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Atmospheric propagation of partially coherent radiation* 
J. Carl Leader 

McDonnell Douglas Research Laboratories, McDonnell Douglas Corporation, St. Louis, Missouri 63166 
(Received 17 August 1977) 

An extended, Rayleigh-Sommerfeld integral method is used to derive expressions for the mutual co- 
herence function and radiation intensity derived from a planar, partially coherent source propagating 
through the atmosphere. The derived results reduce to previous results for (i) coherent radiation propa- 
gation in the atmosphere and (ii) the relations relating the far-field intensity angular distribution and 
the source coherence for a partially coherent source in vacuo. ' A mathematical description of the pre- 
dicted results in terms of the vacuum distribution and scattering functions (related to the Fourier-trans- 
formed two-source mutual coherence function) is permitted by this development. Analytical results are 
calculated for a homogeneous atmosphere and a source coherence that simulates a laser-illuminated 
rough surface. The effective far-field range is determined by the source size, wavelength, and source co- 
herence length. The phase of the calculated mutual coherence function is determined by the field-point 
separation for off-axial propagation directions. Numerical results for the amplitude and phase coher- 
ence lengths are calculated and illustrated as a function of the source size, source coherence length, prop- 
agation angle, range, and refractive-index structure constant. 

INTRODUCTION proximations of the Bethe-Saltpeter equation,4 and the Hu- 
ygens-Fresnel principle.5   Beran6 has provided an excellent 

Numerous investigators have studied the coherence of        account of the consensus of these various approaches:   All of 
radiation propagating in the turbulent atmosphere using a the aforementioned studies, however, have been principally 
variety  of approaches  including  difference  equations,1 concerned with the propagation of initially coherent radiation 
transport methods,2 the Markov approximation,3 ladder ap- because of its relevance to laserpropagation phenomena.   Lee 
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et al.7 have examined the propagation of perfectly incoherent 
radiation in a turbulent medium, using the extended Hu- 
ygens-Fresnel principle, to determine atmospheric effects on 
speckle phenomena. None of the previous studies have 
treated in detail the problem of atmospheric propagation of 
radiation derived from a partially (spatially) coherent source. 
The purpose of this paper is to examine the general case of 
partially coherent radiation propagation in a random medi- 
um. 

The approach used in this study is essentially an extended 
Rayleigh-Sommerfeld integral method. This technique is 
analagous to the extended Huygens-Fresnel method8; how- 
ever, it facilitates the analysis of the behavior of radiation 
coherence as a function of the propagation angle. Techniques 
previously employed to study coherent radiation propagation 
use coordinates appropriate for (approximate) rectilinear 
propagation. However, partially coherent radiation propa- 
gates throughout an angular spectrum.9 Therefore, polar 
coordinates are more appropriate than Cartesian coordinates 
to study partially coherent radiation propagation. Impor- 
tantly, the derived results relax to the Huygens-Fresnel result 
for the special case of a coherent source, demonstrating 
equivalence with the previous coherent source analyses.10 

Significantly, they also relax to the far-field coherence-angular 
distribution relations9,11 characterizing a partially coherent 
source for the special case of vacuum propagation. A simple 
physical picture of the atmospheric effects in terms of scat- 
tering functions is an additional benefit provided by this ap- 
proach. 

To illustrate the effects of range, propagation angle, source 
size and coherence, and strength of turbulence on the spatial 
coherence (second moment) predicted by this analysis, sim- 
plifying approximations are made which facilitate closed-form 
solutions. The phase of the predicted mutual coherence 
function (MCF) changes with field-point separation at off- 
normal propagation angles. This effect has not been pre- 
viously predicted because of assumed axial propagation (in- 
cluding the speckle analysis of Lee et al.7). Numerical results 
for the MCF amplitude and phase coherence lengths are cal- 
culated and depicted. 

THEORETICAL FOUNDATION 

A monochromatic (spatially) partially coherent source is 
assumed that occupies a portion of the x-y plane (Fig 1). 
Physical embodiments of such a source are laser-illuminated 
diffusers or rough surfaces. Restricting the analysis to the 
scalar problem12 for simplicity and ease of comparison with 
previous work and denoting the vectors r = (x, y, 0) and P = 
(x, y, z), and the wave number k, the scalar field at P (resulting 
from the source propagating through a turbulent medium) is 
given by 

Xexp[f*|r-P| + MP, r)],    (1) 

where \p (P, r) represents the phase and log-amplitude vari- 
ation from the vacuum solution for a spherical wave propa- 
gating from r to P. Equation (1) follows from an extension 
of the "self-consistent" Rayleigh-Sommerfeld solution13'14 

Field points 

Source plane 

FIG. 1. Geometry relating the source S the source-points r, r', r+, the field 
points P, P', P+, the unit field point direction vectors s, s',s+, and the unit 
vector ifr = (r+-P+)/|r+-P+|. 

for the scalar field at P resulting from the aperture field U(r). 
The extension of this solution to turbulent medium propa- 
gation consists essentially of the additional complex phase 
term ^(P, r) following identical arguments presented in Refs. 
8 and 15. Assuming that the source-field distribution is rel- 
atively large with respect to a wavelength and restricting the 
analysis to propagation distances, R= (x2 + y2 + z2)1/2, that 
are much greater than a typical source dimension, Eq. (1) can 
be written 

[/tvrb^-g-E^    C   r"d2rl/(r)ei*|r-P|+#(r>) 
2irR  J J—» 

(2) 
to an excellent approximation, where 6 is the angle subtended 
between P and the z axis. Denoting the average over the 
ensemble of all source and turbulent medium configurations 
by angle brackets ( ), the field-point MCF can be written 

rturb(pp/) = ([/turb(p)(/*turb(p')) 

cosöcosö'fc2 c C°   C   C°  7o    ,•> ,„ / 

X F(r, r', P, P') exp[£feL(r, r', P, P')l, (3) 

where 

Ts(r, r')= (U(r)U*(r')), (4) 

F(r,r',P,P') = <expWr,P) + ^*(r',P')]>, (5) 

L(r,r',P,P') = |r-P|-|r'-P'|, (6) 

and the order of integration and ensemble averaging has been 
interchanged. Note that the averages of the source-field and 
medium propagation variables are separable because these 
are presumably independent random processes. Denoting 
unit vectors s and s' in the respective directions P and P', the 
following sum and difference coordinates are defined: 
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r+ = (r + r')/2 and   r~ = r - r', (7) 

P+ = (P + P')/2 and   P- = P - P', (8) 

s+=(s + s')/2 and  .§- = §-§', (9) 

R+=(R + R')/2 and   R~ = R - R', (10) 

0+ = (0 + l9')/2    and    5 = 0- 0'. (11) 

Appendix A demonstrates that the phase factor L(r, r', P, P') 
is approximately given by 

L(r, r', P, P') s (r • r+/fi+ - r~ • s+ - r+-s~ + R-).  (12) 

The ensemble-averaged medium propagation factor F(r, r', 
P, P') is recognized as the two(point)-source spherical-wave 
mutual coherence function. Assuming isoplanicity, the 
variable dependence of the two-source, spherical wave MCF 
is 

F(r,r',P,P')=F(r-,P-,R+). (13) 

The field point MCF therefore can be written 

&2COS20+                PikR~ TUurb(p+  p-\■      K    COb " 1  
(2xfi+)2 [1 - (R-/2R+)2] 

x S SS f~ d2r+d2r~ Fs(r+' r~)f(r~> p";^+) 
X exp[jfe(r- • r+/R+ - r--s+ - r+ ■§-)),    (14) 

assuming small field-point-difference angles 5. Defining the 
function 

GO-, P-) 

= 1/A   C j"° rf2r+rs(r+, r-)eiC>r+Ur-/R-s-)   (15) 

as the generalized, two-field-point, source coherence (the 
rationale for this appelation is provided below), where 

G(l P-): 

= Ssd2r+ (16) 

is the source area; the field-point MCF is 

rturb(p+   p-) =     "» eikR~ ™2°+ 

(27r)2[l-(ß-/2Ä+)2] 

X S f-   d2(-kr~^e~i{kr~H+G(-r~- P~)^(r-, P-),    (17) 
where 

Os = A(Ä+)~2 (18) 

is the solid angle subtended by the source at range R+. It is 
noted that for vacuum propagation 

F(r-,P-)|vacuum = l (19) 

so that the field-point MCF reduces to 

rvac(p+   p-) =      As e'-**-COS20+ 

(21r)2[l-(Ä-/2R+)]2 

X SS-   d2^r_)e_'(*r")'s"+G;(r_. p~)    (20) 
for vacuum propagation. Spatial source-plane Fourier 
transforms of the generalized two-field-point source coherence 
and the two-source spherical-wave MCF are now defined, 

ss: d2(kr-)e-^kr-1-iG(r-, P~),    (21) 

and 

Hl P-) - §  f~ d2(Ar-)c-''<*'-)^(r- P").    (22) 

Because the vector f corresponds to a unit vector direction, 
the Fourier-transformed generalized two-field-point source 
coherence can be expressed 

(2ir)2 [1 - {R-/2R+)2] 
G«,P-)=- 

os    (i - £ - & 
Xe-'*R~rvac(ß+£, P-)    (23) 

using Eq. (20) for the vacuum MCF. Thus the turbulent 
medium MCF can be expressed in terms of the vacuum MCF 
as 

cos20+ pturb(p+   p-\ = 

(2TT)2 

9- r
vac(i?j p-) 

(i - il - &) 
F(s+-£, P~)    (24) 

using Eqs. (17), (22), (23) and the convolution theorem of 
Fourier transformation. Note that for vacuum propaga- 
tion 

Mp-)|vacuum = (27r)25(|), (25) 

using Eq. (19), so that 

rturb(P+,P-) | vacuum = COS20+ 

npvac(Dt   p-\ 

dH M   \,      ' 5(s+ -o = rv™(P+, P-), (26). 

providing a check on the self-consistency of Eq. (24). 

Partial validation of the above equations is obtained by 
examining relevant limiting cases. Clearly, as the source 
becomes perfectly coherent, the radiation propagates pri- 
marily along the z axis.9 Thus, field-point vectors (p and p') 
that are transverse to the z axis can be defined to parameterize 
the field point separations. The unit direction vectors s and 
s' are then given by 

s s p/z + fi 

and , (27) 

§' s p'/2' + k 

where ft, is a unit vector along the z axis. Substitution of Eq. 
(27) in Eq. (14) then yields16 

rturb(p,p')s/22/(2ir2)2 

JTJI> 

where 

+d2r-f/(r+ + r-/2) 

X U*(r+ - r-/2)F(r-, p~) 
X exp[s7e(r+ - p+) ■ (r~ - p-)],    (28) 

p+ = (p + p')/2,    p- = p-p', 

and the coherent form for the source MCF17 has been used 
together with the fact that cos0+ a 1 and the assumption that 
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z = z'. Equation (28) is recognized as the turbulent medium 
MCF predicted by the extended Huygens-Fresnel principle 
for a coherent source.5 

Examining the far-field propagation of the radiation in- 
tensity in vacua, Eq. (14) reduces to 

k2 cos20+ 
Jvac(P+) I far-field = T^h(P+, 0) | vacuum.far-field =   ,_    D + ,9 

(Z7T/V     )~ 

X X S" J    r"d2r"td2r_r-(r+. r_)e -ikt (29) 

Assuming that the source is statistically homogeneous (in 
the same sense described in Ref. 9), Eq. (29) reduces to 

k2 ros20+ 
</vac(P+) I far-field = 7—JT^- A f, (All), (30) 

where 

f,(*$i) = XX" d2r_e~'*r~'s"+rs(r~)> (31) 

the Fourier transform of the source mutual coherence, where 
s± is the projection of s on the x-y plane. Equation (30) is 
equivalent to the relationship derived by Wolf and Carter9 

relating the far-field intensity angular distribution and the 
source coherence. Furthermore, an equivalent statement of 
the far-field van-Cittert-Zernike theorem can be derived using 
Eqs. (14) and (30), employing the same procedures described 
in the reference cited in Ref. 12. 

Returning to the problem of turbulent medium propaga- 
tion, it is noted that the radiation intensity in the turbulent 
medium is given by [Eq. (24)], 

ros20+ 

jturb(p+) = rt">-b(P+, 0) 

XX 
(2TT)

2 

,   J^(Bi) 
M(l+-|),    (32) 

where 

JfiT(t) = X f" d2{kr-)e-«k*->-iF{r- 0)        (33) 

is the Fourier-transformed mutual coherence function for a 
spherical wave propagating in the turbulent medium. 
Equation (32) lends itself to a simple physical interpretation 
since it is exactly the same form that results from postulating 
a scattering function that describes the angular deviation of 
the vacuum radiant intensity resulting from propagation in 
the turbulent medium. The total intensity in any given di- 
rection is then the convolution of the vacuum intensity dis- 
tribution with the postulated scattering function. Clearly, 
in this case, the scattering function is given by the Fourier- 
transformed, spherical-wave MCF divided by the factor (1 — 
£x — £>)• Analogously, Eq. (24) expresses the turbulent me- 
dium MCF in terms of the vacuum MCF angular distribution 
(for a fixed field-point separation vector P~) convolved with 
a pseudo-scattering function that describes the average vector 
angular deviation of the vacuum MCF (again with a fixed 
field-point separation vector P~) resulting from propagation 
in the turbulent medium. In this case the pseudo-scattering 
function is given by the Fourier-transformed, two-source, 
spherical wave MCF divided by the factor (1 — £2 — £2). To 
complete the physical interpretation of the above equations, 

it is noted that the far-field expression for G(r , P ) [Eq. (15)] 
with zero field-point separation is 

G(r   , 0) I far-field ixx: d2r+r,(r+ r" (34) 

which is the spatial average of the source mutual coherence 
function. Thus, the general function G(r~, P~) is the gen- 
eralization of the average source mutual coherence that results 
from considering separate field points and near-field ranges. 
Hence the appellation of the generalized, two-field-point 
source coherence for the function G (r_, P~) results. Equation 
(17) provides a mathematical statement of the propagation 
of the (generalized) source coherence in a turbulent medium. 
The Fourier-transform relations that have been noted permit 
an interpretation of this expression in terms of scattering 
functions. 

CALCULATIONS 

To perform specific calculations of the MCF obtained from 
a partially coherent source propagating through the turbulant 
atmosphere, it is necessary to specify the generalized, two- 
source spherical-wave MCF, F(r~, P~), or equivalently, the 
pseudo-scattering function P.(%, P~). If the statistics of the 
complex phase \p are Gaussian, then the two-source spheri- 
cal-wave MCF is given by18 

where 

F(r~, P-) = exp f- i'D^(r-, P-)l 

DAT-, P-) = DAr-, P-) + Ds(r-, P"), 

(35) 

(36) 

the sum of the log-amplitude (Dx) and phase (Ds), two-source 
spherical-wave structure functions. Assuming a Kolmogorov 
turbulence spectrum and weak turbulence the complex phase, 
two-source, spherical-wave structure function is given 
by19.20 

Ztyr-P) = 2.91* 2R+   f1dtC2(A+t)|r/>(P-) 
Jo 

+ (l-t)P(r-)|6/s,    (37) 

where C2(R) is the refractive index structure constant, radial 
changes in the complex phase \p are ignored (these are small 
for small R~), and the operator P(x) projects the vector x onto 
a plane that is transverse to the P+ direction. Equation (37) 
assumes that the absolute values of the projected vector dif- 
ferences |P(r~)| and |P(P~)| are much less than a Fresnel 
zone length, (2nR +/k)l'2. Although the integral of Eq. (37) 
cannot be integrated exactly, approximate expansions can be 
obtained and used with Eq. (35) and the preceding develop- 
ment to perform numerical calculations of the MCF of a 
partially coherent source. However, these procedures are 
complicated and permit little physical understanding of the 
propagation characteristics as a function of the variables of 
interest. Analytical calculations of the MCF are permitted 
by approximating the five-thirds power of the projected vector 
sum in Eq. (37) by the square. Normalizing the resultant 
two-source spherical-wave MCF to the correct five-thirds law 
spherical-wave coherence length at the e_1 point yields 
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F(r- P-) s exp |- 3po2   C dt\fP(P- 

+ (1 -t)P(r-)|2] (38) 

so that 

where 

M{p) = F[0, p = |P(P-)|]'a e-W"o)2
; (39) 

Po=[%X1.455fe2Ä+C2]-3/5) (40) 

assuming homogeneous turbulence. Appendix B provides 
a calculation of the MCF of a uniform coherent source using 
the approximations of Eqs. (38)-(40) and the preceding de- 
velopment. It is noteworthy that the plane-wave coherence 
length predicted by this approximation (0.58po) is in reason- 
able agreement with the five-thirds law prediction (0.56pn). 
Calculations are also provided in Appendix B for the Fourier 
transform of the uniform source mutual coherence in terms 
of a dimensionless spatial frequency spectrum V and a di- 
mensionless spatial frequency x- The predicted spectrum of 
the mutual coherence, resulting from the quadratic approxi- 
mation, Eqs. (38)-(40), is plotted in Fig. 2 along with experi- 
mental data of Artem'ev and Gurvich21 and three different 
calculations of a modified Kolmogorov spectrum21 corre- 
sponding to three different values of the inner scale of tur- 
bulence. Significantly, the approximate quadratic spectrum 
is within 1 dB of the experimental data over the range of 
frequencies plotted and is closer to the measured data than 
two of the modified Kolmogorov spectra for the highest 
measured spatial frequencies. Because the quadratic ap- 
proximation is in reasonable agreement with available MCF 
spectral data, it is employed for subsequent calculations to 
obtain closed-form analytical expressions for the MCF of ra- 
diation propagating from partially coherent sources. It is 
expected that although detailed predicted behavior may de- 
viate somewhat from that obtained from the five-thirds law 
MCF, the predicted trends with respect to the various vari- 
ables of interest should be the same as those obtained from 

> 
o 

-0.5 ■ 

-1.0 - 
*ANL 

-1.5- 
Quadratic approximation—v 

*N8^ 

Modified Kolmogorov~~>> v/^l 
-2.0 - 

'•} K 
7=1 \ \oi\o\ 

-0.9 -0.6 -0.3 • 0 

log-ioX" 

0.3 0.6 

FIG. 2. Experimental spatial spectra of the coherence function obtained 
by Artem'ev and Gurvich21 (open circles) compared with predictions derived 
from a modified Kolmogorov turbulence spectrum (solid lines) and the 
quadratic approximation (heavy solid line) discussed in Appendix B. 

the more accurate description of the atmospheric, spherical- 
wave structure function. 

The form of the source mutual coherence function that will 
be used for the subsequent investigation is 

r,(r+ r-) =7slrexp[-(|r-|2/pe
2+ |r+|2/L2)].     (41) 

Equation (41) is particularly suitable for this investigation 
because when 

Pe = 2L, 

r.(r, r') = /,x exp[-(2L)-2(|r|2 + |r'|2)], (42) 

which is the form of the source coherence for a coherent 
Gaussian beam. However, when pe < 2L, the source coher- 
ence is similar to that obtained from specular glints from a 

' laser-illuminated rough surface with an equivalent rms surface 
slope given by 

«eff = A/TTPC. (43) 

Thus variation of the parameter pe simulates laser reflectance 
(TEMoo) from a surface with a variable surface roughness. 
The similarity of the source MCF with that of the rough sur- 
face is demonstrated by noting that the far-field vacuum in- 
tensity distribution associated with the assumed source co- 
herence is [Eq. (29)] 

JmC(8) I far-field = (/A/4) COS2fl+(fcpe)
2 

X expHfepo/2)2 sin20]    (44) 

using 

A=   C  f ~d2r+e-|r+|2/L=7rL2. (45) 

Recalling the Fourier-transform relationship between the 
far-field intensity angular distribution and the source co- 
herence [Eq. (30) and Refs. 9 and 11] and noting that the an- 
gular distribution of the radiation intensity scattered by 
specular glints of a rough surface is22 

J(P+)\specular glints ~ (sec4«/«2) exp(-tanW),    (46) 

where s is the rms surface slope, the stated equivalence [Eq. 
(43)] is established in the small-angle approximation. 

Before proceeding with calculations of the turbulent me- 
dium propagation of radiation derived from the assumed 
partially coherent source [Eq. (41)], it is instructive to examine 
vacuum propagation of the mutual coherence. The vacuum 
MCF predicted by Eq. (20) for the source MCF of Eq. (41) 
is 

rvac(p+   P-) =
JVaC(0+) I far-field      ikR-       /Äff\ 

y      V >     [1 - (Ä-/2A+)2] 6       ÄW 

X exp [- (^j\ (j^j (£2 + CoS20+52)l 

xe,P (!')%«.[: -„(£)]] 

X exp [ikRtfX (|f) (R+)-Hßst ~ &+ cos0+)l,    (47) 

where 

ß = o) sinö+, 

sj = sinö+ sin$, 

it = sin0+ cos<f>, 

(48) 

(49a) 

(49b) 
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mR[{/R
+) = [l + (ßff/fi

+)2]-1, (so) 
Rn = kLpe/2, (51) 

w is the azimuthal difference angle between the two field-point 
coordinates, and </> is the azimuthal angle subtended between 
the y axis and the projection of the s+ vector on the x-y plane. 
Note that the radiation intensity predicted by Eq. (47) (i.e., 
<5 = ß = R~ = 0) approaches the predicted far-field intensity 
when R+ » R({. Therefore Äff is interpreted as the equivalent 
far-field range for a partially coherent source with a Gaussian 
coherence function. This interpretation is supported by the 
following observations. When the source coherence length 
is equal to the source dimension (2L), the equivalent far-field 
range is (fiff = 2TTL

2
/X), within a factor of 1.27 of the far-field 

range customarily predicted for a uniformly illuminated ap- 
erture [2(2L)2A]. However, when the coherence length of the ' 
source is on the order of the wavelength, the equivalent far- 
field range decreases to the order of the source dimension 
(■KL). It is well known that valid measurements of the far- 
field angular distributions of incoherent sources can be per- 
formed at close range. The equivalent far-field range pa- 
rameter Äff critically affects the range dependence of the 
vacuum MCF and the turbulent medium MCF calculated 
below. As the far-field range is exceeded, the MCF predicted 
by Eq. (47) approaches the prediction of the far-field van- 
Cittert-Zernike theorem for the assumed source irradiance 

distribution. Because the phase difference of the field points 
[predicted by Eq. (47)] increases with increasing source co- 
herence length, the phase portion of the predicted MCF re- 
sults from deterministic beam-spreading effects. 

Appendix C provides a derivation of the generalized two- 
source spherical-wave mutual coherence function F(r~, P~, 
R+) [using the approximations of Eqs. (38)-(40)] and the 
pseudo-scattering function F(\, P-; R+). The derived re- 
sults are 

F(r-, P-) = exp |- (R+/Po)2[(b + ß)2 

+ (c - 8)2 + cd - bß]\,    (52) 

where 

b = x-/R+,    c=y-cosß+/R+, (53) 

F(l P- R+) = Tr(kp0)2 sec<?+ exp-[UR+/ßo)Hß2 + <52)] 

X exp {- V4(kPong + % sec20]| 

X exp[i(kR+/2)(£xß - £y5 sec(?)].    (54) 

Employing Eq. (52) with Eqs. (17) and (15) [or equivalently 
Eq. (54) with Eqs. (24) and (47)] yields the following MCF 
resulting from the assumed partially coherent source [Eq. (41)] 
propagating through a (homogeneous) turbulent atmo- 
sphere: 

rturb(p+) p-) = Jmc(ß+) | far-field      e' kR- 

H-*(o,['-;®v]*e),«-'i) [1 - (Ä-/2Ä+)2] (QQ')1/2 

Xexp(-52l(—^Tl-V^cos^+Q'-il-f- (—f)2cos20+[l-(Q-l)Q'-i]l) 

X exp {(^-f)2 [sin20+- (SJ)2Q-i - (S>
+)2Q'-i]j 

—*(«[(f?)!+i©>—4(f?)2+50l^ (55) 

where 

and 

Q = [1 + (RKIR+)2 + (Pe/Po)2] (56a) 

Q' = [1 + (R({/R+)2 + (pe/po)2 cos20+]. (56b) 

It can be verified by inspection that Eq. (55) reduces to the 
vacuum result as the atmospheric turbulence goes to zero (i.e., 
Po —* °° )• It is noteworthy that the ratio of the source coher- 
ence length to the atmospheric coherence length (pr/po) is a 

critical parameter in determining the atmospheric effects of 
partially coherent radiation propagation. This observation 
is consistent with the analysis of Dunphy and Kerr,23 who 
noted the critical nature of the ratio (L/po) for the propagation 
of coherent radiation. To facilitate analyses of the effects of 
various parameters on the predicted spatial coherence, it is 
convenient to normalize Eq. (55) to the field-point intensities 
(i.e., construct the degree of coherence function), choose an 
azimuthal plane of scattering (0 = 0), and ignore the relatively 
uninteresting azimuthal dependence (i.e., choose ß = 0). The 
degree of coherence is then 

vUirb, (P+, P-) = 
rturb(P; p') pturb(p+   p-) 

[rturb(P) p)rturb(p')P')]l/2a    rturb(P+, 0) 

[1 - (R-/2R+)2]     F\      [Vpo/ L \pj J 

+ (—fV cos2Ö+[l - (Q - DQ'-1])) exp l-i(kR+)5 sinfl cosö \ ßf)* + - (^)
2
]Q'" (57) 

for small field-point separation angles 6. 
A further simplification results from defining the degree 

of coherence as 

7(0+, R+; &,R-) = T(0+, R+, 8) eu^+-R+^ 

where the well-known radial dependence of the degree of co- 
herence has been separated from the more interesting am- 
plitude and phase dependence. Further, defining ä magni- 
tude correlation angle 8e via the equation 

X eikR-[l - (R-/2R+)2]- (58) T(0+, R+, 5e) = e-lT(0+, R+, 0) = e~l (59) 
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and a (ir/4) phase correlation angle b^/i via a similar relation, 
i.e., 

a(0+, Ä+)«*/4 = x/4, (60) 

the respective magnitude and phase correlation angles follow 
from Eq. (57), i.e., 

^.(©'['-iOW']- 
+ (—) 2 cos20+[l - (Q - DQ'-1] 

\pe/ 

-1/2 
(61) 

and 

Equations (61) and (62) define the e-1 and TT/4 points, re- 
spectively, of the amplitude and phase angular field correla- 
tion. Corresponding coherence lengths are defined by the 
equations 

and 

Ae = &„R+ 

K/4 = 5^/4R
+. 

(63) 

(64) 

Several observations can be made from inspection of the 
above equations. First, the phase coherence length becomes 
infinite for the axial and grazing propagation directions (i.e., 
the MCF phase remains constant regardless of the field-point 
separation). This behavior is consistent with all previous 
studies of coherent radiation propagation since phase effects 
have not been previously noted. In general, however, a fi- 
nite-phase correlation length is predicted from this analysis 
because of beam spreading effects. Although the predicted 
phase coherence length (at nonaxial directions) increases as 
the range greatly exceeds the far-field range and the atmo- 
spheric coherence length greatly exceeds the source coherence 
length, these are generally incompatible simultaneous re- 
quirements for atmospheric propagation unless the source is 
completely incoherent (i.e., <5 correlated). Because perfectly 
incoherent sources are prohibited,24 finite-phase coherence 
lengths are predicted at nonaxial directions in the atmosphere. 
The predicted angular dependence of the amplitude coherence 
length is also worthy of note. Clearly, as grazing angle 
propagation (90°) is approached, the effects on the source 
coherence length resulting from the finite coherence length 
are eliminated because of the cos20+ factor multiplying these 
terms. The degree of coherence approaches that predicted 
for a spherical wave [Eq. (39)] in the polar plane, i.e., y ~ 
exp[-(ß+5)2/p2], as the grazing geometry is approached. The 
physical reason for this phenomenon is that the projected 
source area approaches a line source as the grazing angle is 
approached and therefore becomes perfectly coherent in the 
transverse direction (i.e., the polar plane). Thus, a spherical 
wave MCF functional form is expected in the polar plane since 
the source is effectively a point source in this dimension. 

To further explore the variable dependence of the MCF 
predicted by the above analysis, three-dimensional, computed, 
graphical results are employed. Calculated values of the 
amplitude and phase coherence lengths are plotted as the 
ordinate variation, while various combinations of the propa- 

240x10' 
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FIG. 3.    Calculated values of the amplitude (a) and phase (b) coherence 
lengths as functions of the propagation angle (0+) and range (R+).   Fixed 
parameters are X ; 

10_4r 
10~5m, Cd„= 10- , L = 10 1 m, and pe 

gation parameters are used as independent variables along the 
x and y axes. Representative optical values of the fixed in- 
dependent variables have been chosen for the subsequent il- 
lustrations. 

Figure 3 illustrates the range and angle dependence of the 
amplitude and phase coherence lengths [Eqs. (63) and (64)] 
for a relatively incoherent source (pe = 10X) and moderate 
turbulence (C2 = 10~15 m -2», X = 1CT5 m). The aforemen- 
tioned dependence of the apparent source coherence on the 
propagation direction is clearly illustrated by the amplitude 
coherence length dependence on the range and direction of 
propagation [Fig. 3(a)]. It is apparent that the amplitude 
coherence length is dominated by the finite source coherence 
(i.e., speckle dominated) for axial propagation [note that Ae 

is approximately proportional to (R+)2], whereas atmospheric 
effects begin to interact and dominate as the grazing propa- 
gation angle is approached [thus Ae ~ p0 ~ (fi+)~3/5]. The 
phase coherence length is plotted only from 5°-85° because 
it goes to infinity at the endpoints of the angular distribution 
(0° and 90°). The angular dependence of the phase coherence 
length is relatively unaffected by the range for the chosen fixed 
independent variables. 

To illustrate the effects of the finite source coherence length 
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FIG. 4. Calculated values of the amplitude (a) and phase (b) coherence 
lengths as functions of the propagation angle (6+) and source coherence 
length (pe). Fixed parameters are X = 10~5 m, C2„ = 10~15 rrT2'3, L = 
10~1 m, and fi+ = 103 m. 

on the predicted field coherence, Fig. 4 shows calculated values 
of the amplitude and phase coherence as functions of the 
propagation angle and source coherence (for relatively inco- 
herent sources), while Fig. 5 depicts the same quantities as 
functions of the strength-of-turbulence (Cjj) and source co- 
herence for nearly coherent sources). Two different illus- 
trations are employed because the vacuum intensity angular 
distribution [Eq. (44)] becomes strongly peaked in the axial 
direction for very coherent sources and hence angular plots 
of the predicted coherence lengths become meaningless for 
relatively coherent sources. It is evident from Fig. 4 that the 
angular distribution of the amplitude coherence length [Fig. 
4(a)] is relatively unaffected by the source coherence length 
(for moderate turbulence and the range of coherence lengths 
plotted) although the phase coherence length decreases in 
proportion to the inverse square of the source coherence 
length. Because of the nearly rectilinear propagation char- 
acteristics of coherent sources Fig. 5 shows the phase and 
amplitude coherence lengths for nearly coherent sources at 
propagation angle of 10~3 rad and 0°, respectively, (recall that 
Ax/4 -* °° as 6+ -*• 0°) as a function of the refractive-index 
structure constant and the source coherence length.   The 

-1.44 
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log10 [C;j(m-2/3)] 

0.01 

-16.67-15.33-14.00   -12.67 
pe(m) 

FIG. 5. Calculated values of the amplitude (a) and phase (b) coherence 
lengths as functions of the refractive-index structure constant (C2„) and 
source coherence length (pe). Fixed parameters are X = 10~5 m, L = 10~1 

m, R+ = 103 m, and Ö+ = 0° [Fig. 5(a)] and 8+ = 10~3 rad [Fig. 5(b)]. 

decrease of the predicted phase coherence length with in- 
creasing source coherence is again illustrated in Fig. 5(b), and 
it is additionally noted that the strength-of-turbulence affects 
this functional dependence appreciably only for the highest 
refractive-index structure constants (where the atmospheric 
coherence length becomes comparable to the source coherence 
length). Significantly, the amplitude coherence length in- 
creases rapidly for the high range of source coherence lengths 
plotted in Fig. 5(a), whereas the turbulence strength influ- 
ences this functional dependence at the high values of the 
refractive-index structure constant. 

A final illustration of the functional dependence of the field 
coherence predicted by the above analysis is provided by the 
Fig. 6 plots of the amplitude and phase coherence lengths as 
functions of the source size (L) and refractive-index structure 
constant. Both phase and amplitude coherence lengths dis- 
play a similar functional form with respect to the variables 
plotted in Fig. 6. Clearly, the amplitude coherence lengths 
become speckle dominated for weak turbulence (Cjj < 10-6) 
as evidenced by the constant, asymptotic relationship with 
respect to the strength-of-turbulence variable (Cjj).   Simi- 

I 
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larly, the phase coherence length is constant for weak turbu- 
lence. However, in each case, atmospheric effects reduce the 
respective coherence lengths at high refractive-index struc- 
ture-constant values with the onset of the reduction occurring 
earlier for the smaller source dimensions. The data plotted 
in Fig. 6 display trends similar to the predictions of Lee et al.1 

for an incoherent source in the axial direction (Figs. 3-5 of Ref. 
7). 

REMARKS AND CONCLUSIONS 

The theoretical foundation, provided above, has several 
significant advantages over previous investigations of tur- 
bulence effects on radiation propagation. The principal 
contributions of this analysis are (i) it is mathematically 
straightforward, (ii) it provides for the characterization of 
radiation derived from partially coherent sources throughout 
the full range of propagation directions, (iii) it includes the 
known features of (a) coherent radiation propagation in tur- 
bulence and (b) partially coherent radiation propagation in 
vacuo, and (iv) it permits a physical characterization of the 
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FIG. 6. Calculated values of the amplitude (a) and phase (b) coherence 
lengths as functions of the source size (/.) and refractive-index structure 
constant (Cl). Fixed parameters are X = 10-6 m, pe = 10~4 m, fi+ = 103 

m, and 0+ = 5°. 

radiation coherence propagation in terms of scattering func- 
tions. Although the five-thirds law structure function was 
approximated by a quadratic function to permit explicit cal- 
culations of coherence effects, calculated plane-wave results 
are in sufficient agreement with experimental data to permit 
confidence in the general trends and magnitudes of coherence 
effects predicted by this approximation. Significantly, all of 
the predicted coherence effects derived from this approxi- 
mation are consistent with physical intuition and approach 
proper limiting results over an appropriate range of propa- 
gation angle, source size, source coherence length, and tur- 
bulence strength variables. Although the definition of an 
effective far-field range for Gaussian partially coherent 
sources resulted from considerations unrelated to turbulence 
effects, this definition is significant because it extends the 
concept of the far field to partially coherent sources. While 
this extension is limited to partially coherent sources with 
Gaussian MCF's, it is likely that similar results obtain for 
other source MCF's because of the Fourier transform rela- 
tionship [Eq. (20)] between the field-point MCF and the 
generalized source coherence. 

The above analysis of the atmospheric propagation of 
partially coherent radiation should find application in areas 
where laser-illuminated objects viewed through the atmo- 
sphere are of interest (e.g., laser radars). Analyses have been 
developed (e.g., Refs. 25 and 26) for predicting the mutual 
coherence and intensity distribution of laser-illuminated 
rough surfaces. Because the foregoing development permits 
analysis of atmospheric modifications of vacuum distributions 
[via the convolution Eqs. (24) and (32)], theoretical investi- 
gations of turbulence effects on realistic laser-illuminated 
rough surfaces should be possible. 
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APPENDIX A 

Phase factor evaluation 
The phase factor defined in Eq. (6) can be written 

L(r+, r~, P+, P-) = |r+ + %r" - P+ - %p-| - |r+ - %r~ 

- P+ + y2P-| = [|r+ - P+|2 + (r+ - P+) • (r- - P~) 
+ y4|r- - p-|2]i/2 _ [|r+ _ p+|2 _ (r+ _ p+). (r_ _ p_} 

+ y4|r- - P-|2]i/2 = |r+ _ p+|(1+%[(r+ _ P+).. (r- _ p-) 

+ y4|r- - P~|2]|r+ - P+|-2 + 0(|r+ - P+|-2) - i 

- %[-(r+ - P+) • (r- - P-) + V4|r- - P-|2]|r+ - P+|2 

-0(|r+-P+|-2}E(r--P-).i&(r+,P+)J    (Al) 

where 

M>(r+ P+) = (r+ - P+)/|r+ - P+| 

= (r+ - ÄI+)(fi+)-i[l + (r+)2(fl+)-2 

-2(r+.s+)(ß+)-2]-i/2    (A2) 

and the definitions of Eqs. (7)-(10) have been employed. The 
vector u>(r+, P+) is illustrated in Fig. 1. Because R+ is much 
greater than a source dimension (by assumption), 
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w(r+, P+) a (r+/R+ - s+). (A3) 

Using Eq. (A3) and the fact that 

P-= R+s-+ R-s+, (A4) 

together with the knowledge that s+ and s~ are orthogonal 
vectors (s+ is a unit vector), Eq. (Al) can be written 

L(r+, r-, P+, P-) = [r- • r+/R+ - r" • s"+ - r+ • s~ 

+ Ä-(l-*+-.r+/fi+)].    (A5) 

However, again noting the small value of (r+/R+) over the 
range of integration considered, Eq. (A5) becomes 

L(r+, r~, P+, P-) s [r- • r+/R+ - r~ • s+ - r+ • s~ + R~] 
(A6) 

to an excellent approximation. 

APPENDIX B 

Uniform coherent source MCF and spectral density 
evaluation 

A uniform coherent source is characterized by a source 
MCF of the form 

r.(r+ r-)=|t/0|
2. (Bl) 

Therefore, the generalized two field-point source coherence 
[Eq. (15)] is given by 

G = (2ir)HR+/k)2A^\ Uo\2S(r~ - R+s~),        (B2) 

and hence the predicted MCF is [Eq. (17)], 

rturb(p+>P-) = |{yo|2cos20+ 

X   f  ("° d2r-e-i^r~'>-s+8(r - R+s-)F(r-, P~)   " 

= | U0\2 cos28+eikR+s--s+F(R+s-,P-) 

= |[/o|2cos2Ö+F(P-,P-), (B3) 

assuming equidistant radial field-point separations (i.e., R~ 
= 0). Equation (38) can be easily integrated using the con- 
ditions of equal source-point and field-point separations im- 
posed by Eq. (B3); the result is 

F(P-, P-) = exp[-3(p/po)2], (B4) 

where 

P=|P(P-)|. 

Equations (B3) and (B4) express the plane-wave MCF result 
using the quadratic approximation [Eq. (38)]. Note that the 
coherence length predicted by this approximation is 

>lane-wave = (1/V3)PO = 0.58po, (B5) p(e   ^Ipla 

which is in good agreement with the value of 0.56 p0 predicted 
by the five-thirds law. 

Artem'ev and Gurvich21 have performed optical measure- 
ments of the spectral density of field fluctuations using the 
Fourier-transform properties of a simple lens. Accordingly, 
their dimensionless spectral density results are defined in the 
following terms: 

V(x) = J(x)/J(0), ' (B6) 

where 

j(v) =   f °° rturb(fi+, 2R0t) cos[(2kR0y/F0)t] dt,    (B7) 
Jo 

X = 2kR0yFöi[D1(2Ro)]-3/5, (B8) 

Fo is lens focal length, 2R0 is lens diameter, and Di is the 
complex phase structure function for the assumed plane wave. 
Fourier transforming the plane-wave MCF predicted by Eqs. 
(B3) and (B4) according to the prescription of Eq. (B7) yields 
the following result: 

V(x') = exp [-(l/48)x'VoRö2Di(2Ro)), (B9) 

where the dimensionless variable x has been redefined 

X' = 2kR0yFöl[D1(2Ro)]-1/2 (BIO) 

in accord with the quadratic assumption. Because the 
plane-wave MCF result in the quadratic approximation 
implies a structure function defined by 

%Di(p) = 3(p/po)2, .     (BID 

I 

Eq. (B9) reduces to 

V(x) = exp(-X
2/2). (B12) 

Equation (B12) is plotted in Fig. 2 together with experimental 
data of Artem'ev and Gurvich.21 

APPENDIX C 

Two-source spherical wave MCF evaluation 
To perform the projection operations indicated in Eq. (38), 

orthogonal unit vectors &i and d2 are constructed which define 
a plane transverse to the P+ direction.   These vectors are 

.d1=[s+X^][l-(s+^)2]-1« 

= —i cos<l> -* j sin</>, (Cl) 

Ü2 = äi X s + 

= -t cos<?+ sin<£ + j cosö+ cos0 + sin0+£. (C2) 

Therefore, 

P(r~) = (dx • r~)<Si + (d2 • r~)d2 

= -di(x" cos4> + y~ sin</>) 
+ &i(—x ~ sin(/> + y~ cos(/>) cosö +.   (C3) 

The vector difference vector s~ can be written 

§- = s+ X da, (C4) 

where 

s+ = t sin</) sin0+ - ; sinö+ cos4> + k cos0+,       (C5) 

and 

da s 5 cos4>i + 5 sinipj + w£ (C6) 

is the axial vector corresponding to the antisymmetric rotation 
tensor that carries s' into s (in the small-angle approximation). 
Performing the vector multiplication of Eq. (C4) using the 
expressions (C5) and (C6) and performing the projection op- 
eration indicated in Eq. (C3) yields 

P(P-) = Ä+(o) sinödi + Sa2), (C7) 
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where 

P- = R+s- + R-s+. (C8) 

Because the problem is azimuthally symmetric, the plane 
included by the y axis is chosen (i.e., 4> = -w) so that 

\t'P(P~) + (1 - t)'P(r-)\2 = t2[(R+u sin0+ - x~)2 + (R+5 

+ y~ COSÖ+)2] + 2t[x~(R+w sin0+ - x~) - y~ cos0+(R+5 

+ y~ COSÖ+)] + [(JC-)
2
 + (y- cos6+)2].    (C9) 

Employing the definitions of Eqs. (48) and (53) yields 

F(r~, P-, R+) = exp \-(R/Po)2[(b + ß)2 

+ (c - 5)2 + c5 - bß]\    (CIO) 

upon integrating Eqs. (38) using Eq. (C9). 

Utilizing the definition of the pseudo-scattering function 
[Eq. (22)] together with the above result for the two-source 

spherical-wave MCF yields 

F(h S-, R+) = (kR+)2 sec0+ exp^-- (—)V + 52)1 

*JX— |-©2[K),+H)1) 
X exp[- i(kR+)(£xb + sec0%c)) 

= T(kpo)2 sec0+ exp I - - (—\ *(ß2 + b2) 1 

X exp (- i (kp0)2 (g + £2 sec20+)) j 

X exp [i (~j (üxß - £yö secö+)l    (Cll) 

after changing variables and integrating. 
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