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ABSTRACT

This report covers in detail the research work of the Solid State Division at
Lincoln Laboratory for the period 1 May through 31 July 1997. The topics
covered are Quantum Electronics, Electro-optical Materials and Devices,
Submicrometer Technology, High Speed Electronics, Microelectronics, Analog
Device Technology, and Advanced Silicon Technology. Funding is provided
primarily by the Air Force, with additional support provided by the Army,
DARPA, Navy, BMDO, NASA, and NIST.
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INTRODUCTION

1. QUANTUM ELECTRONICS

Efforts in the development of mid-infrared semiconductor materials over the last several years have
produced laser devices with output power at the -1-W level in 0.5-ms pulses at the temperature attainable
with a compact Stirling cooler. Semiconductor lasers operating in the mid-infrared (2-5 1 im) region are
suitable for infrared countermeasures applications.

2. ELECTRO-OPTICAL MATERIALS AND DEVICES

A technique has been developed for accurate fabrication of micron-sized lenses by mass-transport
smoothing of etched single mesas. A 12-hum cylindrical lens of 0.73 numerical aperture has been formed in
a GaP substrate.

High-power diode lasers consisting of a ridge-waveguide section coupled to a tapered region have
been fabricated in 1.5-lim InGaAsP/InP multiple-quantum-well material. CW output powers of 0.9 W
were obtained with -80% of the power in the near-diffraction-limited central lobe of the far field.

3. SUBMICROMETER TECHNOLOGY

Projection lithography using a 157-nm wavelength laser illuminator has been evaluated as a possible
manufacturing technology for the 100-nm feature-size regime. Optical system design, laser performance,
optical materials, and resists were investigated, and an experimental exposure system was used to pattern
80-nm features.

A new type of diamond field emission cathode has been developed based on the triple junction
effect. Experimental results support the importance of the diamond-metal-vacuum triple junction in the
operation of these devices.

4. HIGH SPEED ELECTRONICS

Experimental results have been obtained for the phase noise of a relaxation oscillator consisting of a
resonant-tunneling diode in series connection with a transmission line, one end of which is shorted. The
resonant-tunneling relaxation oscillator (RTRO) emits a sequence of sharp current pulses that are mode
locked to the fundamental mode of the cavity formed by the short-circuited transmission line, and timing
jitter as low as 200 fs was measured for an RTRO that emitted 30-ps pulses at a repetition rate of 1.1 GHz.

5. MICROELECTRONICS

Monolithic arrays of silicon avalanche photodiodes (APDs) for visible (532 nm) Geiger-mode oper-
ation have been fabricated for use in imaging laser radar systems that will have subnanosecond timing res-
olution and single-photon-per-pixel sensitivity, and a MOSIS CMOS chip is being fabricated that will
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provide timing electronics for a 4 x 4 APD array. From our measurements, external quantum efficiencies
are in the range of 40% on uncoated front-illuminated devices and timing jitters are 140 ps.

6. ANALOG DEVICE TECHNOLOGY

Tunable microwave resonators combining planar superconducting microstrip circuits with ferrite
substrates have been demonstrated. The devices provide tunability of 3% and Q's as high as 5000.

7. ADVANCED SILICON TECHNOLOGY

Integrated circuits in fully depleted silicon-on-insulator material have been fabricated with 0.25-JUm
drawn gate length, and a 1-GHz digital chip has been demonstrated. In addition, simulations have been
used to define a process compatible with 0. 15-pm technology.
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1. QUANTUM ELECTRONICS

1.1 OPTICALLY PUMPED MID-INFRARED SEMICONDUCTOR LASER TECHNOLOGY
FOR INFRARED COUNTERMEASURES

A compact, Stirling-cooled, 4-pm semiconductor laser package prototype using GaSh-based semi-
conductor materials and double heterostructure designs has been built and used in field tests. The package
employed two broad-area diode-pumped semiconductor lasers that were polarization multiplexed to
increase the power and brightness. InGaAs diode lasers operating near 1 pm were used as the pump
source. The output power as a function of pump power of one of the two lasers is shown in Figure 1-1 for a
heatsink temperature of 72 K at different pulse lengths. The drop in power for longer pulses occurs
because of heating of the semiconductor gain element during the pulse. Higher power could be generated
at lower heatsink temperature and with shorter pulses. At 40 K, the maximum combined peak power of
both lasers was 3.5 W at 100-ps pulse length and 2.5-kHz pulse repetition frequency. A beam conditioner
was used to shape the asymmetric beam output into a nearly symmetric profile in both near and far field.
The beam conditioner included a cylindrical beam expander and a multiple-reflection beam segmenter
consisting of two mirrors. In the field, a 2-in.-aperture telescope was used to further narrow the far field,
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Figure 1-1. Power output of broad-area InAsSb double-heterostructure laser.



and 40% of the power was within 1 mrad. The optical transmission through the polarization beam com-
biner and the beam conditioner was only 50% because of beam clipping and nonoptimal optical coatings;
better optics should allow -90% transmission.

The mode of operation of the laser is dictated by the finite cooling capacity of the Stirling cooler,
because the optical-to-optical efficiency of the lasers decreases as the temperature of the semiconductor
gain element increases. The laser was typically operated at a low power level to avoid the inefficiency
regime near the thermal roll-off. Shown in Figure 1-2 is an example of burst mode of operation with a 10-s
ON-period followed by a 300-s OFF-period. It is clear that package output was stabilized after -4 cycles.
In the field, the package was operated at 1.1-W peak power in 0.5-ms pulses at 25% duty cycle (0.28-W
average).
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Figure 1-2. Power output from the Stirling cooler package shown in Figure 1-1. Solid and dashed lines are experiment
and model, respectively. Oscillation and overshoot in the data are due to the power meter response. The pulse length
is 100 pts and the pulse repetition frequency is 2 kHz.

Besides the compact package, other liquid-N2-cooled 4 -tm lasers have been built for laboratory use.
One unit provided 0.2 W cw with a 20 times diffraction limited beam. Other pulse units have operated in a
long-pulse mode (hundreds of microseconds, 0.4-W peak) or a short-pulse mode (tens of nanoseconds,
8-W peak). All of these devices have been pumped near 1 Ym.

Based on the performance of the prototypes, extrapolation to a future package can be done. The key
elements for a better laser package are higher cooling capacity, more efficient optics, better beam quality,
and higher-efficiency devices. For example, pumping at 2/um improves the optical efficiency while reduc-
ing the thermal load in the gain element. The incremental improvement of each of these factors on the
package overall brightness is determined using computer simulation.

H. Q. Le T.Y. Fan
G. W. Turner D. L. Spears
H. K. Choi A. Sanchez
V. Daneu
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2. ELECTRO-OPTICAL MATERIALS AND DEVICES

2.1 MICRON-SIZE LARGE-NUMERICAL-APERTURE MICROLENSES IN GaP
FABRICATED BY MASS-TRANSPORT SMOOTHING OF ETCHED
SINGLE MESAS

Interest in large-numerical-aperture microoptics has been considerable, especially for semiconductor
laser and optical interconnection applications. While most microlenses developed to date are of aperture
sizes of a few hundred microns, smaller micron-size ones can be placed very close to the laser facets for
special beam shaping and compact packaging. The recent mass-transport technique is potentially suitable
for fabricating small lenses [1]-[3]. However, the micron-size profiles would be too small for the conven-
tional multimesa preform approaches. In this work, an alternative approach is proposed, which utilizes the
naturally curved surfaces in the mass-transport smoothing of single mesas. We show that the surface pro-
files can be accurately tailored by controlling the mesa dimensions and the mass-transport kinetics.

Periodically repeated mesas are presented here (see Figure 2-1) because of the simplicity provided
by the use of Fourier series, although Fourier integrals have been used to treat isolated single mesas. By
symmetry, rectangular mesas with equal width and separation (see the dotted curve in Figure 2-1) can be
represented by a Fourier cosine series with only odd-numbered terms,
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Figure 2-1. Mass-transport smoothing of periodic array of etched mesas. After a relatively short mass-transport time

(t = 0. 1 r) the profile is more spherical near the center and can better approximate a desired lens profile. After a longer
time (t = 0.5Tr), the profile becomes purely sinusoidal.
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4A 2,re 4A 6ir:
z(x, 0) = -4 cos - Cos +..., (2.1)

7 A 37r A

where z is the height, x is the position, A is half of the initial mesa height, and A is the fundamental spatial
wavelength.

When the structure is subjected to a heat treatment, the profile undergoes a transformation because
of the surface energy and mass transport, and according to earlier models [4]-[6]

S4A -t/r 2rc - 4A -27t/r Cos6,zx( .z(x,t)=--e cos e+...., (2.2)
7 A 37r A

where t is the mass-transport time and ' is the decay lifetime of the fundamental term. In defining Equation
(2.2), a vapor-transport process has been assumed in which T = r0(A/A0 )3, where rlo and AO are parameters
which characterize the mass-transport process. (For the surface-diffusion regime, a fourth-power depen-
dence should be used.) Also note that, because of the strong spatial wavelength dependence, the
higher-order terms decay much more rapidly, eventually leaving just the fundamental term, i.e.,

z(xct) = 4Ae-t/T Cos 2-- (2.3)

7: A '

as illustrated in Figure 2-1.

In practice, the mass-transport time is usually fixed at a given value, and the condition of Equation
(2.3) can be reached when the fundamental spatial wavelength A (and hence the decay lifetime r) is not too
large. The radius of curvature near the center of such a sinusoidal (cosine) profile is then given by

A2 tit

A e ,tT (2.4)
167rA

which can be varied (by properly choosing the amplitude A) to approximate any lens profile.

However, especially for large-numerical-aperture lenses, the approximate profile can deviate consid-
erably from the ideal one in regions away from the center. To increase the useful aperture, better approxi-
mation can be obtained by retaining the next higher order term in the Fourier expansion by the use of a
somewhat larger A. A simple rule for the improvement is to match not only the second but also the fourth
derivatives of the ideal profile, b and c, respectively, i.e.,

a2 z_ 4A (27c')2{(e-t/r -3e-27t/ )=b (2.5)

and
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S4A( 4(e t _ 27 ) 7t P c (2.6)

Since r is related to A, i.e., 'r = T0(AMAO) 3, with references r0 and A0 available from calibration runs, Equa-
tions (2.5) and (2.6) can readily be solved for the two unknowns A and A by using the following proce-
dure. A division between the two equations yields

(2r2 ee-tlr/-27e -27t C c (2.7)
A)K e-tlz -3e_27t/V - b

from which a solution for A can be found graphically. Then, by plugging A back into Equation (2.5), A can
be evaluated.

As a numerical example, the above Fourier expansion technique will now be used to approximate a
concave spherical profile

z=R- 2 -x2 (2.8)

where R is the constant radius of curvature, and R = 14 pm, relevant to an actual diode laser application, is
chosen. It can then be readily shown that

b = 1I/R = 0.07143 (2.9)

and
c = 3/R 3 = 0.00109 (2.10)

Experimental values of r0 = 3 h at A = 10 pm (at T = 11000C), and t = 24 h are also adopted. Equations
(2.5) and (2.6) then yield A = 41.78 pm and A = -3.348 pm. These values are subsequently plugged into
Equation (2.1) for the approximate profile. As shown in Figure 2-2, the profile agrees with the ideal one
over an aperture size of nearly 11 pm, where the deviations are less than a tolerable 20 nm. Note that, with
R = 14 pm and n = 3.1 (GaP), the aperture size corresponds to a large numerical aperture of 0.73. In fact,
even larger apertures can be achieved by using somewhat more sophisticated fitting schemes. For example,
one can implement a somewhat larger fourth derivative to slightly raise the approximate profile in order to
better match the ideal one over a larger aperture, so long as a sufficiently small overall mean-square devia-
tion is maintained.

In contrast, the simplest sinusoidal profile, as given by Equations (2.3) and (2.4), results in a smaller
useful aperture, as illustrated by the lower curve in Figure 2-2.
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Figure 2-2. Approximation of micron-size sphericalprofile by mass-transport smoothing of etched mesa. By choosing
suitable mesa width and height, A/2 and 2A, respectively, for a given mass-transport temperature and time, the spher-
ical profile is well approximated over a useful large aperture.

The scanning electron microscope photographs in Figure 2-3 show an initial experimental result.
These are cleaved cross-sectional views of a concave cylindrical lens formed by mass-transport smoothing
of etched mesas in a GaP substrate. Note that a smooth, nearly sinusoidal profile has been obtained, as
shown in Figure 2-3(a), and a nearly ideal lens profile has been formed near the center, as shown in Figure
2-3(b). Measurements on Figure 2-3(b) showed a nearly constant radius of curvature over an aperture size
of 12,pm, in agreement with the model.

Z. L. Liau J. D. Woodhouse*
L. A. Scheffel* P. S. Whitney*
D. C. Flanders*

*Author not at Lincoln Laboratory.
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(a)

(b)

Figure 2-3. Scanning electron micrograph of cleaved cross section of fabricated GaP cylindrical microlens: (a) is
lower magnification showing the nearly sinusoidal profile formed by a smoothing of etched rectangular mesas, and
(b) shows a higher magnification near the center where a nearly constant curvature has been measured.
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2.2 HIGH-POWER 1.5-p•m InGaAsP/InP LASERS WITH A TAPERED GAIN REGION

Semiconductor lasers and amplifiers with tapered gain regions are well suited for applications
requiring high output powers and good spatial mode quality. Operation of these large-area devices requires
epitaxial material with excellent uniformity. GaAs-based devices have been well demonstrated and we
have recently reported InGaAsP/InP tapered lasers and amplifiers that operate at/1 -- 1.3 pm [7]-[18]. In this
report, the development of 1 .5-/pm JnGaAsP/InP quantum-well material suitable for this type of device is
discussed, and initial results on high-power tapered lasers with near-diffraction-limited beam widths fabri-
cated in this material are presented.

Several different 1 .5-pzm quantum-well laser structures, grown by organometallic vapor-phase epit-
axy in an atmospheric-pressure chimney reactor, are being evaluated for this application. Details of the dif-
ferent laser structures and epitaxial growth can be found in Ref. 9. Here, results are presented for devices
fabricated in a two-step separate-confinement heterostructure (SCH) with three 8-nm-thick quantum wells
under 1% biaxial compression. As characterized by broad-area laser measurements, this material has a
transparency current density J0 --190 A/cm 2 and a net modal gain (gain-a) of -40 cm-1 at -1000 A/cm2.

The tapered device structure used here is illustrated in Figure 2-4. It has a single-mode
ridge-waveguide input gain section coupled to a tapered gain region. The tapered gain region is defined by
the taper contact which has a cone angle of ~~6°. Devices with a 1 -mm-long ridge input section and either
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Figure 2-4. Device design for 1.5-pm tapered lasers.



1- or 2-mm-long taper sections were fabricated and evaluated. The cw output power vs current of a device
with a 2-mm-long taper region and a 210-sum output aperture, which was coated to have a reflectivity of
-1%, is shown in Figure 2-5. The threshold current is 1.1 A, and 0.9 W of output power is obtained at 4 A.
The far-field pattern in the plane of the junction of this device operating at 4 A is shown in Figure 2-6.
About 80% of the 0.9-W output is in the near-diffraction-limited central lobe of the far-field pattern.
Devices with a 1-mm-long taper region had cw output powers of 0.5 W at 2.5 A, of which 86% was in the
central lobe of the far-field pattern.

Tapered devices are currently being fabricated in stepped-graded-index SCH material [3], which has
slightly lower J0 and higher differential gain (net gain > 40 cm-1 at <800 A/cm2) than comparable two-step
SCH material. Devices are also being fabricated in five-quantum-well material to investigate the effects of
the number of quantum wells on threshold current, efficiency, output power, and output beam quality.

J. P. Donnelly J. N. Walpole
S. H. Groves R. J. Bailey

REFERENCES

1. Z. L. Liau, V. Diadiuk, J. N. Walpole, and D. E. Mull, AppL Phys. Lett. 52, 1859 (1988); 55, 97
(1989).

2. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, Appl. Phys. Lett. 64, 1484
(1994).

3. J. S. Swenson, Jr., R. A. Fields, and M. H. Abraham, Appl. Phys. Lett. 66, 1304 (1995).

4. W. W. Mullins, J. Appl. Phys. 30, 77 (1959).

5. Z. L. Liau and H. J. Zeiger, J. Appl. Phys. 67, 2434 (1990).

6. Z. L. Liau, Mater Chem. Phys. 46, 265 (1996).

7. J. N. Walpole, J. P. Donnelly, S. H. Groves, L. J. Missaggia, J. D. Woodhouse, R. J. Bailey, and A.
Napoleone, IEEE Photon. Technol. Lett. 8, 1450 (1996).

8. J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Mis-
saggia, R. J. Bailey, and A. Napoleone, IEEE Photon. Technol. Lett. 8, 1429 (1996).

9. Solid State Research Report, Lincoln Laboratory, MIT, 1997:1, p. 5.

9



303302-7

1 I

0.8 -

cc
S0.6 -
0
I-

0.
I- 0.4 -

0

0.2 -

0
0 1 2 3 4

CURRENT (A)

Figure 2-5. CW output power vs current for 1.5-pm tapered laser with I -mm-long ridge input section and 2-mm-long

tapered section.

306487-2

Pout= 0.9 W

1.0 -80% IN CENTRAL LOBE

I.-

0.I-
0

1 0.5 - 0.46 0

.J

0.0
-6 -4 -2 0 2 4

ANGLE (deg)

Figure 2-6. Beam profile in plane of the junction of tapered laser oscillator with 0.9-W cw output.

10



3. SUBMICROMETER TECHNOLOGY

3.1 OPTICAL LITHOGRAPHY WITH 157-nm LASERS

Projection photolithography at 157 nm was evaluated as a possible extension of current 248-nm and
planned 193-nm technologies. The traditional scaling laws of resolution and depth of focus with wave-
length indicate that it will be worthwhile to change to 157-nm lithography to increase process latitude for
0.1 3-am and smaller features. This can be confirmed using aerial image simulations as summarized in Fig-
ure 3-1 for the case of equal lines and spaces. Similar analyses have been performed for unequal lines and
spaces, with similar conclusions.

A major consideration in the selection of the 157-nm exposure wavelength is the availability of
high-quality F2 laser sources. These lasers use a mixture of 5% fluorine in helium and pure helium, in a
ratio of 1:40, at a total pressure of 3200 mbar. Typical operating conditions are 35 mJ/pulse at 200 Hz, and
the pulse-to-pulse energy stability is within 10%. The output spectrum of a F2 laser is considerably nar-
rower than that of an ArF or KrF laser. The 193- and 248-nm emissions in the latter correspond to
bound-to-dissociative state transitions, and are therefore 200-300 pm broad. The 157-nm emission, on the
other hand, corresponds to several discrete rotational-vibrational transitions. The most detailed output
spectrum of a F2 laser is reported in Ref. 1. Its full width at half-maximum is only -17 pm, which can have
important implications for catadioptric projection systems, which even at relatively high numerical aper-
tures may not require further line narrowing.

U 303302-9B 25 1 1 -
0

U-
•, 20 -m~l 150 nm, -.

d 15 *', ,'

, 130nm ," A

I- 10 - • -

F" 100 nm i
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£ 193nmO.7NA
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UJ

DEPTH OF FOCUS (gim)

Figure 3-1. Comparison of depth offocus at best dose and exposure latitude at best focus, as calculated from aerial
image simulations. The printed features are equal lines and spaces, at the dimensions indicated (100, 130, and 150
nm). The imaging configurations are 193 nm at 0.7 numerical aperture (NA), and 157 nm at 0.6 and 0.7 NA, all three
with circular illumination and spatial coherence 0.6.
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Figure 3-2. Measured transmission of fused silica, crystalline calcium fluoride, and crystalline magnesium fluoride,

at the respective indicated thicknesses. The broken vertical line indicates the 157-nm wavelength.
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Figure 3-3. Absorption coefficient of calcium fluoride in the range 130-200 nm, as calculated from transmission mea-
surements performed with a vacuum uv spectrophotometer on three prism-shaped samples along their 10- and 40-mm
axes, as described in the text. At 157 nm the absorption coefficient is -0.004 cm-1 . The broken vertical line indicates
the 157-nm wavelength.
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The greatest area of concern in 157-nm lithography is the availability of refractive optical materials

suitable for all-refractive or catadioptric designs. As Figure 3-2 indicates, fused silica is semiopaque at this
wavelength, and only a few crystalline fluorides are acceptable candidates. Of these, MgF2 is birefringent,
and LiF is too soft and hygroscopic. High-purity, crystalline CaF 2 is probably the only choice, and there-

fore its properties must be evaluated carefully.

We have performed several experiments in which the transmission of three samples was measured in
a vacuum uv spectrophotometer, and also directly with the 157-nm laser. Each sample was a rectangular

prism, with dimensions 10 x 20 x 40 mm, and all six sides were polished. By measuring the transmission
along different lengths of the same samples, the bulk absorption coefficient could be calculated and sepa-
rated from surface losses. This methodology was important, because surface attenuation of 3-4%/surface
is seen at 157 nm in the spectrophotometer, whereas bulk transmission losses are only -1%/cm. Figure 3-3

shows the wavelength-dependent bulk absorption coefficient k, as determined from the spectrophotometer
measurements. The absorption coefficient is related to the transmission T by

T =(I - R)2(I - 2fs)e-2.3kLo 1 (3.1)
1 - R2(1 - 4fs)e-4 '

where L is the sample length, R is the reflection coefficient, andfs represents surface losses. At 157 nm we
have measured k = 0.004 cm-1, both with the spectrophotometer and with the laser.

In order to assess the significance of this value, it is illustrative to compare the thermal budget of
CaF2 at 157 nm to that of fused silica at 193 nm. The important quantities are the thermal coefficient of the
refractive index dnldT, the thermal coefficient of expansion (dLIL)/dT, and the thermal conductivity K. The
temperature rise induced by absorption of laser power is inversely proportional to K. Also, the fractional
change in optical path with temperature OPD/dT is given by

OPD/dT = [(n - 1)/n] (dL/L)/dT + (I/n)dn/dT . (3.2)

Table 3-1 lists the relevant parameters for CaF2 and fused silica. Note that, since its K is -7 times
larger than that of fused silica, CaF 2 can accommodate a proportionately higher absorption. This trend is
compounded by the -1.6 times weaker dependence of OPD on temperature in CaF2 than in fused silica.
Thus, an order of magnitude higher absorption coefficient k can be accommodated by CaF2 at 157 nm than
by fused silica at 193 nm. As a point of reference, the best grades of fused silica have been measured to
have k - 0.002 cm-1 . Thus, the value of k - 0.004 cm-1 that we have measured for CaF2 at 157 nm is well
within the acceptable range.
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TABLE 3-1
Optical and Physical Material Parameters at 157 and 193 nm

CaF 2  CaF2  Fused Silica
157 nm 193 nm 193 nm

Refractive index 1.56 1.50 1.56
(Refs. 2, 3)

dn/dT (ppm/°K) 3.0 -5.9 22
(Refs. 2, 4)

(dUL)/dT(ppm/0 K) 19 19 0.52
(Refs. 5, 6)

OPD/dT (ppm/°K) 8.7 2.4 14
[Equation (3)]

Thermal conductivity K (W/m°K) 9.7 9.7 1.4
(Ref. 7)

The measured surface losses mentioned above, -3%/surface in the spectrophotometer, are smaller in
the laser beam. This effect leads us to postulate that they are due to incomplete surface cleaning or to
adsorbates from the ambient. Further studies are under way to identify the exact mechanism.

The long-term durability of CaF2 is another area of concern. To date, we have irradiated three sam-
ples at 5-8 mJ/cm2/pulse for 25 million pulses, and have found no detectable changes in transmission at
157 nm. The only reported color centers in CaF2 are at 360 nm and at longer wavelengths, so our results
are not surprising. Nevertheless, we plan to continue marathon irradiation of CaF2 at 157 nm, and will
monitor any changes in its transmission.

In general, the use of a new exposure wavelength will require the development of new resist systems.
However, we have demonstrated that the positive-tone silylation process of polyvinylphenol, which exhib-
its a large process window at 193 nm [8], is directly transferable to 157 nm. Figure 3-4 shows that the
effect of 157-nm irradiation on silylation efficiency is nearly identical to that of 193 nm, provided the
exposures are performed in the same ambient (nitrogen). Here, the silicon uptake, as measured by Fourier
transform infrared spectroscopy of the Si-O-CH, peak in the film, is plotted as a function of the exposure
dose. Specifically, the inhibition of silylation begins at -10 mJ/cm2, and is nearly complete at -80 mJ/cm2.
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Figure 3-4. Silicon uptake in the vapor phase silylation of polyvinylphenol as a function of exposure dose at 157 nm
(in nitrogen) and 193 nm (in nitrogen and in air). The silylation efficiency is determined by the area under the
Si-O-CHx absorption band measured with a Fourier transform infrared spectrophotometer. Exposure in nitrogen has
almost the same effect at the two wavelengths, and is markedly less efficient than 193-nm exposure in air in suppress-
ing silylation.

A simple exposure system has been constructed to demonstrate the resolution achievable using
157-nm lithography. The projection optics consists of an all-reflective Schwarzchild 36x objective with
0.50 numerical aperture (NA). Since oxygen and water vapor are strong absorbers at 157 nm [9], care has
been taken to efficiently purge the beam line with filtered nitrogen from the laser through the reticle and
the projection optics. Only a -2-mm gap exists between the optics housing and the wafer, and at typical
nitrogen flow rates of -10 sccm the gap is sufficiently flooded that no measurable attenuation of laser
energy is observed. At 157 nm, conventional fused silica reticles would be too absorbing. We have devel-
oped a chrome-on-CaF 2 reticle technology using a -20-nm-thick chrome layer that is deposited by elec-
tron beam evaporation and etched by argon ion beam milling. We have also developed a chromeless
phase-shifting CaF2 mask technology. In this case ion beam milling is used to etch 135-nm-high steps,

which correspond to a phase shift of half a wavelength, directly into the CaF 2 substrate.

This experimental system has been used to pattern polyvinylphenol resist films. The 0.3-M4m-thick
films were exposed at a fluence of 1 mJ/cm 2 /pulse and a total dose of -50 mJ/cm2 . Silylation was per-
formed with dimethylsilyldimethylamine at 10 Torr for 30 s at 100'C, followed by etching in an oxygen
plasma in a parallel-plate reactive ion etcher. Figure 3-5 shows the high-resolution images obtained by
combining the phase-shifting mask with the 0.5-NA optics. The printed features, 80-nm lines, correspond

15



306487-3L

Figure 3-5. Scanning electron micrograph of 80-nm lines printed in projection at 157 nm with 0.5-NA objective. The
resist process was top-surface imaging in polyvinylphenol, followed by vapor phase silylation and oxygen reactive ion
etching. The mask was a 36x chromeless edge shifter, fabricated in calcium fluoride.

to the limit of this method, namely 0.25 ;UNA. These are, we believe, the smallest features printed to date
using optical projection lithography.

T. M. Bloomstein R. R. Kunz

M. W. Horn S. T. Palmacci
M. Rothschild R. B. Goodman

3.2 NEW SURFACE EMISSION CATHODE IN DIAMOND

Many groups have reported excellent electron emission from diamond and amorphous diamond-like

films, yet practical application of these cathodes has been limited by a serious lack of reproducibility
[10],[11]. Electron emission typically appears to originate from a relatively small number of spatially
localized sites, and this is generally believed to be due to the inconsistent bulk properties of the deposited
carbon-based cathode material. Enhanced electron emission at the triple junction interface between the

diamond surface, a conductive region, and vacuum is a newly proposed emission mechanism that may help

explain the localization of emission sites [12].
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A triple junction [13],[14] is the intersection of an insulator or semiconductor surface with a metal
substrate in vacuum. When an electric field along this insulating surface is produced by a negative bias on
the metal substrate, a substantial positive charge can form on the surface and in the bulk of the semicon-
ductor near the triple junction. Part of this charge is the result of the Schottky diode the semiconductor
forms with the metal substrate. In addition, if the field is large enough, electrons will tunnel from the metal
substrate onto the semiconducting surface with sufficient energy to cause secondary electron emission,
which will further increase this positive charge. The electric field enhancement is dependent upon the
angle the semiconductor-vacuum interface makes with the metal substrate, shown in Figure 3-6 as 0. The
surface emission cathode exploits this electric field enhancement combined with the high electron mobility
on the interface between the negative electron affinity (NEA) semiconductor surface and vacuum to form a
high-performance electron emitter.

306719-1
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Figure 3-6 Triple junction (metal-NEA semiconductor-vacuum) electric field enhancement cathode: (a) shows a
cross section of a triple junction formed by the metal-NEA semiconductor-vacuum interface. The lighter region in the
semiconductor near the metal-semiconductor interface is the space charge region containing the ionized dopants. (b)
is a plot ofpotential energy along the NEA semiconductor-vacuum interface. Electrons tunnel from the metal substrate
onto the NEA semiconductor-vacuum interface.

Initial experimental evidence for the surface emission phenomenon was provided by the simple
experiment illustrated in Figure 3-7. A type lb diamond, -3 mm on a side, that contains substitutional
nitrogen, a deep donor, was implanted with 34-keV Li+ at 2000C to a dose of 4 x 1016 cm- 2 to enhance the
electrical contact between the metal support and the diamond [15],[16]. The anode, which could be moved
from touching to several centimeters above the diamond, consisted of either a molybdenum rod 0.5 mm in
diameter or a square phosphor screen -1 cm on a side. The diamond was prepared for emission by expos-
ing it to an 02 discharge, coating it with Cs, and reexposing it to 02, a surface procedure known to
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Figure 3-7. (a) Schematic diagram of Li+-implanted diamond with phosphor screen placed on top of the diamond.
(b) Observed fluorescence of the phosphor screen. The fluorescence is directly under the portion of the diamond im-
planted with Li+. The screen continued to fluoresce when lifted several hundred micrometers above the diamond, but
the fluorescing regions moved away from the edge of the diamond to its center and became more diffuse.

enhance diamond's NEA property [17],[18]. The anode was then positively biased until stable emission

was obtained from the diamond, after which the vacuum electron emission from the top of the diamond

appeared to originate from electrons that traveled across the diamond surface, rather than through its bulk.
These electrons caused the surface of the diamond to glow green yellow. This glow originated from the
ion-implanted region, up the side of the diamond, around the top edge, and then across the top surface.

Surface irregularities caused variations in the path of the glowing regions. Once on the top surface, the
electrons jump the 0-0.8-mm gap between the top diamond surface and the positively charged movable
anode. When the anode was moved from touching the diamond to 0.5 mm above it, the anode voltage had
to be increased by 12%, from 7 to 8 kV, to maintain a constant emission current of 1 X 10-5 A. This indi-

cates that most of the potential drop, -7 kV, appears across the diamond and is not being expended in the
vacuum gap between the diamond and the anode [19]. When a phosphor screen was used as an anode and

placed on the diamond surface, the screen fluoresced where it met the diamond, as shown in Figure 3-7.
This screen will fluoresce only when hit with electrons of energy >1 keV, implying that these electrons
have considerable energy while still on the diamond surface. We theorize that these electrons are field

emitted from the implanted region into NEA semiconductor-vacuum surface states. Once in these states
the electrons can be accelerated to high energies, >1 keV.
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Figure 3-8. Schematic drawing of surface emission cathode experiment using the cleaved surface of diamond to emit
electrons.

To further characterize the emission, a thinner, 100-pm-thick, type Ib diamond plate was coated on
the back side with electron-beam-evaporated Ni and graphitized on the top to form a conductive layer. The
graphite layer was formed by sputtering the diamond surface with 1200-eV Xe+. The diamond was then
cleaved to obtain a clean, undamaged surface, as depicted in Figure 3-8. When a few kilovolts were placed
between the Ni and graphitized layers, electrons were emitted into vacuum. This emission was further
increased with the same 02-Cs treatment previously described. Figure 3-9 shows a typical result obtained
from these surface emission cathodes. By using a movable phosphor screen it was determined that these
electrons originated from the cleaved surface and appeared to form collimated beams. The apparatus
shown in Figure 3-10 was then used to measure the energy of the emitted beam, and this experiment indi-
cated that the electrons were nearly monoenergetic with energies within 50 eV of the applied potential.

The mechanism used to explain the surface emission relies upon positive charges at or near the dia-
mond surface to create a large electric field at the triple junction, as depicted in Figure 3-6. This hypothesis
was tested in the following experiment. We have found that nitrogen impurities in diamond can be posi-
tively ionized and remain charged for days, but once exposed to room light, photogenerated electrons in
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Figure 3-9. Plot of emitted and electrode currents as a function of applied voltage for the structure shown in Figure
3-8.

the diamond will neutralize the dopants. Figure 3-11 shows the effect of incandescent illumination, -10
mW cm- 2, on the cathode shown in Figure 3-8, where the emitted current is larger in the dark than with the
light on. In the dark, measurable emission occurs for potentials as low as 150 V across the diamond. With
the light on, the emission is reduced and no measurable emission is obtained until a potential in excess of 1
kV is applied. If the cathode is illuminated with no applied potential and then tested in the dark, the emis-
sion at the start of the experiment is nearly identical with the emission measured in the light. However,
after the emission current exceeds 10-7 A, the behavior changes and the characteristics below 2.5 kV are
nearly identical with emission in the dark.

This can be explained as follows. When the diamond is illuminated at low applied voltages, the
dopants near the diamond surface are photoneutralized, so the electric field at the metal-diamond-vacuum
triple junction is not sufficient to cause emission. At larger potentials, >2.5 kV, significant emission occurs,
which can reionize these dopants faster than they can be photoneutralized. In this case sufficient electric
field will develop to enhance emission. Once the dopants are neutralized, emission even in the dark will be
poor until sufficient potential is applied across the diamond to reionize them.
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Figure 3-10. Energy analysis of emitted electrons. A retarding energy analyzer can be used to estimate the electron's
energy, because the electrons are emitted as a collimated beam from the edge of the diamond. The inset shows a sche-
matic drawing of the experiment.

These results indicate that the triple junction has an important effect on the operation of the this cath-

ode. The initial test devices demonstrated high emission currents and low gate electrode currents. Rela-
tively high operating voltages were required because thick diamond films were used in these devices.
Practical cathodes, which would be suitable for flat-panel displays and rf devices, will require the develop-
ment of a thin-film cathode. This is the subject of the current research.

M. W. Geis N. N. Efremow
K. E. Krohn J. C. Twichell
T. M. Lyszczarz
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Figure 3-11. Emission current with and without incandescent illumination from a fiber lamp. The filled circles indi-
cate the normal emission characteristics measured in the dark. The open circles show the effects of illumination on
emission. The lower curve was obtained in the dark after I min of illumination, and it shows the recovery of the emis-
sion after the illumination has been removed. The inset shows a possible explanation of the observed reduction in emis-
sion with light, where the illumination neutralizes positive charges near the triple junction.
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4. HIGH SPEED ELECTRONICS

4.1 PHASE NOISE OF A RESONANT-TUNNELING RELAXATION OSCILLATOR

An electronic oscillator that produces picosecond pulses with excellent timing stability and that can
be phase locked to an external clock would be a benefit for certain high-speed signal-processing applica-
tions. Two examples are clocks that gate sampling circuits in digital oscilloscopes [1] or that reduce the
timing jitter in the front end of high-performance analog-to-digital converters. Presently, optoelectronic
conversion can generate pulses with excellent timing stability if a mode-locked laser is used. Also, nonlin-
ear transmission lines that are periodically loaded with varactor or resonant-tunneling diodes (RTDs)
[2]-[4] can be driven with a sinusoidal oscillator to generate shock waves. An alternative is the reso-
nant-tunneling relaxation oscillator (RTRO), which can be thought of as a single unit cell of a reso-
nant-tunneling transmission line that is in series connection with a cavity formed by a quarter wavelength
of short-circuited transmission line [5]. This report presents measurements of very low phase noise and
timing jitter for the pulse train emitted by an RTRO that was injection locked to a sinusoidal waveform.

Figure 4-1(a) shows the equivalent circuit for the RTRO. The key feature is that the RTD is con-
nected in series with a length Ld of transmission line that is terminated by a short circuit. During oscilla-
tion, the voltage repeatedly switches between two dc-stable points that are above and below the negative
differential resistance (NDR) region in voltage. Since the metastable points are not in the NDR region, the
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Figure 4-1. (a) Circuit diagram and voltage waveforms measured with a sampling oscilloscope having temporal res-
olution -25 ps. (b) Square wave output representing the voltage across the resonant-tunneling diode (RTD). (c) Pulsed
output voltage measured across the load. The load voltage is proportional to the current passing through the RTD.
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RTRO does not require a dc-stable point in the negative resistance region, thereby facilitating the dc bias-
ing of high-current, high-speed diodes. Relaxation oscillations are initiated by manually adjusting the dc
bias voltage until the quiescent point is just below the current peak or just above the current valley where a
noise fluctuation can start the oscillation. The short-circuited transmission line presents an rf open circuit
to the RTD since Ld is an odd multiple of /V4 for all harmonics of the oscillator output. The RTD is there-
fore current biased at rf frequencies, and the two metastable points occur at different voltages but at the
same current. The RTRO only emits power to the load during each switching event when a current pulse
feeds through the small capacitance of the RTD. This behavior has been verified theoretically with SPICE
simulations [5].

Fabrication of the RTD was described previously [5]. In brief, the RTD layers were grown by molec-
ular beam epitaxy on an InP substrate with two 1.7-nm-thick AlAs barriers separated by a 4.8-nm-wide
Ino.53Gao.47As quantum well. The area of the mesa-type device was -40 ym2 with peak current density 3
x 104 A/cm2, peak-to-valley current ratio 4.9, and peak-to-valley resistance roughly 50 Q2. After fabrica-
tion, individual devices were whisker contacted inside a quartz-encapsulated cartridge that was mounted in
series with the center conductor of a coaxial transmission line. A dc bias was supplied by a battery through
a bias tee with 40 GHz of bandwidth. The rf load resistance was 50 2 and was supplied by either a coaxial
termination or by the input resistance of the sampling head on an oscilloscope. Figure 4-1 (b) shows a mea-
sured waveform for the voltage across the relaxation oscillator. Figure 4-1(c) shows a measured waveform
for the current through the 50-4 load resistor and hence the RTD. The current waveform resembles the
time derivative of the voltage waveform because of the capacitive nature of the RTD.

The conceptual similarity between the RTRO and a mode-locked laser in a linear cavity suggests that
this system may have similarly low timing jitter when injection locked [6]. A weak sinusoidal voltage was
injected from a synthesizer in series with a 500-2 resistor that was connected to the node between the bias
tee and the RTD shown in Figure 4-1(a). The injected signal was 40 dB below the output signal. When the
injected signal frequency was tuned near the free-running frequency, the RTRO became synchronized and,
at 1.1 GHz, the linewidth narrowed from 1 kHz to <10 Hz-an upper limit imposed by the resolution
bandwidth of the spectrum analyzer. Changing the frequency of the injected signal pulled the frequency of
the RTRO. The locking range was limited to -1% of the oscillation frequency and was found to be approx-
imately proportional to (PiPo) 112, where P0 is the output power and Pi is the injected power. This behavior
is the same as that observed for injection locking of conventional negative-resistance oscillators operating
in the small-signal limit [7]. For 3-GHz operation, the synchronization signal was injected through a circu-
lator rather than the 500-0 resistor used at 1.1 GHz. The circulator was used to present a matched load to
the output port of the RTRO. In this configuration the maximum locking range was 163 MHz, correspond-
ing to a fractional locking bandwidth of Af/f= 5%.

Subharmonic injection locking at 1.1-GHz repetition frequency was observed down to the 12th
subharmonic. The power required for injection locking, however, increased substantially at the lowest
subharmonics. Figure 4-2 shows a plot of the injection-locking gain-the ratio of the measured output
power to the injected power. An attempt was made to measure each point with approximately the same
locking range. The fundamental injection-locking gain of 51 dB is comparable to what can be achieved for
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Figure 4-2. Injection-locking gain for fundamental and subharmonic locking.

sinusoidally operating field-effect transistor oscillators with similar locking bandwidth [8]. The injected
sinusoidal signal was supplied by a commercial synthesizer [9] that had FM sidebands caused by 60-Hz
line noise -50 dB below the carrier. These sidebands were exactly reproduced with 51 dB of amplitude
gain at the output of the RTRO, demonstrating the well-known ability of injection-locked oscillators to

function as FM amplifiers [7].

Timing jitter between pulses of the injection-locked RTRO was deduced from the phase noise Li(f)
of higher harmonics following the method used by von der Linde for characterizing the timing jitter of
mode-locked lasers [6]. The resolution bandwidth of the spectrum analyzer was 10 Hz. This allowed us to
set an upper limit on the phase noise contributed by the RTRO by measuring the phase noise away from the
carrier at discrete frequency points that were in the valleys between the 60-Hz sideband peaks from the
synthesizer.

Table 4-1 shows the phase noise (0.1 and I kHz away from the carrier) and timing jitter measured for
the RTRO when it was fundamentally injection locked at 1.142 GHz. For comparison, entries are shown
that were deduced from measurements at the first, fifth, and tenth harmonics. The timing jitter was esti-
mated by subtracting the 60-Hz sidebands and estimating the spectral area under the sideband curve. The

fractional timing jitter AT/T, where T is the period, is approximately one to four times better, respectively,
than the timing jitter for mode-locked Ti:sapphire and dye lasers that operate with -100-MHz repetition
frequency [10]. Table 4-2 shows the phase noise and timing jitter measured under similar conditions,
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TABLE 4-1
Phase Noise and Timing Jitter for Fundamental (N= 1)

Injection Locking at 1.142 GHz

ffo L1f ( L1  ST

(GHz) (100 Hz) (1 kHz) [>100 Hz]

1 st 1.1 -72 dBc/Hz -80 dBc/Hz -200 fs

5th 5.7 -74 dBc/Hz -81 dBc/Hz

10th 11.4 -69 dBc/Hz -80 dBc/Hz

TABLE 4-2
Phase Noise and Timing Jitter for Fundamental (N= 1/5)

Injection Locking at 228 MHz

.fof ST

(GHz) (100 Hz) (1 kHz) [>100 Hz]

1st 1.1 -62 dBc/Hz -73 dBc/Hz -880 fs

5th 5.7 -62 dBc/Hz -72 dBc/Hz

10th 11.4 -60 dBc/Hz -68 dBc/Hz

except that the injected signal was 228 MHz--one fifth of the free-running frequency. Compared to funda-
mental injection locking, the phase noise increased by -10-12 dB and the timing jitter by -6 dB. One
explanation for the degradation is that phase noise on the injected signal was multiplied up by a factor 25
(14 dB) for 1/5-subharmonic injection locking and exceeded the intrinsic phase noise in the RTRO. If that
is the case, the measured phase noise and timing jitter of the subharmonically locked RTRO are an upper
limit that could be reduced by injecting a signal with lower phase noise.

Thus, an RTRO has been shown to emit 30-ps-wide voltage pulses at 1.1-GHz repetition frequency
with rms timing jitter as low as 200 fs. The RTRO is an electronic source of sharp pulses whose timing jit-
ter compares favorably with mode-locked lasers. Such an oscillator could be used for precision-timing
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applications, such as reducing the aperture jitter in the sample-and-hold stage of high-speed analog-to-dig-
ital converters.

S. Verghese
C. D. Parker
E. R. Brown

REFERENCES

1. L. Yang, S. D. Draving, D. E. Mars, M. R. T. Tan, IEEE J. Solid-State Circuits 29, 585 (1994).

2. D. W. van der Weide, J. S. Bostak, B. A. Auld, and D. M. Bloom, Appl. Phys. Lett. 62, 22 (1993).

3. C. L. Dennis, E. R. Brown, and S. Prasad, Proceedings of the International Semiconductor Device
Symposium (University of Virginia, Charlottesville, Va., 1993), p. 465.

4. R. Y. Yu, Y. Konoshi, S. T. Allen, M. Reddy, and M. J. Rodwell, IEEE Microwave Guided Wave Lett.
4, 220 (1994).

5. E. R. Brown, C. D. Parker, S. Verghese, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).

6. D. von der Linde, Appl. Phys. B 39, 201 (1986).

7. K. Kurokawa, Proc. IEEE 61, 1386 (1973).

8. X. Zhang, X. Zhou, and A. S. Daryoush, IEEE Trans. Microwave Theory Tech. 40, 895 (1992).

9. HP synthesized sweeper, model 8340A.

10. J. Son, J. V. Rudd, and J. F. Whitaker, Opt. Lett. 17, 733 (1992).

29



5. MICROELECTRONICS

5.1 GEIGER-MODE AVALANCHE PHOTODIODE ARRAYS FOR IMAGING LASER RADAR

The performance of an imaging laser radar depends on its time measurement resolution and on a
combination of its detection sensitivity and transmitter power. An avalanche photodiode (APD) operated in
the Geiger mode (biased above breakdown) can give a fast, large-amplitude signal in response to a single
photon. Monolithic APD arrays can be incorporated into lightweight receiver electronics. The gain pro-
vided by such sensitive detectors in airborne laser radar systems can enable substantial reductions in the
payload weight and volume required for transmitter components such as laser amplifiers.

We have fabricated monolithic arrays of silicon APDs for operation at 532 nm, and are developing
wafer-to-wafer bonding approaches to integrate these arrays with high-speed CMOS timing circuits. The
APD is a p+-p-p-p-n+ structure formed by epitaxial growth of a lightly boron doped (1014 cm-3) silicon
layer on a p+ silicon substrate, followed by ion implantation of boron and arsenic to form the upper p
region and the n+ contact layer, respectively. The lower p layer is for absorption of incident photons, and
the upper p layer, which is roughly 0.5 mm thick, is the avalanche region, where photoelectrons initiate
impact ionization. Details of the device structure and fabrication process were reported previously [1].

When operated in the Geiger mode, the APD is charged to some initial bias above the breakdown
voltage. When an avalanche occurs, due either to the absorption of a photon or to dark current, the APD
discharges down to slightly below the breakdown voltage. By measuring the average frequency of these
pulses both in the dark and in the presence of a calibrated incident photon flux at 532-nm wavelength, the
external quantum efficiency of the device can be inferred. We have measured quantum efficiencies
approaching 40% on the best front-illuminated uncoated devices fabricated on 6-in.-diam silicon wafers.
Based on this data, the projected quantum efficiency for an antireflection-coated back-illuminated device is
close to 100%.

When used in a three-dimensional laser radar receiver, Geiger-mode APDs are used to measure the
time of arrival of photons scattered from a target illuminated by a short laser pulse. In order to measure this
time accurately the APD must have low timing jitter. This was measured by illumination of a fixed-range
target by 250-ps pulses from a doubled Nd:YAG microchip laser. The pulse energy was attenuated so that
the detection probability was low (10%), and a histogram of photon return times measured by one of the
APDs was built up. This is shown in Figure 5-1, and has a width of 291 ps, to which the duration of the
laser pulse is the major contributor. If this pulse is assumed to be Gaussian, the intrinsic timing jitter of the
APD and measuring electronics is inferred to be 140 ps.

Avalanches initiated by dark current raise an important issue since such "dark counts" set a lower
limit on the false-alarm rate. The APDs that have good quantum efficiency have dark-count rates in the
20-40-kHz range at room temperature. The responsible dark current is believed to come from bulk thermal
generation, so substantial reduction of dark-count rates can be achieved with modest cooling of the
devices.
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Figure 5-1. Distribution of photon return times from fixed-range target as measured by an avalanche photodiode.

306487-4L

Figure 5-2. Mask layout for the MOSIS CMOS timing chip.
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Figure 5-2 shows the chip layout of a mask layout of a MOSIS 0.5-y.m CMOS chip that will provide
clock generation and timing circuitry for a 4 x 4 APD array. The APD array will be attached to the large
pad in the center of the chip and the individual diodes wire bonded to the internal bonding pads. The cir-
cuit, which is currently being fabricated, is expected to provide 19 bits of timing information for each
pixel, with the least significant bit representing a 0.5-ns interval.

B. F. Aull
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6. ANALOG DEVICE TECHNOLOGY

6.1 TUNABLE SUPERCONDUCTING RESONATORS USING FERRITE SUBSTRATES

Planar tunable microwave resonators that combine superconducting microstrip circuits with ferrite
substrates have been demonstrated, and exhibit performance exceeding that of conventional technology.
These resonators are a key element of tunable multipole bandpass filters now under development. The goal
is to provide wideband tunability with the previously demonstrated [ 1] advantages of low loss, sharp skirts,
and compact size of planar filters based on high-temperature superconductivity (HTS).

The tunable superconducting resonators that have been demonstrated use microstrip circuits of
YBCO at 77 K and niobium at 4 K coupled to polycrystalline magnetic garnet substrates. Polycrystalline
ferrite was chosen because the material is readily available in sizes needed for multipole filters, is inexpen-
sive, and supports high-Q operation. In addition, the polycrystalline materials may readily be altered in
chemical composition to optimize properties such as saturation magnetization and coercive field for cryo-
genic operation. For both devices we employed a planar microstrip geometry with an n/2 resonator whose
characteristic impedance is -50 92 (width is 230 yrm and substrate thickness is 380 yrm for the nio-
bium-on-ferrite devices). An external magnetic field was applied in the plane of the substrate and parallel
to the propagation direction of the microstrip.

The YBCO resonator is configured with a YBCO microstrip on LaAl0 3 that is clamped to the poly-
crystalline ferrite substrate. Placing the ferrite in intimate contact with the YBCO stripline allows the
strong interaction of the rf magnetic fields of the superconductor with the magnetization of the ferrite [2]
and thus provides a tuning mechanism.

Figure 6-1 shows results of measurements of the Q and resonance frequency fo of one of the YBCO
resonators as a function of the applied magnetic field at 77 K. This device showed a Q of -2500 and a tun-
ability of 3% for applied fields of -100 Oe. Most of the tuning takes place at very low fields, indicating that
the magnetization of the substrate is responsible for the effect. The figure of merit 2QAflf for this resonator
is 172. We have measured separately the Q of the YBCO resonator at 77 K. At 7.7 GHz the Q was 5800
without ferrite. Thus, we conclude that either the ferrite losses or the parasitic losses of the clamped struc-
ture are limiting the Q of the YBCO tunable resonators.

The second device reported here is fabricated from superconducting niobium deposited directly on a
ferrite substrate, which also includes a ground plane. Figure 6-2 shows the Q and fo for a niobium resona-
tor on ferrite. This device showed a Q of 5000 and a tunability of 3%. The figure of merit is 288. Figure 6-3
shows the resonance frequency vs applied magnetic field from a longer sample with lower frequency than
that of Figure 6-2 and measured with finer resolution. The tunability range in this case is 6% for fields
below 100 Oe. This device also shows hysteresis around zero field, indicating that the magnetization of the
substrate is having an important influence on the resonance frequency. Most of the tuning occurs at low
field, just above the coercive field of the ferrite where the magnetization is changing rapidly with the mag-
netic field.
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Figure 6-1. Plot offo (open circles, left scale) and Q (closed circles, right scale) vs appliedfieldfor a YBCO microstrip
resonator on a LaA103 substrate coupled to polycrystalline iron garnet.

A new analytical model has been developed [3] that treats the partially magnetized state of the fer-
rite, and takes into consideration the hysteresis loop and the demagnetizing effects of the microstrip geom-
etry. The effective permeability of the microstrip on the ferrite configuration is determined to be

"("'y47M)y[H + (N, - Nz)47rM]
e=11 frf , (6.1)

wheref is the signal frequency, fr is the ferrimagnetic resonance frequency, yis the gyromagnetic factor =

2.8 MHz/Oe, H is the applied magnetic field, 4,rM is the magnetization of the ferrite, Nz is the geometric
demagnetizing factor in plane along the direction of propagation, and Ny is the effective demagnetizing
factor of the rf magnetization component normal to the plane. In these experiments the fr << f and H are
small compared with 4rM. For the stripline geometry we can approximate Ny = 0.37 and Nz = 0.02 so the
final result to be compared with the experiments is
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Figure 6-2. Plot of fo (open circles, left scale) and Q (closed circles, right scale) vs applied field for a niobium mi-
crostrip resonator on a polycrystalline iron garnet substrate.

f(H) - 1 r47rMr(H +(Ny - N4)47rM) (6.2)

f(O) 22 
'

where M = M(H) is a function of H governed by the hysteresis loop of the ferrite. This is the expression
that is plotted as the solid line in Figure 6-3 and compared with experiment. As can be seen the agreement
is excellent.

Since most of the tunability that we observe results from changes in the magnetization, a practical
tuning circuit need only supply magnetic fields of the order of the coercive fields of the ferrites which are

usually less than about 10 Oe. Such fields can be achieved with simple magnetic structures and therefore
can be made consistent with short time constants needed for fast tunability on the order of 1 us or less. It is
also possible to provide the necessary tunability by the remanent magnetization of the ferrite in a closed
magnetic circuit, thus eliminating the need to maintain a steady-state magnetic field and requiring only
pulsed operation of the applied field to change the magnetization of the substrate. Well-known flux-drive
techniques [4] can be used to provide continuous accurate tuning over the tunable frequency range.
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Thus, we have demonstrated resonators with wide tunability and high Q by using superconductors
on ferrite substrates. The tunability occurs at low magnetic fields so that a very simple coil can provide the
necessary field, and time constants can be kept low so that rapid tuning is possible. This demonstration
provides great promise for tunable multipole filters in compact form at microwave frequencies.

D. E. Oates
G. F. Dionne
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7. ADVANCED SILICON TECHNOLOGY

7.1 FULLY DEPLETED SILICON-ON-INSULATOR TECHNOLOGY DEVELOPMENT

A sub-0.25-um fully depleted silicon-on-insulator (FDSOI) technology which is targeted for
sub-1-V circuit operation has been developed at Lincoln Laboratory [1]. The fully depleted design results
in an enhanced subthreshold slope (65-75 mV/decade) allowing transistor thresholds in the ±400-mV
range. Compared to a conventional 0.5-sum CMOS technology, the low-power SOI technology represents a
36-fold reduction in power consumption for comparable circuit performance and a twofold performance
enhancement with a tenfold power reduction when operated at the design voltage of 1 V. In addition, the
absence of body contacts permits a more compact circuit layout. The initial experiments utilized one level
of metal, but the back end processing has been extended to a fully planar three-level metal process which
incorporates damascene hot aluminum plugs at contacts, via 1 and via 2, and planarization of two
plasma-deposited intermetal oxides by chemical-mechanical polishing [2]. This has been further improved
by implementation of a cobalt silicide technology to reduce source-drain extrinsic resistance [3].

FDSOI has been proposed for low-power applications such as remote land- and space-based sensors
which must operate unattended for extended periods. FDSOI combined with deep-submicrometer optical
lithography has also been proposed to satisfy the high-bandwidth requirements of wireless communication
systems which must operate with minimal power consumption. Because of the unique properties of
FDSOI, collaboration between integrated circuit design and technology development is necessary if the
potential of the technology is to be realized. To further that collaboration, HSPICE parameters were
extracted from test transistors, and design rules were written in order that researchers in the low-power
community could design and characterize circuits fabricated with the FDSOI technology. The principal
rules are listed in Table 7-1 and the photolithography levels in Table 7-2. Sixteen organizations including
Lincoln Laboratory submitted 29 designs which were incorporated into a multiproject SOI chip. Upon
completion of wafer fabrication, the individual circuits were cut from the SOI chips and sent to the design-
ers for characterization.

Device results were reported by the following companies and institutions: (1) At Boeing a 2-K static
random-access memory was operated at the limit of the tester (300 MHz) at 2 V. The circuit functioned
down to a 0.6-V power supply. (2) At Rockwell (Boeing) a 12-bit analog-to-digital (A/D) converter was
designed to operate at 0.8 M-samples/second and 80 ,W. The key elements of the circuit were functional.
(3) At Lucent, functional digital signal processing circuits for wireless communications systems were
obtained. (4) At Irvine Sensors, low-noise mixed-mode analog and neural circuits were functional. Test
board limitations prevented characterization of the circuits' speed. (5) At Arizona State, functional current
mode A/D converters were obtained. (6) At MIT, functional digital test circuits were obtained with 11 000
transistors.
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TABLE 7-1
Fully Depleted Silicon-on-Insulator Process and Design Parameters

Parameter Value

Initial silicon-on-insulator (SOl) thickness 62 nm

Buried oxide (BOX) thickness 200 nm

Sidewall oxide thickness 25 nm

Gate oxide thickness 8 nm

Spacer thickness 120 nm

Deposited oxide thickness 450 nm

n-channel body doping 4.0 x 1017/cm 3

p-channel body doping 3.5 x 1017/cm 3

n-channel moderately doped drain (MDD) doping 8 x 1019/cm 3

p-channel MDD doping 4 x 1019/cm 3

n÷-, p+-poly sheet rho 14 Qsq (silicided)

n+, p÷ sheet rho 14 OJsq (silicided)

Metal-1 sheet rho 0.06 .Jsq

Minimum island width 0.5 /m

Minimum island spacing 0.6 pm

Minimum gate length 0.25/pm

Minimum gate spacing 0.35 pm

Minimum metal-i, -2 width 0.75 pm

Minimum metal-i, -2 spacing 0.75 pm

Minimum metal-3 width 1 pm

Minimum metal-3 spacing 1 /pm

Contacts 0.5 x 0.5 pm 2

Vias 0.75 x 0.75 pm 2

40



An internally designed chip which included approximately 5000 transistors was included in the mul-
tiproject SOI chip. The circuit was designed to perform a high-speed comparison on two 8-bit words and,
based on the results, either store or discard the information. The application requires an 800-MHz clock
rate at a 2-V power supply; the chip was fully functional at 1 GHz and 2 V [4].

A second multiproject chip was assembled from 25 designs submitted from 19 external organiza-
tions and six Lincoln Laboratory groups, using design rules which were modified based upon test results
from the initial chip. The second multiproject chip is being fabricated.

The effect of ionizing radiation on the characteristics of FDSOI n-channel transistors was investi-
gated to determine the applicability of the technology to space applications. Since the off-state leakage and
threshold of a FDSOI transistor are functions of the gate, sidewall, and buried oxide properties, radia-
tion-induced changes in any of those oxides will modify the transistor's properties. An ARACOR 4100
10-keV x-ray source was used to irradiate transistors with 0.5-pum gates and 200-nm buried oxides in incre-
ments from 10 to 80 krads. The gates were biased at 1 V and the substrates, sources, and drains grounded
during irradiation. Transistors with 8- and 25-nm sidewall oxides were investigated. The front and back
channel thresholds decreased approximately 0.08 and 1.7 V, respectively, after 80 krads due to an increase
of charge in the gate and buried oxides. More noteworthy are the results shown in Figure 7-1 where the
device with 8-nm sidewall oxide developed considerably less sidewall leakage than the device with a
25-nm oxide. The effect of charge buildup on the flat band of a MOS capacitor due to ionizing radiation is
proportional to the square of the oxide thickness. Thus, the threshold of the edge transistor with the 8-nm
sidewall oxide was far more resistant to ionizing radiation. This result indicates that an 8-nm sidewall
oxide permits the FDSOI technology to satisfy low-level radiation exposure requirements without requir-
ing process changes to harden oxides.

Threshold control in a FDSOI technology is complicated by the dependence of threshold on silicon
thickness, so experiments were conducted to determine if threshold control would be dominated by thick-
ness variations in the starting silicon material. The thresholds of 100 n-channel transistors with 0.5-11m
gates were analyzed in terms of silicon thickness, sidewall implant dose, channel implant dose, channel
implant energy, and drift region dose. The data were obtained from seven SIMOX wafers with 380-nm bur-
ied oxides; the silicon thickness at each test site was obtained from wafer mapping measurements after the
thinning oxidation. A five-factor interaction model was constructed using response surface analysis tech-
niques and the results used to determine the effects of a 10% process variation on threshold; the correlation
between the data and the model was 0.93. The results listed in Table 7-3 show that variations in channel
implant dose had the greatest effect on threshold, but silicon thickness and channel implant energy are
nearly as important and also indicate that the implant energy must be tuned to the starting silicon thick-
ness.

Obtaining low-resistance contacts to thin silicon layers is a major challenge for FDSOI technology.
A 49-stage ring oscillator with 0.25-pm gate lengths was used to correlate the effects of extrinsic transistor
resistance with inverter delay; the resistance was determined [5] from transistors whose gate lengths
ranged from 0.2 to 0.5 pum. The study involved 60 ring oscillators from eleven SIMOX wafers with
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TABLE 7-2
Fully Depleted Silicon-on-Insulator Photolithography Levels

Layer Function

Active Define SOl island

p-channel Implant n-channel sidewalls

n-channel Implant p-channel sidewalls

p-channel Implant n-channel body

n-channel Implant p-channel body

Poly Define gates and interconnect

n÷ implant Implant n MDD regions

p9 implant Implant p MDD regions

n+ implant Implant n' regions

p: implant Implant p+ regions

Contact Define active and poly cuts

Metal 1 Define metal-1 interconnect

Via 1 Define metal-1/metal-2 vias

Metal 2 Define metal-2 interconnect

Via 2 Define metal-2/metal-3 vias

Metal 3 Define metal-3 interconnect

Pads Define overglass cuts
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Figure 7-1. Id plots of an n-channel fully depleted silicon-on-insulator (FDSOl) device with (a) 0.25-nm sidewall ox-
ide and (b) 8-nm sidewall oxide. Shown are the initial and postradiation characteristics at 10, 20, 30, 40, 50, and 80
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TABLE 7-3
Effects of 10% Process Variations on 0.25-Mm Parameters

Threshold
Process Factor N al VariationValue(mV)

SOl thickness 60 nm 25

Sidewall implant dose 2.5 x 1013/cm 2  0.2

Channel implant dose 3.5 x 1012/cm 2  32

Channel implant energy 25 keV 18

MDD dose 5 x 101 4/cm2  -10

200-nm buried oxides in which variations in silicide processing were investigated. The results summarized
in Figure 7-2 show the stage delay at 2 V as a function of n- and p-channel extrinsic resistance and indicate
that the p-channel contacts were the principal cause of excessive delay; threshold variations account for the
scatter at resistances less than 1000 Q. Subsequent analysis showed that boron depletion at the silicide-sil-
icon interface resulted in high contact resistance between the silicide and the p+ silicon. An HSPICE simu-
lation of inverter delay as a function of extrinsic resistance used HSPICE parameters extracted from
FDSOI transistors but varied the n- and p-channel resistances Rdsw. The simulation results shown in Figure
7-3 indicate that inverter performance is not degraded substantially for extrinsic resistances less than 360
and 1000 2 /tim for the n- and p-channel devices, respectively. These values are achievable with present
silicide processing technology.

Transistors and ring oscillators with effective channel lengths <0.2 ymn have been fabricated using
the technology discussed above. As part of that effort, simulations have been used to define a process
which is compatible with a 0.15 -jm technology. The standard practice of scaling the channel doping as an
inverse function of channel length is constrained by the FDSOI requirement that the maximum depletion
depth be greater than the silicon thickness. However, the silicon and buried oxide thicknesses provide two
additional degrees of freedom to scale the technology to 0.15 ym [6]. Optimization of those thicknesses is
required to produce desired device parameters as well as to minimize the effects of processing variations
on those parameters. The simulation and analysis techniques previously reported [7] were used to define a
0. 15-/im process which would yield an n-channel transistor with off-state leakage at Vd = 1 V of 100 pA
per ym of channel width, a threshold of 0.4 V, and an inverse subthreshold slope of 73 mV/decade. These
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TABLE 7-4
Effects of 10% Process Variations on 0.15-pum Parameters

Off-State ThresholdProcess Parameter Laae(VLeakage (mV)

BOX thickness 14 -1.3

S0l thickness -36 20

Channel implant dose -104 40

Gate length -42 10

Total sensitivity 118 46

requirements were met with a 75-nm buried oxide, a starting silicon thickness of 45 nm, a channel implant
dose of 6.5 x 1012 /cm 2, and 5-nm gate oxide. A moderately doped drain and a boron halo implanted adja-
cent to the gate were required to reduce the dependence of threshold on gate length. The variations in
off-state leakage and threshold due to a 10% increase in buried oxide and silicon thicknesses, channel
implant dose, and gate length were simulated. The results listed in Table 7-4 show that drain-source leak-
age is the parameter most sensitive to process variations. It is dominated by the channel implant dose and
is equally affected by silicon thickness and gate length variations. The total variations listed in the table are
the root sum of each variation squared and are a measure of the stability of the process. If the buried oxide
thickness is increased to 125 nm, the total sensitivity of leakage and threshold increases to 165 pA and 75
mV, respectively. Thus, a thin buried oxide is essential to reduce the sensitivity of device parameters to
variations in buried oxide and silicon thickness, channel length, and channel implant dose. These results
will be applied to the fabrication of ring oscillators and rf amplifiers with 0.1-0.15-pm gates.

J. A. Bums C. L. Keast
J. M. Knecht H. L. Liu
A. M. Soares P. W. Wyatt
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