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ABSTRACT 

In this study, we have addressed reactor-powered and combustion-powered 
multimegawatt, burst-mode, space power systems to evaluate the effect 
turbine inlet temperature will have on their performance and mass. Both 
systems will provide power to space-based antiballistic missile weapons 
that require hydrogen for cooling, and both use this hydrogen coolant as a 
working fluid or as a fuel for power generation. The quantity of hydrogen 
needed for weapon cooling increases as the weapon's cooling load increases 
and as weapon coolant outlet temperature decreases. Also, the hydrogen 
needed by the turbines in both power systems increases as turbine inlet 
temperature decreases. When weapon cooling loads are above 40% to 50% of 
weapon power and weapon coolant outlet temperature is below 300 K to 400 K, 
the weapon needs more hydrogen than the turbine in either the reactor- or 
combustion-powered systems using turbine inlet temperatures at or below the 
limits of current materials. There is therefore very little system mass 
reduction to be gained by operating a burst-mode power system at a turbine 
inlet temperature above present material temperature limits unless the 
weapon's cooling load is below 40% to 50% or coolant outlet temperature is 
above 300 K to 400 K. Furthermore, the combustion system's mass increases 
as turbine inlet temperature increases because oxygen inventory increases. 
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INTRODUCTION 

We are currently evaluating multi- 
megawatt space power systems to help 
determine which areas of technical 
development should receive emphasis. 
This paper presents results from a 
part of our system evaluation work 
that deals with open, burst mode 
power systems. Two types of systems 
are considered here: (1) a hydrogen- 
cooled reactor-powered system and 
(2) a hydrogen-oxygen combustion- 
powered system. Both systems are 
open because they exhaust effluents 
from their power generation process 
into space, and both provide elec- 
trical power to space-based weapons, 
such as electromagnetic launchers 
(EML), neutral particle beams (NPB), 
and free electron lasers (FEL), each 
of which will require a few hundred 
megawatts for several minutes. It 
is generally believed that increas- 
ing a space power system's turbine 
inlet temperature will improve 
system performance and reduce mass. 
This paper studies the effect 
turbine inlet temperature has on the 
performance and mass of these two 
open, burst mode power systems. 

The reactor-powered system (Figure 
1) consists of a hydrogen coolant 
subsystem, a hydrogen-cooled 
reactor, a turbine, a flywheel, a 
generator, a power conditioning 
unit, and a weapon. The hydrogen 
coolant subsystem comprises liquid 
hydrogen stored at 20 K and 0.1 MPa 
pressure, a multifoil insulated 
pressure vessel, a refrigeration 
unit, and a meteoroid shield. The 
hydrogen-cooled reactor uses a 
moderated uranium-carbide fuel core. 
The flywheel stores 10 s worth of 
full power energy for use during 
transition periods. The power con- 
ditioning (PC) unit changes the 
generated electrical power into a 
form that can be used by the weapon. 
The PC unit's characteristics are 
strongly dependent on the type of 
weapon to be powered. An EML weapon 
will require almost no power condi- 
tioning because its generator will 
feed power directly into the 
weapon's circuitry. On the other 
hand, both NPBs and FELs will re- 
quire substantial power conditioning 
to change the generator output into 
carefully regulated DC power at 
roughly 100 kV. 
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Figure 1.  Burst-Mode, Reactor- Powered, Space Power System Schematic 



When the weapon is operating, a pump 
pressurizes and supplies hydrogen 
coolant to the weapon. The pump's 
outlet pressure is equal to the 
turbine's inlet pressure plus any 
pressure losses experienced before 
the hydrogen enters the turbine. 
(The effect of high pressure on the 
weapon has not been considered in 
this analysis, but it may be 
important and should be considered 
in future analyses.) Pressurizing 
the hydrogen when it is a liquid 
requires much less power than 
compressing it in the gaseous state 
after it has cooled the weapon, and 
the mass of pumps is less than that 
of compression equipment. 

The hydrogen absorbs heat in the 
weapon from various loss mechanisms 
that contribute to the weapon's 
inefficiency. The flow rate of 
hydrogen needed to cool the weapon 
depends on the hydrogen's outlet 
temperature and on the weapon's 
cooling load. An individual 
component may be primarily 
responsible for determining this 
coolant flow rate. For example, in 
a neutral particle beam device, the 
heat that must be dumped from the 

accelerator cavity represents only a 
small portion of the heat that must 
be dumped from the entire weapon; 
however, since the cavity must be 
kept very cold, the permissible 
temperature rise in the hydrogen 
coolant is small and its flow rate 
is quite large. The weapon's 
cooling load is the fraction of its 
input power that must be removed as 
heat. After cooling the weapon, the 
hydrogen cools the power 
conditioning unit and the generator. 
It then enters the reactor where it 
is heated to a prescribed turbine 
inlet temperature. After powering 
the turbine, the hydrogen is 
exhausted into space. 

If the turbine needs more hydrogen 
than the weapon, extra hydrogen is 
supplied from the storage tank. If 
the turbine needs less hydrogen than 
the weapon, the turbine's pressure 
ratio is reduced and all of the 
hydrogen coming from the weapon is 
used. 

The combustion system, Figure 2, is 
similar to the reactor system; but, 
instead of a reactor, it uses a 
combustion chamber and an oxygen 

a 

Figure 2.  Burst Mode, Combustion Powered, Space Power System Schematic 



supply. The combustion product 
temperature for a stoichiometric 
mixture of hydrogen and oxygen is 
quite high, so excess hydrogen is 
used to lower the temperature. A 
hydrogen-to-oxygen ratio is selected 
to give the desired combustion 
product temperature. As the ratio 
of hydrogen to oxygen decreases, the 
combustion product temperature 
increases, and the ratio of steam to 
hydrogen in the combustion products 
increases. After the combustion 
products power the turbine, they are 
exhausted into space. 

We have not considered using oxygen 
as a coolant; however, if it can be 
used, the quantity of hydrogen 
needed in the combustion system will 
be reduced. 

SYSTEM PERFORMANCE AND MASS 
CALCULATIONS 

# 

We calculated performance and mass 
for both types of power systems 
using models developed at Sandia 
National Laboratories and described 
by Edenburn (1988). The models 
calculate two hydrogen flow rates: 
(1) the flow rate necessary to cool 
the weapon and (2) the flow rate 
needed by the turbine to generate 
the required weapon power. Since 
the same hydrogen is used by the 
weapon first and then by the power 
generation system, the total 
hydrogen flow rate needed is the 
greater of the two above flow rates. 
The flow rates are calculated using 
temperature dependent algorithms for 
hydrogen enthalpy. The algorithms 
include the enthalpy gained by 
converting from para to normal 
hydrogen between 200 K and 300 K. 
Turbine inlet temperature, weapon 
power, weapon-cooling load, and 
weapon outlet hydrogen temperature 

are prescribed and are used to 
calculate the flow rates. 

The turbine's flow rate also depends 
on its pressure ratio, which is 
optimized to obtain the lowest 
possible system mass. This pressure 
ratio also determines the turbine's 
outlet pressure and temperature. As 
the pressure ratio increases, less 
hydrogen is needed by the turbine 
because more enthalpy is extracted 
from it, but the turbine gets 
heavier because stages have to be 
added to get higher pressure ratios. 
The optimization procedure trades 
off mass gains and losses to obtain 
a minimum system mass. 

The model makes the following 
component efficiency assumptions: 
turbine efficiency is 90%, generator 
efficiency is 95%, and power 
conditioning unit efficiency is 95%. 
Mass algorithms for the various 
components are described briefly 
below. 

Hydrogen and oxygen subsystems - - 
The hydrogen subsystem consists of 
hydrogen stored at 20 K and 0.1 MPa, 
a pressure vessel, multilayer insu- 
lation, a refrigeration unit, and a 
meteoroid shield. The mass 
algorithms for these components are 
given in Appendix A. The mass of 
hydrogen needed is equal to the 
greater of the weapon and turbine 
flow rates multiplied by the 
weapon's operation time. Pump power 
is calculated and is integrated into 
the flow rate analysis. The oxygen 
subsystem's mass is calculated in 
much the same manner as the hydrogen 
subsystem's mass. The oxygen's flow 
rate depends on the power required 
by the weapon, on the turbine's 
pressure ratio (which is optimized), 
and on the hydrogen-to-oxygen ratio, 
which depends on the turbine's inlet 
temperature. 



Reactor and shield -- The algorithms 
for reactor and shield mass were 
developed by Marshall (1986). 
Reactor mass depends on fuel mass 
with factors added to estimate 
structure, moderator, pressure 
vessel, reflector and miscellaneous 
masses. The algorithm calculates 
three values for fuel mass: (1) the 
mass of fuel needed for the reactor 
to be critical at the end of its 
life; (2) the fuel needed so that 
the reactor's burnup fraction 
limit is not exceeded; and (3) the 
fuel needed to provide adequate heat 
transfer surface area for heat 
removal. The greatest of these 
three values is used as the 
reactor's fuel mass. The shield's 
mass depends on prescribed neutron 
and gamma dose limits at a 
prescribed distance from the 
reactor. (Reactor shields were 
found to be unnecessary in this 
study because short operation times 
led to small  radiation doses.) 

Turbine mass -- Turbine mass 
algorithms were developed by Hudson 
(1988). Each stage of the turbine 
is sized to get maximum blade and 
disk speed without exceeding 
material strength limits. The 
following assumptions are made: 

• Impulse  staging has  a nozzle-to- 
blade velocity ratio of 2:1. 

• Each   stage   has   a  blade-length- 
to-axial -width radio of 5.0:1. 

• The    turbine's   volume   has    a 
density one-half that of a 
superalloy metal. 

Increasing the turbine's pressure 
ratio increases the number and size 
of stages and increases the 
turb ine's mas s. 

Power Conversion Components - - We 
assumed a generator specific mass of 

0.1 kg/kW, which is a typical mass 
for a generator using current 
technology. Cryogenically cooled 
generators may be as light as one- 
fourth this specific mass. The 
flywheel stores enough energy to 
provide full power for 10 s and has 
an energy density of 100 Wh/kg (0.36 
MJ/kg) • Power conditioning was 
assumed to weigh 0.2 kg/kW. This 
specific mass is too high for an EML 
weapon, which will require very 
little power conditioning since it 
can use the power produced by the 
turbine directly to run its 
homopolar generator. However, 0.2 
kg/kW may be too low for NPBs and 
FELs, which will require substantial 
power conditioning to obtain the 100 
kV DC power required to drive RF 
generators such as klystrodes. The 
weight assumed for power 
conditioning does not, however, 
affect our conclusions since the 
value we use will be constant and 
will not depend on turbine inlet 
temperature. 

Miscellaneous components - - Ten 
percent of the sum of the component 
weights was added to the system's 
subtotal mass to account for such 
things  as piping and structure. 

RESULTS 

Figure 3 shows the resulting system 
component masses for a 500 MWe 
reactor-powered system. In this 
figure, power system specific mass 
(kg/kW) is presented as a function 
of turbine inlet temperature. 
Reactor and turbine masses each 
represent only 1% of the system's 
total mass and are not significant 
for this system. Power conditioning 
and generator masses are signifi- 
cant. The mass of hydrogen needed 
by the turbine decreases as turbine 
inlet temperature increases, but the 
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Figure  3.     500 MWe,   Burst-Mode,  Reactor Power System:     50% Weapon Cooling 
Load,   300 K Weapon Coolant Outlet Temperature  (1800-s operation 
time,   13.6 MPa turbine  inlet pressure) 

mass of hydrogen needed by a weapon 
with a 50% cooling load and a 300 K 
coolant outlet temperature is 
greater. Thus, the system mass 
includes the mass of hydrogen needed 
by the weapon with no additional 
amount needed for the turbine. The 
mass of hydrogen needed by the 
weapon does not depend on turbine 
inlet temperature; thus, no 
significant system mass reduction is 
derived by using turbine inlet 
temperatures above 1200 K for this 
example. Even if the weapon needed 
less hydrogen than the turbine, less 
than 0.1 kg/kW would be saved by 
using a 2000 K instead of a 1200 K 
turbine  inlet  temperature. 

Similar results for the combustion 
system are shown in Figure 4. The 
required mass of oxygen increases 
with increasing turbine inlet 
temperature because the proportion 
of oxygen to hydrogen increases as 
the combustion temperature 
increases. The mass of hydrogen 
required by a weapon with a 50% 
cooling load and a 300 K coolant 
outlet   temperature   is   also   greater 

than that required by the turbine 
for this  system. 

Because oxygen mass increases as 
temperature increases, there is 
actually a mass penalty associated 
with higher turbine inlet 
temperatures if the weapon uses more 
hydrogen than the turbine. Even if 
the weapon used less hydrogen than 
the power generation system, the 
combustion system's mass savings 
gained by going to higher turbine 
inlet temperatures is less than 0.1 
kg/kW. 

As stated earlier, the mass 
reduction benefits associated with 
using a higher turbine inlet 
temperature depend on the weapon's 
cooling load and coolant outlet 
temperature for a reactor-powered, 
burst-mode     system. We     are 
considering the weapon's cooling 
load instead of its efficiency 
because all weapon inefficiencies do 
not necessarily generate heat that 
must be removed by the cooling 
system. For example, the electron 
stripper at the end of an NPB weapon 
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Figure 4.  500 MWe, Burst-Mode, Combustion Power System:  50% Weapon 
Cooling Load, 300 K Weapon Coolant Outlet Temperature (1800-s 
operation time, 13.6 MPa turbine inlet pressure) 

may cause large inefficiencies (beam 
scattering and etc.) without 
introducing a cooling load. 

Figure 5 shows the effect turbine 
inlet temperature has on a reactor- 
powered system's specific mass for a 
variety of weapon cooling loads and 
coolant outlet temperatures. Along 
the bottom curve the power system 
needs more hydrogen than the weapon. 
Curves associated with various 
weapon cooling loads and outlet 
temperatures intersect this bottom 
curve at various points. These 
intersection points show the "break- 
even" temperatures where the weapon 
and the power generation system's 
turbine need the same quantity of 
hydrogen. To the left of an inter- 
section point, the power system's 
turbine needs more hydrogen, and to 
the right the weapon needs more. 
The curves are for a 500 MWe system 
that operates for 1800 s and uses a 
13.6 MPa turbine inlet pressure. 

To find the system's specific mass 
for a system with a weapon cooling 
load of 50% and an outlet tempera- 

ture of 400 K, we start in the upper 
left-hand corner of the figure and 
follow the bottom curve down to 
where it intersects the curve 
labeled 50%, 400 K. Then, we follow 
the 50%, 400 K curve that decreases 
only slightly as temperature 
increases. This slight decrease is 
due to a small reduction in turbine 
mass at the higher temperatures. 
Hydrogen mass is constant on this 
part of the curve because the quan- 
tity of hydrogen needed by the 
weapon does not depend on turbine 
inlet temperature. As the weapon's 
cooling load increases or as its 
outlet temperature decreases, the 
break-even temperature decreases. 
It can be seen from the 40%, 300 K 
and 50%, 400 K curves that turbine 
inlet temperatures above 1200 to 
1300 K do not significantly reduce 
system mass for these conditions. 
Unless weapon cooling loads are 
below 40% to 50% or weapon outlet 
coolant temperatures are above 300 K 
to 400 K, there is little to be 
gained by using turbine inlet 
temperatures above those achievable 
with current material technology. 
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Figure 5.  500 MWe Burst, Reactor Power System:  Various Weapon Cooling 
Loads and Coolant Outlet Temperatures (1800-s operation time, 
13.6 MPa turbine inlet pressure) 

Current technology uses superalloy 
turbines that can tolerate 
temperatures up to about 1350 K 
without blade cooling or about 1600 
K with blade cooling as used in 
aircraft engines. (The effect of 
blade cooling on system performance 
was not considered in this study.) 

What are the prospects that weapon 
cooling loads will be below 40% to 
50% or that weapon coolant outlet 
temperatures will be above 300 K to 
400 K? At this time we have not 
studied weapon cooling in sufficient 
detail to answer this question. We 
do know that cooling loads and 
coolant temperatures are not 
independent; that is, higher coolant 
temperatures usually cause greater 
cooling loads because electrical 
resistance increases as temperatures 
increase. The prospects for very 
low cooling loads, achieved using 
superconduction, have not been 
addressed in this study, but 
superconduction could lead to very 
low cooling requirements. 

So far, results have been shown for 
a 500 MWe system that operates for 
1800 s and uses a turbine inlet 
pressure of 13.6 MPa. Figure 6 
shows the effect of varying power 
level, operation time, and turbine 
inlet pressure on the quantity of 
hydrogen used by a power system's 
turbine. Hydrogen mass is given in 
kg/kWh; thus, if hydrogen mass was 
proportional to only power level and 
operation time, all of the curves 
would coincide. The nominal dashed 
curve in this figure is for the 500 
MWe, 1800 s, 13.6 MPa system. The 
other dashed curves show variations 
from the nominal. For example, the 
dashed curve labeled 200 s has 
changed the operation time but not 
the other nominal parameters. 

The curves do not coincide for two 
reasons. The first reason can be 
explained by considering the 1800 s 
and 200 s systems. The 200 s system 
uses much less hydrogen. Since its 
hydrogen mass is relatively low, it 
can afford to add a little hydrogen 
in order to make its turbine lighter 
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by using a lower pressure ratio and 
avoiding the larger, low-pressure 
stages. In other words, it trades 
turbine mass for hydrogen mass. So 
the first reason the curves do not 
coincide is because of the system 
model's optimization procedure. The 
second reason is that the hydrogen's 
mass, which includes the pressure 
vessel, insulation, refrigeration 
unit, and meteoroid shield, is not 
directly proportional to its volume 
and is therefore not proportional to 
hydrogen mass. This is illustrated 
in Figure 6 by the two weapon 
hydrogen requirement lines. One is 
for an 1800 s and the other is for 
200 s operation time. These two 
lines differ because of the hydrogen 
subsystem's mass nonlinearity with 
volume. 

From the 200 MWe, nominal, and 1000 
MWe curves, we see that hydrogen 
subsystem mass does not depend 
strongly on system power level, but 
it does depend somewhat on turbine 
inlet pressure, and it depends 
strongly on operation time. Notice 
that as operation time decreases, 

the break-even temperature (the 
temperature where a solid line and 
dashed curve intersect) increases. 
Thus, shorter operation times favor 
increased turbine inlet 
temperatures. But unless weapon 
cooling loads are below those shown 
in the figure or unless outlet 
coolant temperatures are somewhat 
higher, there is little advantage to 
exceeding current material 
temperature limits (-1350 K without 
blade cooling, -1600 K with blade 
cooling for superalloys). 

CONCLUSIONS 

Unless weapon cooling loads can be 
reduced to below 40% to 50% of 
weapon power input or unless coolant 
outlet temperatures above 300 K to 
400 K can be used, turbine inlet 
temperatures exceeding current 
material technology limits cannot be 
justified for reactor powered, burst 
mode space power applications. 
Higher turbine inlet temperatures 
cannot be justified for hydrogen- 
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oxygen combustion-powered systems 
for any weapon cooling load or 
coolant outlet temperature. 

Two assumptions that need more 
discussion have been made in 
arriving at these conclusions: 

1. Weapon cooling systems can be 
designed to operate at 13.6 MPa. 
Such a high pressure, although a 
benefit to heat transfer, may 
require an unacceptable weapon 
structure mass. If so, the 
power system must be operated at 
a lower pressure or hydrogen 
coolant will have to be com- 
pressed after leaving the 
weapon. In either case, the 
quantity of hydrogen needed by 
the power system's turbine will 
increase and will move the 
"break-even" temperature 
(temperature where the power 
system's turbine and the weapon 
need the same quantity of 
hydrogen)   to higher values. 

2. Oxygen will not be used as a 
coolant. If oxygen can be used 
as a coolant, the weapon will 
require less hydrogen and the 
"break-even" temperature will be 
increased. 

These conclusions do not carry over 
into other power conversion applica- 
tions. (For example, higher turbine 
inlet temperatures may significantly 
reduce the weight of a closed, 
Brayton cycle continuous power 
system because radiators can be made 
smaller.) Nor do they imply that 
because current material technology 
can be used, that turbine 
development is unnecessary. The gas 
turbines needed for burst-mode 
applications have higher power and 
need many more stages than current 
gas turbines, and they will use 
hydrogen, or hydrogen- oxygen 
combustion products, instead of air- 
fuel combustion products as a 
working fluid. 
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Appendix A 
Hydrogen Subsystem Mass 

The hydrogen subsystem mass (labeled 
hydrogen mass in Figures 3 and 4) 
includes the masses of hydrogen, a 
pressure vessel, insulation, a 
refrigeration system, and a 
meteoroid shield. The details for 
this analysis are described in 
Edenburn (1988). A similar analysis 
was used for an oxygen storage 
subsystem. 

Hydrogen mass -- The density of 
liquid hydrogen at 20 K and 0.1 MPa 
is 71 kg/m3. 

Hydrogen mass = 71 x V kg 

V is the volume of hydrogen in m3. 

Pressure vessel mass -- A spherical 
pressure vessel stress analysis 
prescribes the wall thickness used 
to determine mass. The following 
mass algorithm is for a steel 
pressure vessel at 0.1 MPa with a 
design stress of 207 MPa. 

Pressure vessel mass - 
5.7 x V kg 

The effect of launch forces has not 
been considered here. Also, we have 
neglected any structural benefit 
from the meteoroid shield. It is 
possible that the structural 
characteristics of the shield can be 
integrated with the pressure vessel 
so that launch forces are 
accommodated. 

Insulation mass -- Multifoil 
insulation has a density of 80 kg/m3 

and a conductivity between 0.00004 
and 0.0002 W/mK. We used 0.0001 
W/mK. The hydrogen's temperature is 
20 K and space temperature is 250 K. 
Using these figures the heat gain is 
equal to 0.96 W/m2.  An insulation 

thickness of 2.4 cm minimizes the 
sum of refrigeration system and 
insulation masses. 

Insulation mass - 9.3 x V-66? kg 

Refrigeration system mass -- This 
system consists of a power system, 
refrigeration equipment, and a 
refrigeration radiator. The 
coefficient of performance (COP) for 
the refrigeration system is assumed 
to be 0.2 times that of a Carnot 
refrigerator. The power system for 
the refrigerator was assumed to be a 
Rankine cycle system, and its mass 
was found using Sandia's reference 
system model RNKCYC (Edenburn 1988). 
The refrigeration cycle radiator was 
assumed to have a mass of 5 kg/m2 

and to operate at 400 K, which 
minimizes the sum of power system, 
refrigeration equipment, and 
radiator masses. The refrigeration 
equipment was assumed to have a mass 
of 4 kg/kW. Refrigeration equipment 
consists of compressors, heat 
exchangers, and vapor separators in 
a multiloop cascaded cycle. 

Refrigeration system mass = 
9.1 x V-667 kg 

Meteoroid shield -- The meteoroid 
shield is aluminum and is designed 
for low Earth orbit (1000 km) and a 
seven-year life. The algorithm used 
to determine shield thickness is 
taken from Fraas (1986). The shield 
assumed in this calculation will not 
protect against space debris since 
such a shield would be prohibitively 
massive. 

Shield mass - 107 x V-86 kg 

For more detail see Edenburn (1988). 
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