FINAL REPORT
MAY 1997

REPORT NO. 97-10

BRADLEY FIGHTING VEHICLE (BFV)
ARMOR TILE WOODEN BOX
MIL-STD-1660 TESTS

Prepared for:
U.S. Army Armament Research, Development
and Engineering Center
ATTN: AMSTA-AR-ESK
Rock Island, IL 61299-7300

Distribution Unlimited

VALIDATION ENGINEERING DIVISION
SAVANNA, ILLINOIS 61074-9639
AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from Director, U.S. Army Defense Ammunition Center, ATTN: SIOAC-DEV, Savanna, IL 61074-9639.

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.
Bradley Fighting Vehicle (BFV) Armor Tile Wooden Box MIL-STD-1660 Tests

The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SIOAC-DEV), was tasked by U.S. Army Armament Research, Development and Engineering Center (ARDEC) to conduct MIL-STD-1660 tests on the unitization procedures for armor tile wooden boxes. There was no damage to the armor tile wooden boxes as a result of these tests; therefore, it meets the requirements for MIL-STD-1660, Design Criteria for Ammunition Unit Loads.
U.S. ARMY DEFENSE AMMUNITION CENTER
VALIDATION ENGINEERING DIVISION
SAVANNA, IL 61074-9639

REPORT NO. 97-10

BRADLEY FIGHTING VEHICLE (BFV) ARMOR TILE WOODEN BOX
MIL-STD-1660 TESTS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>A. BACKGROUND</td>
<td>1-1</td>
</tr>
<tr>
<td>B. AUTHORITY</td>
<td>1-1</td>
</tr>
<tr>
<td>C. OBJECTIVE</td>
<td>1-1</td>
</tr>
<tr>
<td>D. CONCLUSION</td>
<td>1-1</td>
</tr>
<tr>
<td>2. ATTENDEES</td>
<td>2-1</td>
</tr>
<tr>
<td>3. TEST PROCEDURES</td>
<td>3-1</td>
</tr>
<tr>
<td>4. TEST EQUIPMENT</td>
<td>4-1</td>
</tr>
<tr>
<td>5. TEST RESULTS</td>
<td>5-1</td>
</tr>
<tr>
<td>6. PHOTOGRAPHS</td>
<td>6-1</td>
</tr>
<tr>
<td>7. DRAWING</td>
<td>7-1</td>
</tr>
</tbody>
</table>
PART 1

INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SIOAC-DEV), was tasked by U.S. Army Armament Research, Development and Engineering Center (ARDEC) to conduct MIL-STD-1660 tests on the unitization procedures for armor tile wooden boxes.

B. AUTHORITY. This test was conducted IAW mission responsibilities delegated by the U.S. Army Armament, Munitions and Chemical Command (AMCCOM), Rock Island, Illinois.

C. OBJECTIVE. The objective of these tests was to determine whether the unitization procedures for armor tile wooden boxes was capable of meeting MIL-STD-1660, Design Criteria for Ammunition Loads, requirements.

D. CONCLUSION. The unitization procedures for the armor tile wooden boxes as tested met MIL-STD-1660, Design Criteria for Ammunition Loads, requirements.
PART 2

2 - 6 MAY 1997

ATTENDEES

Ejike J. Ajalla
Mechanical Engineer
DSN 585-8434
815-273-8434

Director
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DEV
3700 Army Depot Road
Savanna, IL 61074-9639

Sandra M. Schultz
Industrial Engineer
DSN 585-8086
815-273-8086

Director
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DES
3700 Army Depot Road
Savanna, IL 61074-9639

Betty J. Kundert
Engineering Draftsman
DSN 585-8095
815-273-8095

Director
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DES
3700 Army Depot Road
Savanna, IL 61074-9639
PART 3

TEST PROCEDURES

The test procedures outlined in this section were extracted from MIL-STD-1660, Design Criteria for Ammunition Unit Loads, 8 April 1977. This standard identifies nine steps that a unitized load must undergo if it is to be considered acceptable. The four tests that were conducted on the test pallets are summarized below.

A. STACKING TEST. The unit load was loaded to simulate a stack of identical unit loads stacked 16 feet high, for a period of one hour. This stacking load was simulated by subjecting the unit load to a compression weight equal to an equivalent 16-foot stacking height. The compression load was calculated in the following manner. The unit load weight was divided by the unit load height in inches and multiplied by 192. The resulting number was the equivalent compressive force of a 16-foot-high load.

B. REPETITIVE SHOCK TEST. The repetitive shock test was conducted IAW Method 5019, Federal Standard 101. The test procedure is as follows: The test specimen was placed on, but not fastened to, the platform. With the specimen in one position, the platform was vibrated at 1/2-inch amplitude (1-inch double amplitude) starting at a frequency of approximately 3 cycles per second. The frequency was steadily increased until the package left the platform. The resonant frequency was achieved when a 1/16-inch-thick feeler gage momentarily slid freely between every point on the specimen in contact with the platform at some instance during the cycle or a platform acceleration achieved 1 +/- 0.1 Gs. Midway into the testing period, the specimen was rotated 90 degrees and the test continued for the duration. Unless failure occurred, the total time of vibration was two hours if the specimen was tested in one position and three hours for more than one position.
C. **EDGewise ROTATIONAL DROP TEST**. This test was conducted using the procedures of Method 5008, Federal Standard 101. The procedure for the edgewise rotational drop test is as follows: The specimen was placed on its skids with one end of the pallet supported on a beam 4-1/2 inches high. The height of the beam was increased, if necessary, to ensure that there was no support for the skids between the ends of the pallet when dropping took place, but was not high enough to cause the pallet to slide on the supports when the dropped end was raised for the drops. The unsupported end of the pallet was then raised and allowed to fall freely to the concrete, pavement, or similar underlying surface from a prescribed height. Unless otherwise specified, the height of drop for Level A protection conforms to the following tabulation:

<table>
<thead>
<tr>
<th>GROSS WEIGHT (WITHIN RANGE LIMITS) (Pounds)</th>
<th>DIMENSIONS OF ANY EDGE, HEIGHT OR WIDTH (WITHIN RANGE LIMITS) (Inches)</th>
<th>HEIGHT OF DROPS ON EDGES Level A (Inches)</th>
<th>Level B (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 - 250</td>
<td>60 - 66</td>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td>250 - 400</td>
<td>66 - 72</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>400 - 600</td>
<td>72 - 80</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>600 - 1000</td>
<td>80 - 95</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>1000 - 1500</td>
<td>95 - 114</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>1500 - 2000</td>
<td>114 - 144</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>2000 - 3000</td>
<td>Above 145 - No limit</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Above - 3000</td>
<td></td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

D. **INCLINE-IMPACT TEST**. This test was conducted by using the procedure of Method 5023, Incline-Impact Test of Federal Standard 101. The procedure for the incline-impact test is as follows: The specimen was placed on the carriage with the surface or edge which is to be
impacted projecting at least 2 inches beyond the front end of the carriage. The carriage was brought to a predetermined position on the incline and released. If it is desired to concentrate the impact on any particular position on the container, a 4- by 4-inch timber was attached to the bumper in the desired position before the test. No part of the timber was struck by the carriage. The position of the container on the carriage and the sequence in which surfaces and edges are subjected to impacts was at the option of the testing activity and depends upon the objective of the tests. This test is to determine satisfactory requirements for a container or pack, and, unless otherwise specified, the specimen was subjected to one impact on each surface that has each dimension less than 9.5 feet. Unless otherwise specified, the velocity at time of impact was 7 feet per second.
PART 4

TEST EQUIPMENT

A. Pallet (Test Sample)

1. Width: 38-5/8 inches
2. Length: 46-7/8 inches
3. Unit Load Height: 52 inches
4. Unit Load Weight: 2,230 pounds
5. Wooden Box Restraint: Intermediate Banding

B. Compression Tester

1. Manufacturer: Ormond Manufacturing
2. Platform: 60- by 60-inches
3. Compression Limit: 50,000 pounds
4. Tension Limit: 50,000 pounds

C. Transportation Simulator

1. Manufacturer: Gaynes Laboratory
2. Capacity: 6,000 pounds
3. Displacement: 1/2-inch amplitude
4. Speed: 50 to 400 rpm
5. Platform: 5- by 8-foot

D. Inclined Plane

1. Manufacturer: Conbur Incline
2. Type: Impact Tester
3. Grade: 10 percent incline
4. Length: 12-foot
PART 5

TEST RESULTS

A. TEST OBSERVATIONS. The test sample was loaded with armor tile boxes on a wooden pallet.

B. STACKING TEST. The test sample was initially loaded to 8,300 pounds compression. The compression was released after 1 hour. No damage was noted during this test.

C. REPETITIVE SHOCK TEST. The duration of the test was 90 minutes for each orientation of the pallet. The transportation simulator was operated at 218 rpm while the pallet was oriented in the lateral direction. For the longitudinal orientation, the transportation simulator was operated at 224 rpm. Slight load movement of less than 1 inch was observed. No damage was noted during this test.

D. EDGewise ROTATIONAL DROP TEST. One side of the pallet was placed on a beam displacing it 4-1/2 inches above the floor. The opposite end of the pallet was raised to a height of 15 inches, then dropped. The pallet was rotated clockwise after each impact until all four sides had been tested. No damage was noticed after dropping the pallet from a height of 15 inches on all four sides.

E. INCLINE-IMPACT TEST. The incline-plane was set to allow the pallet to travel 8 feet prior to impacting a stationary wall. The pallet was rotated clockwise after each impact, until all four sides had been tested. No damage was noticed on the pallet only slight shifting of the load was noticed.

F. POST TEST INSPECTION. No major damage was noted at the end of testing. There was minor cracking of the dunnage at the end of the boxes and a 3-inch-wide piece of board broke off the top outside stringer board.
PART 6

PHOTOGRAPHS
AO317-SCN-97-2034. This photo shows a closeup view of the palletized load prior to MIL-STD-1660 tests.
PART 7

DRAWING
UNITIZATION PROCEDURES FOR ARMOR T TILE COMBINATION PALLET, PACKED VARIOUS QUANTITIES IN VARIOUS WOODEN BOXES, UNITIZED 17 BOXES PER 35" X 45-1/2" PALLET; APPROX CONTAINER SIZE VARIES
<table>
<thead>
<tr>
<th>NSN</th>
<th>ODDIC</th>
<th>QQ CLASS</th>
<th>COMP GROUP</th>
<th>APPRX WEIGHT LBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>???-??-????</td>
<td>???</td>
<td>.?</td>
<td>?</td>
<td>2,241</td>
</tr>
</tbody>
</table>

HAZARD CLASSIFICATION DATA CONTAINED IN THE ABOVE CHART IS FOR GUIDANCE AND INFORMATIONAL PURPOSES ONLY. VERIFICATION OF THE SPECIFIED DATA SHOULD BE MADE BY CONSULTING THE MOST RECENT JOINT HAZARD CLASSIFICATION SYSTEM LISTING OR OTHER APPROVED LISTING(S).
TIEDOWN STRAP, 3/4" X .031" OR .035" X 14'-11" LONG STEEL STRAPPING (3 REQD). SEE GENERAL NOTE "F" ON PAGE 4.

LOAD STRAP, 3/4" X .031" OR .035" X 18'-4" LONG STEEL STRAPPING (3 REQD). SEE GENERAL NOTE "E" ON PAGE 4.

M5A1 BOX 124 LBS. TOP CLEATS WILL FACE TOWARDS M5A1 BOX.

17-1/4" 14-3/4" 18-7/8" 9-7/8" M5A1 BOX 55 LBS.

SPACER ASSEMBLY C (1 REQD). SEE DETAIL ON PAGE 6.

M5A1 BOX 86 LBS.

PLYWOOD, 3/4" X 20-1/4" X 14-3/4" (1 REQD).

SPACER ASSEMBLY A (1 REQD). SEE DETAIL ON PAGE 6.

M5A1 BOX 102 LBS.

PLYWOOD, 1/2" X 36-1/4" X 14" (1 REQD).

2 M5A1 BOXES 130 LBS. BOXES WILL BE TURNED WITH TOP CLEATS FACING DOWNWARDS.

M5A1 BOX 86 LBS.

FILLER ASSEMBLY A (1 REQD). SEE DETAIL ON PAGE 5.

M5A1 BOX 86 LBS.

SPACER ASSEMBLY B (1 REQD). SEE DETAIL ON PAGE 6.

M5A1 BOX 86 LBS.

FILLER ASSEMBLY B (1 REQD). SEE DETAIL ON PAGE 5.

PLYWOOD SPACER (1 REQD). SEE DETAIL ON PAGE 7.

8 M5A1 BOXES 141 LBS.

HORIZONTAL STRAP, 3/4" X .031" OR .035" X (15'-3") LONG STEEL STRAPPING (3 REQD). SEE GENERAL NOTE "D" ON PAGE 4.

15'-6" 17-1/4" 12-7/8" 35" 45-1/2"

1 M5A1 BOX 102 LBS.

TOP CLEATS OF M5A1 BOXES WILL BE TURNED INWARD.

PALLETT UNIT
SEE GENERAL NOTE "B" ON PAGE 4.

17 BOXES OF TILES = = = = = = = = 2,020 LBS (APPROX)
DUNNGAGE = = = = = = = = = = = = 147 LBS
PALLETT = = = = = = = = = = = = 65 LBS

TOTAL WEIGHT = = = = = = = = = = 2,241 LBS (APPROX)
CUBE = = = = = = = = = = = = = = = = 54.9 CU FT (APPROX)

OVERALL UNIT LOAD SIZE 46-7/8" L X 38-5/8" W X 52-3/8" H

PAGE 3
GENERAL NOTES

A. THIS DOCUMENT HAS BEEN PREPARED AND ISSUED IN ACCORDANCE WITH AR 740-1 AND AUGMENTS TM 743-200-1 (CHAPTER 5) AND CONFORMS TO MIL-STD-1660.

B. DIMENSIONS, CUBE AND WEIGHT OF A PALLET UNIT WILL VARY SLIGHTLY DEPENDING UPON THE ACTUAL DIMENSIONS OF THE BOXES AND THE WEIGHT OF THE SPECIFIC ITEM BEING UNITIZED.

C. CONVERSION TO METRIC EQUIVALENTS: DIMENSIONS WITHIN THIS DOCUMENT ARE EXPRESSED IN INCHES, AND WEIGHTS ARE EXPRESSED IN POUNDS. WHEN NECESSARY, THE METRIC EQUIVALENTS MAY BE COMPUTED ON THE BASIS OF ONE INCH EQUALS 25.4 MM AND ONE POUND EQUALS 0.454 KG.

D. INSTALL EACH HORIZONTAL STRAP TO BE LOCATED AS SHOWN. HORIZONTAL STRAPS MUST BE TENSIONED AND SEALED PRIOR TO THE APPLICATION OF TIEDOWNS AND LOAD STRAPS.

E. THE LOAD STRAPS WILL NOT BE THREADED THROUGH THE STRAP SLOTS OF A PALLET. THE LOAD STRAPS MAY BE THREADED THROUGH THE CLEATS OF THE BOXES OR PRE-POSITIONED ON THE PALLET DECK PRIOR TO PLACING BOXES ON THE PALLET. LOAD STRAPS MUST BE TENSIONED PRIOR TO THE APPLICATION OF TIEDOWNS AND AFTER THE APPLICATION OF HORIZONTAL STRAPS.

F. INSTALL EACH TIEDOWN STRAP TO PASS UNDER THE DECK BOARDS OF THE PALLET AND TO BE LOCATED AS SHOWN. TIEDOWN STRAPS WILL NOT BE APPLIED UNTIL THE LOAD STRAPS AND HORIZONTAL STRAPS HAVE BEEN TENSIONED AND SEALED.

H. THE FOLLOWING AMM DRAWINGS ARE APPLICABLE FOR OUTLOADING AND STORAGE OF THE ITEMS COVERED BY THIS DRAWING.

\[\text{CARLOADING} \quad - \quad - \quad - \quad 19-48-4115-5PA1002\]

\[\text{TRUCKLOADING} \quad - \quad - \quad - \quad 19-48-4117-11PA1003\]

\[\text{STORAGE} \quad - \quad - \quad - \quad 19-48-4118-1-2-3-4-12-22PA1002\]

\[\text{END OPENING INSO} \quad - \quad - \quad - \quad 19-48-4153-15PA1002\]

\[\text{SIDE OPENING INSO} \quad - \quad - \quad - \quad 19-48-4166-15PA1003\]

\[\text{CONTAINER} \quad - \quad - \quad - \quad 19-48-4267-15PA1009\]

I. IF ITEMS COVERED HEREIN ARE UNITIZED PRIOR TO ISSUANCE OF THIS DRAWING, THE BOXES NEED NOT BE UNITIZED SOLELY TO CONFORM TO THIS DRAWING.

K. THE UNITIZATION PROCEDURES DEPICTED HEREIN MAY ALSO BE USED FOR UNITIZING ARMOR TILES WHEN IDENTIFIED BY DIFFERENT NATIONAL STOCK NUMBERS (NSN) THAN WHAT IS SHOWN ON PAGE 2. PROVIDED THE BOX PACK DOES NOT VARY FROM WHAT IS DELINeated HEREIN, THE EXPLOSIVE CLASSIFICATION OF OTHER ITEMS MAY BE DIFFERENT THAN WHAT IS SHOWN.

L. THE STYLE I A PALLETS DEPICTED IN THE DETAIL ON PAGE 3 NEED NOT HAVE CHAMPS OR STRAPS AS SPECIFIED WITHIN MILITARY SPECIFICATION MIL-P-15011 WHEN USED FOR THE UNITIZATION OF ITEMS COVERED BY THIS DRAWING.

M. ALL DUNNAGE, SUCH AS FILLER OR SPACER ASSEMBLIES, USED IN UNIT LOADS SHALL BE PRESERVATIVE TREATED IN ACCORDANCE WITH THE PROCEDURES SPECIFIED IN MIL-B-2427 FOR CLEATED WOODEN BOXES. IF THE DUNNAGE CONSISTS OF MORE THAN ONE COMPONENT, IT MUST BE ASSEMBLED PRIOR TO TREATMENT. THE LETTERS PA DENOTING COPPER-B, Quinolinololate, PD Denoting M-GARD W500 (ZIC Naphthenate) Or PC Denoting M-GARD W510 Or CuNapsol (Copper Naphthenate) MUST BE APPLIED TO THE WOOD DUNNAGE IN LETTERS AT LEAST ONE INCH HIGH.

N. THE WOODEN BOXES ARE MIL-STD-2427 BOXES. FOR DETAILS OF THE NA Box SEE DRAWING 12500204, FOR THE MAA BOX SEE 12561423, FOR THE NSAI BOX SEE 12590209, FOR THE MAI BOX SEE 12590330 AND FOR THE MA1 BOX SEE 12590323.

MATERIAL SPECIFICATIONS

- PALLETS - MIL SPEC MIL-P-15011 - 4-WAY ENTRY, STYLE IA, TYPE I, CLASS 1, PRESERVATIVE TREATED.

- LUMBER - SEE TM 743-200-1 (DUNNAGE LUMBER) AND MIL SPEC MIL L-751.

- NAILS - ASTM F1067: COMMON STEEL NAIL (NLCS OR NLCS). ALT: UNDERLAYMENT NAIL (NUL), PALLETTAIL (NUL), OR COOLER NAIL (NCL) OF SAME SIZE.

- PLYWOOD - COMMERCIAL ITEM DESCRIPTION A-A-55057, TYPE A, CONSTRUCTION AND INDUSTRIAL PLYWOOD, INTERIOR WITH EXTERIOR GLUE, GRADE C-0. IF SPECIFIED GRADE IS NOT AVAILABLE, A BETTER INTERIOR OR AN EXTERIOR GRADE MAY BE SUBSTITUTE.

- STRAPPING, STEEL - - ASTM D3953: FLAT STRAPPING, TYPE I, HEAVY DUTY, FINISH B (GRADE 2), SIZE 3/4" X 0.35" OR 0.31".

- SEAL, STRAP - - ASTM D3953: CLASS M, FINISH B (GRADE 2), DOUBLE NOTCH TYPE, STYLE I, II, OR IV.

- STAPLE - - ASTM F1667: 15/16" OR 1" CROWN WIDTH X 3/4" LEG LENGTH FOR 3/4" STRAPPING, TYPE IV, STYLE 3.

BIL OF MATERIAL

<table>
<thead>
<tr>
<th>LUMBER</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" x 4"</td>
<td>10.83</td>
<td>3.81</td>
</tr>
<tr>
<td>2" x 4"</td>
<td>62.80</td>
<td>41.73</td>
</tr>
<tr>
<td>2" x 8"</td>
<td>8.35</td>
<td>8.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAILS</th>
<th>NO. RED</th>
<th>POUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4d (1-1/2")</td>
<td>34</td>
<td>0.12</td>
</tr>
<tr>
<td>6d (2")</td>
<td>10</td>
<td>0.06</td>
</tr>
<tr>
<td>10d (2")</td>
<td>142</td>
<td>2.18</td>
</tr>
</tbody>
</table>

PALLETS, 35" X 45-1/2"	1 RED	95 LBS
STEEL STRAPPING, 3/4"	182.25 RED	16.27 LBS
SEAL FOR 3/4" STRAPPING	12 RED	7 LBS
PLYWOOD, 1/4"	12500204	8.95 LBS
PLYWOOD, 3/8"	12500209	2.50 LBS
PLYWOOD, 1/2"	12590209	4.84 LBS
PLYWOOD, 3/4"	12590330	4.27 LBS
FILLER ASSEMBLY A

VERTICAL PIECE, 2" x 6" x 13-1/4" (4 REQD). NAIL TO BOTTOM LATERAL PIECE W/2-10d NAILS.

TOP LATERAL PIECE, 2" x 6" x 23-5/8" (2 REQD). NAIL TO VERTICAL PIECES W/2-10d NAILS AT EACH END AND TO SIDE SUPPORT PIECE W/2-10d NAILS.

CENTER SUPPORT PIECE, 2" x 4" x 23-5/8" (1 REQD).

38-5/8"

14-3/4"

TOP LONGITUDINAL PIECE, 2" x 4" x 31-5/8" (2 REQD). NAIL TO VERTICAL PIECES W/1-10d NAIL AT EACH JOINT, NAIL TO TOP LATERAL PIECE W/1-10d NAIL AT EACH JOINT AND TO CENTER SUPPORT PIECE W/2-10d NAILS.

FILLER PIECE, 2" x 4" x 11-1/4" (4 REQD). NAIL TO VERTICAL PIECES W/2-10d NAILS AND TO TOP LATERAL PIECE W/1-10d NAIL.

BOTTOM LONGITUDINAL PIECE, 2" x 4" x 38-5/8" (2 REQD). NAIL TO VERTICAL PIECES W/2-10d NAILS AT EACH JOINT.

FILLER ASSEMBLY B

TIE PIECE, 1" x 4" x BOX WIDTH (2 REQD). NAIL TO LONGITUDINAL PIECES W/2-5d NAILS AT EACH END AND TO LATERAL PIECE W/1-5d NAIL.

BOX WIDTH = 8-1/2"

BOX LENGTH = 20-1/4"

FILLER PIECE, 1" x 4" x 14-3/4" (1 REQD). NAIL TO THE LATERAL PIECES W/2-10d NAILS AT EACH END.

VERTICAL PIECE, 2" x 4" x BOX HEIGHT MINUS 3/4" (4 REQD).

BOX HEIGHT = 14-3/4"

LONGITUDINAL PIECE, 2" x 4" x BOX LENGTH (4 REQD). NAIL TO VERTICAL PIECES W/2-10d NAILS AT EACH END.

LATERAL PIECE, 2" x 4" x BOX WIDTH MINUS 3" (4 REQD). NAIL TO VERTICAL PIECES W/2-10d NAILS AT EACH END.
SPACER ASSEMBLY A

VERTICAL PIECE, 2" X 4" X 14-3/4" (3 REQD). NAIL TO VERTICAL PIECES W/2-10d NAILS AT EACH LOCATION.

HORIZONTAL PIECE, 2" X 4" X 23-5/8" (3 REQD). NAIL TO VERTICAL PIECES W/2-10d NAILS AT EACH JOINT.

SPACER ASSEMBLY B

VERTICAL PIECE, 2" X 4" X 14-3/4" (3 REQD). NAIL TO HORIZONTAL PIECES W/2-10d NAILS AT EACH JOINT.

HORIZONTAL PIECE, 2" X 4" X 18-3/8" (3 REQD).

SPACER ASSEMBLY C

VERTICAL PIECE, 2" X 4" X 14-3/4" (3 REQD). NAIL TO HORIZONTAL PIECES W/2-10d NAILS AT EACH JOINT.

HORIZONTAL PIECE, 2" X 4" X 18-7/8" (3 REQD).
PLYWOOD SPACER

PLYWOOD, 48-1/2" X 38-1/2" X 1/4"
(1 REO).

LATERAL PIECE, 1" X 4" X 20"
(1 REO). NAIL TO PLYWOOD
W/5-4d NAILS AND CLINCH.

4-1/2"

LONGITUDINAL PIECE, 1" X 4" X 48-1/2"
(2 REO). NAIL TO PLYWOOD
W/10-4d NAILS AND CLINCH.

5-3/4"