Bridge Inspection Program
FY 93 Routine Inspections

October 1993
New England Division

19980206 113
# Bridge Inspection Program FY 93 Routine Inspections

## New England Division

### U.S. Army Corps of Engineers
New England Division

### U.S. Army Corps of Engineers, New England Division
424 Trapelo Road
Waltham, MA  02254-9149

### U.S. Army Corps of Engineers, New England Division
424 Trapelo Road
Waltham, MA  02254-9149

## The basis for the inspections is contained in ER 1110-2-111 "Periodic Safety Inspection and Continuing Evaluation of United States Army Corps of Engineers Bridges."

## Approved for public release
Distribution is unlimited

## The purpose of this routine bridge inspections is to inspect the physical condition of the structures and to verify and update the findings and evaluations reported in the last in-depth and routine inspection.

Twenty-two bridges were inspected for the 1993 Interim Bridge Inspection Program. For each bridge, an overall summary has been prepared. Included are the vehicle ratings, evaluation of each structural component, and overall structural evaluation, all compared with those from all previous inspections.
Bridge Inspection Program
FY 93 Routine Inspections

October 1993
New England Division
BRIDGE INSPECTION PROGRAM
FY 93 ROUTINE INSPECTIONS
NEW ENGLAND DIVISION

OCTOBER 1993

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASSACHUSETTS
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Project</th>
<th>Bridge</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franklin Falls, N.H.</td>
<td>Lower Mill Brook</td>
<td>6</td>
</tr>
<tr>
<td>&quot;</td>
<td>Upper Mill Brook</td>
<td>11</td>
</tr>
<tr>
<td>&quot;</td>
<td>Knox Brook</td>
<td>16</td>
</tr>
<tr>
<td>&quot;</td>
<td>Blake Brook</td>
<td>20</td>
</tr>
<tr>
<td>&quot;</td>
<td>Smith River</td>
<td>24</td>
</tr>
<tr>
<td>Birch Hill, MA</td>
<td>Middle Road</td>
<td>29</td>
</tr>
<tr>
<td>&quot;</td>
<td>New Boston Road</td>
<td>33</td>
</tr>
<tr>
<td>&quot;</td>
<td>Burgess Road</td>
<td>37</td>
</tr>
<tr>
<td>&quot;</td>
<td>Old Route 202</td>
<td>41</td>
</tr>
<tr>
<td>&quot;</td>
<td>Goodnow Road</td>
<td>45</td>
</tr>
<tr>
<td>West Hill, MA</td>
<td>West Hill Road</td>
<td>49</td>
</tr>
<tr>
<td>Thomaston, CT</td>
<td>Leadmine Brook Road</td>
<td>54</td>
</tr>
<tr>
<td>Northfield Brook, CT</td>
<td>Old Route 254 (Upper)</td>
<td>58</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>62</td>
</tr>
<tr>
<td>Black Rock, CT</td>
<td>Old Northfield Road</td>
<td>66</td>
</tr>
<tr>
<td>Hop Brook, CT</td>
<td>Old Route 63</td>
<td>70</td>
</tr>
<tr>
<td>Tully Lake, MA</td>
<td>Doane Hill Road</td>
<td>74</td>
</tr>
<tr>
<td>Everett Lake, NH</td>
<td>Choate Brook</td>
<td>79</td>
</tr>
<tr>
<td>Otter Brook, NH</td>
<td>Rec Area (Exit)</td>
<td>83</td>
</tr>
<tr>
<td>&quot;</td>
<td>Rec Area (Entrance)</td>
<td>111</td>
</tr>
<tr>
<td>Colebrook, CT</td>
<td>Old Route 8 (Bridge in MA)</td>
<td>116</td>
</tr>
<tr>
<td>Knightville, MA</td>
<td>Indian Hollow</td>
<td>121</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Appendix A  Visual Assessment for Scour Potential A1

Everett Lake --- Choate Brook

Birch Hill ----- Goodnow Road
Old Route 202
Middle Road
PURPOSE AND SCOPE

The purpose of the routine bridge inspections is to inspect the physical condition of the structures and to verify and update the findings and evaluations reported in the last in-depth and routine inspection. All previously detected areas of structural distress or operational inadequacies were reevaluated and any new deficiencies documented with the overall goal being to increase the useful life of the structures and to ensure the continued safety of the bridge users.

AUTHORITY

The basis for the inspections is contained in ER 1110-2-111 "Periodic Safety Inspection and Continuing Evaluation of United States Army Corps of Engineers Bridges."

INSPECTION PROCEDURE

The overall inspections were performed in accordance with AASHTO’s 1983 "Manual for Maintenance Inspection of Bridges", the Department of Transportation’s "Bridge Inspector’s Training Manual 90" (1990 edition) and all applicable sections of ER 1110-2-111. The inspection program was carried out under the direct supervision of a licensed Professional Engineer. The most recent in-depth inspection reports were thoroughly reviewed by inspection personnel prior to and during the field inspections.

The underside of all smaller Reservoir Area bridges were accessed using a ladder, waders and a small boat, or some combination thereof, as required.

During all inspections, all pertinent safety equipment was utilized and all pertinent safety procedures were followed.
REPORTING PROCEDURE

For each bridge, an overall summary has been prepared. Included are the vehicle ratings, evaluation of each structural component, and overall structural evaluation, all compared with those from all previous inspections. Also included are the previous recommended remedial repairs, the status of these recommendations and any new recommendations and/or comments based on the current inspections.

Field-completed checklists for each bridge are the Standard Structures Inspection Field Report and the Scour Checklist (an NED devised checklist based on recent Federal Highway Administration guidelines to more precisely address any potential or active scour-related problems).

BRIDGES INSPECTED

For the 1993 Interim Bridge Inspection Program, 22 bridges were inspected as indicated herein. Bridges inspected, projects, 1993 and 1991 condition ratings, inspection dates, estimated rehabilitation costs, rehabilitation priorities (see below) with temporary posting required, and degree of existing scour (see below) are summarized on next page:

Rehab. Priority (Posting, if necessary, in tons required)
1. Bridge currently cannot tolerate present traffic/loads. Prompt remedial measures are required. Bridge should be posted and restricted as indicated until corrective measures can be accomplished.
2. Major items require rehabilitation. Minimum adequacy to tolerate present traffic/loads. Further deterioration may cause priority 1.
3. Minor items require rehabilitation to maintain condition.

Scour
1 Major Scour Activity/Potential
2 Moderate Scour Activity/Potential
3 Minimal or No Scour Activity/Potential
<table>
<thead>
<tr>
<th>Project/Bridge</th>
<th>Condition</th>
<th>Date</th>
<th>Est. Rehab. Cost (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>Rating</td>
<td>Inspected</td>
<td>(see below)</td>
</tr>
<tr>
<td>FRANKLIN FALLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Lower Mill Brook</td>
<td>4</td>
<td>7/14/93</td>
<td>55.5</td>
</tr>
<tr>
<td>2. Upper Mill Brook</td>
<td>4</td>
<td>7/15/93</td>
<td>40.5</td>
</tr>
<tr>
<td>3. Knox Brook</td>
<td>4</td>
<td>7/14/93</td>
<td>0.0</td>
</tr>
<tr>
<td>4. Blake Brook</td>
<td>7</td>
<td>7/14/93</td>
<td>15.0</td>
</tr>
<tr>
<td>5. Smith River</td>
<td>5</td>
<td>7/14/93</td>
<td>180+</td>
</tr>
<tr>
<td>BIRCH HILL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Middle Road</td>
<td>7</td>
<td>6/25/93</td>
<td>0.5</td>
</tr>
<tr>
<td>7. New Boston Road</td>
<td>7</td>
<td>6/24/93</td>
<td>0.5</td>
</tr>
<tr>
<td>8. Burgess Road</td>
<td>7</td>
<td>6/24/93</td>
<td>7.5</td>
</tr>
<tr>
<td>9. Old Route 202</td>
<td>7</td>
<td>6/24/93</td>
<td>1.5</td>
</tr>
<tr>
<td>10. Goodnow Road</td>
<td>7</td>
<td>6/25/93</td>
<td>5.0</td>
</tr>
<tr>
<td>WEST HILL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. West Hill Road</td>
<td>5</td>
<td>9/08/93</td>
<td>91.5</td>
</tr>
<tr>
<td>THOMASTON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Leadmine Brook</td>
<td>8</td>
<td>8/24/93</td>
<td>0.0</td>
</tr>
<tr>
<td>NORTHFIELD BROOK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Old Rt.254 (upper)</td>
<td>8</td>
<td>8/24/93</td>
<td>0.0</td>
</tr>
<tr>
<td>14. Old Rt.254 (lower)</td>
<td>8</td>
<td>8/24/93</td>
<td>0.0</td>
</tr>
<tr>
<td>BLACK ROCK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Old Northfield Rd.</td>
<td>8</td>
<td>8/24/93</td>
<td>31.0</td>
</tr>
<tr>
<td>HOP BROOK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Old Route 63</td>
<td>5</td>
<td>8/24/93</td>
<td>0.5</td>
</tr>
<tr>
<td>TULLY LAKE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Doane Hill Road</td>
<td>7</td>
<td>6/25/93</td>
<td>25.0</td>
</tr>
<tr>
<td>ETHERRT LAKE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Choate Brook</td>
<td>4</td>
<td>9/09/93</td>
<td>0.0</td>
</tr>
<tr>
<td>OTTER BROOK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Rec Area (Exit)</td>
<td>6</td>
<td>8/18/93</td>
<td>31.0</td>
</tr>
<tr>
<td>20. Rec Area (Entran.)</td>
<td>7</td>
<td>8/18/93</td>
<td>32.0</td>
</tr>
<tr>
<td>COLEBROOK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Old Route 8</td>
<td>7</td>
<td>8/25/93</td>
<td>0.0</td>
</tr>
<tr>
<td>KNIGHTVILLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Indian Hollow</td>
<td>7</td>
<td>8/25/93</td>
<td>5.0</td>
</tr>
</tbody>
</table>

**LEGEND**

* See overall assessment.

** Scour analysis performed.
OVERALL ASSESSMENT

During FY93, only reservoir area bridges (no spillway bridges) were inspected. Overall, the condition of the bridges inspected ranged from good to fair to poor, with overall condition ratings and rehabilitation priorities as listed above.

REHAB PRIORITY 1

Bridges that were assessed a rehab priority of 1, with corresponding reduction in capacity are as follows:

<table>
<thead>
<tr>
<th>Project</th>
<th>Bridge</th>
<th>Temporary Posting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franklin Falls</td>
<td>Upper Mill Brook</td>
<td>close</td>
</tr>
<tr>
<td>Franklin Falls</td>
<td>Lower Mill Brook</td>
<td>6</td>
</tr>
<tr>
<td>Franklin Falls</td>
<td>Smith River</td>
<td>5</td>
</tr>
</tbody>
</table>

These three bridges have been given the highest priority, with recommendations listed herein to be expeditiously carried out. Until these bridges have been rehabilitated as indicated, the above posting for each bridge shall be strictly adhered to.

Operation Directorate has made an assessment of the future intended usage of the bridges to determine what level of rehabilitation, if any, is required. Based on their decision, the following has been recommended by Engineering Directorate with concurrence from Operations Directorate:

1. Upper Mill Brook will be permanently closed to vehicular traffic by installation of permanent barriers on the east and west approaches.

2. Lower Mill Brook will be rehabilitated as recommended with design and construction budgeted for FY 94.

3. Smith River Bridge will be immediately posted for a 5 tons weight rating and 10 mph speed limit in order to limit usage to small truck traffic. Interim inspections will be performed on the structure at six month intervals to determine if further deterioration requires further reduction of capacity or complete closure.

FRACTURE CRITICALITY

Of the bridges inspected, only Old Route 8 Bridge falls into the fracture critical category. It is a two truss, simple span, through truss, steel structure with built up members and riveted connections. Some of the rivets have been replaced with high strength bolts. Because of its location (within the reservoir), it is subjected to very minimal traffic, in general, and therefore, minimal truck traffic. Because of this low traffic volume and the overall good condition of the structure, no additional testing is required and continued two year inspection
intervals is considered sufficient.

SCOUR

The FY 93 routine inspections also include a scour checklist (an NED devised checklist based on recent FHWA guidelines) which was incorporated to better define any active or potential scour related problems.

Scour problems have been noted at the following bridges and listed in order of relative severity:

Otter Brook ----- Recreation Area (Exit)
Otter Brook ----- Recreation Area (Entrance)
Birch Hill ------ Goodnow Road
Thomaston ------ Leadmine Brook
Birch Hill ------ Old Route 202
Everett Lake ---- Choate Brook

Remedial measures have been listed in the recommendation section of the text for each structure. None of these conditions are considered to be of such criticality that immediate action is warranted. Repairs should be performed in a timely manner through normal budgetary procedures and priorities, and continued monitoring of scour conditions should be performed during all future inspections.

FY 93 scour assessments, both Hydrologic/Hydraulic and Geotechnical were performed on bridges at Everett Lake (Choate Brook) and Birch Hill (Goodnow Road, Middle Road, Old Route 202) with the results incorporated into the inspection reports. This makes a total of nine bridges as indicated in the summary above, in the inventory, which have been assessed in this manner for scour criticality. Based on the extremely low probability of failure from scour, it is recommended that not further in-depth Hydrologic/Hydraulic scour assessments be performed, on any bridges, unless recommended as a result of specific findings during future inspections.
DATE OF INSPECTION: 14 July 93

DATE OF PREVIOUS INSPECTIONS: In-Depth, 9, 10 July 85
Routine, 17 July 87
Routine, 28 April 89
Routine, 15 May 91

RATING (T=TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>6.8T</td>
<td>15.2T</td>
<td>No change in ratings</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway and Railings: Overall condition is poor (condition 4). The gravel wearing surface is well graded. Vegetative growth and debris are evident on the deck and approaches. The growth includes one 4- and one 6-inch tree on the shoulder. The approaches are in good condition. The transitions are good on both approaches. The load rating is not posted. There are no drains on the deck. The steel pipe bridge and approach railings are missing large sections and are heavily corroded. There is a steep drop to the streambed.

B. Fascias & Curbs: The fascias and curbs are in fair condition. There is some concrete spalling evident on the exterior of the west fascia. There is minor efflorescence from the concrete over and around the exterior steel beams.

C. Underside of Deck: The overall condition of the underside of the concrete deck is fair (condition 5). One moderate spall was noted on the inside southwest corner of the exterior concrete arch beam. The area of this spall was described in the 91 investigation to be approximately four square feet. There has been no significant increase in size since that observation. Minor efflorescence was observed on the underside of the deck. Minor cracks were observed in the
concrete arch between the two exterior beams. There is some minor surface corrosion of the exposed steel beams and tie rods. Graffiti is evident.

D. Wingwalls/Abutments: The condition of the abutments is fair (condition 5). The north and south abutments contain minor hairline cracks and efflorescence. There is an approximately 36-inch crack at the junction of the north abutment and west bridge deck which intersects the west wingwall.

The overall condition of the channel training walls is fair (condition 5). The northwest channel training wall has minor cracks. The southwest channel training wall is of stone rubble masonry and exhibits minor effects of erosion. The mortar is eroded but there is no evidence of rock loss or movement.

The wingwalls are in fair condition. All wingwalls have minor cracks, spalls and efflorescence. Wingwall drainage pipes are covered by vegetation. No catch basin was observed. Several full-length vertical cracks were found on northeast and northwest wingwalls.

E. Channel: The channel shows no sign of scour. There are no obstructions or debris in the channel.

CONDITION RATINGS: In-depth, 1985: 7
Routine, 1989: 5
Routine, 1991: 4
Routine, 1993: 4

Status of Previous Recommendations

<table>
<thead>
<tr>
<th>Item</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install steel beam guardrail.</td>
<td>Not Done</td>
</tr>
<tr>
<td>2. Repair cracks at approaches and NW corner of deck.</td>
<td>Not Done</td>
</tr>
<tr>
<td>3. Patch spalled concrete and repair sidewalk.</td>
<td>Not Done</td>
</tr>
</tbody>
</table>
4. Sandblast and paint steel beams. Not Done
5. Regrade roadbed. Done

Revised Recommendations

1. Install steel beam guardrail. Estimated cost $30,000.

2. Repair cracks on the wingwalls of the north abutments and crack at NW corner of the deck. Patch mortar on the southwest training wall.
   Estimated cost $5,000.

3. Patch all areas of spalled concrete on fascia and curbs and the inside southwest corner of the exterior arch beam. Repair sidewalk.
   Estimated cost $10,000.

4. Sandblast and paint exposed steel surfaces.
   Estimated cost $10,000.

5. Post load rating on approaches.
   Estimated cost $500.

Total cost $55,500.
# STRUCTURES INSPECTION FIELD REPORT

## ROUTINE INSPECTION

<table>
<thead>
<tr>
<th>Item</th>
<th>58</th>
<th>59</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DECK</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Wearing Surface</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2. Deck-Condition</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Stay in Place Forms</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Curbs</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Median</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Sidewalks</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Parapet</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Railing</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Anti Missile Fence</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Drains</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Lighting Standards</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Utilities</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Deck Joints</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Approach Settlement</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>SUPERSTRUCTURE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Bearing Devices</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>2. Stringers</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Diaphragms</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Girders or Beams</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Floor Beams</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Trusses</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Rivets or Bolts</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Welds</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Collision Damage</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Load Deflection</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Member Alignment</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Load Vibration</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Paint-Epoxy</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Year Painted</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>SUBSTRUCTURE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Abutments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Wings</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Backwall</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Bridge Seats</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Breastwall</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Footings</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Piles</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Erosion</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Settlement</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Piers or Bents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Caps</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Column</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Web</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Footing</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Piles</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Scour</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Settlement</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Collision Damage</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Hydraulic-Adequacy</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Actual Posting**
- H 3 352
- Single

**Recommended Posting**
- From Rating Book

**SIGN IN PLACE**
- at bridge
- advance

**LEGIBILITY**

**Overhead Signs (attached to bridge)**
- yes
- no

**ITEM 61-channel and channel protection**
- Channel scour
- Embankment erosion
- Fender system
- Spur dikes & jetties

**36-Traffic Safety features**
- 1. Bridge railing
- 2. Transitions
- 3. Approach guardrail
- 4. Guardrail terminal
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   **Yes**

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?  
   **Yes**
   a. Piers, abutments with spread footings or short pile foundations.  
   b. Superstructure with simple spans or non-redundant support systems.  
   c. Inadequate waterway openings.  
   d. Designs which collect ice and debris.  
   e. All water must pass through or over structure.  
   f. Other.

3. Are any characteristics of an aggressive stream or waterway present?  
   **No**
   a: Active degradation or aggregation of streambed.  
   b. Significant lateral movement or erosion of streambanks.  
   c. Steep slopes.  
   d. High velocities.  
   e. Any history of highway or bridge damage during past floods.  
   f. Other.

4. Is the bridge located on a stream reach with any adverse flow characteristics?  
   **No**
   a. Crossing near stream confluence.  
   b. Crossing of tributary stream near confluence with larger streams.  
   c. Crossing on sharp bend in stream.  
   d. Location on alluvial fan.  
   e. Other.

5. Other comments or observations.
   *Mina erosion (menta scour) on southwest channel training wall.*
DATE OF INSPECTION: 15 July 93

DATE OF PREVIOUS INSPECTIONS: In-Depth, 9, 10 April 85
Routine, 17 July 87
Routine, 28 April 89
Routine, 13 May 91

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>7.2T</td>
<td>10.7T</td>
<td>No change in ratings</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway and Railings: Overall condition is poor (condition 4). The gravel wearing surface is very rutted. There are deep (3 inch) depressions evident at several spots on the deck. The depth of gravel wearing surface on the concrete deck is indeterminate and it is not possible to determine whether the top of the deck is damaged. Vegetative growth and debris are evident on the deck and approaches. A 10-inch tree grows on the approach near the southwestern retaining wall. There are no drains on the deck. The steel pipe bridge and approach railings are heavily rusted with large sections missing. There is a steep drop to the streambed.

The eastern approach is in poor condition with excessive settlement on the north edge of the road where the embankment and approach retaining wall are slumping. Three Jersey barriers have been placed along the north edge of the road to steer vehicles away from the failing embankment. There is a sharp transition at the east approach and a steep drop to the streambed below. The western approach is similarly rutted but the transition is good. The load rating is not posted at either approach.

B. Fascias & Curbs: The fascia is in fair condition
B. Fascias & Curbs: The fascia is in fair condition (condition 5). The curbs are hidden by a thick gravel wearing surface. There is moldy growth along the exterior edge of the steel beams.

C. Underside of Deck: The overall condition of the underside of the concrete deck is good (condition 7). There are no spalls or cracks, but there is some efflorescence. There is some minor surface corrosion of the exposed steel beams and tie rods.

D. Wingwalls/Abutments: The condition of both abutments is good (condition 7). The east and west abutments contain cold joints. Minor efflorescence is evident. The western abutment has 24 to 28 inches of moderate scour under an apron of the same width. The eastern abutment is slightly undermined to a depth of 16 inches under a solid apron of approximately 3 feet.

The southwest wingwall has minor cracks and efflorescence. The northwest wingwall is very overgrown by trees and other vegetation. Its general appearance is the same as that of the southwest wall. There is a 5 foot (full length), 1/2 inch wide vertical crack halfway along the wall. The southeast wingwall is covered with vegetative growth. There is some minor efflorescence. There is a full length, full depth (3 inch), 1-inch wide vertical crack midway along the wall. The northeast wingwall embankment is undercut by scour. There is a full length, full depth (3 inch), 1 1/4 inch wide crack at the 1/3 point. There is a full length, full depth, 2-inch wide crack halfway along the wall. The FY 91 bridge inspection contains diagrams detailing the site. The horizontal distance along crack 2 was measured to be 5 7/8 inches in the 91 report vs 5 3/4 inches in 93. A full length, full depth, 4-inch wide crack is located at the 2/3 point along the wall. The wall has rotated outward from the bank.
E. Channel: There is an 8-inch diameter corroded cast iron pipe crossing the upstream side of the streambed. There are numerous boulders and cobbles throughout the channel. A bend in the streambed downstream of the bridge is causing eddies which are undermining the east embankment.

**CONDITION RATINGS:**
- In-depth, 1985: 7
- Routine, 1989: 5
- Routine, 1991: 4
- Routine, 1993: 4

**Status of Previous Recommendations**

<table>
<thead>
<tr>
<th>Item</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Temporarily close bridge and extend barriers at north and south ends.</td>
<td>Not Done</td>
</tr>
<tr>
<td>2. Complete scour analysis.</td>
<td>Done</td>
</tr>
</tbody>
</table>

**Revised Recommendations**

The hydrologic and hydraulic assessment of Upper Mill Brook Bridge completed in 1992 recognizes a need to repair the stone and mortar aprons surrounding the bridge abutments. It also recommends that a 100 foot stone revetment which would vary in height from 5 to 15 feet be placed along the streambed to control bank erosion. The revetment would consist of 2 to 3 feet of stone protection underlain by 1 to 1.5 feet of stone bedding. Granular fill will be needed to fill eroded areas behind the revetment. A small stone dam downstream from the bridge which could be altering the direction of stream flow may need to be removed. This would require rental of a crane for a few hours to remove the stone.

**Total cost $40,000**

The report notes that conditions at the bridge are severe and the cost of repairs high. It recommends closure of the bridge by installing permanent barriers on east and west approaches allowing only pedestrian and bicycle traffic. (A park gate presently exists on the east approach road only.)

**Total cost (40 feet of Jersey barrier) $500**
## STRUCTURES INSPECTION FIELD REPORT
### ROUTINE INSPECTION

<table>
<thead>
<tr>
<th>Item 58</th>
<th>Item 59</th>
<th>Item 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECK</td>
<td>SUPERSTRUCTURE</td>
<td>SUBSTRUCTURE</td>
</tr>
<tr>
<td>2. Deck-Condition</td>
<td>2. Stringers</td>
<td>a. Wings</td>
</tr>
<tr>
<td>4. Curb</td>
<td>4. Girders or Beams</td>
<td>c. Bridge Seats</td>
</tr>
<tr>
<td>5. Median</td>
<td>5. Floor Beams</td>
<td>d. Breastwall</td>
</tr>
<tr>
<td>7. Parapet</td>
<td>7. Rivets or Bolts</td>
<td>f. Piles</td>
</tr>
<tr>
<td>8. Railings</td>
<td>8. Welds</td>
<td>g. Erosion</td>
</tr>
<tr>
<td>10. Drains</td>
<td>10. Load Deflection</td>
<td>1. Piers or Bents</td>
</tr>
<tr>
<td>15. Under Clearance feet inches</td>
<td>Clearance Signs yes no</td>
<td>e. Piles</td>
</tr>
<tr>
<td>Actual Posting</td>
<td>H 3 3S2 Single</td>
<td>Overhead Signs (attached to bridge) yes no</td>
</tr>
<tr>
<td>Recommended Posting From Rating Book</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGNS IN PLACE</td>
<td>at bridge</td>
<td>1. Welds</td>
</tr>
<tr>
<td>Y or N</td>
<td>advance</td>
<td>2. Bolts</td>
</tr>
<tr>
<td>LEGIBILITY</td>
<td></td>
<td>3. Condition</td>
</tr>
</tbody>
</table>

### ITEM 61 - CHANNEL AND CHANNEL PROTECTION
- Channel scour: 3
- Embankment erosion: 3
- Fender system: 7
- Spur dikes & jetties: 8

### ITEM 66 - TRAFFIC SAFETY FEATURES
- Bridge railing: 3
- Transitions: 3
- Approach guardrail: 3
- Guardrail terminal: N

---

**Notes:**
- Franklin Falls Dam
- Upper Mill Brook Bridge
- Hill NH
- Bridge dept. no.
- COE
- 22-Owner: COE
- 8-structure no.
- CEP NED NH 32
- 106-year rebuilt: 0000
- 90-date inspected: 16 July 93
- Milepoint: 1 M S E C E M
- Team leader: Joseph Colucci
- Team members: M. Walsh, M. Deschenes, L. Bouchard
- Access Road-Recreation Area
- Needle Shop Brook
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   - yes

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   - yes
   - a. Piers, abutments with spread footings or short pile foundations.  
   - yes
   - b. Superstructure with simple spans or non-redundant support systems.  
   - yes
   - c. Inadequate waterway openings.  
   - yes
   - d. Designs which collect ice and debris.  
   - yes
   - e. All water must pass through or over structure.  
   - yes
   - f. Other.  

3. Are any characteristics of an aggressive stream or waterway present?
   - yes
   - a. Active degradation or aggregation of streambed.  
   - yes
   - b. Significant lateral movement or erosion of streambanks.  
   - yes
   - c. Steep slopes.  
   - yes
   - d. High velocities.  
   - yes
   - e. Any history of highway or bridge damage during past floods.  
   - no
   - f. Other.  

4. Is the bridge located on a stream reach with any adverse flow characteristics?
   - no
   - a. Crossing near stream confluence.  
   - no
   - b. Crossing of tributary stream near confluence with larger streams.  
   - no
   - c. Crossing on sharp bend in stream.  
   - no
   - d. Location on alluvial fan.  
   - no
   - e. Other.  

5. Other comments or observations.
   - Erosion beneath northeast embankment causing slump.
DATE OF ROUTINE INSPECTION: 14 July 93

DATE OF PREVIOUS INSPECTIONS: Routine Inspection, 14 May 91
Inventory Inspection, April 85

RATING (T = TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>20 T</td>
<td>Estimated</td>
<td>The bridge was reconstructed in 1992. Load rating calculations are forthcoming.</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Superstructure
- Above Deck
- Overall condition is very good.
- The bridge was rebuilt in 1991. The stone abutments were capped with new concrete bridge seats. The superstructure is constructed of prestressed concrete planks.
- Both north and south approaches are in fair condition. The gravel roadway is slightly rutted as it transitions to the bridge deck.
- The southeast stone wingwall is capped with three W12 steel beams, presumably salvaged from the old superstructure.
- The joint at the interface between the south west stone wingwall and the new concrete abutment is wide and allows gravel to wash down off of the road.
- There are no approach guard rails or bridge railings.
- Joints between the deck and both abutment backwalls are improperly sealed with concrete. This is causing some cracking and spalling at the joint.
- All of the wingwalls are in good condition, with only moderate growth of vegetation between the stones.
B. Superstructure
- Below Deck
  - Overall condition is very good.
  - There is a foam backer rod protruding from between the two eastern precast planks.
  - Underside of deck is in good condition.

C. Substructure
  - Overall condition is good.
  - The stone abutments are in good condition.
  - There is a beaver dam constructed against the upstream (east) wingwalls.
  - Clear water is flowing out from between the stones of both abutments. The water is flowing from behind the beaver dam. The water does not appear to be carrying soils out from behind the abutments.
  - Slight scour is present under the north abutment.

D. Channel
  - The channel under the bridge is in fair condition, with only slight scouring.

E. Overall Numerical Condition Rating

| Inventory 1985: | 7 |
| Routine 1991:  | 4 |
| Routine 1993:  | 9 |

RECOMMENDATIONS

Status of Previous Recommendations

1. Post the load limit at both approaches.

2. Remove existing deck and girders, and recap both abutments with new concrete bridge seats. Install a new prestressed concrete plank bridge deck with parapets.

3. Install guard rails on both approaches.

Item No. 2 has been completed. Items 1 and 3 have not.

Revised Recommendations

1. Post the load limit at both approaches.
# STRUCTURES INSPECTION FIELD REPORT

## ROUTINE INSPECTION

<table>
<thead>
<tr>
<th>City/State</th>
<th>Bridge Dept. No.</th>
<th>8-Structure No.</th>
<th>90-Date Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanbornton, NH</td>
<td>CEPWEDNH 3310006</td>
<td>7/4/93</td>
<td></td>
</tr>
</tbody>
</table>

## 2-104-highway system

<table>
<thead>
<tr>
<th>22-owner</th>
<th>27-year built</th>
<th>106-year rebuilt</th>
<th>11-milepoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE</td>
<td>1920</td>
<td>1992</td>
<td></td>
</tr>
</tbody>
</table>

## 43-structure type

- Prestressed, Precast Concrete Planks

## 07-facility carried

- Reservoir Access Road

## 06-features intersected

- Knox Brook

### Item 58

**DECK**

1. Wearing Surface  
2. Deck-Condition  
3. Stay in Place Forms  
4. Curbs  
5. Median  
6. Sidewalks  
7. Parapet  
8. Railing  
9. Anti-Missile Fence  
10. Drains  
11. Lighting Standards  
12. Utilities  
13. Deck Joints  
14. Approach Settlement  

### Item 59

**SUPERSTRUCTURE**

1. Bearing Devices  
2. Stringers  
3. Diaphragms  
4. Girders or Beams Plants  
5. Floor Beams  
6. Trusses  
7. Rivets or Bolts  
8. Welds  
9. Collision Damage  
10. Load Deflection  
11. Member Alignment  
12. Load Vibration  
13. Paint-Epoxy  
14. Year Painted  
15. Under Clearance —— ft —— in Clearance Signs

### Item 60

**SUBSTRUCTURE**

1. Abutments
   - a-Wings  
   - b-Backwall  
   - c-Bridge Seats  
   - d-Breastwall  
   - e-Footings  
   - f-Plies  
   - g-Erosion  
   - h-Settlement

2. Piers or Bents
   - a-Caps  
   - b-Column  
   - c-Web  
   - d-Footing  
   - e-Plies  
   - f-Scour  
   - g-Settlement

3. Collision Damage

4. Hydraulic-Adequacy

### Actual Posting

- Single

### Recommended Posting

- From Rating Book

### SIGNS IN PLACE

- Y or N

### LEGIBILITY

### Overhead Signs (attached to bridge)

- yes

### Item 93b U/W Inspection Date

### TEM 61-channel and channel protection

- channel scour  

### 36-Traffic Safety features

- bridge railing  
- transitions  
- approach guardrail  
- guardrail terminal
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   - Yes

2. Is streambed erodible? If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations.
   b. Superstructures with simple spans or non-redundant support systems.
   c. Inadequate waterway opening.
   d. Designs which collect ice and debris.
   e. All water must pass through or over structure.
   f. Other.
   - Stone Abutment

3. Are any characteristics of an aggressive stream or waterway present?
   a. Active degradation or aggradation of streambed.
   b. Significant lateral movement or erosion of streambanks.
   c. Steep slopes.
   d. High velocities.
   e. Any history of highway or bridge damage during past floods.
   f. Other.
   - Yes

4. Is bridge located on stream reach with any adverse flow characteristics?
   a. Crossing near stream confluence.
   b. Crossing of tributary stream near confluence with larger streams.
   c. Crossing on sharp bend in stream.
   d. Location on alluvial fan.
   e. Other.
   - No

5. Other comments or observations.
   - 

19
DATE OF INSPECTION: 14 July 93

DATE OF PREVIOUS INSPECTIONS: Inventory, April 85
Routine, 16 July 87
Routine, 30 May 89
Routine, 14 May 91

RATING (T=TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td>14.5T</td>
<td>19.4T</td>
<td>Load capacity has not changed since previous inspection.</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Superstructure Above Deck

The overall condition of the superstructure is good. (condition 7)
There is some minor rutting at each of the gravel approaches. The new timber deck is in very good condition. Sand is accumulating along the brush blocks on either side of the bridge and is preventing adequate drainage of the bridge deck. The 15 ton rating signs at each bridge approach have been vandalized with graffiti and are illegible. The guardrails are in good condition. One post at the north end of the west guardrail is loose. One bolt is missing on the west guardrail at the third support from the south approach. Vegetation is encroaching upon each approach.

B. Superstructure Under Deck

The overall condition of the substructure is good (condition 7).
There is minor to moderate rusting of all structural steel. The existing paint system is in poor condition. There is minor debris build-up along the flanges of the steel.

C. Substructure

The overall condition is good (condition 7). The wingwalls and abutments are in good condition with only very minor cracking and efflorescence noted. There
are no signs of settlement or scour. One weep hole in the south abutment is plugged.

RECOMMENDATIONS

Status of Previous Recommendations

1. Clean debris from deck and bottom flanges of the girders. Fill, grade and compact rutted areas of the approaches. Remove obstruction from south abutment weep hole. Not Done

2. Clean and repaint all structural steel Not done

3. Replace the guardrail support along the north end of the west guardrail. Not Done

Revised Recommendations

Implement above recommendations

Total Updated Estimated Cost $15,000
# STRUCTURES INSPECTION FIELD REPORT
## ROUTINE INSPECTION

<table>
<thead>
<tr>
<th>bridge dept. no.</th>
<th>bridge no.</th>
<th>8-structure no.</th>
<th>90-date inspected</th>
<th>2-dist.</th>
<th>104-highway system</th>
<th>22-owner</th>
<th>27-year built</th>
<th>106-year rebuilt</th>
<th>11-milepoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hill - Bristol</td>
<td>Franklin</td>
<td>COE</td>
<td></td>
<td></td>
<td></td>
<td>CoE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>43-structure type</th>
<th>quality control engineer</th>
<th>07-facility carried</th>
<th>team leader</th>
<th>06-features intersected</th>
<th>team members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolled Beam Bridge</td>
<td>Nick Forbes</td>
<td>Timbrooke</td>
<td>Joe Conner</td>
<td>Blake Brook</td>
<td>M Deshaies M. Nash L. Ruckhamee</td>
</tr>
</tbody>
</table>

### Item 58
**DECK**

1. Wearing Surface
2. Deck-Condition
3. Stay In Place Forms
4. Curbs
5. Median
6. Sidewalks
7. Parapet
8. Railing
9. Anti Missile Fence
10. Drains
11. Lighting Standards
12. Utilities
13. Deck Joints
14. Approach Settlement

### Item 59
**SUPERSTRUCTURE**

1. Bearing Devices
2. Stringers
3. Diaphragms
4. Girders or Beams
5. Floor Beams
6. Trusses
7. Rivets or Bolts
8. Welds
9. Collision Damage
10. Load Deflection
11. Member Alignment
12. Load Vibration
13. Paint-Epoxy
14. Year Painted
15. Under Clearance

### Item 60
**SUBSTRUCTURE**

1. Abutments
   a. Wings
   b. Backwall
   c. Bridge Seats
   d. Breastwall
   e. Footings
   f. Piles
   g. Erosion
   h. Settlement
2. Piers or Bents
   a. Caps
   b. Column
   c. Web
   d. Footing
   e. Piles
   f. Scour
   g. Settlement
3. Collision Damage
4. Hydraulic-Adequacy

### Actual Posting

- H 3 3S2
- Single

### Recommended Posting

From Rating Book

### SIGNs IN PLACE

- at bridge
- advance
- LEGIBILITY

### Overhead Signs (attached to bridge)

- yes
- no

### Item 61-channel and channel protection

- 7

### Traffic Safety Features

1. bridge railing
2. transitions
3. approach guardrail
4. guardrail terminal

### Item 83b U/W Inspection Date

###_legibility

- 5

### condition

- 1

- 7

- 7

- 7

- 7
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   NO

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   YES
   a. Piers, abutments with spread footings or short pile foundations.  YES
   b. Superstructure with simple spans or non-redundant support systems.  YES
   c. Inadequate waterway openings.  NO
   d. Designs which collect ice and debris.  NO
   e. All water must pass through or over structure.  YES
   f. Other.

3. Are any characteristics of an aggressive stream or waterway present?
   NO
   a. Active degradation or aggredation of streambed.  NO
   b. Significant lateral movement or erosion of streambanks.  NO
   c. Steep slopes.  NO
   d. High velocities.  NO
   e. Any history of highway or bridge damage during past floods.  NO
   f. Other.

4. Is the bridge located on a stream reach with any adverse flow characteristics?
   NO
   a. Crossing near stream confluence.  NO
   b. Crossing of tributary stream near confluence with larger streams.  NO
   c. Crossing on sharp bend in stream.  NO
   d. Location on alluvial fan.  NO
   e. Other.

5. Other comments or observations.
   NONE
DATE OF INSPECTION: 14 July 93

DATE OF PREVIOUS INSPECTIONS: Inventory, June 84
Routine, 16 July 87
Routine, 31 May 89
Routine, 14 May 91

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>11.3T</td>
<td>16.1T</td>
<td>It is recommended that the bridge be limited to 5 tons</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway and Railings: The overall condition is fair (rating 5). The bituminous surface coating is in poor condition with various cracking along the deck. There is vegetation growth and a buildup of debris along both gutters. There are no guardrails at either approach. A safety gate at the north approach is no longer useable. The north approach is rutted with two large potholes approximately 15 feet before the bridge. The south approach is in good condition.

B. Fascias & Curbs: The parapets on the bridge are in fair condition. There is extensive spalling along the parapet walls. The faces of the walls are covered with graffiti. The anchor bolts supporting the access gate have pulled out of the parapet, and the gate is no longer usable.

C. Underside of Deck: The overall condition is good. The northern end of the deck diaphragm measured 13" from the breast wall to the back face of the diaphragm (11" 1991 Routine inspection). This would prove that the abutments have moved since the previous inspection. There is some hairline cracking along the concrete tee beams in both transverse and longitudinal directions. The longitudinal cracking
apparent at the approximate center of the east and center tee beams may be due to insufficient cover. Some transverse cracking noted in previous inspections may be caused by excessive shear stresses. The west beam is in good condition.

D. Wingwalls/Abutments: The overall condition of the wingwalls and abutments is poor (condition 3). The crack in the north abutment appears to have worsened. The crack now measures 5" at top and 1 1/2" at the bottom. The footing is covered in this area but is suspected to be cracked as well. The west wingwall has dropped 1" lower than the breastwall. The north abutment is rotated approximately 3 to 5 degrees south and is suspected to have moved since the last inspection. The south abutment has a similar crack at the east side of the breastwall. This crack measures 2 1/4" at the top and 3/4" at the bottom and continues through the footing. The east wingwall has rotated almost 1 3/4" east from the top of the abutment. This abutment has rotated 3 to 5 degrees north. It is difficult to assess whether this wall has undergone any additional movement. The abutments appear to have rotated almost 3 inches since the 1984 in-depth inspection and almost 1 foot since construction.

E. Channel: The overall channel rating is 5. The previous inspection stated that the hydraulic adequacy of the bridge opening is poor. A scour analysis has been performed and is included in the 1992 bridge inspection report appendix A. The area of scour along the south abutment did not appear to be as deep as stated in the 1991 routine inspection.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A/E A/E</td>
<td>NED</td>
<td>NED</td>
<td>NH</td>
<td>DOT</td>
<td>NED</td>
<td>NED</td>
</tr>
<tr>
<td>Deck</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Superstructure</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Substructure</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Channel</td>
<td>N/R</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Approaches</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
Status of Previous Recommendations

1. Post Bridge at 5T gross load to restrict traffic to a pickup truck or less. Not Done

2. Place guardrail and terminal at the northwest approach. Not Done

3. Place a timber crib to arrest the erosion pass flow adjacent to the northwest wingwall. Not Done

4. Instrument the cracks, abutments and deck with devices to measure movement more accurately. Not Done

Revised Recommendation

Due to the severity of the failure and the apparent movement of the bridge in recent years, total replacement is considered the only practical solution to the problem of the abutment failure. Replacement of the bridge will also allow for an increased load carrying capacity for the bridge. It presently functions as emergency access to the reservoir.

Estimated Cost $175,000

Interim Recommendations

1. The bridge should be posted for a 5 ton weight rating and a 10 mph speed limit in order to limit traffic to a pickup truck or light duty dump truck.

   Estimated Cost $500

2. Heavy trucks such as fire apparatus emergency vehicles and light excavation equipment, (backhoe or lighter) should be limited, unloaded, driven slowly, and carefully supervised while travelling over the bridge.

3. The street gate presently lying by the bridge should be repaired so that it can be locked. Provisions should also be made so that it will allow pedestrians to cross the bridge easily.

   Estimated Cost $1000

4. Set reference points and markers in order to monitor the movements of the bridge. Inspect and record movements of the bridge twice per year and include the results of these inspections in the annual bridge inspection report.

   Estimated Costs $2000 initial survey
               $2000 per year
# STRUCTURES INSPECTION FIELD REPORT
## ROUTINE INSPECTION

**Bridge Details**
- **Hill:** Bristol-Franklin Falls
- **Bridge Dept:** COE
- **8-structure no.:** C0831000
- **30-date inspected:** 15 July 73
- **2-dist.:** Non-Fed
- **22-owner:** COE
- **27-year built:** 1926
- **106-year rebuilt:** N/A
- **11-milepoint:** 2.2Mile 5 of BR 576

**43-structure type**
- Reinforced Concrete T-Beam

**07-facility carried**
- Rec Area Access (CD RT 3A)

**06-features intersected**
- [Name Redacted]

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Deck</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Wearing Surface</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Deck-Condition</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3. Stay in Place Forms</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4. Curbs</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>5. Median</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>6. Sidewalks</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>7. Parapet</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>8. Railing</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>9. Anti Missile Fence</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>10. Drains</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>11. Lighting Standards</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>12. Utilities</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>13. Deck Joints</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>14. Approach Settlement</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>Superstructure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Bearing Devices</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2. Stringers</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3. Diaphragms</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4. Girders or Beams</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>5. Floor Beams</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>6. Trusses</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>7. Rivets or Bolts</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>8. Welds</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>9. Collision Damage</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>10. Load Deflection</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>11. Member Alignment</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>12. Load Vibration</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>13. Paint-Epoxy</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>14. Year Painted</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>15. Under Clearance</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Substructure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Abutments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Wings</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>b. Backwall</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>c. Bridge Seats</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>d. Breastwall</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>e. Footings</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>f. Piles</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>g. Erosion</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>h. Settlement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Piers or Bents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Caps</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>b. Column</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>c. Web</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d. Footing</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>e. Piles</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>f. Scour</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>g. Settlement</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3. Collision Damage</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4. Hydraulic-Adequacy</td>
<td>N/A</td>
</tr>
</tbody>
</table>

**Actual Posting**
- H 3 3S2

**Recommended Posting**
- [ ] [ ] [ ]

**Single**
- 10

**Overhead Signs**
- [ ] yes
- [x] no

**1. Welds**
- N/A

**2. Bolts**
- N/A

**3. Condition**
- N/A

**Item 83b U/W Inspection Date:** None

**LEGIBILITY**
- [x] [x]

**LEGIBILITY**
- [x] [x]

**ITEM 61-Channel and Channel Protection**
- 5

**36-Traffic Safety Features**
- **36**

**Condition**
- N/A

- 1. Bridge railing
- 2. Transitions
- 3. Approach guardrail
- 4. Guardrail terminal

**X-Unknown**
- NA-Not Applicable
- IA-Inaccessible
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity? YES

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations. YES
   b. Superstructure with simple spans or non-redundant support systems. YES
   c. Inadequate waterway openings. YES
   d. Designs which collect ice and debris. NO
   e. All water must pass through or over structure. YES
   f. Other.

3. Are any characteristics of an aggressive stream or waterway present?
   a. Active degradation or aggredation of streambed. YES
   b. Significant lateral movement or erosion of streambanks. YES
   c. Steep slopes. YES
   d. High velocities.
   e. Any history of highway or bridge damage during past floods.
   f. Other.

4. Is the bridge located on a stream reach with any adverse flow characteristics?
   a. Crossing near stream confluence. NO
   b. Crossing of tributary stream near confluence with larger streams. NO
   c. Crossing on sharp bend in stream. NO
   d. Location on alluvial fan.
   e. Other.

5. Other comments or observations.
DATE OF INSPECTION: 25 June 93

DATE OF PREVIOUS INSPECTIONS: Inventory, December 84
                          Routine, September 87
                          Routine, 18 July 89
                          Routine, 11 July 91

RATING (T=TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>22T</td>
<td>35T</td>
<td>Load Capacity posted</td>
</tr>
<tr>
<td>3</td>
<td>32T</td>
<td>49T</td>
<td>15T (to limit heavy truck traffic</td>
</tr>
<tr>
<td>3S2</td>
<td>48T</td>
<td>74T</td>
<td>in recreation area)</td>
</tr>
<tr>
<td>3-3</td>
<td>61T</td>
<td>94T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway and Railings: Overall rating is 7. Access is limited by locked gates which prohibit unauthorized access to the bridge. The buildup of pine needles continues to be a problem since there is restricted traffic over the bridge. The joint sealant at both ends of the prestressed concrete plank has deteriorated. The joint sealant has unbonded and the joint is filled with debris. The bituminous surface of the deck is uneven which may cause some minor ponding. The railings are in good condition. Approach guardrails are not present and are not warranted due to the restricted access to the bridge. One bolt on the guardrail is missing as noted in the previous inspection.

B. Fascias & Curbs: Overall rating is 7. The hairline cracks reported in previous inspections and the inventory inspection have not appeared to have worsened. Some efflorescence from the cracks was noted in this inspection.
C. Underside of Deck: Overall rating is 7. Minor seepage and efflorescence was noticed between precast concrete planks near the bearing pads. This seepage could be due to water passing through the failed joint sealer and following the joints in the planks. Alignment of the planks is good with no evidence of differential movement or deflection.

D. Wingwalls/Abutments: Overall rating is 8. The new cast concrete abutments are in good condition with no signs of distress or settlement. No erosion was noted.

E. Channel: Overall rating is 7. Debris was getting caught under the bridge causing a slight restriction in flow under the bridge.

CONDITION RATINGS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:

Status of Previous Recommendations

1. Schedule annual maintenance to include spot painting of posts, replacement of missing hardware, sweeping deck, and cleaning debris from bridge seat. Some maintenance done. Must be kept up annually.

2. Reapply sealant at expansion joints Not Done

Revised Recommendations

1. Clean expansion joints and reapply sealer to both joints. Use butyl based or polyurethane based sealant (Sikaflex-15LM or equivalent). Estimated cost $500.

2. Include in annual maintenance, cleaning the debris beneath the bridge from the brook.
## STRUCTURES INSPECTION FIELD REPORT
### ROUTINE INSPECTION

**Site:** Birch Hill Dam, Winchendon, MA  
**Bridge Dept.:** COE  
**8-Structure No.:** CE06 MA2510013  
**90-Date Inspected:** 6/24/1991

### 43-structure type
- Prestressed Concrete Slabs (COE)

### 07-facility carried
- Middle Rd (Pavement Age, Public Requested)

### 06-features intersected
- Priest Brook

### Item 58
#### Deck
1. Wearing Surface  
2. Deck Condition  
3. Stay in Place Forms  
4. Curbs  
5. Median  
6. Sidewalks  
7. Parapet  
8. Railing  
9. Anti Missile Fence  
10. Drains  
11. Lighting Standards  
12. Utilities  
13. Deck Joints  
14. Approach Settlement

### Item 59
#### Superstructure
1. Bearing Devices  
2. Stringers  
3. Diaphragms  
4. Girders or Beams  
5. Floor Beams  
6. Trusses  
7. Rivets or Bolts  
8. Welds  
9. Collision Damage  
10. Load Deflection  
11. Member Alignment  
12. Load Vibration  
13. Paint-Epoxy  
14. Year Painted  
15. Under Clearance
- Clearance Signs: yes / no

### Item 60
#### Substructure
1. Abutments
   - a-Wings  
   - b-Backwall  
   - c-Bridge Seats  
   - d-Breastwall
   - e-Footings  
   - f-Piles  
   - g-Erosion  
   - h-Settlement
2. Piers or Bents
   - a-Caps  
   - b-Column  
   - c-Web  
   - d-Footing  
   - e-Piles  
   - f-Skew  
   - g-Settlement
3. Collision Damage
4. Hydraulic Adequacy

### Actual Posting
- H 3 3S2

### Recommended Posting
- 22 32 48

### Signs in Place
- at bridge
- advance

### Legibility
- Y

### Overhead Signs (attached to bridge)
- yes / no

### Item 93b U/W Inspection Date
- None

### Item 61 - Channel and Channel Protection
- Channel Scour  
- Embankment Erosion  
- Fender System  
- Spur Dikes & Jetties  
- Riverbank Stability  
- Riprap or Slope Paving  
- Erosion Protection  
- Vegetation Control

### 36-Traffic Safety Features
- Bridge Railing  
- Transitions  
- Approach Guardrail  
- Guardrail Terminal
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
      a. Piers, abutments with spread footings or short pile foundations.  
      b. Superstructure with simple spans or non-redundant support systems.  
      c. Inadequate waterway openings.  
      d. Designs which collect ice and debris.  
      e. All water must pass through or over structure.  
      f. Other.  
   
3. Are any characteristics of an aggressive stream or waterway present?
      a. Active degradation or aggradation of streambed.  
      b. Significant lateral movement or erosion of streambanks.
      c. Steep slopes.  
      d. High velocities.
      e. Any history of highway or bridge damage during past floods.  
      f. Other.
   
4. Is the bridge located on a stream reach with any adverse flow characteristics?  
   a. Crossing near stream confluence.  
   b. Crossing of tributary stream near confluence with larger streams.  
   c. Crossing on sharp bend in stream.  
   d. Location on alluvial fan.  
   e. Other.
   
5. Other comments or observations.
DATE OF INSPECTION: 24 June 93

DATE OF PREVIOUS INSPECTIONS:

Inventory, 24 September 84
Routine, September 87
Routine, 18 July 89
Routine, 11 July 91

RATING (T=TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>19T</td>
<td>33T</td>
<td>Load Capacity posted</td>
</tr>
<tr>
<td>3</td>
<td>24T</td>
<td>40T</td>
<td>15T (to limit heavy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>truck traffic in</td>
</tr>
<tr>
<td>3S2</td>
<td>37T</td>
<td>62T</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>46T</td>
<td>77T</td>
<td>recreation area)</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway and Railings: Overall rating is 8. A contract to repair the deck, approaches and railings was completed in 1992. The deck was overlaid with a new 2" bituminous paving course. The approaches were also repaired. New guardrails at each approach were installed. New elastomeric joint sealer was installed. Some minor settling and erosion was noticed around some of the new guardrail posts and gabions. There are slight depressions in the approach pavements at the expansion joints which could collect water or create a rough transition onto the bridge deck.

B. Curbs, Fascias: Overall condition is 7. The concrete in the curbs and fascias is good. The minor hairline cracking in the curbs has not appeared to have worsened since the previous inspection.

C. Underside of Deck: Overall condition is 8. The concrete in the precast planks is good. Some minor seepage and efflorescence was noticed on the underside of the deck along the longitudinal joints and around the bearings. The efflorescence may have
been from previous seepage through the expansion joints prior to replacement of the joint sealer. Alignment is good. The elastomeric bearing pads are also in good condition.

D. Wingwalls/Abutments: Overall condition is 8. The concrete cap over the original stone foundation is in good condition. The wingwalls have been protected by installing new gabions which have also helped prevent erosion from runoff from the deck. The erosion on the southwest bank has been repaired with stone protection and is functioning well.

E. Channel The overall condition is 8. The streambed was clear of debris and shows no sign of scour.

<table>
<thead>
<tr>
<th>CONDITION RATING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory, 1984</td>
<td>8</td>
</tr>
<tr>
<td>Routine, 1987</td>
<td>8</td>
</tr>
<tr>
<td>Routine, 1989</td>
<td>7</td>
</tr>
<tr>
<td>Routine, 1991</td>
<td>7</td>
</tr>
<tr>
<td>Routine, 1993</td>
<td>8</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:

**Status of Previous Recommendations**

1. Install "Narrow Bridge" signs. Not done
2. Install 30′+ gabions. Completed 1992
3. Install 75′+ guardrail along southwest approach. Install 45′+ guardrail other approaches. Completed 1992
5. Schedule maintenance including cleaning sand off bridge, debris off bridge seat, and cut back encroaching vegetation. Ongoing maintenance

**Revised Recommendations**

Patch settling and eroding areas around new railing posts. Estimated cost $500.
## STRUCTURES INSPECTION FIELD REPORT

**ROUTINE INSPECTION**

<table>
<thead>
<tr>
<th>2-dist.</th>
<th>104-highway system</th>
<th>22-owner</th>
<th>8-structure no.</th>
<th>90-date inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-11</td>
<td>Non-FED</td>
<td>COE</td>
<td>CE.P.N.D.HA2510014</td>
<td>6/24/93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>43-structure type</th>
<th>quality control engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-STRESSED CONC. SLAB (301)</td>
<td>Nick Engees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>07-facility carried</th>
<th>team leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW BOSTON R. ROAD (REC ACCESS)</td>
<td>Jeffrey Colucci</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>06-features intersected</th>
<th>team members</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILLER RIVER</td>
<td>M. Deschenes / F. Fong</td>
</tr>
</tbody>
</table>

### Item 58
**DECK**
- Wearing Surface
- Deck-Condition
- Stay in Place Forms
- Curbs
- Median
- Sidewalks
- Parapet
- Railing
- Anti Missile Fence
- Drains
- Lighting Standards
- Utilities
- Deck Joints
- Approach Settlement

### Item 59
**SUPERSTRUCTURE**
1. Bearing Devices
2. Stringers
3. Diaphragms
4. Girders or Beams
5. Floor Beams
6. Trusses
7. Rivets or Bolts
8. Welds
9. Collision Damage
10. Load Deflection
11. Member Alignment
12. Load Vibration
13. Paint-Epoxy
14. Year Painted
15. Under Clearance
   - Clearance Signs
   - NA ft
   - In
   - Not

### Item 60
**SUBSTRUCTURE**
1. Abutments
   - a-Wings
   - b-Backwall
   - c-Bridge Seats
   - d-Breastwall
   - e-Footings
   - f-Plies
   - g-Erosion
   - h-Settlement
2. Piers or Bents
   - a-Caps
   - b-Column
   - c-Web
   - d-Footing
   - e-Plies
   - f-Scour
   - g-Settlement
3. Collision Damage
4. Hydraulic-Adequacy

### Item 62
**ITEM 61-channel and channel protection**
- Channel scour
- Embankment erosion
- Fender system
- Spur dikes & jetties
- Rip rap or slope paving
- Effectiveness
- Debris
- Vegetation

### Item 36
**Traffic Safety Features**
- 1. Bridge railing
- 2. Transitions
- 3. Approach guardrail
- 4. Guardrail terminal
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  YES

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations.  YES
   b. Superstructure with simple spans or non-redundant support systems.  YES
   c. Inadequate waterway openings.  NO
   d. Designs which collect ice and debris.  NO
   e. All water must pass through or over structure.  YES
   f. Other.  

3. Are any characteristics of an aggressive stream or waterway present?  YES
   a. Active degradation or aggregation of streambed.  NO
   b. Significant lateral movement or erosion of streambanks.  NO
   c. Steep slopes.  YES
   d. High velocities.  YES
   e. Any history of highway or bridge damage during past floods.  NO
   f. Other.  

4. Is the bridge located on a stream reach with any adverse flow characteristics?  YES
   a. Crossing near stream confluence.  NO
   b. Crossing of tributary stream near confluence with larger streams.  NO
   c. Crossing on sharp bend in stream.  YES
   d. Location on alluvial fan.  
   e. Other.  

5. Other comments or observations.  NO

36
BIRCH HILL DAM
BURGESS ROAD BRIDGE, WINCHENDON, MA
FY 93 ROUTINE INSPECTION REPORT

DATE OF INSPECTION: 24 June 93

DATE OF PREVIOUS INSPECTIONS: 24 September 84
Inventory, Routine, 24 September 87
Routine, 18 July 89
Routine, 21 September 90

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>30T</td>
<td>47T</td>
<td>Load Capacity posted</td>
</tr>
<tr>
<td>3</td>
<td>43T</td>
<td>66T</td>
<td>15T (to limit heavy truck traffic in recreation area)</td>
</tr>
<tr>
<td>3S2</td>
<td>66T</td>
<td>101T</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>84T</td>
<td>128T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway and Railings: Overall rating is 7. There are several depressions and ruts in the deck and approach slab pavements. There is moderate vegetation growth and pine needles along both curbs. Vegetation at the southwest corner of the bridge has not been removed and is encroaching into the roadway as mentioned in previous inspections. The pavement at the expansion joints along the west approach sinks below the concrete edges. Guardrails should be installed at each corner of the approaches as noted in previous inspections in order to ensure adequate safety for approaching vehicles.

B. Fascias and Curbs: Overall condition is 7. The concrete in the curbs and fascias is in good condition. The hairline cracks in the curbs show some efflorescence and do not seem to have deteriorated since the last inspection. The approach curb at the southwest corner of the bridge is cracked along the top which may eventually propagate into a spall.
C. Underside of Deck: Overall condition is 7. The concrete in the precast planks is in good condition. The spall mentioned in the 1991 report could not be located, however the general area should be continually inspected in order to determine if there may be any deficiency in the concrete planks. There has been no change in the condition of the one inch differential between the precast concrete planks. Some seepage and efflorescence was noticed between the concrete planks near the bearing pads.

D. Wingwalls/Abutments: Overall condition is 7. The concrete caps over the original rubble masonry are good. The elastomeric bearing pads are also in good condition. The abutments show no signs of settlement, deterioration or scour.

E. Channel: The overall condition of the channel is 7. The brook was flowing smoothly, however, debris was building up under the bridge, creating a slight obstruction to flow.

<table>
<thead>
<tr>
<th>CONDITION RATING</th>
<th>1984</th>
<th>1987</th>
<th>1989</th>
<th>1991</th>
<th>1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Routine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS

Status of Previous Recommendations

1. Install "Narrow Bridge" warning signs.
   Not done
2. Install guardrail at approaches
   Not done
3. Extend transition slabs, install drainage, and seal expansion joints.
   Not done

Revised Recommendations

Install 75′+ of guardrail at the approach at the southwest wingwall and remove encroaching vegetation. Install 45′+ of guardrail at each of the other three corners of the bridge. 3"x10" pressure treated rails with 8"x8" pressure treated posts are recommended. Replace the joint sealant in the expansion joints. Estimated cost $7500.
# STRUCTURES INSPECTION FIELD REPORT

**ROUTINE INSPECTION**

- **Bridge dept. no.**: 3CENEO MA 2510015
- **8-structure no.**: 3CENEO MA 2510015
- **90-date inspected**: 6/26/93

**WINCHESTER, NA BECH HILL DAM**

- **2-dist.**: 104-highway system
- **22-owner**: COE
- **27-year built**: 1979
- **106-year rebuilt**: _
- **11-milepoint**: _

**Prestressed Concrete S10 (551)**

- **Quality control engineer**: NICK FORBES
- **Team leader**: JL COLUCCI
- **Team members**: M. DESCHAMPS / F. PUNG

**06-features intersected**

- **PREIST BROOK**

## SUPERSTRUCTURE

<table>
<thead>
<tr>
<th>Item</th>
<th>7</th>
<th>Item</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wearing Surface</td>
<td></td>
<td>1. Bearing Devices</td>
<td></td>
</tr>
<tr>
<td>2. Deck-Condition</td>
<td></td>
<td>2. Stringers</td>
<td></td>
</tr>
<tr>
<td>3. Stay in Place Forms</td>
<td>NA</td>
<td>3. Diaphragms</td>
<td></td>
</tr>
<tr>
<td>4. Curb</td>
<td>7</td>
<td>4. Girders or Beams</td>
<td></td>
</tr>
<tr>
<td>5. Median</td>
<td>NA</td>
<td>5. Floor Beams</td>
<td></td>
</tr>
<tr>
<td>6. Sidewalks</td>
<td>NA</td>
<td>6. Trusses</td>
<td></td>
</tr>
<tr>
<td>7. Parapet</td>
<td>NA</td>
<td>7. Rivets or Bolts</td>
<td></td>
</tr>
<tr>
<td>8. Welds</td>
<td></td>
<td>8. Welds</td>
<td></td>
</tr>
<tr>
<td>10. Load Deflection</td>
<td></td>
<td>10. Load Deflection</td>
<td></td>
</tr>
<tr>
<td>11. Member Alignment</td>
<td></td>
<td>11. Member Alignment</td>
<td></td>
</tr>
<tr>
<td>12. Load Vibration</td>
<td></td>
<td>12. Load Vibration</td>
<td></td>
</tr>
<tr>
<td>14. Year Painted</td>
<td></td>
<td>14. Year Painted</td>
<td></td>
</tr>
<tr>
<td>15. Under Clearance NA ft in Clearance Signs</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

## SUBSTRUCTURE

<table>
<thead>
<tr>
<th>Item</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Abutments</td>
<td></td>
</tr>
<tr>
<td>2. Piers or Bents</td>
<td></td>
</tr>
</tbody>
</table>

## Actual Posting

- **H**: 3 352
- **Single**: 15

**Recommended Posting From Rating Book**

- **30**: A2 A6
- **at bridge**: __
- **advance**: __
- **LEGIBILITY**: 8

**Overhead Signs (attached to bridge)**

- **yes**: _
- **no**: _

**1. Welds**: 14
**2. Bolts**: 14
**3. Condition**: _

**ITEM 61-channel and channel protection**: 8

<table>
<thead>
<tr>
<th>Item</th>
<th>8</th>
<th>Item</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. channel scour</td>
<td></td>
<td>5. rip rap or slope paving</td>
<td></td>
</tr>
<tr>
<td>2. embankment erosion</td>
<td></td>
<td>6. effectiveness</td>
<td></td>
</tr>
<tr>
<td>3. fender system</td>
<td>NA</td>
<td>7. debris</td>
<td></td>
</tr>
<tr>
<td>4. spur dikes &amp; jetties</td>
<td>NA</td>
<td>8. vegetation</td>
<td></td>
</tr>
</tbody>
</table>

## 36-Traffic Safety features

<table>
<thead>
<tr>
<th>Item</th>
<th>36</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. bridge railing</td>
<td>0</td>
<td>_1</td>
</tr>
<tr>
<td>2. transitions</td>
<td>0</td>
<td>_1</td>
</tr>
<tr>
<td>3. approach guardrail</td>
<td>0</td>
<td>_1</td>
</tr>
<tr>
<td>4. guardrail terminal</td>
<td>0</td>
<td>_1</td>
</tr>
</tbody>
</table>
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   _NO_  

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?  
   _YES_  
   a. Piers, abutments with spread footings or short pile foundations.  
   _NO_  
   b. Superstructure with simple spans or non-redundant support systems.  
   _YES_  
   c. Inadequate waterway openings.  
   _NO_  
   d. Designs which collect ice and debris.  
   _YES_  
   e. All water must pass through or over structure.  
   _YES_  
   f. Other.  
   _NO_  

3. Are any characteristics of an aggressive stream or waterway present?  
   _NO_  
   a. Active degradation or aggradation of streambed.  
   _NO_  
   b. Significant lateral movement or erosion of streambanks.  
   _NO_  
   c. Steep slopes.  
   _YES_  
   d. High velocities.  
   _YES_  
   e. Any history of highway or bridge damage during past floods.  
   _NO_  
   f. Other.  
   _NO_  

4. Is the bridge located on a stream reach with any adverse flow characteristics?  
   _NO_  
   a. Crossing near stream confluence.  
   _NO_  
   b. Crossing of tributary stream near confluence with larger streams.  
   _NO_  
   c. Crossing on sharp bend in stream.  
   _NO_  
   d. Location on alluvial fan.  
   _NO_  
   e. Other.  
   _NO_  

5. Other comments or observations.  
   _NONE_
DATE OF INSPECTION: 24 June 93

DATE OF PREVIOUS INSPECTIONS: Inventory, 24 May 84.
Routine, Sep 87.
Routine, 29 Jul 89.
Routine, 21 Sep 90.

RATING (T = TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>23T</td>
<td>35T</td>
<td>Load rating</td>
</tr>
<tr>
<td>3</td>
<td>34T</td>
<td>53T</td>
<td>recalculated due</td>
</tr>
<tr>
<td>3S2</td>
<td>54T</td>
<td>84T</td>
<td>to new deck</td>
</tr>
<tr>
<td>3-3</td>
<td>66T</td>
<td>103T</td>
<td>concrete overlay.</td>
</tr>
</tbody>
</table>

EVALUATION: (See attached "Structures Inspection Field Report")

A. Roadway and Railings

Overall rating 7. The bridge west approach showed some depression but the overall transition to the concrete deck is smooth. The approach guardrail, bridge rails, concrete overlay and transition slabs are in good condition. The approach guardrail are far from the pavement but they are functional. Slight erosion is located at the southwest and northeast approach corner.

B. Fascias

Overall condition is 8. Both fascia and bridge deck are in good condition. No cracks or concrete spall were located. Bridge deck is also in excellent condition. The deck drainage and weep holes are clear.

C. Underside of Deck

Overall condition is 8. The beams and deck diaphragm do not have any sign of concrete spall. No cracks or water staining was noted. The underside of the deck is in good condition.
D. Wingwalls & Abutments

Overall condition 7. The wingwalls are in good condition. There is erosion at the bottom of bituminous waterway behind southeast wingwall. Also minor spall on the southwest corner of abutment with moss growth was noted. There are no signs of scour at the foundation.

E. Channel

Overall condition 7. The streambed under the bridge is filled with vegetation and tree branches. The stream flow was moderate during inspection; however, no major signs of scour were noted.

<table>
<thead>
<tr>
<th>CONDITION RATING</th>
<th>Inventory</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine, 1987</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Routine, 1989</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Routine, 1991</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Routine, 1993</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:

Status of Previous Recommendations

1. Modify approach guardrail at transitions to guide around brush blocks.

   Not done

2. Make miscellaneous patch repairs to abutments and wingwalls at flaws which were missed in 1990 contract or below the existing water level (contractor limit of work).

   Not done

Revised Recommendations

1. Remove all the tree branches, debris and other vegetation near and under the bridge deck. (Project Personnel)
# STRUCTURES INSPECTION FIELD REPORT

## ROUTINE INSPECTION

<table>
<thead>
<tr>
<th>2-dist.</th>
<th>104-highway system</th>
<th>22-owner</th>
<th>COE</th>
<th>27-year built</th>
<th>106-year rebuilt</th>
<th>11-milepoint</th>
<th>bridge dept. no.</th>
<th>8-structure no.</th>
<th>90-date inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINCHENDON, MA</td>
<td>6/24/93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**43-structure type**

Concrete Stringer / Multi-Beam or Girder

**07-facility carried**

OLD ROUTE 202

**06-features intersected**

WATER BEAVER BROOK

**Quality control engineer**

**Team leader**

J. COLUCCI

**Team members**

M. DESCHENES / F. FONG

<table>
<thead>
<tr>
<th>Item</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DECK</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Wearing Surface</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Deck-Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Stay in Place Forms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Curbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Sidewalks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Parapet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Railing</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Anti Missile Fence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Drains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Lighting Standards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Utilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Deck Joints</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Approach Settlement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>SUPERSTRUCTURE</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Bearing Devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Stringers</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Diaphragms</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Girders or Beams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Floor Beams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Trusses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Rivets or Bolts</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Welds</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Collision Damage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Load Deflection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Member Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Load Vibration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Paint-Epoxy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Year Painted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Under Clearance ft in Clearance Signs</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td><strong>SUBSTRUCTURE</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Abutments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Wings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Backwall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Bridge Seats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Breastwall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Footings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Piles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Settlement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Piers or Bents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Caps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Web</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Footing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Piles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Scour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Settlement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Collision Damage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Hydraulic-Adequacy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Actual Posting**

<table>
<thead>
<tr>
<th>H</th>
<th>3</th>
<th>3S2</th>
<th>46</th>
<th>69</th>
<th>72</th>
</tr>
</thead>
</table>

**Recommended Posting From Rating Book**

<table>
<thead>
<tr>
<th>12</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

**SIGNS IN PLACE**

Y or N

Y

**LEGIBILITY**

Y

**Overhead Signs (attached to bridge)**

<table>
<thead>
<tr>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

1. Welds
2. Bolts
3. Condition

**Item 61-channel and channel protection**

7

**36-Traffic Safety features**

<table>
<thead>
<tr>
<th>36</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   **YES**

2. Is the streambed erodible?  If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations.  
      **YES**
   b. Superstructure with simple spans or non-redundant support systems.  
      **YES**
   c. Inadequate waterway openings.  
      **YES**
   d. Designs which collect ice and debris.  
      **NO**
   e. All water must pass through or over structure.  
      **YES**
   f. Other.  
   
3. Are any characteristics of an aggressive stream or waterway present?  
   **YES**
   a. Active degradation or aggradational of streambed.  
      **NO**
   b. Significant lateral movement or erosion of streambanks.  
      **NO**
   c. Steep slopes.  
      **NO**
   d. High velocities.  
      **YES**
   e. Any history of highway or bridge damage during past floods.  
      **NO**
   f. Other.  *Concrete at waterline*  
      **YES**

4. Is the bridge located on a stream reach with any adverse flow characteristics?  
   **NO**
   a. Crossing near stream confluence.  
   b. Crossing of tributary stream near confluence with larger streams.  
   c. Crossing on sharp bend in stream.  
   d. Location on alluvial fan.  
   e. Other.  
   
5. Other comments or observations.  
   **NONE**
BIRCH HILL DAM
GOODNOW ROAD BRIDGE, WINCHENDON, MA
FY 93 ROUTINE INSPECTION REPORT

DATE OF INSPECTION: 25 June 93

DATE OF PREVIOUS INSPECTIONS: Inventory, 25 September 84
Routine, 4 September 87
Deck reinforcing inspection, 4 September 87
Routine, 19 July 89
Routine, 21 September 90

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>13T</td>
<td>18T</td>
<td>No change in ratings</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway and Railings: Overall condition is good, no repairs needed (condition 8). The bituminous concrete deck overlay and transition slabs are in good condition. All deck drains are clear and functioning properly. The approach alignments are only 16 feet wide and slightly skewed. The timber approach and bridge railings are in good condition.

B. Fascias & Curbs: The fascias and curbs are in good condition.

C. Underside of Deck: The overall condition of the underside of the concrete deck is good. One spall was noted in the concrete deck at approximately the third point of the outside east beam. The spall is approximately 12" long, 4" wide, and 4" deep. This spall has been noted in previous inspections, has not continued to deteriorate, and is not a concern at this time.

D. Wingwalls/Abutments: The condition of the abutments and wingwalls is good (condition 7). There are only minor hairline cracks with efflorescence on the east face of the north abutment. All other concrete is in good condition. The gabion retaining walls are in good condition. Erosion was again noted beneath the south
abutment, and should be repaired.

E. Channel: Overall condition 7. There is an existing area of scour beneath the south abutment. The flow beneath the bridge was swift with little obstruction. Some minor rubble is deposited under the bridge.

CONDITION RATINGS:

| Inventory, 1984: | 7 |
| Routine, 1987:  | 7 |
| Routine, 1989:  | 6 |
| Routine, 1991:  | 7 |
| Routine, 1993:  | 7 |

Status of Previous Recommendations

<table>
<thead>
<tr>
<th>Item</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Post warning signs &quot;Narrow Bridge&quot; on both approaches.</td>
<td>Not Done</td>
</tr>
<tr>
<td>2. Repair scour at abutments.</td>
<td>Not Done</td>
</tr>
</tbody>
</table>

Revised Recommendations

Repair scour at abutments. Estimated cost $5,000.
# STRUCTURES INSPECTION FIELD REPORT
## ROUTINE INSPECTION

<table>
<thead>
<tr>
<th>Bridge no.</th>
<th>2-dist.</th>
<th>104-highway system</th>
<th>22-owner</th>
<th>8-structure no.</th>
<th>90-date inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICHL HILL DAM</td>
<td>111</td>
<td>NON-FED</td>
<td>COE</td>
<td>CEPA60NA2510017</td>
<td>4/24/93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>43-structure type</th>
<th>27-year built</th>
<th>106-year rebuilt</th>
<th>11-milepoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTI BEAM CONCRETE DECK (302)</td>
<td>1937</td>
<td>1991</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>07-facility carried</th>
<th>06-features intersected</th>
</tr>
</thead>
<tbody>
<tr>
<td>GODFORD RD (REG WEA ACCESS)</td>
<td>PRIEST BROOK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 58</th>
<th>Item 59</th>
<th>Item 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECK</td>
<td>SUPERSTRUCTURE</td>
<td>SUBSTRUCTURE</td>
</tr>
<tr>
<td></td>
<td>1. Wearing Surface</td>
<td>1. Abutments</td>
</tr>
<tr>
<td></td>
<td>2. Deck-Condition</td>
<td>a-Wings</td>
</tr>
<tr>
<td></td>
<td>3. Stay in Place Forms</td>
<td>b-Backwall</td>
</tr>
<tr>
<td></td>
<td>4. Curbs</td>
<td>c-Bridge Seats</td>
</tr>
<tr>
<td></td>
<td>5. Median</td>
<td>d-Breastwall</td>
</tr>
<tr>
<td></td>
<td>6. Sidewalks</td>
<td>e-Footings</td>
</tr>
<tr>
<td></td>
<td>7. Parapet</td>
<td>f-Plies</td>
</tr>
<tr>
<td></td>
<td>8. Railing</td>
<td>g-Erosion</td>
</tr>
<tr>
<td></td>
<td>9. Anti Missile Fence</td>
<td>h-Settlement</td>
</tr>
<tr>
<td></td>
<td>10. Drains</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Lighting Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Utilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Deck Joints</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Approach Settlement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actual Posting</th>
<th>Recommended Posting From Rating Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 3 3S2</td>
<td>12T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGNS IN PLACE</th>
<th>LEGIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y or N</td>
<td>at bridge advance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overhead Signs (attached to bridge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item93b U/W Inspection Date:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ITEM 61-channel and channel protection</th>
<th>36-Traffic Safety features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. channel scour</td>
<td>1. bridge railing</td>
</tr>
<tr>
<td>2. embankment erosion</td>
<td>2. transitions</td>
</tr>
<tr>
<td>3. fender system</td>
<td>3. approach guardrail</td>
</tr>
<tr>
<td>4. spur dikes &amp; jetties</td>
<td>4. guardrail terminal</td>
</tr>
<tr>
<td>5. rip rap or slope paving</td>
<td>NA</td>
</tr>
<tr>
<td>6. effectiveness</td>
<td>1</td>
</tr>
<tr>
<td>7. debris</td>
<td>1</td>
</tr>
<tr>
<td>8. vegetation</td>
<td>1</td>
</tr>
</tbody>
</table>

**Y = UNKNOWN, NA = NOT APPLICABLE, IA = INACCESSIBLE**
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   yes

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   yes
   a. Piers, abutments with spread footings or short pile foundations.  yes
   b. Superstructure with simple spans or non-redundant support systems.  yes
   c. Inadequate waterway openings.  no
   d. Designs which collect ice and debris.  no
   e. All water must pass through or over structure.  yes
   f. Other.  

3. Are any characteristics of an aggressive stream or waterway present?
   yes
   a. Active degradation or aggregation of streambed.  yes
   b. Significant lateral movement or erosion of streambanks.  yes
   c. Steep slopes.  no
   d. High velocities.  yes
   e. Any history of highway or bridge damage during past floods.  no
   f. Other.  yes

4. Is the bridge located on a stream reach with any adverse flow characteristics?  yes
   a. Crossing near stream confluence.  no
   b. Crossing of tributary stream near confluence with larger streams.  no
   c. Crossing on sharp bend in stream.  yes
   d. Location on alluvial fan.  no
   e. Other.  

5. Other comments or observations.  none
DATE OF INSPECTION: 8 September 93

DATE OF PREVIOUS INSPECTIONS: Inventory, 23 August 89
Routine, 30 July 91

RATING (T=TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>12T</td>
<td>24T</td>
<td>No change in ratings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratings based on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>satisfactory past</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>performance without</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signs of distress.</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Deck, Roadway & Railings: Overall condition is 7. The roadway over the bridge is in good condition. Slight vegetation buildup was noticed along the granite curbs. The pavement along the northeast, and southwest wingwalls is beginning to erode due to runoff from the road. Steel guardrail sections that were installed along the northwest approach in order to control erosion are performing satisfactorily. The railings along the bridge deck are in good condition, however they are also very light duty and do not comply with the current AASHTO standards. There is a poor transition between the approach guardrails and the bridge deck railings along the north approach. The cables for the north approach guardrails are loose. There are no guardrails along the south approach. The speed bumps at either end of the bridge are effective in controlling the speed of traffic. The bridge which is 18 feet wide is narrow and is currently used for two way traffic and pedestrians.
B. Superstructure/Substructure

The overall condition is good (condition 8). The stones seem to be well bonded and aligned. There is no sign of distress of the superstructure. The mortar grout on the underside of the arch is delaminating and spalling. It appears that during the 1940 rehabilitation of the bridge, the underside of the arch was formed in order to contain the flow of grout which was pressure injected from above the arch into the joints in the stone. In this case the thin mortar layer does not provide any additional structural strength and therefore the delaminating mortar is not a concern. There is some moss and vegetation growing from the joints between the stones. Some of the joints should be cleaned and repointed. The superstructure is primarily integral with substructure. The substructure is also in good condition. Due to the depth of the water, the footings were not examined for scour potential.

C. Channel:

It was difficult to evaluate the overall condition of the channel. There was very light flow through the bridge at the time of the inspection. No erosion was noticed in the channel. The upstream channel makes a sharp turn south and another turn west before reaching the bridge.

CONDITION RATING:

<table>
<thead>
<tr>
<th>Year</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>8</td>
</tr>
<tr>
<td>1991</td>
<td>8</td>
</tr>
<tr>
<td>1993</td>
<td>7</td>
</tr>
</tbody>
</table>
RECOMMENDATIONS:

Status of Previous Recommendations

1. Perform mortar joint repairs. Remove vegetation and repoint the joints over the stone arch on both sides. Not Done

2. Control erosion and stabilize the west embankment. Not Done

3. Install new approach and bridge guardrails. Not Done

4. Install a pedestrian walkway. Not Done

Revised Recommendations

A contract has been prepared during FY 93 to perform the above recommendations. No work had yet been accomplished by the time of the inspection.
<table>
<thead>
<tr>
<th>Item 58</th>
<th>Item 59</th>
<th>Item 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECK</td>
<td>SUPERSTRUCTURE</td>
<td>SUBSTRUCTURE</td>
</tr>
<tr>
<td>2. Deck-Condition</td>
<td>2. Stringers</td>
<td>a-Wings</td>
</tr>
<tr>
<td>3. Stay in Place Forms</td>
<td>3. Diaphragms</td>
<td>b-Backwall</td>
</tr>
<tr>
<td>4. Curbs</td>
<td>4. Girders or Beams</td>
<td>c-Bridge Seats</td>
</tr>
<tr>
<td>5. Median</td>
<td>5. Floor Beams</td>
<td>d-Breastwall</td>
</tr>
<tr>
<td>7. Parapet</td>
<td>7. Rivets or Bolts</td>
<td>i-Piles</td>
</tr>
<tr>
<td>8. Railing</td>
<td>8. Welds</td>
<td>g-Erosion</td>
</tr>
<tr>
<td>10. Drains</td>
<td>10. Load Deflection</td>
<td></td>
</tr>
<tr>
<td>11. Lighting Standards</td>
<td>11. Member Alignment</td>
<td></td>
</tr>
<tr>
<td>12. Utilities</td>
<td>12. Load Vibration</td>
<td></td>
</tr>
<tr>
<td>15. Under Clearance</td>
<td>Clearance Signs</td>
<td></td>
</tr>
</tbody>
</table>

**Actual Posting**

<table>
<thead>
<tr>
<th>H</th>
<th>3</th>
<th>3S2</th>
</tr>
</thead>
</table>

**Recommended Posting From Rating Book**

<table>
<thead>
<tr>
<th></th>
<th>12</th>
</tr>
</thead>
</table>

**Signs IN Place**

<table>
<thead>
<tr>
<th>Y or N</th>
<th>at bridge</th>
<th>advance</th>
</tr>
</thead>
</table>

**Legibility**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

**Overhead Signs (attached to bridge)**

<table>
<thead>
<tr>
<th></th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

**Item 93b**

<table>
<thead>
<tr>
<th>U/W Inspection Date:</th>
</tr>
</thead>
</table>

**Item 61**

**Traffic Safety Features**

<table>
<thead>
<tr>
<th>Item 36</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge railing</td>
<td>35</td>
</tr>
<tr>
<td>transitions</td>
<td>7</td>
</tr>
<tr>
<td>approach guardrail</td>
<td>5</td>
</tr>
<tr>
<td>guardrail terminal</td>
<td>5</td>
</tr>
</tbody>
</table>

**Channel Scour**

<table>
<thead>
<tr>
<th>Item 5</th>
<th>Rip Rap or Slope Paving</th>
</tr>
</thead>
</table>

**Other Conditions**

<table>
<thead>
<tr>
<th>Item 5</th>
<th>Item 5</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

**Legibility**

<table>
<thead>
<tr>
<th>LEGIBILITY</th>
<th></th>
</tr>
</thead>
</table>

**36-Traffic Safety Features**

<table>
<thead>
<tr>
<th>36</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?          YES

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations.                   YES
   b. Superstructure with simple spans or non-redundant support systems.              YES
   c. Inadequate waterway openings.                                                   YES
   d. Designs which collect ice and debris.                                            NO
   e. All water must pass through or over structure.                                  NO
   f. Other.                                                                           

3. Are any characteristics of an aggressive stream or waterway present?
   a. Active degradation or aggradation of streambed.                                  YES
   b. Significant lateral movement or erosion of streambanks.                         NO
   c. Steep slopes.                                                                   NO
   d. High velocities.                                                               YES
   e. Any history of highway or bridge damage during past floods.                     UNNECESSARY 1936-1940 REPAIR?
   f. Other.                                                                         

4. Is the bridge located on a stream reach with any adverse flow characteristics?       YES
   a. Crossing near stream confluence.                                                 NO
   b. Crossing of tributary stream near confluence with larger streams.               NO
   c. Crossing on sharp bend in stream.                                                YES
   d. Location on alluvial fan.                                                        NO
   e. Other.                                                                          

5. Other comments or observations.                                                    NO
THOMASTON DAM
LEADMINE BROOK ROAD BRIDGE, THOMASTON, CT
FISCAL YEAR 1993
ROUTINE INSPECTION REPORT

DATE OF ROUTINE INSPECTION: 24 August 93

DATE OF PREVIOUS INSPECTIONS:
Routine Inspection, 16 June 91
Inventory Inspection, November 84

RATING (T = TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>11T</td>
<td>16T</td>
<td>No change in ratings due to</td>
</tr>
<tr>
<td>Type 3</td>
<td>45T</td>
<td>69T</td>
<td>inspection findings.</td>
</tr>
<tr>
<td>Type 3S2</td>
<td>69T</td>
<td>106T</td>
<td></td>
</tr>
<tr>
<td>Type 3-3</td>
<td>86T</td>
<td>132T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Superstructure
   - Above Deck
   - Overall condition is very good.
   - There are a few small potholes in the east approach pavement.
   - All of the approach stone walls are in good condition, with only minor vegetation growth between the pavement and the base of the wall.
   - The concrete transition slab at the east approach is in good condition.
   - The expansion joint at the east approach is in good condition.
   - The pavement at the west approach has a few bumps at the transition onto the deck.
   - Bridge railings and posts are in good condition. There are some minor shrinkage cracks in the surface coats of the concrete posts.
   - There is sand and debris accumulating on the deck near the south curb.
   - There are a few patches of deterioration in the bituminous wearing surface.

B. Superstructure
   - Below Deck
   - Overall condition is good.
   - The structural steel has recently been painted (1990), and is in good condition.
   - Underside of deck is in good condition, with only minor honeycombing. There is some minor efflorescence coming from several transverse hairline cracks beneath both curbs.
C. Substructure

- Overall condition is good.
- The stone abutments are in good condition, with no signs of movement or settlement.
- All of the four stone wingwalls are in good condition, with no signs of movement.
- The east abutment is slightly undermined by scour.

D. Channel

- The channel is scouring beneath the bridge. The channel is approximately four feet deeper under the bridge than it is either upstream or downstream of the bridge.

E. Overall Numerical Condition Rating

Inventory 1985: 7
Routine 1991: 8
Routine 1993: 8

RECOMMENDATIONS

Status of Previous Recommendations

1. Inspect both abutments for scour.

2. Repair scour erosion at the south corner of the east abutment.
   None of this work has been done.

Revised Recommendations

1. Complete the scour analysis of the east abutment. The west abutment is founded on rock and it is unlikely that it is susceptible to scour.

2. Post a 10 Ton load limit at the east approach.
## STRUCTURES INSPECTION FIELD REPORT
### ROUTINE INSPECTION

**City/State:** Thomaston, CT  
**Bridge Dept. No.:**  
**Structure No.:** CEPW6CT0910003  
**90-Date Inspected:** 8/24/93

<table>
<thead>
<tr>
<th>2-dist.</th>
<th>104-highway system</th>
<th>22-owner</th>
<th>Corps</th>
<th>27-year built</th>
<th>106-year rebuilt</th>
<th>11-milepoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>43-structure type</td>
<td>304 Single Span, Steel Wide Flange Beams, Conc. Deck</td>
<td>quality control engineer</td>
<td>Nick Forbes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-facility carried</td>
<td>Leadmine Brook Road</td>
<td>Team Leader</td>
<td>Joe Colucci</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06-features intersected</td>
<td>Leadmine Brook</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Item 58
**DECK**
- Wearing Surface [8]
- Deck Condition [8]
- Stay-In-Place Forms [N]
- Curb [8]
- Median [N]
- Sidewalks [N]
- Parapet [N]
- Railing [7]
- Anti-Missile Fence [N]
- Drains [N]
- Lighting Standards [N]
- Utilities [N]
- Deck Joints [8]
- Approach Settlement [8]

### Item 59
**SUPERSTRUCTURE**
- Bearing Devices [7]
- Stringers [N]
- Diaphragms [8]
- Girders or Beams [8]
- Floor Beams [N]
- Trusses [N]
- Rivets or Bolts [7]
- Welds [8]
- Collision Damage [N]
- Load Deflection [8]
- Member Alignment [N]
- Load Vibration [N]
- Paint-Epoxy [N]
- Year Painted [40]
- Under Clearance [ft] in Clearance Signs [ ] yes [ ] no

### Item 60
**SUBSTRUCTURE**
- Abutments [8]
  - a-Wings [8]
  - b-Backwall [8]
  - c-Bridge Seats [8]
  - d-Breastwall [8]
  - e-Footings [8]
  - f-Piles [8]
  - g-Erosion [7]
  - h-Settlement [8]
- Piers or Bents [N]
  - a-Caps [N]
  - b-Column [N]
  - c-Web [N]
  - d-Footing [N]
  - e-Piles [N]
  - f-Scour [N]
  - g-Scour [N]
- Collision Damage [N]
- Hydraulic Adequacy [8]

### Actual Posting
- [ ] H 3 3S2
- [ ] Single

### Recommended Posting From Rating Book
- [ ] Y or N

### Signs in Place at Bridge
- [ ] Advance

### Legibility
- [ ]

### item 93b
**U/W Inspection Date:** [NA]

### Item 61
- Channel Scour [7]
- Embankment Erosion [7]
- Fender System [N]
- Spur Dikes & Jetties [N]

### Item 36
**Traffic Safety Features**
- 1. Bridge Railing [5]
- 4. Guardrail Terminal [5]

### Condition
- [ ]

[ ] Unknown  [ ] Not Applicable  [ ] Inaccessible
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  _Yes_

2. Is streambed erodible? If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations. _Yes_
   b. Superstructures with simple spans or non-redundant support systems. _Yes_
   c. Inadequate waterway opening. _No_
   d. Designs which collect ice and debris. _No_
   e. All water must pass through or over structure. _No_
   f. Other. ______

3. Are any characteristics of an aggressive stream or waterway present? _Under Bridge_
   a. Active degradation or aggregation of streambed. _Yes_
   b. Significant lateral movement or erosion of streambanks. _No_
   c. Steep slopes. _No_
   d. High velocities. _No_
   e. Any history of highway or bridge damage during past floods. _No_
   f. Other. _No_

4. Is bridge located on stream reach with any adverse flow characteristics?
   a. Crossing near stream confluence. _No_
   b. Crossing of tributary stream near confluence with larger streams. _No_
   c. Crossing on sharp bend in stream. _No_
   d. Location on alluvial fan. _No_
   e. Other. ______

5. Other comments or observations. ______

57
DATE OF INSPECTION: 24 August 1993

DATE OF PREVIOUS INSPECTIONS: In-depth, Dec 84
Routine, Aug 87
Routine, Aug 89
Routine, June 91

RATING (T=TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>19T</td>
<td>28T</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34T</td>
<td>52T</td>
<td></td>
</tr>
<tr>
<td>3S2</td>
<td>49T</td>
<td>52T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway & Railings
The overall condition of the deck and railings is good (condition 7). The upper cable of the north east approach is loose and tangled. The remaining cable guardrails along the roadway are in very good condition. Both bridge railings are in good condition. Most concrete spalls have been patched. One repair in the south end of the east rail has spalled due to wood forming remaining in the patch. The deck and approaches are in good condition. Various areas of the deck appear to have been filled with bituminous patching.

B. Fascias and Curbs
The condition of the fascias and curbs is good. The concrete shows evidence of abrasion typical of aged concrete. Of minor concern is the lack of joint filler between curb monoliths. There is a buildup of debris in some of these joints.

C. Underside of Deck
The underside of the deck is in very good condition (condition 8) and appears to have been recently painted. The bearings and underside of the concrete deck are
D. Wingwalls and Abutments

The wingwalls and abutments are in good condition (condition 7). Moderate abrasion is typical of all walls. One minor vertical crack was noted in the south east wingwall and minor efflorescence noted on the west walls. The weep holes in the south abutment are clear and appear to be functioning properly. The weep holes in the north abutment were buried under sand deposited against the wall.

E. Channel

The channel is undergoing various amounts of erosion. Although no scour below the bridge footings was noted, moderate aggregation was present along the north abutment. Both upstream and downstream of the bridge, dense vegetation was encroaching upon the channel.

CONDITION RATING

<table>
<thead>
<tr>
<th></th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-depth</td>
<td>7</td>
</tr>
<tr>
<td>Interim 1987</td>
<td>7</td>
</tr>
<tr>
<td>Interim 1989</td>
<td>7</td>
</tr>
<tr>
<td>Routine 1991</td>
<td>8</td>
</tr>
<tr>
<td>Routine 1993</td>
<td>7</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS

Status of Previous Recommendations

No Previous recommendations

Revised Recommendations

The deficiencies noted are not of much concern at this time. They may be combined with repairs to other local bridges in the future.
## Structures Inspection Field Report

### Routine Inspection

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Deck</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1. Wearing Surface</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2. Deck-Condition</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3. Stay in Place Forms</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4. Curbs</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5. Median</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6. Sidewalks</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7. Parapet</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8. Railing</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>9. Anti Missile Fence</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10. Drains</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11. Lighting Standards</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12. Utilities</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13. Deck Joints</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>14. Approach Settlement</td>
<td>-</td>
</tr>
<tr>
<td>59</td>
<td>Superstructure</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1. Bearing Devices</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2. Stringers</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3. Diaphragms</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4. Girders or Beams</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5. Floor Beams</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6. Trusses</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7. Rivets or Bolts</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>8. Welds</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9. Collision Damage</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10. Load Deflection</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11. Member Alignment</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12. Load Vibration</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13. Paint-Epoxy</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>14. Year Painted</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>15. Under Clearance Signs</td>
<td>- ft - in</td>
</tr>
</tbody>
</table>

### Actual Posting

- H: 3
- 3S2: Single

### Recommended Posting

- From Rating Book: Blank

### Signs in Place

- Y or N: N

### Legibility

- N

### Overhead Signs (Attached to Bridge)

- Yes: X
- No: Blank

### Item 93b

- U/W Inspection Date: NONE

### Item 61 - Channel and Channel Protection

- Channel scour: 7

### Item 36 - Traffic Safety Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bridge railing</td>
<td>7</td>
</tr>
<tr>
<td>2. Transitions</td>
<td>7</td>
</tr>
<tr>
<td>3. Approach guardrail</td>
<td>N</td>
</tr>
<tr>
<td>4. Guardrail terminal</td>
<td>-</td>
</tr>
</tbody>
</table>

### Notes

- X = Unknown
- NA = Not Applicable
- IA = Inaccessible
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  YES

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?  YES
   a. Piers, abutments with spread footings or short pile foundations.  YES
   b. Superstructure with simple spans or non-redundant support systems.  YES
   c. Inadequate waterway openings.  NO
   d. Designs which collect ice and debris.  NO
   e. All water must pass through or over structure.  YES
   f. Other.

3. Are any characteristics of an aggressive stream or waterway present?  YES
   a. Active degradation or aggradation of streambed.  YES
   b. Significant lateral movement or erosion of streambanks.  NO
   c. Steep slopes.  NO
   d. High velocities.  NO
   e. Any history of highway or bridge damage during past floods.  NO
   f. Other.

4. Is the bridge located on a stream reach with any adverse flow characteristics?  YES
   a. Crossing near stream confluence.  NO
   b. Crossing of tributary stream near confluence with larger streams.  NO
   c. Crossing on sharp bend in stream.  YES
   d. Location on alluvial fan.  
   e. Other.

5. Other comments or observations.
DATE OF INSPECTION: 24 August 1993

DATE OF PREVIOUS INSPECTIONS:
In-depth, Dec 84
Routine, Aug 87
Routine, Aug 89
Routine, Sept 91

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>16T</td>
<td>23T</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>39T</td>
<td>55T</td>
<td></td>
</tr>
<tr>
<td>3S2</td>
<td>62T</td>
<td>86T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway, & Railings
The overall condition of the roadway, railings and approaches is good. The wearing surface of the deck has been recently replaced. Cracks were noted across the deck at approximately 8 to 10 foot intervals. The cracking appears to be the result of improper curing. The cable roadway guardrails are in good condition. One cable along the south east approach is loose. The bituminous approaches have been repaired recently. The new approaches are slightly higher than the deck causing a slight impact when entering and exiting the bridge. The railings at each approach are in good condition. The west guardrail shows some abrasion of the concrete, typical of its age.

B. Curbs and Fascias
The curbs and fascias along both sides of the deck are in good condition with no apparent signs of distress or deterioration.

C. Underside of Deck
The overall condition of the superstructure below the deck is good. Three of the T-beams on the...
east side of the bridge have minor spalls and minor to moderate efflorescence. The two inner T-beams are in very good condition. The two west steel beams are in good condition. There is minor rusting apparent on the underside of the deck from the reinforcement chairs. The bearings for both the steel and concrete beams are in good condition.

D. Wingwalls and Abutments

The wingwalls and abutments are in good condition. Only minor cracking and efflorescence was noted along the wingwalls.

E. Channel

The bridge is located at the end of a bend in the channel. There is some aggredation of the channel along the north abutment. The downstream side of the channel is clear.

CONDITION RATING

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In-depth</td>
<td>7</td>
</tr>
<tr>
<td>Routine 1987</td>
<td>7</td>
</tr>
<tr>
<td>Routine 1989</td>
<td>6</td>
</tr>
<tr>
<td>Routine 1991</td>
<td>8</td>
</tr>
<tr>
<td>Routine 1993</td>
<td>7</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS

Status of Previous Recommendations

No previous recommendations.

Revised Recommendations

No new recommendations at this time.
# Structures Inspection Field Report

**Routine Inspection**

**Location:** Thomaston, CT

**Bridge Dept. No.:** None

**Struct No.:** SCOT 0085

**90-Date Inspected:** 24 August 93

### 2-Dist. Information
- **104-Highway System:** Non-Federal
- **22-Owner:** C of T

### 43-Structure Type
- **Simple Span Concrete T-Beams/Steel Stringers**

### Facility Carried
- **Old Route 25A (Lower)**

### Features Intersected
- Northfield Brook

### Team Members
- **Quality Control Engineer:** Nick Forbes
- **Team Leader:** Joe Colucci
- **Team Members:** M. D'Agostino, M. Walsh, N. Torio

## Item 58: Deck

<table>
<thead>
<tr>
<th>Category</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wearing Surface</td>
<td>7</td>
</tr>
<tr>
<td>2. Deck-Condition</td>
<td>7</td>
</tr>
<tr>
<td>3. Stay in Place Forms</td>
<td>6</td>
</tr>
<tr>
<td>4. Curves</td>
<td>6</td>
</tr>
<tr>
<td>5. Median</td>
<td>-</td>
</tr>
<tr>
<td>6. Sidewalks</td>
<td>-</td>
</tr>
<tr>
<td>7. Parapet</td>
<td>6</td>
</tr>
<tr>
<td>8. Railing</td>
<td>-</td>
</tr>
<tr>
<td>9. Anti-Missile Fence</td>
<td>-</td>
</tr>
<tr>
<td>10. Drains</td>
<td>-</td>
</tr>
<tr>
<td>11. Lighting Standards</td>
<td>-</td>
</tr>
<tr>
<td>12. Utilities</td>
<td>-</td>
</tr>
<tr>
<td>13. Deck Joints</td>
<td>-</td>
</tr>
<tr>
<td>14. Approach Settlement</td>
<td>7</td>
</tr>
</tbody>
</table>

## Item 59: Superstructure

<table>
<thead>
<tr>
<th>Category</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bearing Devices</td>
<td>7</td>
</tr>
<tr>
<td>2. Stringers</td>
<td>7</td>
</tr>
<tr>
<td>3. Diaphragms</td>
<td>7</td>
</tr>
<tr>
<td>4. Girders or Beams</td>
<td>7</td>
</tr>
<tr>
<td>5. Floor Beams</td>
<td>7</td>
</tr>
<tr>
<td>6. Trusses</td>
<td>-</td>
</tr>
<tr>
<td>7. Rivets or Bolts</td>
<td>-</td>
</tr>
<tr>
<td>8. Welds</td>
<td>-</td>
</tr>
<tr>
<td>9. Collision Damage</td>
<td>-</td>
</tr>
<tr>
<td>10. Load Deflection</td>
<td>-</td>
</tr>
<tr>
<td>11. Member Alignment</td>
<td>-</td>
</tr>
<tr>
<td>12. Load Vibration</td>
<td>-</td>
</tr>
<tr>
<td>13. Paint-Epoxy</td>
<td>-</td>
</tr>
<tr>
<td>14. Year Painted</td>
<td>-</td>
</tr>
<tr>
<td>15. Under Clearance</td>
<td>ft, in</td>
</tr>
</tbody>
</table>

### Actual Posting
- **H:** 3
- **3S2:** 2

### Recommended Posting
- **Single:** -

### Overhead Signs (attached to bridge)
- **Yes:** -
- **No:** checkmark

### Signs in Place
- **Y or N:** N

### Legibility
- **N**

## Item 60: Substructure

### Abutments
- **a-Wings:** -
- **b-Backwall:** -
- **c-Bridge Seats:** -
- **d-Breastwall:** -
- **e-Footings:** -
- **f-Piles:** -
- **g-Erosion:** -
- **h-Settlement:** -

### Piers or Bents
- **a-Caps:** -
- **b-Column:** -
- **c-Web:** -
- **d-Footing:** -
- **e-Piles:** -
- **f-Scour:** -

### Collision Damage
- **g-Settlement:** -

### Hydraulic Adequacy
- **-**

### Item 93b U/W Inspection Date:

---

### Item 61: Channel and Channel Protection
- **Channel Scour:** -
- **Embankment Erosion:** -
- **Fender System:** -
- **Spur Dikes & Jetties:** -

### Traffic Safety Features
- **Bridge Railing:** -
- **Transitions:** -
- **Approach Guardrail:** -
- **Guardrail Terminal:** -

---

**X=Unknown**  **NA=Not Applicable**  **IA=Inaccessible**
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   \[\text{YES}\]

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   \[\text{YES}\]
   
   a. Piers, abutments with spread footings or short pile foundations.  
   \[\text{YES}\]
   
   b. Superstructure with simple spans or non-redundant support systems.  
   \[\text{YES}\]
   
   c. Inadequate waterway openings.  
   \[\text{NO}\]
   
   d. Designs which collect ice and debris.  
   \[\text{NO}\]
   
   e. All water must pass through or over structure.  
   \[\text{YES}\]
   
   f. Other.  
   \[\text{NO}\]

3. Are any characteristics of an aggressive stream or waterway present?
   \[\text{YES}\]
   
   a. Active degradation or aggredation of streambed.  
   \[\text{YES}\]
   
   b. Significant lateral movement or erosion of streambanks.  
   \[\text{NO}\]
   
   c. Steep slopes.  
   \[\text{NO}\]
   
   d. High velocities.  
   \[\text{NO}\]
   
   e. Any history of highway or bridge damage during past floods.  
   \[\text{NO}\]
   
   f. Other.  
   \[\text{NO}\]

4. Is the bridge located on a stream reach with any adverse flow characteristics?
   \[\text{YES}\]
   
   a. Crossing near stream confluence.  
   \[\text{NO}\]
   
   b. Crossing of tributary stream near confluence with larger streams.  
   \[\text{NO}\]
   
   c. Crossing on sharp bend in stream.  
   \[\text{YES}\]
   
   d. Location on alluvial fan.  
   \[\text{NO}\]
   
   e. Other.  
   \[\text{NO}\]

5. Other comments or observations.  
\[\text{NONE}\]
DATE OF INSPECTION: 24 August 1993

DATE OF PREVIOUS INSPECTIONS: In-depth, Oct 84
Routine, Aug 87
Routine, Aug 89
Routine, June 91

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>11T</td>
<td>16T</td>
<td>Ratings similar to those determined in the 1984 in-depth report.</td>
</tr>
<tr>
<td>3</td>
<td>25T</td>
<td>40T</td>
<td></td>
</tr>
<tr>
<td>3S2</td>
<td>39T</td>
<td>63T</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>49T</td>
<td>78T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway, Railings, and Deck. The general condition is good (condition 8). The bituminous wearing surface on the north approach and south approach is in good condition. The transitions to the deck from the north and south approaches are not smooth. The expansion joint is sealed and in adequately good condition. The concrete bridge deck is in good condition. The scuppers are clear. The rails on the bridge deck are in good condition. There is some minor vegetation growth at the curbs on the bridge deck. The approach guardrails are in good condition.

B. Fascia and Curbs The general condition is good (condition 8). The overall condition of the curbs is good; they have recently been painted. There is a minor crack at the northeast corner of the curb and some minor honeycombing.

C. Underside of Deck and Bearings. The overall condition is good (condition 8). The underside of the deck is in good condition. The girders are in good condition with no signs of rust. The bearings appear to be well seated and in good condition.
D. Wingwalls and Abutments

The overall condition is good (condition 7). The granite block wingwall on the southwest side has some cracked mortar with vegetation growth in the cracks. The other wingwalls are in good condition. The abutments are in good condition.

E. Channel

The channel is in good condition (condition 8). There is heavy vegetation upstream and downstream.

**CONDITION RATING**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

**RECOMMENDATIONS**

**Status of Previous Recommendations**

There were no previous recommendations.

**Revised Recommendations**

Repair cracked mortar on southeast wingwall.

**Estimated Cost** $1,000
## STRUCTURES INSPECTION FIELD REPORT
### ROUTINE INSPECTION

**Bridge Location:**
- **THOMASTON, CT**
- **Bridge Dept. No.:** CENED
- **8-Structure No.:** 06010990001006
- **90-Date Inspected:** 8/24/93

**Bridge Details:**
- **2-Dist.:** 104-highway system
- **22-Owner:** CENED
- **27-Year Built:**
- **106-Year Rebuilt:**
- **11-Milepoint:**

**43-Structure Type:**
- **Single Span Wide Flange Beam

**07-Facility Carried:**
- **OLD NORTHFIELD ROAD**
- **Team Leader:** JOSEPH COLUCCI

**06-Features Intersected:**
- **NORTHFIELD BROOK**
- **Team Members:** M. TORIO, M. DESHAYES, M. WALSH

### DECK

<table>
<thead>
<tr>
<th>Item</th>
<th>B</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Wearing Surface</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Deck-Condition</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Stay in Place Forms</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Curbs</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Median</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Sidewalks</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Parapet</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Railing</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>Anti Missile Fence</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>Drains</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>Lighting Standards</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>Utilities</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>Deck Joists</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>Approach Settlement</td>
</tr>
</tbody>
</table>

### SUPERSTRUCTURE

<table>
<thead>
<tr>
<th>Item</th>
<th>B</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Bearing Devices</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Stringers</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Diaphragms</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Girders or Beams</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Floor Beams</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Trusses</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Rivets or Bolts</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Welds</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>Collision Damage</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>Load Deflection</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>Member Alignment</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>Load Vibration</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>Paint-Epoxy</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>Year Painted</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>Under Clearance (in ft)</td>
</tr>
</tbody>
</table>

#### Clearance Signs
- Yes: X
- No: 

---

### Actual Posting
- **H**: 3
- **3S2**: NA
- **Single**: NA

### Recommended Posting
- **From Rating Book**: NA

### SIGNS IN PLACE
- **Y or N**: N
- **At Bridge**: N
- **Advance**: N

### LEGIBILITY
- -

### Overhead Signs (Attached to Bridge)
- Yes: X
- No: -

#### 1. Welds
- -

#### 2. Bolts
- -

#### 3. Condition
- -

---

### ITEM 61-Channel and Channel Protection
- **Channel Scour**: 7
- **5. Rip Rap or Slope Paving**: NA

### 36-Traffic Safety Features
- **1. Bridge Railing**: NA
- **3. Approach Guardrail**: NA
- **4. Guardrail Terminal**: NA

---

**X = UNKNOWN**  **NA = NOT APPLICABLE**  **JA = INACCESSIBLE**
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   - No

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?  
   - Yes
     a. Piers, abutments with spread footings or short pile foundations.  - No
     b. Superstructure with simple spans or non-redundant support systems.  - Yes
     c. Inadequate waterway openings.  - No
     d. Designs which collect ice and debris.  - No
     e. All water must pass through or over structure.  - Yes
     f. Other.  - No

3. Are any characteristics of an aggressive stream or waterway present?  
   - Yes
     a. Active degradation or aggradation of streambed.  - Yes
     b. Significant lateral movement or erosion of streambanks.  - No
     c. Steep slopes.  - No
     d. High velocities.  - No
     e. Any history of highway or bridge damage during past floods.  - No
     f. Other.  - No

4. Is the bridge located on a stream reach with any adverse flow characteristics?  
   - No
     a. Crossing near stream confluence.  - No
     b. Crossing of tributary stream near confluence with larger streams.  - No
     c. Crossing on sharp bend in stream.  - No
     d. Location on alluvial fan.  - No
     e. Other.  - No

5. Other comments or observations.  
   - No
HOP BROOK LAKE  
BRIDGE ON OLD ROUTE 63, MIDDLEBURY, CT  
FY 93 ROUTINE INSPECTION REPORT

DATE OF INSPECTION: 24 August 1993

DATE OF PREVIOUS INSPECTIONS: In-depth, Dec 84
                              Routine, Sept 87
                              Routine, Aug 89
                              Routine, Sept 91

RATING (T=TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>23T</td>
<td>32T</td>
<td>The 8 ton rating suggested in the 1984 in-depth inspection can be increased to the full inventory capacity since the deteriorated concrete of the arched section has been satisfactorily repaired.</td>
</tr>
<tr>
<td>3</td>
<td>38T</td>
<td>54T</td>
<td></td>
</tr>
<tr>
<td>3S2</td>
<td>55T</td>
<td>77T</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>61T</td>
<td>86T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway, Railings, and Deck. The general condition is good (condition 7). The bituminous wearing surface on the north approach and south approach has some minor rutting. There are slight depressions at the transitions to the deck from the north and south approaches. The wearing surfaces on the north and south approaches have some minor rutting. Small stones from a chip seal have been left along the curb. The rails on the bridge deck have been recently patched are in good condition. The approach guardrails are in good condition.

B. Fascia and Curbs The general condition is good (condition 8). The overall condition of the curbing is good. The curbs have recently been patched with concrete; however, the concrete has some minor surface deterioration. The fascias are in very good condition.
C. Underside of Deck and Bearings

The overall condition is good (condition 7). The arched section has been recently repaired and has a new coating of "shotcrete". The coloring of the "shotcrete" is inconsistent and varies from very light gray to dark gray. The tee beams on the west side are in good condition with some minor honeycombing. The tee beams on the east side have a few spalls and minor honeycombing.

D. Wingwalls and Abutments

The overall condition is good (condition 7). The north and south abutments are in good condition. The weepholes on the south abutment are clear. The weepholes on the north abutment are buried by aggredation. The wingwalls are in good condition; however, there is miscellaneous vegetation growing in front on them.

E. Channel

The channel is in good condition (condition 7). The bridge is located on a bend in the river. This is causing aggredation along the northern abutment and creates the possibility of scour along the southern abutment. There is a confluence just west of the northern abutment.

**CONDITION RATING**

Previous in-depth: 7  
Interim 1987: 7  
Interim 1989: 5  
Routine 1991: 5  
Routine 1993: 7

**RECOMMENDATIONS**

**Status of Previous Recommendations**

Remove trees and vegetation in front of wingwalls. Not done

Revised Recommendations

Implement the previous recommendation.

Total Estimated Cost $5000
### Structures Inspection Field Report

**Routine Inspection**

**Location:** MIDDLEBOURG, CT

**Bridge Details:**
- Bridge Dept. No.: 104-highway system
- Structure No.: 27-year built 1935, 106-year rebuilt 1944
- 90-date inspected: 8/29/93

**Quality Control Engineer:** NICK FORBES

**Facility Carried:** OLD ROUTE 63 / REC AREA

**Features Intersected:** HOP BROOK

### Inspection Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Wearing Surface</td>
<td>7</td>
</tr>
<tr>
<td>59</td>
<td>SUPERSTRUCTURE</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1. Bearing Devices</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>2. Stringers</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>3. Diaphragms</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4. Girders or Beams</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>5. Floor Beams</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>6. Trusses</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>7. Rivets or Bolts</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8. Welds</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>9. Collision Damage</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>10. Load Deflection</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>11. Member Alignment</td>
<td>Na</td>
</tr>
<tr>
<td></td>
<td>12. Load Vibration</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>13. Paint-Epoxy</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>14. Year Painted</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>15. Under Clearance ft in</td>
<td>17 Arch 7</td>
</tr>
<tr>
<td></td>
<td>Clearance Signs</td>
<td>yes</td>
</tr>
</tbody>
</table>

**Actual Posting:**
- H 3 3S2

**Recommended Posting:**
- Single

**Overhead Signs (attached to bridge):**
- yes

**Signs in Place:**
- at bridge: NA
- advance: 7

**Legibility:**
- -

### Additional Notes

- **Channel Scour:** 7
- **Embarkment Erosion:** 7
- **Tender System:** 7
- **Spur Dikes & Jetties:** 7

**Traffic Safety Features:**
- 1. Bridge railing
- 2. Transitions
- 3. Approach Guardrail
- 4. Guardrail Terminal

---

**Legend:**
- X = Unknown
- NA = Not Applicable
- JA = Inaccessible
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   - NO

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   - YES
      a. Piers, abutments with spread footings or short pile foundations.  
         - NO
      b. Superstructure with simple spans or non-redundant support systems.  
         - YES
      c. Inadequate waterway openings.  
         - NO
      d. Designs which collect ice and debris.  
         - NO
      e. All water must pass through or over structure.  
         - # YES
      f. Other.  
         - NO

3. Are any characteristics of an aggressive stream or waterway present?  
   - YES
      a. Active degradation or aggradation of streambed.  
         - YES
      b. Significant lateral movement or erosion of streambanks.  
         - YES
      c. Steep slopes.  
         - NO
      d. High velocities.  
         - NO
      e. Any history of highway or bridge damage during past floods.  
         - NO
      f. Other.  
         - NO

4. Is the bridge located on a stream reach with any adverse flow characteristics?  
   - YES
      a. Crossing near stream confluence.  
         - YES
      b. Crossing of tributary stream near confluence with larger streams.  
         - NO
      c. Crossing on sharp bend in stream.  
         - NO
      d. Location on alluvial fan.  
         - NO
      e. Other.  
         - NO

5. Other comments or observations.  
   - NO
TULLY LAKE
DOANE HILL ROAD BRIDGE, ROYALSTON, MA
FY 93 ROUTINE INSPECTION REPORT

DATE OF INSPECTION: 24 June 93

DATE OF PREVIOUS INSPECTIONS: Inventory, 24 September 84
Routine, 15 September 87
Routine, 7 September 89
Routine, 11 July 91

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>13.5T</td>
<td>25.4T</td>
<td>No change in ratings</td>
</tr>
<tr>
<td>3</td>
<td>16.0T</td>
<td>30.1T</td>
<td></td>
</tr>
<tr>
<td>3S2</td>
<td>24.7T</td>
<td>46.7T</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>31.0T</td>
<td>57.6T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway and Railings: Overall condition 6. A New tar and gravel surface coat has recently been applied to the road and the bridge. When placing this coat, however, several of the vertical deck drains were covered and are now blocked. The new surface coating also continued across the joints in the deck. The new surfacing was not compacted well as it approached the openings in the curbings and therefore makes these openings ineffective for drainage. The extensive vegetation growth in the openings also creates an obstruction to the proper drainage of the deck. Weight limit signs were not present. The 3"x8" timber rails which are dried out and brittle are loose and inadequate. and are loose to the touch. The cable guard rails at the approaches to the deck are in good condition, however, they are very loose and need to be tightened and repaired.

B. Curbs & Fascias: Overall condition 6. There is extensive spalling and wear on both curbs. The drainage openings, as previously mentioned, are mostly filled with
vegetation and debris. There is extensive spalling and efflorescence along the exterior fascias of the bridge.

C. Underside of Deck: Overall condition 7. Minor spalling around deck drains was noted. Most of the structural steel exhibited moderate rusting. The exterior beams show the greatest amount of rust. The beam on the interior of the north face of the bridge which has been noted as not having enough clearance, has not yet been cut. It is recommended that this beam be cut in order to allow 2" to 2 1/2" of clearance from the face of the abutment. The bearings are in good condition with minor rust and debris buildup.

D. Wingwalls/Abutments: Overall condition 8. The wingwalls and abutments are in good condition. Bonding and alignment are good. The walls show no signs of distress.

E. Channel: The overall condition is 8. The water flows smoothly through the channel with little or no debris buildup. Some minor abrasion was evident at the base of the abutments below the flow line.

**CONDITION RATING**

| Inventory, 1984 | 7 |
| Routine, 1987 | 7 |
| Routine, 1989 | 7 |
| Routine, 1991 | 7 |
| Routine, 1993 | 7 |

**RECOMMENDATIONS:**

**Status of Previous Recommendations**

1. Repair loose guard rail cables on northeast approach; repair detached upper guardrail cable on southwest approach; replace timber bridge rail with steel tubular section. Estimated cost $7000. Not done

2. Clear debris from fascia openings and patch spalled areas with polymer modified repair mortar. Estimated cost $3000. Not done

3. Clean all debris and vegetation from gutters. Repair pavement on approaches and deck by cold Not done
4. Clean and paint all structural steel and Not done bearings. Cut or burn web and bottom flange of first interior beam (North side, east abutment) as required to re-establish a minimum clearance of two inches.

   Estimated cost $15000.

Revised Recommendations

1. Repair loose guardrail cables on northeast approach; repair detached upper guardrail cable on southwest approach; replace timber bridge railing with new railing.

   Estimated cost $7000.

2. Clear debris from fascia openings and patch spalled areas with polymer modified repair mortar.

   Estimated cost $3000.

3. Clean all debris and vegetation from gutters. Can be done by project personnel.

4. Clean and paint all structural steel and bearings. Cut or burn web and bottom flange of first interior beam (North side, east abutment) as required to re-establish a minimum clearance of two inches.

   Estimated cost $15000.

Total Estimated Cost $25000.
## STRUCTURES INSPECTION FIELD REPORT
### ROUTINE INSPECTION

**Location:**
- **Bridge Name:** Donnald Road
- **Location:** Tully Lake
- **Owner:** Coe
- **Department:** Coe
- **Bridge No.:** L-255
- **Site No.:** 20
- **Construction Date:** 1950
- **Reconstruction Date:** 1980
- **Milepoint:** 1.0
- **90% Inspected Date:** 6/24/93

**Facility Details:**
- **Type:** 36-foot span, single girder, open approach
- **Height:** 48 feet
- **Width:** 32 feet

**Staff:**
- **Quality Control Engineer:** J. Colletti
- **Team Leader:** J. Colletti
- **Team Members:** L. Deschenes, M. Fiala

### Inspection Details

#### Deck
- **Wearing Surface:** 6
- **Deck Condition:** 7
- **Stay in Place Forms:** 6
- **Curbs:** 6
- **Sidewalks:** NA
- **Parapet:** 6
- **Railings:** 3
- **Anti-Missile Fence:** 6
- **Drains:** 6
- **Lighting Standards:** 6
- **Utilities:** 6
- **Deck Joints:** 7
- **Approach Settlement:** 8

#### SUPERSTRUCTURE

1. **Bearing Devices:** 7
2. **Stringers:** 2
3. **Diaphragms:** 7
4. **Girders or Beams:** 7
5. **Floor Beams:** 3
6. **Trusses:** 6
7. **Rivets or Bolts:** 7
8. **Welds:** 6
9. **Collision Damage:** NA
10. **Load Deflection:** 5
11. **Member Alignment:** 5
12. **Load Vibration:** 5
13. **Paint-Epoxy:** 6
14. **Year Painted:** 5
15. **Under Clearance:** 5 ft

**Clearance Signs:**
- **Yes:** NA
- **No:** NA

#### SUBSTRUCTURE

1. **Abutments:**
   - a-Wings: NA
   - b-Backwall: NA
   - c-Bridge Seats: NA
   - d-Breastwall: NA
   - e-Footings: NA
   - f-Piles: NA
   - g-Erosion: NA
   - h-Settlement: NA

2. **Piers or Bents:**
   - a-Caps: 5
   - b-Column: 5
   - c-Web: 5
   - d-Footing: 5
   - e-Piles: 5
   - f-Scour: 5
   - g-Settlement: NA

3. **Collision Damage:**

4. **Hydraulic-Adequacy:**

#### Overhead Signs
- **Attached to Bridge:**
  - Yes: NA
  - No: √

#### Sign Details
- **Recommended Posting from Rating Book:** 1.0 25 1.0
- **LEGIBILITY:** NA

**Condition:**
- **Channel Scour:** 5
- **Embankment Erosion:** 5
- **Fender System:** 5
- **Spur Dikes & Jetties:** 5
- **Vegetation:** 5

**Traffic Safety Features:**
- **Condition:**
  - 1. Bridge Railing: 6
  - 2. Transitions: 7
  - 3. Approach Guardrail: 7
  - 4. Guardrail Terminal: 7

---

**Notes:**

- **Actual Posting:**
  - H: 3 3S2
  - Single: NA

- **Item 93b U/W Inspection Date:** None
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   NO

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   YES
   a. Piers, abutments with spread footings or short pile foundations.  
      YES
   b. Superstructure with simple spans or non-redundant support systems.  
      YES
   c. Inadequate waterway openings.  
      NO
   d. Designs which collect ice and debris.  
      NO
   e. All water must pass through or over structure.  
      NO
   f. Other.  
      
3. Are any characteristics of an aggressive stream or waterway present?
   NO
   a. Active degradation or aggregation of streambed.  
      NO
   b. Significant lateral movement or erosion of streambanks.  
      NO
   c. Steep slopes.  
      NO
   d. High velocities.  
      NO
   e. Any history of highway or bridge damage during past floods.  
      NO
   f. Other.  
      
4. Is the bridge located on a stream reach with any adverse flow characteristics?
   NO
   a. Crossing near stream confluence.  
      NO
   b. Crossing of tributary stream near confluence with larger streams.  
      YES
   c. Crossing on sharp bend in stream.  
      NO
   d. Location on alluvial fan.  
      NO
   e. Other.  
      NO

5. Other comments or observations.  
   NONE
EVERETT LAKE
CHOATE BROOK
FY93 ROUTINE INSPECTION REPORT

DATE OF ROUTINE INSPECTION: 9 Sept 93

DATE OF PREVIOUS INSPECTIONS: 31 July 91 Routine
11 Sep 89 Routine
17 Sep 87 Routine
25 Mar 85 In-depth

RATING (T = TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.0 T</td>
<td>4.4 T</td>
<td>Ratings from 1985</td>
</tr>
<tr>
<td>3</td>
<td>3.6 T</td>
<td>7.9 T</td>
<td>in-depth.</td>
</tr>
<tr>
<td>3S2</td>
<td>5.7 T</td>
<td>12.5 T</td>
<td></td>
</tr>
</tbody>
</table>

Note: Ratings are estimated for H-20 loading for the new concrete deck for 1993 and final calculation will be performed within FY94.

EVALUATION (see attached field report)

A. Approaches
   Overall rating is 6. Guard rails are new but only 25’ long on east side and no erosion control on both sides.

B. Bridge Deck
   Overall rating is 7. New bridge deck with guard rails on both sides. Missing bolts were located on the middle of the south guard rails. Most of the I-beams posts do not line up their centerline axis.

C. Substructure
   Overall rating is 7. At the northeast abutment corner, a one and half foot deep scour is located. There are honey comb and hairline cracks at the southeast bridge abutment. Tree branches and debris are built up on the southside of the bridge deck.

CONDITION RATING:

- Previous in-depth: 6
- Routine 1987: 6
- Routine 1989: 5
- Routine 1991: 4
- Routine 1993: 7
RECOMMENDATIONS:

Recommendations

1. The length of the guardrail for the eastside approach should be increased another 25 feet due to the sharp curve and deep drop at the edge.
   Estimated cost: $1500.00

2. There should be some erosion control on the embankments along both side approaches.
   Estimated cost: $2000.00

3. The project personnel should remove the tree branches and debris under or near the bridge deck.
   Total estimated cost: $3500.00
**STRUCTURES INSPECTION FIELD REPORT**
**RUTINE INSPECTION**

<table>
<thead>
<tr>
<th>item 58</th>
<th>DECK</th>
<th>item 59</th>
<th>SUPERSTRUCTURE</th>
<th>item 60</th>
<th>SUBSTRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Deck-Condition</td>
<td>8</td>
<td>2. Stringers</td>
<td>NA</td>
<td>a-Wings</td>
<td>7</td>
</tr>
<tr>
<td>3. Stay in Place Forms</td>
<td>NA</td>
<td>3. Diaphragms</td>
<td>NA</td>
<td>b-Backwall</td>
<td>8</td>
</tr>
<tr>
<td>4. Curbs</td>
<td>8</td>
<td>4. Girders or Beams</td>
<td>NA</td>
<td>c-Bridge Seats</td>
<td>8</td>
</tr>
<tr>
<td>5. Median</td>
<td>NA</td>
<td>5. Floor Beams</td>
<td>8</td>
<td>d-Breastwall</td>
<td>7</td>
</tr>
<tr>
<td>7. Parapet</td>
<td>NA</td>
<td>7. Rivets or Bolts</td>
<td>NA</td>
<td>f-Piles</td>
<td>NA</td>
</tr>
<tr>
<td>8. Railing</td>
<td>7</td>
<td>8. Welds</td>
<td>NA</td>
<td>g-Erosion</td>
<td>6</td>
</tr>
<tr>
<td>10. Drains</td>
<td>NA</td>
<td>10. Load Deflection</td>
<td>NA</td>
<td>2. Piers or Bents</td>
<td>NA</td>
</tr>
<tr>
<td>11. Lighting Standards</td>
<td>NA</td>
<td>11. Member Alignment</td>
<td>NA</td>
<td>a-Caps</td>
<td>NA</td>
</tr>
<tr>
<td>12. Utilities</td>
<td>NA</td>
<td>12. Load Vibration</td>
<td>NA</td>
<td>b-Column</td>
<td>NA</td>
</tr>
<tr>
<td>15. Under Clearance</td>
<td>NA</td>
<td>ft</td>
<td>in</td>
<td>f-Piles</td>
<td>NA</td>
</tr>
<tr>
<td>Clearance Signs</td>
<td>yes</td>
<td>no</td>
<td></td>
<td>g-Scour</td>
<td>NA</td>
</tr>
</tbody>
</table>

**Actual Posting**

- H 3 3S2
- Single
- NA

**Recommended Posting From Rating Book**
- 2D

**SIGNS IN PLACE**

- at bridge: N
- advance: N

**LEGIBILITY**

- NA
- NA

**Overhead Signs (attached to bridge)**

- x no

- 1. Welds: NA
- 2. Bolts: NA
- 3. Condition: NA

**ITEM 61-channel and channel protection**

- 6

**36-Traffic Safety features**

- 1. bridge railing: D
- 2. transitions: D
- 3. approach guardrail: N
- 4. guardrail terminal: NA

**Item93b U/W Inspection Date:** NONE

- NA

- X-UNKNOWN

- NA

- IA-INACCESSIBLE
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   YES

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   YES
   a. Piers, abutments with spread footings or short pile foundations. YES
   b. Superstructure with simple spans or non-redundant support systems. YES
   c. Inadequate waterway openings. YES
   d. Designs which collect ice and debris. NO
   e. All water must pass through or over structure. YES
   f. Other. NO

3. Are any characteristics of an aggressive stream or waterway present? YES
   a. Active degradation or aggregation of streambed. YES
   b. Significant lateral movement or erosion of streambanks. NO
   c. Steep slopes. YES
   d. High velocities. YES
   e. Any history of highway or bridge damage during past floods. UNKNOWN
   f. Other.

4. Is the bridge located on a stream reach with any adverse flow characteristics? NO
   a. Crossing near stream confluence. NO
   b. Crossing of tributary stream near confluence with larger streams. NO
   c. Crossing on sharp bend in stream. NO
   d. Location on alluvial fan. NO
   e. Other.

5. Other comments or observations. NONE
OTTER BROOK LAKE
EXIT BRIDGE, KEENE, N.H.
FY 93 ROUTINE INSPECTION REPORT

DATE OF INSPECTION: 18 August 1993

DATE OF PREVIOUS INSPECTIONS: In-depth, Sept 87
                           Routine, Sept 89
                           Routine, 22 August 1991

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>18.0T</td>
<td>32.6T</td>
<td>Load capacities</td>
</tr>
<tr>
<td>3</td>
<td>22.1T</td>
<td>39.9T</td>
<td>recalculation for</td>
</tr>
<tr>
<td>3S2</td>
<td>34.4T</td>
<td>62.1T</td>
<td>prestressed beams</td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway, Railings, and Deck.

The overall condition is good (condition 7). The bituminous wearing surface on the deck is in good condition. The south approach surface is in good condition with a minor crack at the transition to the bridge deck. The north approach has some minor rutting along wheel lines and a crack at the transition to the bridge deck. The terminal unit of the guardrail in the northwest corner is damaged. The design of the existing terminal unit in this location is poor and should be extended around the corner and buried. The southeast top railing is loose.

B. Fascia and Curbs

The overall condition is good (condition 7). Both the curbs and fascias have hairline cracks approximately every two feet. There is also some spalling at the caps covering the transverse posttensioned reinforcing. Minor debris and vegetation is collecting along the curbing.

C. Underside of Deck and Bearings.

The overall condition is good (condition 7). The underside of the deck is in good condition. There is some minor leakage of water from the deck onto the south abutment. No problems were noted with the bearings.
with the bearings.

D. Wingwalls and Abutments

The overall condition is fair (condition 6). The north abutment is in good condition. The northeast footing has a spall measuring two foot by two foot by six inches. There is also evidence of scour and erosion along the northeast wingwall.

E. Channel

The overall rating is 5. The water is deepest along the abutments. The northeast abutment is scoured and deteriorated as noted on previous reports. The channel contains many rocks and has the potential to collect debris.

CONDITION RATING

Interim 1987: 7
Interim 1989: 6
Routine 1991: 6
Routine 1993: 6

RECOMMENDATIONS

Status of Previous Recommendations

<table>
<thead>
<tr>
<th>Cost Est</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Repair erosion and deteriorated concrete at the base of the abutments.</td>
<td>$20,000</td>
</tr>
<tr>
<td>2. Provide stone apron at abutment as scour remedial action.</td>
<td>$15,000</td>
</tr>
<tr>
<td>3. Remove vegetation from wingwalls and curbs.</td>
<td>$500</td>
</tr>
<tr>
<td>Total</td>
<td>$35,500</td>
</tr>
</tbody>
</table>

Revised Recommendations

Implement above recommendations.

Extend and bury northeast guardrail terminal unit. $1500

Total Updated Estimated Cost $37,000
# STRUCTURES INSPECTION FIELD REPORT
## ROUTINE INSPECTION

<table>
<thead>
<tr>
<th>Item 58</th>
<th>Item 59</th>
<th>Item 60</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DECK</strong></td>
<td><strong>SUPERSTRUCTURE</strong></td>
<td><strong>SUBSTRUCTURE</strong></td>
</tr>
<tr>
<td>2. Deck-Condition</td>
<td>2. Stringers</td>
<td>a-Wings</td>
</tr>
<tr>
<td>3. Stay in Place Forms</td>
<td>3. Diaphragms</td>
<td>b-Backwall</td>
</tr>
<tr>
<td>4. Curbs</td>
<td>4. Girders or Beams</td>
<td>c-Bridge Seats</td>
</tr>
<tr>
<td>5. Median</td>
<td>5. Floor Beams</td>
<td>d-Breastwall</td>
</tr>
<tr>
<td>7. Parapet</td>
<td>7. Rivets or Bolts</td>
<td>f-Piles</td>
</tr>
<tr>
<td>8. Welds</td>
<td>8. Collision Damage</td>
<td>g-Erosion</td>
</tr>
<tr>
<td>10. Anti Missile Fence</td>
<td>10. Member Alignment</td>
<td></td>
</tr>
<tr>
<td>11. Drains</td>
<td>11. Load Vibration</td>
<td></td>
</tr>
<tr>
<td>15. Approach Settlement</td>
<td>ft in clearance Signs</td>
<td>a-Caps</td>
</tr>
</tbody>
</table>

**Actual Posting**
- H 3 352
- Single

**Recommended Posting From Rating Book**
- Y

**LEGIBILITY**
- Y

**SIGNs IN PLACE**
- at bridge

**Overhead Signs (attached to bridge)**
- Yes

| Item 93b U/W Inspection Date: | NONE |

**ITEM 61-channel and channel protection**
- Channel scour

**36-Traffic Safety features**
- 1. bridge railing
- 2. transitions
- 3. approach guardrail
- 4. guardrail terminal

**Legend**
- X = Unknown
- NA = Not Applicable
- NA = Inaccessible

**Bridge Information**
- Bridge dept. no.: CEFPENED9 + 2310009
- 2-dist.: 104-highway system
- 22-owner: COE
- 27-year built: 1967
- 106-year rebuilt: 1987
- 11-milepoint: B/18/72
- Quality control engineer: Nick Forbes
- Team leader: Joe Colucci
- Team members: Ellen, 10610 Mark, Deschutes
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   YES

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations.  
      N/A
   b. Superstructure with simple spans or non-redundant support systems.  
      YES
   c. Inadequate waterway openings.  
      NO
   d. Designs which collect ice and debris.  
      YES
   e. All water must pass through or over structure.  
      NO
   f. Other.  
      N/A

3. Are any characteristics of an aggressive stream or waterway present?  
   YES
   a. Active degradation or aggradation of streambed.  
      YES
   b. Significant lateral movement or erosion of streambanks.  
      NO
   c. Steep slopes.  
      NO
   d. High velocities.  
      NO
   e. Any history of highway or bridge damage during past floods.  
      NO
   f. Other.  
      N/A

4. Is the bridge located on a stream reach with any adverse flow characteristics?  
   NO
   a. Crossing near stream confluence.  
      NO
   b. Crossing of tributary stream near confluence with larger streams.  
      NO
   c. Crossing on sharp bend in stream.  
      NO
   d. Location on alluvial fan.  
      N/A
   e. Other.  

5. Other comments or observations.  
   NO
<table>
<thead>
<tr>
<th></th>
<th>LOAD RATINGS</th>
<th>HIS</th>
<th>3</th>
<th>352</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 x 21</td>
<td>FLEXURE</td>
<td>23.0</td>
<td>28.2</td>
<td>43.9</td>
</tr>
<tr>
<td></td>
<td>SHEAR</td>
<td>49.3</td>
<td>58.5</td>
<td>106.5</td>
</tr>
<tr>
<td>48 x 21</td>
<td>FLEXURE</td>
<td>18.0</td>
<td>22.1</td>
<td>34.4</td>
</tr>
<tr>
<td></td>
<td>SHEAR</td>
<td>27.8</td>
<td>44.9</td>
<td>81.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LOAD RATINGS</th>
<th>HIS</th>
<th>3</th>
<th>352</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 x 21</td>
<td>FLEXURE</td>
<td>46.5</td>
<td>55.8</td>
<td>86.9</td>
</tr>
<tr>
<td></td>
<td>SHEAR</td>
<td>82.1</td>
<td>97.6</td>
<td>177.5</td>
</tr>
<tr>
<td>48 x 21</td>
<td>FLEXURE</td>
<td>32.6</td>
<td>39.9</td>
<td>62.1</td>
</tr>
<tr>
<td></td>
<td>SHEAR</td>
<td>63.0</td>
<td>74.8</td>
<td>136.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TOTAL RATING</th>
<th>HIS</th>
<th>3</th>
<th>352</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVENTORY</td>
<td></td>
<td>18.0</td>
<td>22.1</td>
<td>34.4</td>
</tr>
<tr>
<td>OPERATING</td>
<td></td>
<td>32.6</td>
<td>39.9</td>
<td>62.1</td>
</tr>
</tbody>
</table>
BRIDGE REPLACED 1987

SIMPLE SPAN, PRESTRESSED DECK BEAMS

LENGTH OF SPAN: 43 FEET

TYPE: W-36 (36" x 21" in HC slab)

\[ A = 529.80 \text{ in}^2 \]
\[ I = 25747 \text{ in}^4 \]
\[ w = 551.9 \text{ lb/ft} \]
\[ S_x = \frac{I}{c} \quad c = 21' / 2 \]
\[ = \frac{25747 \text{ in}^2}{21 \text{ in} / 2} = 2452.1 \text{ in}^3 \]

INFORMATION GATHERED FROM TRANSMITTAL NO. 3230-002
RESUBMITTAL 9 OCTOBER 1985

\[ f'_c = 5000 \text{ psi} \]
\[ f_{ci} = 4000 \text{ psi} \]

Density = 150pcf

STRANDS

12 - \( \frac{1}{2}'' \) \& 270K SRDV STRANDS

\[ \text{STRAND AREA} = 0.1530 \text{ in}^2 / \text{STRAND} \]
\[ A_s = 0.1530 \times 12 = 1.8360 \text{ in}^2 \]
\[ A_{st} = 0.1200 \text{ in}^2 \]

\[ CG \text{ OF STRAND} = 2'' \text{ FROM BOTTOM OF BEAM} / 3'' \text{ FROM TOP} \]
\[ c = \frac{d}{2} - CG = \frac{21''}{2} - 2'' = 8.5'' \]

\[ c_t = 7.5'' \]
INITIAL TENSION ON STRAND = 28.92 KIPS = \( P_b \)

\[ P_b = 28.92 \times 10 = 289.2 \text{ KIPS} \] (10 STRANDS)

\[ P_t = 28.92 \times 2 = 57.8 \text{ KIPS} \] (2 STRANDS)

INITIAL STRESS ON STRAND \( \sigma_{\text{initial}} = \frac{P_t}{A_s} \)

\[ \sigma_{\text{initial}} = \frac{28.92}{0.1530} = 189.02 \text{ KSI} \]

**DESIGN LOADS**

- DL: SELF WT = 551.9 #/FT

**SUPPLEMENTAL DEAD LOADS**

- DL: BIT TOPPING = (2.5") (150pcf)(\( \frac{24}{12} \)) = 93.75 #/FT

**Live Load (LL)**

\[ M_{DL} = \left( \frac{0.5519 \text{ k/ft}}{8} \right) (43 \text{ ft})^2 = 127.56 \text{ ft-k} \]

\[ M_{SDL} = \left( \frac{0.09375 \text{ k/ft}}{8} \right) (43 \text{ ft})^2 = 21.47 \text{ ft-k} \]
LOSS OF PRESTRESS

ASHTO TABLE 9.16.2.2.

PRETENSIONED STRAND

(ESTIMATED CALCULATION)

\[ f_{\text{final}} = 189 - 45 = 144 \text{ ksi} \]

\[ P_{\text{final}} = 144 \text{ ksi} (1.836 \text{ in}^2) = 264.38 \text{ kips} \]

\[ M_{\text{p12}} = \text{MOMENT DUE TO PRESTRESS} = P_{\text{c}} \]

\[ = (264.38 \text{ kips})(8.5 \text{ in} / 12) = 187.27 \text{ ft-kips} \]

CALCULATED LOSS OF PRESTRESS

\[ f_{\text{c1r}} = \text{CONCRETE STRESS AT CG. OF PRESTRESSING STEEL DUE TO PRESTRESSING FORCE AND DEAD LOAD OF BEAM IMMEDIATELY AFTER TRANSFER} \]

\[ f_{\text{c1s}} = \text{CONCRETE STRESS AT CG. OF PRESTRESSING STEEL DUE TO ALL DEAD LOADS EXCEPT THE DEAD LOADS PRESENT AT THE TIME OF PRESTRESSING} \]

\[ f_{\text{c1r}} = \frac{P_{\text{c}}}{A_{0}} + \left( \frac{Po e^2}{I} \right) \frac{M_{1c}}{I} - \left( \frac{Po e^2}{I} \right) \frac{T_{1}}{I} \]

\[ Po = 0.9 P_{\text{c}} \]

\[ = 0.9 \left( \frac{347,040}{5279.8} \right) + 0.9 (289,600)(8.5)^2 - 0.9 \left( \frac{57800 \times 12}{25747} \right)^2 \frac{(127500)(12)/8}{25747} \]

\[ = 589.54 + 730.39 - 113.15 - 505.34 = 700.94 \]

\[ f_{\text{c1s}} = \frac{(21,470)(12)(7.5)}{25747} = 75.75 \]

USE COMPUTER GENERATOR

\[ f_{\text{c1r}} = 663 \]

CALCULATED BY DISTINCE 8-6-85
**Loss of Prestress**

\[ \Delta f_s = S_H + E_S + C_L + C_R_e \]

\[ S_H = 17000 - 150 \cdot R_H = 17000 - 150(70) = 6500 (6.4) \]

\[ R_H = 70 \text{ (Relative Humidity)} \]

\[ E_S = \frac{E_0}{E_{cl}} \frac{f_{cl}}{f_{cr}} = \frac{26000}{3534} (663) = 4842 (6-9) \]

\[ C_L = 12 \left( \frac{f_{cl}}{f_{cr}} \right) - 7 \left( \frac{f_{cpd}}{f_{cr}} \right) = 12 (663) - 7 (59) = 7543 (9-9) \]

\[ C_R_e = 20,000 - 0.4 E_S - 0.2 (S_H + C_L) \]

\[ = 20,000 - 0.4 (4842) - 0.2 (6500 + 7543) = \frac{15,255}{34140} \]

\[ f_{final} = 189.02 - 34.14 = 154.88 \text{ ksi} \]

\[ P_{final} = 154.88 \left( 1.836 \text{ in}^2 \right) = 284.36 \text{ kips} \]

\[ M_{p/s} = \text{Moment due to Prestress} = Pe \]

\[ = \left( 284.36 \text{ kip} \right) \left( 8.5 \text{ in/12} \right) = 201.42 \]

\[ P_t = (154.88 \text{ ksi}) (2) (0.1530) = 47.39 \text{ kips} \]

\[ P_b = (154.88) (10) (0.1530) = 236.97 \text{ kips} \]

\[ M_{p/s} = \left( 47.39 \right) \left( 7.5 \right) / 12 = 29.62 \text{ ft-kips Top} \]

\[ M_{p/s} = \left( 236.97 \right) (8.5) / 12 = 147.85 \text{ ft-kips} \]
STRESSES

\[
f = - \frac{P}{A} \pm \frac{M_p S_T}{S} \pm \frac{M_p S_B}{S} \pm \frac{M_{DL}}{S} + \frac{M_{SFL}}{S}
\]

\[
= \frac{284.36}{529.8} \pm \frac{29.62(12)}{2452.1} \pm \frac{167.85(12)}{2452.1} \pm \frac{149.23(12)}{2452.1}
\]

\[
= -0.5367 \pm 0.1450 \pm 0.6214 \pm 0.7303
\]

\[
f_{top} = -0.5367 - 0.1450 + 0.6214 - 0.7303 = -0.5906 \text{ ksf} \quad \text{COMPRESSION}
\]

\[
f_{bot} = -0.5367 + 0.1450 - 0.6214 + 0.7303 = -0.4823 \text{ ksf} \quad \text{COMPRESSION}
\]

ALLOWABLE STRESSES

INVENTORY

COMPRESSION \quad 0.4 f'c' = 2.0 ksf

TENSION \quad \sqrt{f'c'} = 0.212 ksf

STEELS AVAILABLE FOR LIVE LOAD

TOP OF BEAM \quad 2.0 - 0.5906 = 1.41 ksf

BOTTOM OF BEAM \quad 0.212 + 0.4828 = 0.695 ksi

(Cont roles)

INVENTORY \quad M_{cap} = \left( 0.195 \right) \left( 2452.1 \right) / 12 = 141.98 \text{ ft-k}

\[
-0.5906
\]

\[
-0.4828
\]
OPERATING MANUAL

FOR PRESTRESSED CONCRETE MEMBERS, THE REINFORCEMENT INDEX DETERMINED BY AASHTO 9.18.1 DOES NOT EXCEED 0.30, THE OPERATING RATING SHALL RESULT IN MOMENTS NOT TO EXCEED 0.75 THE ULTIMATE MOMENT CAPACITY AASHTO 9.17.

\[ A_s^* = 10 \times (0.1530 \text{ in}^2) = 1.530 \text{ in}^2 \]

\[ d = h - cg \text{ of lower strands} = 21" - 2" = 19" \]

\[ f_c' = 5.0 \text{ ksi} \]

\[ f_s' = 270 \text{ ksi} \]

\[ P^* = A_s^* / bd = 1.530 / (36)(19) = 0.0022 \]

\[ I_s^* = \text{RATIO OF PRESTRESSING STEEL} \]

STEEL STRESSES (BONDED MEMBERS) AASHTO 9.17.4.1

\[ f_s^{*w} = \text{avg stress in prestressing steel at ultimate load} \]

\[ f_s^{*w} = f_s' \left(1 - 0.5 \frac{f_s'}{f_c'} \frac{P^*}{I_s^*} \right) = 270 \text{ ksi} \left[1 - 0.5 \left(0.0022 / 270 \text{ ksi} \right) \right] \]

\[ f_s^{*w} = 253.69 \text{ ksi} \]

REINFORCEMENT INDEX (RECTANGULAR SECTIONS) AASHTO 9.18.1

\[ P^* \frac{f_s^{*w}}{f_c'} = 0.0022 \left(253.69 / 5 \text{ ksi} \right) = 0.1116 \]

0.1116 < 0.30 \text{ OK}
CHECK LOCATION OF NEUTRAL AXIS

\[ \alpha = \frac{A_s f_{se}}{0.85 f'c} = \frac{(1.53)(253.69)}{0.85 (5.0)(30)} = 2.54 \text{ in} \]

\[ \beta, (5000 \text{ psi}) = 0.85 - 0.05 = 0.80 \text{ AASHTO} 8.12.2.7 \]

\[ C = \alpha/\beta = \frac{2.54}{0.80} = 3.17 \text{ in} \]

3.17' \leq 4.5' \text{ OK to use rectangular area}

FLEXURAL STRENGTH

\[ M_u = A_s f_{se} (1 - 0.6 \phi \frac{f_{se}}{f'c}) \]

\[ = (1.53)(253.69)(19/2)[1 - 0.6 (0.1116)] = 573.41 \text{ ft-kips} \]

*NOTE: Mu = φMn, φ = 1.0 for only factory produced precast prestressed - MD -

OPERATING

\[ M_{op} = 0.75 (573.41) = 430.06 \text{ ft-kips} \]

OPERATING CAPACITY AVAILABLE FOR LIVE LOAD

\[ M_{ker} = M_{op} - (M_{ol} + M_{dead}) \]

\[ = 430.06 - (149.23) = 280.83 \text{ ft-kips} \]
LIVE LOAD

LOAD FRACTION S/D AASHTO 3.23 4.3

S = WIDTH OF PRECAST MEMBER
C = K(W/L) C = STIFFNESS PARAMETER
W = OVERALL WIDTH OF BRIDGE (Ft)
L = SPAN LENGTH
K = 0.80

C = 0.8(14FT/42FT) = 0.7405

C ≤ 5

D = (5.75 - 0.5NL) + 0.7NL(1 - 0.2C)½ (3-12)

NL = NUMBER OF LANES = 1

D = (5.75 - 0.5(1)) + 0.7(1)(1 - 0.2(0.7405))½

D = 5.93

LOAD FRACTION F = D/5.93 = 0.5058

IMPACT = \frac{50}{L+125} AASHTO 3.8.2.

= \frac{50}{42+125} = 0.2976

I = 1.2976

LIVE LOADS FROM MANUAL PLATE 2

H20: 20/15(140.95)(1.2976)(0.5058) = 123.85 FT-LBS

H15: 140.95 (1.2976)(0.5058) = 98.51 FT-LBS

3: 191.75 (1.2976)(0.5058) = 125.85 FT-LBS

3.52: 177.35 (1.2976)(0.5058) = 116.40 FT-LBS
### Moment Rating

<table>
<thead>
<tr>
<th>TYPE</th>
<th>INVENTORY (TONS)</th>
<th>OPERATING (TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H20</td>
<td>( (141.98)(20) / 123.35 ) = 23.02</td>
<td>( (280.83)(20) / 123.35 ) = 45.4</td>
</tr>
<tr>
<td>H15</td>
<td>( (141.98)(15) / 92.51 ) = 23.02</td>
<td>( (280.83)(15) / 92.51 ) = 45.5</td>
</tr>
<tr>
<td>3</td>
<td>( (141.98)(25) / 125.85 ) = 28.20</td>
<td>( (280.83)(25) / 125.85 ) = 55.7</td>
</tr>
<tr>
<td>3S2</td>
<td>( (141.98)(36) / 116.40 ) = 43.91</td>
<td>( (280.83)(36) / 116.40 ) = 86.8</td>
</tr>
</tbody>
</table>
CHECK SHEAR & REINFORCEMENT

CHECK MINIMUM REINFORCEMENT

\[ f_r = 7.5 \sqrt{f_{c'}} = 7.5 \sqrt{5000} = 530.33 \quad (AASHTO \ 9.15.2.3) \]

\[ M_{cr} = f_r S_x = 0.530.33 \left( \frac{2452.1}{12} \right) = 108.36 \]

\[ 1.2 M_{cr} = 1.2 (108.36) = 130.04 \quad \text{kips} < 573.41 = M_u \]

\[ \text{OK} \quad \text{AASHTO 9.18.2} \]

CHECK SHEAR \#4 (GRADE 60) @ 15" OC

USE AASHTO 9.20 - THE USE OF 1977 INTERIM METHOD IS ACCEPTABLE.

MAX SPACING = \( \frac{3}{4} h = \frac{.75 (21)}{15} = 15.75" > 15" \quad \text{OK} \)

\[ f_{sy} = 60,000 \quad \text{psi} \]

Assume \( f = 0.9 \)

\[ V_u - V_c = 2 A V \left( \frac{f_{sy} t d}{8} \right) = 2 \left( \frac{0.20 (60) (0.9) (19)}{15} \right) = 27.36 \]

\[ V_c = 0.066 \beta_b \beta_d \sum \sqrt{V_c} \quad \text{use smaller} \quad b' = 36 - 2(12) = 12 \]

\[ V_c = 180 \quad \text{use} \]

\[ V_c = 0.066 (5000) (12')(0.9)(1') = 61.56 \quad \text{kips} \]

\[ V_c = 180 (12')(0.9)' = 36.94 \quad \text{kips} \quad \text{CONTINUE} \]

\[ V_u - V_c = 27.36 \quad \text{Vc} = 27.36 + 36.94 = 64.30 \quad \text{kips} \]

\[ \hat{V}_c = 0.9 (64.30 V) = 57.87 \quad \text{kips} \quad \text{AASHTO} \ 9.14 \]
As per 1979 interim, check shear at \( \frac{1}{4} \) pt.

**DL & SDL Shear at \( \frac{1}{4} \) Point**

\[
V_{DL+SDL} = (0.5519 \text{ klf} + 0.02375 \text{ klf}) \left( \frac{43}{4} - \frac{43}{2} \right) = 6.94 \text{ k}
\]

**Live Load Shear at \( \frac{1}{4} \) Point**

\[
V = \frac{20(32.25 - 2.8)}{4.3} (1.3) (0.5055) = 9.15 \text{ k} < 9.15 \text{ k}
\]

\[
3: \ V = \frac{25(32.25 - 7.84)}{4.3} (1.3) (0.5055) = 9.62 \text{ k} < 9.62 \text{ k}
\]

\[
3S2: \ V = \frac{36(32.25 - 18.61)}{4.3} (1.3) (0.5055) = 7.62 \text{ k} < 7.62 \text{ k}
\]

**Use Load Factor Method**

\[
1.3 \left( V_{DL+SDL} + \frac{5}{3} V_{LL} \right) = \Phi V_n = 57.87 \text{ kips}
\]

\[
\Phi \frac{V_n}{1.3} - V_{DL+SDL} = 57.87 - 6.94 = 50.93 \text{ k}
\]

**Inventory:** \( \frac{3}{8} \) (37.58 k) = 22.55 kips

**Operating:** 37.58 kips

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory (tons)</th>
<th>Operating (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 15</td>
<td>(22.55)(20) / 9.15 = 49.28</td>
<td>(31.58)(20) / 9.15 = 82.14</td>
</tr>
<tr>
<td>3S2</td>
<td>(22.55)(36) / 7.42 = 101.85</td>
<td>(31.58)(36) / 7.42 = 177.59</td>
</tr>
</tbody>
</table>
CASE "A" 36" x 21" HC SLAB

Pull to 28,920 lbs each

#4's (Grade 60) @ 15" o.c. throughout.

Use 70 x 1/2" Ø 270 K SRLV strands

f'c' = 5000 psi
f'c" = 4000 psi
Den = 150pcf
Bridge replaced 1987

Simple span 1

Length of span: 43 ft

Type: 1V-48 (36" x 21" in HC slab)

A = 703.26 in²

f'c = 5000 psi

f'cm = 4000 psi

w = 732.6 lb/ft

Density = 150pcf

Sx = 34517/212/2 = 3287.33 in²

From Transmittal No 3230-002 9 October 1993

Strands

12 - 1/4" Ø 270 k Self V Strands

Asy = 0.1530 x 12 = 1.8360 in²

Asft = 0.306 in²

Asb = 1.530 in²

Cg of Strand: 2" from bottom of beam

3" from top of beam

eb = h/2 - c_g = 21/2 - 2" = 8.5"

e_T = 7.5"
INITIAL TENSION ON STRAND = $P_i$

$P_i = 28.92$ kips

$P_o = 28.92 \times 10 = 289.2$ kips (10 STRANDS)

$P_t = 28.92 \times 2 = 57.8$ kips (2 STRAND)

INITIAL STRESS ON EA. STRAND

$28.92 / 0.1590 = 180.02$

DESIGN LOADS

DEAD LOADS

DL = self wt

$732.6$ psf

SUPPLEMENTAL DEAD LOADS

DL BITUMINOUS SURFACE

$(2.5^\circ)(150 \text{ psf})/12 \text{ in}^2 (3) = 93.75 \text{ psf}$

CURB

$(132 \text{ in}^2)/144 \text{ in}^2 (2) (150 \text{ psf}) = 131.5 \text{ psf}$

LIVE LOAD

LL = 115 TRUCK

$M_{DL} = (0.7326)(43)^2 / 8 = 169.32 \text{ ft-kips}$

$M_{DL0} = (0.09375)(43)^2 / 8 = 21.67 \text{ ft-kips}$

$M_{UL0} = (0.1375)(43)^2 / 8 = 31.78 \text{ ft-kips}$
**LOSS OF PRESTRESS**

AASHTO Table 9.16.2.2

**PRETENSIONED STRAND** $f_{c'0} = 5000$ psi

$\Delta f_{c'0} = 415$ (from design calculation 8/6/85)

$f_{cd0} = 103$ ("""

$\Delta f_{c} = SH + ES + CR_{o} + CR_{e}$

$SH = 17000 - 150 RH = 17000 - (150(70)) = 6500$ (6-4)

$RH = 70$

$ES = \frac{(E_{c})f_{cr}}{(E_{c})f_{cr}} = \frac{(28000)}{(3934)} = 303.1 (6-9)$

$CR_{o} = 12 \frac{(f_{cr})}{(f_{cd0})} - 7 \frac{(f_{cd0})}{(f_{cr})} = 12(415) - 7(103) = 4224$ (9-9)

$CR_{e} = 20000 - 0.4 ES - 0.2 (SH + CR_{o})$

$C_{min} = 16,643 (9-10)$

$P_{final} = 189.02 - 30.40 = 158.62$ kips

$P_{final} = 158.62 (1.836) = 291.23$ kips

$M_{1/6} = 0$ (MINIMAL DUE TO PRESTRESS) = $Pe$

$P_{e} = 291.23 (8.5/12) = 206.28$ ft-kips

$P_{t} = (158.62)(2)(1.530) = 48.54$ kips

$P_{t} = (158.62)(10)(0.1530) = 242.69$ kips

$M_{1/6} = (48.54)(7.5/12) = 308.4$ ft-kips

$M_{1/6} = 242.62 (8.5/12) = 171.90$ ft-kips


**STRESSES**

\[
\sigma = \frac{P}{A} \pm \frac{M_{bl}}{S} \pm \frac{M_{bsl}}{S} - \frac{M_{dl}}{S}
\]

\[
= \frac{-291.23 \pm 20.34(12)}{703.26} \pm \frac{171.90(12)}{5287.33} \pm \frac{169.32 + 21.67 + 31.76}{5287.33}
\]

\[
= -0.4141 \pm 0.1103 \pm 0.6275 \pm 0.8132
\]

\[
\sigma_{top} = -0.4141 - 0.1103 + 0.6275 - 0.8132 = -0.7106
\]

\[
\sigma_{bot} = -0.4141 + 0.1103 - 0.6275 + 0.8132 = -0.1176
\]

**ALLOWABLE STRESSES**

**INVENTORY**

Compression \( f_c' = 2.0 \) ksf

Tension \( f_{c'} = 0.429 \)

6\( f_{c'} \) is req'd for capacity see NASHTO 9.15.2.2

**STRESS AVAILABLE FOR LIVE LOADS**

Top of Beam \( 2.0 - 0.7106 = 1.2894 \)

Bot of Beam \( 0.424 + 0.1176 = 0.5419 \) (controls)

**INVENTORY**

\( M_{cap} = (0.5419)(3287.33)/12 = 148.45 \)
OPERATING MANUAL 5.4.6

For prestressed concrete members, the reinforcement index determined by AASHTO 9.18.1 does not exceed 0.30, the operating rating shall result in moments not to exceed 0.75 the ultimate moment capacity AASHTO 9.17.

\[ A_{s}^* = 1.530 \text{ in}^2 \]

\[ d = h - cy \text{ of lower strands} = 21'' - 2'' = 19'' \]

\[ f_{c}' = 5.0 \text{ ksi} \]

\[ f_{s}' = 270 \text{ ksi} \]

\[ \rho^* = \frac{A_{s}^*}{bd} = 1.53 \times \frac{60}{(48)(19)} = 0.0017 \]

\[ \rho^* = 0.0017 \]

STEEL STRESSES (BONDED MEMBERS) AASHTO 9.17.9.1

\[ f_{s}^* = \text{avg stress in prestressing steel at w.l.t. load} \]

\[ f_{s}^* = f_{c}' (1 - 0.5 \frac{f_{s}'}{f_{c}'}) = 270 (1 - 0.5 \frac{270}{520}) \]

\[ = 257.61 \text{ ksi} \]

REINFORCEMENT INDEX (RECTANGULAR SECTIONS) AASHTO 9.18.1

\[ \rho^* \frac{f_{s}'}{f_{c}'} = 0.0017 \times \frac{257.61}{5.0} = 0.0863 \]

0.0863 < 0.30 \Rightarrow \text{OK}
CHECK LOCATION OF NEUTRAL AXIS

\[ a = \frac{A_\text{u}}{0.85 f'_c b} = \frac{(1.53)(253.67)}{0.85(5.0)(78)} = 1.90 \text{ in} \]

\[ \beta_1 = 0.80 \text{ ASHTO} \quad 0.16 \quad 2.7 \]

\[ c = a / \beta_1 = 1.90 / 2.7 = 2.375 \]

\[ 2.375 < 4.5 \quad \text{OK TO USE RECTANGULAR AREA} \]

FLEXURAL STRENGTH

\[ M_u = A_\text{u} f'_c (1 - 0.6 \rho f'_c / f_c') \]

\[ = (1.53)(257.61)(21)/12 \left[ 1 - 0.6 \left( 0.0833 \right) \right] \]

\[ = 654.03 \text{ k-in} \]

- NOTE: \( M_u = 0.75 M_{0.75} \Rightarrow \beta = 1.0 \) ONLY FOR FRESHLY PRODUCED REBAR: Prestressed - M.D. ASHTO Q.W.

OPERATING: \( M_{\text{op}} = 0.75 (M_u) = 0.75 (654.03) = 490.53 \text{ k-in} \)

OPERATING CAPACITY AVAILABLE FOR LIVE LOAD

\[ M_{\text{op}} = M_{\text{op}} - (M_{\text{dl}} + M_{\text{dl}}) \]

\[ = 490.53 - (222.77) = 267.76 \text{ k-in} \]
LIVE LOAD

\[ S/D = \frac{\text{LOAD FRACTION}}{\text{S} = \text{WIDTH OF Precast Members}} \]
\[ C = \text{STIFFNESS PARAMETER} \]
\[ L = \text{SPAN LENGTH} \]
\[ K = 0.8 \]
\[ C = 0.8 \left( \frac{4}{15} \right) = 0.2605 \]
\[ C \leq 5 \]
\[ D = (5.75 - 0.5NL) + 0.7NL(1 - 0.2C)^{1/2} \]
\[ (3-12) \quad NL = \# \text{of Lanes} \]
\[ D = (5.75 - 0.5) + 0.7(1 - 0.2(0.2605)) = 5.93 \]
\[ S/D = \frac{4}{5.93} = 0.6475 \]

IMPACT

\[ \text{Impact} = \frac{50}{L + 125} = \frac{50}{45 + 125} = 0.2976 \]
\[ I = 1.2976 \]

LIVE LOADS FROM MANUAL PLATE 2

\[ H_{20} : \frac{20}{15} \left( \frac{140.95}{1.2976} \right) \left( \frac{0.6745}{0.6745} \right) = 164.98 \text{ FT- KIPS} \]
\[ H_{15} : \frac{15}{15} \left( \frac{140.95}{1.2976} \right) \left( \frac{0.6745}{0.6745} \right) = 128.34 \text{ FT- KIPS} \]
\[ B : \left( \frac{171.75}{1.2976} \right) \left( \frac{0.6745}{0.6745} \right) = 167.83 \text{ FT- KIPS} \]
\[ 352 : \left( \frac{177.35}{1.2976} \right) \left( \frac{0.6745}{0.6745} \right) = 155.22 \text{ FT- KIPS} \]
**Moment Rating**

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory (Tons)</th>
<th>Operating (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H20</td>
<td>( \frac{148.45}{20T} \times 164.48 = 18.05 )</td>
<td>( \frac{267.76}{20T} \times 164.48 = 32.56 )</td>
</tr>
<tr>
<td>H15</td>
<td>( \frac{148.45}{15T} \times 123.36 = 18.05 )</td>
<td>( \frac{267.76}{15T} \times 123.36 = 32.56 )</td>
</tr>
<tr>
<td>3</td>
<td>( \frac{148.45}{25T} \times 167.83 = 22.11 )</td>
<td>( \frac{267.76}{25T} \times 167.83 = 39.89 )</td>
</tr>
<tr>
<td>3.52</td>
<td>( \frac{148.45}{34T} \times 155.22 = 33.43 )</td>
<td>( \frac{267.76}{34T} \times 155.22 = 62.11 )</td>
</tr>
</tbody>
</table>

48" Flume Control Rating: M.D.
CHECK SHEAR & REINFORCEMENT

\[ f_t = 7.5 \sqrt{f_{c'}} = 7.5 \sqrt{5000} = 530.33 \quad \text{(AASHTO 9.15.2.3)} \]

\[ M_{cm} = f_t \sum x = 0.53033 \left( \frac{32.0733}{12} \right) = 145.28 \quad \text{ft-kips} \]

\[ M_{cr} = 1.2 (145.28) = 174.34 \quad \text{ft-kips} < 654.03 \quad \text{OK} \]

AASHTO 9.18.2

CHECK SHEAR \( \# = 4 \quad \text{(GR 6.3)} \) @ 15" OC

Use AASHTO 9.20, 1979 Intermediate Method is acceptable

\[ h = \frac{3}{4} h = 0.75 (21) = 15.75 > 15 \quad \text{OK} \]

\[ A_V = \frac{(V_u - V_c)}{f_{cy} j d} \]

\[ V_u - V_c = 2A_V f_{cy} j d = 2 \left( \frac{0.20}{20} \right) (60,000,000) (0.9) (19) = 27.36 \]

\[ V_c = 0.06 f_{c'} b' d = 0.06 \times 6' \times 10' = 36 \quad \text{ft-lb} \]

\[ V_c = 180 \times 6' = 1080 \quad \text{ft-lb} \]

\[ V_c = 0.06 (5000)(14')(0.9)(19) = 71.82 \quad \text{kips} \]

\[ V_c = 180 (14')(0.9)(19) = 43.09 \quad \text{kips} \]

\[ V_{ul} = V_c = 27.36 \quad \text{kips} \]

\[ V_{ul} = 27.36 + 43.09 = 70.45 \quad \text{kips} \]

\[ f_{V_c} = 0.9 (70.45) = 63.41 \quad \text{kips} \quad \text{AASHTO 9.14} \]
As per 1979 interim, check shear at 1/4 ft

\[ DL + SDL = \frac{32.25}{1.25} \times \frac{1.32}{1.32} \times (0.732.16 + 231.25) \left( \frac{42}{2} - \frac{42}{4} \right) = 10.36 \text{ kips} \]

Live load shear at 1/4 point

\[ L = 42 \]
\[ 0.75L = 31.5 \]
\[ 0.25L = 10.5 \]

\[ \text{fact} = \frac{50}{125 + 31.5} = 0.819 \]
\[ \text{fact} = 1.12 \]

Manual plate 6 & 7

\[ V_0 = 72 \left( \frac{32.25 - 2.5}{42} \right) (1.32)(0.6775) = 12.20 \text{ k} \]
\[ V = 25 \left( \frac{32.25 - 7.07}{1.875} \right) (1.32)(0.6775) = 12.04 \text{ k} \]
\[ V = 36 \left( \frac{32.25 - 18.4}{4} \right) (1.32)(0.6775) = 10.17 \text{ k} \]

Use load factor method

\[ \text{factor} = \left( \frac{3}{4} V_{DL} + \frac{5}{8} V_{LL+L} \right) = \phi V_{LL} = 63.94 \text{ kips} \]

\[ \frac{5}{8} V_{LL+L} = \phi V_{DL} - V_{LL} = \frac{63.94}{1.3} = 49.34 \text{ kips} \]

Inventory: 3/5 (38.42) = 23.05

Operating: 38.42

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>DPE Lat. Us</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(23.05)(20) / 12.90 = 37.79</td>
<td>(38.42)(20) / 12.70 = 62.96</td>
</tr>
<tr>
<td>8</td>
<td>(23.05)(25) / 12.84 = 44.83</td>
<td>(38.42)(25) / 12.84 = 72.61</td>
</tr>
<tr>
<td>25</td>
<td>(23.05)(31.4) / 10.17 = 81.54</td>
<td>(38.42)(30) / 10.17 = 136.10</td>
</tr>
</tbody>
</table>
CASE "B" 48" x 21" HC SLAB

#4's (GR 60) @ 15" o.c. THOUGHOUT

$28,920$ PULL TO $14,460$# EACH

$28,920$ PULL TO $28,920$# EACH

$F_c = 5000$ PSI
$F_{ci} = 4000$ PSI

USE 12 - 4" $\phi$ 270 K SRLV STRANDS
DATE OF INSPECTION: 18 August 1993

DATE OF PREVIOUS INSPECTIONS: In-depth, Sept 87
Routine, Sept 89
Routine, 22 August 1991

RATING (T-TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>18.0T</td>
<td>32.6T</td>
<td>Load rating were recalculated for prestressed beams.</td>
</tr>
<tr>
<td>3</td>
<td>22.1T</td>
<td>39.9T</td>
<td></td>
</tr>
<tr>
<td>3S2</td>
<td>34.4T</td>
<td>62.1T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Roadway, Railings, and Deck.

The overall condition is good.
(condition 7)
The bituminous wearing surface on the deck is in good condition with minor rutting along the wheel lines. There is some minor rutting at the gravel approach on the south side. The bituminous concrete road on the north side has a four inch pothole and some minor rutting along wheel lines. The pavement is also cracked along the slab transition due to one-half inch settlement. The approach guardrails are in very good condition with the exception of a slightly bent end rail on the southeast corner.

B. Fascia and Curbs

The overall condition is good (condition 7). Both the curbs and fascias have hairline cracks approximately every two feet. Minor debris and vegetation along the curbing.

C. Underside of Deck and Bearings.

The overall condition is good (condition 7). The underside of the deck is in good condition. No problems were observed with the bearings.

D. Wingwalls and Abutments

The overall condition is fair (condition 6). In general, the cementitious coating is delaminating and in poor condition.
The abutments appear to be stable. Spalling has occurred on the southeastern wingwall. On the north abutment there is an eight foot by two foot by six inch spall on the northeast corner and a four foot by two foot by six inch spall on the northwest corner. There is also evidence of scour and undermining on the north abutment.

E. Channel

Scour is occurring from four foot deep to the top of the water line on the north abutment with some undermining taking place.

CONDITION RATING

Interim 1987: 7
Interim 1989: 6
Routine 1991: 7
Routine 1993: 7

RECOMMENDATIONS

Status of Previous Recommendations

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Cost Est</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Repair erosion and deteriorated concrete at the base of the abutments and wingwalls.</td>
<td>$15,000</td>
<td>Not Done</td>
</tr>
<tr>
<td>2.</td>
<td>Replace bituminous pavement at north approach.</td>
<td>$3,500</td>
<td>Not Done</td>
</tr>
<tr>
<td>3.</td>
<td>Remove all deteriorated concrete repair mortar in wingwalls and abutments and replace with new to give uniform surface.</td>
<td>$12,500</td>
<td>Not Done</td>
</tr>
<tr>
<td>4.</td>
<td>Replace nuts on railing post cap.</td>
<td>Maint.</td>
<td>Not Done</td>
</tr>
<tr>
<td>5.</td>
<td>Remove vegetation from wingwalls and curbs.</td>
<td>$1000</td>
<td>Not Done</td>
</tr>
</tbody>
</table>

Total $32,000

Revised Recommendations

Implement above recommendations.

Total Updated Estimated Cost $32,000
### STRUCTURES INSPECTION FIELD REPORT
#### ROUTINE INSPECTION

**city**: KEENE, NH  
**bridge dept. no.**: LDEF  
**8-structure no.**: 331 0010  
**90-date inspected**: 8/18/93

#### 2-dist.  
- 104-highway system  
- 22-owner  
- 27-year built  
- 106-year rebuilt  
- 11-milepoint

#### 43-structure type  
- Prestressed Concrete Bridge Beams

#### 07-facility carried  
- REC ARENA ENTRANCE

#### 06-features intersected  
- OITTER BROOK

---

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Rating</th>
<th>Description</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>DECK</td>
<td>7</td>
<td>SUPERSTRUCTURE</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>Wearing Surface</td>
<td>7</td>
<td>1. Bearing Devices</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Deck-Condition</td>
<td>7</td>
<td>2. Stringers</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>Stay in Place Forms</td>
<td>NA</td>
<td>3. Diaphragms</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Curbs</td>
<td>7</td>
<td>4. Girders or Beams</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Median</td>
<td>NA</td>
<td>5. Floor Beams</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>Sidewalks</td>
<td>NA</td>
<td>6. Trusses</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>Parapet</td>
<td>NA</td>
<td>7. Rivets or Bolts</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>Railing</td>
<td>7</td>
<td>8. Welds</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>Anti Missile Fence</td>
<td>NA</td>
<td>9. Collision Damage</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>Drains</td>
<td>NA</td>
<td>10. Load Deflection</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>Lighting Standards</td>
<td>NA</td>
<td>11. Member Alignment</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>Utilities</td>
<td>NA</td>
<td>12. Load Vibration</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>Deck Joints</td>
<td>7</td>
<td>13. Paint-Epoxy</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>Approach Settlement</td>
<td>7</td>
<td>14. Year Painted</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>15. Under Clearance</td>
<td>ft</td>
<td>Clearance Signs</td>
<td>yes/no</td>
</tr>
</tbody>
</table>

#### Actual Posting
- H 3 352

#### Recommended Posting
- From Rating Book

#### Overhead Signs (attached to bridge)
- Single
- Recommended Posting

#### SIGNs IN PLACE
- Y or N

#### LEGIBILITY
- Y

#### 36-Traffic Safety features
- 1. bridge railing
- 2. transitions
- 3. approach guardrail
- 4. guardrail terminal

---

**X** = UNKNOWN  
**NA** = NOT APPLICABLE  
**IA** = INACCESSIBLE
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   YES

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations.  
      N/A
   b. Superstructure with simple spans or non-redundant support systems.  
      YES
   c. Inadequate waterway openings.  
      NO
   d. Designs which collect ice and debris.  
      YES
   e. All water must pass through or over structure.  
      NO
   f. Other.  
      N/A

3. Are any characteristics of an aggressive stream or waterway present?
   a. Active degradation or aggradation of streambed.  
      YES
   b. Significant lateral movement or erosion of streambanks.  
      NO
   c. Steep slopes.  
      NO
   d. High velocities.  
      NO
   e. Any history of highway or bridge damage during past floods.  
      NO
   f. Other.  
      N/A

4. Is the bridge located on a stream reach with any adverse flow characteristics?
   a. Crossing near stream confluence.  
      NO
   b. Crossing of tributary stream near confluence with larger streams.  
      NO
   c. Crossing on sharp bend in stream.  
      NO
   d. Location on alluvial fan.  
      N/A
   e. Other.  

5. Other comments or observations.  
   NA
### Inventory Load Ratings

<table>
<thead>
<tr>
<th></th>
<th>HIS</th>
<th>3</th>
<th>3S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 K21</td>
<td>23.0</td>
<td>28.2</td>
<td>43.9</td>
</tr>
<tr>
<td></td>
<td>49.3</td>
<td>58.5</td>
<td>106.5</td>
</tr>
<tr>
<td>48 K21</td>
<td>18.0</td>
<td>22.1</td>
<td>34.4</td>
</tr>
<tr>
<td></td>
<td>27.8</td>
<td>44.9</td>
<td>81.5</td>
</tr>
</tbody>
</table>

### Operating Load Ratings

<table>
<thead>
<tr>
<th></th>
<th>HIS</th>
<th>3</th>
<th>3S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 K21</td>
<td>45.5</td>
<td>55.8</td>
<td>86.9</td>
</tr>
<tr>
<td></td>
<td>82.1</td>
<td>97.6</td>
<td>177.5</td>
</tr>
<tr>
<td>48 K21</td>
<td>32.6</td>
<td>39.9</td>
<td>62.1</td>
</tr>
<tr>
<td></td>
<td>63.0</td>
<td>74.8</td>
<td>134.0</td>
</tr>
</tbody>
</table>

### Overall Rating

<table>
<thead>
<tr>
<th></th>
<th>HIS</th>
<th>3</th>
<th>3S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>18.0</td>
<td>22.1</td>
<td>34.4</td>
</tr>
<tr>
<td>Operating</td>
<td>32.6</td>
<td>39.9</td>
<td>62.1</td>
</tr>
</tbody>
</table>

**Note:** For calculations, see Exit Bridge

115
COLEBROOK LAKE  
BRIDGE ON OLD ROUTE 8  SANDISFIELD, MA  
FY 93 ROUTINE INSPECTION REPORT  

DATE OF INSPECTION: 25 August 1993  
DATE OF PREVIOUS INSPECTIONS:  In-depth, Dec 84  
Routine, Sept 87  
Routine, Sept 89  
Routine, June 91  

RATING (T=TONS)  

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H15</td>
<td>24T</td>
<td>33T</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34T</td>
<td>52T</td>
<td></td>
</tr>
<tr>
<td>3S2</td>
<td>52T</td>
<td>82T</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>60T</td>
<td>98T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")  

A. Roadway, & Railings  
The bridge deck, approaches, guardrails, and railings are in very good condition (condition 8). The new deck surface and approaches are still in good condition. There are no visible joints at either end of the bridge. Some of the aggregate from the chip seal surfacing has accumulated along the gutters on the bridge. The cable guardrails along the north approach are both loose. The guardrails along the bridge deck have recently been painted as part of the contract to paint the bridge.  

B. Superstructure  
The trusses and bracing are in good condition. The entire superstructure has been recently painted. The paint is in good condition, however, the contractor was limited to the amount of scraping that was allowed due to the use of lead in previous coats of paint. This may tend to lead to accelerated degradation of the new finish. All joints, welds, and connections are in good condition. Most deteriorated rivets have been replaced with high strength bolts.
C. Underside of Deck

The superstructure under the deck is in good condition. The floor beam connections at the bearings at the ends of the trusses on the inside of the skew angle are filled with sand and painted. Attention will have to be paid to this area in future inspections since it is a likely spot for corrosion. Otherwise they should be cleaned out, filled with concrete, and capped. There is some honeycombing along the underside of the deck. Some remaining burlap was noticed between the floor beams and stringers. The bearings are in good condition.

D. Wingwalls and Abutments

The wingwalls and abutments are in good condition. Most vertical cracking has been sealed as recommended in previous inspections. Some horizontal cracking along cold joints in both wingwalls and abutments have not been repaired. Some minor efflorescence was noted along both north and south wingwalls.

E. Channel

The channel is in good condition and flowing smoothly. There is a moderate amount of rubble built up in the north side of the channel. The sheetpile and concrete toe protection along the south abutment is in good condition.

CONDITION RATING

| In-depth      | 7 |
| Interim 1987 | 7 |
| Interim 1989 | 6 |
| Routine 1991 | 7 |
| Routine 1993 | 8 |

RECOMMENDATIONS

Status of Previous Inspections

<table>
<thead>
<tr>
<th>Item</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remove vegetation from southeast wingwall</td>
<td>Not Done</td>
</tr>
<tr>
<td>2. Remove vegetation from curb edge.</td>
<td>Recurring</td>
</tr>
<tr>
<td>3. Paint structural steel</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Revised Recommendations

Keep the curb edge free of vegetation.
No additional recommendations
# STRUCTURES INSPECTION FIELD REPORT
## ROUTINE INSPECTION

<table>
<thead>
<tr>
<th>2-dist.</th>
<th>104-highway system</th>
<th>bridge dept. no.</th>
<th>COE</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-owner</td>
<td>27-year built</td>
<td>8-structure no.</td>
<td>CTPDCMA2510019</td>
</tr>
<tr>
<td>11-milepoint</td>
<td>106-year rebuilt</td>
<td>90-date inspected</td>
<td>25 Aug 97</td>
</tr>
</tbody>
</table>

## 43-structure type
- STEEL TRUSS

## 07-facility carried
- OLD ROUTE 8.

## 06-features intersected
- FARMINGTON RIVER

### Item 58: DECK
1. Wearing Surface
2. Deck-Condition
3. Stay in Place Forms
4. Curbs
5. Median
6. Sidewalks
7. Parapet
8. Railing
9. Anti Missile Fence
10. Drains
11. Lighting Standards
12. Utilities
13. Deck Joints
14. Approach Settlement

### Item 59: SUPERSTRUCTURE
1. Bearing Devices
2. Stringers
3. Diaphragms
4. Girders or Beams
5. Floor Beams
6. Trusses
7. Rivets or Bolts
8. Welds
9. Collision Damage
10. Load Deflection
11. Member Alignment
12. Load Vibration
13. Paint-Epoxy
14. Year Painted
15. Under Clearance
   - Clearance Signs: Yes [x] No

### Item 60: SUBSTRUCTURE
1. Abutments
   - a-Wings
   - b-Backwall
   - c-Bridge Seats
   - d-Breastwall
   - e-Footings
   - f-Piles
   - g-Erosion
   - h-Settlement
2. Piers or Bents
   - a-Caps
   - b-Column
   - c-Web
   - d-Footing
   - e-Piles
   - f-Scour
   - g-Settlement
3. Collision Damage
4. Hydraulic-Adequacy

### Actual Posting
- H 3 352

### Recommended Posting From Rating Book
- - -

### Signs in Place
- Y or N:
  - at bridge: N
  - advance: N

### Legibility
- -

### Overhead Signs (attached to bridge)
- Yes [x] No

### TEM 61-channel and channel protection
- Channel scour: 7
- 5. Rip rap or slope paving: -
- 6. Effectiveness: -
- 7. Debris: -
- 8. Vegetation: -

### 36-Traffic Safety Features
1. Bridge railing
2. Transitions
3. Approach guardrail
4. Guardrail terminal

---

**X=UNKNOWN**  **NA=NOT APPLICABLE**  **IA=INACCESSIBLE**
BRIDGE INSPECTION
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   NO

2. Is the streambed erodible? If so, does the structure have any vulnerable design features?
   YES

   a. Piers, abutments with spread footings or short pile foundations.  
      NO
   b. Superstructure with simple spans or non-redundant support systems.  
      YES
   c. Inadequate waterway openings.  
      NO
   d. Designs which collect ice and debris.  
      NO
   e. All water must pass through or over structure.  
      NO
   f. Other.

3. Are any characteristics of an aggressive stream or waterway present?  
   NO

   a. Active degradation or aggredation of streambed.  
      NO
   b. Significant lateral movement or erosion of streambanks.  
      NO
   c. Steep slopes.  
      NO
   d. High velocities.  
      NO
   e. Any history of highway or bridge damage during past floods.  
      NO
   f. Other.

4. Is the bridge located on a stream reach with any adverse flow characteristics?  
   NO

   a. Crossing near stream confluence.  
      NO
   b. Crossing of tributary stream near confluence with larger streams.  
      NO
   c. Crossing on sharp bend in stream.  
      NO
   d. Location on alluvial fan.  
      NO
   e. Other.

5. Other comments or observations.
KNIGHTVILLE DAM  
INDIAN HOLLOW ROAD BRIDGE, HUNTINGTON, MA  
FISCAL YEAR 1993  
ROUTINE INSPECTION REPORT

DATE OF ROUTINE INSPECTION: 25 August 93

DATE OF PREVIOUS INSPECTIONS: Routine Inspection, 13 May 91  
Inventory Inspection, March 85

RATING (T = TONS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>17T</td>
<td>40T</td>
<td>No change in ratings due to inspection findings.</td>
</tr>
<tr>
<td>Type 3</td>
<td>20T</td>
<td>47T</td>
<td></td>
</tr>
<tr>
<td>Type 3S2</td>
<td>29T</td>
<td>67T</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION (See attached "Structures Inspection Field Report")

A. Superstructure
   Above Deck
   - Overall condition is good.
   - Both east and west approaches are in fair to good condition. The bituminous pavement at the west approach is unravelling.
   - There are no bridge railings or approach guardrails.
   - The wearing surface on the deck is in good condition, with a small amount of sand debris collecting at the curbs.

B. Superstructure
   Below Deck
   - Overall condition is good.
   - The underside of the prestressed concrete planks is in good condition. There are signs of water leakage between the planks near the west abutment.

C. Substructure
   - Overall condition is good.
   - Both east and west abutments are in good condition. Both have numerous hairline cracks with efflorescence, but this condition is not considered serious.

D. Channel
   - The channel under the bridge is in fair condition, with overgrowth of vegetation, but no signs of scour.

E. Overall Numerical Condition Rating
   Inventory 1985: 7
   Routine 1991: 7
   Routine 1993: 7
RECOMMENDATIONS

Status of Previous Recommendations

1. Construct a 10' long by 12' wide bituminous approach slab at both approaches.  
   A contract is currently underway.

2. Construct 25' of approach guardrail at each of the four corners of the bridge.  
   $5,000  Not Done

3. Seal cracks in abutments.  
   A contract is currently underway.

Revised Recommendations

1. Due to the low ADT on Indian Hollow Road, and the low vehicle speeds, it is not recommended to provide approach guardrails. There are no further recommendations at this time.
# STRUCTURES INSPECTION FIELD REPORT
## ROUTINE INSPECTION

**city:** Huntington  MA  
**bridge dept. no.:** CEN/MA 2510020  
**8-structure no.:**  
**90-date inspected:** 8/25/93  
**2-dist.:** 104-highway system  
**22-owner:** Corps of Eng.  
**27-year built:** 1979  
**106-year rebuilt:** —  
**11-milepoint:**  
**structure type:** Prestressed Conc. Slab, Simple Span  
**facility carried:** Indian Hollow Road  
**team leader:** Nick Forbes  
**team members:** Joseph Colucci, Mike Walsh, Mark Deschene

<table>
<thead>
<tr>
<th>Item 58</th>
<th>Item 59</th>
<th>Item 60</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DECK</strong></td>
<td><strong>SUPERSTRUCTURE</strong></td>
<td><strong>SUBSTRUCTURE</strong></td>
</tr>
<tr>
<td>2. Deck-Condition</td>
<td>2. Stringers</td>
<td>a-Wings</td>
</tr>
<tr>
<td>3. Stay in Place Forms</td>
<td>3. Diaphragms</td>
<td>b-Backwall</td>
</tr>
<tr>
<td>4. Curbs</td>
<td>4. Girders or Beams Planks</td>
<td>c-Bridge Seats</td>
</tr>
<tr>
<td>5. Median</td>
<td>5. Floor Beams</td>
<td>d-Breastwall</td>
</tr>
<tr>
<td>7. Parapet</td>
<td>7. Rivets or Bolts</td>
<td>f-Piles</td>
</tr>
<tr>
<td>8. Railing</td>
<td>8. Welds</td>
<td>g-Erosion</td>
</tr>
<tr>
<td>10. Drains</td>
<td>10. Load Deflection</td>
<td>2. Piers or Bents</td>
</tr>
<tr>
<td>11. Lighting Standards</td>
<td>11. Member Alignment</td>
<td>a-Caps</td>
</tr>
<tr>
<td>12. Utilities</td>
<td>12. Load Vibration</td>
<td>b-Column</td>
</tr>
<tr>
<td></td>
<td>15. Under Clearance [ft] [in]</td>
<td>e-Piles</td>
</tr>
<tr>
<td></td>
<td>Clearance Signs</td>
<td>f-Scour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g-Settlement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Collision Damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Hydraulic-Adequacy</td>
</tr>
</tbody>
</table>

**Actual Posting:** H 3 3S2  
**Recommended Posting From Rating Book:** 17 20 27  
**Overhead Signs (attached to bridge):** yes no  
**Y or N:**  
**LEGIBILITY:**  
**ITEM 61-channel and channel protection:**  
**36-Traffic Safety features:**  
1. bridge railing  
2. transitions  
3. approach guardrail  
4. guardrail terminal  

**Area:** U/W Inspection Date: 8/25/93
SCOUR CHECKLIST

1. Is the bridge currently experiencing, or does it have a history of, scour activity?  
   - No 

2. Is streambed erodible? If so, does the structure have any vulnerable design features?
   a. Piers, abutments with spread footings or short pile foundations.  - Yes
   b. Superstructures with simple spans or non-redundant support systems.  - Yes
   c. Inadequate waterway opening.  - No
   d. Designs which collect ice and debris.  - No
   e. All water must pass through or over structure.  - No
   f. Other. 

3. Are any characteristics of an aggressive stream or waterway present?
   a. Active degradation or aggradation of streambed.  - No
   b. Significant lateral movement or erosion of streambanks.  - No
   c. Steep slopes.  - No
   d. High velocities.  - No
   e. Any history of highway or bridge damage during past floods.  - No
   f. Other. 

4. Is bridge located on stream reach with any adverse flow characteristics?
   a. Crossing near stream confluence.  - No
   b. Crossing of tributary stream near confluence with larger streams.  - No
   c. Crossing on sharp bend in stream.  - No
   d. Location on alluvial fan.  - No
   e. Other. 

5. Other comments or observations. 

(  

(  

124
Appendix A

Visual Assessment for Scour Potential

Everett Lake ---- Choate Brook
Birch Hill ------ Goodnow Road
Old Route 202
Middle Road
GEOTECHNICAL ASSESSMENT
FOR
BRIDGE SCOUR STUDY
AT
CHOATE BROOK BRIDGE
EVERETT RESERVOIR
WEARE, NEW HAMPSHIRE

SEPTEMBER 1993
GEOTECHNICAL ASSESSMENT
FOR
BRIDGE SCOUR STUDY
AT
CHOATE BROOK BRIDGE
EVERETT RESERVOIR
WEARE, NEW HAMPSHIRE

TABLE OF CONTENTS

 I. INTRODUCTION 1
     1.1 General
     1.2 Purpose and Scope

 II. SITE CONDITIONS 2
     2.1 Site Location and Description
     2.2 Bridge Description
     2.3 Site Geology
     2.4 Streambed and Streambank

 III. ASSESSMENT 4
     3.1 Streambed Material Characteristics
     3.2 Streambank Material Characteristics
     3.3 Scour Potential
     3.4 Proposed Remedial Work at Choate Brook Bridge

 IV. APPENDIX 6
     Locus Plan
     Choate Brook Bridge Sketch
     Gradation Curve
I. INTRODUCTION

1.1 General

This report presents a visual assessment of scour potential at Choate Brook Bridge which is situated in the reservoir area of Everett Dam. The work was done by Geotechnical Engineering Division as part of the NED Bridge inspection program.

1.2 Purpose and Scope

The purpose of the assessment was to obtain information on subsurface and streambed conditions at Choate Brook Bridge and visually evaluate whether there is a potential for scour around the footings and abutments. The scope of work included:

a. Field reconnaissance of the site during September 1993.

b. Research of available geological and geotechnical information.

c. Laboratory testing of streambed samples collected during the September 1993 field reconnaissance of the site.

d. Report to include locus plan, gradation curve, site description, subsurface and streambed conditions, and assessment.
II. SITE CONDITIONS

2.1 Site Location and Description

Everett Dam and reservoir are located along the Piscataquog River, a tributary of the Merrimack River, in south central New Hampshire. Choate Brook is a tributary of the southeasterly flowing Piscataquog River, as shown on the Locus Plan in the Appendix. The bridge is in the northern portion of Everett Lake (recreational pool level) and within one-quarter mile of the normal Piscataquog River channel. Choate Brook has a fairly flat slope in the vicinity of the bridge. It cuts through a relatively flat floodplain. A moderate sloping hill ascends to the west of the bridge. A rough sketch (plan view) of the bridge and adjacent areas is included in the Appendix.

2.2 Bridge Description

Choate Brook Bridge has a concrete slab deck which bears on rubble masonry abutments and footings. A smooth concrete surface has been cast against the west abutment. The abutments and footings appear to be in fair to good condition. Stone revetments protect the corners of the bridge. The outer layer of the revetments are in good condition. However, there does not appear to be filter layers between the outer layer and the subgrade.

The footings of the bridge are founded on sand and gravel. It appears high water velocities have eroded (scoured) the sand and gravel below the south end of the west abutment footing. The void is approximately five feet wide by two feet high and is up to two feet deep. Distress cracks were not noted in the abutment area above the void.

Recently several small repairs have been made to the footings, revetments, and abutments. An apparent void under the north end of the west abutment footing was filled with concrete. Voids between the stones in the top two feet of the east abutment were filled with grout. Voids in the stone revetments at the north end of the bridge were filled with grout. Generally the work looks good except that an area up to three feet wide was not grouted at the junction of the stone revetment and northeast corner of the bridge.

2.3 Site Geology

Choate Brook flows through a low, flat and relatively wide area in the pre-glacial Piscataquog River valley. The valley has been filled with deep glacial outwash deposits and till. The brook has eroded a narrow valley in the outwash deposits and the till. Till and till covered bedrock hills which rise above the lowlands form the perimeter of the brook's drainage area.

2.4 Streambeds and Streambanks
The streambed is slightly meandering. It consists of clean, fine to coarse, sands and gravels with rounded to subangular cobbles and boulders. Gradations for the matrix portion of the streambed are included in the appendix. The cobbles and boulders in the streambed are typically 0.25 to 0.75 feet diameter with a maximum diameter of 1 foot. A beaver dam were observed at the north end of the bridge in the streambed. Water flowed through the dam rather than over the top during the inspection. It is approximately five feet high and 12 feet wide at the base. The water level was approximately 4.5 feet deep upstream of the dam and 2.5 feet deep downstream.

The streambanks are typically fairly low (ten feet or less high) and flat (1 vertical on 3 horizontal to 1 vertical on 10 horizontal). Due to the width of the channel in the vicinity of the bridge, the slopes are not critical. Medium to dense vegetation grows on the banks.
III. ASSESSMENT

3.1 Streambed and Streambank Material Characteristics

The streambed materials are deep deposits of hard, durable, rounded to subangular, sands, gravels, cobbles and boulders. The mean diameter, by weight, of the sand to boulder sized materials was visually estimated to be 0.25 to 0.5 feet at Choate Brook Bridge. Laboratory gradation tests (Complete gradation test results are in Appendix.) were performed on samples of the sand and gravel matrix materials that exist between the cobbles and boulders. The results indicate that the mean diameter, by weight, of the streambed matrix materials sampled is 1.5 millimeters (0.06 inches). The mean diameters of the streambed materials could be used in theoretical hydraulic studies to estimate the scour potential around the abutment footings.

3.2 Streambank Materials Characteristics

The streambank matrix material characteristics did not appear to be significantly different than the streambed matrix materials. However, the number and sizes of cobbles and boulders in the streambank materials appeared to be lower than in the streambed materials.

3.3 Scour Potential

High water velocities have scoured the material below the footings at the bridge as described in paragraph 2.2. It appears that high water velocities that occur during future flood events will continue to erode the foundation and the bottom of footing materials. Continued erosion will reduce the bearing capacity of the footings and cause subsequent damage to the superstructure of the bridges at a faster rate than normal weathering.

3.4 Proposed Remedial Work at Choate Brook Bridge

The most pressing need is to fill the void below the west abutment footing. It appears further erosion could damage the abutment. A possible method for repairing the footings is to place concrete forms around the outside edges and then pump concrete into the eroded voids and the space between the footings and forms. Then the entire channel (from approximately 15 feet upstream to 15 feet downstream of the bridge) should be lined with a stone blanket (estimated thickness of 2 feet) underlain by a bedding layer (estimated thickness of 1 foot). The stone blanket and bedding should extend to the top of the banks upstream and downstream of the bridge.

Grout should be placed in the voids of the stone revetment at the junction of the stone revetment and the northeast corner of the bridge. The junction is area of potential future scour because it
is weaker than the bridge abutment and grouted stone revetment on either side of it. Approximately one cubic yard of grout and a few hours of hand labor would be required to place the grout.

It is recommended that the beaver dam that was observed upstream of Choate Brook Bridge be removed. It appears that the dam might slightly alter the hydraulic characteristics of the stream and cause eddy currents which could lead to additional scour near the bridge. Rental of a small truck and a few hours of hand labor would be needed to remove the debris.
IV. APPENDIX
DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION
CORPS OF ENGINEERS
WALTHAM, MASS.

CHOATE BROOK BRIDGE SKETCH
BRIDGE SCOUR STUDY
HOPKINTON-EVERETT LAKES

GEOTECH. ENG. BR. SCALE: NTS
SK. NO. 2 DATE: 7 SEPT 93
**Grain Size Distribution Test Report**

<table>
<thead>
<tr>
<th>Test</th>
<th>% +3&quot;</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>36.2</td>
<td>61.1</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LL</th>
<th>PI</th>
<th>D75</th>
<th>D60</th>
<th>D50</th>
<th>D30</th>
<th>D25</th>
<th>D10</th>
<th>Cc</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>12.59</td>
<td>3.09</td>
<td>1.32</td>
<td>0.525</td>
<td>0.4266</td>
<td>0.1972</td>
<td>0.45</td>
<td>15.7</td>
</tr>
</tbody>
</table>

**Material Description**

- Poorly Graded Sand with Gravel

**USCS**

- SP

**AASHTO**

**Remarks:**

- Sample for Scour Study
- Color: Medium Brown
- Traces of Bituminous Material found in sample

**Project No.:** 124-1-1

**Project:** Choate Brook Bridge (Everett Dam), N.H.

**Location:** Sample taken from on-site

**Date:** 9-3-93

**Protest of Engineers - New England**

Fig. No. 1
GEOTECHNICAL ASSESSMENT
FOR
BRIDGE SCOUR STUDY
AT
THREE BRIDGES
BIRCH HILL RESERVOIR
WINCHENDON, MASSACHUSETTS

AUGUST 1993
# GEOTECHNICAL ASSESSMENT

FOR

BRIDGE SCOUR STUDY

AT

THREE BRIDGES

BIRCH HILL RESERVOIR

WINCHENDON, MASSACHUSETTS

## TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General</td>
<td></td>
</tr>
<tr>
<td>1.2 Purpose and Scope</td>
<td></td>
</tr>
<tr>
<td>II. SITE CONDITIONS</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Site Location and Description</td>
<td></td>
</tr>
<tr>
<td>2.2 Bridge Descriptions</td>
<td></td>
</tr>
<tr>
<td>2.3 Site Geology</td>
<td></td>
</tr>
<tr>
<td>2.4 Streambeds and Streambanks</td>
<td></td>
</tr>
<tr>
<td>III. ASSESSMENT</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Streambed Material Characteristics</td>
<td></td>
</tr>
<tr>
<td>3.2 Streambank Material Characteristics</td>
<td></td>
</tr>
<tr>
<td>3.3 Scour Potential</td>
<td></td>
</tr>
<tr>
<td>3.4 Remedial and Maintenance Work at Goodnow Road Bridge</td>
<td></td>
</tr>
<tr>
<td>3.5 Maintenance Work at Middle Road Bridge</td>
<td></td>
</tr>
<tr>
<td>3.6 Old Route 202 Bridge</td>
<td></td>
</tr>
<tr>
<td>IV. APPENDIX</td>
<td>6</td>
</tr>
<tr>
<td>Locus Plan</td>
<td></td>
</tr>
<tr>
<td>Goodnow Road Bridge Sketch</td>
<td></td>
</tr>
<tr>
<td>Middle Road Bridge Sketch</td>
<td></td>
</tr>
<tr>
<td>Old Route 202 Bridge Sketch</td>
<td></td>
</tr>
<tr>
<td>Gradation Curves</td>
<td></td>
</tr>
</tbody>
</table>
I. INTRODUCTION

1.1 General

This report presents a visual assessment of scour potential at three bridges situated in the reservoir area of Birch Hill dam. The work was done by Geotechnical Engineering Division as part of the NED Bridge inspection program.

1.2 Purpose and Scope

The purpose of the assessment was to obtain information on subsurface and streambed conditions at the three bridges and visually evaluate whether there is a potential for scour around their footings and abutments. The scope of work included:

a. Field reconnaissances of the sites July 1993.
b. Research of available geological and geotechnical information.
c. Laboratory testing of streambed samples collected during a July 1993 field reconnaissance of the sites.
d. Report to include locus plan, gradation curves, site description, subsurface and streambed conditions, and assessment.
II. SITE CONDITIONS

2.1 Site Location and Description

Birch Hill dam and reservoir are located along the Millers River, a tributary of the Connecticut River, in central Massachusetts. Priest Brook and Beaver Brook are tributaries of the southerly flowing Millers River, as shown on the Locus Plan in the Appendix. The Goodnow Road and Middle Road bridges cross Priest Brook. The Old Route 202 bridge crosses Beaver Brook. The three bridges are within one-half mile of the normal Millers River channel. The tributaries have fairly flat slopes in the vicinity of the three bridges and cut through a relatively flat floodplain. A moderate sloping hill ascends to the north of Old Route 202 bridge. Sketches (plan views) of the bridges and adjacent areas are included in the Appendix.

2.2 Bridge Descriptions

The three bridges have steel girder and concrete decks which bear on concrete abutments and footings except for the Middle Road bridge where the deck bears on chinked stone and mortar abutments and footings. Concrete wingwalls (at each corner) protect Goodnow Road and Old Route 202 bridges while chinked stone and mortar wingwalls (at each corner) protect Middle Road bridge. Gabion extensions have been added to the concrete wingwalls at Goodnow Road bridge.

It appears that the footings for all the bridges are founded on sand and gravel. The footings are in good condition except for the ones at Goodnow Road bridge which have been undermined. It appears high water velocities have eroded (scoured) the sand and gravel below the concrete footings at Goodnow bridge. A steel bar could be pushed from 0.5 to 3.5 feet into nine voids under the south abutment footing and 0.5 to 1 feet into six voids under the north abutment footing. Although voids were observed under the footings at Goodnow Road bridge, no distress cracks other than normal weathering were noted in the abutments.

2.3 Site Geology

The Millers River flows through a wide pre-glacial bedrock valley in the vicinity of the three bridges. The valley has been filled with deep glacial outwash deposits of sands and gravels. The river has eroded a narrow inner valley in the sands and gravels which is flanked by sand and gravel terraces. Priest and Beaver Brooks are tributaries that have cut narrow channels through the terraces to the river.

2.4 Streambeds and Streambanks

The streambeds of the two tributaries are slightly meandering.
They consist of clean, fine to coarse, sands and gravels with rounded to subangular cobbles and boulders. Gradations for the matrix portion of the streambed are included in the appendix. The cobbles and boulders in the streambed are typically 1 to 3 feet in diameter with a maximum diameter of 8 feet at the Goodnow Road bridge, typically 0.5 to 1.5 feet in diameter with a maximum diameter of 2 feet at Middle Road bridge and typically 0.25 to 0.75 feet diameter with a maximum diameter of 1 foot at Old Route 202 bridge. Two large boulders (6 to 8 feet in diameter) were observed in the streambed under Goodnow Road bridge. Also a pile (10 by 20 feet) of branches was observed upstream of Goodnow Road bridge. Beaver dams were observed under Middle Road bridge and approximately 100 feet upstream of the bridge. They were approximately two and three feet high respectively.

The streambanks are typically fairly low (five feet or less high) and steep (1 vertical on 1 horizontal to 1 vertical on 3 horizontal). Medium to dense vegetation grows on the banks. A small amount of erosion of the bank materials at Middle Road bridge was observed. It has occurred 5 to 10 feet upstream of the chinked stone wingwalls. The two eroded areas (scour holes) are 20 to 25 feet long and up to 7 feet wide. It does not appear that the erosion is endangering the wingwalls or the bridge.
III. ASSESSMENT

3.1 Streambed and Streambank Material Characteristics

The streambed materials are deep deposits of hard, durable, rounded to subangular, sands, gravels, cobbles and boulders. The mean diameter, by weight, of the sand to boulder sized materials was visually estimated to be 1 to 1.5 feet at the Goodnow Road bridge, 0.5 to 1 feet at the Middle Road bridge and 0.25 to 0.5 feet at the Old Route 202 bridge. Laboratory gradation tests (Complete gradation test results are in Appendix.) were performed on samples of the sand and gravel matrix materials that exist between the cobbles and boulders. The results indicate that the mean diameter, by weight, of the streambed materials sampled is 1.5 millimeters (0.06 inches) at the Goodnow Road bridge, 0.63 millimeters (0.025 inches) at the Middle Road bridge and 10.1 millimeters (0.40 inches) at the Old Route 202 bridge. The mean diameters could be used in theoretical hydraulic studies to estimate the scour potential around the abutment footings.

3.2 Streambank Materials Characteristics

The streambank matrix material characteristics did not appear to be significantly different than the streambed matrix materials. However, the number and sizes of cobbles and boulders in the streambank materials appeared to be lower than the streambed materials.

3.3 Scour Potential

High water velocities have scoured material below the footings at Goodnow Road bridge as described in paragraph 2.2. It appears high water velocities that have occurred during past flood events have not been a problem at Middle Road and Old Route 202 bridges. Field observations and measurements indicate that the top of the streambed is higher adjacent to the abutment footings than at the center of the stream channels at the Middle Road and Old Route 202 bridges. However, high water velocities have eroded streambank materials upstream of Middle Road bridge as described in paragraph 2.4. It appears the erosion of the streambanks near Middle Road bridge is due to the fact that there are fewer and smaller cobbles and boulders in the streambanks as noted in paragraph 3.2.

3.4 Remedial and Maintenance Work at Goodnow Road Bridge

The most pressing need is to fill the voids below Goodnow Road bridge footings. It appears further erosion could damage the abutments. A possible method for repairing the footings is to place concrete forms around the outside edges and then pump concrete into the eroded voids and the space between the footings and forms. Then the entire channel (from approximately 15 feet
upstream to 15 feet downstream of the bridge) should be lined with a stone blanket (estimated thickness of 2 to 3) underlain by a bedding layer (estimated thickness of 1 to 1.5 feet). The stone blanket and bedding should extend to the top of the banks upstream and downstream of the bridge.

It recommended that the tree debris that was observed upstream of Goodnow bridge be removed. It appears that the debris might slightly alter the hydrologic characteristics of the stream and cause eddy currents which could lead to additional scour near the bridge. Rental of a small truck and a few hours of hand labor would be needed to remove the debris.

3.5 Maintenance Work at Middle Road Bridge

It recommended that the Beaver dam that was observed under Middle Road bridge be removed. It appears that the dam alters the hydrologic characteristics of the stream and causes eddy currents which could lead to scour near the bridge. Rental of a small truck and a few hours of hand labor would be needed to remove the dam.

It is recommended that the erosion upstream of Middle Road bridge be monitored during future bridge inspections. If it appears that the erosion is beginning to endanger the wingwalls, properly designed stone revetments should be constructed to reduce the erosion. They should extend from the streambed to the top of the streambank. The stone revetments are not expected to be major remedial items.

3.6 Old Route 202 Bridge

Substantial scour problems were not observed near the Old Route 202 bridge. No remedial or maintenance measures are recommended now at the Old Route 202 bridge.
IV. APPENDIX
GraIn SiZe DiStRiBUTiON Test RepORt

Test % +3"  % Gravel  % Sand  % SilT  % Clay
1  0.0  38.7  60.6  0.7

LL  PI  D75  D60  D50  D30  D25  D10  Cc  Cu
0  .  17.18  4.22  1.95  0.773  0.6501  0.3573  0.40  11.8

Material Description
- Poorly Graded Sand with Gravel

USCS  AASHTO
- SP

Project No.: 33-17-1
Project: Birch Hill Dam (Winchendon, Mass)
Location: Goodnow Bridge Streambed

Date: 7-16-93
Remarks:
- Sample taken from the Streambed material.
- Color: Medium Brown

GraIn SiZe DiStRiBUTiON Test RepORt
Corps of Engineers - New England
# GRAIN SIZE DISTRIBUTION TEST REPORT

<table>
<thead>
<tr>
<th>Test</th>
<th>% +3&quot;</th>
<th>% GRAVEL</th>
<th>% SAND</th>
<th>% SILT</th>
<th>% CLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0</td>
<td>2.0</td>
<td>94.8</td>
<td></td>
<td>3.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LL</th>
<th>PI</th>
<th>D75</th>
<th>D60</th>
<th>D50</th>
<th>D30</th>
<th>D25</th>
<th>D10</th>
<th>Cc</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0.99</td>
<td>0.74</td>
<td>0.63</td>
<td>0.454</td>
<td>0.4093</td>
<td>0.2051</td>
<td>1.36</td>
<td>3.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>USCS</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>POORLY GRADED SAND</td>
<td>SP</td>
<td></td>
</tr>
</tbody>
</table>

Project No.: 33-17-2
Project: BIRCH HILL DAM (WINCHENDON, MASS)
Location: MIDDLE BRIDGE STREAMBED

Date: 7-16-93

Remarks:
SAMPLE TAKEN FROM THE STREAMBED MATERIAL.
COLOR: LIGHT BROWN

CORPS OF ENGINEERS - NEW ENGLAND

Fig. No. 2
# Grain Size Distribution Test Report

**Test % +3** % Gravel  % Sand  % Silty  % Clay
---
0 3 0.0 65.0 33.2 0.9

<table>
<thead>
<tr>
<th>LL</th>
<th>PI</th>
<th>D75</th>
<th>D50</th>
<th>D30</th>
<th>D10</th>
<th>CC</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>23.63</td>
<td>14.57</td>
<td>10.56</td>
<td>2.941</td>
<td>1.4077</td>
<td>0.4300</td>
</tr>
</tbody>
</table>

### Material Description
- Well-graded gravel with sand

**Project No.: 33-17-3**
- **Project:** BIRCH HILL DAM (WINCHENDON, MASS)
- **Location:** OLD RT. 202 BRIDGE STREAMBED

**Date:** 7-16-93

**Remarks:**
- Sample taken from the streambed material.
- Color: medium brown

---

**Corps of Engineers - New England**

Fig. No. 3