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ABSTRACT

The main objective of this program was the development of an MHD heat source for
potential use in Space - Based Multi Megawatt, MHD Power Systems.

The approach is based on extension of high temperature chemical/ion release technology
developed by the General Sciences, Incorporated (GSI) team and successfully applied in other
Space Applications. The relevance to the SDIO/MHD objectives is a natural one in that solid state
reactions have been identified which can deliver energy densities and electrons in excess of those
from high energy explosives as well as other conventional fuels.

The use of intermetallic reactions can be used to generate hot hydrogen plasma from the
reaction, to create a high level of seedant ionization, can be packaged as cartridge type fuels for
discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power
System can range from 12 to 25 x 103 kg depending on reaction system and strength of the
magnetic field.

The program consisted of two major tasks with eight subtasks designed to systematically
evaluate these concepts in order to reduce fuel weight requirements.

Laboratory measurements on energy release, reaction product identification and levels of
ionization were conducted in the first task to screen candidate fuels. The second task addressed the
development of a reaction chamber in which conductivity, temperature and pressure were
measured. Instrumentation was developed to measure these parameters under high temperature
pulsed conditions in addition to computer programs to reduce the raw data.

Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and
at the Franklin Research Center* for fuel weights up to 1 kilogram.

The results indicate that fuel weight can be scaled using modular packaging. Estimates are
presented for fuel weight requirements for SDIO pulsed power applications.

* Located at Elverson, PA.
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A. BACKGROUND AND SCOPE

The advantages of MHD for large scale pulsed power have long been recognized. The
most notable example is the Avco Mark V self-excited “rocket generator” (Reference 1) which
produced 23.5 MJ net output for a few seconds as early as 1964 at a specific energy of
approximately 0.5 MW/kg and an enthalpy extraction of about 8%.

In the 1970’s attention shifted to commercial power generation, with the emphasis on high
efficiency and control of air pollutants. While much valuable technology work was accomplished,
including a deeper understanding of the complex behavior of an MHD generator, little or no overall
cost advantage was shown relative to conventional coal fired power plants (Reference 2).

Probably the most significant results of this era applicable to large scaled pulsed power
came from the tests of the High Performance Demonstration Experiment (HPDE) at Arnold
Engineering Development Center (AEDC). The HPDE produced 30.5 MW at a specific energy of
.61 MJ/kg and an enthalpy extraction of about 11% (Reference 3).

The AEDC work was important both for what was accomplished and for the difficulties
encountered. While never operated at full power, generator performance was up to expectations as
far as it was tested. HPDE testing ended when the magnet support structure suffered a catastrophic
brittle failure as a result of unanticipated local stresses at cryogenic temperature (Reference 4). The
failure underscores the critical role of magnet design in any large scale MHD power system.

Enthalpy extraction as a function of the principal design variables is shown for both the
Mark V and the HPDE in Figure A.1 (Reference 5). The parameter has the dimensions of
reciprocal velocity because Mach Number was used to represent velocity. Since the value of the
parameter depends on how one computes average values, an error bar rather than a precise point
would probably better represent the data. Nevertheless the plot can provide some guidance in
estimating potential performance of large scale units.

Also relevant to the objectives of this program are, the reports by the University of
Tennessee Space Institute (UTSI) (Reference 7 and 8). The review on the “Status of Explosive
MHD Technology in the Soviet Union” suggests that the explosive concept is capable of producing
high energy pulses of several 100 MW for short durations of (10 - 100)i sec. It offers the
advantages of repetitive and high stored energy densities (~5 MJ/kg or 1.2 Kcal/g) and with
improvements could be applied to potential military applications. In fact, if one could extend the
pulse duration by one or two orders of magnitude without compromising power, the concept
could have a profound effect in SDI weapon systems.

The conclusions of the second UTSI publication (Reference 8) can be summarized as
follows:

1. The future for explosive MHD generators in terms of SDI objectives can be

enhanced only by increasing the (low <5%) conversion efficiency and
consequently their effective low energy density.

2. Combustion driven MHD pulse generators, on the other hand, appear more

promising partly due to demonstrated increase of efficiency with increasing scale.
This is not to say that the SDI objectives are easily obtainable.




The main objective of the SDIO/MHD Program is the development of a multi-megawatt
(MMW) MHD power system which can be positioned in space to provide power to a variety of
space weapons such as Electromagnetic Launches, Lasers and Particle Beams. The required
power levels exceed 100 MW in bursts of 1 - 5 seconds for cumulative time periods of 1000
seconds or more. Fuel mass in the vicinity of 25 - 50 tons are required at conversion efficiencies
of 15%. Due to the large numbers involved, significant improvements must be made in the
following important parameters before a space based systems become feasible. These are:

1. power conditioning.
2. highly efficient magnetic designs
3. heat source improvements

Other ancillary problems, are minimization of the weight and volume of the device,

minimization of the contamination of space optics and thrust control.
Power density for an MHD generator can be approximated as,

2
(Power; Volume) Pv = g (v B)

That is, that power per unit volume is proportional to conductivity of the plasma times the product
of gas velocity and magnetic field squared.

This work has addressed the problem of developing an efficient pulsed heat source which
minimizes fuel weight while maximizing power output. In addition, the fuel mixture developed
was designed to maximize conductivity in order to generate the optimum power density.

The approach used in this work centers on the use of a new heat source which can generate
more energy per unit weight and volume than other propellants or solid fuels. The heat generated
provides the vehicle to ionize seedants in a high velocity plasmas. The GSI heat source, called Hi-
Therm, can be controlled as to its duration and output and serves to produce H, gas
in-situ in one reaction.

The GSI method of generating a hot plasma in the form of a solid state reaction has
important advantages. The Hi-Therm material has long-term stability, instant availability and can
be packaged as disposable cartridges or modules with the potential for for rapid reloading. In
addition, Hi-Therm has been found to be environmentally safe-(i.e. no toxins produced) and safe
to handle under a variety of conditions of heat, impact and electrical discharge.

The final configuration developed under this program consisted of a mixture of Hi-Therm

with Cesium seeded hydride which produced an ionized hydrogen plasma of nearly 3000°K.
Theoretical calculations had indicated that such a plasma would produce a conductivity on the
order of 100 Siemens/meter at static temperature of 3000°K. See Figure A.2 and Appendix B.
Measurements of conductivity indicated values in excess of 100 Siemens/meter with durations of
1/2 to 1 second.

For a Space Based MHD generator a high energy density heat source is desired. For this
reason a careful search was performed on available fuel candidates. - Table I shows the heats of
combustion in kcal/g for a variety of reactions. As expected, hydrogen heads the list followed by
beryllium (Be) and boron (B). Since Be - powders represent a serious source of toxicity, it was
discarded as a candidate. Boron is an attractive candidate because of its high heat of combustion
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TABLE 1
HEAT OF COMBUSTION OF VARIOUS MATERIALS

MATERIALS Kcal/g Kcal/cc
HYDROGEN - H, 28.7 --
BERYLLIUM - Be 16.2 29
BORON - B 14.0 33
LITHIUM - LI 10.3
CARBON - C 7.8 --
ALUMINUM - AL 7.4 20
SILICON - Si 7.3 18
MAGNESIUM - Mg 5.9 10
PHOSPHORUS - P 5.8 11
TITANIUM - Ti 4.6 20
CALCIUM - Ca 3.8 6
ZIRCONIUM - Zr 2.8 18
NIOBIUM - Nb 2.5 21
SULFUR - S 2.2 5
MOLYBDENUM - MO 1.9 19
IRON- Fe 1.8 14
MANGANESE - Mg 1.7 12
CERIUM - Ce 1.7 11
TANTALUM - Ta 1.4 23
THORIUM - Th 1.3 14
ZINC - Zn 1.3 9
WOLFRAM - W 1.1 21
NICKEL - Ni 1.0 9
PARAFFIN & HYDROCARBONS ~ 10.3
POLYSTYRENE 9.9
PARAFFIN 9.8
ASPHALT 9.5
WOOD CHARCOAL 8.1
LAMINAC 7.0
GUANIDINE 4.2

- FLOUR, SUGARS, STARCHES, ETC. 3.6-4.0
NITROCELLULOSE (COMBUSTION) 2.2-2.6
NITROCELLULOSE (EXPLOSION) 1.0




(14kcal/g). From the practical standpoint however, people have experienced a great deal of
difficulty in trying to exploit this element as a high energy fuel, because the formation of B,0; on
the boron particles “chokes” the reaction.

Limited success was achieved by Max Planck Institute in this area by using reactive
additives. More encouraging data were generated by Zavitsanos (Ref. 9-12) and his group at G.E.
and later at GSI: In an effort to utilize the Ti/B reaction (now called Hi-Therm) as a heat source for
Aerospace Applications and Materials Synthesis, this reaction was studied under many different
conditions, one of which involved “pre-conditioned”* samples reacting in static air. Under this
condition it was found that two exothermic processes take place. The first is the formation of TiB,
i.e. Ti + 2B-----> TiB, + 1.2 kcal/g, the second is the combination of TiB, i.e. TiB2+0, ----> Ti0,
+ B,0; + 6.42 kcal/g. Figure A.3 shows typical DTA (Differential Thermal Analysis) and TGA
(Thermogravimetric Analysis) response. At 928°K the steep rise in the DTA trace denotes the
reaction of Ti with B to form TiB,. A second spike denotes the combustion of TiB, with air to
form Ti0, and B,05. The weight increases as noted of 91% and 88% compare favorably with the
theoretical increase of 115%. The ratio of the area under the exotherm for combustion versus
reaction in found to be 4.9 versus the theoretical ratio of 6.3.

When a comparison is made on that basis the order is as follows:

Be (5.82 kcal/g), B (4.4 kcal/g), Ti/2B/Li (4.18 kcal/g), Ti/2B/8B (4.12 kcal/g), Al (3.91 kcal/g),
H2 (3.19 kcal/g), H/C (Hydrocarbons) (2.79 kcal/g); aluminized propellants would somewhat be
somewhere between aluminum and hydrocarbons.

Other chemical reactions which proceed in the condensed phase are the conventional pyro
thermites. The thermites constitute a class of reactions which have been used for many heat related
applications, including atmospheric releases of barium/metal from canisters on sounding rockets.
The intermetallic systems, however, have outperformed this conventional technology (originally
developed by Max Planck) due to superior energy content and versatility. GSI was given the task
of the Chemical Canister and Heat Development of the CRRES (Combined Radiation and
Release Satellite) Program. This program was completed at GSI and 52 multi-kg canisters and 20
heaters were delivered. The canisters are designed to release ionized Li and Ba in space and the
heaters will transfer heat to SF; for release in the ionosphere.

The development most pertinent to the program is the pioneering work of Dr. Zavitsanos on
the development of highly exothermic solid state compositions which surpass other chemical
reactions in this category in terms of energy density, temperature, level of ionization, ability to

store, initiate, dispense, seed and Scale-up. This work was originally supported by the Air Force
(Rome Air Development Center), and ARPA and a portion was patented as a “Metal Vapor

Generator” by P. D. Zavitsanos U.S. Patent #4092,263 May 30, 1978. (Ref. 9). Subsequent to
this effort this particular chemical system has been used as a “clean”, manageable, energy source in

* Proprietary Process at GSI.
Use of disclosure of this data is subject to the restriction on the title page of this document.
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many aerospace applications (replacing conventional thermite and pyrotechnics technology) as a

metal vapor/ion generator for Al, Nd, Sm, Ca, Sr, Ba/Ba*, Li*, Cs* these released quantities
range from 20kg to small .1 gm size Cs - seeded pellets to be released as decoys using ionization
enhancement.

Another area which was explored for the Air Force (Ballistic Missile Office) is the
development of a Cs - seeded fuel in a pellet form (.2 cm diam). Upon initiation with 600°K

source, each pellet acts as a high temperature spherical micro-furnace (T > 3200°K) releasing a
plasma consisting of cesium ions and electrons while the reacting components remain in the solid
form in essentially the original spherical shape: Ti(c) + 2B(c) + Cs - Salt ----- > TiBy(c) + Cs* +e-.
Seeding levels as high as 8% (by weight) have been tested at GSI and at the Delco Ballistic Range
facility and very high levels of ionization efficiency have been verified (50 - 80% in many cases).
The same pellets large or small which can be used to eject ions (without movement) can be moved
by a flow provided either externally or by a decomposing binder internal to the fuel charge.

Based on the above analysis, it was concluded that the Ti/2B reaction (Hi-Therm)
represented the optimum reaction in terms of maximizing the stated goals of this effort.

An evaluation of heated hydrogen as a working fluid in a large, space based, MHD power
generation system was presented in our original proposal. For completeness, it is reproduced as
Appendix A.

B. PROGRAM PLAN AND TECHNICAL PROGRAM

This development program was divided into two tasks with multiple sub-tasks for each
task. The initial task involved the analysis, design and measurements of candidate reaction
schemes for down-selection and selections of the most promising for subsequent testing and
evaluation under task 2. In task 2, the design and fabrication of the reaction chamber and
measurements of conductivity and pressure evolved from the small vacuum chamber (~ 2’ x 4°)
testing involving low mass fuel charges used in task 1 to large mass fuel charge testing in a large
vacuum tank facility (~7” x 40°). Along the development process, instrumentation and reaction
chamber configurations were modified to reflect the results of measurements of temperature,
pressure and conductivity.

Modification of the original program plan were made during the development phase and
final selection of the fuel charge mixture measurements made early in the program dictated certain
changes in program direction.

B.1 Bomb Calorimeter Tests

In order to assess the effect of additives to the basic Hi-Therm material (Ti/2B in
stoichiometric proportions), a series of bomb calorimeter tests were conducted. The requirement
for producing a hot ionized hydrogen plasma dictated the evaluation of additives on the overall

energy output of Hi-Therm.
The results of these tests are indicated on Table II. As expected, the addition of substantial

amounts of TiH, or Cs compound does not affect the energy output substantially. The addition of
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perchlorates, although increasing energy output, requires special handling and the increased output
is not large enough to warrant their use due to the increase in the safety hazard. The presence of 0,
increases the output many-fold but the methodology of introducing 0, into the Hi-Therm material
is a difficult one and could have required an substantial development effort.

Based on the calorimetric results, the use of Hi-Therm with TiH, and cesium compounds
appeared to be the best combination to produce a hot ionized hydrogen plasma.

B.2. DTA Measurements
Differential Thermal Analysis (DTA) was conducted on candidate mixtures to augment the
calorimetric results and additionally to determine,

1. reaction temperature
2. speed of reaction
3. relative safety of the reaction

The DTA measurements were made with a Eberback DTA Apparatus in ambient air. While the
measurement of the temperature at which reactions took place are within the accuracy of the
apparatus, the absolute calorific values calculated from theses runs are only semi-quantatitive. In
some cases, scans showed two peaks with a shoulder due to the reaction of the materials and
subsequent oxidation.

The results are tabulated in Table III. The test samples that contained lithium perchlorate
are not included as this material reacted too violently during the test and was rejected based on
safety considerations.

The Hi-Therm material was assigned a value of 1.2 Kcal/gm and was used as the standard
for the equipment and test samples. As the results indicate, the addition of TiH; and cesium
compounds do not materially effect energy output or the reaction temperature. Based on these
results, the 50 : 50 mix of Ti/2B and TiH,/2B was chosen as a starting point for initiating the
ionization testing.

B.3 Ionization Measurements
The feasibility of producing MHD power depends on the ability to produce a stream of hot

H, gas seeded with ionized potassium or cesium ions etc. using the intermetallic reaction Ti + 2B
as the heat source. Accordingly, GSI devised an ionization apparatus shown schematically in
Figure B.1 and pictorially in Figure B.2. In this apparatus a pressed pellet of the intermetallic
mixture containing the seed compound is enclosed in a cylindrical brass test chamber
approximately 3.0 inches in diameter and 6.0 inches long which is evacuated. The pellet is housed
in a small basket of Molybdenum wire which is supported on a pair of insulated feedthroughs. A
12.6 volt, 10.0 ampere transfer is connected to these feedthroughs to supply power for pellet
ignition. This transfer is connected to a “Variac” which is normally set to about half the line
voltage. The test chamber is polarized, by means of a small power supply, so that it is 20 volts
positive with respect to the pellet. (It was experimentally determined that polarizing voltage is not
critical). A 2.0 ohm precision resistor is connected in series with the power supply to measure
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CALORIES
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current flow. A Fisher Recordall Series 5000 Omniscribe Chart Recorder is connected across the
resister to record the current.

Tests were run with the recorder set for 1.0 volts full scale and with a chart speed up to 2.6
cm per minute. Unfortunately, this system has limitations in that the response time of the recorder
was not fast enough to fully resolve the pulse shape even when running at the maximum chart
speed. Tests at the high chart speed seem to indicate a pulse duration in the order of 1/2 second, as
all the pulses seem to look alike, except for amplitude and it has become fairly common to run tests
with a chart speed of 2.5 cm per minute.

Figure B.3 show a typical electron density trace for T1 + 2B + 5% CsNOz and .7 TiH, +
3Ti + 2B + 5% CsNO;. Note that both currents peak at near the same value indicating that the
presence of hydrogen has a negligible effect on electron output. Former work* had shown that for
the experimental conditions of chamber pressure at ~.02 atmospheres, the electron output using
these materials is about 45 percent of theoretical maximum.

It was concluded from these results that there was a choice in the seeding methods available
for rendering the hot hydrogen gas stream conductive. Easily ionized compounds can be added in
situ to the hydrogen source as was demonstrated here, or alternatively, injected downstream in a
more conventional manner.

C. SMALL REACTION CHAMBER AND INSTRUMENTATION

C.1 R ion_Chamber

The initial testing was carried out in the GSI (2’ x 3’) vacuum tank fitted with a chamber
designed to hold up to a 100 gram charge. Figure C.1 shows diagrammatically the experimental
arrangement. The reaction chamber consisted of a combustion chamber which holds the charge, a
diaphragm and a wire screen. The test cell which housed the conductivity cell, pressure sensor and
optical window was fitted with an expansion nozzle which allow the generated gases to flow into
the vacuum tank (dump tank). The charge was initiated electronically.

During the course of testing, different thickness diaphragms were used (to control
duration of release) usually of polyethylene ranging from 2 mils to 25 mils. The wire screen was
fine mesh molybdenum wire initially used to reduce particle flow. The optical window was used in
the initial testing to record the spectra of the flow in order to determine temperature in the test cell
(also called measurement chamber).

In the later testing, the wire screen and diaphragms were removed and replaced with 10 mil
grafoil as the results indicated extensive heat loss to the surroundings.

In addition, a burst disc port was incorporated in the measurement chamber to act as a relief
valve if the pressure exceeded 10 atmospheres (relief port set for 15 atmospheres). On the early
experiments it was found that the burst disc would thermally degrade due to the hot particulates.
Subsequent tests incorporated the burst disc at the end of elbow tubing to prevent this.

* Zavitsanos, PD & Semon, H. “Exothermic Pellet Development for Wake Augmentation” -
Final Report. GSI, Plymouth Meeting PA November 1986.
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In Figure C.2a is shown a picture of the reaction chamber and combustion chamber assembled and
the attachment to the wall of the vacuum chamber through the expansion nozzle and the burst disc
port (melted by the hot particulates).

C.2 Instrumentation

The goal of this program was to develop a pulsed ionized gas source of high velocity.
From theoretical consideration (see Appendix B), it was determined that conductivities approaching
100 S/M at pressures of 10 atmospheres were attainable. Consequently, instrumentation was
developed to measure temperature, pressure and conductivity.

For the pressure measurements, the measurement chamber was fitted with a pressure port
connected to a coiled copper tubing ending in a Setra pressure transducer (Figure C.2b). The
coiled copper tubing was necessary to allow the gas to cool before reaching the transducer. A
photograph of the plasma flow in the vacuum tank is shown in Figure C.3.

~ The measurement of conductivity in a high temperature pulsed flow presented a challenge
as existing probe configurations would not be usable. Our initial attempts at measuring
conductivity utilized a high temperature conductivity probe described in Reference 13. A drawing
of the RF high temperature probe is shown in Figure C.4. Enameled copper wire is wound around
an alumina tube which is encased in a boron nitride cylinder to protect against the high temperature
plasma. A low power RF frequency is applied to the coil.

The method is based on the interaction of a small R.F. field with a conducting fluid. The
created RF magnetic field, B, of the coil (Figure C.4) also creates a perpendicular electric field,

E(t), which in turn produces in the plasma small R.F. currents of density j(t) = 6 E(t). The ohmic
dissipated energy density j E2 is proportional to the plasma conductivity ©. When the dissipated

power is measured external to the probe, & can be determined. One of the difficulties of this probe

is due to the attenuation of the dissipated power density varying as r4 from the coil. Consequently,
the size of the casing and distance from the coil was an important consideration. In addition, the
impressed frequency must be much less than the collision frequency of the electrons; otherwise
D.C. conductivity is not measured (valid at high pressure).

The probe was calibrated against known conductivity values of KCl solutions. Initially
calibrations were made before and after each run.

In our attempts to use this probe, it was found that it was not sensitive enough to produce
meaningful dissipation measurements. After several attempts to use this conductivity probe, it was
abandoned.

A conventional double electrode probe was used to measure the conductivity of the
remaining tests. Initial operational tests used two tungsten wire electrodes which proved
successful. A modification was made by incorporating tantalum electrodes (to define the area of
measurement more precisely) and shielding the tungsten wire with alumina tubes. A diagram of
the tantalum double probe is shown in Figure C.5. This probe was used for a substantial number
of tests until it appeared that the tantalum electrodes became non-responsive (i.e. lost sensitivity)

16




FIGURE C.2a. MHD COMBUSTION CHAMBER AND
MEASUREMENT CHAMBER ASSEMBLED

i

FIGURE C.2.b. MHD REACTOR CELL ATTACHED TO VACUUM TANK
SHOWING THE COUPLED COPPER TUBING
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FIGURE C.3. VIEW IN VACUUM TANK SHOWING PLASMA FLOW FROM
NOZZLE AND BURST DISC PORT
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probably due to hydrogen “poisoning”. For the remainder of the tests a conventional tungsten
electrode double probe was used without the tantalum electrodes.

The double probe was excited by 60 Hz voltage with a peak of 20 volts. The resulting
current change was recorded during the test and an effective resistance was obtained. The probe
was calibrated against known conductivity KCl solutions (certified by Fischer Scientific) and an
effective cell constant was derived.The final conductivity was obtained from,

G = A (probe constant in meter!)
R (ohms)

The probe was calibrated before and after each test. The raw data was recorded on a conventional
stereo tape recorder by converting the raw voltage signals to frequency. The process was reversed
and presented to the computer for processing. The overall recording scheme developed under this
program is diagramed in Figure C.6. In order to reduce the labor of data reduction, a computer
program was also written. In this program, the average resistance is determined (i.e. from the V-I
profile) every 20 milliseconds. The conductivity is then obtained from the probe constant and
measured resistance to produce a temporal conductivity profile. The overall procedure used on all
our tests is diagramed in Figure C.7. A listing of the program used to reduce the raw voltage and
current data to temporal conductivity is reproduced in Appendix C.

D. TEST RESULTS FROM ,
The results of the first series of tests are shown in Table IV. Initially a SO : 50 mixture of
Ti/2B and TiH, with a 50 gram total charge were used. We employed a fiber optic photometer to

measure the light output from the hot particulates in the measurement chamber fitted with an optical
window. The correlation between light output and temperature is shown in Figure D.1. Using

this curve an estimate of temperature could be made in order to determine the efficiency of
conversion of heat of combustion of the reaction to temperature. For these tests pressure
measurements were made with a typical pressure profile shown in Figure D.2.

The first three tests indicated a great loss of energy based on the low temperature. It was
decided to confirm this by using the RF probe to measure conductivity and an optical spectrograph
(1.5 Meter Bausch and Lomb) to determine what species may be contributing to the low
temperature. The spectra confirmed the low temperature by the presence of TiH molecule (a low
temperature species) and by the calcium reversal method. The RF probe failed to produce
meaningful results; however, the low temperature ~1500°K indicated unexpected energy losses in
the system. In tests 8 and 9, the ratio of TiB, to TiH, was increased as was the amount of charge
to allow a more efficient energy transfer to the TiH, . This increased the temperature by about
500°K but still too slow to obtain substantial conductivities (see curve in Appendix B).

In Table V is shown the second series of tests (number 10 to 15) in which the RF probe
was abandoned and replaced by the double tungsten probe with tantalum electrodes. As the table
indicates, the difference between seeded and unseeded flow showed a factor of 10 change in

conductance (mhos). Although, the results were encouraging, the conductance values were still
too low.
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At this point in the program, we instituted the computer program to obtain temporal
conductivity from the raw voltage/current data instead of just recording conductance. Runs #14
and #15 were evaluated in terms of conductivity. For run #16 our instrumentation failed and only
pressure data was recorded. Run #17 was conducted as a replacement for #16.

In Figures D.3 and D.4, are shown the pressure profiles for runs #16 and #17 indicating
some variance between runs. In Figure D.5 and D.6 are shown the calibration procedure used in
the remainder of the rins. In D.5, a system check was always made before the run with a known
resistor between the tantulum electrodes. In D.6 is shown the calibration curve using 45umhos/cm
KCI solution from which the probe constant is determined (i.. in this case K = .285 cm1).

In Figure D.7 is shown the composite curve of the measured conductivities for seeded and
unseeded flows. Although the conductives were still low, the difference was very sizable.

Starting with run #18 and running to #21 the ratio of Ti/2B to TiH, was maintained but the
charge increased to 100 grams as it was felt that the low fuel mass contributed to heavy losses to
the environment. In addition, changes were made to the diaphragm and screens to allow freer
particle flow. The conductivity profiles are shown in Figure D.8. As the flow became less
restricted the conductivity increased although erratically. Note the change of conductivity scale in
run #21. At this stage of development program, conductivities of about .1 to 1 S/M were being
achieved but still erratic.

During this period, our tantulum double probe failed (i.e. lost sensitivity) and it was
decided to revert back to the double tungsten probe insulated partly with an alumina sleeve. It was
additionally decided to compact the fuel (similar to solid rocket fuel) and remove all diaphragms
except the screen. Additional tests were conducted at 200g fuel weight. Pressures in excess of 20
atmospheres were recorded with subsequent destruction of the double probe. After several
attempts at the higher fuel weight, destroying several probes in the process, the fuel weight was
scaled back to 120 grams with only the screen present in the chamber. The runs between #22 and
#26 were operational tests in which the probes were destroyed. The result of the compacted fuel
with screen is shown in Figure D.9 (run #27). With the compacted fuel, the conductivity appears
to be less erratic and has increased by a factor of 10 over previous tests. In addition, it is noted
that the peak pressure slightly exceeds 10 atmospheres. Tests #28 and #29 were additional
operational tests to improve the performance over #27; however, #27 seemed optimum.

A final sequence of tests were conducted in which the screen was removed maintaining
120 grams of compacted fuel. Tests were run with and without the seedant (CsNO3) . The
conductivity results are shown in Figure D.10. Although still somewhat erratic, the conductivity
increased by almost another factor of 10.

In Figure D.11 is shown an overview of all the small scale tests. This is indicated by the
dotted rectangles against the theoretical predictions of a cesium seeded hydrogen plasma at 10
atmospheres. For all the tests conducted, the mole percent ranged from .01 to .06. As can be seen
from Figure D.11, as the restrictions (diaphragms) were removed there appeared to be more
efficient transfer of the heat of the reaction to hydrogen.

At this point, it was felt that the highest conductivity was achieved for the small scale
testing. It was then prudent to scale the fuel weight up to reduce the loss of energy to the
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MHD CELL ASSEMBLY
PRESSURE vs TIME
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environment and reduce edge effects. This scaled up series of tests are discussed in the next
section.

E. SCALED-UP TESTING (2 ram 1 Kilogram

The series of small scale testing established the optimum charge to TiH, ratio and provided
the data necessary to increase the charge weight high enough to provide a significant reduction in
the edge effects (i.e. loss of energy to the canister).

A theoretical analysis was performed by Dr. Charles Marston in which he established the
relationship between the length/diameter ratio of the reaction chamber and nozzle area. The
calculations are presented in Appendix D.

Based on these results a new reaction chamber was designed and fabricated. The goal was
to test the system entirely in vacuum using three double tungsten probes situated near the center of
the reaction chamber, one located at the end of the chamber and one located at the exit expansion
nozzle. In addition, a fiber-optic cabled photometer was located at the end of the reaction chamber
(i.e. stagnation region). The purpose of the photometer was to correlate the measured temperature
with measured conductivity at the stagnation region. The method of correlating the photometric
measurements with temperature is described in Appendix E.

A drawing of the scaled-up system is shown in Figure E.1. The overall size of the
combustion chamber was 5.5 inches in diameter and about 7” long. The reaction chamber was
about 11.5” in diameter and about 30 long. :

The entire unit was placed in a 7 foot diameter by 40 foot long vacuum chamber located at
the Franklin Research Center, Elverson, PA. This facility has been used in the past to test GSI and
CRESS canisters for space flight releases.

The operating vacuum for this test facility is about 300 microns. It has the capacity to test
fuel charges up to 15 kilograms.

The combustion chamber was designed to take up to a kilogram charge. Lower charges
were used initially, filling the remainder of the space with fire brick. In addition, diaphragms of
25 mil grafoil sandwiched between 10 mil mylar sheets were used.

In the first test a total charge of 250 grams was used containing 70% by weight of Ti/2B,
25% by weight of TiH,/2B and 5% by weight of CsNO,. Calibrations of the three probes were the
same as carried out as in the small scale tests.

In Figure E.2 is shown the assembled unit, the combustion chamber, the tungsten probes
and the conductivity profile obtained from a 250 gram fuel charge test. In addition to the pressure
and light measurements, video were also taken from the side of the Franklin Research vacuum tank
of the flow from the nozzle and end-on video were taken 40 feet from the nozzle.

The conductivity profile of this configuration and charge was very uniform from the
stagnation probe. The center probe was destroyed during the test while the probe at the expansion
nozzle showed a drop of a factor of 50 as expected (Figure E.3). The light probe data and pressure
date are shown in Figure E.4. The light probe data indicated temperatures in excess of 2500°K

(probe data off scale) and pressure at its peak of about 6 atmospheres. The duration of the pulse as
indicated by E.2d was about 1/2 second.
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Due to the success of the 250 gram test, the next test was conducted at a charge of 500
grams with a stiffer (i.e. several layers of mylar) diaphragm in an effort to communicate even more
energy to the hydride. This test failed to ignite and due to funding and time limitations was not
repeated.

The next test, deéignated MHD #3, we chose to increase the fuel charge to 1 kilogram with
a lighter diagram (3 layers of mylar). This was repeated twice (MHD #4 and MHD #5). In MHD
#5, the stagnation probe was destroyed and conductivity measurement could not be obtained. The
results of MHD #3 and MHD #4 tests are shown in Figure E.5. In test #3, all three probes
survived and are designated as follows:

Probe 1 - CENTER OF REACTION CHAMBER

Probe 2 - STAGNATION REGION

Probe 3 - FRONT OF EXPANSION NOZZLE
In test #4, probe 3 failed to record and Probe #1 was nearly destroyed so that the results are not
reliable.

Due to time restrictions, the testing was terminated at this point.

F.  CONCLUSIONS AND RECOMMENDATIONS
Although additional testing at the higher fuel weights would have been desirable, the
available data indicates that fuel weights cannot be scaled up directly (i.e. single canister holding
the higher fuel weight charge). As evidenced from MHD runs #3 and #4 (Figure E.5) the kilogram
charges produced spiked flows with very high conductives while MHD #1 at 250 grams (Figure
E.2d) indicated a uniform plasma flow. In addition, the nature of the diaphragm becomes an
important developmental parameter as a strong a diaphragm holds back the flow too long leading
to an explosive discharge. Conversely, if the diaphragm is too weak, the flow is released over a
longer period of time leading to lower temperature due to higher radiative cooling effects.
Based on our limited data, we can conclude the following:
1. Higher fuel weights cannot be scaled directly.
Type and strength of diaphragm used can determine type of release.
Nearly theoretical conductives can be achieved with Hi-Therm.
. Weight scaling can be achieved by modular design.
In the design of the larger test chamber it was envisioned that the
conductivity probe would be located as close as possible to the exit jet of a
conveying nozzle, then the flow at the probe would be approximately
sonic, see Appendix D, Figure D.3. However, the nozzle “as built”, was
converging/diverging with an area ratio of about 1.8, see main text Figure

W A WN

E.1, item 5. This area ratio with an isentropic expansion ratio of about 1.16
corresponds to about Mach 3, a temperature ratio of about .58 and a
pressure ratio of about .0.2 While the lower pressure tends to increase
conductivity, the temperature effect dominates, see Figure A.2 (b). For
example, if stagnation conditions were 3000°K and 10 atmospheres, then at
the nozzle exit, the pressure would be about 0.2 atmospheres and the
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temperature about 1740°K. The resulting conductivity, based on Figure
A.2 (b) drops from about 100 S/M to about 2 S/M, a factor of 50. These
numbers must be taken as quantative in view of the many complexities
involved in the measurements. The drop in conductivity at the exit nozzle as
measured, see Figure E.3, is therefore not surprising.

Some expansion of the flow was necessary to cover the probe but in
a large scale system an MHD generator would be operated in the range of
0.8 <M < 1.2, in which case the temperature would be about 90% of is
stagnation temperature.

The discussion does not take into account the heat loss but while the
magnitude of the heat loss in a larger system would be larger, the greater
optical thickness in a larger system should reduce the loss relative to the
fatal energy of the flow.

6. The measurement of a low conductivity at the center of the chamber was
surprising as it was expected that conductivity within the chamber should
have been more or less uniform. It is possible that some additional
chemistry is taking place within the chamber that somehow reduces the
temperature. In any future work, this effect will have to be investigated.

7. The effect of velocity on the double probe was an initial concern as the
probe was calibrated statically. It was believed that as long as the probe was
measuring electron flow and not ionic flow and the velocity of flow
relative to the electron velocity is low there will not be an appreciable effect
on the probe measurements due to the flow velocity.

As a result of this testing and analysis, the following is recommended for further work.

1. Redesign combustion chamber into modules of 250 grams to produce large
volume high conductivity flows.

2. Experiment with different diaphragm materials and thicknesses to control
flow uniformity and duration.

3. Experiment with other Hi-Therm materials which can achieve very high

-temperatures (~4000°K) leading to even higher conductives (~200 ---> 300

mhos/meter).

4. Experimental program to devise techniques to reduce the energy of reaction

transfer to the surroundings (e.g. insulator investigation).
Overall, a plasma source generated by solid intermetallic compounds such as Hi-Therm can
provide a pulse of electrical energy for a time period of the order of a few seconds. This system
has an indefinite storage life and is instantly available.

While scaling to the magnitudes envisioned for SDI Space Applications faces many
obstacles, the technology may well find applications on a smaller scale where the above noted
features are advantageous.
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G. ESTIMATION OF FUEL WEIGHT REQUIREMENTS FOR SDIO
APPLICATIONS

The original intent of this program was to develop a new type of fuel to be used for a
pulsed MHD heater to power pulsed space weapons. Typical estimates of requirements are over
100 megawatts of powef per pulse (1/2 - 1 sec) for repetitive pulsing of up to 1000 seconds.

The power density that can be generated by a heater source can be written as,

Pp = 1/4 602 B2 (G.1)

where G is the conductivity in mhos/meter, v the flow velocity in meters/sec and B the applied

magnetic filed in Teslas with Ppy in watts/meter3. Assuming a 15% extraction efficiency, (G.1)

becomes,
Pp (extracted) = .04 ¢ v2 B2 (G.2)

“The volume of the large scale tests were on the order of .05 M3 for a 250 gram fuel weight. Then
from (G.2), the power extracted for this volume is,

P(watts) = Pp(extracted(.05)) = .002 o v2 B2 (G.3)

The average conductivity as measured in this program was about 100 mhos/meter.
Assuming flow velocities in the order of 400 meters/sec., (~MACH 1.2) the expected power
extracted per module of 250 grams is on the order of 100 kw/(Tesla)2.

Assuming in space applications, 5 Tesla can be achieved, a 250 gram charge could be
expected to deliver about 0.8 megawatt/charge. For a 100 megawatt power source, approximately
31 Kg would be required per pulse. Assuming the pulses are on the order of 1 second, then for
1000 seconds about 31,000 Kg of fuel would be required (about 34 tons).

These estimates can only be realized when sufficient improvements have been made. The
estimates of fuel weight requirements can be halved if higher temperature fuels can be developed
using Hi-Therm technologies (in progress at GSI), leading to higher conductivities (~200 - 300
mhos/meter). '
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APPENDIX A

EVALUATION OF THE POTENTIAL OF HEATED HYDROGEN AS THE
WORKING FLUID IN A LARGE. SPACED BASED, MHD POWER
GENERATION SYSTEM

Two parameters of interest in the evaluation of heated hydrogen as a working fluid are
energy per unit mass and mass flow rate per unit area.

To obtain an order of magnitude estimate of the energy per unit mass, temperatures of
30009K and 2400°K were assumed for the generator inlet and exit respectively. At 3000°K and
moderate pressure, dislocation is significant so it was taken into account, assuming equilibrium for
the reaction ‘

Values for the equilibrium constant and for ideal gas enthalpies of diatomic and monatomic
hydrogen were taken from Reference 14. Energy per unit mass was established in two ways.

First it was assumed that 70% of the enthalpy change between 3000°K and 2400°K  could be
converted to useful electric power. Second an enthalpy extraction of 25% was assumed.
Table A.I (text) shows the results of calculations based on these assumptions. The two

methods are quite consistent and in line with the extrapolation to very large scale generators shown
in Figure A.1. While probably optimistic, they indicate the potential of an order of magnitude

improvement over combustion systems.

To calculate mass flow per unit area, chocked flow of an ideal gas at a stagnation
temperature of 3000°K and stagnation pressures of 1, 10 and 100 atmospheres was assumed.
This is not fully consistent with the data in Table A.I but it will indicate the orders of magnitude,
molecular weight as calculated from the equilibrium composition. Specific heat ratio at one
atmosphere was obtained by extrapolation for 3600°F (2255°K) of data from Reference 15. It was
then assumed that a higher pressures with less dissociation the specific heat ratio would approach
the value of 1.4 associated with a low temperature diatomic ideal gas.

Table A.II shows the results of that calculation. The low molecular weight of hydrogen
tends to reduce mass flow per unit area and argues for operation at higher stagnation pressures.
However, this reduces electrical conductivity and thus will tend to limit enthalpy extraction.
Optimum operating pressure will require a trade-off between system size - especially magnet size -
and generator performance.

Based on the above estimates (i.e. 14 MJ/kg at 10 Atm) and the original requirement of

100 MW-10? seconds, (which translates to 105 MJ) one estimates a total of 7.14 x 103 kg of H,
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TABLE A.l

ELECTRICAL ENERGY PER UNIT MASS OF HYDROGEN

* Electrical Energy Per Unit Mass of Hydrogen

PRESSURE TEMPERATURE 0.7 AH 0.25H
(ATM) 3000K 2400K (MJ/Kg) (MJ/Kg)
(1 @ (1) (2)
1.0 146 77384 .016 36776 28.4 19.3
10.0 049 55156 .005 34331 14.6 . 13.8
~100.0 016 47602 .002 33553 9.8 11.9

NOTES: (1) Mole fraction monatomic hydrogen
(2) Enthalpy KJ/kg

TABLE A.ll

MAXIMUM MASS FLOW RATE (CHOCKED FLOW)

PRESSURE MOL WT Cp/C v FLOW RATE
(ATM) ' (kg/s-m?)
1.0 1.868 1.29 18.4
10.0 1.967 1.35 192.3

100.0 2.000 1.40 1964.
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required (i.e. about 7 tons) to be generated, at an average rate of 7.14kg/sec. The amounts of
different fuels required to heat all the hydrogen to the desired temperature (~3000°K, 55 x

103KJ/kg) are shown in Table A.IIL
TABLE A.IIL

Reaction System Energy Minimum Total Weight
(Fuel and Oxidation)

Ti + 2B (or Ti + C) 5 K/g 78.54 x 103kg
B/0, 18.4 kj/g 2134 x 103kg
Ti/2B/Li/0, 17.5 kjlg 22.44 x 103kg
Ti/2B/8B/0, 17.2 ki/g 22.83 x 103kg

In conclusion it is interesting to note that one requires H, - flow rates in the vicinity of 7
kg/sec and corresponding reactants of the order of (23 - 78) kg/sec. -
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APPENDIX B.

ALCULATI E S

One of the tasks under this program was the development of a method for screening
candidate solid fuels. A simple inexpensive experimental setup can be used to identify promising
candidates for large scale testing was desired. '

1.0 Electrical n ivi

The primary property of interest is electrical conductivity and initial work was devoted to
developing a capability for theoretical calculation of conductivity. The equations discussed below

were programmed using Turbo Basic (B.I) on an IBM compatible desktop computer. The program
listing is included as Appendix B.L

Rosa (B.2) gives the following equation for scalar electrical conductivity, including
expression for electron-ion cross-section

o= he€ [ ! ]
Me Ve %nﬁQﬁ-fz.en;(g%iéﬁTl@n_/\_

ELS
12T T
A _,____..(gg_!gﬂ_

Ne e*

where

ne Electron number density (#/m3)

e electron charge (1.60219E-19 Coulomb)
m,  electron mass (9.10956E-31 kg)

Ve mean random electron thermal velocity (my/s)

n particle concentration (#/m?3)

Q collision cross-section (m?3)

€ permittivity of free space (8.85419E-23 J/K)
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Boltzmann constant (1.38062E-23 J/K)

.....

temperature (Kelvin)
A Debye shielding length

- a x
(OS]
Pt
N

Electron concentration was calculated from the Saha Equation (B.2, B.3)

. €
NeNi _ (ammerT) ™ 2 g¢ e~ ——Ktl'>

nS h33°

where
ng concentration of seed atoms
ne electron concentration (#/m3)
ny ion concentration (#/m3)
h Planck’s constant (6.6260E-34 J-s)
& ionization potential of the seed atom (3.89 eV for Cs)
g; statistical wt of ground state of ion (1 for Cs)

o statistical wt of ground state of neutral (2 for Cs)

Rosa (B2) gives a convenient form for calculation which was used directly (after some
effort to evaluate units consistency).

_Ne N \_-5040 .._3 5040 4 |oqio 293¢ 4 26.9366
Loguo(n,,s-m)' 27 €% begF S "

in which noj is the original concentration of seed atoms.
A mixture of hydrogen and cesium was assumed. The hydrogen was assumed to be
dissociated but not ionized. Equilibrium constant for dissociated was interpolated from values

tabulated in VanWylen and sonntag (B.4). Hydrogen dissociation and cesium ionization were
assumed to be independent.

Results are shown in Figure B.1 a. If conductivity in the range of 10 to 100 S/m is to be
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achieved at a pressure of order 10 atmospheres, temperatures of order 3000 K will be necessary.
Figure B.1b. indicates that seeding in excess of 1% (seed fraction 0.1) produces little additional
conductivity. this effect is a consequence of the large collision cross-section of the cesium atoms.

Appendix B.1. gives detailed particle concentrations at 3000° Kelvin and Table B.1 gives
the program listing.

Since these calculations do not take into account the effect of the presence of other,
possibly electronegative, species, the curves of Figure B.1. are probably optimistic.

REFERENCES
B.1. Turbo BASIC, Borland International, Inc. Scotts Valley CA.

B.2. Rosa, R. J., Magnetohydrodynamic Energy Conversion, McGraw-Hill, N.Y,, 1968.

B.3. Frost, L. S., “Conductivity of Seeded Atmospheric Pressure Plasmas”, Journal of Applied
Physics, Vol. 32, No. 10, Oct 1961, pp 2029-2036. '

B.4. VanWylen, G. J. and R. E. Sonntag, Fundamentals of Classical Thermodynamics, 3rd SI
Version, Wiley, 1985.
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APPENDIX B.1

CONDUCTIVITY AND PARTICLE CONCENTRATIONS FOR A CESIUM-
SEEDED HYDROGEN PLASMA AT 3000°K.

PTOT= 1.00 SEED FRACTION=0.0010
T= SO0QOK HET=32H: MOLE FR H=0.1464

NCS=1.8Z4E+21

NHZ=Z. OBSE+Z4 NH=3.5
+=4, 4ZZE4Z0O  NTOT=Z.44E5E+Ed

NE-=4,4Z3E+Z0 NCS
PTOT= 10.00 SEED FRACTION=0.0010

T= 3000K HZ< =»2M: MOLE FR H=0.0483
NHZ =2, SZ4E+2S NH=1.194E+Z4  NCS=Z. ZZ7E+ZZ
NE-=1.586E+21 NCS+=1.586E+21 NTOT=Z.44E6E+LS
PTOT= 100.00 SEED FRACTION=0.0010

T= 3000K HZ<=3ZH: MOLE FR H=0.0157

NHZ=Z . 405SE+ZE NH=3.842E+24  NCS=X.374E+I3
NE-=5.2Z21E+21 NCS+=5.2Z1E+21 NTOT=2,446E+Z6

PTOT= 1.00 SEED FRACTION=0.0100

T= S000K Hz<=32H: MOLE FR H=0.1470
NHZ=2.0EEE+24 NH=Z.SE1E+23  NCS=Z.11EE+ZZ
NE-=1.SOEE+21 NCS+=1.S0EE+Z1 NTOT=Z.446E+24
PTOT= 10.00 SEED FRACTION=0.0100

T= Z000K H2<=32H: MOLE FR H=0.0#31
NHZ=2.303E+25 NH=1.18JE+24  NCS=2.334E+23
NE-=5.134E+Z1 NCS+=S.134E+Z1 NTOT=Z. 446E+LS
PTOT= 100.00 SEED FRACTION=0.0100

T= 3000K Hz<=32H: MOLE FR H=0.0158

NHZ=2.3B3E+Z6E NH=3.82SE+24  NCS=2.410E+24
NE-=1.EE3E+22 NCS+=1.663E+22 NTOT=Z.44EE+ZE
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FS=1,137E+20Q

SIGMA= 71.%

kS=1.157E+Z0

SIGMA= 3=,

M

KS=1.1S7E+Z0

SIGMA= 11.73

KS=1, 1S7E+Z0

SIGMA= 130.9

KS=1.157E+:0

SIGMA= 72Z.4

KS=1.157E+Z0

SIGMA= Z3.7

S/M

S/M

S/M

S/M

S/M




TABLE B.1.

PROGRAM LISTING FOR THE CONDUCTIVITY AND PARTICLE
CONCENTRATIONS FOR A CESIUM-SEEDED HYDROGEN PLASMA.
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»

REM ELECTRICAL CONDUCTIVITY OF HYDROGEN CESIUM MIXTURES

REM DISSOCIATION BUT NO IONIZATION OF HYDROGEN

REM DISSOCIATION AND IONIZATION EQUILIERIA ASSUMED INDEPENDENT
REM CONSTANT TOTAL PRESSURE

REM PRESSURE CORRECTED FOR DISSOCIATION OF HZ

REM AND FOR CESIUM IONIZATION

DIM PATMC10), XSECTC(10), NPC10), TEKHDIS(ZO), LNKHDISCZO)
DIM TPLOT(S0Q), SIGPLOT(SO)

REM EQUILIERIUM CONSTANT FOR HYDROGEN DISSOC (VAN W % S TAELE A.14)

DATA 1000, -39.803, 1200, -30.874, 1400, -24.463
DATA 1600, =-19.637, 1800, -15.866, 2000, -12.840
DATA 200, -10.353, 2400, -08.276, TE00, -06.S517
DATA 2BOO, -05.00%, 3000, -03.685, 23200, -02.534
DATA 3400, -01.516, 3600, -00.926, 3800, OO.Z0F
DATA 4000, 00.934, 4500, 0Z.486, SO00, 03.72S
DATA SS00, 04,743, E000.001, O05.530

FOR I=1 TO Z0
READ TKHDISCID
READ LNKHDISC(IV
NEXT I

REM PHYSICAL CONSTANTS

Cl=6212.3%9 TL(B*k)/(PI%*me)]1~0.5, MAXWELL VEL
Cz=7.3373EZ7 "[1.013ES/k], PARTICLE CONCENTRATION
C3=58040 'CCe/k)/7(1n102], CONST IN SAHA EQUIL EQ
Ca4=26.33€6 "ANOTHER CONSTANT IN EQ 2.3, ROSA
CS=1.25886E7 T12%PI*(epsO*k/e~2)™1.5, DEEYE LENGTH
Ce=€.39812E-11 'e2/(8%PI*epsO*xk)y, FOR FQAION
C7=2.81733ZE-8 'e~2/me, FOR CONDUCTIVITY

REM THREE SPECIES H2, H, CS PLUS ELECTRONS AND IONS
KMAX =3
EI=3.83
GI=1
Go=2
EPS=.0001

REM CROSS-SECTIONS: 1=HZ, 2=H, 3=CS.
XSECT(1)=13.8BE-Z20

REM IN AESENCE OF DATA XSECT OF H ASSUMED SLIGHTLY LARGER THAT

REM THAT QOF HZ. COMPARE 02 AND O OR Nz AND N, SUTTON % SHERMAN PG 133
XSECT(2)=15E-20
XSECT(Z) =B00E-20

CLS

REM DEFAULT VALUES (SEED FIRST)
PTOT=1.0
SEEDFR=. 001

START:

REM TOTAL PRESSURE AND PARTIAL PRESSURES

REM WITH NO DISSOCIATION OF H2z OR IONIZATION OF CS
PRINT
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(I Rl =,

A I il M

PRINT USING “ﬂ##.ﬁﬁ“;PTDT;

PRINT " ATM";
PRINT " SEED FRACTION=";
PRINT USING "#.f####"; SEEDFR
INPUT" CHANGE PRESSURES? (Y, N OR Q)
IF CH$="Y" THEN
INPUT" TOTAL PRESSURE (ATM)
IF PTQT <= O GOTO START
INPUT" SEED FRACTION
IF SEEDFR <= O GOTO START
ELSEIF CH$ = "Q" THEN
GOTQ QUIT
ELSEIF CH% "N" THEN
GOTO START
END IF

POHZ=PTOT* (1 -SEEDFR)
POCS=PTOT*SEEDFR

REM PLOT FILES OR INDIVIDUAL OUTPUTS (NEED DECISION
INPUT™ WRITE FILES TO PLOT® (Y OR N» :
IF WF$% = "N" THEN

GOTO SINGLE
ELSEIF WF$ =

Tk =1400

NPLF=0

NMAX =26

GOTO WFILE
ELSE

GOTO START
END IF

"Y' THEN

WFILE:
REM SET UP OUTPUT FILE AND WRITE RESULTS TO IT
NPLF=NPLF+1

", CHS
" PTOT

", SEEDFR

EEFORE TEMPERATURE)
", WFS

TE=TK+100
IF NPLF » NMAX THEN
INPUT" FILENAME : ",F$
OPEN F$ FOR QUTPUT AS #1
FOR NP=1 TO NMAX
| PRINT #1, USING " +i##. ##### -~ TPLOT(NP); SIGPLOT(NP)
| NEXT NP
| CLOSE 1
| GOTO START
1 ELSE
| GOTO DISSOC
i END IF
\
 SINGLE:
| REM SINGLE ENTRY WITH OUTPUT TO SCREEN AND PRINTER
INPUT" HARD COPY? (Y OR N» : ", HC$
IF HC$ <3 "Y" AND HC$ «3» "N" GOTO SINGLE
INPUT" ENTER TEMPERATURE (0O TO QUIT) : “,TK
IF TK = O GOTO QUIT
DISSOC:

REM DISSOCIATION EQUILIERIUM
FOR I=1 TO 20
IF TK < TKHDISC(I)
IF I =1 THEN

THEN
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PRINT "TEMPERATURE LESS THAN [QQO K"
STOP
END IF
INTERP=(TK~TKHDISC(I-103/(TKHDIS(I)»-TKHDIS(I-1))
LNK=LNKHDISC(I-1)+INTERP* (LNKHDISCI) -LNKHDISCI -1
KHDIS=EXP CLNK)
GOTO MOLEFR
END IF
NEXT I
“10LEFR:
XH=SAQRC(KHDIS/POHZ) / (4+ (KHDIS/POHZY ) )
MLFH=C2%XH) /7 C1+XH)

REM SAHA EQUIL CONST, R0OSA, EQUATION Z.3 (#/M3)
FKS1=-(C3/TKI*EI
FrSZ=~1.S%#L0G10QCCZ/TK)
FES3=+C+
FKS4=LOG10O(Z*BI/G0)
LOGKS=FKS1+FKSZ+FKSES+FKS4
KS=10"L0OGKS

REM ELECTRON DENSITY RELATIVE TO UNDISSOCIATED H2Z <#/M3)
NOCS=CZ*POCS/TK
F1=KS/ (4%¥NQCS)
FZ=KS/NOCS
XE=SQAR(FZ)*(SARC1+F1)-SARCF1))
NE=XE#NOCS

M CORRECTED PARTIAL PRESSURES (ATM) AND PARTICLE CONCENFRATIDNS
DEN=(1+XH)* (1 -SEEDFR)+(1+XE) *SEEDFR
PPC1)=C1-XH)*POHZ/DEN
PP(2) =2%XH*POHZ/DEN
PP(3)=(1-XE)*POCS/DEN
PP(4) =XE*POCS/DEN
PP(S)=PP(4)

PCHECK =0

NTOT=0

FOR N = 1 TO S

PCHECK =PCHECK+PP (N

NP (N) =C2*¥PP(N)/TK

NTOT=NTOT+NP (N)

NEXT N

NECORR=NP (5D

IF ABS((PCHECK-PTOT)/PTOT)> > EPS THEN
PRINT "PARTIAL PRESSURES DON’T CHECK"Y
STOP

END IF

REM

REM DERYE LENGTH
LAMBDA=CS*(TK"~1.3)/NECORR™(1/3)

REM n*Q FOR ELECTRON-ION COLLISIONS
FQION=CE/ (Tk™2)
NI=NECORR
NQION=2.9%NI*FQION*LOG(LAMEDA)

REM CROSS SECTION (KMAX=3, FOR THREE UNCHARGED SPECIES: H2, H, CS)
FQ=0

EFNR Ww=1 TN VMAY ~
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T O I OO T A I I I ED=DTT—,—mmm///m/m/m/m/m/mm—mmm//r— /e e

FLEFONP () X XSECT ¢
NEXT K

FQ=FQ+NC 10N
FQR=1/FQ

EM MAXWELL VELOCITY (M/SEC)
CE=C1*SQR(TK?

EM CONDUCTIVITY
SIGMA=C7#* (NECORR/CE)*FQR
IF WFs = "Y" THEN
TPLOT C(NPLF) =Tk
SIGPLOTCNPLF)»=LOG10O(SIGMA)

GOTO WFILE
END IF
IF HC$ = "Y" GOTO HARD

EM QUTPUT TO SCREEN
PRINT
PRINT " =";
PRINT USING "####.";TK;
PRINT "k";
PRINT " Hz<=3>ZH: MOLE FR H=";
PRINT USING "i#.####"; MLFH;
PRINT " KS=";
PRINT USING "#.###~~n~1; kS
PRINT
PRINT "  NHz=";
PRINT USING "#.### " "~";NP(1);
PRINT " NH=";
PRINT USING "#.###" """ ;NP(2);
PRINT "  NCS=";
PRINT USING "#.###" " NP(2)
PRINT "  NE-=";
PRINT USING "#. ### " a0 NP () ;
PRINT " NCS+=";
PRINT USING "#.### " " NP(S);
PRINT " NTOT=";
PRINT USING “#.###" """ ;NTOT;
PRINT " SIGMA=";

PRINT USING "####.$#";5IGMA;
PRINT " S/M"

GOTO START

‘EM HARD COPY

iARD:
LPRINT " PTOT=";
LPRINT USING "#H###, ##"; PTOT;
LPRINT " GSEED FRACTION=";
LPRINT USING "#. ####"; SEEDFR
LPRINT
LPRINT * =",

LPRINT USING "####."; TK;
LPRINT "K";

LPRINT " HZ<=>ZH: MOLE FR H=";
LPRINT USING "#.####"; MLFH;

LPRINT " KS=";

LPRINT USING "#.#i##™~" """ KS
LPRINT
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IT:

LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT

" NH2=l' ;

USING "#.##Hmm

g NH=";

USING "#. ##H4gmm

" NCS=";

USING "#. H#gmm-

" NE_:H;

USING "# ., s

n NCS'+=”;

USING "#. #pp

"ONTOT=";

"yNPC1);

My NPCZD

"SNP (3D
"PNP D

"y NPCSY;

USING ll# . ###l"u"'.f‘.._-‘sll ; NTDT;

. SIGMA=";

USING “####.#";SIGMA;

1 S/Mll

GOTO START

PRINT

END

"PROGRAM EXITS"
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APPENDIX C

PROGRAM LISTING FOR CALCULATING TEMPORAL CONDUCTIVITY
FROM VOLTAGE VS, CURRENT DATA

This data reduction program is designed to operate automatically when used properly.
Make sure that your data file is in two columns (A and B), with 1220 row in each column, and in

an existing lotus file on a floppy disk.
NOTE: THE DATA SHOULD BE IN TWO COLUMNS WITH V AND |

Answer the questions properly and the program should output your calculated data file on
the C: drive in the Sigmaplot files directory under the filename you choose.

Please do not give the output data file a name that already exists in that directory!
Do you want to continue? (YorN) Y
MACRO AREA

O {GOTO} I1~{goto} N18~(?}~
(IF @CELLPOINTER(*CONTENTS")="Y"}{BRANCH BEGIN}
(IF @CELLPOINTER(“CONTENTS”)="y"} {BRANCH BEGIN}

QY

BEGIN {(GOTO}I38~
(WINDOWSOFF} {GOTO}AA1~
J/ECCNAL1. .B1200~{esc}a:~{?}~
{CALC}{GOTO}138~{ WINDOWSON}-

_{BRANCH XTRACT}
/IC /C~(PGDN}~
XTRACT {goto)i58~{ WINDOWSOFF} {GOTO}AP10~
[FXV{ESC}{ESC}A:~(?}~
{(RIGHT) {PGNDN} (PGDN}~

(GOTO}178~{WINDOWSON} {BRANCH EXIT}

EXIT {goto}178~{q}/QY
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APPENDIX D

LARGER SCALE TEST FACILITY DESIGN

The design of the small scale test facility was based on a model which assumed a steady-
state flow, that is, for the estimated burning rate of the solid, it was assumed that gas flow rate out
of the chamber was equal to the rate of gas generation.

The data seems to have indicated that the steady-state assumption is not valid. More likely,
the solid burns in a small fraction of the run time, during which pressure and flow rate build up,
followed by a more or less exponential pressure decay as the remaining gas discharges.

Analyzing the flow on this basis, “it was assumed that the gas temperature in the chamber
is constant at the nominal stagnation value during the buildup phase and that the subsequent decay
phase is isentropoic. Both assumptions are obviously very rough but they do lead to a qualitative
pressure trace which is a reasonable representation of the actual data.

There are uncertainties in the data, considerable run-to-run variation and some question
regarding the effect of the blowout diaphragm, so the results must be considered very approximate.

Reference 1 (below) was used as the source for molecular weight and for the expansion
coefficient (i.e. the value of k for the isentropic relation between pressure and density). At 3000
Kelvin they are equal to 1.97 and 1.16 respectively.

Based on a previous analysis, it was implicitly assumed a burning rate such that 1 kilogram
of mixture would burn in 1/2 second. However, shorter burn times at fixed chamber volume and
fixed maximum pressure then means smaller total mass flows.

Table D.I shows a new reference case designated ND1 (for-New Design 1). The calculated
performance is based on the model discussed above.

1. Patch, R. W., “Thermodynamic Properties and Theoretical Rocket Performance of

Hydrogen to 100,000 K and 1.013E+08 N/m?”’, NASA Lewis Research Center, NASA SP-3069,
1971.
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PRESS RETURN :
GAS CONSTANT=
ZPMAX= 1.Q000
CHERDIACIN) =14.89

4220.3

FLIEGNER CONSTANT=0.003986
ZASTR= 0.2000

L/D= 2,50
ASTR(MZ2) =7.300E-0S

ZH2FLOW= 1.0000
CHERLENCIN) 37 .23
NOZDIACIND =3.736E~01

ZVoL= 0.0080

VOL (M3) =0, 108250

TOICK)=3000 TAUC(SEC)>=0,638 TIME TO PEAK(SEC)=0.412

HZ MASS(KG)=1.154E-02Z TOTAL MASS(KG)=8.134E-01

PMAX(ATM>= 10,0
IT0I= 1.00
H2 FLOW RATE(KG/8)=0.02800
TIME P P2
0.00 0.000 21.567
0.10 3.049 17.830
0.20 S.€55 14.776
C.20 7.884 2,275
0.40 3. 730 10.221
0.50 11.420 8.3531
0.60 12,8123 7.135
0.70 14.004 S.981
0.80 15.023 9.025
0.90 15.893 4.230
1,00 16.638 3.568
1,10 17.275 2.015
1.20 17.81% 2.533
1,30 18,285 2.166
1.40 18.683 1.841
1.50 19.025 1.568
1.60 19.314 1,337
1.70 15.563 1.143
1.80 19.775 0.978
1,90 19.957 0.838
2.00 20.113 0.720
2.10 20.2486 0.619
2,20 20.359 0.533
2,30 20,457 0.,4€0
2.40 20.540 0.3498
2.590 20.611 0.344
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The total mass of reactants for Case ND1 is approximately 0.8 kg. Two sets of variations about
this reference case was calculated.

Figure D.1 shows comparison of the reference case (Curve 1) with cases where the
chamber volume is halved (Curve 4) and doubled (Curve 5) holding nozzle area constant. The
larger volume can accommodate a larger charge of reactants without exceeding 10 atmospheres and
results in a slower pressure decay.

Figure D.2, volume is held constant and nozzle exit is halved (Curve 6) and doubled (Curve 7).
The mass of the reactant charge does not stay constant. A larger nozzle opening results in a longer
rise time because the difference between rate of gas production and gas discharge is smaller.
Moreover the difference in these rates is reduced as flow rate increases with pressure sos the rate of
pressure rise increases. Thus, assuming a constant burning rate, more mass is needed. The larger
nozzle also results in a more rapid pressure decay.

Data for these variations in shown in Table D.II. For all cases the chamber is assumed
cylindrical. Chamber size is shown for three values of the ratio of length to diameter (L/D).
Choice of L/D will partly depend on length needed for instrumentation and on space or structural
limitations. From a fluid dynamic standpoint, L/D should be a minimum of 1.5 and preferably 2
or more.

As a result of this analysis, an L/D of 2.5 was chosen for the design of the MHD heater for
the large scale testing (case ND 4).

The downstream conductivity probe was mounted (Probe #3) in the jet from a converging
nozzle, Figure D.3. Expanding the flow in a supersonic nozzle would have lowered the
temperature significantly.
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FIGURE D.1. PRESSURE VS. TIME FOR THREE DIFFERENT CHAMBER VOLUMES,
NOZZLE AREA CONSTANT. 1=REFERENCE CASE; 4=VOL/2;
5=VOL X 2. SEE TABLE D.Il FOR DETAILS.
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FIGURE D.2. PRESSURE VS. TIME FOR THREE DIFFERENT NOZZLE CROSS-
SECTIONS. 1=REFERENCE CASE; 6=AREA/2; 7=AREA X 2.

SEE TABLE D.lIIl FOR DETAILS.
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FIGURE D.3. NOZZLE DETAIL
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APPENDIX E

PHOTOMETRIC MEASUREMENT P T

Hydrogen gas at 3000°K does not radiate appreciably. In order to measure temperature
within the reaction chamber, it was necessary to measure the particle temperature and assume it
was nearly the same as the gas temperature to support the conductivity measurements.

It was decided to measure the particle temperature by measuring it’s visible output. The
visible output can then be correlated to blackbody temperature (see Figure D.1.). The Hi-Therm
material generates particles that are nearly black (emissivity of the order of .9) allowing a direct
measurement of particle temperature. The advantage in using the visible output is the strong
dependence on temperature (i.e. visible output is proportional to about T!0). As a result even a
larger error in visible intensity measurement has a much smaller error in the temperature
measurement.

The photometer used was designed and fabricated at GSI. It consisted of a silicon

photodiode detector fitted with a photopic filter (i.e.filter/detector combination that has a spectral
response resembling the eye spectral response). The detector was fitted with a fiber-optic cable
which was used to interface with the chamber. For the large scale tests, a window placed at the
stagnation region of the chamber with a right angle prism interface to a 6 foot long fiber-optics
cable which then interfaced to the outside port of the Franklin Research vacuum tank. The entire
fiber optics/photometer system was then calibrated using a visible light source against a NBS
calibrated United Detector Technology Photometer.
The measurement is based on the following photometric relationship,

¢ =B Qpyy

where ¢ is the flux density measured at the entrance to the fiber-optic cable (units of lumens/meter2

- LUX), B, is the source brightness (units of lumens/meter? steradian) and Q gqy is the solid angle
formed by the field-of-view of the fiber-optic system, right angle prism, window and limiting

apertures. For the measurements made in the large scale tests, the Q goy was approximately .013

steradians. Consequently a measurement of ¢ divided by Q poy is a measure of the source

brightness.
For example in the 250 gram test, Figure E.4, the flux measured was in excess of 42,000

LUX. Dividing by the Q ggy gives a brightness in excess of 2.8 x 106 LUX/steridian.
Converting to cm? yields a brightness in excess of 320 candles/steradian (STILBS). Referring to

Figure D.1 yields a particle temperature in excess 2400°K. This value is a minimum temperature
for two reasons:
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(1).  The sensor saturated (note flat top of curve E.4). It is estimated that the flux
was at least twice this value based on the sharp use and decay leading to a
minimum temperature of at least 2600°K .

(2).  The particle cloud is not optically thick. Based on previous tests it is
estimated that the particle cloud emissivity is about 0.5 leading to a
brightness of at least 1200 stilbs. This is equivalent to a brightness
:temperature of about 2700°K.

Based on a pressure of about 6 atmospheres for this test, the expected conductivity should

be about 80 S/M (see Figure B.1). The measured conductivity was about 100 S/M. The
correlation of measured temperature and conductivity are seen to be within the experimental errors

noting the many assumptions that have been made.
It might have been useful to have incorporated a fiber optic photometer at the center of the

reaction chamber to see how the temperature correlated with the low conductivity measured there.
However, due to the complexity of the instrumentation used it would have required extensive
modifications to the reaction chamber.
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