Mr. Mark Goldfarb
Palisades Institute for Research Services Inc.
Power 92
2011 Crystal Drive, Suite 307
Arlington, VA 22202

Dear Mr. Goldfarb:

Submitted herewith for inclusion in the 1992 Power Modulator Symposium is an abstract entitled "Study of Intense Relativistic Electron Beam Modulation by Wakefield Effects," by J. Miller, R. F. Schneider of the Naval Surface Warfare Center. This paper has been reviewed by cognizant naval authorities. It is approved for public release.

Further correspondence intended for the authors should be directed to the attention of Dr. Ralph F. Schneider, Code R42, at the Naval Surface Warfare Center, White Oak, Silver Spring, Maryland 20903-5000.

Sincerely,

CARL W. LARSON, HEAD
Physics and Technology Division

Encl: (1) 1 copy of abstract
STUDY OF INTENSE RELATIVISTIC ELECTRON BEAM MODULATION BY WAKEFIELD EFFECTS*

J. D. Miller, R. F. Schneider, K. T. Nguyen,*a) R. A. Stark, and D. J. Weidmanb)

Naval Surface Warfare Center
a)Mission Research Corporation
b)University of Maryland and Advanced Technology Research

An experimental study has been undertaken in order to investigate plasma wakefield effects produced in intense electron beam propagation in a background plasma. A 2 MeV, 1 kA, electron beam is used for this experiment. A 50 cm diam., 3.6 m long drift tube is filled with a background gas, typically trimethylamine (TMA). This gas is ionized by electrons emitted from heated tungsten filaments which are biased at approximately -100 Volts. The resultant plasma density is fairly uniform and is adjustable in the range 10^8 to 5×10^9 cm3. A higher density Ion Focused Regime (IFR) channel for electron beam propagation is generated by KrF-laser (248 nm) ionization of the background TMA gas. The intense electron beam propagating on an IFR channel in this background plasma experiences wakefield effects due to the natural oscillations of the background plasma which are excited by the beam current risetime. The E_z component of the induced field is responsible for producing beam current modulation near the background plasma frequency. The results scale with plasma density as expected and current modulation is nearly complete for a certain parameter range. This technique may be amenable to a high power microwave generation technique analogous to the relativistic klystron. Detailed experimental results of beam modulation will be presented.

*Supported by SDIO under funding document number N0001490WX15505 and Independent Research at NAVSWC.
PLASMA WAKEFIELD EFFECT

- Theory and simulations have predicted that an electron beam propagating in a plasma background gives rise to a beam-plasma interaction called the plasma wakefield effect.

- The fast rising injected beam current expels plasma electrons out to the charge neutralization radius. This induces plasma oscillations near the plasma frequency of the background plasma.

- These radial plasma oscillations produce a wakefield characterized by longitudinal and accompanying radial electric field oscillations.

- Resonant interaction leads to beam modulation and eventually allows plasma to penetrate the beam, leading to enhanced erosion and loss of beam current.
PLASMA WAKEFIELDS

BACKGROUND PLASMA

CHANNEL

e-BEAM

axial electric field (MV/m)

Z (m)
PLASMA WAKEFIELD EXPERIMENT

- FORM LOW DENSITY \(10^9 \text{cm}^{-3}\) BACKGROUND PLASMA BY HEATED FILAMENT DISCHARGE IN A 3.6m LONG, 0.5m DIAMETER DRIFT TUBE

- FORM CHANNEL FOR BEAM TO PROPAGATE USING KrF LASER IN TMA

- FIRE FEBETRON 705X INTO CHANNEL, BEAM PARAMETERS:
 1kA, 2 MeV, 20nS

- MEASURE BACKGROUND PLASMA/ELECTRIC FIELD OSCILLATIONS AND MODULATION OF BEAM CURRENT, ENERGY
EXPERIMENTAL CONFIGURATION
EXPECTED OBSERVABLES AND DIAGNOSTICS

- MODULATION IN BEAM CURRENT
 - B-DOTS, BEAM BUGS

- MODULATION IN BEAM ENERGY
 - TIME RESOLVING ELECTRON ENERGY SPECTROMETER (TREES)
EXPERIMENTAL CONDITIONS

beam current, $I_b = 1 \text{ kA}$

beam current risetime, $\tau = 4-5 \text{ ns}$

beam energy, $V = 1.7 \text{ MeV}$

beam radius, $r_b = 1.5 \text{ cm}$

channel radius, $r_c = 1.5 \text{ cm}$

space charge neutralization fraction, $f_e = 0.9$

background plasma density, $n_p = 10^8 - 2 \times 10^9 \text{ cm}^{-3}$

g parameter, $g = n_p/n_b = 0.01 - 0.06$

propagation distance, $z = 3.6 \text{ m}$
EXPERIMENTAL CURRENT WAVEFORMS

(a) $n_p = 0$

(b) $n_p = 1.0 \times 10^9$ cm$^{-3}$

(c) $n_p = 1.5 \times 10^9$ cm$^{-3}$

(d) $n_p = 2.0 \times 10^9$ cm$^{-3}$

TOP (BOTTOM) WAVEFORM: CURRENT ENTERING (EXITING) THE PLASMA-FILLED TRANSPORT CHAMBER
EXPERIMENTAL B-DOT LOOP RESPONSE

B-DOT LOOP RESPONSE 0.9 M DOWNSTREAM FROM THE ENTRANCE TO THE TRANSPORT CHAMBER
Oscillation frequency from the unintegrated B-dot loop data as a function of the background plasma density. The solid line is a least-squares fit to $n_p^{1/2}$.
MAGIC SIMULATION PARAMETERS

BEAM: BEAM CURRENT = 1kA
INITIAL RADIUS = 1.5 cm
CURRENT PROFILE: 5 ns RISE, 12 ns FLATTOP, 5 ns FALL
ENERGY PROFILE: TRIANGULAR - 640kV, 1.7MV, 640kV
INITIAL TRANSVERSE TEMPERATURE: 1.65\(\sqrt{\text{keV}}\)

CHANNEL:
NEUTRALIZATION FRACTION = 0.8
RADIUS 1.5 CM
SQUARE PROFILE

BACKGROUND PLASMA DENSITY = \(2 \times 10^9 \text{ cm}^{-3}\)

WAKEFIELD CHAMBER:
RADIUS = 25 cm
LENGTH = 3.5 m
Beam and plasma electron trajectories from MAGIC simulation at (a) t = 4.8 ns, (b) t = 9.6 ns, (c) t = 14.4 ns, (d) t = 24.0 ns
Electron beam axial momentum (a) and the axial electric field (b) at $t=19$ ns after injection into the plasma-filled transport chamber.
BEAM CURRENT WAVEFORMS FROM THE MAGIC SIMULATION

(a) $z=0\ m$

(b) $z=1.2\ m$

(c) $z=2.4\ m$

(d) $z=3.6\ m$
BEAM CURRENT LEAVING THE TRANSPORT CHAMBER FROM THE MAGIC SIMULATIONS

(a) $n_p=0$
(b) $n_p=1.0 \times 10^9$ cm$^{-3}$
(c) $n_p=1.5 \times 10^9$ cm$^{-3}$
(d) $n_p=2.0 \times 10^9$ cm$^{-3}$
EXPERIMENTAL CURRENT WAVEFORMS

Experimental data: $I_b = 700$ A, $f_e \approx 0.5$

(a) $n_p = 0$
(b) $n_p = 1.9 \times 10^9$ cm$^{-3}$
(c) $n_p = 2.5 \times 10^9$ cm$^{-3}$
(d) $n_p = 3.2 \times 10^9$ cm$^{-3}$

TOP (BOTTOM) WAVEFORM: CURRENT ENTERING (EXITING) THE PLASMA-FILLED TRANSPORT CHAMBER
EXPERIMENTAL B-DOT LOOP RESPONSE

Experimental data: \(I_b = 700 \) A, \(f_e \approx 0.5 \)

\[n_p = 1.3 \times 10^9 \text{ cm}^{-3} \]

\[n_p = 1.9 \times 10^9 \text{ cm}^{-3} \]

\[n_p = 2.5 \times 10^9 \text{ cm}^{-3} \]

B-DOT LOOP RESPONSE 0.9 M DOWNSTREAM FROM THE ENTRANCE TO THE TRANSPORT CHAMBER
SUMMARY

- Modulation of the beam current due to plasma wakefield effects has been conclusively observed during IFR transport of a high-power REB immersed in a low-density background plasma.

- Good agreement between the experimental results and the MAGIC simulations has been obtained.

- Strong modulation leading to beam current disruption has been observed for plasma density values in the range $1.0 \times 10^9 - 2.0 \times 10^9$ cm$^{-3}$ for a 1 kA, 1.7 MeV, 5 ns risetime electron beam after only 3.6 m of beam transport.