT,Alm,.Packing,Move
|

+=———AFIT.Alm.Packing.RotateMove

public class RotateMove
extends Move

Provides a set of methods to rotate a Cargo Item around the z axis

Version:
1.1 15 FEB 1998
Author:

Christopher A. Chocolaad Air Force Institute of Technology
See Also:

Move

ConsEruckor Index

+ RotateMove(Cargo, double)

Constructs a new Rotate move for Cargo item that will rotate theta degrees around
the z axis

«» move()

Rotate a Cargo object theta degrees around the z axis
» unmove()

Rotate a Cargo object negative theta degrees around the z axis

% RotateMove

public RotateMove (Cargo item,
double theta)

Constructs a new Rotate move for Cargo item that will rotate theta degrees around
the z axis

Parameters:

item - The Cargo item to rotate
theta - The degrees to rotate Cargo item

£ unmove

public void unmove ()
Rotate a Cargo object negative theta degrees around the z axis

Overrides:
unmove in class Move

& move
public void move ()
Rotate a Cargo object theta degrees around the z axis

Overrides:
move in class Move

All Fackages Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Packing.SearchThread

java.lang.Object
|
+-———java.lang.Thread
I
+———=AFIT.Alm.Packing.SearchThread

public class SearchThread
extends Thread

This class makes a thread to run a Tabu packing search

Version:
1.1 15 FEB 1998
Author:

Christopher A. Chocolaad Air Force Institute of Technology

« SearchThread(Tabu, int, JCProgressMeter)
Instantiates a new SearchThread

AetHod

» run()
Executes the packing search
« setToBestFound()
Sets the packing pattern to best found patter

% SearchThread

public SearchThread(Tabu t,
int i,
JCProgressMeter j)

Instantiates a new SearchThread
Parameters:

- t- The packing Tabu search that will be executed
j - The JCProgressMeter that indicates the search progress

Fhods

@ setToBestFound

public void setToBestFound()
Sets the packing pattern to best found patter
@ run
public void run()

Executes the packing search

Overrides:
run in class Thread

»Class AFIT.Alm.Packing.SearchViewer

java.lang.Object
-
+--——java.lang.Thread
I
+-——=AFIT.Alm.Packing.SearchViewer

public class SearchViewer

. extends Thread

ColSEtucEor. Index

» SearchViewer(Canvas, Aircraft, Cargo[], Params, FormattedTextField,
FormattedTextField, FormattedTextField, FormattedTextField, FormattedTextField;
FormattedTextField)

SearchViewer

public SearchViewer (Canvas c,
Aircraft a,

gargo carl],
Params p,

FormattedTextField f1,
FormattedTextField f2,
FormattedTextField £3,
FormattedTextField £4,
FormattedTextField £5,

FormattedTextField £6)

thods

@ draw

public void draw()
@ run
public void run{()

Overrides:
run in class Thread

All Packages Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Packing.Section

java.lang.Object
I
+—~—-——AFIT.Alm.Packing.Section

public class Section
extends Object

Defines a two dimensional geometric area inside an aircraft with parameters for max
Weight and axil load

Variable [ndex,

» IMax
sminY

ConsSEructor.index

» Section(double, double, double)
« Section(double, double, double, String)

% minY
public double minY

maxy

public double maxy

Section

public Section(double length,
double width,
double mWeight)

% Section

public Section(double length,
double width,
double mWeight,
String name)

All Packages (lass Hiesrarchy 'his Package Previous Next Index

Class
AFIT.Alm.Packing.SectionedAircraft

java.lang.Object
|

+-——-AFIT.Alm,Packing,Container
|
+~~——AFIT,Alm,Packing.BalancedContainer
|
+———=—AFIT . Alm.Packing.Aircraft

|
+—~--AFIT.Alm.Packing.SectionedAircraft

public class SectionedAircraft
extends Aircraft

A Sectioned Aricraft specifies an aircraft in in a coordinate space that is defined by an
array of sections. The aircraft's geometry is centrered around a centerline of 150

Version:

1.1 15 FEB, 1997
Author:

Christopher A.Chocolaad Air Force Institute of Technology
See Also:

Aircraft;, Section;

» SectionedAircraft(Section[], int, double, double, double)
Instantiates a sectioned Aircraft.

% SectionedAircraft

public SectionedAircraft (Section sectionArrayl],
int numSections,
double cg,
double emptyWeight,
double maxAcl)

Instantiates a sectioned Aircraft.

Parameters: :
sectionArray - An array of section
numSections - The number of sections that make of the Aircraft
cg - The longitudinal loaction of the center of gravity
emptyWeight - The empty weight of the Aircraft
maxAcl - The maximum cabin load the aircraft can carry

See Also:
Aircraft;, Section;

Class AFIT.Alm.Packing.SwapMove

java.lang.Object
I
+————AFIT.Alm.Packi M
I
+————-AFIT.Alm.Packing.SwapMove

public class SwapMove
extends Move

Provides a set of methods to swap a Cargo Item with another item

Version:
1.1 15 FEB 1998
Author;

Christopher A. Chocolaad Air Force Institute of Technology
See Also:

Move

Conskruckor. lndey,

» SwapMove(Cargo, Cargo[], int, int)
Constructs a new Swap move for Cargo item that will swap item with another item
between in the array cargoArray between the index of minlndex and maxIndex

Method

« move()
Swaps this item with another Item
» newSwapltem()
Generates a new Item to swap with this item
« unmove()
Undoes the swaps between this item with another Item

% SwapMove

public SwapMove (Cargo item,

Cargo cargoArrayl[],
int minIndex,
int maxIndex)

Constructs a new Swap move for Cargo item that will swap item with another item
between in the array cargoArray between the index of minlndex and maxIndex

Parameters:
item - The Cargo item to rotate
theta - The degrees to rotate Cargo item

Aethods

& newSwapltem

public void newSwapltem()
Generates a new Item to swap with this item
& unmove
public void unmove ()

Undoes the swaps between this item with another Item

Overrides:
unmove in class Move

£ move
public void move ()

Swaps this item with another Item

Overrides:
move in class Move

Class AFIT.Alm.Packing.Tabu

java.lang.Object
|
+————AFIT.Alm.Packing.Tabu

public class Tabu
extends Object

» Tabu(Aircraft, Cargof], int, int)

Aethod [rdex

» feasible()
« getbestValue()
» getcurrentValue()

» improvingPhase()
» mixedPhase()

« setToBestFound()

Variables

@ objFunct

public Cbijecti

wction objFunct

%@ Tabu

public Tabu(Airxcraft a,
Cargo c[],

int low,
int high)

Chods

@ setToBestFound

public void setToBestFound()
@ getcurrentValue
public final double getcurrentValue ()
@ getbestValue
public final double getbestValue ()
@ feasible
public final boolean feasible()
@ mixedPhase
public void mixedPhase ()
@ improvingPhase

public void improvingPhase ()

All Packages Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Packing.TranslateMove

java.lang.Object
|
+———-AFIT Alm,Packing,Move
I

+---——AFIT.Alm.Packing.TranslateMove

public class TranslateMove
extends Move

Provides a set of methods to translate a Cargo Item

Version:

1.1 15 FEB 1998
Author:

Christopher A. Chocolaad Air Force Institute of Technology
See Also:

Move

CoHSFEIHCEOr [idex

» TranslateMove(Cargo, double, double)
Constructs a new TranslateMove or Cargo item that will translate the item xDis in
the x direction and yDis in the y direction -

Aetiod . Index

«» move()

Moves the Cargo Item by xDis,yDis
» unmove()

Moves the Cargo Item by -xDis,-yDis

TranslateMove

public TranslateMove (Cargo item,
double xDis,
double yDis)

Constructs a new TranslateMove or Cargo item that will translate the item xDis in
the x direction and yDis in the y direction

Parameters:
item - The Cargo item to translate
xDis - The distance to move the i>Cargo item in the x direction
yDis - The distance to move the i>Cargo item in the y direction

thHods

& unmove

public void unmove ()

Moves the Cargo Item by -xDis,-yDis

Overrides:
unmove in class Move

£ move
public void move ()

Moves the Cargo Item by xDis,yDis

Overrides:
move in class Move

All Packages <Class Hierarchy This Package Previous Next Index

Class AFIT.Alm.Packing.Vehicle

java.lang.Object
!
+-——-AFIT,Alm,Packing.Cargo2d
I

+————AFIT.Alm.Packing.Vehicle

public class Vehicle
extends Cargo2d

Vehicle is a Cargo item with seperation contraints

Version:
1.1 15 FEB 1998
Author:

Christopher A. Chocolaad Air Force Institute of Technology

ConSFEIHCEOL Index,

« Yehicle(double, double, double, double)

Constructs a new vehicle with the upper left hand corner at point x,y and with width
and height of variables with the same name.

» Vehicle(Vehicle)
Constructs a vehicle with the same dimensions of v

Aethod [ndex

» clone()
» getOverlap()
The overlap of the Vehicle with other Cargo items
« intersectArea(Cargo2d[])
The intersectArea of the Cargo array with this Vehicle

Vehicle

public Vehicle (double x,
double vy,
double width,
double height)

Constructs a new vehicle with the upper left hand corner at point x,y and with width
and height of variables with the same name.

Parameters:
x - The x cordinate of the upper left hand corner
y - The y cordinate of the upper left hand corner
width - The width of the vehicle
height - The height of the vehicle

% Vehicle

public Vehicle (Vehicle v)

Constructs a vehicle with the same dimensions of v

Parameters:
v - Vehicles to clone

% clone
public final Object clone ()

Overrides:
clone in class Object

@ getOverlap
public final double getOverlap ()

The overlap of the Vehicle with other Cargo items

intersectArea

public double intersectArea(Caxgo2d cl])

 The intersectArea of the Cargo array with this Vehicle

Overrides:
intersectArea in class Cargo2d

package AFIT.Alm.triangulate
Clags [ndex.

e PointT
¢ Triangle
¢ TriangulatePolygon

Class AFIT.Alm.triangulate.PointT

java.lang.Object
I .
+——~—AFIT.Alm.triangulate.PointT

public class PointT
extends Object

Variable Index

*X

x cordinate
2y

y cordinate

Variables

@x

public double x
x cordinate

&y

public double y

y cordinate

All Packagss (lass Hierarchv This Package Previous Next Index

Class AFIT.Alm.triangulate.Triangle

java.lang.Object
|
+—=~——AFIT.Alm.triangulate.Triangle

public class Triangle
extends Object

Triangle defines a region in cordinate space based on the vertexes of a polygon. It is to be

used with the TriangulatPolygon class. The constructor is an int array the must
contain the numbers of the vertex's.

See Also:
TriangulatePolygon, getTriangles

» Triangle(int[])
Instantiates a Triangle

Aethod [ndex

» getVertex(()

o getVertex1()

» getVertex2()

« triangleIntersect(Triangle, double[], double[], double[], double[])
Determines if this triangle intersects another triangle using the methods described in
Theodoractos and Grimsley's article The optimal packing of arbitrarily-shaped
polygons using simulated annealing and polynomial-time cooling schedules in
Computer Methods in applied mechanics and engineering

» updateExtents(double[], double[])
Updates the actual position of the bounding box of the Triangle.

Triangle

public Triangle (int vertexNumbers[])

Instantiates a Triangle

Parameters:

vertexNumbers - An int array that should contain the vertex numbers of the
polygon this triangle is a part of

See Also:
getTriangles

Aethods

@ getVertex0

public int getVertexO ()

Returns:
The first vertex.

@ getVertex1
public int getVertexl ()

Returns:
The second vertex.

@ getVertex2

public int getVertex2 ()

Returns:
The third vertex.

@ updateExtents

public final void updateExtents (double x[],
double yI[])

Updates the actual position of the bounding box of the Triangle.

Parameters:
X - is the array of x cordinates for the vertices of the polygon
y - is the array of y cordinates for the vertices of the polygon

@ triangleIntersect

public final double triangleIntersect (Iriangle t,
: double tx[],
double tyl[],

double x[],

double yI[1])

Determines if this triangle intersects another triangle using the methods described in
Theodoractos and Grimsley's article The optimal packing of arbitrarily-shaped
polygons using simulated annealing and polynomial-time cooling schedules in
Computer Methods in applied mechanics and engineering

Parameters:

t - Triangle to check intersection with

tX - t's x cordinates

ty - t's y cordinates

X - this triangles x cordinates

y - this triangles y cordinates
Returns:

The square of the overlap area

i Packages Cla Lera his Packa Previous Next Index

Class
AFIT.Alm.triangulate.TriangulatePolygon

java.lang.Object
!
+-———AFIT.Alm.triangulate. TriangulatePolygon

public class TriangulatePolygon
extends Object

This class triangualtes a polygon This ¢ code version of this code came from Atul
Narkhede and Dinesh Manocha's Fast Polygon Triangulation based on Seidel’s Algorithm
from the Department of Computer Science, UNC Chapel Hill. This code will triangulate a
simple polygon and with holes. It is an incremental randomized algorithm whose expected
complexity is O(nlog*n). In practice, it is almost linear time for a simple polygon having n
vertices. The triangulation does not introduce any additional vertices and decomposes the
polygon into -2 triangles.

Version:
chocol.0 December 1997
Author:
Chris Chocolaad Air Force Institute of Technology

ConskEruckor.ing

« TriangulatePolygon(int, int[], double[][])
This instatiates the Triangulate Polygon Class.

Method [ndex

» getNumberOfTriangles()

Returns the number of triangle objects in the triangulated polygon
« getTriangles()

This returns an array of Triangles that contains the triangle vertice numbers.

4% TriangulatePolygon

public friangulatePolygon(int ncontours,
int cntrxl[],
double vert[]1[])

This instatiates the Triangulate Polygon Class. The polygon is triangulated at
instatiation.

Parameters:
ncontours - This is the number of contours the polygon has the first contour is
the boundary and the vertices descriping it must be anti-clockwise. All other
contours are holes in the polygon and must be in clockwise order.
cntr - This is the number of points in the i'th contour. The first contour is
cntr([0]. ,
vert - This the input array of vertices. The first vertice is vert [0] [0] and

vert [0] [1] where cert [0] [0] is the x cordinate and vert [0] [1] is the
y cordinate.

tHods

getTriangles

public final Txianglel[] getTriangles()

This returns an array of Triangles that contains the triangle
vertice numbers.

Returns:
The triangle objects containing the vertices of the triangles

of the triangulated polygon.
See Also:

Triangle
@ getNumberOfTriangles
public final int getNumberOfTriangles ()
Returns the number of triangle objects in the triangulated polygon

Returns:
The number of triangles

(1]

2]

(3]

(4]

[5]

[6]

(7]

[8]

[10]

[11]

[12]

[13]

[14]

Bibliography

Abdou, G. and J. Arghavani. “Interative ILP Procedured for Stacking Optimization for the
3D Palletization Problem,” International Journal of Production Research, 35(5):1287-1304
(1997).

Al-Mahmeed, Ahmed S. “Tabu Search, Combination and Integration.” Meta - Heuristics
Theory and Applications edited by Ibrahim H. Osman and James P. Kelly, 320330, Kluwer
Academic Publishers, 1996.

Amiouny, Samir V, et al. “Balanced Loading,” Operations Research, 40(2):238-245
(March 1992).

Andonov, Rumen, et al. “Dynamic Programming Parallel Implementations for the
Knapsack Problem,” (1993). Submitted for Review to the Journal of Parallel and Distributed
Computers.

Arkin, Esther M., et al. “Geometric Knapsack Problemé,” Algorithmica, 10:399-427
(1993).

Babayav, Djangir A., et al. “A New Knapsack Solution Approach by Integer Equivalent
Aggregation and Consistency Determination,” INFORMS Journal on Computing,
9(1):43-50 (1997).

Battiti, Roberto. “Reative Search: Toward Self-Tuning Heuristics.” Modern Heuristic
Search Methods edited by V. J. Rayward-Smith, et al., 61-83, John Wiley and Sons Ltd,
1996. _

Battiti, Roberto and Giampietro Tecchiolli. “The Reactive Tabu Search.” ORSA Journal on
Computing, 6(2):126-140 (oct 1992).

Battiti, Roberto and Giampietro Tecchiolli. “Local Search with Memory: Benchmarking
RTS,” Operations Research Spectrum (1995).

Battiti, Roberto, et al. “Vector Quantization with the Reative Tabu Search.” Mefta -
Heuristics Theory and Applications edited by Ibrahim H. Osman and James P. Kelly,
330-342, Kluwer Academic Publishers, 1996.

Beasley, J., “OR-Library.” internet, 1997. available by anonymous fip to
msemga.ms.is.ac.uk. :

Blazewicz, J., et al. “Using a Tabu Search Approach for Solving the Two-Dimensional
Irregular Cutting Problem,” Annals of Operations Research, 41:313-325 (1993).

Blazewicz, J. and R. Walkowiak. “A Local Search Approach for Two-Dimesional Irregular
Cutting,” OR Spektrum, 17:93-98 (1995).

Bohli, Paul D, et al. Airlifi Loading Model. GRC International INC, Washington, DC, June
1996.

29

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]
[26]

[27]

[28]

[29]

Brosh, Israel. “Optimal Cargo Allocation on Board a Plane: A Sequential Linear
Programming Approach,” European Journal of Operational Research, 8:40—46 (1981).

Brown, A. R. Optimum Packing and Depletion. Jeffreys and Hill Limited, 1971.

Buss, Amold H. and Kirk A. Stork. “Discrete Event Simulation on the World Wide Web
Using JAVA.” Working Paper introduces SimKit a small set of Java classes for creating
discrete event simulation models. \

Cagan, Jonathan. “Shape Annealing Solution to the Constrained Geometric Knapsack
Problem,” Computer Aided Design, 26(10):763—-770 (October 1994).

Castelino, Diane and Nelson Stephens. “Tabu Thresholding for the Frequency Assignment
Problem.” Meta - Heuristics Theory and Applications edited by Ibrahim H. Osman and
James P. Kelly, 278-297, Kluwer Academic Publishers, 1996.

Chu, PC. and JE. Beasley. “A Genetic Algorithm for the Multiconstraint
Knapsack Problem.” the Mangement School, Imperial College, Working paper
http://mscmga.ms.ic.ac.uk/pchw/pchu.html, January 1997.

Cochard, Douglas D. and Kirk A. Yost. “Improving Utilization of Air Force Cargo
Aircraft,” Interfaces, 15:53-68 (Jan 1985).

Dell’ Amico, Mauro. “A New Tabu Search Approach to the 0-1 Equicut Problem.” Meta
- Heuristics Theory and Applications edited by Ibrahim H. Osman and James P. Kelly,
362-377, Kluwer Academic Publishers, 1996.

Devallla, Sunil. Development of Three-Dimensional Computer - Based Heuristic for
Packing. MS thesis, Tennessee Technological University, December 1992.

Dowsland, Kathryn A. “The Three Dimensional Pallet Chart: An Analysis of the Factors
Affecting the Set of Feasible Layouts for a Class of Two-Dimensional Packing Problems,”
Journal of the Operations Research Society, 35:895-905 (1984).

Dowsland, Kathryn A. “Some Experiments with Simulated Annealing Techniques for
Packing Problems,” European Journal of Operational Research, 68:389-399 (1993).

Dowsland, Kathryn A. and William B. Dowsland. “Packing Problems,” European Journal
of Operational Research, 56:2—-14 (1992).

Dowsland, Kathyrn A. “Simple Tabu Thresholding and the Pallet Loading Problem.”
Meta-Heuristics Theory and Applications edited by Ibrahim H. Osman and James P, Kelly,
381-405, Kluwer Academic Publishers, 1996.

Dumbadze, L. G. and A. T. Tizik. “Many Dimensional Knapsack Problem of Special
Ladder Structure,” Journal of Computer and Systems Science Interantional, 35(4):614-617
(1996).

Dyckhoff, Harald. “A Typology of Cutting and Packing Problems,” European Journal of

30

[31]

[32]
[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Operational Research, 44:145-159 (1990).

E. G. Coffman, Jr, et al. “Approximation Algorithms for Bin-Packing - An Updated
Survey.” Algorithm Design for Computer System Design edited by G. Ausiello, et al.,
49-106, New York: Springer-Verlag, 1984.

Eilon, Samuel and Nicos Christofides. “The Loading Problem,” Management Science,
17(5) (January 1971).

Flanagan, David. Java in a Nutshell (Second Edition). O’Reilly and Associates, 1997.

Foley, James D., et al. Computer Graphics Principles and Practice (Second Edition).
Addison Wesley, 1990.

Gehring, H., et al. “A Computer-Based Heuristic for Packing Pooled Shipment Containers,”
Luropean Journal of Operational Research, 44:277-288 (1990).

Gerstel, Gerald. Cargo Loading A Proposed Approach for Maximization Space Utilization
of Containers Loaded with Palletized Loads. MS thesis, Naval Postgraduate School,
Monterey CA, September 1982.

Gilmor, P. C. and R. E. Gomory. “The Theory and Computation of Knapsack Functions,”
Operations Research, 14:1045-1074 (November 1966).

Gilmore, P. C. and R. E. Gomory. “A Linear Programming Approach To the Cutting Stock
Problem- Part I1,” Operations Research, 11863888 (November 1963).

Glover, Fred. “A Multiphase-Dual Algorithm for the Zero-One Integer Programming
Problem,” Operations Research, (13):879-919 (November-December 1965).

Glover, Fred. “Heuristics in Integer Programming Using Surrogate Constraints,” Decision
Sciences, 8(1):156-166 (January 1977).

Glover, Fred. Tabu Search Fundamentals and Uses (Revised and expaned Edition).
University of Colorado, 1995.

Glover, Fred. “Tabu Thresholding: Improving Search by Nonmonotonic Trajectories,”
ORSA Journal on Computing, 7(4):426-442 (1995).

Glover, Fred and Gary A. Kochenberger. “Critical Event Tabu Search for Multidimensional
Knapsack Problems.” Meta - Heuristics Theory and Applications edited by Ibrahim H.
Osman and James P. Kelly, 407-427, Kluwer Academic Publishers, 1996.

Glover, Fred and Manuel Laguna. “Tabu Search.” Modern Heuristic Techniques for
Combinatorial Problems edited by Colin R. Reeves, chapter Three, 70-141, John Wiley and
Sons, 1993.

Glover, Fred and Manuel Laguna. Tabu Search. Boston: Kluwer Academic Publishers,
1997.

31

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

(591

[60]

Glover, Fred, et al. “Solving Dynamic Stochastic Control Problems in Fianance Using
Tabu Search with Variable Scaling.” Meta - Heuristics Theory and Applications edited by
Ibrahim H. Osman and James P. Kelly, 429-449, Kluwer Academic Publishers, 1996.

Grable, David A. “On Random Greedy Triangle Packing,” The Electronic Journal of
Combinatorics, 4 (1997).

Grignon, Pierre and Georges M. Fadel. “Fuzzy Move Limit Evaluation In Structural
Optimization,” American Institute of Aeronautics and Astronautics (1994). Clemson
University.

Hammer, Peter L. and Jr. David J. Rader. Efficient Methods for Solving Quadratic 0-1
Knapsack Problems. RRR 40-94, Rutgers University, November 1994,

Han, Ching Ping, et al. “A Heuristic Approach to the Three Diminsional Cargo-Loading
Problem,” Interantional Journal of Production Research, 27(5):.757-774 (1989).

Hanafi, S, et al. “Comparison of Heuristics for the 0-1 Multidimensional Knapsack
Problem.” Meta - Heuristics Theory and Applications edited by Ibrahim H. Osman and
James P. Kelly, 449465, Kluwer Academic Publishers, 1996.

Horstmann, Cay S. and Gary Cornell. Core Java, One. Sun Microsystems, 1997.

Horstmann, Cay S. and Gary Cornell. Core Java, Two. Sun Microsystems, 1998.

Huebner, Walter F. “Load Planning, Rapid Mobilization and the Computer,” Air Force
Journal of Logistics, 6(1):22-24 (Winter 1982).

IT1, Napoleon Boﬁaparte Nelson. A Container Stuffing Algorithmfor Rectangular Solids
When Voids May Be Requzred MS thesis, Naval Postgraduate School, Monterey CA,
September 1979.

Ingargiola, Giorgio and James F. Korsh. “An Algorithm for the Solution of the 0-1 Loading
Problems,” Operations Research, 23(6):1110-1119 (November 1975).

Inoue, Jun-Ichi. “Statistical mechanics of the multi-constraint continous knapsack problem,”
IOP, 30:1047-1057 (jul 1996).

Ivancic, Nancy J. An Integer Programming Based Heuristic Approach To The Three
Dimensional Packing Problem. MS thesis, Case Western Reserve University, August 1988.

Khuri, Sami, et al., editors. The Zero/One Multiple Knapsack Problem and Genetic
Algorithms, ACM Press, 1993,

Khuri, Sami, et al. “The Zero/One Multiple Knapsack Problem and Genetic Algorithms.”
To appear in the ACM Symposiom of Applied Computation (SAC’94) proceedings, 1994.

Laguna, Manuel and Fred Glover. “Bandwidth Packing: A Tabu Search Approach >
Management Science, 39(4):492-500 (1993).

32

[61]
[62]
[63]

[64]
[65]

[66]

[67]
[68]

[69]
[70]

(71]
[72]

(73]

[74]

[75]

Larsen, Ole and Gert Mikkelsen. “An Interactive System for the Loading of Cargo Aircraft,”
European Journal of Operational Research, 4:367-373 (1980).

Lengauer, Thomas. Combinatorial Algorithms for Integrated Circuit Layout. New York:
John Wiley and Sons, 1990.

Li, Keqin and Kam Hoi Cheng. “Heuristic Algorithms for On-Line Packing in Three
Dimensions,” Journal of Algorithms, 13:589-605 (1992).

Linden, Peter van der. Just Java and Beyond. Sun Microsystems, 1998.

Lokketangen, Arne and Fred Glover. “Probabilistic Move Selection in Tabu Search for
Zero-One Integer Programming Problems.” Meta - Heuristics Theory and Applications
edited by Ibrahim H. Osman and James P. Kelly, 278-297, Kluwer Academic Publishers,
1996.

Magent, Michael A. Combining Neural Networks and Tabu Search In A Fast Neural
Network Simulation for Combinatorial Optimization. PhD dissertation, Lehigh, October
1996. ' '

Martello, Silvano and Paolo Toth. Knapsack Problems: Algorithms and Computer
Implementations. New York: John Wiley and Sons, 1990.

Martin-Vega, Louis A. “Aircraft Load Planning and the Computer: Description and
Review,” Computers and Industial Engineering, 9(4):357-369 (1985).

!

Moser, Martin, et al. “An Algorithm for the Multidimensional Multiple-Choice Knapsack
Problem,” JEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 582-589 (1997).

Narkhede, Atul and Dinesh Manocha. Fast Polygon Triangulation Based on Seidel’s
Algorithm. Tmplementation Report, UNC Chapel Hill, Department of Computer Science,
1994. '

Naughton, Patrick. Java Handbook. McGraw-Hill, 1996.

Naval Computer and Telecommunications Station, Washington, DC. Windows Airlift
Loading Model, April 1997.

NG, Kevin Y. K. “A Multicriteria Optimization Approach To Aircraft Loading,” Operations
Research, 40(6):1200-1205 (1992).

Niar, Smail and Arnaud Freville. “A Parallel Tabu Search Algorithm for the 0-1
Multidimensional Knapsack Problem.” Proceedings: 11th International Parallel Processing
Symposium April 1-5, edited by International Parallel Processing Symposium. 512-516.
Los Alamitos, California: [IEEE Computer Society Press, 1997.

Osman, Ibrahim H. and James P. Kelly. “Meta-Heuristics: An Overview.” Meta - Heuristics
Theory and Applications edited by Ibrahim H. Osman and James P. Kelly, 1-21, Kluwer

33

[76]

[77]

[78]

[79]

(80]

[81]

(82]

[83]

[84]

[85]

[86]

[87]

[88]

(89]

Academic Publishers, 1996.

Preparata, Franco P. and Michael lan Shamos. Computational Geometry An Introduction.
New York: Springer-Verlag, 1985.

RHEE, Wansoo T. and Michel Talagrand. “Multidimensional Optimal Bin Packing with
Items of Random Size,” Mathematics of Operations Research, 16(3):490-503 (August
1991).

Roskam, Jan. Airplane Flight Dynamics and Automatic Flight Controls, 1. Route 4, Box
274. Ottaw Kansas 66067: Roskam Aviation and Engineering Corporation, 1979.

Sadeh, Norman M. and Sam R. Thangiah. “Learning to Recognize (Un)Promising
Simulated Annealing Runs: Efficient Search Procedures for Job Shop Scheduling and
Vehicle Routing.” Meta - Heuristics Theory and Applications edited by Ibrahim H. Osman
and James P. Kelly, 278-297, Kluwer Academic Publishers, 1996.

Schepers, Jorg. An Exact Algorithm for Genral Orthogonal N-Dimensional Knapsack
Problems. Technical Report 97-258, Center for Parallel Computing, University of Cologne,
1996. :

Scholl, Armin, et al. “BISON: A Fast Hybrid Procedure for Exactly Solving the One-
Deimensioanl Bin Packing Problem,” Computers and Operations Research, 24(7):627-645
(1997).

Sedgewick, Robert. Algorithms in C++. New York: Addison-Wesley Publishing Company,
1990.

Sondergeld, Lutz and Stefan Vob. “A Star Shaped Diversification Approach in Tabu Search.”
Meta - Heuristics Theory and Applications edited by Ibrahim H. Osman and James P, Kelly,
278-297, Kluwer Academic Publishers, 1996.

Stasko, John T. Three Dimensional Computation Visulization. GIT-GVU-92-20, Georgia
Institute of Technology, 1992.

Szykman, S. and J. Cagan. “A Simualted Annealing Approach to Three Dimensional
Component Packing,” ASME Journal of Mechanical Design, 117:308-314 (1995).

Szykman, S. and J. Cagan. “Synthesis of Optimal Nonorthogonal Routes,” ASME Journal
of Mechanical Design, 118:419-424 (1996).

Szykman, S. and J. Cagan. “Constrained Three Dimensional Component Layout Using
Simulated Annealing,” ASMI: Journal of Mechanical Design, 119:28-35 (1997).

Szykman, Simon and Jonathon Cagan. “Automated Generation of Optimally Directed Three
Dimensional Component Layouts.” Advances in Design Automation 1993: Proceedings of
the 19th ASME Design Automation Conference. 19-22. September 1993.

Tatineni, Sayee and Georges M. Fadel. Coupling Through Movelimits in Multi-Disciplinary

34

[90]

[91]

[92]

[93]

[94]
[95]

[96] -

[97]
[98]

199]

[100]

[101]

[102]

Optimization. MS thesis, Clemson University.

Theodoracatos, Vassilios E. and James L. Grimsley. “The Optimal Packing of Arbitrarily-
Shaped Polygons Using Simulated Annealing and Polynomial-Time Cooling Schedules,”
Computer Methods in Applied Mechanics and Engineering, 125:53-70 (1995).

Thomas, Clive, et al. “Aircraft Loading Problem.” Airline Group of the International
Federation of Operation Research Societies Annual Symposium. 123-143. AGIFORS,
1994.

Toulse, Michel, et al. “Communication Issues in Designing Cooperative MultiThreaded
Parallel Searches.” Meta - Heuristics Theory and Applications edited by Ibrahim H. Osman
and James P. Kelly, 503-522, Kluwer Academic Publishers, 1996.

Tseng, Fan T. “A Study of Algorithms for Selecting R Best Elemnts Form an Array.” Meta
- Heuristics Theory and Applications edited by Ibrahim H. Osman and James P. Kelly,
523-535, Kluwer Academic Publishers, 1996.

Udy, Jerry L., et al. “Computation of Interferences Between Three-Dimensional Objects
and the Optimal Packing Problem,” Advances in Engineering Software, 10(1):8-14 (1988).

USAF Studies and Analysis Agency. Airlift Loading Model, Analysts Manual (Version 5.0
Edition), October 1994,

Valls, Vicente. “A Modified Tabu Thresholding Approach for the Generalized Restricted
Vertex Colouring Problem.” Meta - Heuristics Theory and Applications edited by Ibrahim H.
Osman and James P. Kelly, 537-553, Kluwer Academic Publishers, 1996.

Vycital, Gary C. Airlift of Army General Purpose Forces (HQ USAF SABER SIZE-Army
Study). Technical Report, HQ USAF, April 1981.

Wodziak, John R. and Georges M. Fadel. “Packing and Optimizing the Center of Gravity
Location Using a Genetic Algorithm.” Clemson University, Working paper.

Woodruff, David L. “Chunking Applied to Reactive Rabu Search.” Meta - Heuristics
Theory and Applications edited by Ibrahim H. Osman and James P. Kelly, 555-569, Kluwer
Academic Publishers, 1996.

Wright, Mike B. and Richard C. Marett. “A Preliminary Investigation Into the Performance
of Heuristic Search Methhods Applied to Compound Combinatorial Problems.” Meta

- Heuristics Theory and Applications edited by Ibrahim H. Osman and James P. Kelly,
300-317, Kluwer Academic Publishers, 1996.

Yamamoto, Akira, et al. “Asymmetric Neural Network and Its Application to Knapsack
Problem,” IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 78(3):300-305 (mar 1995).

Yost, Kirk and Ronald W. Hare. Airlift Estimation for MAC Cargo Aircrafi. AFLMC-
LY870104 AD-B125 174, Gunter AFB, AL 36114: Air Force Logistics Management

35

[103]

Center, August 1988.

Zachariasen, Martin and Martin Dam. “Tabu Search on the Geometric Traveling Salesman
Problem.” Meta - Heuristics Theory and Applications edited by Ibrahim H. Osman and
James P. Kelly, 571-587, Kluwer Academic Publishers, 1996.

36

Vita

Christopher Anthony Chocolaad was born in West Palm Beach, Florida, on 21 April 1972, the
son of Geraldine Gladwin Chocolaad, and Ronald Frank Chocolaad. In June 1990 he graduated
from Cardinal Newman High School and entered the United States Air Force Academy. On 1
June 1994 he graduated from the United States Air Force Academy, accepting a commission to the
United States Air Force and earning a Bachelor of Science in Aeronautical Engineering. While on
activity duty he served one tour with the 51st Fighter Wing, Osan Air Base, Republic of Korea as
Chief of the Manpower Office. He entered the Graduate School of Engineering, Air Force Institute

of Technology August 15 of 1996.
Permanent Address: 1602 Pine Tree Lane #35

Dayton, Ohio 45449

37

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of infarmation. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY [Leave blank] | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1998 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Solving Geometric Knapsack Problems Using Tabu Search Heuristics

6. AUTHOR(S)
Christopher A. Chocolaad, Lieutenant, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER

2750 P Street

WPAFB OH 45433-7765 AFIT/GOR/ENS/98M-05
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AFSAA/SAG ‘ AGENCY REPORT NUMBER
1570 Air Force Pentagon

Washington DC, 20330-1570

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13, ABSTRACT (Maximum 200 words)
An instance of the geometric knapsack problem occurs in air lift loading where a set of cargo must be chosen to pack in a
given fleet of aircraft. This paper demonstrates a new heuristic to solve this problem in a reasonable amount of time with a
higher quality solution then previously reported in literature. We also report a new tabu search heuristic to solve geometric
knapsack problems. We then employ our novel heuristics in a master-slave relationship, where the knapsack heuristic selects
a set of cargo and the packing heuristic determines if that set is feasible. The search incorporates learning mechanisms that
react to cycles and thus is robust over a large set of problem sizes. The new knapsack and packing heuristics compare
favorably with the best reported efforts in the literature. Additionally, we show the JAVA language to be an effective
language for implementing the heuristics. The search is then used in a real world problem of determining how much cargo
can be packed with a given fleet of aircraft.

14. SUBJECT TERMS ' 15. NUMBER OF PAGES
Air Lift Loading Problem;Geometric Knapsack Problem;Tabu Search Heuristic;Packing 179
Problem 16. PRICE CODE
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 éRev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

