JPRS Report

Science & Technology

Japan

STA RESEARCH ON SUPERCONDUCTING MATERIALS

19980203 315

DTIC QUALITY INSPECTED 3
CONTENTS

STA Multicore Research Project on Superconducting Materials

Superconducting Material Research Multicore Project

Outline of Multicore Project

1. Basic Idea
2. Purpose of the Project
3. Project Organization and Operation
4. Project Promotion Mechanism

Outline of Each Research Core

1. Theory Core (National Research Institute for Metals)
2. Database Core (National Research Institute for Metals and Others)
3. New Matter Search Core (National Institute for Research in Inorganic Materials)
4. Raw Material Control Core (National Research Institute for Metals)
5. Thin Film Core (National Research Institute for Metals)
6. Single-Crystal Core (National Institute for Research in Inorganic Materials)
7. Microprocessing Core (Institute of Physical and Chemical Research)
<table>
<thead>
<tr>
<th>No.</th>
<th>Core Name (Institution)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Composite Processing Core (National Research Institute for Metals)</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td>Space Environment Utilization Core (National Space Development Agency of Japan)</td>
<td>22</td>
</tr>
<tr>
<td>10.</td>
<td>Superconductor Performance Evaluation Core (National Research Institute for Metals)</td>
<td>23</td>
</tr>
<tr>
<td>11.</td>
<td>Crystal Structure Analysis Core (National Institute for Research in Inorganic Materials)</td>
<td>26</td>
</tr>
<tr>
<td>12.</td>
<td>Highly Sensitive Composition Analysis Core (Institute of Physical and Chemical Research)</td>
<td>27</td>
</tr>
<tr>
<td>13.</td>
<td>Irradiation/Analysis Core (Japan Atomic Energy Research Institute)</td>
<td>29</td>
</tr>
<tr>
<td>14.</td>
<td>Measurement/Analysis Support Core (Material Science Technology Promotion Corp.)</td>
<td>31</td>
</tr>
</tbody>
</table>
Oxide-based new superconductors discovered in 1986 currently possess a critical temperature (Tc) of more than 100 K, which is higher than the temperature of liquid nitrogen—77 K. This has been made possible by the discovery of new bismuth-based and thallium-based materials. Such new superconductors, therefore, appear to bring about the technological innovations in the 21st century and expectations for the application are growing. The research and development of such new superconductors, however, has just begun and there are many problems to be resolved. The Science and Technology Agency, therefore, has founded the "Superconducting Material Research Multicore Project" to contribute to international R&D as well as to finally attain the practical use of new superconductors. At the same time we must be fully aware of the current state of the technology.

To promote basic multilateral infrastructure research on new superconducting materials, it is necessary to be flexible in promoting joint research, in which researchers take the leadership, which is open to both domestic and overseas R&D institutes, and the exchange of researchers and information (hereinafter referred to as "joint research, etc."). The core of this research will be the R&D potentials of the national test and research institutes, special corporations, etc. For such a purpose, the "Superconducting Material Research Multicore Project" has been established. A November 1987 report on the "Meeting on Superconductors" held by the Scientific Technology Policy Committee points out that it is necessary to promote basic infrastructure research, utilize existing research development potentials, etc.
Outline of Multicore Project

1. Basic Idea

The following items play vital roles

- **Basic Infrastructure Research**
 - Executing multilateral basic infrastructure research on matter and materials to achieve the practical use of new superconductors.

- **Invisible Research Activities Utilizing Existing Potentials**
 - Complete utilization of research potentials already accumulated in both hardware and software to promote basic infrastructure research.
 - Promotion of integrated R&D based on an organic linkage between each research institute.
Research System Opened to Both Domestic and Overseas R&D Institutes

- Enhancing one's own research potentials, mainly by using advanced infrastructure research facilities and promoting joint research, etc., under a system open to both domestic and overseas R&D institutes.

Research System With Emphasis on Researchers

- Enhancing researchers' originality to promote basic infrastructure research.
- Establishing a flexible research system with emphasis on the subjectivity of researchers.

2. Purpose of the Project

The purpose of the multicore project is to develop practical application of new superconductors with properties (critical temperature, etc.) superior to those of conventional superconductors, including oxide-based superconductors. The project covers such basic infrastructure research as "theory and databases," "synthesis/structural control," "analysis/evaluation," and "technical development."

3. Project Organization and Operation

The project will be executed under the following organizational and operational system, based on the basic idea.

Research Core

- To attain the multicore project targets, a "research core" will be located at institutes with existing research potentials. Research cores will promote joint research. Institutes with a research core will be referred to as a "core institute."

- At present, established research cores are listed in the separate table. Depending on the state of R&D of new superconducting materials in both domestic and overseas R&D institutes, however, the necessity of the research cores concerned will be reviewed.

- Researchers at each core institute and those (other than core institutes) who cooperate in research comprise "core researchers" for each research core. A "research core member" who represents each research core will handle coordination and other tasks necessary for the execution of research activity for each research core.

Multicore Project Committee To Promote Superconducting Material Research

- For the smooth execution of the multicore project, the "Multicore Project Committee To Promote Superconducting Material" will be formed. The committee will be comprised of representatives from each core institute, knowledgeable
people from industry, universities, and government institutes. The committee will not only receive status reports on the progress of research but will also study basic matters concerning the implementation of the multicore project such as research plans and research systems.

- The head of each core institute will cooperate in the smooth execution of the multicore project, while giving due consideration to the results of studies done by the committee.

Core Leader Communications Meeting

The promotion committee will hold "core leader communications meetings" to ensure close communications between each research core and study matters necessary to promote the multicore project. The meeting will be attended by research core leaders and knowledgeable people as necessary. It is an organization in which researchers will take the lead in substantially promoting the multicore project.

Promotion of Joint Research

- Each research core will arrange advanced infrastructure research facilities necessary to promote joint research between each research core, and between each research core and research institutes other than core institutes.

- Each research core will promote joint research in response to requests made by research institutes other than a core institute for joint research, with consideration given to each institute’s own potentials.

- Research core leaders will establish "working groups" as necessary to promote joint research, etc. The working group for the most part will consist of core researchers; researchers and other personnel from institutes other than core institutes that are involved in joint research will be made members of the working group as necessary.

- Joint research, etc., will be carried out in accordance with regulations and systems governing the current joint research of each research institute. To facilitate smooth execution of joint research, requirements of various systems will be reviewed.

- Cooperation will be obtained from the Society of Nontraditional Technology and the New Superconducting Material Forum to hold international symposiums and workshops, exchange information between domestic and overseas researchers and research institutes, and publicize research results, technological surveys, etc. Thus, a close link with associated research institutes will be maintained.
<table>
<thead>
<tr>
<th>Domain</th>
<th>Research core</th>
<th>Core institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Database</td>
<td>Theory</td>
<td>National Research Institute for Metals</td>
</tr>
<tr>
<td></td>
<td>Database</td>
<td>National Research Institute for Metals</td>
</tr>
<tr>
<td>Synthesis/Structural control</td>
<td>New matter search</td>
<td>National Institute for Research in Inorganic Materials</td>
</tr>
<tr>
<td></td>
<td>Raw material control</td>
<td>National Research Institute for Metals</td>
</tr>
<tr>
<td></td>
<td>Thin-film attainment</td>
<td>National Research Institute for Metals</td>
</tr>
<tr>
<td></td>
<td>Single-crystal attainment</td>
<td>National Institute for Research in Inorganic Materials</td>
</tr>
<tr>
<td></td>
<td>Microprocessing</td>
<td>Institute of Physical and Chemical Research</td>
</tr>
<tr>
<td></td>
<td>Composite processing</td>
<td>National Research Institute for Metals</td>
</tr>
<tr>
<td></td>
<td>Space environment utilization</td>
<td>National Space Development Agency of Japan</td>
</tr>
<tr>
<td>Analysis, Evaluation</td>
<td>Evaluation of superconductor performance</td>
<td>National Research Institute for Metals</td>
</tr>
<tr>
<td></td>
<td>Crystal-structure analysis</td>
<td>National Institute for Research in Inorganic Materials</td>
</tr>
<tr>
<td></td>
<td>Highly sensitive composition analysis</td>
<td>Institute of Physical and Chemical Research</td>
</tr>
<tr>
<td></td>
<td>Irradiation/analysis</td>
<td>Japan Atomic Energy Research Institute</td>
</tr>
<tr>
<td></td>
<td>Measurement/analysis support</td>
<td>Foundation for Promoting Material Science Technology</td>
</tr>
<tr>
<td>Technological development</td>
<td>Technological development</td>
<td>New Technology Development Corp.</td>
</tr>
</tbody>
</table>

As of May 1988
4. Project Promotion Mechanism

The multicore project execution mechanism can be illustrated as follows.

Promotion Committee
- Studies basic matters concerning project execution
- Made up of core institute's representatives and knowledgeable people
- To be located at Research and Development Bureau, Science and Technology Agency

Core Leader Communications Meeting
- Studies topics necessary for actual project execution, ensures close communications between each research core
- Made up of core leaders and knowledgeable people, as necessary
- To be located at Material Development Promotion Bureau, General Research Section, Science and Technology Agency

Working Group
- Promotes joint research, etc.
 (Discussion of research plan, exchange of research information)
- Consisting of core researchers
- To be located at each research core as necessary

New Superconducting Material Research Society
- Holds international symposiums, workshops
- Exchanges information with domestic and overseas researchers, research institutes
- Disseminates research results and technological surveys
- Dispatch, invitation, etc. of researchers

Participation as Research Core
- National test and research laboratories, special corporations, public service corporations, and others, can participate in the multicore project as a research core through studies done by the multicore project promotion committee, which are based on the state of domestic/overseas R&D of new superconducting materials and also on the existing R&D potentials of the research institutes concerned.
<table>
<thead>
<tr>
<th>Members of the "Multicore Project Committee To Promote Superconducting Material Research"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman Shinroku Saito</td>
</tr>
<tr>
<td>Toshio Ito Manager</td>
</tr>
<tr>
<td>Hiroshi Iwasaki Manager</td>
</tr>
<tr>
<td>Toichi Okada Professor</td>
</tr>
<tr>
<td>Koichi Kitazawa Professor</td>
</tr>
<tr>
<td>Ken Sugiura Manager</td>
</tr>
<tr>
<td>Yasutsugu Takeda Manager</td>
</tr>
<tr>
<td>Kyoji Tachikawa Professor</td>
</tr>
<tr>
<td>Shoji Tanaka Professor</td>
</tr>
<tr>
<td>Kenichi Tsukamoto Manager</td>
</tr>
<tr>
<td>Atsushi Nagai Manager</td>
</tr>
<tr>
<td>Aiko Hara Deputy manager</td>
</tr>
<tr>
<td>Harumi Hirabayashi Professor</td>
</tr>
<tr>
<td>Yoshio Muto Professor</td>
</tr>
<tr>
<td>Masaru Goto Director</td>
</tr>
<tr>
<td>Toshio Sada Director</td>
</tr>
<tr>
<td>Sadaru Sawai Director</td>
</tr>
<tr>
<td>Nobuo Sedaka Manager</td>
</tr>
<tr>
<td>Ryuichi Nakagawa Manager</td>
</tr>
<tr>
<td>Toyojiro Kouda Director</td>
</tr>
<tr>
<td>Akio Horiuchi Director</td>
</tr>
<tr>
<td>Takashi Mayama Director</td>
</tr>
<tr>
<td>Shunpei Yamazaki Managing director</td>
</tr>
<tr>
<td>Yoshio Yorimizu Director</td>
</tr>
</tbody>
</table>

♦ Participation as Core Researcher

- It is possible to become a staff member of a core institute, and thereby participate in the multicore project as a core researcher, by participating in the outside-researcher receiving system (e.g., simultaneous appointment systems and guest researcher systems) provided by the concerned core institute.
• It is also possible to appoint overseas researchers as public service personnel, under the Research Exchange Promotion Law.

♦ Execution of Joint Research With Research Core

• Each research core will conduct joint research based on the systems provided by the core institute. Consideration will be given to the research potentials of the involved research core and the research institute making the request for joint research.

• Joint research, etc., with overseas research institutes will be conducted in the same manner as the above. Joint research, etc., between government institutes will be carried out in accordance with international agreements.

Outline of Each Research Core

1. Theory Core (National Research Institute for Metals)

♦ Outline of Research

Of basic research projects on superconducting materials, clarification of the superconducting phenomenon, in particular, plays a vital role in improving superconducting characteristics, as well as in studying new superconducting matter.

In this core, research will emphasize two themes.

• Detailed analysis of electronic structure to search for the unique qualities of new superconducting matters;

• Construction of theoretical models for superconducting mechanism and identification of superconducting characteristics based on such models.

Large-scale numerical calculations using high-speed, large-sized computers and basic physical property experiments to verify the effectiveness of theories play vital roles in this research.

♦ Method of Operation

In this core, joint research will be conducted with the cooperation of pure theory researchers, numerical analysis researchers, basic physical property researchers, etc. It is necessary to promote the exchange of researchers engaged in the clarification of the superconducting mechanism. To this end, research meetings (basic theory working group) will be held regularly so that theory researchers and researchers involved in basic physical property experiments can meet and introduce, discuss, and study the latest research results. It is also planned that international workshops be held to study the superconducting mechanism.
♦ Major Equipment/Technology

• Simulation processing equipment

Theory Core

♦ Major Research Results

• Analyzed the electronic structure of La- and Y-group copper oxide high-temperature superconducting matter, particularly the peculiarities of the electronic structure caused by the omission of oxygen and changes in the oxygen position.
Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>Manager of Basic Physical Property Research Department, National Research Institute for Metals</th>
<th>Meisei Yoshikawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit leader</td>
<td>Researcher, Research Group No 1, Basic Physical Property Research Department, National Research Institute for Metals</td>
<td>Tamio Oguchi</td>
</tr>
<tr>
<td>Research cooperator</td>
<td>Professor, Metal Material Research Laboratory, Tohoku University; Professor, Physical Property Research Laboratory, University of Tokyo</td>
<td>Masashi Tachiki Kiyoyuki Terakura</td>
</tr>
</tbody>
</table>

2. Database Core (National Research Institute for Metals and Others)

Outline of Research

Based on database research in the metal group superconducting materials, physical property/characteristics data, including new superconducting matter, will be converted to a database with the cooperation of the New Superconducting Material Research Society, institutes participating in the multicore project, and others. In other words, experts in individual fields concerning characteristic values to be stored in the database will study data indication modes, etc. Along with this, nucleus data obtained by the separate measurements of common specimens will be arranged. Also, studies will be done on database utilization technology to search for new materials. Further, with the cooperation of the New Superconducting Materials Forum, technological surveys will be carried out in regard to the practical application of new materials.

Method of Operation

To carry out the projects entrusted to it, the New Superconducting Materials Forum will establish a study group. Then, research will be allotted to researchers participating in the study group, and the results will be made available to members of the forum through workshops and other means.

Major Equipment/Technology

- Alloy design workstation.
- Data utilization system terminal workstation.

Major Research Results

- Preparation of a trial database on laminated film and metal-group superconducting materials.
Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>Manager, Damage Mechanism Research Dept., National Research Institute for Metals [NRIM] (03-719-2271)</th>
<th>Bin Nishijima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Leader: Chief researcher, Surface/Interface Control Research [NRIM]</td>
<td>Yuuji Asada</td>
</tr>
<tr>
<td></td>
<td>Contents of research: Study of basic physical property field database, etc.</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Leader: Leader, Subgroup No 1, Research Group No 1, NRIM</td>
<td>Yoshiaki Tanaka</td>
</tr>
<tr>
<td></td>
<td>Contents of research: Study of database in material technology</td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Leader: Manager, Research Office No 1, Material Design Research Dept., NRIM</td>
<td>Kenichi Hoshimoto</td>
</tr>
<tr>
<td></td>
<td>Contents of research: Investigation, etc., of trends in superconducting research in each application field</td>
<td></td>
</tr>
<tr>
<td>Unit 4</td>
<td>Leader: Manager, Space Experiment Program Office, Planning Control Dept., National Space Development Agency of Japan</td>
<td>Shuuji Ozawa</td>
</tr>
<tr>
<td></td>
<td>Contents of research: Investigation of trends in future technology such as application to space systems</td>
<td></td>
</tr>
<tr>
<td>Unit 5</td>
<td>Leader: Manager, Solid Physics Research Office No 1, Japan Atomic Energy Research Institute</td>
<td>Yukio Kazumata</td>
</tr>
<tr>
<td></td>
<td>Contents of research: Investigation of trends in application to energy technologies such as nuclear fusion</td>
<td></td>
</tr>
<tr>
<td>Unit 6</td>
<td>Leader: Deputy chief researcher, Frontier Research Group, Tokai Works, Power Reactor and Nuclear Fuel Development Corp.</td>
<td>Ryouji Asou</td>
</tr>
<tr>
<td></td>
<td>Contents of research: Investigation of trends in application to energy technologies such as new type reactor cycle, etc.</td>
<td></td>
</tr>
</tbody>
</table>
3. New Matter Search Core (National Institute for Research in Inorganic Materials)

♦ Outline of Research

Based on research concerning the synthesis of diamond film, various rare-earth-oxide group new matter, and oxide-group new superconducting matter, the core will seek matter with superior superconducting characteristics and new structures.

♦ Method of Operation

• Success in the search for new matter depends greatly on the ingenuity and originality of the researchers. The new matter search core, therefore, will be operated with due regard for researchers' independence. Many aspects of research will be connected to those of other cores. Joint research, therefore, will be carried out while contact is maintained with other cores at all times.

♦ Major Equipment Technology

Atmospheric search

Solid phase reaction process
 • Dry process
 • Multistep wet process
 • Sol-gel process

Liquid phase reaction process
 • Melted material ultra-quenching process

Vapor phase reaction process
 • Surface reforming process

High-pressure search

Solid pressurization process
 • High-pressure solid phase reaction process
 • Multistage pressurization high-pressure synthesizing process
 • Sealing pressurization process

Gas pressurization process
 • High-pressure gas pressurization process
 • 30,000-ton high-pressure press
 • Ultra-quenching thick film synthesizing equipment
 • High/low-temperature X-ray diffractometer
 • Secondary ion mass spectrometer (SIMS)
 • SQUID magnetization rate measuring equipment
Major Research Results

- Identification of Y-Ba-Cu-O group superconductors.
- Identification of Bi-Ca-Sr-Cu-O group superconductors.

Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>General researcher of Research Group No 5, National Institute for Researchers in Inorganic Materials [NIRIM] (0298-51-3351)</th>
<th>Bin Okai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Leader: Chief researcher, Research Group No 5, NIRIM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contents of research: Search for new materials by solid phase synthesis under atmospheric pressure</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Leader: Chief researcher, Research Group No 5, NIRIM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contents of research: Search for new matter using high pressure and high oxygen pressure</td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Leader: Chief researcher, Research Group No 5, NIRIM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contents of research: Search for new matter by vapor/liquid phase synthesis</td>
<td></td>
</tr>
<tr>
<td>Research cooperator</td>
<td>Professor, Physical Science, Tsukuba University</td>
<td></td>
</tr>
</tbody>
</table>

4. Raw Material Control Core (National Research Institute for Metals)

Outline of Research

The method of controlling raw materials plays a vital role in improving the performance of superconducting materials. On the basis of research on chemical-reaction control technology, superfine manufacturing technology, high-pressure control technology, etc., this core manufactures highly pure raw materials and controls the composition and shape of raw powders, thus developing highly efficient superconducting materials. It carries out joint research with the private sector and universities in the field of selection, kneading, burning, etc., of raw materials and intends to enlarge areas of joint research in the future.
Method of Operation

Raw material core subcommittee meetings will be held several times a year in the form of joint research with Unit 3 to establish research policy, allocate research work, discuss research results, and facilitate research feedback.

Major Equipment/Technology

- Solid-phase electrolytic equipment.
- Optical-beam crystal-growing equipment.
- Optical excitation reaction equipment.

Major Research Results

- Refining of rare-earth element liquid phase.
- Refining 4A group/5A group element volatile decomposition.
- Optical excitation refining of Mo, W, etc.

Research System

<table>
<thead>
<tr>
<th>Unit</th>
<th>Leader</th>
<th>Contents of research</th>
<th>Manager, Research Office No 2, Reaction Control Research Dept., NRIM</th>
<th>Leader, Subgroup No 3, Research Group No 3, NRIM</th>
<th>Leader, Subgroup No 2, Research Group No 4, NRIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leader</td>
<td>Manufacture of high-purity raw materials</td>
<td>Manager, Reaction Control Research Dept., National Research Institute for Metals (03-719-2271)</td>
<td>Leader, Subgroup No 3, Research Group No 3, NRIM</td>
<td>Leader, Subgroup No 2, Research Group No 4, NRIM</td>
</tr>
<tr>
<td>2</td>
<td>Leader</td>
<td>Development of highly dense superconductors by HIP and CIP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Leader</td>
<td>Structure/shape control by the composite superfine manufacturing technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Thin Film Core (National Research Institute for Metals)

♦ Outline of Research

The development of technology for synthesizing superconducting thin films (at low temperatures) that can be used at the temperature of liquid nitrogen or higher will greatly affect future research in electronics. The quick response of Josephson devices have raised great expectations that they can be used as future high-speed operation devices. Great expectations are also placed on superconducting wiring as a key technological breakthrough against the so-called "thermal" wall involved in large-scale integration.

To attain application to the above electronics field, it is indispensable to freely synthesize superior submicron superconducting thin films. The synthesis of thin films at low temperatures is another important research target. Individual components and elements of oxide high-temperature superconductors differ in the physical/chemical properties from each other. This core, therefore, will establish the technology for synthesizing superconducting thin films at low temperatures while properly utilizing the features of individual components and elements, as well as the atom/molecule level structural control technology.

♦ Method of Operation

The superconducting characteristics of oxide high-temperature superconductors are extremely sensitive to their component ratio. This core, therefore, will fabricate, on an experimental basis, thin film synthesizing equipment to be used exclusively for oxide high-temperature superconductors by optimizing the evaporation source and utilizing in-situ evaluation equipment, etc., under a joint research system consisting of industries, universities, and government institutes.

♦ Major Equipment/Technology

• Equipment for synthesizing multiple-element, low-temperature compounds.

• Equipment for preparing structural control laminated film.

• Auger electron spectrochemical analyzing equipment.

• Equipment for measuring the Mossbauer effect.

♦ Major Research Results

• Studied the relation between the omission of oxygen and superconducting characteristics in the Y-Ba-Cu-O group.

• Studied the effect of adding fluoride and successfully manufactured superconducting films that are not dependent on substrate.
• Analyzed heat treatment temperatures and the relation between composition and high-temperature phase formation in Bi-Cu-Sr-O.

♦ Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>Manager, Surface/Interface Control Research Dept., NRIM (0298-51-6311)</th>
<th>Keiichi Ogawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Leader</td>
<td>Manager, No 2 Research Office, Surface/Interface Control Research Dept., NRIM</td>
<td>Keikichi Nakamura</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Low-temperature synthesis of oxide superconducting thin film</td>
<td></td>
</tr>
<tr>
<td>Research cooperator</td>
<td>Professor, Central Research Laboratory, Kyoto University</td>
<td>Naomasa Bando</td>
</tr>
</tbody>
</table>

6. Single-Crystal Core (National Institute for Research in Inorganic Materials)

♦ Outline of Research

On the basis of the experience in the research of the growth of various oxide single crystals for use in magnetic resonance devices, lasers, nonlinear optics, etc., this core intends to grow large, high-quality single crystals of high temperature superconducting matter and to offer them for various measurements.

Clarification of the superconducting mechanism requires not only the development of theories but also demonstrations based on physical measurements using good quality single crystals. The use of single crystals is also indispensable to determine a precise crystal structure and to analyze the bonding state. In some cases, the use of centimeter-sized crystals is required.

This core will conduct flux search, phase balance measurement, R&D of various crystal growth technologies, including evaluation of the growth of single crystals, as a series of procedures. In addition, the crystal growing mechanism will be analyzed using the in-situ technique. Further, research on the initial process of plate-shaped crystal growth arising from epitaxy (an important phenomenon for practical application) will be conducted using the process to complete plated crystal.

♦ Method of Operation

For research, close exchange of information and joint research will be carried out as necessary with the researchers of universities, national and other public research laboratories, and the private sector.
Major Equipment/Technology

Crystal synthesis: Pickup unit, condensing floating zone process unit
Top seed method equipment

Crystal observation: High-temperature-stage microscope
Picture processing unit

Major Research Results

- Determination of liquid phase surface of the $\text{YBa}_2\text{Cu}_3\text{O}_x$ phase and synthesis of single crystals of such a phase through annealing.

- Synthesis of Bi–Sr–Ca–Cu–O superconductor–phase single crystals using the FZ process.

Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>General researcher, Research Group No 13, National Institute for Research in Inorganic Materials (0298-51-3351)</th>
<th>Shigeyuki Kimura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Leader</td>
<td>Chief researcher, Research Group No 6, NIRIM</td>
<td>Shunji Takegawa</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Growing of single crystals, etc.</td>
<td></td>
</tr>
</tbody>
</table>
| Cooperating researchers | Professor, Metal Material Research Laboratory, Tohoku University
Professor, Physical Property Research Laboratory, University of Tokyo | Satoshi Komatsu
Fumihiko Takesue |

7. Microprocessing Core (Institute of Physical and Chemical Research)

On the basis of experience in establishing lithography technology used to manufacture multilayer devices using niobium having a high reactivity, this core will try to apply microprocessing technology to manufacture high-temperature superconducting thin films and to create superconducting devices, such as high-temperature superconductor Josephson devices.

This core carries out the following items of work.

1. Three-dimensional devices with short coherence length of high-temperature superconductors controlling the length of the weak bonding portion.
(2) Leveling surfaces to secure superconducting contact between high-temperature superconducting thin films having a three-dimensional structure, removing surface insulating layer, and establishing a low-temperature manufacturing process.

(3) Using nonaqueous processes to secure watertightness to apply the lithography process of microprocessing.

♦ Method of Operation

Utilizing potentials in the development of subsurface-type Josephson devices and thin film manufacturing technology (using laser) for new devices, this core carries out basic research, including joint research, to convert new superconductors to devices.

♦ Major Equipment/Technology

- Simultaneous evaporation multitarget spatter equipment.
- Laser evaporation equipment.
- Light decomposing CVD equipment.
- Laser surface reforming equipment.
- Molecular beam epitaxial equipment.
- Electron beam exposure equipment.
- Dry etching equipment.
- Lithography equipment.

♦ Results of Research

- Developed niobium multilayer Josephson device lithography preparing process technology (developed millimeter-wave detecting device, switching device, seven-channel SQUID, etc.).
- High-temperature superconductor laser spattering evaporation.
- Studied the LSI manufacturing dry process.
- Studied laser CVD.
Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>Researcher, Microwave Physical Research Office, Institute of Physical and Chemical Research (RIKEN) (0484-62-1111, ext. 3214)</th>
<th>Hiroshi Outa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Leader</td>
<td>Researcher, Microwave Physical Research Office, RIKEN</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Development of new high-temperature superconducting thin film and application to Josephson junction</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Leader</td>
<td>Chief researcher, Semiconductor Engineering Research Office, RIKEN</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Preparation of new superconducting thin film by laser processing</td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Leader</td>
<td>Deputy chief researcher, Laser Science Research Group, RIKEN</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Application of highly efficient high-temperature superconductor thin film to new superconductor electronics</td>
<td></td>
</tr>
</tbody>
</table>

8. Composite Processing Core (National Research Institute for Metals)

Outline of Research

Japan took the initiative in developing basic technology on V–Ga and Nb–Sn wiring materials. On the basis of such experience, this core will develop various wiring material manufacturing technologies, etc., using the vapor-phase reaction process, liquid-phase reaction process, solid-phase reaction process, etc., for new superconducting matter and will put such technologies into practical use.

Method of Operation

This core will not only develop various manufacturing processes with emphasis on joint research but also study the possibility of practical applications of such processes by conducting characteristic tests.
Major Equipment/Technology

Vapor-phase reaction process
- Spatter process
- Vacuum evaporation process
- CVD process

Liquid-phase reaction process
- Electron beam irradiation process
- Melt quenching process

Solid-phase reaction process
- Powder compound material process

Chemical reaction process
- Sol-gel process
- Application process

Other processes
- Plasma spray coating process, etc.

Stabilization/Conversion to Conductor

Evaporation of good conductor matter, plating, improvement of strength, etc.

Major Research Results

- Developed surface diffusion process (V$_3$Ga superconducting tape manufacturing technology).
- Developed composite processing technique (V$_3$Ga extremely thin multicore wire manufacturing technology).
- Converted oxide superconducting compounds (LaBaCuO, YBaCuO) to wiring materials.
Research System

<table>
<thead>
<tr>
<th>Unit</th>
<th>Leader</th>
<th>Contents of research</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leader, Subgroup No 1, Research Group No 1, National Research Institute for Metals</td>
<td>Conversion to wiring materials, etc., by the vapor reaction process, etc.</td>
</tr>
<tr>
<td>2</td>
<td>Leader, Subgroup No 2, Research Group No 1, National Research Institute for Metals</td>
<td>Conversion to wiring materials, etc., by the solid/liquid phase reaction process, etc.</td>
</tr>
<tr>
<td>3</td>
<td>Leader, Subgroup No 4, Research Group No 1, National Research Institute for Metals</td>
<td>Conversion to wiring materials, etc., by the chemical reaction process, etc.</td>
</tr>
<tr>
<td>4</td>
<td>General researcher, Research Group No 1, National Research Institute for Metals</td>
<td>Conversion to wiring materials, etc., using special technologies</td>
</tr>
</tbody>
</table>

9. Space Environment Utilization Core (National Space Development Agency of Japan)

Outline of Research

As special features of space environment, microgravity (10^{-6}G), high vacuum (10^{-6} torr), extensive solar energy, and other areas can be cited. Particularly, continuous microgravity environment cannot be easily obtained on the ground. In space, therefore, it is highly possible that materials are improved and new materials are created, using phenomena such as nonconvection, nonsettlement, and nonstatic pressures.

The National Space Development Agency of Japan (NSDA) is studying testing opportunities, testing equipment, and testing technology, using aircraft, rockets, NASA space shuttles, and space stations to use microgravity to test materials. The following items can be cited as examples of experiments in which the microgravity environment helps promote the creation of new oxide superconducting matter.
(1) Liquid phase sintering—Even if a part of the sinter has turned into a liquid, no settlement occurs. This makes it possible to manufacture materials by liquid-phase sintering in a uniformly dispersed state.

(2) Vapor-phase synthesis process—This process eliminates the effect of convection and should improve completeness in crystals.

(3) Crystal growth from melt—Crystal growth can be expected solely by diffusion and there is the possibility that good-quality bulk single crystals can be obtained.

♦ Method of Operation

The space environment utilization core intends to disseminate information on space test opportunities, space test themes, and test equipment/technology, and to conduct joint research on these items.

♦ Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>General development staff member, Space Experiment Group, National Space Development Agency (NSDA) (03-769-8190)</th>
<th>Tadaaki Mochida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Leader</td>
<td>Chief development staff member, Space Experiment Group, NSDA</td>
<td>Seiji Higuchi</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Study of space experiment opportunities, space experiment themes, and experiment equipment and technology</td>
<td></td>
</tr>
</tbody>
</table>

10. Superconductor Performance Evaluation Core (National Research Institute for Metals)

♦ Outline of Research

Superconductors have close connections with magnetic fields. Both basic and application research on superconducting materials, therefore, require the use of strong magnetic fields. Japan developed superconducting magnets, etc., with magnetic flux density of 17.5 tesla earlier than other countries. On the basis of such experience, this core will develop and arrange strong magnetic field magnets, ultraprecise magnetic field magnets, etc., and to evaluate the performance of superconducting materials from various standpoints.

♦ Method of Operation

Joint research will be carried out on the following topics using various magnetic fields.

23
(1) Verification of superconducting mechanism of new superconducting matter.

(2) Evaluation of new superconducting materials.

(3) Evaluation of characteristics of new superconducting materials in the magnetic field.

(4) Study of new superconducting material manufacturing processes and optimization of manufacturing conditions.

(5) Synthesis of new superconducting materials in the magnetic field.

Search of new matter/clarification of superconducting mechanism
Measurement of low-temperature specific heat/magnetization rate NMR measurement
Ultraprecise magnetic field magnet

Search of high H_{c2} matter/construction of high magnetic field theory
H_{c2} measurement, de Haas-Van Alphen effect measurement

80T-class long pulse magnet

20T-class large-diameter superconducting magnet
Stress/pressure effect measurement
Coil conductor characteristics measurement
Stabilization of wiring materials/conversion to large-capacity conductors

40T-class hybrid magnet
Measurement of J_c pinning
Conversion to highly efficient, advanced wiring materials/thin film

Major Equipment/Technology

- 80T-class long-pulse magnet.
- 40T-class hybrid magnet.
- 20T-class large-diameter superconducting magnet.
- Equipment measuring magnetic characteristics in an ultraprecise magnetic field.
Major Research Experience

The following technology, etc., have been developed so far:

- Magnet technology using various high magnetic field superconducting wiring materials \((V_3Ga\) surface diffusion tape, \(V_3Ga\) extremely thin multicore wires, \((Nb, Ti)_3Sn\) extremely thin multicore wires).

- Superconducting magnet using extremely thin multicore compound wiring materials for the first time in the world.

- Superconducting magnet generating a magnetic flux density of 17.5T, which at the time was the strongest in the world.

- Superconducting magnet generating a magnetic flux density of 18.1T, which at the time was the strongest in the world.

Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>General researcher, Research Group No 1, National Research Institute for Metals (0298-51-6311)</th>
<th>Hiroshi Maeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Leader, Subgroup No 3, Research Group No 1, NRIM</td>
<td>Yasushi Inoue</td>
</tr>
<tr>
<td>Contents of research</td>
<td>(H_\text{c2}) measurement, etc., using 80T-class pulse magnet</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Leader, Subgroup No 3, Research Group No 1, NRIM</td>
<td>Yasushi Inoue</td>
</tr>
<tr>
<td>Contents of research</td>
<td>(I_\text{c}) measurement, etc., using 40T-class hybrid magnet</td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Leader, Subgroup No 4, Research Group No 1, NRIM</td>
<td>Masashi Wada</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Measurement of stress effects using 20T-class large-diameter magnet, etc.</td>
<td></td>
</tr>
<tr>
<td>Unit 4</td>
<td>Manager, Research Office No 1, Basic Physical Property Research Dept., NRIM</td>
<td>Haruyoshi Aoki</td>
</tr>
<tr>
<td>Contents of research</td>
<td>NMR measurement, etc., using ultraprecise magnetic field magnet</td>
<td></td>
</tr>
<tr>
<td>Unit 5</td>
<td>Leader, Subgroup No 1, Research Group No 1, NRIM</td>
<td>Akayoshi Tanaka</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Development, etc., of cryogenic refrigerating/cooling technology</td>
<td></td>
</tr>
</tbody>
</table>
11. Crystal Structure Analysis Core (National Institute for Research in Inorganic Materials)

§ Outline of Research

On the basis of experience in the matter/material research using the world’s most advanced technology for crystal structure analysis, this core develops and installs new types of high-resolution electron microscopes. It will thereby observe and analyze the local structure of superconducting matter, etc. This core also analyzes a crystal mean structure and observes phase transition by X-ray diffraction and neutron diffraction. Further, this core analyzes electron structure, intergranular structure by the highly accurate energy analyzing process. Thus, this core intends to help clarify the superconducting theory and convert superconductors to materials.

§ Method of Operation

Other cores such as the new material search core, or outside research institutes may run into problems with crystal structure analysis. Upon their request, this core will tackle such problems in the form of joint research. Where other cores or outside research institutes desire to learn the ways and means of analyzing crystal structures, this core will receive their researchers or allow them to use test equipment, etc.

§ Major Equipment/Technology

- Electron microscope (1 Å) with an ultrahigh resolution.
- Powder X-ray diffractometer.
- Optoelectronic spectrometer (ESCA).
- Program analyzing crystal structure using a (leat-belt) process.
- High-resolution electron microscope image analyzing program.
- Optoelectronic spectrum analyzing program.

§ Major Research Results

- YBa$_2$Cu$_3$O$_y$ superconductor crystal structure analysis using the X-ray/neutron beam (leat-belt) process.
- Bi-Sr-Cu-O superconductor crystal structure analysis using high-resolution electron microscopes.
- Superconductor electron structure analysis using the optoelectronic spectrometer.
12. Highly Sensitive Composition Analysis Core (Institute of Physical and Chemical Research)

- **Outline of Research**

This core analyzes the composition, etc., of good-quality, high-temperature superconductor specimens (prepared under various conditions) with high sensitivity and high accuracy, thereby clarifying the effect of a change in the composition on the high-temperature superconductor structure, electronic state, magnetism, etc. Thus, this core intends to clarify the superconducting mechanism of high-temperature superconductors and to design superior superconductors.
Method of Operation

On the basis of special characterization technologies such as those used to measure various ion properties, etc., this core carries out the following analysis including joint research, using the Rutherford backscattering spectrometry (converted to microbeams), low-speed ion scattering spectrometry, secondary ion mass spectrometers, X-ray optoelectronic spectrometry, analytic electron microscopes, scanning tunnel microscopes, etc.

1. Highly sensitive and accurate analysis of average composition of the total specimen.

2. Analysis of composition distribution in depth from a specimen's surface to core or from individual crystal grain boundaries to core.

3. Optional local composition analysis to study the inequality of specimens or the phase of several matters.

4. Positional analysis in crystal lattices, such as additive dissimilar elements and oxygen omission.

Major Equipment/Technology

- Rutherford backscattering spectrometry (RBS).
- Direct collision ion scattering spectrometry.
- Scanning tunnel microscope technology.
- Muon spectrometry technology.

Major Research Results

The following equipment and technologies were developed.

- Direct-collision, slow ion scattering spectrometers and surface analyzing technology.
- Technology for analyzing surface using a scanning tunnel microscope.
- Physical property analyzing technology using various ion scattering processes.

Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>Research Office, Institute of Physical and Chemical Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Friction Engineering Research Office, Institute of Physical Aono and Chemical Research</td>
</tr>
<tr>
<td>Leader</td>
<td>Masakazu Aono</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Composition analysis and structural analysis using the ion scattering process</td>
</tr>
</tbody>
</table>

Unit 2	Chief researcher, Metal Physics Research Office, RIKEN
Leader	Kanetada Nagamine
Contents of research	Research on the correlation between composition/structure and micromagnetism

Unit 3	Chief researcher, Magnetism Research Office, RIKEN
Leader	Kouichi Katsumata
Contents of research	Research on the correlation between composition/structure and spin order state

13. Irradiation/Analysis Core (Japan Atomic Energy Research Institute)

Outline of Research

Japan Atomic Energy Research Institute (JAERI) so far has analyzed the structure of matter and done research on irradiation damage by constructing and operating large-sized equipment for use in research such as nuclear reactors and tandem accelerators. On the basis of such research, this core will analyze the crystal structure of oxide superconducting matter, study irradiation damage, using large-sized irradiation equipment (reactors, accelerators, etc.), neutron diffraction equipment, etc.

Method of Operation

This core will establish a committee of experts from inside and outside JAERI and hold meetings to help implement core work. In the meetings, the core members will report, evaluate, and study the status of research in JAERI, and discuss research programs.
Major Equipment/Technology

- γ-ray irradiation equipment:
 - 60Co source.

- Electron beam irradiation equipment:
 - Cockcroft–Walton accelerator
 - Linear accelerator

- Neutron irradiation equipment:
 - Reactor

- Ion irradiation equipment:
 - Tandem accelerator
 - 2 MV Van de Graaff accelerator

- Neutron spectroscope:
 - Measurement of crystal structure
 - Lattice vibration
 - Magnetic structure, etc.

- Others:
 - Development of acceleration cavity
 - Synthesis of actinoid specimens
 - Development of superconducting magnets for nuclear fusion

Major Research Results

- Developed and manufactured an acceleration cavity using Nb.

- Developed large-sized superconducting magnets for nuclear fusion.

- Studied solid irradiation damage.

- Studied crystal structure, lattice vibration, and magnetic structure using neutron diffraction.
Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>Manager, Physics Department, JAERI (0292-82-5894)</th>
<th>Naoki Shikazono</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1 Leader</td>
<td>Manager, Material R&D Office, Fuel/Material Engineering Dept., JAERI</td>
<td>Kiyoshi Watanabe</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Creation of raw materials for use in experiments</td>
<td></td>
</tr>
<tr>
<td>Unit 2 Leader</td>
<td>Manager, Solid Physics Research Office No 3, Physics Dept., JAERI</td>
<td>Tatsu Funabashi</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Structural analysis by neutron diffraction, etc.</td>
<td></td>
</tr>
<tr>
<td>Unit 3 Leader</td>
<td>Chief researcher, Physics Dept., JAERI</td>
<td>Hiroshi Naramoto</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Research of irradiation damage</td>
<td></td>
</tr>
<tr>
<td>Unit 4 Leader</td>
<td>Deputy chief researcher, Physics Dept., JAERI</td>
<td>Eisuke Minehara</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Development of acceleration cavity, measurement of high-frequency characteristics</td>
<td></td>
</tr>
<tr>
<td>Unit 5 Leader</td>
<td>Manager, Superconducting Magnet Research Office, Nuclear Fusion Research Dept., JAERI</td>
<td>Susumu Shimaki</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Development of nuclear-related superconducting equipment</td>
<td></td>
</tr>
</tbody>
</table>

14. Measurement/Analysis Support Core (Material Science Technology Promotion Corp.)

Outline of Research

Using the following processes and equipment, this core evaluates materials, focusing on the solid surface and local and microanalysis.

Method of Operation

- **X-Ray Photoelectron Spectroscopy (XPS/ESCA)**

This process makes possible the qualitative, quantitative, and chemical state of solid surfaces as well as microscopic ESCA.
In the case of oxide superconductors, it is possible to analyze the behavior of oxygen, the chemical state of composing atoms on solid surfaces, and interfaces between superconductor phases and nonsuperconductor phases.

- **X-Ray Diffraction Process (XRD)**

This process can identify the matter of solid and thin film specimens, analyze their crystal structure, and measure their grain size.

It is possible to analyze the crystal structure of oxide superconductors by precisely measuring lattice constants and crystal grain size.

- **Secondary Ion Mass Spectrometer (SIMS/IMA)**

This equipment can measure impurity distribution by identifying an extremely small amount of impurities and analyzing concentration and two-dimensional depth direction.

The use of new types of electric guns (vertical incident) has made it possible to carry out a complete self-compensation of charge-up, thus having served to improve the ability of analyzing insulated specimen impurities with high sensitivity.

- **Superconducting Quantum Interference Device (SQUID)**

With respect to oxide superconductors, various magnetic properties are measured at a wide range of temperatures (1.8 to 400 K) and at maximum external magnetic fields (+5.5~5.5T) with a high resolution (maximum 10^{-8} emu). Very high sensitivity can also be obtained. The SQUID, therefore, can detect weak changes in magnetization rate.

- **Scanning Type Auger Electron Spectroscopy (μ-AES/SAM)**

This process makes it possible to carry out the qualitative, quantitative, and local analysis of solid surfaces with high sensitivity, as well as to measure element maps.

- **Other Processes**

Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), energy dispersion type X-ray analysis process (EDX).
Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>Manager, Material Evaluation Division, Material Science Technology Promotion Corp. (03-482-2522)</th>
<th>Masahiro Kudo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Leader</td>
<td>Chief, Material Evaluation Division, Material Science Technology Promotion Corp.</td>
<td>Senori Takegoshi</td>
</tr>
<tr>
<td>Contents of research</td>
<td>Measurement and analysis using various types of equipment</td>
<td></td>
</tr>
</tbody>
</table>

Technological Development Core (New Technology Development Corp.)

Utilizing the functions of the New Technology Development Corp., this core intends to improve the results obtained through multicore project by putting them into practical use.

♦ Method of Operation

- Collection and Evaluation of Research Results

This core collects and evaluates the results of completed multicore projects as well as the results of research conducted by universities, national research institutes, etc. It also studies ways to apply such results to the various systems of the New Technology Development Corp., depending on the progress and contents of the research.

- Improvement of Basic Research Results--High Technology Consortium System

To search for a variety of possible practical applications of research results (basic patents), the corporation forms a technical development promotion consortium by having several firms from diverse industries participate, which will promote a variety of tests. In this case, the corporation provides less than half of the expenses to the firms performing important duties (testing period: 1 year).

- Development of Research Results

(1) Entrusting Development System

There are some research results that involve large technological risks in developing practical application. In such cases, the corporation leaves the development work to the firms concerned but furnishes necessary funds. Where the firms have succeeded in developing practical applications, they must reimburse the development funds to the corporation in installments over a period of 5 years without paying interest. These firms are required to pay a
royalty to the corporation based on their sales. Firms that have not developed practical applications are not required to reimburse development funds.

(2) Development Introducing System

When the research results do not involve large technological risks in the process of developing practical application, the corporation introduces such results to firms that desire to use such crystal lattice. In addition, the corporation promotes the practical application of research results by publicizing them in technical information magazines and other means.

High-Technology Consortium System

* Major Research Results

High-technology consortium system

- Ultraparticulates gas deposition
- Perovskite ceramic materials

Entrusting development system

- Superconducting magnet lead wire (alloy system, intermetal compound system) manufacturing technology
- Highly pure diamond sinter manufacturing technology

Development introducing system

- Metal short fiber manufacturing technology
- Magnetic fluid production process
Research System

<table>
<thead>
<tr>
<th>Core leader</th>
<th>Manager, Project Dept., New Technology Development Corp. (03-507-3031)</th>
<th>Mikio Murota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Leader: Manager, Project No 1 Section, Project Dept., New Technology Development Corp.</td>
<td>Kazuo Oumi</td>
</tr>
<tr>
<td></td>
<td>Contents of research: Collection/evaluation of research results</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Leader: Manager, Patent/Technological Development Section, Technological Development Dept., New Technology Development Corp.</td>
<td>Noboru Fujikawa</td>
</tr>
<tr>
<td></td>
<td>Contents of research: Operation of a high-temperature consortium</td>
<td></td>
</tr>
</tbody>
</table>

(References) (As of May 1988)

<table>
<thead>
<tr>
<th>Institute</th>
<th>Manager, Material Development Promotion Office, R&D Bureau 2-2-1 Kasumigaseki Chiyoda-ku, Tokyo 100</th>
<th>Mikio Hattori 03-581-5271</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science and Technology Agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Research Institute for Metals</td>
<td>Planning manager 2-3-12 Nakameguro, Meguro-ku, Tokyo 153</td>
<td>Ryo Kimura 03-712-5773</td>
</tr>
<tr>
<td>National Institute for Research in Inorganic Materials</td>
<td>Planning manager 1-1 Namiki Sakura-mura Niiharu-gun Ibaraki 305</td>
<td>Akitoshi Higuchi 0298-51-3363</td>
</tr>
<tr>
<td>Japan Atomic Energy Research Institute</td>
<td>Director, Investigation, Planning Office 2-2-2 Uchisaiwa-cho Chiyoda-ku, Tokyo 100</td>
<td>Masahiro Nishidou 03-592-2107</td>
</tr>
<tr>
<td>Japan Scientific Technology Information Center</td>
<td>Director, Investigation, Planning Office 2-5-2 Nagata-cho, Chiyoda-ku, Tokyo 100</td>
<td>Natsuo Onodera 03-581-5809</td>
</tr>
<tr>
<td>Institute of Physical and Chemical Research</td>
<td>Assistant manager, Planning Office 2-1 Hirosawa, Wako-shi, Saitama 351</td>
<td>Utao Yamazaki 0484-62-1551</td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[continued]
<table>
<thead>
<tr>
<th>New Technology Development Corp.</th>
<th>Manager, Patent and Technological Development 2-5-2 Nagata-cho, Chiyoda-ku, Tokyo 100</th>
<th>Noboru Fujikawa 03-507-3057</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Reactor and Nuclear Fuel Development Corp.</td>
<td>Chief, Planning Dept. 1-9-13 Akasaka Minato-ku, Tokyo 107</td>
<td>Minoru Sakuma 03-586-3708</td>
</tr>
<tr>
<td>National Space Development Agency of Japan</td>
<td>Manager, Space Test Program Office, Planning/Control Dept.</td>
<td>Shuji Ozawa 03-435-6166</td>
</tr>
<tr>
<td>Marine Scientific Technology Center</td>
<td>Manager, Planning 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237</td>
<td>Tsutomu Kubota 0468-66-3811</td>
</tr>
<tr>
<td>Foundation for Promoting Material Science Technology</td>
<td>Manager, Planning 3-11-1 Kamisohigaya, Setagaya-ku, Tokyo 157</td>
<td>Katsuo Outa 03-482-2522</td>
</tr>
<tr>
<td>New Superconducting Material Research Society</td>
<td>Managing director, Unexplored Scientific Technology Association Toranomon Kotaohira Kaikan Building, 1-2-8 Toranomon, Minato-ku, Tokyo 105</td>
<td>Tsunehisa Kurino 03-503-4681</td>
</tr>
</tbody>
</table>

-END-