OFFICE OF NAVAL RESEARCH

Grant or Contract No. N00014-95-1-0302,
PR# 97PR02146-00

Technical Report No. 326

Exciplex Emission from Bilayers of Poly (vinyl carbazole) and Pyridine-Based Conjugated Polymers

by

Submitted to

Journal of Chemical Physics

The Ohio State University
Department of Physics
Columbus, OH

February 6, 1998

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

This statement should also appear in item ten (10) of the Document Control Data DD Form 1473. Copies of the form available from cognizant or contract administrator.
We present photoluminescence and electroluminescence studies of bilayers and blends formed from poly (vinyl carbazole) (PVK) and poly (pyridyl vinylene phenylene vinylene) (PPyVPV) copolymer derivatives. Bilayers of PVK and the PPyVPV copolymers have a photoluminescence emission which cannot be assigned to either the photoluminescence of PVK or the PPyVPV layer. The blends of the two polymers show a similar new photoluminescence emission for a large range of concentrations. Absorption and photoluminescence excitation spectra confirm that the additional feature is an excited state species which resulted from an exciplex at the polymer/polymer interface. Bilayer light-emitting devices utilizing the PPyVPV copolymers show an electroluminescence spectrum consistent with emission from the exciplex. The efficiency of the bilayer devices as compared to single layer devices increases by over 3 orders of magnitudes due to the 4exciplex formation and the elimination of exciton formation near the luminescent quenching electrodes.
Exciplex emission from bilayers of poly(vinyl carbazole) and pyridine based conjugated copolymers

D.D. Gebler and Y.Z. Wang

Department of Physics, The Ohio State University, Columbus, Ohio 43210-1106

D.-K. Fu and T.M. Swager

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139

A.J. Epstein

Department of Physics and Department of Chemistry, The Ohio State University, Columbus, Ohio, 43210-1106

(September 15, 1997)

Abstract

We present photoluminescence and electroluminescence studies of bilayers and blends formed from poly(vinyl carbazole) (PVK) and poly(pyridyl vinylene phenylene vinylene) (PPyVPV) copolymer derivatives. Bilayers of PVK and the PPyVPV copolymers have a photoluminescence emission which cannot be assigned to either the photoluminescence of PVK or the PPyVPV layer. The blends of the two polymers show a similar new photoluminescence emission for a large range of concentrations. Absorption and photoluminescence excitation spectra confirm that the additional feature is an excited state species which results from an exciplex at the polymer/polymer interface. Bilayer light emitting devices utilizing the PPyVPV copolymers show an electroluminescence spectrum consistent with emission from the exciplex. The
efficiency of the bilayer devices as compared to single layer devices increases by over 3 orders of magnitudes due to the exciplex formation and the elimination of exciton formation near the luminescence quenching electrodes.
I. INTRODUCTION

Conjugated polymer based light-emitting devices [1–10] have been a topic of great interest since the report of electroluminescence (EL) in poly(phenylene vinylene) (PPV) [1]. A large variety of conjugated polymers, copolymers and their derivatives [2,9] exhibit EL properties, including PPVs [1,3,10], poly(phenylphenylene vinylene), polyphenylenes, polythiophenes, polyquinolines, polypyridines [5,6], poly(pyridyl vinylenes) [11–13] and many derivatives and copolymers of these materials. The configurations of these devices may consist of a simple single layer [1,2], or bilayers [2] and blends [7] used to enhance efficiency and tune the emission wavelength, or multilayers that may allow the device to operate under an AC applied voltage [6,14]. One method for improving efficiency is insertion of a hole-transport (electron blocking) layer between the anode and emitting polymer and/or an electron-transport (hole-blocking) layer between the cathode and emitting polymer. A well known and commonly used hole-transport (electron blocking) layer is poly(N-vinyl carbazole) (PVK) which has a large band gap (3.5 eV) and is itself luminescent [7,8,15]. PVK is an extensively studied photoconductive polymer which often forms exciplexes with organic molecules, e.g., dimethyl terephthalate [16]. Recently, there has been interest in exciplex formation between PVK and conjugated polymers. Osaheni and Jenekhe [17–19] reported PL due to exciplex formation in bilayers of poly(p-phenylene benzobisoxazole) (PBO) and tris(p-tolyl)amine, but not EL, although they suggest exciplexes may be important in light-emitting devices [17]. Recently, PL and EL exciplex emission from blends of PVK and a conjugated/non-conjugated multi-block copolymer was reported [7], but emission from separate layers was not studied.

II. EXPERIMENT

The synthesis of the PPyVPV copolymers is described elsewhere [20]. Figure 1 shows the schematic molecular structure of poly(vinyl-carbazole) (PVK) which forms a hole transport
layer and the poly(pyrindyl vinylene phenylene vinylene) (PPyVPV) copolymers used in these studies. We report results for a two-ring repeat copolymer (Fig. 1b) with side groups R_1=COOC$_{12}$H$_{25}$, C$_{12}$H$_{25}$ and a macrocycle ('wrap') OC$_{10}$H$_{20}$O which connects the two sides of the phenyl ring. Figure 1c shows another copolymer with a OC$_{10}$H$_{20}$O wrap on every other phenyl ring and side groups of R_2=C$_{12}$H$_{25}$ or OC$_{16}$H$_{33}$ on the remaining phenyl rings. All of the copolymers are soluble in common organic solvents such as tetrahydrofuran (THF), xylene, and chloroform. The PVK was purchased from Aldrich Chemical Co. The PL and EL measurements were made using a PTI QM1 luminescence spectrometer. The absorption measurements were made using a Perkin Elmer Lambda 19 UV/Vis/NIR spectrometer. The current-voltage characteristics were measured using two Keithley 195A multimeters. The voltage was applied using a HP 6218A dc power supply. Quantum efficiency measurements were made using a calibrated United Detector Technologies Silicon Photodiode (UV-100).

The samples for PL and absorption measurements were spin cast on quartz. The PVK was spin cast (~3000 rpm) from a 10 mg/ml solution in THF. When bilayers were made the copolymers were spin cast (~1000 rpm) from xylene (~10 mg/ml) so the underlying PVK layer was not dissolved. If single layers of the copolymers were used either xylene or THF was the solvent. In the case of blends of PVK and the copolymers a mutually compatible solvent, typically THF, was used. The blend ratios ranged from 0.05% (copolymer in PVK by weight) to 50% as well as pure PVK and copolymer films. For devices the polymers were spin cast on indium tin-oxide (ITO) substrates (Donnelly Applied Films), which had previously been patterned and cleaned. The PVK layer in the bilayer configurations was dried for ~30 seconds in a laminar flow hood before the copolymer layer was spin cast. All fabrication steps for the devices were conducted in ambient atmosphere in a Class 100 cleanroom. Aluminum electrodes were thermally evaporated onto the copolymer surface at low pressures (<10$^{-6}$ torr). To prevent damage due to heating the substrates were mounted on a cold water cooled stage during Al deposition. In addition, evaporation rates were ~ 0.5 – 1.4 Å/s for the first 100 Å of deposition and then increased to ~ 3 – 5 Å/s until the desired thickness was reached (usually 1000 to 2000 Å). The active area of the devices was
III. RESULTS

Figure \ref{fig:absorption} shows the absorption of PVK (dashed), PPyVPV(COOCC_{12}H_{25}) (dotted), a bilayer of PVK/PPyVPV(COOCC_{12}H_{25}) (solid) and a blend of 10\% (wt:wt) PPyVPV(COOCC_{12}H_{25}) in PVK (dot-dash). The absorption of the single PVK layer has an onset at 3.5 eV and shows maxima at 3.6 and 3.75 eV similar to previous reports \cite{7,8}. It is clear that the absorption of the bilayer system is nearly a sum of the two individual absorptions with no new features, as expected for no significant interaction between the two polymers. Similarly, the blend shows no new ground state transitions, although the concentration of PPyVPV(COOCC_{12}H_{25}) in the PVK is small therefore diminishing the strength of copolymer absorption relative to the PVK absorption. Figure \ref{fig:absorption}b shows the same general behavior for the four ring repeat wrapped copolymer, wrapped PPyVPV(R_2=OC_{16}H_{33}). In this case the copolymer film is somewhat thicker and has a higher optical density, leading to the larger absorption. All features in the bilayer or blend absorption spectra are assignable to one of the two constituent polymers.

The absorption spectra are very similar to the corresponding photoluminescence excitation (PLE) spectra, Figs. \ref{fig:ple}a,b. The PLE also probes the presence of any new ground state transitions, as the PL is monitored at the peak wavelength of the PL while the excitation wavelength is changed. For both bilayer systems the PLE is the sum of the individual PLEs. The blends (10\% copolymer in PVK) also show no new absorption features as compared to the individual layers. \textit{The lack of any new absorption or PLE features in the bilayer or films blends implies that the new emissive species giving rise to a new emission in the bilayer or blends is not directly accessible from the ground state of the copolymer or PVK.}

Figure \ref{fig:pl}a,b shows the PL of a single layer of (a) PPyVPV(C_{12}H_{25}) and (b) PPyVPV(COOCC_{12}H_{25}), a single layer of PVK and a bilayer of PVK with each of the two-ring repeat copolymers. The PL of single PVK layers was excited at 3.6 eV and has a
peak emission energy at 3.05 eV, as previously reported [7,8]. The PL for both single layer copolymer films excited at 3.1 eV show emission peaks near 2.05 eV which is considerably red shifted due to aggregation [13,21] from the solution PL (not shown) which are peaked at 2.6 eV. When the bilayers were excited at an energy equivalent to the excitation energy for the single PVK layer (3.6 eV), the PL emission spectrum contains contributions from both individual layers (3.05 eV and 2.05 eV), as well as from a completely new species emitting at 2.5 eV, which we identify with an exciplex. For the PPyVPV(COOC12H25) copolymer there is a weak shoulder on the low energy side of the exciplex near the PL emission energy for the single layer of the copolymer. In both cases when the bilayer is excited at an energy less than the absorption edge of the PVK, but greater than the absorption edge of the copolymer the PL (not shown) is peaked at the same energy as the single layer PL although there is a low intensity tail to the blue side. The variation in the PL intensity was measured as a function of both the excitation energy and the emission energy, as is shown in Fig. 5 for PPyVPV(COOC12H25). At excitation energies above 3.6 eV the PL due to the exciplex and PVK are apparent, but if the excitation energy is lowered below 3.4 eV these peaks essentially disappear. As the excitation energy is further lowered into the peak absorption of the copolymer, PL from the copolymer strongly dominates (excitation energy 2.6 to 3.0 eV and principal emission energy 1.8 to 2.2 eV).

The exciplex phenomena is not restricted to the unwrapped copolymers. Figure 6 shows the PL for single layer films (solid), bilayer films (dashed) and PVK (●), for the three copolymers wrapped PPyVPV(OCl16H33) (a), wrapped PPyVPV(C12H25) (b), and wrapped PPyVPV (c). In each case the excitation energy used to excite the PL in the bilayers is at the first peak of the PVK absorption, with the resulting exciplex emission peak near 2.4 eV. The PLE spectra of the bilayers of wrapped copolymers and PVK are similar to those of the unwrapped copolymers in the same configuration, with the exciplex emission drastically reduced when the excitation energy falls below 3.5 eV. A notable feature for the wrapped PPyVPV(OCl16H33) copolymer is the high energy shoulder in the single layer PL which is closer to the solution PL of this copolymer (not shown) and is attributed to
unaggregated sites in the film. The same shoulder (now on the low energy side) also appears in the bilayer film, supporting that the PL has contributions from exciplex sites and from unaggregated regions of the wrapped copolymer. Note that this shoulder appears when the bilayer film is excited and monitored from either side, indicating self absorption is not the cause. The wrap around every other ring tends to disturb the aggregation that occurs in the unwrapped copolymers of this family. The PL of both wrapped PPyVPV(C_{12}H_{25}) and wrapped PPyVPV show shoulders in their single and bilayer configurations, respectively, that are attributed to unaggregated regions.

The PL efficiency of the bilayers films was measured for the five copolymers and compared to that of the single layer films (Table I). For bilayers excited with wavelength less than 330 nm, the principal emission is that from the radiative decay of the exciplex at the interface. The reduced emission from exciton creation in the bulk of the PVK and copolymer films implies that a substantial fraction of these excitons migrate through the thin (~40 nm) films to the interface where they either form exciplexes or undergo non-radiative decay. This exciton diffusion length is similar to that reported for PPV [22]. Hence, we use the total absorption of the bilayer film to calculate the PL efficiency (as not all of the excitons migrate to the interface this tends to underestimate the efficiency). All of the copolymers show very high efficiencies in solution, but due to aggregation [13,21] the film efficiencies are substantially lower in single layer films.

We have blended wrapped PPyVPV(OS_{16}H_{33}) with PVK at concentrations varying from 0.05% to 50% copolymer in PVK (by weight). Figure 7a shows the PL intensity of the blends normalized by the absorption of the PVK at the excitation wavelength (330 nm). The PL of pure PVK (●) is identical to that shown in Figs. 4 and 6. A PL peak assignable to the exciplex begins to emerge at concentrations as low as 0.05% copolymer with a clear peak at 2.4 eV observed at concentrations greater than 0.1% (■). An additional shoulder is seen at 2.2 eV for concentrations 0.1% and higher. As the concentration increases to 10% the total PL intensity increases as well, but the peak and shoulder positions do not shift, indicating the effect is not due to dilution of the emissive chromophores by the host
polymer PVK. At the highest concentration reported here (50%) both the exciplex and PVK exciton PL are significantly reduced, but the PL that remains has retained the same features as that of other blend concentrations, with most of the luminescence originating from the exciplex emission. Hence at high concentrations the excitons tend to migrate to the interfaces where they can radiatively decay via exciplexes. When the exciplex PL peak of the blends are normalized (to their maximum value at 2.4 eV), the low energy shoulder of the PL (2.2 eV) increases in intensity as the copolymer concentration increases (see Fig. 7b), indicating there is increased emission from the copolymer unaggregated sites (as compared to exciplex emission) in the films. Figure 7c shows the PL of the 10% blend with the bilayer of wrapped PPyVPV(OC_{16}H_{33}) and PVK and a single layer of wrapped PPyVPV(OC_{16}H_{33}). The bilayer and blend are very similar implying that the principal emission is from the same exciplex species.

We fabricated bilayer devices using ITO as the anode and aluminum as the cathode. Figure 8 shows the EL spectrum of typical ITO/PVK/PPyVPV(COO_{12}H_{25})/Al and ITO/PVK/wrapped PPyVPV(OC_{16}H_{33})/Al devices with the PL spectrum from the same devices and individual polymer layers. The devices can easily be seen in a brightly lit room and appear bright green to the eye. The similarity between the PL and EL of the bilayer devices demonstrates that the exciplex is responsible for the EL emission. Figure 9 presents the current density-voltage and brightness-voltage characteristics for a typical single layer (ITO/wrapped PPyVPV(OC_{16}H_{33})/Al) and bilayer (ITO/PVK/wrapped PPyVPV(OC_{16}H_{33})/Al) device. The device structures are shown in the insets. The turn-on voltage of the bilayer devices is significantly increased over the single layer device due to the additional thickness and the insulating nature of PVK. The turn-on voltage for the bilayer in this case is $\sim 18 - 20$ volts, with the brightness following the current. The maximum brightness for the bilayer device shown is 300 cd/m², a more than 50 times increase over the single layer device. In addition to the increased brightness, the current density for the bilayer device is 5-10 times lower, indicating an increase in efficiency of 3 orders of magnitude from less than 0.0001% for the single layer to $\sim 0.1 - 0.5$% for the bilayer. The increase in
turn-on voltage can be remedied through the use of polyaniline network electrodes [12,23] which lowers the threshold voltage to below 10 volts while maintaining the same efficiency and brightness [12].

The increase in efficiency of the bilayer device compared to the single layer device is primarily due to charge confinement at the PVK/copolymer interface. The electrons are injected from the Al electrode into the conduction band of the copolymer, but are confined when they reach the electron blocking PVK. Also, the holes are injected into the valence band of the PVK and are confined at the copolymer interface. The electron and hole blocking at the interface enhances exciplex formation. That the electrons and holes are unable to easily conduct through both layers leads to a small current density (≤ 1 mA/mm2) and hence a greatly increased efficiency. In addition, the buried interface implies that most of the radiative recombination will occur at the interface and away from the EL quenching electrodes.

Quenching at the electrodes has been reported for phenylene vinylene oligomers by Park et al [22] and in MEH-CN-PPV by Becker et al. [24]. Becker et al. also note that the removal of the recombination zone away from the metal electrode to a polymer/polymer interface is crucial to increasing the EL efficiency in their PPV/MEH-CN-PPV bilayer devices [24]. In order to probe the effect of the electrodes on the luminescence properties of our single and bilayer films a number of samples were fabricated on ITO. Electrodes were evaporated on single layers of PVK and wrapped PPyVPV($OC_{16}H_{33}$). On each film the PL was measured in the vicinity of and far from the electrode with the exciting light entering the sample from the ITO side and recording the EL from the ITO side. The insets of Fig. 10 show the device configurations. The relative PL intensities of PVK at these two locations for 330 nm excitation wavelength (Fig. 10a) shows that the PL increases modestly when the excitation light is incident on the electrode. In the absence of quenching an increase in PL intensity is expected for two reasons: reflection of the excitation light by the Al and reflection of the photoluminescence by the Al. The small increase for PVK indicates significant quenching near the Al electrode. Figure 10b shows the same experiment for a single layer of wrapped
PPyVPV(OC_{16}H_{33}) using a 450 nm wavelength excitation. The nearly two-fold decrease in PL intensity indicates extensive quenching by the Al electrode for this polymer.

For bilayers in which the luminescence occurs primarily at the interface the PL and EL intensity should be unaffected by the presence of the electrode, i.e., no quenching should occur. Figure 11b shows the PL intensity for a PVK/wrapped PPyVPV(OC_{16}H_{33}) bilayer with a 330 nm excitation (experimental configuration shown in Fig. 11a). When the excitation wavelength is incident on the evaporated Al electrode the PL intensity increases dramatically. The increase is attributed to the reflection of the luminescence and the excitation light. The large increase indicates that very little if any quenching occurs at the Al electrode implying that the emission is primarily occurring at the polymer/polymer interface. Figure 11c shows the PL intensity of the bilayer when the lower energy excitation is used (450 nm). In this case the PL intensity is also increased, but the emission is shifted away from the single layer emission to the exciplex (interface) emission, when the exciting light is incident on the reflecting electrode. Although the low energy excitation is used, the emission at the interface is observed because the wrapped PPyVPV(OC_{16}H_{33}) PL is quenched at the electrode and the interface emission is enhanced. Energy is transferred from excitons in the wrapped PPyVPV(OC_{16}H_{33}) to exciplexes at the interface. The diffusion coefficient for excitons in the wrapped PPyVPV(OC_{16}H_{33}) can be estimated from the diffusion distance (\(\sim 10^{-6} \) cm) and the lifetime of the exciton in the copolymer (\(\sim 1 \) ns) [13], giving a diffusion coefficient of \(\sim 10^{-3} \) cm\(^2\)/s. Thus, exciplex emission in the bilayer devices substantially reduces the effects of quenching by electrodes that occurs in single layer devices.

IV. CONCLUSION

In summary, bilayers of PVK and poly(pyridyl vinylene phenylene vinylene) copolymers show a new strong photoluminescence and electroluminescence feature assigned to exciplex emission at their interface. The absorption and PLE spectra show that the emitting species is not directly accessible from the ground state. Blends exhibit photoluminescence which
confirms the presence of exciplex emission. The exciplex is also the primary species of
electroluminescence emission in the bilayer devices. The electroluminescence emission sites
are removed to the polymer/polymer interface away from the quenching metal/polymer
interface, greatly increasing device efficiency.

This work was supported in part by the Office of Naval Research.
TABLES

<table>
<thead>
<tr>
<th>Polymer</th>
<th>PL Q.E.</th>
<th>PL Q.E.</th>
<th>PL Q.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solution</td>
<td>Film</td>
<td>Film w/PVK</td>
</tr>
<tr>
<td>PPyVPV(C<sub>12</sub>H<sub>25</sub>)</td>
<td>0.87</td>
<td>0.14</td>
<td>>0.18</td>
</tr>
<tr>
<td>PPyVPV(COO(C<sub>12</sub>H<sub>25</sub>)</td>
<td>0.70</td>
<td>0.17</td>
<td>>0.10</td>
</tr>
<tr>
<td>wrapped PPyVPV(OC<sub>16</sub>H<sub>33</sub>)</td>
<td>0.93</td>
<td>0.05</td>
<td>>0.07</td>
</tr>
<tr>
<td>wrapped PPyVPV(C<sub>12</sub>H<sub>25</sub>)</td>
<td>0.86</td>
<td>0.13</td>
<td>>0.09</td>
</tr>
<tr>
<td>wrapped PPyVPV</td>
<td>0.83</td>
<td>0.10</td>
<td>>0.19</td>
</tr>
</tbody>
</table>

TABLE I. The PL quantum efficiencies of solutions and films
FIGURES

FIG. 1. Molecular repeat unit of (a)PVK, (b) PPyVPV(R1)V and (c) wrapped PPyVPV(R1)V. The side groups can be R1=COOC12H25, R1=C12H25, or R1=wrap:OC10H20O and R2=OC16H33 or R2=C12H25.

FIG. 2. (a) Absorption of films of PVK (---), PPyVPV(COOC12H25) (· · ·), a bilayer of PVK and PPyVPV(COOC12H25) (—) and a blend (10%) of PPyVPV(COOC12H25) and PVK (----). (b) Absorption of PVK (---), wrapped PPyVPV(OC16H33) (· · ·), a bilayer of PVK and wrapped PPyVPV(OC16H33) (- - -) and a blend (10%) of wrapped PPyVPV(OC16H33) and PVK (----).

FIG. 3. (a) PLE of films of PVK (---), PPyVPV(COOC12H25) (—), a bilayer of PVK and PPyVPV(COOC12H25) (- -) and a blend (10%) of PPyVPV(COOC12H25) and PVK (· · ·). (b) PLE of films of PVK (----), wrapped PPyVPV(OC16H33) (—), a bilayer of PVK and wrapped PPyVPV(OC16H33) (- -) and a blend (10%) of wrapped PPyVPV(OC16H33) and PVK (· · ·).

FIG. 4. (a) PL of a PPyVPV(C12H25) film (—) and PVK film (♦)) and a bilayer PVK/PPyVPV(C12H25) (- -). (b) PL of a PPyVPV(COOC12H25) film (—) and PVK film (♦)) and a bilayer PVK/PPyVPV(COOC12H25) (- -).

FIG. 5. PL of a bilayer PVK/PPyVPV(COOC12H25) as a function of both excitation energy and emission energy.

FIG. 6. (a) PL of a wrapped PPyVPV(OC16H33) film (—) and PVK film (♦)) and a bilayer PVK/PPyVPV(OC16H33) (- -). (b) PL of a PPyVPV(C12H25) film (—) and PVK film (♦)) and a bilayer PVK/PPyVPV(C12H25) (- -). (c) PL of a wrapped PPyVPV film (—) and PVK film (♦)) and a bilayer PVK/PPyVPV (- -).
FIG. 7. (a) Normalized PL intensity of films of wrapped PPyVPV(OC\textsubscript{16}H\textsubscript{33}) in PVK (% PPyVP(OC\textsubscript{16}H\textsubscript{33}) by total weight). The PL intensity was normalized by dividing by the absorption at 3.6 eV (excitation energy). (b) PL intensity of the same films as in (a) with intensity normalized to 2.4 eV. The 2.2 eV shoulder in the PL increases with increasing weight % copolymer. (c) PL of a 10% blend of wrapped PPyVPV(OC\textsubscript{16}H\textsubscript{33}) in PVK (—), a bilayer PVK/wrapped PPyVPV(OC\textsubscript{16}H\textsubscript{33}) (---) and a pure film of wrapped PPyVPV(OC\textsubscript{16}H\textsubscript{33}) (•).

FIG. 8. Electroluminescence (•) of bilayer devices (ITO/PVK/copolymer/Al) for (a) PPyVPV(COOC\textsubscript{12}H\textsubscript{25}) and (b) wrapped PPyVPV(OC\textsubscript{16}H\textsubscript{33}). The PL (from Figs. 4 and 6) of the single and bilayer films with PVK are shown for comparison.

FIG. 9. Current-voltage and luminance-voltage characteristics for (a) single layer and (b) bilayer devices. The insets show the device structures. The symbol PPyVP*V represents the copolymer PPyVPV(OC\textsubscript{16}H\textsubscript{33}) in the insets. Also shown in (b) is the internal quantum efficiency of the bilayer device.

FIG. 10. PL of films of PVK (A,B) and PPyVPV (C,D) for the configurations shown schematically in the insets. (a) 330 nm excitation and (b) 450 nm excitation.

FIG. 11. PL of bilayer films of PVK/PPyVPV with the configuration shown schematically in (a). The excitation energies were (b) 330 nm (E,F) and (c) 450 nm (G,H).
REFERENCES

Gebler et al., Fig. 1
Gebler et al., Fig. 2
Gebler et al., Fig. 3
Gebler et al., Fig. 4
Gebler et al., Fig. 5
(a) % PPyVPV(OC\textsubscript{16}H\textsubscript{33})

PL Intensity (c/s) normalized by absorption

Energy (eV)

Normalized Intensity (a.u.)

Normalized PL Intensity

1.5 2.0 2.5 3.0 3.5

Gebler et al., Fig. 7
Gebler et al., Fig. 9
Gebler et al, Fig. 10
Gebler et al., Fig. 11