Title and Subtitle

(AASERT-92) Ultra Precise Laser Spectroscopy

Author(s)

Professor Kleppner

Performing Organization Name(s) and Address(es)

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge MA 02139-4307

Sponsoring/Monitoring Agency Name(s) and Address(es)

AFOSR/NE
110 Duncan Avenue Rm B115
Bolling ABF DC 20332-8050

Approval for Public Release: Distribution Unlimited

Abstract

Research on this AASERT grant was focused on the optical spectroscopy of trapped cold hydrogen for use as a spectroscopic tool and as a means of studying the gas. The grant supported research by two graduate students. During the grant an optical signal on the 1S → 2S transition in cold trapped hydrogen was observed, opening the way to a new form of high resolution spectroscopy. The optical signal will also provide a valuable tool for manipulating a Bose condensate in hydrogen. The condensate can absorb two photons form a single running wave. The recoil is enough to sweep the atoms out of the trap, creating a new type of atom laser beam.

Security Classification of Report

Unclassified

Security Classification of This Page

Unclassified

Security Classification of Abstract

Unclassified

Limitation of Abstract

Unclassified
November 7, 1997

Dr. Ralph Kelley
Air Force Office of Scientific Research
Building 410
Bolling Air Force Base
Washington, DC 20332

Re: AASERT Grant F49620-93-1-0395, Final report

Dear Dr. Kelley,

This is the final report for the above AASERT grant.

The research under this grant is focused on the optical spectroscopy of trapped cold hydrogen for use as a spectroscopic tool and as a means of studying the gas. The grant supported research by two outstanding graduate students, Dale Fried and Tom Killian. Both of these will prepare their theses in the near future.

During the period of this grant we succeeded in observing an optical signal on the 1S - 2S transition in cold trapped hydrogen, opening the way to a new form of ultra high resolution spectroscopy. The optical signal will also provide a valuable tool for manipulating a Bose condensate in hydrogen. The condensate can absorb two photons from a single running wave. The recoil is enough to sweep the atoms out of the trap, creating a new type of atom laser beam.

The final stages of this research involved a major redesign of our trapping cell, allowing us to implement rf cooling of the trapped hydrogen. The new trap is currently being brought into production.

A list of publications supported by this work is attached.

Yours sincerely,

Daniel Kleppner
Lester Wolfe Professor of Physics
