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A SIMPLE SCHEME FOR IMPLEMENTING WAVE ABSORPTION
IN QUASI-NEUTRAL PIC SIMULATIONS OF ECR PLASMA

I Introduction

Electron cyclotron resonance (ECR) plasma processing reactors are one of the
earliest high electron density reactors to be considered', and still play an important role in
semiconductor etching, particularly in the etching programs at NRL. Recent efforts in
NRL Plasma Processing ARI (accelerated research initiative) modeling program have
focused on the low pressure ECR reactor24. The basic dilemma in conventional
modeling is that both the electron and ion species of the reactor have long mean free path
so they are not fluid-like; however the plasma self electric fields are very important in
determining the dynamics of the reactor. In this case, one would think a standard particle
simulation would be the necessary computational tool to bring to bear. The difficulty is
that the time step is then limited to a time less than the inverse electron plasma frequency
(perhaps a few picoseconds), while the time scale of interest in the physics is the time to
form the equilibrium, including the chemical equilibrium (hundreds of microseconds to
milliseconds). The approach used was the development of a quasi-neutral particle
simulation scheme, which maintains the full particle nature of the plasma, but avoids the
electron plasma frequency time scale. The original application was to an ECR discharge.
The main thing missing from the model developed so far2 is a description of the
propagation and absorption of the cyclotron waves. The models up to now have assumed
only a simple electron acceleration scheme near the cyclotron resonant surface which is
specified separately in essentially an ad hoc manner.

The electron cyclotron waves are launched through a waveguide and injected into
the plasma through a quartz vacuum window. Once in the plasma, they propagate to the
resonant surface where they are self-consistently absorbed by the plasma which the waves
themselves create. In creating this plasma, they deposit their energy into the electrons in
some energy dependent manner which we would also like to resolve. That is, we would
like to solve not only for the proper plasma density (related to the absorbed power), but
also for the electron distribution function which is consistent with the microwave
damping and plasma production. Furthermore, so as keep the times scales consistent with
those in the existing simulation, we would like to solve for this in a manner which does
not introduce the electron cyclotron or electron plasma frequency time scales. This paper
develops a formulation which accomplishes just that. The actual implementation in a
simulation scheme will be addressed in a future work.

The NRL ECR reactor, and most others as well, have a magnetic field structure
determined by several external coils. In almost every case, the magnetic field at the
vacuum window is higher that that required for cyclotron resonance with the incoming
waves. The magnetic field decreases as one moves away from this window, so as the
waves propagate into the plasma, they approach the position of cyclotron resonance, at
which point they deposit their energy. It is important to realize that there are two
polarizations the wave might have as it propagates along the field. These are right
circularly polarized, which is resonant with the electrons at cyclotron resonance, and left
circularly polarized which is not resonant with the electrons. In the NRL source and
many others, the input waveguide is a fundamental mode rectangular waveguide, so the
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electric field is linearly polarized. Thus both allowed circular polarizations enter the
plasma with roughly the same amplitude. This seems to be a very important fact in
explaining the qualitative nature of the wave propagation in the plasma. One might think
that a circular waveguide input would be preferable. There the polarization could be
controlled, and one could choose to inject only a right circularly polarized wave, the wave
most easily absorbed. Although most ECR reactors do inject through rectangular
waveguide, one recent series of experiments has injected circularly polarized microwaves
through circular waveguide, and has seen simpler behavior.5'6

In the next section, we discuss the wave propagation as well as the qualitative
nature of the observed microwave absorption and plasma production. In doing so, we
also discuss other ECR reactors, how their results compare with those from NRL, and
also the implications of all of these results for theory. We also briefly review other
theoretical treatments of the problem. The remainder of this work formulates a theory of
the propagation and absorption of the right hand circular wave in the plasma, the self
consistent plasma response, and the way this formulation can be simply and economically
included in the simulation scheme we have developed. As we will see, the theory is fully
self consistent whether or not the electron distribution function is Maxwellian.
Furthermore, depending on how one contours the magnetic field in space, the electron
distribution function may or may not have a large nonthermal tail. In fact this ability to
tailor the electron distribution function by adjusting the magnetic field profile may prove
to be one important advantage of ECR reactors. Our formulation, coupled with the
simulation codes2-4 should be able to model this aspect of the plasma reasonably
accurately. Thus the formulation we develop has all of the qualities enumerated earlier.
It should make the calculation of plasma properties, as a function of injected power and
microwave configuration, much more accurate. However the theory is formulated only
for the right hand wave. The propagation of the left hand wave can be handled by a ray
trace calculation in one or two dimensions, but this wave is not absorbed unless it is
depolarized, for instance by reflection. Thus a quantitative description of the plasma
including both polarizations would be much more complicated. However it is worth
noting that ECR reactors can be run, have been run, and is probably preferably should be
run with only the right hand circularly polarized wave initially injected.
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II. Waves in the Cold Plasma, and Qualitative Nature of the Observations in the NRL
ECR Reactor.

In the NRL ECR reactor, the waveguide connects to the outer edge of the vacuum
chamber, separated from the waveguide by a quartz window, in such a way that the
microwave propagation, both in the waveguide and in the plasma is mostly along the
magnetic field. The microwave frequency is 2.45 GHz, so the magnetic field at cyclotron
resonance is 875 G. A schematic of the NRL ECR reactor is shown in Fig.(l). Several
magnetic field configurations are used, two of which are shown in Fig.(2). The first is
called the standard profile, which has a uniformly decreasing field with a value higher
than for cyclotron resonance at the window. The other field configuration is similar, but
it has a lower magnetic field so that the cyclotron resonance position at the window. For
field aligned propagation, the cold plasma dispersion relation allows for two modes of
propagation, right hand circularly polarized with dispersion relation

n2 -- =1-o o - cosO) (1)

and left hand circularly polarized with dispersion relation

n2- =1-0( + K2cos0) (2)

Here e), is the electron plasma frequency, Q2 is the electron cyclotron frequency, taken to
be positive, and 0 is the angle between the phase velocity of the wave and the magnetic
field. Unless we are considering propagation away from the direction of the magnetic
field, we take 0=0.

Let us consider first the right hand circularly polarized wave. It has a resonance at
Co = Q, and a cutoff at Q =(o - oa2)/to. In the magnetic field configuration, the wave is
injected below the cyclotron frequency and propagates into a decreasing magnetic field.
As long as (o < Q at the point of injection, the wave will propagate at any plasma density;
i.e. there is no maximum density for propagation. This is undoubtedly the reason ECR
reactors are successful in generating plasmas with high (4Ž>>Q) electron density.
However just beyond the cyclotron resonance, there is of course no propagation. As one
follows the magnetic field line beyond the resonance, as the magnetic field and density
both decrease, and one again comes into a region of propagation after passing cutoff.

Now consider the left hand circularly polarized mode. This mode has no
resonance. (It is resonant with the ions at much lower frequency.) It does have a cutoff at
0)e2 = 0) + Cog2. If co =Q2, then this plasma cutoff is at twice the critical density.

Let us now consider the ray paths of the left and right circularly polarized waves.
The rays are oriented along the direction of the group velocity. We consider only the
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right hand wave near resonance and the left hand wave near cutoff. For the right hand
wave near resonance, the first term on the right hand side of Eq. (1) is negligible, and the
dispersion relation for (o as a function of k becomes

0) =9cosO 1+ ]W (3)

Taking the gradient of co with respect to k in spherical coordinates in k space, we find that
the 0 component of the group velocity, for small 0 is approximately -c2 k•O/oe 2. That is
the group velocity is in the negative 0 direction and is proportional to 0. Hence for small
deviations of the phase velocity from the field line, the ray path tends to converge back to
the field line. That is the microwave power tends to flow along the field lines to the point
of electron cyclotron absorption. However, further from cyclotron resonance, another
important effect is that the waves refract away from regions of high density5'6. Thus as
the waves enter at high field and propagate toward lower field, they spread out for two
reasons. First the magnetic field is divergent, and the waves tend to duct along the field;
and second, the waves refract away from regions of high plasma density. For
convenience, and to simplify the theoretical development, we do not consider the
refraction here, although it is simple enough to include in the formulation with existing
ray tracing codes.

Now consider the left hand circularly polarized wave near cutoff. If co is near the
cutoff frequency 4oo, let co = o), + Wi, and assume that both k and 0 are small. In this case,
one finds that for small 0, the 0 component of the group velocity is in the positive 0
direction and is proportional to 0. Thus near cutoff, the left hand polarized wave tends to
bend away from the field line.

We now discuss qualitatively the nature of the observations on the NRL ECR
reactor. As we have said, the waveguide configuration is such that waves near, but below
the electron cyclotron frequency are launched parallel to the magnetic field from the high
field side of the reactor. We assume also that there is a matching network so that there is
no reflection directly from the vacuum window, and that reflections are from the plasma
only.

One of the main observations is that the electron plasma density can be very high7.
Langmuir probe and 140 GHz interferometry measurements show that the spatially
averaged electron density is about 1012 cm-3 at maximum microwave power input (about
500 W). Even at rather low microwave power, the electron plasma density is over 1011
cm-3 on axis. Since the gas pressure is about 1 mtorr, the plasma can be as much as 3%
ionized. Since the microwave frequency is 2.45 GHz, the electron density in the plasma
can be more than an order of magnitude greater than the critical density at the injected
frequency, which is about 6x101cm-3. At all but the very lowest microwave power, the
maximum electron density also is large compared to the cutoff density for the left hand
mode.
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Another striking observation in the NRL experiment is that for the standard field
profile, there are two modes which have been called the high and low modes7 . As the
microwave power is increased, there is a rather abrupt transition. In all cases, the
maximum electron density increases with input microwave power. However at some
particular power, there is a step increase in electron density (perhaps by almost a factor of
2) as the power is raised. What is even more notable is that the reflection of the
microwave power suddenly drops as the power increases above this threshold. A typical
plot of average electron density from interferometry, and percent of reflection, as a
function of microwave power is shown in Fig. (3) for the NRL ECR reactor7. Here the
fill density is 1 mtorr and the gas is argon. It can also be seen from Fig. (3) that at the
highest injected power, the reflection begins to rise again and the electron density begins
to fall. However this effect is not nearly as dramatic as the low to high mode transition.

The high and low modes have also appeared in other work on ECR plasmas 8-°
In these works however, the behavior is somewhat different. For their cases of
monotonically decreasing magnetic field, i.e., no magnetic mirror, Carl et al8 See an
abrupt transition at an input power of about 40 Watts. Crossing this transition, the
electron density at the probe position jumps by about an order of magnitude, from about
3x101° cm-3 to about 3x10" cm-3, and the reflected power also drops upon entering the
high mode. Popov's experiments9"0 show large reflection and transmission for electron
densities below about 5x1010 cm-3, and almost complete absorption for electron densities
above about 7x1010 cm"3. While Fig. (3) may show a glitch at the microwave power and
electron density observed in Refs. (8-10), the main transition is at higher power and
higher electron density.

It might be tempting to attribute this transition to the tunneling of the right hand
circularly polarized wave through the cyclotron resonance, to the cutoff and its emergence
out the other side. As the electron density increases, tunneling decreases, and the
absorption at the cyclotron resonance approaches 100%. Figure 4 shows the relative axial
profile of microwave power along the axis7 , in the NRL experiment, for an incident
power of 375 Watts. The microwave power goes to zero beyond resonance, consistent
with the absence of tunneling. However the Budden tunneling formula predicts
essentially 100% absorption at the plasma density generated, even at the lowest
microwave power. Thus tunneling does not seem to be the explanation for the high mode
to low mode transition. Carl et a18 also note that Budden tunneling is not even consistent
with their data, which shows a transition at much lower electron density.

What is more likely in the NRL experiment is that at lowest density, the left hand
mode propagates back and forth through the vacuum chamber, and ultimately all of part
of it is reflected back through the input waveguide. At the lowest power and electron
density, microwave power is seen on axis beyond the cyclotron resonance7. This is
almost surely the left hand wave. At the higher electron densities, this wave becomes
cutoff on the axis, although it may propagate in the outer radial regions. There they could
convert to extraordinary modes (propagating mostly radially) and be absorbed at the
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upper hybrid resonance, 0=42- j2e 2 . The ray paths do refract to the outer regions near
cutoff as we have seen, although in the ECR reactors, the scale lengths are not long
compared to the cutoff left hand mode wave length. Alternatively the left hand wave may
be absorbed be absorbed in some sort of cyclotron resonance of a surface wave near the
waveguide window. In any case, the low to high mode transition in the NRL ECR reactor
seems to involve the left hand mode in some way, and the details appear to be rather
complicated.

It is interesting that Ueda and Kawai11 have observed extraordinary mode
propagation in the outer radial region of an ECR plasma,. However they observed this
mode only for a central density below about 2x10'1 cm3 , which is a rather low density
compared to the NRL experiment. Nevertheless at low density this left hand mode
probably gets into the plasma, converts to an extraordinary mode, and is absorbed or
partially absorbed in the outer radial regions of the plasma at the upper hybrid resonance.
According to this picture, as the injected power further increases, the electron density at
the microwave window rises to where it is above the cutoff density for the left hand mode
everywhere on the window. At this point the left hand mode could not get into the
plasma and it would be reflected and perhaps also partially absorbed by a surface wave at
the window. This could be a qualitative explanation for the decrease in electron density
and increase in reflection at the highest power.

Let us briefly review the treatment of the left hand polarized wave by previous
authors. References 5 and 6 ignore it completely. Since they inject through circular
waveguide, they usually inject only a right hand polarized mode, in which case this
assumption is valid. However in some of their experiments they mix a TE11 mode with a
TM01 mode, so that in these experiments, one would expect a left hand mode to be
injected as well. Reference 8 seems to briefly mention the left hand wave and then
dismiss it. References 9 and 10 also briefly mention it, but then say, citing Musil and
Zacek 2, that that is absorbed at the resonant surface, where co=o4 due to the transverse
component of wave number. According to Ref. 12, the perpendicular wave number
induces a resonance near the plasma frequency, and at this point, there can be coupling
between the right and left hand waves. However, while a left hand mode may convert to
a right hand mode and be absorbed, a right hand mode may also convert to a left hand
mode and thereby not be absorbed. Thus it is not obvious that this resonance can increase
the total absorption. Furthermore, if the electron density at the window is above the
critical density, this coupling would not occur 12 . Thus the following qualitative picture
emerges for waves with non-zero perpendicular wave number. If the electron density at
the window is below the critical density, both modes enter the plasma, but there is a mode
conversion point, and therefore energy exchange between the left and right hand modes at
the point before cyclotron resonance where o=)-e. If the electron density at the window is
between the critical density and the cutoff density for the left hand wave, both waves
propagate into the plasma as cold plasma theory would predict, except that the wave
length of the left hand mode is long enough that one must doubt the accuracy of a ray
trace calculation for it. If the electron density at the window is above left hand mode
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cutoff density, then the left hand mode is either reflected at the window, or partially
absorbed in a surface mode.

It is also worth pointing out that in a carefully diagnosed experiment, Scharer et
a113 conclude that for high electron density, WKB theory for parallel propagating modes
is reasonably accurate and there is little effect of transverse wave number on the
propagation. Thus all authors, including this one, basically brush aside the effect of the
left hand wave. However it is probably playing an important, though subsidiary role in all
of the experiments except those of Refs. 5 and 6.

As is apparent from Fig. (4), the NRL experiment shows that 99% of the
microwave power is absorbed before the cyclotron resonance point. This is also
consistent with many of the other cited experiments as well. Thus these observations are
not consistent with a model of simple deposition of microwave power at the resonant
surface.

The disappearance of microwave power beyond the cyclotron resonance point
shown in Fig. (4) may be consistent with the presence of left polarized modes, because on
the axis, the electron density is greater than the left hand mode cutoff density almost
everywhere, so one would not expect to see the left hand mode on axis. This hypothesis
of the importance of the left hand mode in the low to high mode transition could be tested
theoretically by doing a ray trace of the this mode as a function of electron density and
electron density profile. Alternatively, it could be tested experimentally in one of two
ways. The first is by launching the wave into the chamber through a circular waveguide
whose polarization could be controlled by the input structure as in Refs. 5 and 6. The
second is to look for microwave power at large radius in the existing experiment.

Another experimental observation is the 'blue core' mode7. For the standard field
profile, the position of cyclotron resonance is about 7 cm from the waveguide flange. In
this case, it may be true that the left hand mode can refract around the maximum electron
density and propagate in the outer radial region of the plasma. However if the current in
the magnetic field coils are adjusted so that the position of cyclotron resonance is just at
the flange, then the discharge takes the form of the 'blue core' mode. Here, the entire
discharge is more constricted than that of the 'high mode'. Also the discharge is visibly
different. The waveguide opening is visible as a blue core, with a faint pink corona
around it, and it is likely that the discharge exists only along the those field lines which
project back close to the waveguide opening. It seems that the probable explanation of
this phenomenon is that if the cyclotron resonance position is at the waveguide flange, the
right hand mode is immediately absorbed with no opportunity to refract out radially, and
as long as the electron density there is above about 1011 cm-3, the left hand cannot
propagate at all in the plasma. It must either be reflected and/or absorbed by surface
fields at the window. As we will see, the way in which the microwave deposits its power
in the electron distribution function can depend sensitively on the magnetic field profile
near the absorption position. Thus the standard and blue core modes may have rather
different electron distribution functions (with the blue core mode being less likely to have
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a non thermal tail on the electron distribution function). This then may account for their
different optical properties.

To summarize, it seems very likely that in the NRL and other experiments, both
the left and right circularly polarized waves are playing an important role in the physics of
the device. However the propagation and absorption of the left hand wave is very
complex and has not been adequately treated for a thermal plasma in any of the
theoretical models to date. If only the right hand wave were present, the behavior of the
reactor would probably be clearer and more predictable. One could most likely optimize
performance of the reactor in parameter space more reliably and predictably if only this
mode were present. Therefore, in this work, we present the self consistent theory of the
propagation and absorption of right hand wave in a way in which it can be easily and
economically incorporated into the NRL quasi-neutral particle simulation.

12



III Propagation and Damping of the Right Hand Cyclotron Wave.

We now turn to the development of the theoretical formulation, and also review
some of the other published theoretical work. Our formulation assumes propagation
from some starting point to cyclotron resonance. The basis of our calculation is a WKB
calculation of wave propagation along a field line, together with the damping and the self
consistent plasma heating. Specifically it is not necessary to assume that the electron
distribution function is Maxwellian. The wave damping is determined from the exact
distribution function which can be determined from the simulation 2-4, and the plasma
heating and wave damping is consistent with this.

There are many reasons the distribution function may be non Maxwellian.
Ionization and excitation naturally deplete the tail. On the other hand, the heating
process may give rise to a non thermal tail. To see this, note that cyclotron damping
energizes particles with parallel velocity equal to (9-o0)/k. Depending on the spatial
dependence of 92(z), there may a large region of the plasma where the resonant velocity is
high. Then the wave would damp out almost completely before the resonant velocity
reached into the thermal part of the distribution function. On the other hand, if K(z)= (0
at the waveguide window (or else approaches it very abruptly in space), the heating will
be in the thermal particles. This could be one possible explanation of the differences
between the high mode and the 'blue core mode' in the NRL experiment. For the
standard field profile, the distribution function may be generated with a non thermal tail
because the cyclotron wave damps out further from cyclotron resonance, where the
energetic particles are resonant. However for the 'blue core mode', the absorption must
be by the thermal particles, since the resonant position is at or very close to the window.
Thus, while the two plasmas absorb about the same power and have about the same
electron density and temperature, the distribution functions generated may be different,
implying different chemistry and excitations (i.e. visible color).

Thus by appropriately contouring the field, an ECR reactor allows some
flexibility in the type of electron distribution produced. This could be a very great
advantage of ECR reactors as compared to other types of high electron density reactors.
With the simulation schemes developed 24 , and the wave deposition model developed
here, this can most likely be modeled with reasonable accuracy.

References 5 and 6 treat the problem most like we do here, except in their
calculation of damping the plasma is assumed to be Maxwellian. Their model for the
plasma is a simple diffusion equation which is coupled to their equation for wave
deposition. Williamson et al 4 , in a one dimensional treatment consider Budden
tunneling of the right hand mode in realistic density and field profiles. Their results
appear to be most important for fairly low density plasmas, 4-92. Ashtiani et al15
develop a simulation code rather like ours, but assume power is deposited at the cyclotron
resonance. They also consider cyclotron damping away from resonance, but the power
lost by the wave in this cyclotron damping does not appear to be deposited in the plasma.
Also they assume damping based on a Maxwellian distribution function. A very
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interesting calculation is that by Yasaka et al. 6 They solve the two dimensional full
wave problem of wave propagation in a cold, weakly collisional plasma with no
assumption regarding polarization. The calculation assumes a frequency Co but solves
spatially in r and z. An antenna is assumed to drive the system, and depending on where
the antenna is, the propagation may be mostly axial or mostly radial. The calculated
absorption (from collision absorption in a cold plasma) then goes into ionization, and the
electron density is calculated from a dimple diffusion equation. Reference 16 probably
gives the greatest degree of realism as regards geometry and polarization, that one can
achieve economically (i.e. without a full fast time scale particle simulation). On the other
hand, it seems that the formalism developed here, coupled ot the simulations of Ref. 2-4
will give the greatest degree of 'thermal' realism that one can achieve economically.

We now proceed with the development of the formulation. For propagation along
the field line, the dispersion relation of the right hand circularly polarized wave is given
by

2

n2 =I-- 0)1 (4)

and one can calculate that the group velocity along the magnetic field is given by

dco 2kc2(to- _) 2  (5)

dk 0),2u(

The wave enters the plasma at a frequency near but below the electron cyclotron
frequency, and propagates along the field toward lower magnetic field. As the wave
approaches the cyclotron resonance, k approaches infinity as (f)__)- 112 so the group
velocity approaches zero at this point at (Q-_,0)312.

Now let us consider the wave energy density. It is given by

E2  d F_(kC 2 0),2 E E2  ),2
W=-o- 0) e (6)

167r dw L ) o) w(o)- K) 167r 0)(K_ o)2

where E is the amplitude of the electric field and we have assumed high electron density
in writing the right hand side of Eq. (6). The power density flux of the wave is the group
velocity times the energy density

P = VgW (7)

and the wave kinetic equation is

14



d+VW -7, (8)dW +V*P=-2)yW

where -y is the cyclotron damping rate of the wave. We consider two approximations for
the ray path. As we have seen in the last section, the ray paths of the cyclotron waves
tend to bend into the field line, so the simplest approximation is to consider only
propagation along the magnetic field. The other approximation is to use the actual ray
path, where a unit vector along the ray is denoted iry(s) where s is the distance along the
ray path (which may be the actual ray path, or for simplicity may be approximated as the
field line. Thus we may make the approximation

Vg = Vg B/B (9a)

or more accurately,

Vg = vg iray (9b)

and assume there is no time dependence to the ray equation. Then taking the divergence,
and making use of the fact that the magnetic field itself has zero divergence, we find that
the ray trace equation for the electron cyclotron wave is

d [vgW]_ 2rW (lOa)

dsL B J B

or more accurately,

V * vgWiy = -2fW (10b)

where s is a measure of distance along the magnetic field. For each magnetic field line,
Eq. (10A) is a one dimensional equation along that line. Equation (10B) is also a one
dimensional equation, but now along the actual ray path. For the purpose of this paper,
we usually use the simpler approximations of the ray path being the field line. However
in actual implementation, where refraction may be important in spreading out the wave
power away from the field lines it started on, the B equations would more likely be used.
Notice that even though the wave propagates nearly parallel to the field line, small
deviations from parallel propagation can take the ray far from the original field line over
long propagation distances. Thus to consider the spreading of the wave energy away
from the field lines projecting back to the waveguide opening, it is necessary to consider
refraction, that is the B equations.

For the approximate solution, the A equations, the ray trace equation has a
particularly simple form. It is just a single equation for each field line. In the quasi-
neutral simulations of the ECR reactor, there is already an equation for the electron
dynamics along the magnetic field. Thus it is a simple matter to add one additional
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equation along each field line to describe the ray propagation. For a more accurate ray
trace, we would use the B equations.

We now have to work out an expression for the cyclotron wave damping ". To
calculate this, we rely on the description of cyclotron wave damping in Stix 17. The
equation for the electric field E, which determines the dispersion relation is

kxkxE + (o/c)2 E *E=0 (11)

where E is the dielectric tensor, given by E = I + X((ok), and X is given by Stix as

2 Fý-Ld ezez( " )(2pd- .0
d (12)

where have assumed oy74 and have neglected the effect of the cyclotron harmonics. T is a
complicated tensor defined by Stix, involving Bessel functions. Here f is normalized so
that its integral over a three dimensional momentum space is unity. We approximate the
damping by assuming here that the wave propagates only along the field line, i.e. k± = 0.
Thus the only effect of k± • 0 we consider is the fact that a wave may separate from the
field line it started on. Otherwise we neglect the effect of k± • 0. In this case, the tensor
T simplifies considerably

1 i0
-0

4 4
T = 0 (13)

4 40 0 0

To continue, we will make one further approximation as regards the system. The
particle simulation for the electrons is executed by following their motion along the field
and also by keeping track of their magnetic moment as it changes due to collisions. Since
in practice, the collisions isotropize the electron distribution function rather quickly, we
will assume that the electron distribution function is isotropic in momentum space, so that
it depends only on the magnitude of the momentum variable, p. Then, one can write out

the expression for X as an integral in momentum space in polar coordinates, p and 0,
where 0 is the momentum space polar angle. It is
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=(Wf, d'a T~ps in 2  1 1 (14)

S 4 o) - vcosO- o)- dp

where now I and T are 2x2 matrices in the transverse plane. It is not difficult to show that
for a cold plasma, one can recover the dispersion relation for the right hand circularly
polarized wave. (For the left hand circularly polarized wave one would also have to
include denominators going as ((o+K)-1.

To recover the damping rate of the electron cyclotron wave, we take the residue
part of the singular denominator in Eq. (14)

1 =cos (k°v - cosoJ (15)(0o- Q -cos0 k

kv

Then one can write out the dispersion relation including the electron cyclotron damping
as

-k2 +( - c2(o-) (16)

MC2 f P k p2 + 0

where Pm = m(L---o)/k. The damping rate, -y is then given by

-Y (P- °P2dP--[1 0 =0 (17)8j22 • . k P2 dL p j

To implement this damping rate in the evaluation of Eq.(17), we must calculate f(p). This
information is available from the particle simulation of the electron dynamics. Thus this
expression gives us a damping rate which is self consistent with the electron dynamics as
calculated from the particle simulation. Specifically, it is valid whether or not the
electron distribution function is Maxwellian. For cases where the high energy electron
tail is over populated (for instance due to the cyclotron heating), or depleted (for instance
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due to ionization or excitation), the expression for the damping rate in Eq.(17) will still
be consistent with the electron distribution function which is generated. Notice that for a
distribution function which is a monotonically decreasing function of energy, af/ap < 0,
so that the wave damps. As we approach cyclotron resonance, this damping scales
roughly as

_ 0 (18)Q~kv,

where ve is the electron thermal velocity, and using the expression for the group velocity,

c - cc) W- (19)

Vg (kC) 2 V, Ve

where in the last relationship on the right side of Eq. (19) we used the fact that near
resonance (kc)2 =- o•z2o(i-o). However, for significant damping, we must have 2-0o c

kve, so as the ray approaches the cyclotron resonant surface, the spatial damping rate is
about equal to the wave number.
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IV The Response of the Electron Distribution Function and a Proof of Self Consistency.

As the cyclotron wave damps, the electrons gain energy and are stochastically
heated. We use the quasi-linear theory to model the electron response to the to the
waves 18. The quasi-linear equation for the response of the electron distribution function
is

df I2 E pi + (k )

-t-L 32 Jt co o -' dp- M O).dp J

where the difference between the coefficients in front of Eq. (20) above and Eq. (17.41)
of Stix is a result of the different normalization of the electric field (i.e. exponential
notation vs. sine and cosine, including polarization etc.) Also the propagation is assumed
to be entirely parallel to the magnetic field. What we would like to show now is that the
expression for the damping of the electron cyclotron wave, derived in the last section is
consistent with the energy gain of the electrons from quasi-linear diffusion, which is

c' = I d3p (pi 2/2m + pz2/2m) af/at (21)

Substituting from Eq.(20) into Eq. (21), it is simplest to calculate this by first integrating
by parts over p.L and Pz. Then the subsequent integrals are done in spherical coordinates
in momentum space. Of course, as is consistent with the calculation in the previous
section, we assume that the distribution function depends only on p and not on polar
angle 0. Doing this, we find

m=-t 2 E2 P2dP[l -2 (22)

Using the expression for the wave energy density, Eq.(6), and the damping rate, Eq.(17),
it is not difficult to show that the two results are consistent with one another, that is

2yW = (23)

Thus one way to self consistently simulate the response of the electrons to wave damping
is to incorporate quasi-linear diffusion into the electron equation of motion.
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V. Implementation in a Particle Simulation

We have seen that the electron cyclotron waves propagate along ray surfaces,
which we may approximate as magnetic field lines, toward the low field regions. As they
do, they damp, and the self consistent response of the particles is to diffuse in velocity
space. As Stix points out 8, this diffusion obeys an additional constraint. As the particles
diffuse, the change in perpendicular velocity is related to the change in parallel velocity in
such a way that the particles are constrained to move along circles in v, v± phase space
which are centered at v, = oW'k. One can show this either by calculating the characteristics
of the quasi-linear diffusion equation, Eq. (20), or by using the fact that as the particles
diffuse in velocity space, energy and parallel momentum are conserved between waves
and particles. (The parallel momentum density of the wave is (k/a)) times the parallel
energy density.) Therefore if the change in parallel velocity, 8v•, is known, the change in
perpendicular velocity is simply given by

8 v1= -[V - (oWk)]8vz/ v1  (24)

The parallel velocity is especially easy to work with because it is a Cartesian
component. Considering only the parallel velocity, the quasi-linear diffusion equation
(actually a Fokker- Planck equation) is

=[lre2E 2]d (-- ) (25)

which represents a velocity space diffusion and dynamic friction. The idea is then to
replace the Fokker Planck equation with the appropriate terms in a Langevin equation,
which are then added to the other terms in the parallel electron equation of motion solved
in the simulation.

The diffusion equation has a delta function in it, and this must be integrated in any
finite difference treatment. For the case of cyclotron wave propagation, all rays have
frequency ao, but the magnetic field, and therefore the wave number are functions of
position along the field s, so we can do a spatial average of the delta function.

In our particle simulation, the field line is divided into grid cells, and potentials,
fields, and forces are grid quantities. At one boundary of the cell, the parallel velocity
defined by the delta function is [92(s)-0)]/k(s); at the other, [K2(s+As)-ao]/k(s+As). If in
the cell, the parallel velocity of the particle is between these two velocities, it diffuses by
the waves, otherwise not. Thus, we can replace the delta function with

b~)- kv, - K)= [k(s)Av,(s)]'1 for[ >~s - , > 2(s + As - c

I k(s) j Lk(s +As)j

= 0 otherwise (26)
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Also, Avz(s) can be approximated as

Av.(s)= As{ Q k jJ} (27)

This gives rise to a diffusion coefficient D as shown in Fig.(5a) in the solid curve.

We wish here to apply this diffusion to a particle simulation scheme. This means
replacing the Fokker-Planck equation with an equivalent Langevin equation as in Ref. 4.
Thus in the Langevin equation, in each time step, we add a random addition to vz. This
addition has Gaussian statistics, and whose mean square is D&t.

One must exercise care in defining the time step 8t, because the delta function in
Eq.(25), indicates that all quantities are varying rapidly in space and as a function of
velocity, and the particle may move quickly through the resonant region. We consider
two possible cases. For Case 1, say that the particle does not travel out of the space step
As in the simulation time step At. (v,< As/ At). Usually this is a required for thermal
electrons in a particle simulation. In this case, & = At. On the other hand, for fast
electrons with v,> As/ At, (Case 2), the time the particle undergoes diffusion is given by
As/v,, so St = As/v,. This is simply the time that the particle is in the grid cell where the
diffusion takes place. Then, As drops out, so there is no dependence on time or space
step in this case. Thus in the case of high velocity particles, the diffusion is characterized
by a particle moving through a diffusing region and getting a particular kick in velocity
upon crossing the region. This is similar in spirit to the technique of Ashtiani et al15, and
also of our own simulations2 up to this point. Low velocity particles, by contrast, diffuse
within the grid cell in our simulation model. Since the resonant velocity decreases as we
approach cyclotron resonance, there will be some position where the resonant velocity is
just As/At. Closer to cyclotron resonance, the particles are Case 1, further out they are
Case 2

We now consider the dynamic friction for the parallel motion. This is simply
minus the derivative of the diffusion coefficient.

Fd = -DD/Ivz (28)

This is just two delta functions, which might be approximated as in the solid curve of Fig
(5b). For numerical reasons it might be simpler to take a smoother function for both, for
instance a Gaussian for the diffusion and its derivative for the dynamic friction. These
are shown as the dotted curves in Fig.(5). For quasi-linear diffusion, the diffusive change
in velocity in a time step, proportional to EAt1/2 is much greater than that from the
dynamic friction, proportional to E2At. The dynamic friction would be applied in the
normal way in the case of vz< As/ At. Depending on just what the particle velocity is with
respect to the resonant velocity, the force may be either positive or negative. On the other
hand, if vz> As/ At, then the change in velocity from the dynamic friction would be the
acceleration times As/ v. In either case, the change in velocity from the dynamic friction
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might be positive or negative, depending on just what the particle velocity started at.
Including the change in velocity as the particle undergoes its various accelerations and
diffusions, the orbit itself may average out the positive and negative contributions to the
dynamic friction. In either case, the result of the dynamic friction would be to produce
small average change in velocity when averaged over all particles.

Once the change in parallel velocity is calculated, the change in perpendicular
velocity is calculated by Eq. (24). This then completes the formulation of the absorption
of the cyclotron waves and the associated self consistent heating of the electrons.

The only potential difficulty is that the Langevin equation is statistical, whereas
the wave kinetic equation is not. Therefore there will be statistical fluctuations to the
energy conservation. If necessary, this can be corrected by adding a correction to the
velocity of each diffusing electron as was done in the calculation of electron-electron
collisions with a Langevin equation4. However this is probably not necessary. The
particle distribution is calculated correctly within the limits of statistical accuracy; only
total energy conservation is not quite correct. If in some period of time, say 500 Watts of
microwave power injected, and only 485 watts is absorbed, the error is probably not
significant. Alternatively one could simply redefine the microwave power.
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VI. Summary

Let us now summarize the steps to the implementation of this scheme. First, at
the input waveguide, specify a bundle of rays, all of them having frequency 0o and each
one having energy density specified by some input profile, perhaps the distribution of
power across the face of the input waveguide. The initial perpendicular k is small and
may be approximated as zero, or perhaps specified by the waveguide dimensions. Then
calculate wave number and the group velocity across the input profile as well. Then for
each ray, calculate the ray path. In some cases, it might be reasonable to approximate this
ray path as the field line. The next thing is to calculate the cyclotron frequency, along the
ray, from the specified magnetic field. Then from the expressions for dispersion relation
and group velocity, calculate the wave number, the group velocity and the minimum
resonant electron momentum Pm, as a function of position along each ray. Then calculate
the damping of the cyclotron wave at each point from Eq.(17) where f(p) is, taken from
the electron simulation at the previous time step. If there is not a sufficient number of
particles in a grid cell for an accurate calculation of f(p) at each position, it might be
necessary to average over several local grid cells, or even the entire field line to get an
appropriate f(p). Then integrate for W along each ray (or field line) by solving Eq.(10 A
or B). From W(s), calculate E 2(s) from Eq.(6); then use this electric field in the in the
expression for the diffusion coefficient and dynamic friction in the Langevin equation for
the parallel motion of the electrons. In this way the electron distribution function is
advanced in a way self consistently with the absorption of the cyclotron waves. This
formulation is valid and self consistent even though the electron distribution might or
might not be Maxwellian, and its tail might be depleted or overpopulated due to various
competing physical processes. The scheme is simple and numerically efficient, since no
new time scales are added to the formulation 2. The computer time to solve it and the
human time to code it up are both minimized.
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