OFFICE OF NAVAL RESEARCH

CONTRACT N00014-97-1-0066
R&T Code 33e 1806
Dr. Judah Goldwasser

Technical Report No. 102

COMPUTED HEATS OF FORMATION

by

Peter Politzer, M. Edward Grice, Monica C. Concha and Pat Lane

Department of Chemistry
University of New Orleans
New Orleans, LA 70148

April 9, 1998

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Computed heats of formation for 1 - 8.

1: ΔH_f^{298K} (solid) = 231 cal/g
2: ΔH_f^{298K} (solid) = 491 cal/g
3: ΔH_f^{298K} (solid) = 150 cal/g
4: ΔH_f^{298K} (solid) = 157 cal/g
5: ΔH_f^{298K} (solid) = 132 cal/g
6: ΔH_f^{298K} (solid) = 235 cal/g
7: ΔH_f^{298K} (solid) = -1.5 cal/g
8: ΔH_f^{298K} (solid) = -584 cal/g

Subject Terms:
Energetic compounds; heats of formation
We have computed heats of formation for compounds 1 - 8 (Table 1). The first five are target compounds proposed by M. Trudell (University of New Orleans); 6 - 8 have recently been prepared by R. Schmitt and J. Bottaro (SRI). For the molecular systems 1 - 7, we used our density functional procedure to obtain gas phase heats of formation, which were converted to liquid and solid state values by subtracting, respectively, the heats of vaporization and sublimation. The latter are determined by means of relationships that we have developed involving the computed electrostatic potential on the molecular surface [2,3]. (Vibrational energies were obtained from the molecular stoichiometries [4].) For the ionic solid 8, the heat of formation was calculated using the lattice enthalpy and the gas phase heats of formation of the positive and negative ions; the lattice enthalpy was computed from our recently-developed relationship involving anionic surface electrostatic potentials [5]. For comparison, the experimental solid phase heats of formation of HMX and RDX are, respectively, 60.4 cal/g and 76.1 cal/g [6].

References:

Table 1. Computed heats of formation.

| 1 | ![Image 1] | ΔH_f^{298K} (gas) = 73.6 kcal/mole = 341 cal/g
ΔH_f^{298K} (liquid) = 60.0 kcal/mole = 278 cal/g
ΔH_f^{298K} (solid) = 49.8 kcal/mole = 231 cal/g |
| 2 | ![Image 2] | ΔH_f^{298K} (gas) = 155 kcal/mole = 604 cal/g
ΔH_f^{298K} (liquid) = 139 kcal/mole = 544 cal/g
ΔH_f^{298K} (solid) = 126 kcal/mole = 491 cal/g |
| 3 | ![Image 3] | ΔH_f^{298K} (gas) = 80.6 kcal/mole = 263 cal/g
ΔH_f^{298K} (liquid) = 64.3 kcal/mole = 210 cal/g
ΔH_f^{298K} (solid) = 45.8 kcal/mole = 150 cal/g |
| 4 | ![Image 4] | ΔH_f^{298K} (gas) = 104 kcal/mole = 264 cal/g
ΔH_f^{298K} (liquid) = 87.5 kcal/mole = 221 cal/g
ΔH_f^{298K} (solid) = 62.2 kcal/mole = 157 cal/g |
| 5 | ![Image 5] | ΔH_f^{298K} (gas) = 96.5 kcal/mole = 236 cal/g
ΔH_f^{298K} (liquid) = 79.1 kcal/mole = 194 cal/g
ΔH_f^{298K} (solid) = 54.0 kcal/mole = 132 cal/g |
| 6 | ![Image 6] | ΔH_f^{298K} (gas) = 108 kcal/mole = 370 cal/g
ΔH_f^{298K} (liquid) = 91.1 kcal/mole = 312 cal/g
ΔH_f^{298K} (solid) = 68.7 kcal/mole = 235 cal/g |

(continued)
Table 1. Computed heats of formation (continued).

| 7 | \[\text{O}_2\text{N} \text{N} \text{F} \text{N} \text{O}_2\text{N} \] | \(\Delta H_f^{298K} \) (gas) = 20.5 kcal/mole = 124 cal/g
\(\Delta H_f^{298K} \) (liquid) = 8.23 kcal/mole = 49.8 cal/g
\(\Delta H_f^{298K} \) (solid) = 0.24 kcal/mole = 1.5 cal/g |
| 8 | \(\text{K}^+ \left[\text{N} \text{F} \text{NO}_2^- \right] \) | \(\Delta H_f^{298K} \) (solid) = \(-69.0\) kcal/mole = \(-584\) cal/g |