REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (OMB No. 0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)
2. REPORT DATE
3. REPORT TYPE AND DATES COVERED
 Final 30 Jun 94 to 29 Jun 97
4. TITLE AND SUBTITLE
 Heteroepitaxy of SiGeC on Si
6. FUNDING NUMBERS
 G F4962055410298
 61103
 34584

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Arizona Board of Regents
 Arizona State University, Office of Research and Creative Activities
 P.O. Box 871603
 Tempe, AZ 85287-1603

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Office of Scientific Research
 AFOSR
 110 Duncan Avenue, Room B115
 Bolling AFB, DC 20332-5030

10. SPONSORING / MONITORING AGENCY REPORT NUMBER
 F49620-94-1-0298

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
 This program was comprised of two related efforts dealing with A) the characterization and oxidation of silicon germanium alloy and B) copper-enhanced oxidation. This program supported two graduate students and two undergraduates. The results of this effort are documented in eight publications, a PhD thesis, and an MS thesis.

14. SUBJECT TERMS
 oxidation; silicon oxide; oxide film; germanium-carbon alloys

15. NUMBER OF PAGES
16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
 Unclassified
18. SECURITY CLASSIFICATION OF THIS PAGE
 Unclassified
19. SECURITY CLASSIFICATION OF ABSTRACT
 Unclassified
20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

DTIC QUALITY INSPECTED

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-1
FINAL REPORT TO AFOSR

Air Force AASERT Program

Heteroepitaxy of SiGeC on Si

James W. Mayer
Center for Solid State Science
Arizona State University
Tempe, Arizona 85287-1704

Abstract

This successful program supported two graduate students and two undergraduates. The results are documented in 8 publications, the PhD thesis of A. E. Bair and the MS thesis of D. J. Jaquez. All funds were expended.

James W. Mayer
Regents Professor

Dec. 8, 1997
8 December, 1997

ASSERT Program

Air Force
Heteroepitaxy of SiGeC on Si

I. Introduction
 This program supported 4 ASU Students:
 1. A. E. Bair, PhD, now at SGS Thompson
 2. J. E. Jaquez, MS, now at Intel
 3. Randy Appleton, undergrad, now at Physics, Univ. IL.
 4. Justin Shaw, undergrad, graduates ASU, Dec. 97

 The undergrads worked in the Ion Beam laboratory in support of the SiGeC program. The publications are listed in Section III. The two theses are:

 1. Andrew E. Bair, PhD, May 96
 "Characterization and Oxidation of Silicon, Germanium-Carbon alloys grown by chemical vapor deposition."
 2. Edward James Jaquez Jr., Dec. 96
 "Copper Enhanced Oxidation of Si and Group IV Compounds"

II. Technical results
A. Characterization and Oxidation of Silicon Germanium Alloy

 Pseudomorphic alloys of Si$_{1-x}$Ge$_x$C$_y$, with compositions ranging from $x = 0.20$ and $0.01 \leq y \leq 0.002$ to $x = 0.50$ and $0.02 \leq y < 0.04$ were grown by chemical vapor deposition. Films with the lower alloy compositions were grown to thickness of 750 nm without the formation of misfit dislocations at the film/substrate interface. This is a four fold increase of the critical thickness over carbon-free alloys with similar Si:Ge ratios. High resolution x-ray diffraction analysis showed all of the pseudomorphic films grown in this study to be in compression. Calculations based on Vegard's law suggested that about 50% of the carbon is compensating for strain induced by the germanium.

 The carbon concentrations of the films were quantified using Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD). Due to the Z^2 dependence of the scattering cross section, carbon in a heavier matrix cannot be detected with a He$^{++}$ ion beam for concentrations in the 0.5 to 10 at. % range. To circumvent this problem, the scattering cross section is enhanced by a factor of about 100 by using the 12C(α, α) 12C elastic resonance at 4.27 MeV.

 Target atoms are scattered forward during ERD analysis through a heavy ion filter into a surface barrier signal and a Rutherford cross section can be used. Compositions measured with these techniques of resonance reactions and ERD were in close agreement.

 Samples of amorphous Si$_{0.67}$Ge$_{0.33}$C$_{0.03}$ were oxidized in a wet ambient over a temperature range from 700 to 950°C. A discontinuity in the activation energy near 820°C suggested a changed in the oxidation mechanism. Below this temperature, a nearly pure SiO$_2$ was formed with the germanium being expelled and piling up at the interface. Cross-sectional transmission electron microscopy showed the structure remained amorphous. At temperatures above the transition, the structure became nanocrystalline. The oxide was still nearly pure SiO$_2$, but the expelled germanium redistributed in the remaining alloy layer rather than piling up at the interface.
B. Copper Enhanced Oxidation

Silicon oxide films (> 1μm) were grown at room-temperature after low-energy copper-ion implantation of Si(100) substrates. The structural properties of the silicon oxide layer and the implanted silicon were characterized by Rutherford backscattering spectrometry and transmission-electron microscopy. During room temperature oxidation a portion of the implanted copper resided on the surface and a portion moved with the advancing Si/SiO₂ interface. This study revealed that the oxide growth rate was dependent on the amount of Cu present at the moving interface. The resulting oxide formed was approximately stoichiometric silicon dioxide.

A study of the effects of the additions of C and Ge on the Cu catalyzed oxidation of Si has been performed. It was found that the addition of Ge alone resulted in a marked slowdown in the rate of oxidation. Small amounts of C have a more pronounced effect. Carbon concentrations of less than 2% prevent oxidation for periods of at least one month.

III. Publications of A. E. Bair & E. J. Jaquez

