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ABSTRACT 

A new technique for measuring small displacements of piezoelectric 

driven mirrors in which is employed an acousto-optic modulator and optical 

heterodyning has been applied to the calibration of piezoelectric driven 

mirror systems for laser resonator cavities.    In this technique,  a phase 

detector is used to measure the phase change when a mirror,  driven by the 

piezoelectric translator,  moves.    Measurements obtained by means of this 

technique have been compared with measurements obtained with the tradi- 

tional interferometer methods and have proven to be more precise.    The 

increased precision was attributed to higher signal-to-noise ratios typically 

obtained with frequency-modulated,   relative to amplitude-modulated,   systems 

where intensity fluctuations exist in the system.    The increased signal-to- 

noise ratio is advantageous when,   as frequency increases,   the output voltage 

from the driving power amplifier falls off.    For a given amplifier,  frequency 

response data of the piezoelectric driver-mirror combination can be deter- 

mined at higher frequencies.    In the case at hand,   the frequency has been 

extended from 15 to 40 kHz. 
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I.    INTRODUCTION 

Piezoelectric (PZT) ceramic components,   either disks or cylinders, 

are used to drive the mirrors in laser resonator cavities to change the 

resonator length and, hence,  the resonator frequency.    Therefore,  the 

calibration of the PZT unit,  i.e.,  the change in length per unit drive voltage, 

must be known.    The frequency response of the PZT unit and its electrical 

driver is also of importance in determining loop gain when the unit is used 

in a feedback control circuit for stabilizing the laser. 

In this report,   a new technique for measuring the small displacements 

required for PZT calibration is described in which an acousto-optic modu- 

lator and optical heterodyning are used.    In this technique,   zeroth- and first- 

order diffracted beams from the acousto-optic modulator serve as measuring 

and reference beams in a phase-detecting system used to measure a change in 

phase when a mirror driven by the PZT to be calibrated moves.    The phase 

variation is obtained when the two beams are combined in a heterodyning 

technique.    The resultant beat signal,  carrying the phase modulation,  is 

demodulated,  and the signal is displayed on an oscilloscope. 

Measurements obtained with this technique are compared with a 

traditional interferometer measurement.    The advantages of each system 

are described. 
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II.    MEASUREMENTS 

A.        ACOUSTO-OPTIC MODULATOR PHASE DETECTOR 

METHOD 

The experimental arrangement for measuring small displacements 

with the acousto-optic modulator phase detector is shown in Fig.   1.    An 

acoustic wave establishes a pattern of density variations in an acoustic 

medium,  which then becomes a moving phase grating.    An optical wave 

passing through the medium normal to the acoustic wave direction is split 

into N diffracted beams oriented according to sin 8^ = NX./A.    Here,   X. is 

the optical wavelength,  A is the acoustic wavelength,   and N,   an integer,   is 

the order of diffraction.    For a Flint glass acoustic medium,  A = 87. 7 [xm 

for a 40-MHz acoustic wave; X. = 0. 6328 jim,   so that 9 . = 0. 41 deg,  which 

agrees quite well with the measured value of 0. 4 deg. 

Light in the diffracted beams has vector components along the axis of 

acoustic propagation and,  therefore,   experiences a frequency shift as a 

result of the Doppler effect 

w     =  w + Nfl 

where  ü and ß are the optical and acoustic frequencies,   respectively.    In 

the phase detector,   as used here,   the zeroth-and first-order diffracted 

beams are combined by a beam splitter-mirror combination so that they 

constructively intefere with each other.    The photodetector,   a 1P28 photo- 

multiplier tube,  by observing the signal,  detects the beat-frequency signal 

between these two beams. 

The PZT to be calibrated drives mirror normal to its surface.    From 

geometrical considerations,   the phase change in terms of wavelength and 

mirror displacement A is 

2A [MD2] 
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where ß is the angle of incidence of the light on the mirror.    Since ß is 

small (Fig.   1),  the phase change as the mirror moves is m = 2A/X. or 

2ir(2A/\) rad or (2A/\) 360 deg. 

The phase is determined by means of the phase demodulator in Fig.   1. 

This circuit mixes the carrier signal,   the beat frequencyn,   containing the 

phase-varying modulation from the mirror perturbation,  with a reference 

signal and provides the demodulated output (the difference frequencies) by 

low-pass filtering.    The circuit is tuned to 5 MHz; therefore,   a 35-MHz 

signal is beat with the 40-MHz carrier to provide a 5-MHz carrier.    Simi- 

larly,   the reference signal is obtained by beating the unmodulated 40-MHz 

driver signal with the 35-MHz signal.    Sensitivity of the phase demodulator 

circuit is 200 deg/V,  which was determined by use of a phase-shifting cir- 

cuit that operated at 5 MHz and had as its output a 5-MHz signal with a 

shifted phase.    The phase shift was set at 27Trad by comparing an input 

5-MHz signal and a phase-shifted signal on an oscilloscope.    Then,  the 

phase-shifted signal was applied to the phase demodulator,   and the output 

signal observed.  The phase demodulator signal was  1.8 V for 27Tor a 

360-deg phase shift. 

PZT calibration is determined by driving the mirror with an oscillating 

signal of known value Vn,  the lower trace of Fig.  2.    The phase variation is 

determined by the output of the phase demodulator Vs,   the upper trace of 

Fig.  2.    From these signal levels (in volts) plus the phase-demodulator cali- 
bration of 200 deg/V,  the mirror calibration is 

V 

C-H^MIHSTO)-; 

Numerical results are discussed in a later section. 
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Phase Detector Calibration of PZT Units S/N-1, 2 
and Burleigh High Frequency PZT Unit at 1 kHz 
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Fig.   2.    Phase Detector Calibration of PZT Units S/N-1 and 2 
and Burleigh High-Frequency PZT Unit at 1 kHz 
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B.   CONVENTIONAL INTERFEROMETER METHOD 

Traditional interferometer measurements were made for comparison 

by means of the arrangements shown in Fig.   3.    Here,   a Zygo interferometer 

(Zygo Corporation,   Middlefield,   Connecticut),  which is a type of Fizeau 

interferometer,  was used.    A HeNe laser (0. 6328 fxm) is used as the light 

source,   so that the coherence length is large.    Straight fringes are formed by 

the wedge-shaped film between the reference mirror of the interferometer 

and mirror mounted on the PZT to be tested.    These fringes are observed in 

the film plane of the interferometer, where a pinhole aperture and 1P28 

photomultiplier tube are installed.    When the mirror is driven normal to 

itself,  the wedge thickness varies,   causing the fringes to shift.    By careful 

adjustment of the wedge angle,  a single fringe can be obtained that covers the 

film plane (Fig.  4).    Hence,  the resolution of the fringe variation can be 

maximized.    Fringe resolution is indicated in Fig.  4 by the relative size of 

the aperture and the fringe spacing.    A typical fringe shift pattern obtained 

with this assembly is shown in Fig.   5.    The lower trace of Fig.   5 is the 

driving voltage applied to the PZT-mirror unit and,  therefore,   represents 

the oscillatory motion of the mirror.    The upper trace is the intensity 

variation as the fringe shown in Fig. 4 shifts across the detector aperture. 

Thus,   starting at point A with the mirror moving in one direction,   a bright 

fringe passes the aperture,  point B.    As the mirror continues in the same 

direction,  the bright fringe shifts to dark,  point C.    At point D,  the mirror 

motion is reversed.    For a fringe shift from bright to dark,  the length 

change is  (l/2)\,  but since both incident and reflected paths must be included, 

this distance corresponds to a mirror motion of one-fourth wavelength. 

Thus,   a direct calibration of the PZT-driven mirror unit is obtained,   i.e., 

the mirror moves X/4 = 0. 1582 p.m. for a signal change V     - V    =  140 V, 

yielding a calibration of 1.13 fim/kV.    The capability for providing a direct 

calibration represents the chief advantage of the interferometer technique. 

•7- 
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Values from the calibration measurement for four PZT units with 

mirrors from both the phase detector and the Zygo interferometer are 

given in Table  1,   together with the calculated or estimated values deter- 

mined from the physical properties of the PZT units.    These predictions 

are described in the appendix. 

The measured values for the calibration factor for the units Serial 

No.   1 (S/N-l) and Serial No.   2 (S/N-2),  which are two-disk units made 

from 1. 27 -cm-diameter (0. 5 in. ) by 0. 127-cm-thick (0. 05 in) disks of a 

ceramic manufactured by Vernitron Corporation,   Bedford,  Ohio,   and 

designated as PZT-5H,   are different from each other by about a factor of 

two,  which indicates that one of the two disks in the stack making up S/N-l 

is disabled.    Probably no contact has been established between one of the 

tabs on the unit and the silver plating deposited on each surface of the disk. 

Frequency-response data for these PZT units are presented in Fig. 6. 

These data were obtained by plotting the ratio of the photomultiplier output 

signal to the driving voltage signal as a function of frequency. An hp 6827 

bipolar power supply-amplifier serves as the driver amplifier for the lab- 

oratory-built S/N-l and S/N-2 and the Burleigh high-frequency PZT units, 

whereas a Burleigh PZ-70 operational amplifier was used to drive the 

PZ -80 unit. 

The Burleigh PZ-80,  with its cylindrical construction and heavier 

mirhror and retaining ring assembly,   should have a lower resonant frequency 

relative to the disk-type PZT drivers,  which is,  in fact,   observed.    A 

re'sonant peak in the gain versus frequency curve occurs at about 4 kHz. 

The gain falls off rapidly beyond 4 kHz.    Since the gain versus frequency 

curve is flat to  1 kHz,   this unit should provide adequate response to that 

frequency.    The other three units examined all appeared to remain flat to 

beyond 10 kHz.    At between 15 and 30 kHz,   the hp 6827 amplifier begins to 

fall off,   which probably explains the bobble in the gain-frequency curves 

that appears to start at 15 kHz.    There is a cutoff filter in the phase 

demodulator at 40 kHz.    Hence,   no measurements are obtained beyond this 

11- 



point.    It can be concluded that these three PZT units along with their mirrors 

and amplifier can be used quite satisfactorily to a frequency of 15 kHz. 

Table  1.    Calibration Factors Obtained for PZT Units 

PZT Unit Zygo 
Calibration, 

[im/V 

Phase-Detector 
Calibration, 

|im/V 

Value Computed 
from PZT 

Property,  M-m/V 

Burleigh 
High Frequency 

0.000394 0.000316 0.0003 

Laboratory - 
Built S/N-l 

0.000662 0.0012 0.0012 

Laboratory- 
Built S/N-2 

0.00151 0.00104 0.0012 

Burleigh PZ-80 0.0049 0.00478 0.0043 
0.0096 

12- 
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Fig. 6.     Frequency Response of Four PZT 
Units as Determined with Phase Detector 
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III.    RESULTS AND CONCLUSIONS 

Data for the calibration of three PZTs have been obtained with the 

acousto-optic modulator phase detector and,   for comparison,  the Zygo 

interferometer.    Oscilloscope records of these data are shown in Fig.  2 

for the phase detector and in Fig.  7 for the interferometer.    The advantage 

of the phase detector over the interferometer is obvious.    Its signal-to- 

noise ratio is 40 times greater than that of the interferometer when ref- 

erenced to the PZT driving signal,   because in phase modulation,   half of 

the noise is rejected by clipping of the input signal.    Thus,   the effect 

of fringe drift and jiggle,  which the interferometer observes is reduced in 

the phase detector.    In addition,   the advantage of phase modulation over 

amplitude modulation is wider bandwidth.    Also,  more complex side-band 

frequency structure contributes to higher signal-to-noise ratio in the 
phase detector. 

One of the objectives of this study is to obtain frequency-response 

data of the PZT mirror mount.    These data are obtained by observing the 

phase detector or interferometer signal while increasing the signal fre- 

quency driving the PZT.    As with all amplifiers,   as frequency increases, 

a point is reached where the amplifier output voltage falls off.    Thus,  the 

signal driving the PZT is decreased so that the PZT displacement is reduced. 

With decreased mirror displacement,   signal size is reduced so that signal- 

to-noise ratio decreases.    The output voltage driving PZT S/N-2,   for 

example,   drops to 20 V at a frequency of 40 kHz.    The phase-dectector 

output is easily observed at 40 kHz.    However,  for the interferometer, 

a 20-V oscillation signal on the PZT would produce a signal less than 

one-third the signal observed    (top trace for PZT S/N-2,   Fig.  7).    Such 

a value would be indistinguishable from the noise on this signal.    As a 

result,   one is unable to obtain frequency-response data at frequencies 

close to 40 kHz with the interferometer technique.    The practical limit 

is probably closer to 15 kHz. 

-15- 
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IV.    SUMMARY 

The phase detector devised by the Laboratory Operations,   The 

Aerospace Corporation,  has been applied to the problem of measuring small 

displacements for calibrating piezoelectric drivers for tuning laser cavities. 

The measurements were compared with those obtained from a traditional 

interferometer technique and found to be superior from the standpoint of 

signal-to-noise ratio.    As a result of this superiority,  frequency-response 

measurements of PZT units were pushed to higher levels with improved 

precision. 
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APPENDIX 

CALCULATION OF PZT CALIBRATION 

For a thickness mode vibration of a PZT unit, the electrical field and 

displacement or strain are in the same direction (Fig. A-l). The change in 

thickness At is,   therefore,   given by At = Nd,- V,  where N is the number of 

disks in the PZT stack and doo is the piezoelectric constant in the thickness 
12 

direction.    For PZT-5H,  d33 = 593 X 10      m/V.    V is the voltage across 

each disk.    The disks are connected electrically in parallel for PZT units 

S/N-l and 2.    This relation yields 

At = 2(593) (10"5) fim/V 

= 0.00119 [J-m/V 

for the PZ-80 unit,  which is similar to a hollow cylinder in which the 

length changes for electric field applied normal to the cylinder walls 

(Fig. A-2).    The change in length is determined according to 

H A       t 
a31 "     i       V 

where d- , is the piezoelectric constant for length change normal to 

electric field direction,   i is the cylinder length,   and t is the cylinder wall 

thickness.    From Vernitron Corporation data,   d,. is between -123 and -274 
-12 51 

10 m/V.    The cylinder is 4. 44 cm long,   with a wall thickness of 0. 127 cm. 

From these values,   the displacement is 

A  = 0.0043 to 0.0096 |xm/V 

A-l 
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Fig A-l.    Disk-Type PZT Element 
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Fig.  A-2.    Cylindrical-Type PZT Element 
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