CHARACTERIZATION OF UV EMISSIONS RESULTING FROM ELECTRONIC ENERGY TRANSFER IN ATMOSPHERIC MOLECULES

Anthony V. Dentamaro
Joseph M. Thomas

ORION International Technologies, Inc.
2201 Buena Vista Dr. SE, Suite 211
Albuquerque, NM 87106

November 1997

Final Report
November 1992 - March 1997

Approved for Public Release; Distribution Unlimited

PHILLIPS LABORATORY
Directorate of Geophysics
AIR FORCE MATERIEL COMMAND
HANSCOM AFB, MA 01731-3010

19980113 013
This technical report has been reviewed and is approved for publication

ROBERT A. MORRIS
Contract Manager

ROBERT A. MORRIS
Branch Chief

DAVID A. HARDY
Division Director

This report has been reviewed by the ESC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center (DTIC). All others should apply to the National Technical Information Service (NTIS).

If your address has changed, if you wish to be removed from the mailing list, if the addressee is no longer employed by your organization, please notify PL/IM, 29 Randolph Road, Hanscom AFB, MA 01731-3010. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.
Characterization of UV Emissions Resulting From Electronic Energy Transfer In Atmospheric Molecules

Anthony V. Dentamaro
Joseph M. Thomas

ORION International Technologies, Inc
6501 Americas Parkway, NE, Suite 200
Albuquerque, NM 87110

Phillips Laboratory
29 Randolph Road
Hanscom AFB, MA 01731-3010
Contract Manager: Robert Morris/GPID

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

State-specific experiments were performed which studied collision induced electronic transitions (CIET) in a diatomic molecule. These optical-optical double resonance (OORD) experiments employed a resonance enhanced multiphoton ionization (REMPI) technique for purposes of detection. A strong dependence on Franck-Condon factor (FCF) and small energy gap, as well as a propensity for conservation of rotational angular momentum have become trademarks of our CIET experiments. Present theoretical models of these processes are not able to fully reproduce the observed results, thus making it important to perform experiments which consider a wide range of energy gaps and FCF. The volume of our data has led to the development of an empirical branching ratio model which appears to be quite accurate and useful in predicting deactivation rate constants for CIET in various diatomic molecules. These results have been incorporated into a model of atmospheric Lyman-Birge-Hopfield (LBH) emissions.

We report branching fraction measurements for the energy transfer reactions

\[\text{N}_2(A \Sigma_g^+, \nu') + \text{NO}(X \Pi_v, \nu'' = 0) \rightarrow \text{N}_2(X \Sigma_g^+, \nu') + \text{NO}(A \Sigma_x, \nu' \leq 1) + \text{NO}(B \Pi_v, \nu'' = 0) \]

and \[\text{CO}(a \Pi_v, \nu' \leq 3) + \text{NO}(X \Pi_v, \nu'' = 0) \rightarrow \text{CO}(X \Sigma^+, \nu') + \text{NO}(A \Sigma_x, \nu' \leq 2) + \text{NO}(B \Pi_v, \nu'' = 0). \]

In addition we discuss the \(N(4S) + \text{NO}(X \Pi_v)\) product channel measured in the reaction \(\text{N}_2(A \Sigma_g^+, \nu') + \text{O}(3P)\).

14. SUBJECT TERMS:
Collision induced electronic transitions
Diatomic molecules
Metastable molecular nitrogen
Optical-optical double resonance (OORD)
Atmospheric models
Branching functions
Resonance enhanced multiphoton ionization (REMPI)
Energy transfer reactions/Franck-Condon factor (FCF)

15. NUMBER OF PAGES
60

16. PRICE CODE

SAR
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDY OF THE COLLISION INDUCED ELECTRONIC TRANSITIONS</td>
<td>1</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 EXPERIMENTAL</td>
<td>3</td>
</tr>
<tr>
<td>3 CIET RESULTS AND MODELS</td>
<td>3</td>
</tr>
<tr>
<td>4 APPLICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>5 DISCUSSION</td>
<td>6</td>
</tr>
<tr>
<td>6 REFERENCES</td>
<td>8</td>
</tr>
<tr>
<td>7 PUBLICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>8 MEETINGS</td>
<td>9</td>
</tr>
</tbody>
</table>

CHARACTERIZATION OF UV EMISSIONS RESULTING FROM ELECTRONIC ENERGY TRANSFER IN ATMOSPHERIC MOLECULES 11

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>11</td>
</tr>
<tr>
<td>2 EXPERIMENTAL</td>
<td>18</td>
</tr>
<tr>
<td>3 RESULTS AND DISCUSSION</td>
<td>25</td>
</tr>
</tbody>
</table>

3.1 BRANCHING FRACTIONS OF THE PRODUCT AND EMISSIONS OBSERVED AS A FUNCTION OF \(v' \) IN THE ENERGY TRANSFER REACTION 25

3.2 BRANCHING FRACTIONS OF THE PRODUCT NO(A \(2\Sigma^+, v' = 0 \), 1 AND 2) AND NO(B \(2\Pi_r, v'' = 0 \)) EMISSIONS OBSERVED AS A FUNCTION OF \(v' \) IN THE ENERGY TRANSFER REACTION CO(a \(3\Pi, v' \)) + NO(X \(2\Pi_r, v'' = 0 \)) 31

3.2.1 Analysis of the NO(A \(2\Sigma^+, v' \)) and NO(B \(2\Pi_r, v'' \)) Emissions. 31

3.2.2 Comparison between the \(N_2(A \ 3\Sigma_u^+) \) and CO(a \(3\Pi \)) 37

3.3 AN UPPER LIMIT ON THE FORMATION OF NO(X \(2\Pi_r \)) IN THE REACTIONS N2(A 3) + O(3P) AND N2(A 3) + O2(X 3) AT 298 K. 38

3.4 PROGRAM ENHANCEMENTS TO THE NO(A \(2\Sigma^+, v' \times 2\Pi_r, v'' \)) \(\gamma \) BANDS SYNTHETIC SPECTRUM GENERATION CODE 43

3.5 GENERAL MODIFICATIONS AND CODE ENHANCEMENTS 48

4 CONCLUSIONS 48

5 REFERENCES 51

6 PRESENTATIONS 55

7 PUBLICATIONS 55

8 KEYWORD LISTING 56
STUDY OF THE COLLISION INDUCED ELECTRONIC TRANSITIONS
\(a^1\Pi_g(v') \rightarrow w^1\Delta_u(v'') \) in \(N_2 \)

Abstract

State-specific experiments were performed which studied collision induced electronic transitions (CIET) in a diatomic molecule. These optical-optical double resonance (OODR) experiments employed a resonance enhanced multiphoton ionization (REMPI) technique for purposes of detection. A strong dependence on Franck-Condon factor (FCF) and small energy gap, as well as a propensity for conservation of rotational angular momentum have become trademarks of our CIET experiments. Present theoretical models of these processes are not able to fully reproduce the observed results, thus making it important to perform experiments which consider a wide range of energy gaps and FCF. The volume of our data has led to the development of an empirical branching ratio model which appears to be quite accurate and useful in predicting deactivation rate constants for CIET in various diatomic molecules. These results have been incorporated into a model of atmospheric Lyman-Birge-Hopfield (LBH) emissions.

1 INTRODUCTION

This report discusses the latest results in our study of collision-induced electronic transitions (CIET) in \(N_2 \). The first \(a^1\Pi_g(v') \rightarrow w^1\Delta_u(v'') \) transition in \(N_2 \) had only recently been observed in our last report, and the importance of this to our modelling of atmospheric emissions was discussed. We believe to have recently seen a second \(a \rightarrow w \) transition with surprisingly different results from the first. We discuss this observation in the light of previous measurements.

State-specific experiments which study CIET in a diatomic molecule have been undertaken for over a decade. As has been stated many times, these experiments show a collisional propensity for conserving the total angular momentum, \(J \), for CIET, thereby allowing for the accurate determination of the energy gaps traversed in CIET. Present theoretical models of these processes still fall well short of successfully describing the large transfer of electronic to translational energy which is observed. Quantum scattering calculations by Alexander, Werner
and co-workers1,2 have predicted the correct general propensities and cross-sections for the small energy gaps, but there is a large disagreement of a few orders of magnitude for the large energy gap transitions. Experiments3-6 using the same technique of optical-optical double resonance (OODR) on the isoelectronic molecules CN, N\textsubscript{2}+ and CO+ have had interesting results. These experiments not only show a propensity for small ΔJ, but also for a strong correlation with the Franck-Condon factor (FCF).

We have studied the Lyman-Birge-Hopfield (LBH) bands of nitrogen (N\textsubscript{2}; $a^1\Pi_g-X^1\Sigma_g^+$) and collisional quenching between the lowest-lying singlet states of molecular nitrogen via two photon7 and resonance enhanced multiphoton ionization (REMPI) techniques8-11 for several years now. As in the experiments involving N\textsubscript{2}+ described previously, there are no perturbations in the collisionally-coupled $a^1\Pi_g$ and $a^1\Sigma_u^-$ states of the isolated N\textsubscript{2} molecule. We previously reported10,11 on the first direct double resonance observation of CIET from the $a(v=0)$ level to the $a'(v=0$ and 1) levels using REMPI spectroscopy. The $a'(v=1)$ level, omitted in other room-temperature collisional models, was seen to participate in the CIET process in spite of being 295 cm-1 endothermic with respect to the $a(v=0)$ level. The inclusion of the $a'(v=1)$ level yields a more accurate collisional deactivation model as well as state-specific quenching rates. The process of collisional deactivation for N\textsubscript{2} and N\textsubscript{2}+ are strikingly similar despite the lack of ion-induced dipole for the neutral case. Although the cross-sections for collisional quenching is almost an order of magnitude less for N\textsubscript{2} compared to N\textsubscript{2}+ as expected, the CIET propensities are similar. In addition, the cross-sections increase when the temperature is decreased for both cases indicating the attractive part of the interaction potential is important.

In addition to the initial observation of $a(v=0) \rightarrow a''(v=0,1)$ CIET, we also have reported on the observation of $a(v=1) \rightarrow a'(v=1,2)$ and the branching ratios and collisional deactivation rates have been determined for these transitions. Our work was then systematically extended to the $a(v=2)$ level, and possible transitions to the $a'(v=2,3)$ levels were studied. We also looked for and found evidence of the $a^1\Pi_g(v=2) \rightarrow w^1\Delta_g(v=0)$ CIET and found it to be surprisingly strong.
Equally surprising then was our inability to see the a(v=3) → w(v=1) transition which should have been even more efficient than a(v=2) → w(v=0). Finally, we were able to observe the a(v = 4) → w(v = 2) CIET, which was seen to be weak.

2 EXPERIMENTAL

The setup for our laboratory experiments which examine CIET in various species has been described many times. Optical-optical double resonance (OODR) experiments involve the use of a “pump” laser to prepare the molecule into a specific excited state and a “probe” laser to examine states to which collision induced energy is transferred. For these particular experiments, we examine the CIET process N₂ a(v=2) → a'(v=3) and a(v=2) → w(v=0). The "pump" laser is tuned to a specific line of the a→X(2,0) band which selectively populates a single rotational level in the a(v=2) manifold. Collisions with rare gas atoms (He, Ar, Kr) or N₂ molecules cause energy transfer to other rotational levels of the a(v=2) level and also to the a'(v=2,3) and w(v=0) states. We did not look for rotational energy transfer within the a(v=2) manifold, although this could have easily been done. Instead, we were much more interested in the electronic transitions for now. CIET is monitored by tuning the "probe" laser to the lines of the y-a'(1,3) and y-w(1,0) bands. Having the same up state for the probing of both transitions allows for a direct comparison of the two. The pump and probe laser pulses are time delayed by about four nanoseconds to insure that only single collision events are seen. Collision induced vibrational energy transfer within the same electronic state has not yet been seen in state specific experiments at these time scales.

3 CIET RESULTS AND MODELS

CIET experiments have been performed recently for the case of collisional coupling between a(v=2) and a'(v=2,3) and w(v=0) levels. We have reported in the past that the transition a(v=2) → a'(v=2) should be exceedingly difficult to observe since our empirical model (which is reviewed below) predicts that this transition should be roughly 350 times weaker than that for a(v=2) → a'(v=3). Indeed, we have looked for the a(v=2) → a'(v=2) transition many times in the past and have failed to observe it. The main reason for this large branching ratio is the fact...
that the a(v=2) → a'(v=3) traverses only a 70 cm⁻¹ energy gap and possesses a sizeable Franck-Condon factor (q_{2,3}=0.185). This means that this transition is very efficient.

It was therefore surprising to find that we were able to see the a(v=2) → w(v=0) transition. I believe that this is the first time that collisional coupling of the a and w states has been observed. This transition was studied on several occasions in this laboratory with no success and was thought to be unobservable. Both the y¹Πₜ₋→w¹Δₜ (1,0) and k¹Πₜ₋→w¹Δₜ (1,0) bands were observed as were the bands y¹Πₜ₋→a'¹Σ⁻ₜ (1,3) and k¹Πₜ₋→a'¹Σ⁻ₜ (1,3). This also marks our first observation of the mutually perturbed y and k states. The a(v=2) → w(v=0) transition traverses an energy gap of 557 cm⁻¹ and has an FCF of q_{2,0}=0.037.

Making the observation of the y → w(1,0) particularly difficult is the fact that discharging of the tantalum plates used in our collection procedure inadvertently introduced trace amounts of NO to our system. The NO A-X (0,0) "gamma" band starts at about 2269Å and is shaded to the blue. The P branch bandhead for y → w(1,0) is at 2264.13Å and is also shaded to the blue, superimposing on the very intense lines of the NO gamma band. After careful examination of the data, the y-w band was discovered, and spectra were taken at liquid nitrogen temperature (T=78K) in order to "freeze out" the NO background. Branching ratios were measured, and it was found that the transition to the a'(v=3) state is only about five times stronger than that to the w(v=0) state. This result is quite unexpected, but using this branching ratio allows us to fit the data for the radiative decay of the a(v=2) state which were unreconcilable before these experiments were completed.

We quickly outline the basis of our empirical energy gap model one more time. Although determining a simple, comprehensive energy gap dependence from the data would be unrealistic, we have developed an empirical model which can predict the branching ratio for cases where
there are competing CIET's as a function of the smaller energy gap. Using primarily N_2^+ data, we find that

$$k_{ij}/k_{im} = (q_{ij}/q_{im}) \, R,$$

where

$$R = 14.8 + 0.043(\Delta E_{ij}),$$

where ΔE_{ij} is the smaller of the two energy gaps. It turn, recently measured branching ratios for CIET in $^{15}N_2^+$ and N_2 have been seen to fit the predictions of the empirical model exceptionally well. In addition, this model proved instrumental in determining the branching ratio and rate constants for $CO^+ A(v=4) \rightarrow X(v=12,13)$ where the data was difficult to analyze.

4 APPLICATIONS

We have described how the results of the above-described experiments can be applied to supplement current models for the prediction of atmospheric LBH emissions which are observed in dayglow and aurorae. The primary processes which are expected to determine the vibrational distribution of emissions from the N_2 a state include the initial population of these states via electron impact excitation and radiative cascade between the vibrational levels of the a, a' and w singlet states. We add the effects of CIET to these processes.

We construct a general form for the $v' \rightarrow v''$ deactivation constants:

$$k = \alpha \, q_{v'v''} \, f(\Delta E) \, g(T),$$

where α is a species-dependent scaling factor, $q_{v'v''}$ is the FCF, $f(\Delta E)$ is the energy gap dependence and $g(T)$ is the temperature dependence.

The success of the empirical branching ratio model indicates that there may be some common type of energy dependence for all the available CIET data. By fitting this data to a common functional form, we were able to get an approximate expression for $f(\Delta E)$:
\[f(\Delta E) = (a \Delta E + 1)^{-1}, \]

(4)

where \(a = 0.064 \) for \(\Delta E > 0 \) and \(0.096 \) for \(\Delta E < 0 \), and \(\Delta E \) is in cm\(^{-1}\). This form fits the CIET data within each species and also reproduces the predictions of the branching ratio model.

The temperature dependence \(g(T) \) was constructed such that the results of room temperature (\(T = 298 \)K) laboratory experiments could be extrapolated to the temperatures characteristic of the atmosphere at auroral altitudes. This dependence was derived from the collision complex model proposed by Lin, et al.\(^{13}\) and reflects the experimental observation that for CIET processes, the cross section increases with decreasing temperature. We get

\[g(T) = \xi \exp(\varepsilon/kT), \]

(5)

where \(\xi = \exp(-\varepsilon/208) \), and \(\varepsilon \) is the intermolecular well depth in cm\(^{-1}\) for the attractive potential between colliders.

5 DISCUSSION

The observation of the \(N_2 \) \(a(v = 2) \rightarrow w(v = 0) \) transition is a very important step in the refinement of our atmospheric LBH emissions model. In the past, the \(a \rightarrow w \) transitions were treated the same as the \(a \rightarrow a' \) transitions. The results of our experiments show the former family of transitions to be about five times stronger than previously thought. It should be mentioned that in calculating the branching ratio of transitions to the \(a'(v=3) \) state versus that to the \(w(v=0) \) state, the electric dipole moments of the two transitions were taken to be approximately equal, and the results of our fits have seemed to borne this out. In fact, increasing the importance of the \(a \rightarrow w \) transitions in the atmospheric model does nothing to hurt our fit of the relative vibrational populations of the \(N_2 \) \(a \) state and may actually represent an improvement.

However, the news is not all good. Since the \(a(v=2) \rightarrow w(v=0) \) transition is fairly easy to observe, it is expected that transitions involving the higher vibrational levels of these states should be even easier to see. This is because as we go up the vibrational ladder, the transitions \([a(v=3) \rightarrow w(v=1), a(v=4) \rightarrow w(v=2), \text{etc.}]\) possess only slightly larger energy gaps but much stronger FCFs. As a matter of fact, these \(a \rightarrow w \) FCFs are greater than those of the competing
a → a' transitions for a(v>2). However, all attempts to observe the a(v=3) → w(v=1) transition have been fruitless thus far. In addition to this, only recently do we feel we have succeeded in observing the a(v=4) → w(v=2) transition, but have found it to be exceedingly weaker than first expected. The FCF for this a → w transition is six times greater than the competing a(v=4) → a'(v=5) transition, and the energy gap is less than twice as big. This means that the CIET to the a' state should be inefficient, thus leaving the CIET to the w state as practically the only open channel. Although the a(v=4) → a'(v=5) transition has not yet been seen, probably due to its expectedly low rate constant, the CIET to the w state is itself very weak and difficult to identify.

We previously discussed a possible explanation of the surprising efficiency of the a(v=2) → w(v=0) CIET compared to the rest of the available data. The suggestion was that we are not really seeing a "clean" transition in the a(v=2) → w(v=0) data. Since the a(v=2) and a'(v=3) levels are nearly resonant, it is possible that at the pressures at which we are working, the two states could be equilibrating, thus leaving the transition to w(v=0) the most favorable channel. For the higher vibrational manifolds of the singlet system, this resonant situation never really occurs again, thus making transitions to the w state that much more difficult to observe.

Experiments do continue on these systems. Any data that are collected are useful in that they contribute to the input of our atmospheric model. It appears at this time that the a → w transitions, and therefore the reverse w → a CIET are weaker than thought, and the models must be modified to reflect this difference. Quantitative results are not available at this time.
REFERENCES

7) W.J. Marinelli, W.J. Kessler, B.D. Green and W.A.M. Blumberg, “Quenching of N_2 (a^1Π_g, v=0) by N_2, O_2, CO, CO_2, CH_4, H_2, and Ar,” J. Chem. Phys. 90, 2167 (1989).

9) G. Sha, D. Proch and K.L. Kompa, “Rotational transitions of N_2 (a^1Π_g) induced by collisions with Ar/He and N_2 (a^1Π_g) - N_2 (X^1Σ^+_g) rovibronic energy transfer studied by laser REMPI spectroscopy,” J. Chem. Phys. 87, 5251 (1987).

10) D.H. Katayama and A.V. Dentamaro, “Direct observation of collision induced transitions between the a^1Π_g (v=0) and a^1Σ^+_u (v=0) levels of N_2 via double resonance enhanced multi-photon ionization spectroscopy,” J. Chem. Phys. 97, 2820 (1992).

7 PUBLICATIONS

8 MEETINGS

1) “Collision Induced Electronic and Rotational Transitions from Selectively Excited States of the N₂ a¹Π₉ State,” A.V. Dentamaro and D.H. Katayama, 1993 Meeting of the Division of Atomic, Molecular and Optical Physics, 16-19 May 1993, Reno, NV.

3) “Collision Induced Electronic Transitions Between the a¹Π₉, a¹Σᵤ⁻ and w¹Δᵤ States of N₂,” A.V. Dentamaro and D.H. Katayama, 1996 Meeting of the Division of Atomic, Molecular and Optical Physics Annual Meeting, 15-18 May 1996, Ann Arbor, MI.
(This page intentionally left blank)
CHARACTERIZATION OF UV EMISSIONS RESULTING FROM ELECTRONIC ENERGY TRANSFER IN ATMOSPHERIC MOLECULES

Abstract

We report branching fraction measurements for the energy transfer reactions \(N_2(A \ ^3\Sigma_u^+,v') + NO(X \ ^2\Pi_r,v'='0) \rightarrow N_2(X \ ^1\Sigma_g^+,v'') + NO(A \ ^2\Sigma^+,v' \leq 1) \) + \(NO(B \ ^2\Pi_r,v'='0) \) and \(CO(a \ ^3\Pi_v,v' \leq 3) + NO(X \ ^2\Pi_r,v'='0) \rightarrow CO(X \ ^1\Sigma^+,v'') + NO(A \ ^2\Sigma^+,v' \leq 2) \) + \(NO(B \ ^2\Pi_r,v'='0) \). In addition we discuss the \(N(4S) + NO(X \ ^2\Pi_r) \) product channel measured in the reaction \(N_2(A \ ^3\Sigma_u^+,v') + O(3P) \).

1 INTRODUCTION

In recent years, there has been an increased interest in the use of remote sensing techniques in the ultraviolet and visible regions of the electromagnetic spectrum to characterize ‘active’ environments such as naturally occurring ‘auroras’ and man-made ‘plasmas’. The results of these optical measurements are then interpreted using complex computer models based on known kinetic processes. It becomes obvious that there is a dire need to characterize the basic energy transfer and reactive pathways for these collision processes that involve simple neutral charged diatomic species, i.e., measure vibrational level specific bimolecular rate constants and product channel distributions as a function of vibrational energy in the precursor state, using experimental techniques that are free of competing processes and provide the direct monitoring of the states of interest, i.e., minimize the use of sensitized emission techniques whenever possible.

Presented below is a summary of the experimental measurements that were conducted in the UV Gas Phase Kinetics Laboratory from November 1993 through March 1997. These investigations were designed to characterize energy transfer processes of simple diatomic molecules, e.g., \(N_2(A \ ^3\Sigma_u^+) \) and \(CO(a \ ^3\Pi_v) \), that are known to play an important role in the ‘chemistry’ of ‘normal’ and ‘perturbed’ environments, e.g., auroras and plasmas. These long lived electronically excited species are known to be the precursor states for many short lived emitting states, e.g., \(NO(A \ ^2\Sigma^+) \) and \(NO(B \ ^2\Pi_r) \), whose emissions are being used to model the complex environments of rocket motor exhausts and more recently, emissions emanating from the surfaces of re-entry vehicles and other blunt objects traversing the atmosphere.
The lowest lying electronically excited state of molecular nitrogen, the \(N_2(A^3\Sigma^+_u) \), is metastable with a radiative lifetime, \(\tau_{\text{Radiative}} \sim 2 \text{ s}^{-1} \), energy rich with \(\sim 6.2 \text{ eV} \) in \(v' = 0 \) (Figure 1) and is highly reactive in 'perturbed' environments. This energetic species is formed copiously in the atmosphere in auroral events by electron-impact excitation at high altitudes and has been proposed as an energy reservoir in chemical lasers.

The characterization of the ‘reactivity’ of the lowest lying electronically excited state of molecular nitrogen, the \(N_2(A^3\Sigma_u^+) \) state, has been the subject of many investigations over the past 25 years. A recent review article by Golde\(^8\) provides an excellent discussion of these measurements. Many of the previous measurements, with the exception of the measurements performed by Dreyer \textit{et al.}\(^9-11\) who used complex absorption techniques to measure the vibrational level specific bimolecular rate constants, were accomplished using \(N_2(A^3\Sigma_u^+) \) Hg I or NO(\(A^2\Sigma^+, v' \rightarrow X^2\Pi_v, v'' \)) \(\gamma \) bands sensitized emission techniques to monitor the relative concentration of the \(N_2(A^3\Sigma_u^+) \), i.e., \(N_2(A^3\Sigma_u^+) + \text{NO}(X^2\Pi_v) \rightarrow N_2(X^1\Sigma_g^+, v'') + \text{NO}(A^2\Sigma^+, v') \) followed by emission from the \(\text{NO}(A^3\Sigma^+, v' \rightarrow X^2\Pi_v, v'') \) \(\gamma \) bands. Recently, Piper \textit{et al.}\(^3\) has shown that rate constants measured using Hg I or NO(\(A^2\Sigma^+, v' \rightarrow X^2\Pi_v, v'' \)) \(\gamma \) bands sensitized emissions are sensitive to the vibrational level population distribution of the electronically excited precursor state when the vibrational levels of the electronically excited state are quenched with different efficiencies, \(i.e. \), the measured rate constant will be an average value dependent on the precursor state’s vibrational level population distribution and relative quenching rates,

\[
k_{\text{measured}} = \sum_{v}^{v_{\text{max}}} f_v \cdot k_v, \quad \text{where } f_v \text{ is the fraction of the precursor state’s that is in a given vibrational level, } v, k_v \text{ is the actual bimolecular rate constant for } v \text{ and } 1 = \sum_{v_{\text{min}}}^{v_{\text{max}}} f_v.
\]

The lowest lying electronically excited state of carbon monoxide, the \(\text{CO}(a^3\Pi) \), is energy rich\(^12\) with\(~6.0\) eV in \(v'=0 \) (Figure 2)\(^13\) and radiative lifetime of\(~9.5\) ms\(^12\). The room temperature vibrational level specific bimolecular rate constants for the electronic quenching of the \(\text{CO}(a^3\Pi) \) state in \(v' \leq 4 \) have been reported previously \(^14-17\). Very good agreement is found between these investigations for the colliders that were investigated. Contrary to the behavior observed in the electronic quenching of the \(N_2(A^3\Sigma_u^+) \) state, discussed below, the \(\text{CO}(a^3\Pi, v') \) electronic
quenching shows little dependence on vibrational quanta in the CO($a^3\Pi$) state, at least for the colliders investigated.

Figure 2. Potential energy curves for carbon monoxide from S. G. Tilford and J. D. Simmons, J. Chem. Phys. Ref. Data 1 (1972) 1.
The excitation of the NO($A^2\Sigma^+$) and NO($B^2\Pi_r$) states continues to be of interest to many modelers because they are used as precursor states to "signature" emissions for many energy transfer processes. The potential energy curves for nitrogen monoxide are presented in Figure 3.18,19 The emissions from the NO($A^2\Sigma^+, v' \rightarrow X^2\Pi_r, v''$) γ bands or NO($B^2\Pi_r,v' \rightarrow X^2\Pi_r,v''$) β bands and the intensity ratios of these emissions can be used to characterize the long-lived, weakly emitting precursor states present in the "active" environments. The vibrational level specific bimolecular rate constants for the energy transfer reaction

$$N_2(A^3\Sigma_u^+, v') + NO(X^2\Pi_r, v'' = 0)$$

have been measured previously3,10,20,21. There exist additional measurements reported in the literature8 but these were measured using indirect sensitized emission techniques that are affected by the vibrational population distribution of the $N_2(A^3\Sigma_u^+)$ state. A summary of the measurements reported by Thomas20,22-25 is presented in Figure 4. It can be seen in Figure 4 that while some of the $N_2(A^3\Sigma_u^+)$ electronic quenchers show little or no dependence on vibrational level in the $N_2(A^3\Sigma_u^+)$ state, e.g., $N_2(A^3\Sigma_u^+, v') + NO(X^2\Pi_r)$, some quenchers show a marked dependence on vibrational level in the $N_2(A^3\Sigma_u^+, v)$, e.g., $N_2(A^3\Sigma_u^+, v') + CO(X^1\Sigma^+, v'' = 0)$. The reason for this dependence is discussed elsewhere10,20,25.

Discussed below are the results of two main projects that were undertaken while this contract was in place, i.e., "Branching fractions of the product NO($A^2\Sigma^+, v' = 0$ and 1) and NO($B^2\Pi_r, v' = 0$) emissions observed as a function of v' in the energy transfer reaction

$$N_2(A^3\Sigma_u^+, v') + NO(X^2\Pi_r)$$

and 'Branching fractions of the product NO($A^2\Sigma^+, v' = 0, 1, 2$) and NO($B^2\Pi_r, v' = 0$) emissions observed as a function of v' in the energy transfer reaction CO($a^3\Pi, v' < 4$) + NO($X^2\Pi_r, v'' = 0$).' In addition, enhancements and modifications
made to the data acquisition software and data analysis software during the past several years will be discussed briefly.

Figure 3. Potential energy curves for nitrogen monoxide from F. R. Gilmore, Rand Corporation Memorandum R-4034-PR (June 1964).
A third project is discussed. Although the experimental work was performed previously25 it was never written up in manuscript form. Recent efforts to model perturbed environments by Bose and Candler26-29 suggest that the ground state of molecular nitrogen in highly vibrationally excited states, i.e., $N_2(X^1\Sigma^+_u, v'' > 0)$, reacting with atomic oxygen, $O(^3P)$, is a significant source of nitric oxide, $NO(X^2\Pi_g)$. Our measurements30 have shown that the NO + N product channel in the energy transfer reaction $N_2(A^3\Sigma^+_u, v') + O(^3P)$ is not a significant source of NO at room temperature.
2 EXPERIMENTAL

The rapidly pumped discharge-flow reactor used over the past several years to characterize the $N_2(A\, ^3\Sigma_u^+)$ and $CO(a\, ^3\Pi)$ states has been described in detail previously. A representative rapidly pumped discharge-flow reactor configuration is presented in Figure 5. As before, two basic flow-tube configurations are utilized to determine the sensitivity of the product emissions to $N_2(A\, ^3\Sigma_u^+, v')$ and $CO(a\, ^3\Pi, v')$. The ratios of the product emissions are found to be insensitive to flow-tube configuration and a majority of the experimental measurements are made using the straight flow-tube configuration. $N_2(A\, ^3\Sigma_u^+, v')$ is generated using the well established energy transfer reaction $Ar(^3P_{2,0}) + N_2(X\, ^1\Sigma_g^+, v''=0)^{31,32}$. N_2 is added immediately downstream (~2 ms) of the low power (~300 V, ~1.0 mA) dc discharge in Ar where the $Ar(^3P_{2,0})$ metastables are produced. The major product of the energy transfer reaction $Ar(^3P_{2,0}) + N_2(X\, ^1\Sigma_g^+, v''=0)$ is $N_2(C\, ^3\Pi_u, v' \leq 3)^{32}$. Radiative and collisional deactivation in the triplet manifold of N_2 leads to the formation of $N_2(A\, ^3\Sigma_u^+, v')$.

![Figure 5. Schematic diagram of the rapidly pumped discharge-flow reactor used in the present investigations.](image)

The $N_2(A\, ^3\Sigma_u^+, v')$ population distribution is controlled using two techniques. First, the $N_2(A\, ^3\Sigma_u^+, v')$ population distribution is known to be sensitive to the total $[N_2(X\, ^1\Sigma_g^+)]$. The
\([N_2(A^3\Sigma_u^+,v' \geq 2)]\) is inversely proportional \([N_2(X^1\Sigma_g^+)]\). Work reported by Dreyer and Perner suggests that \(N_2(X^1\Sigma_g^+)\) vibrationally relaxes \(N_2(A^3\Sigma_u^+,v')\) in \(\Delta v = v'-v'' = 2\) increments. When the \(N_2\) flow is \(\sim 20\%\) of the total flow (\(\sim 2\) Torr Ar), only \(N_2(A^3\Sigma_u^+,v' \leq 2)\) is detected in the observation region using laser-excited fluorescence techniques. Under these flow conditions, the population distribution of the \(N_2(A^3\Sigma_u^+,v')\) in the observation region or the rapidly pumped discharge-flow reactor is \(1.00 : 0.66 : 0.28\) for \(v'=0, 1\) and 2, respectively. By reducing the \(N_2\) flow to \(\sim 0.5\%\) of the total flow, \(N_2(A^3\Sigma_u^+,v' \leq 6)\) can be detected in the observation region using laser-excited fluorescence detection techniques. Second, some inefficient \(N_2(A^3\Sigma_u^+)\) electronic quenchers, e.g., \(CH_4\) and \(CF_4\), designated \(Q_v\), have been observed to vibrationally relax the upper \(v'\) levels into the \(v'-1\) level. By using excess \([Q_v]\) all of the \(N_2(A^3\Sigma_u^+)\) state population can be relaxed into \(v'=0\). By varying the \([N_2]\), \(Q_v\) and \([Q_v]\), product branching ratios can be mapped as a function of initial \(N_2(A^3\Sigma_u^+,v')\) population distribution. Both techniques are used in the present investigation. The extent of relaxation that occurred by the time the \(N_2(A^3\Sigma_u^+,v')\) reached the observation region is measured directly by monitoring the spontaneous emission from the 0,4 transition of the \(N_2(A^3\Sigma_u^+,v' - X^1\Sigma_g^+,v'')\) Vegard-Kaplan bands, and probing the 4,0 and 5,1 transitions of the \(N_2(B^3\Pi_g,v' - A^3\Sigma_u^+,v'')\) First Positive bands using laser-excited fluorescence techniques. From previous work, we know that under the flow conditions used in the present experiment that the ratio of \(v'=1 : v'=2\) is \(\sim 1.00 : 0.42\).

The \([N_2(A^3\Sigma_u^+,v'= 0 \text{ and } 1)]_{\text{relative}}\) is detected at the first observation port on the upstream detection cell utilizing laser-excited fluorescence techniques. Tunable radiation from a nitrogen laser pumped dye laser system (Molectron, Models UV-24 and DL-II, respectively) is used to
excite the 4,0 and 5,1 transitions of the $N_2(B^3 \Pi_g, v'\rightarrow A^3 \Sigma_u^+, v''')$ First Positive bands at the P_1 band heads. Fluorescence to the red of the excitation radiation is collected using a dry-ice cooled red-sensitive photomultiplier tube (Hamamatsu, Model 943-02). Scattered light from the excitation radiation is attenuated using sharp cutoff filters (Corning, CS 2-58 and 2-59) and pulse-pile up problems are eliminated using a neutral density filter (Schott, NG-5) to reduce the intensity of the emission signal. The $[N_2(A^3 \Sigma_u^+, v'=0)]_{\text{RELATIVE}}$ is detected using a second technique. Emission from the 0,4 transition of the $N_2(A^3 \Sigma_u^+, v' \rightarrow X^1 \Sigma_g^+, v'')$ Vegard-Kaplan bands is measured using a Thorn/EMI solar blind photomultiplier tube (Model 9422B) attached to a 0.5 m grating spectrophotometer (Spex, Model 1870). The width of the entrance and exit slits on the 0.5 m grating spectrophotometer is set to 100 microns. The height of the entrance slit is set to 2 mm. The sensitivity of the detection system is calibrated using the technique described by Mumma and Zipf and Mumma.

In determining the relative population distribution of the $N_2(A^3 \Sigma_u^+)$ state in the observation region, consideration must be given to the effect of the electronic quenching of the $NO(X^2 \Pi_r, v''=0)$ on the $N_2(A^3 \Sigma_u^+, v')$ population distribution. The $[NO(X^2 \Pi_r, v''=0)]$ is optimized for maximum signal. Under our flow conditions this is $\approx 4.0 \times 10^{12}$ molecules cm$^{-3}$. If the rate constants for the electronic quenching of the $N_2(A^3 \Sigma_u^+, v')$ by $NO(X^2 \Pi_r, v'')$ showed no vibrational level dependence, the relative population distribution would be insensitive to $NO(X^2 \Pi_r, v'')$ additions. An enhancement in the vibrational level specific bimolecular rate constant, k_v (cm3 molecules$^{-1}$ s$^{-1}$), has been reported for the energy transfer reaction $N_2(A^3 \Sigma_u^+, v') + NO(X^2 \Pi_r, v''=0)$. Using the data reported by Thomas et al. we obtain first-order removal rates, i.e., $k_v \times [NO(X)]$ (s$^{-1}$), of 224, 312, and 344 for $v'=0$, 1 and 2, respectively. In the 0.0037 s residence time (corrected for flow dynamics) between NO addition and product emission detection, the $N_2(A^3 \Sigma_u^+, v'=0, 1$ and 2) will be reduced by a
factor of 0.437, 0.315, and 0.280 for \(v' = 0 \), 1 and 2, respectively. Using this information, we can determine the corrected vibrational level population distribution in the observation region after NO is added. For the \(N_2(A^3\Sigma_g^+, v' = 0) \) measurements no correction is necessary. For the \(N_2(A^3\Sigma_g^+, v' \leq 1) \) measurements we obtain a population ratio of 1.00 : 0.08 for \(v' = 0 \) to 1, respectively. For the \(N_2(A^3\Sigma_g^+, v' \leq 2) \) measurements we obtain a corrected population distribution of 1.00 : 0.29 : 0.11 for \(v' = 0 : 1 : 2 \), respectively.

\(\text{CO}(a^3\Pi, v') \) is generated using one of four energy transfer reactions\(^{15,17,38,39} \): \(\text{Ar}(^3P_{2,0}) + \text{CO}_2(X^1\Sigma_g^+) \), \(\text{Ar}(^3P_{2,0}) + \text{CO}_2(X^1\Sigma_g^+)/\text{CO}(X^1\Sigma_g^+) \), \(\text{He}(^3S_{1}) + \text{CO}_2(X^1\Sigma_g^+)/\text{CO}(X^1\Sigma_g^+) \), \(\text{CO}(X^1\Sigma_g^+)/\text{SF}_6 \) and \(\text{He}(^3S_{1}) + \text{CO}_2(X^1\Sigma_g^+)/\text{SF}_6 \). Each energy transfer reaction provides a different nascent \(\text{CO}(a^3\Pi) \) vibrational level population distribution. A summary of the \(\text{CO}(a^3\Pi, v') \) population distributions for each of these reactions is presented in Table 1. The relative populations are calculated using the standard equation for emission intensity\(^{40} \) described below. The generating reaction \(\text{Ar}(^3P_{2,0}) + \text{CO}_2(X^1\Sigma_g^+) \) produces \(\text{CO}(a^3\Pi) \) primarily in \(v' = 0 \)\(^{39} \) as only \(~1.6\%\) of the \(\text{CO}(a^3\Pi) \) population is in \(v' = 1 \). The generating reaction \(\text{He}(^3S_{1}) + \text{CO}_2(X^1\Sigma_g^+) \) yields the most unrelaxed \(\text{CO}(a^3\Pi, v') \) distribution. We used a 1:1 mixture of \(\text{CO}_2(X^1\Sigma_g^+) \) in \(\text{CO}(X^1\Sigma_g^+) \) to obtain the two intermediate \(\text{CO}(a^3\Pi) \) vibrational level population distributions as shown in Table 1.

\(\text{Ar}(^3P_{2,0}) \) and \(\text{He}(^3S_{1}) \) metastables are generated in a low power (\(~300\ V, \sim 1\ mA\) dc discharge tube (Yankee Glassblowers, Concord MA) in Ar or He, respectively. \(\text{CO}_2(X^1\Sigma_g^+) \) or the \(~1:1\ \text{CO}_2(X^1\Sigma_g^+)/\text{CO}(X^1\Sigma_g^+) \) mixture is added immediately downstream (\(~2\ ms\)) of the metastable generation region at the precursor inlet system. \(\text{SF}_6 \) is added to the flow at the
precursor inlet system when He metastables are used to generate the CO($\alpha^3\Pi$) to quench unwanted CO* emissions17,38. A buffer flow of Ar or He is used to ensure rapid mixing at the precursor and reactant inlet systems.

<table>
<thead>
<tr>
<th>Generating Reactionb</th>
<th>$v' = 0$</th>
<th>$v' = 1$</th>
<th>$v' = 2$</th>
<th>$v' = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar* + CO$_2$</td>
<td>0.984 ± 0.000</td>
<td>0.016 ± 0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar* + CO/CO$_2$</td>
<td>0.822 ± 0.048</td>
<td>0.143 ± 0.009</td>
<td>0.026 ± 0.009</td>
<td>0.009 ± 0.001</td>
</tr>
<tr>
<td>He* + CO/CO$_2$/SF$_6$</td>
<td>0.670 ± 0.102</td>
<td>0.167 ± 0.026</td>
<td>0.099 ± 0.016</td>
<td>0.064 ± 0.011</td>
</tr>
<tr>
<td>He* + CO$_2$/SF$_6$</td>
<td>0.476 ± 0.021</td>
<td>0.270 ± 0.013</td>
<td>0.164 ± 0.008</td>
<td>0.090 ± 0.007</td>
</tr>
</tbody>
</table>

a) The relative intensities were calculated using the equation for N_v (See text for discussion) with $R_v = 1$ and emission signal from the CO $a-X$ Cameron $v' = 0, 1, 2, 3, 4$ bands. The uncertainties reported in the table account for the statistical uncertainty (1σ) associated with the measurements. An additional 12% should be added in quadrature to the above uncertainties to account for the total experimental uncertainty.

b) Ar or He metastables were generated using a low power d.c. discharge in Ar or He. See text for discussion.

Emission from the CO($\alpha^3\Pi, v'=0-3\ X^1\Sigma^+, v''$) Cameron, $\Delta v = v' - v'' = -2, -3$ and -4 bands (Figure 6), NO($A^2\Sigma^+, v'=0-2 \rightarrow X^2\Pi, v''$) γ, $\Delta v = -4, -5$, and -6 bands and NO($B^2\Pi, v'=0 \rightarrow X^2\Pi, v''$) β, $\Delta v = -6$ and -7 bands (Figure 7) is measured using a solar blind photomultiplier tube (Thorn/EMI model 9422B) attached to a 0.5 m grating spectrophotometer (Spex, model 1870). The width of the entrance and exit slits on the 0.5 m grating spectrophotometer is set to 100 μm. The height of the entrance slit is set to 2 mm. The relative sensitivity of the detection system is calibrated using the technique described by Mumma and Zipf34 and Mumma35.

All photoelectric emission measurements are acquired using photon counting techniques. Output from the photomultiplier tube is passed through a pulse amplifier discriminator (Pacific Instruments, model AD6 or SpaCom Electronics, model 135A). The output of the pulse amplifier discriminator is accumulated on a counter/timer (Tennelec, model TC-535P). Data acquisition is controlled using a ZDS/Bull 248 (AT compatible) computer system and data.
analysis is performed on either a DELL 386SX/16 or Packard Bell 486DX/66 Force 203 computer. Software developed using Microsoft's BASIC Professional Development System v7.1 (tm) or Microsoft's Visual BASIC v3.0 and libraries contained in Crescent Software's QuickPak Professional (tm) are used to collect and analyze the photoelectric emission spectra. The reported uncertainties account for the statistical uncertainties (1σ) associated with the measurements41,42. The systematic uncertainty is estimated to be ~12% and unless otherwise noted should be added in quadrature to the reported uncertainties to obtain an estimate of the total experimental uncertainty41,42.

Figure 6. Photoelectric emission spectra for the CO a-X Cameron bands obtained from three of the four generating reactions used.
Fig. 7. Photoelectric emission spectra for the energy transfer reaction
\(\text{CO}(a,v') + \text{NO}(X,v''=0) \rightarrow \text{CO}(X,v'') + \text{NO}(A,v') + \text{NO}(B,v'). \) See text for discussion.

Ar (Matheson, 99.999%) and \(\text{N}_2 \) are obtained in liquid form and stored in a high-pressure (~200 psig) dewars (MVE Cryogenics, DuraCyl). Boil-off from the liquid reservoirs is used as the source for the gas flows. He (US Bureau of Mines, High Purity, 99.995%) is obtained in 1A cylinders. Oxidizable contaminants are removed from the Ar, \(\text{N}_2 \) and He using a Cu packed quartz furnace (~800 K) located on the high pressure side of the gas delivery system. Condensible impurities are removed from the main Ar and He flows by passing the Ar and He through a series of four (4) molecular sieve packed traps (Fisher Scientific, Type 4A Grade 514, 8-12 mesh) immersed in liquid \(\text{N}_2 \) (77 K) on the low-pressure side of the gas delivery system. An additional trap located on the high pressure side of the gas delivery system is used to further reduce the
condensible impurities when He is used as the main carrier gas. CO₂ (Air Products, Coleman grade 99.99%) is purified using a series of three (3) freeze-pump-thaw cycles and stored in two (2) five liter Pyrex bulbs. The NO/He (Matheson, Analyzed 10.3%), CO (Matheson, Research Grade 99.99%) and SF₆/He (Air Products, Analyzed 0.992%) are used without further purification. A 1% mixture (NO/He) was prepared from the 10.3% mixture using standard gas handling techniques and stored in a five liter Pyrex bulb. CH₄ (Matheson, UHP, 99.97%), CF₄ (Matheson, 99.9%), and NO/He (Matheson, Analyzed) mixture are used without further purification.

3 RESULTS AND DISCUSSION.

3.1 BRANCHING FRACTIONS OF THE PRODUCT NO(A 3Σ⁺, v' = 0 and 1) AND NO(B 3Πᵣ, v'' = 0) EMISSIONS OBSERVED AS A FUNCTION OF v' IN THE ENERGY TRANSFER REACTION

\[N₂(A 3Σ⁺, v') + NO(X 2Πᵣ, v'' = 0) \]

A series of photoelectric emission spectra is presented in Figure 8 for the energy transfer reactions \(N₂(A 3Σ⁺, v' = 0) + NO(X 2Πᵣ, v'' = 0) \) (Figure 8-1), \(N₂(A 3Σ⁺, v' \leq 1) + NO(X 2Πᵣ, v'' = 0) \) (Figure 8-2), \(N₂(A 3Σ⁺, v' \leq 2) + NO(X 2Πᵣ, v'' = 0) \) (Figure 8-3), and \(N₂(A 3Σ⁺, v' \leq 6) + NO(X 2Πᵣ, v'' = 0) \) (Figure 8-4). For completeness, a background emission spectrum is presented in the lower portion of Figure 8-1. Emission is observed from the 0,7 and 0,8 transitions of the NO(B 2Πᵣ, v' \to X 2Πᵣ, v'') β bands and the 0,7 and 1,8 transitions of the NO(A 3Σ⁺, v' \to X 2Πᵣ, v'') γ bands at 3,035.3, 3,198.6, 3,158.2, 3,093.6 Å, respectively (Figures 8-1 through 8-4). Although both the NO(A 3Σ⁺, v' \to X 2Πᵣ, v'') γ bands and NO(B 2Πᵣ, v' \to X 2Πᵣ, v'') β bands have two pronounced band heads, they are easily distinguishable from each other because of their opposite shading directions. A dramatic increase in the intensity of the 0,7 and 0,8 transitions of the NO(B 2Πᵣ, v' \to X 2Πᵣ, v'') β bands is observed as the v' = 1 and 2 vibrational levels of the \(N₂(A 3Σ⁺) \) state are populated. Similarly, emission from the 1,8 transition of the NO(A 3Σ⁺, v' \to X 2Πᵣ, v'') γ bands is observed to increase with v' in an analogous manner. The intensities of the emissions from the NO(A 3Σ⁺, v' \to X 2Πᵣ, v'') γ bands and NO(B 2Πᵣ, v' \to X 2Πᵣ, v'') β bands for the
\[N_2 \left(A \ ^3\Sigma^+_u, v' \leq 6 \right) \] (Figure 8-4) are slightly larger than that for the \[N_2 \left(A \ ^3\Sigma^+_u, v' \leq 2 \right) \] (Figure 8-3).

The emission intensity, \(I_{v',v''} \), for a transition from \(v' \) to \(v'' \) is given by

\[I_{v',v''} = \kappa N_{v'} q_{v',v''} v_{v',v''}^3 R_e^3(r_{v',v''}) R_{v',v''} \]

where \(\kappa \) is a constant, \(q_{v',v''} \) is the Franck-Condon factor for the \(v' \)-\(v'' \) transition, \(v_{v',v''} \) is the energy for the \(v' \)-\(v'' \) transition \(43 \) in \(\text{cm}^{-1} \), \(R_e(r_{v',v''}) \) is the electronic transition moment, \(r_{v',v''} \) is the \(r \)-centroid for the \(v' \)-\(v'' \) transition, and \(R_{v',v''} \) is the factor that accounts for the sensitivity of the detection system at the \(v' \)-\(v'' \) transition. The Franck-Condon factors and the \(r \)-centroids for the NO(A \(^2\Sigma^+, v' \rightarrow X \ ^2\Pi, v'' \)) \(\gamma \) bands and NO(B \(^2\Pi, v' \rightarrow X \ ^2\Pi, v'' \)) \(\beta \) bands are calculated using a technique described by Rabalais \(44 \) and they are found to be in very good agreement with those reported by Piper and Cowles \(45 \). \(R_e(r_{v',v''}) \)'s for the NO(A \(^2\Sigma^+, v' \rightarrow X \ ^2\Pi, v'' \)) \(\gamma \) bands are calculated using an expression reported by Piper and Cowles \(45 \),

\[R_e(r_{v',v''}) = 33.08 - 58.77 \cdot r_{v',v''} + 26.85 \cdot r_{v',v''}^2 \]

\(R_e(r_{v',v''}) \)'s for the NO(B \(^2\Pi, v' \rightarrow X \ ^2\Pi, v'' \)) \(\beta \) bands are calculated using an expression reported by Piper et al. \(46 \),

\[R_e(r_{v',v''}) = 0.350 - 0.104 \cdot r_{v',v''} + 3.69 \times 10^4 \cdot e^{-(10.1 \cdot r_{v',v''})} \]

\(R_{v',v''} \) is determined using a technique described by Mumma and Zipf \(34 \) and Mumma \(35 \). \(N_{v'} \) is determined by rearranging Eq (1) and \(\kappa \) will be canceled in the determination of the ratios for

\[N_{v'} = \frac{I_{v',v''}}{q_{v',v''} v_{v',v''}^3 R_e^3(r_{v',v''}) R_{v',v''} \kappa} \]

The emission intensity is calculated numerically by integrating the observed emission spectrum, \(i.e., I_{v',v''} = \sum_i I_i \delta E_i \), where \(\delta E_i \) is determined using \(\frac{E_{i-1} + E_{i+1}}{2} \). The observed wavelengths are converted to energies using a technique described by Srinivas and Lakshman \(47 \).
From our measurements of the intensities of the 0,7 and 1,8 transitions of the \(\text{NO}(A \: ^{3} \Sigma_{v}^{+}, v' = -X \: ^{2} \Pi_{v}, v'' = 1) \) bands we obtain a ratio \(\frac{[\text{NO}(A, v' = 0)]}{[\text{NO}(A, v' = 1)]} = \frac{\gamma_0}{\gamma_1} \) that is obtained using Eq (4). The other ratios, \(\frac{\gamma_0}{\beta_0} \) and \(\frac{\gamma_1}{\beta_0} \), are obtained in an analogous manner. The results of these calculations are presented in Table 2. For the energy transfer reaction \(\text{N}_2(A \: ^{3} \Sigma_{v}^{+}, v' = 0) + \text{NO}(X \: ^{2} \Pi_{v}, v'' = 0) \)
we observe a ratio \(\frac{\gamma_0}{\gamma_1} = (10.1 \pm 1.4) (1\sigma) \). This is in excellent agreement with that reported by Golde and Moyle \(^{48}\) who used the 0,0 and 1,0 transitions of the NO(A \(^2\Sigma^+ \), v' \(\rightarrow \) X \(^2\Pi, v'' \)) \(\gamma \) bands to obtain this ratio. For an \(N_2(A \ 3\Sigma^+_u, v' \leq 1) \) population distribution of 1.00 : 0.08 for v' = 0 and 1, respectively, we obtain a ratio \(\frac{\gamma_0}{\gamma_1} \) of \((8.46 \pm 1.02) \) (1\(\sigma \)). We are not aware of any previous measurements reported for this \(N_2(A \ 3\Sigma^+_u) \) vibrational level population distribution. For an \(N_2(A \ 3\Sigma^+_u, v' \leq 2) \) population distribution of 1.00 : 0.29 : 0.11 for v' = 0, 1 and 2, respectively, in which the \(N_2 \) fraction is \(\sim \)20\% of the total flow we find the ratio \(\frac{\gamma_0}{\gamma_1} \) to be \((5.74 \pm 0.71) \) (1\(\sigma \)), in very good agreement with that reported by Golde and Moyle \(^{48}\).

Table 2: Branching ratios of the emission from the NO A-X and B-X bands observed in the energy transfer reaction

\[N_2(A,v') + NO(X,v''=0) \rightarrow N_2(X,v'') + NO(A,v') + NO(B,v'') \]

<table>
<thead>
<tr>
<th>(N_2(A,v'))</th>
<th>[\frac{\text{NO}(A,v'=0)}{\text{NO}(A,v'=1)}]</th>
<th>[\frac{\gamma_0}{\gamma_1}]</th>
<th>[\frac{\text{NO}(A,v'=0)}{\text{NO}(B,v'=1)}]</th>
<th>[\frac{\gamma_7}{\gamma_8}]</th>
<th>[\frac{\text{NO}(A,v'=0)}{\text{NO}(B,v'=1)}]</th>
<th>[\frac{\beta_0}{\beta_1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>v' = 0</td>
<td>10.1 ± 1.44</td>
<td>12.08 (b)</td>
<td>7.67 ± 1.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v' ≤ 1</td>
<td>8.46 ± 1.02</td>
<td>3.28 ± 0.42</td>
<td>4.02 ± 0.52</td>
<td>0.75 ± 0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v' ≤ 2</td>
<td>5.74 ± 0.71</td>
<td>5.71 (b)</td>
<td>1.54 ± 0.21</td>
<td>1.76 ± 0.25</td>
<td>0.35 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>

a) The bands used in the determination of the branching ratios are presented in the table for clarity. The reported ratios are obtained using the standard expression for emission intensity (See text for discussion). The uncertainties reported in the table account for both the statistical and systematic uncertainties associated with the measurements. The systematic uncertainty for these measurements is estimated to be ±12\%.
c) The \(N_2(A,v') \) population distribution at the observation region of the rapidly pumped discharge-flow reactor is 1.00 : 0.08 for v' = 0 and 1, respectively. See text for discussion.
d) The \(N_2(A,v') \) population distribution at the observation region of the rapidly pumped discharge-flow reactor is 1.00 : 0.29 : 0.11 for v' = 0, 1 and 2, respectively. See text for discussion.

The production of the NO(B \(^2\Pi \)) state is much more sensitive to the nascent vibrational level population distribution of the \(N_2(A \ 3\Sigma^+_u) \) state compared to the production of the NO(A \(^2\Sigma^+ \)) state. While the \(\gamma_1 \) emission intensity increases by a factor of \(\sim \)2 relative to the \(\gamma_0 \) emission intensity as v' increases from v' = 0 to v' ≤ 6 in the \(N_2(A \ 3\Sigma^+_u) \) state, the \(\beta_0 \) emission intensity is observed to increase by a factor of \(\sim \)5 relative to the \(\gamma_0 \) emission intensity. In the following
discussion, to obtain the ratio $\frac{\gamma_0}{\beta_0}$, we will limit our primary analysis to measurements made

using the 0,7 transition of the NO($B \ 2\Pi_r,v' \rightarrow X \ 2\Pi_r,v''$) β bands. We present data in Table 2 for the 0,8 transition of the NO($B \ 2\Pi_r,v' \rightarrow X \ 2\Pi_r,v'''$) β bands but the reliability of calculations using this band are not as good as those using the 0,7 transition of the NO($B \ 2\Pi_r,v' \rightarrow X \ 2\Pi_r,v'''$) β bands because of a poorer Signal-to-Noise (See Figure 8) which is the result of the sensitivity of the solar blind photomultiplier tube decreasing rapidly in this wavelength region. For the energy transfer reaction $N_2(A \ 3\Sigma_u^+,v'=0) + NO(X \ 2\Pi_r,v''=0)$ we determine the ratio $\frac{\gamma_0}{\beta_0}$ using the 0,7 transition of the NO($A \ 2\Sigma^+,v' \rightarrow X \ 2\Pi_r,v''$) γ bands and the 0,7 transition of the NO($B \ 2\Pi_r,v' \rightarrow X \ 2\Pi_r,v'''$) β bands to be $(7.67 \pm 1.48) \ (1\sigma)$. For the $N_2(A \ 3\Sigma_u^+,v' \leq 1)$ population distribution of $1.00 : 0.08$ for $v' = 0$ and 1, respectively, we measure a ratio of $(3.28 \pm 0.42) \ (1\sigma)$ using the same bands, this represents an increase in the $[NO(B \ 2\Pi_r,v'=0)]$ of a factor of ~ 2 relative to the $[NO(A \ 2\Sigma^+,v'=0)]$ which is significant considering the small percentage of population in the $N_2(A \ 3\Sigma_u^+,v'=1)$. For the $N_2(A \ 3\Sigma_u^+,v' \leq 2)$ population distribution of $1.00 : 0.29 : 0.11$ for $v' = 0, 1$ and 2, respectively, we measure a ratio of $(1.52 \pm 0.21) \ (1\sigma)$. This represents an increase in the $[NO(B \ 2\Pi_r,v'=0)]$ of a factor of ~ 5 relative to the $[NO(A \ 2\Pi^+,v'=0)]$. We also determined the ratio $\frac{\gamma_1}{\beta_0}$ using the 1,8 transition of the NO($A \ 2\Sigma^+,v' \rightarrow X \ 2\Pi_r,v''$) γ bands and the 0,7 transition of the NO($B \ 2\Pi_r,v' \rightarrow X \ 2\Pi_r,v'''$) β bands. While the rate of increase for the production of the γ_1 relative to the β_0 is nearly identical to that observed for the production of the γ_0 relative to the β_0 band, the ratio of γ_1 to β_0 is much smaller (see Table 2).
A very small enhancement in the emission from the NO($B\ 2\Pi_r,v' \rightarrow X\ 2\Pi_r,v''$) β bands is observed when the vibrational level population distribution of the N$_2$(A $3\Sigma_u^+$) state is shifted to higher vibrational levels in the observation region of the rapidly pumped discharge-flow reactor, i.e., $0 \leq v' \leq 6$ (see Figure 8-4). A probable reason for this small increase is that previous work25 has shown that the $[N_2(A\ 3\Sigma_u^+,v' \geq 3)]$ decreases by a factor of ∼2.5 for each vibrational level relative to the v'-1 level. We know that the $[N_2(A\ 3\Sigma_u^+,v' \geq 3)] < [N_2(A\ 3\Sigma_u^+,v' \leq 2)]^{25,33}$. The concentration of these vibrational levels will be further attenuated when NO($X\ 2\Pi_r$) is added to the flow. It is possible that we have attenuated the concentrations of the higher vibrational levels to concentrations below which we will see a significant effect on the product emissions. An efficient and clean technique to generate N$_2$(A $3\Sigma_u^+,v' \geq 3$) in substantial quantities would enable the further investigation of the increase in the emissions from the NO($B\ 2\Pi_r,v' \rightarrow X\ 2\Pi_r,v''$) β bands. In addition, the N$_2$(A $3\Sigma_u^+,v' \geq 3$) Franck-Condon favored 6,44 N$_2$(A $3\Sigma_u^+,v' \rightarrow X\ 1\Sigma_g^+,v''$) Vegard-Kaplan transitions possess enough energy43 to dissociate NO($X\ 2\Pi_r$). As suggested by Golde and Moyle48, it is possible that an alternate product channel is accessible to the N$_2$(A $3\Sigma_u^+,v' \geq 3$).

Emission from the 2,v'' transition of the NO(A $2\Sigma^+,v' \rightarrow X\ 2\Pi_r,v''$) γ bands could be a potential source of interference in the present investigation. In the wavelength region that we made our measurements, the 0,7 transition of the NO($B\ 2\Pi_r,v' \rightarrow X\ 2\Pi_r,v''$) β bands and the 0,8 transition of the NO($B\ 2\Pi_r,v' \rightarrow X\ 2\Pi_r,v''$) β bands are overlapped by the 2,9 and 2,10 transitions of the NO(A $2\Sigma^+,v' \rightarrow X\ 2\Pi_r,v''$) γ bands, respectively. We see a small emission to the blue of the 0,7 transition of the NO($B\ 2\Pi_r,v' \rightarrow X\ 2\Pi_r,v''$) β bands, which might be from the 2,9 transition of the NO(A $2\Sigma^+,v' \rightarrow X\ 2\Pi_r,v''$) γ bands. In both cases, the majority of the emission from the 2,v'' transition of the NO(A $2\Sigma^+,v' \rightarrow X\ 2\Pi_r,v''$) γ bands is to the blue of the respective 0,v'' transition of the NO($B\ 2\Pi_r,v' \rightarrow X\ 2\Pi_r,v''$) β bands. The Franck-Condon factors44,45 for the 2,9 and 2,10 transitions of the NO(A $2\Sigma^+,v' \rightarrow X\ 2\Pi_r,v''$) γ bands are relatively small, i.e., 0.062 and 0.038.
respectively. We know that the ratio $\frac{[\text{NO}(A,v'=2)]}{[\text{NO}(A,v'=0)]}$ is $\leq 2\%$ of the total NO($A ~^2\Sigma^+,v'$) 48. The error introduced by this weak overlapping emission is therefore small compared to our total reported uncertainty.

The increase in the [NO($B ~^2\Pi_r$)] with vibrational quanta in the N$_2$($A ~^3\Sigma^+_g$) is probably due to a combination of energetics and Franck-Condon overlap 20. We are currently investigating the effect of vibrational energy in the CO($a ~^3\Pi,v'$) on the products of the energy transfer reaction CO($a ~^3\Pi,v'$) + NO($X ~^2\Pi_r,v''$). A comparison of the product distributions for these two systems might provide some insight into the mechanisms for the excitation of the NO($A ~^2\Sigma^+$) and NO($B ~^2\Pi_r$) states.

3.2 BRANCHING FRACTIONS OF THE PRODUCT NO($A ~^2\Sigma^+,v'=0, 1$ AND 2) AND NO($B ~^2\Pi_r,v'=0$) EMISSIONS OBSERVED AS A FUNCTION OF v' IN THE ENERGY TRANSFER REACTION CO($a ~^3\Pi,v'$) + NO($X ~^2\Pi_r,v''=0$)

3.2.1 Analysis of the NO($A ~^2\Sigma^+,v'$) and NO($B ~^2\Pi_r,v'$) Emissions.

A series of product photoelectric emission spectra is presented in Figure 9 for the energy transfer reaction CO($a ~^3\Pi,v'$) + NO($X ~^2\Pi_r$). We show emission spectra for three of the four generating reactions used. From bottom to top they are: (A) Ar($^3P_{2,0}$) + CO$_2$(X $^1\Sigma^+_g$), (B) He(3S_1) + CO$_2$(X $^1\Sigma^+_g$)/CO(X $^1\Sigma^+$)/SF$_6$ and (C) He(3S_1) + CO$_2$(X $^1\Sigma^+_g$)/SF$_6$. Each generating reaction provides us with a different CO($a ~^3\Pi$) vibrational level population distribution at the observation region of the rapidly pumped discharge-flow reactor (See Table 1). Visual comparison of the 0,6 transition of the NO($A ~^2\Sigma^+,v' \rightarrow X ~^2\Pi_r,v''$) γ bands at $\sim 2,996$ Å and the 0,7 transition of the NO($B ~^2\Pi_r,v' \rightarrow X ~^2\Pi_r,v''$) β bands at $\sim 3,035$ Å shows a marked increase in the intensity of the NO($B ~^2\Pi_r,v' \rightarrow X ~^2\Pi_r,v''$) β bands relative to the NO($A ~^2\Sigma^+,v' \rightarrow X ~^2\Pi_r,v''$) γ bands as CO($a ~^3\Pi$) increases its $v'>0$ population in the observation region.

31
The relative populations of the CO($^3\Pi_v, v'$), NO($^2\Sigma^+, v'$) and NO($^2\Pi_v, v'$) are calculated using the standard equation for emission intensity 40. The emission intensity, $I_{v',v''}$, for a transition from v' to v'' is given by

$$I_{v',v''} = \kappa \cdot N_{v'} \cdot q_{v',v''} \cdot v_{v',v''}^3 \cdot R_e^2(r_{v',v''}) \cdot R_{v',v''}.$$

(5)
where κ is a constant, $N_{v'}$ is the number density for molecules in the v' level in cm$^{-3}$, $q_{v',v''}$ is the Franck-Condon factor for the $v'\rightarrow v''$ transition, $v_{v',v''}$ is the energy in wavenumber for the $v'\rightarrow v''$ transition, $R_e(r_{v', v''})$ is the electronic transition moment, $r_{v', v''}$ is the r-centroid for the $v'\rightarrow v''$ transition, and $R_{v', v''}$ is the factor that accounts for the sensitivity of the detection system at the $v'\rightarrow v''$ transition. The Franck-Condon factors and the r-centroids for the CO($^3\Pi \rightarrow X \Sigma^+$) Cameron bands, NO($^2\Sigma^+, v' \rightarrow X ^2\Pi_r, v''$) γ bands and NO($^2\Pi_r, v' \rightarrow X ^2\Pi_r, v''$) β bands are calculated using a technique described by Rabalais 44 and they are found to be in very good agreement with those reported by Krupenie 49 for the CO($^3\Pi \rightarrow X \Sigma^+$) Cameron bands and with those reported by Piper and Cowles 45 for the NO($^2\Sigma^+, v' \rightarrow X ^2\Pi_r, v''$) γ bands and NO($^2\Pi_r, v' \rightarrow X ^2\Pi_r, v''$) β bands. $R_e(r_{v', v''})$'s for the NO($^2\Sigma^+, v' \rightarrow X ^2\Pi_r, v''$) γ bands are calculated using an expression reported by Piper and Cowles 45,

$$R_e(r_{v', v''}) = 33.08 - 58.77 \cdot r_{v', v''} + 26.85 \cdot r_{v', v''}^2$$

(6)

$R_e(r_{v', v''})$'s for the NO($^2\Pi_r, v' \rightarrow X ^2\Pi_r, v''$) β bands are calculated using an expression reported by Piper et al. 46,

$$R_e(r_{v', v''}) = 0.350 - 0.104 \cdot r_{v', v''} + 3.69 \times 10^4 \cdot e^{-(10.1 \cdot r_{v', v''})}$$

(7)

$R_{v', v''}$ is determined using a technique described by Mumma and Zipf 34. $N_{v'}$ is determined by rearranging Eq (5) and κ will be canceled in the determination of the ratios for $N_{v'}$,

$$N_{v'} = \frac{I_{v', v''}}{q_{v', v''} \cdot v_{v', v''}^3 \cdot R_e^2(r_{v', v''}) \cdot R_{v', v''} \cdot \kappa}$$

(8)

The emission intensity is calculated numerically by integrating the observed emission spectrum, i.e., $I_{v', v''} = \sum_i I_i \cdot \delta E_i$, where δE_i is determined using $\frac{E_{i-1} + E_{i+1}}{2}$. The observed wavelengths are converted to energies using a technique described by Srinivas and Lakshman 47.
A summary of the NO(A \(2\Sigma^+, v'\leq2\)) and NO(B \(2\Pi_r, v'=0\)) population distributions and branching fractions are presented in Table 3 for the four different CO(a \(3\Pi, v'\)) vibrational distributions used (See Table 1). The relative NO(A \(2\Sigma^+, v'\leq2\)) and NO(B \(2\Pi_r, v'=0\)) populations are calculated using Eq (8). Band intensities from the NO(A \(2\Sigma^+, v'=0-2 \rightarrow X\ 2\Pi_r, v''\)) \(\gamma\), \(\Delta v = v' - v'' = -4, -5\) and \(-6\) and the NO(B \(2\Pi_r, v'=0 \rightarrow X\ 2\Pi_r, v''\)) \(\beta\), \(\Delta v = -6\) and \(-7\) bands were used to determine the \(N_{v'}\)s for the NO(A \(2\Sigma^+, v'=0, 1\) and \(2\)) and the NO(B \(2\Pi_r, v'=0\)). The branching fractions were then determined for each of the observed emissions in a given measurement where

\[
\sum_{v'=0}^{v_{max}} N_{v'} = \sum_{v'=0}^{v_{max}} N_{A,v'} + \sum_{v'=0}^{v_{max}} N_{B,v'} = 1, \text{ where } v_{max} \text{ is } 2 \text{ and } 0 \text{ for the NO(A } 2\Sigma^+) \text{ and NO(B } 2\Pi_r) \text{ states, respectively.Immediately obvious in Table 3 is the large increase in the production of NO(B \(2\Pi_r, v'=0\)) relative to NO(A \(2\Sigma^+, v'=0\)) as the higher vibrational levels of the CO(a \(3\Pi\)) are populated in the observation region (See Table 2). The ratio \(\frac{\gamma_0}{\beta_0}\), where the subscript 0 refers to their respective \(N_{v'=0}\) value Eq (8), is determined to be \((0.65 \pm 0.02) (1\sigma)\) for the energy transfer reaction CO(a \(3\Pi, v'=0\)) + NO(X \(2\Pi_r, v''=0\)). As the vibrational level population distribution in the CO(a \(3\Pi\)) is shifted to higher vibrational levels, we see an increase in the intensity of the NO(B \(2\Pi_r, v'=0 \rightarrow X\ 2\Pi_r, v''\)) \(\beta\) bands relative to the NO(A \(2\Sigma^+, v' \rightarrow X\ 2\Pi_r, v''\)) \(\gamma\) bands. For the energy transfer reaction He(\(3S_1\)) + CO\(_2\)(X \(1\Sigma^+_g\)), which represents the most unrelaxed CO(a \(3\Pi\)) vibrational level population distribution used in the present investigation, we see the ratio \(\frac{\gamma_0}{\beta_0}\) decrease to a value of \((0.099 \pm 0.004) (1\sigma)\). This represents a factor of \((6.6 \pm 0.3) (1\sigma)\) increase in the [NO(B \(2\Pi_r, v'=0\))] relative to the [NO(A \(2\Sigma^+, v'=0\))].
Table 3: Relative populations and branching fractions for the NO(A,B) states.a

| Generating Reactionb | NO(4 \Sigma^+, v') | NO(2 \Pi_0, v'=0) | \[
\frac{[\text{NO}(A, v'=0)]}{[\text{NO}(A, v'=1)]}
\] |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A** + CO_2</td>
<td>0.355 ± 0.009</td>
<td>0.081 ± 0.030</td>
<td>0.546 ± 0.013</td>
</tr>
<tr>
<td>A** + CO/CO_2</td>
<td>0.382 ± 0.031</td>
<td>0.055 ± 0.005</td>
<td>4</td>
</tr>
<tr>
<td>He** + CO/CO_2/SF_6</td>
<td>0.166 ± 0.013</td>
<td>0.020 ± 0.003</td>
<td>4</td>
</tr>
<tr>
<td>He** + CO_2/SF_6</td>
<td>0.088 ± 0.002</td>
<td>0.013 ± 0.001</td>
<td>0.012 ± 0.001</td>
</tr>
</tbody>
</table>

a) The relative intensities were calculated using Equation 4 and emission from the NO \(\gamma v' = 0 \) \(\Delta v = v' - v'' = -2 \) and \(\Delta v = -6 \) and -7 bands. The uncertainties reported in the table account for the statistical uncertainty (1σ) associated with the measurements. An additional 12% should be added in quadrature to the above uncertainties to account for the total experimental uncertainty.

b) Ar or He metastables were generated using a low power dc discharge in Ar or He. See Table 1 for the CO(\(\alpha \Pi_0, v' \)) vibrational distribution that corresponds to each of these generating reactions.

c) The ratio, \(\gamma_0/\beta_0 = N_{A,v'/0}/N_{B,v'=0} \), is calculated using the standard equation for emission intensity. See text for discussion.

d) In the experiments in which we used a 1:1 mixture of CO(X 1\Sigma^+_g) and CO(X 1\Sigma^+_g) to generate the CO(\(\alpha \Pi_0, v' \)) no analysis was performed on the NO(4 \Sigma^+, v'=2) because of a weak signal-to-background-noise in the region we scanned.

As mentioned above, previous work\(^1\) has attributed the difference in the ratios between the He and Ar systems to trace concentrations of \(N_2(A 3\Sigma_u^+)\) which results from \(N_2 \) impurities in the Ar buffer gas and not to a dependence upon the vibrational level distribution of the CO(\(\alpha 3\Pi \)). Our results show clearly that \(N_2 \) impurities are insignificant in our experiments. The \(\gamma_0/\beta_0 \) ratios for the energy transfer reactions CO(\(\alpha 3\Pi, v'=0,1 \)) + NO(X 2\Pi_r, v''=0) and \(N_2(A 3\Sigma_u^+, v'=0) + NO(X 2\Pi_r, v''=0) \) are (0.65 ± 0.02) (1σ) and (7.67 ± 1.16) (1σ) \(^5\) respectively. This large difference in the ratios makes it unlikely that nitrogen is a relevant impurity. We performed a second set of measurements on the energy transfer reaction CO(\(\alpha 3\Pi, v'=0,1 \)) + NO(X 2\Pi_r) using the generating reaction Ar(3P_2,0) + CO_2(X 1\Sigma_g^+). The [NO(X 2\Pi_r)] was reduced by a factor of ~10 as compared to that used for the same reaction presented in Table 3. The results of these measurements are given in Table 4. Since the k_\(v' \)'s for the reactions CO(\(\alpha 3\Pi \)) + NO(X 2\Pi_r) \(^{14,17}\) and \(N_2(A 3\Sigma_u^+) + \)
NO($X^2\Pi_r$) differ by a factor of ~4.8, i.e.,
\[
\frac{k_{\text{CO}(a,v'=0) + \text{NO}(X)}}{k_{N_2(A,v'=0) + \text{NO}(X)}} = \left(\frac{2.9 \times 10^{-10}}{6.0 \times 10^{-11}} \right) \approx 4.8,
\]
reducing the [NO($X^2\Pi_r$)] by a factor of ~10 will increase the [CO($a^3\Pi$)] relative to the [N$_2(A^3\Sigma^+_g)$] in the observation region of the rapidly pumped discharge-flow reactor. If the CO($a^3\Pi, v'=0,1$) are the predominant energy transfer precursors, as we expect them to be, the increase in the relative concentrations of the CO($a^3\Pi, v'=0,1$) corresponding to the factor of 10 decrease in the [NO($X^2\Pi_r$)] should not change the observed ratio $\frac{\gamma_0}{\beta_0}$ by a significant amount and we might see a small decrease in the ratio $\frac{\gamma_0}{\beta_0}$. However, if the observed ratio $\frac{\gamma_0}{\beta_0}$ contains a significant contribution from the energy transfer reaction N$_2(A^3\Sigma^+_g, v''=0) + \text{NO}(X^2\Pi_r, v''=0)$, i.e.,
\[
\left(\frac{\gamma_0}{\beta_0} \right)_{\text{Observed}} = \frac{\gamma_{0, \text{CO}(a)} + \gamma_{0, N_2(A)}}{\beta_{0, \text{CO}(a)} + \beta_{0, N_2(A)}},
\]
we would expect the observed ratio $\frac{\gamma_0}{\beta_0}$ to increase by a significant amount. The measured ratio $\frac{\gamma_0}{\beta_0}$ is observed to decrease slightly from (0.65 ± 0.02) (1σ) to (0.52 ± 0.12) (1σ) when the [NO($X^2\Pi_r$)] is reduced by a factor of ~10. The larger uncertainty associated with the latter measurement is due to the poorer signal-to-noise obtained when we lowered the [NO($X^2\Pi_r$)]. The decrease in the ratio $\frac{\gamma_0}{\beta_0}$, i.e., the increase in the [NO($B^2\Pi_r, v''=0$)], is due to a small increase in the [CO($a^3\Pi, v'=1$)]. We conclude, therefore, that N$_2$ is negligible as an impurity and the observed change in the ratio $\frac{\gamma_0}{\beta_0}$ is due to vibrational energy in the CO($a^3\Pi$) state.
Table 4: Relative populations and branching fractions for the NO(A,B) states as a function of [NO(X)]
in the energy transfer reaction CO(a,v''=0) + NO(X,v'=0).

<table>
<thead>
<tr>
<th>Generating Reactionb</th>
<th>NO(A 2Σ*,v')</th>
<th>NO(B 2Πr,v'=0)</th>
<th>[NO(A,v'=0)] / [NO(A,v'=0)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar* + CO₂d</td>
<td>v' = 0</td>
<td>0.355 ± 0.009</td>
<td>0.081 ± 0.030</td>
</tr>
<tr>
<td></td>
<td>v' = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v' = 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar* + CO₂e</td>
<td>v' = 0</td>
<td>0.316 ± 0.050</td>
<td>0.061 ± 0.011</td>
</tr>
</tbody>
</table>

a) The relative intensities were calculated using Equation 4 and emission from the NO γ ν' = 0-2 Δν = ν' - ν'' = -4, -5 and -6 bands and the NO B ν' = 0 Δν = -6 and -7 bands. The uncertainties reported in the table account for the statistical uncertainty (1σ) associated with the measurements. An additional 12% should be added in quadrature to the above uncertainties to account for the total experimental uncertainty.

b) Ar or He metastables were generated using a low power dc discharge in Ar or He. The CO(a) is primarily in ν'=0.

c) The ratio, γ/β = Nₐ,v''/Nₕ,v''', is calculated using the standard equation for for emission intensity. See text for discussion.

d) Data from Table 3. [NO(X)] = (3.78 ± 0.33) x 10¹² molecules cm⁻³.

e) [NO(X)] = (2.24 ± 0.24) x 10¹¹ molecules cm⁻³.

3.2.2 Comparison between the N₂(A 3Σ⁺) and CO(a 3Π)

As expected^{17,39}, excitation of the NO(B 2Πr,ν' → X 2Πr,ν'') β bands relative to the NO(A 2Σ⁺,ν' → X 2Πr,ν'') γ bands is more efficient for the energy transfer reaction CO(a 3Π,ν'=0) + NO(X 2Πr) as compared to the energy transfer reaction N₂(A 3Σ⁺,v'=0) + NO(X 2Πr), i.e., \(\frac{γ}{β} = (0.650 ± 0.022) (1σ) \) and \((7.67 ± 1.16) (1σ) \) respectively. Using these ratios and normalizing the CO(a 3Π,ν'=0) + NO(X 2Πr,ν'') data to the N₂(A 3Σ⁺,v'=0) + NO(X 2Πr,ν''') data, we determine that the energy transfer reaction CO(a 3Π,ν'=0) + NO(X 2Πr,ν''=0) is \((21.6 ± 3.3) (1σ) \) times more efficient at generating NO(B 2Πr,ν'=0) than the energy transfer reaction N₂(A 3Σ⁺,v'=0) + NO(X 2Πr,ν''=0). This is qualitatively consistent with the work reported by Taylor and Setser^{17,39}. This observation is even more pronounced when we consider the fact that only \~1/3^{14} of the energy transfer reaction CO(a 3Π) + NO(X 2Πr) leads to the excitation of the NO(A 2Σ⁺) and NO(B 2Πr) compared to the energy transfer reaction N₂(A 3Σ⁺) + NO(X 2Πr) which is 100% efficient in producing the NO(A 2Σ⁺) and NO(B 2Πr)^{348}. 37
For the unrelaxed energy transfer reactions \(\text{CO}(a^3\Pi, v'\leq 3) + \text{NO}(X^2\Pi_t) \) and \(\text{N}_2(A^3\Sigma_u^+, v'\leq 2) + \text{NO}(X^2\Pi_t) \) we measured \(\frac{\gamma_0}{\beta_0} \) ratios of \((0.099 \pm 0.004) \) \((1 \sigma)\) and \((1.54 \pm 0.10) \), \((1 \sigma)\) \[50, \]

respectively. This represents a factor of approximately 6.5 increase in the \([\text{NO}(B^2\Pi_r, v'=0)]\)
relative to the \([\text{NO}(A^2\Sigma^+, v'=0)]\) for the energy transfer reaction \(\text{CO}(a^3\Pi, v'\leq 3) + \text{NO}(X^2\Pi_t) \)
while the \([\text{NO}(B^2\Pi_r, v'=0)]\) increases by a factor of approximately 5.0 relative to the \([\text{NO}(A^2\Sigma^+, v'=0)]\) for the energy transfer reaction \(\text{N}_2(A^3\Sigma_u^+, v'\leq 2) + \text{NO}(X^2\Pi_t) \).

3.3 AN UPPER LIMIT ON THE FORMATION OF NO(X^2Π_r) IN THE REACTIONS N_2(A^3Σ_u^+) + O(3P) AND N_2(A^3Σ_u^+) + O_2(X^3Σ_g^+) AT 298 K.

The primary objective of this investigation was to quantify the \(\text{NO}(X^2\Pi_r) + \text{N}(4S, 2D) \) product yield from the reaction \(\text{N}_2(A^3\Sigma_u^+) + \text{O}(3P) \). For the reaction \(\text{N}_2(A^3\Sigma_u^+, v'\leq 2) + \text{O}(3P) \) there is no \([\text{NO}(X^2\Pi_r)]_{\text{Observed}} \) detected above the noise in the background emission signal. After correcting this null measurement for competing \(\text{N}_2(A^3\Sigma_u^+) \) removal processes the upper limit for the corrected \(\text{NO}(X^2\Pi_r) + \text{N}(4S, 2D) \) product yield, \([\text{NO}(X^2\Pi_r)]_{\text{Product}} \), in the reaction \(\text{N}_2(A^3\Sigma_u^+, v'\leq 2) + \text{O}(3P) \) is \([\text{NO}(X^2\Pi)]_{\text{Product}} = \frac{[\text{NO}(X^2\Pi)]_{\text{Observed}}}{F_{o_0'(v)}} \leq 2\% \) \((\text{Signal-to-Background Noise}=1, \ 1\sigma)\) of the \([\text{N}_2(A^3\Sigma_u^+, v'\leq 2)]_{\text{Total}} \). When the \(\text{N}_2(A^3\Sigma_u^+, v') \) population is shifted to higher vibrational levels, i.e., \(0 \leq v' \leq 6\), by reducing the \([\text{N}_2]_{\text{Total}} \) from \(~20\%\) to \(~0.2\%\) of the total flow a small increase in the \([\text{NO}(X^2\Pi_r)]_{\text{Observed}} \) was detected above the noise in the background. After correcting the \([\text{NO}(X^2\Pi_r)]_{\text{Observed}} \) for competing \(\text{N}_2(A^3\Sigma_u^+, v'\leq 6) \) loss processes the \([\text{NO}(X^2\Pi_r)]_{\text{Product}} \) accounts for \(~5.7\%\) of the \([\text{N}_2(A^3\Sigma_u^+, v'\leq 6)]_{\text{Total}} \). This product emission was attenuated by the addition of \(\text{CH}_4 \) to the flow upstream of the reaction zone suggesting that the emission signal is due to the presence of \(\text{N}_2(A^3\Sigma_u^+, v'\geq 3) \).
For the low-[N₂] experiments the corrected NO(\(X^2Π_r\)) + N(4S,2D) product yield represents (5.7 ± 1.1)% (1σ) of the \([N₂(A^3Σ_u^+)]_{\text{Total}}\). If the NO(\(X^2Π_r\)) is indeed formed by reaction of higher vibrational levels of the \(N₂(A^3Σ_u^+)^\) the vibrational level specific branching fraction is probably much higher since the relative population of \(N₂(A^3Σ_u^+,v'\geq3)\) is significantly smaller than the lower vibrational levels. Based on laser-excited fluorescence measurements 25,33 and vibrational relaxation studies 22,25, we estimate that the fractional \(N₂(A^3Σ_u^+)\) population in \(v'\geq3\) is <10% of the total \(N₂(A^3Σ_u^+)\), which suggests that the NO(\(X^2Π_r\)) + N(4S,2D) product yield could be ≥(57 ± 14)% of the total \([N₂(A^3Σ_u^+,v'\geq3)]\).

As mentioned above, the reactions \(N₂(A^3Σ_u^+) + O₂(X^3Σ_g^-)\) and \(N₂(A^3Σ_u^+) + O₂^*\) could interfere with the measurement of the NO(\(X^2Π_r\)) + N(4S,2D) product channel in the reaction \(N₂(A^3Σ_u^+) + O(3P)\). The product channels for the reaction \(N₂(A^3Σ_u^+) + O₂(X^3Σ_g^-)\) have been extensively studied 51-55; however, previous studies did not look at the formation of NO(\(X^2Π_r\)). Although the NO(\(X^2Π_r\)) + NO(\(X^2Π_r\)) product channel is 4.3 eV exoergic the probability of the four-centre chemical reaction is very small 56. No \([\text{NO}(X^2Π_r)]_{\text{Observed}}\) is detected above the noise in the background emission signal from the reaction \(N₂(A^3Σ_u^+) + O₂(X^3Σ_g^-,v''=0)\). With a detection limit of ~2 x 10⁷ molecules cm⁻³ (Signal-to-Background Noise=1, 1σ) this represents a corrected branching fraction \(\left[\frac{\text{NO}(X^2Π)}{F_{O₂}}\right]_{\text{Product}} = \frac{\left[\text{NO}(X^2Π)]_{\text{Observed}}\right]}{F_{O₂}}\) of < 0.1% of the \([N₂(A^3Σ_u^+)])_{\text{Total}}\).

This measurement was insensitive to the \(N₂(A^3Σ_u^+)\) vibrational level population distribution for \(v'\leq6\) and showed that the presence of undissociated \(O₂(X^3Σ_g^-)\) would not interfere with the \(N₂(A^3Σ_u^+) + O(3P) \rightarrow \text{NO}(X^2Π_r) + N(4S,2D)\) product channel measurement. The product channels for the reaction of \(N₂(A^3Σ_u^+) + O₂^*\) are not well characterized. The effect of this reaction on the present analysis will be discussed below.
Several key assumptions were made in the data analysis and interpretation. First, we assume that the initial concentration of the $N_2(A\ 3\Sigma_u^+)$, $[N_2(A\ 3\Sigma_u^+)]_{\text{Initial}}$, is equal to the concentration of the Xe metastables, Xe($^3P_{2,0}$), at the N$_2$ inlet. Work by Sadeghi and Setser 57 has shown that the primary product in the energy transfer reaction Xe($^3P_{2,0}$) + N$_2(X\ 1\Sigma_g^+)$ is N$_2(B\ 3\Pi_g)$. N$_2(A\ 3\Sigma_u^+)$ is then formed in the subsequent rapid collisional and radiative cascade in the triplet manifold of electronically excited N$_2$.

Second, we assume that $[\text{Xe}^{(3P)}] = [\text{O}^{(3P)}]/2$ at the N$_2$ inlet. Balamuta and Golde 58,59 have determined that the reaction Xe($^3P_{2,0}$) + O$_2$ produces two atomic oxygen for each Xe metastable. Although this reaction is sufficiently exoergic to generate O(1D), under our experimental conditions any O(1D) formed in the titration reaction would be rapidly quenched by the excess O$_2$ and Ar 60. The loss of O(3P) at the walls of the reactor is small and is therefore neglected ($k_{\text{wall, Pyrex}} \sim 2$ s$^{-1}$) 61.

Third, we assume that the only loss process for N$_2(A\ 3\Sigma_u^+)$ in the short time from the N$_2$ inlet to the O(3P)/O$_2$ addition port (t \sim 2 ms), is the deactivation of N$_2(A\ 3\Sigma_u^+)$ at the wall 37,62, $k_{\text{wall}} \sim 176$ s$^{-1}$. This is reasonable since both Ar and N$_2$ are known to be very inefficient electronic quenchers of the N$_2(A\ 3\Sigma_u^+)$ 9,11,63.

Fourth, the $[\text{NO}(X\ 2\Pi_r)]_{\text{Observed}}$ is not affected by the N$_2(A\ 3\Sigma_u^+)$ radial concentration gradient which results from the deactivation of N$_2(A\ 3\Sigma_u^+)$ at the reactor walls 64. Iannuzzi et al. 51 investigated this problem while determining the N$_2$O + O branching fraction in the reaction N$_2(A\ 3\Sigma_u^+) + O_2(X\ 3\Sigma_g^-)$. It was determined that the $[N_2(A\ 3\Sigma_u^+)]$ gradient had $<$10% effect on their product channel measurement. The effect of a concentration gradient in the present investigation would be of the same magnitude determined by Iannuzzi et al. 51 since our measurements were performed under similar flow conditions.
Fifth, if the NO($X^2\Pi_r$) formed in the reaction $\text{N}_2(3^\Sigma_u^+) + \text{O}(3P)$ is vibrationally hot, i.e., $v'' \leq 14$ and $v'' \leq 6$ for processes (3) and (5) in Table 5, respectively, it will be vibrationally relaxed into $v''=0$ within the ~40 cm (10 ms) reaction distance. $\text{O}(3P)$ is a very efficient vibrational relaxant of NO($X^2\Pi_r, v''$). For NO($X^2\Pi_r, v''=1$) + $\text{O}(3P) \rightarrow \text{NO}(X^2\Pi_r, v''=0) + \text{O}(3P)$ Fernando and Smith 65 report a $k = 6.5 \times 10^{-11}$ cm3 molecules$^{-1}$ s$^{-1}$. If k is similarly large for higher v'', as it is expected to be, >95% of the product NO($X, v''\geq1$) should be relaxed into $v''=0$ prior to the NO laser-excited fluorescence detector port. This lower limit is based on a set of Runge-Kutta fourth order numerical calculations with automatic step sizing that used as input parameters the rate constant reported by Fernando and Smith 65 for the NO($X^2\Pi_r, v''$) + $\text{O}(3P) \rightarrow \text{NO}(X^2\Pi_r, v''=1)$ + $\text{O}(3P)$, a worst case scenario where all the product NO($X^2\Pi_r$) is initially populated in $v'=14$ and concentrations and residence times associated with the respective measurements. In addition, further vibrational relaxation of the NO($X^2\Pi_r, v''\geq1$) would have been observed in the measurements where we vibrationally relaxed $\text{N}_2(3^\Sigma_u^+, v'=1)$ into $\text{N}_2(3^\Sigma_u^+, v'=0)$ using CH$_4$. CH$_4$, while not as efficient as $\text{O}(3P)$, is known to vibrationally relax NO($X^2\Pi_r, v''=1$) with a reported rate constant $k = (1.88 \pm 0.15) \times 10^{-13}$ cm3 molecules$^{-1}$ s$^{-1}$.66

<table>
<thead>
<tr>
<th>Equation</th>
<th>Reaction Description</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $\text{N}_2(3^\Sigma_u^+) + \text{O}(3P)$</td>
<td>$\rightarrow \text{N}_2(X^1\Sigma_g^+) + \text{O}(1D) + 6.2$ eV</td>
<td></td>
</tr>
<tr>
<td>(2) $\text{N}_2(X^1\Sigma_g^+) + \text{O}(1D)$</td>
<td>$+ 4.2$ eV</td>
<td></td>
</tr>
<tr>
<td>(3) $\text{NO}(X^2\Pi_r) + \text{N}(4S)$</td>
<td>$+ 2.9$ eV</td>
<td></td>
</tr>
<tr>
<td>(4) $\text{N}_2(X^1\Sigma_g^+) + \text{O}(1S)$</td>
<td>$+ 2.0$ eV</td>
<td></td>
</tr>
<tr>
<td>(5) $\text{NO}(X^2\Pi_r) + \text{N}(3D)$</td>
<td>$+ 0.5$ eV</td>
<td></td>
</tr>
</tbody>
</table>

We must also consider the possible interference that would occur if significant quantities of atomic nitrogen are present in the reaction zone. The presence of atomic nitrogen would result in an underestimate of the NO($X^2\Pi_r$) + N($4S, 2D$) and NO($X^2\Pi_r$) + NO($X^2\Pi_r$) product yields since the reaction $\text{N} + \text{NO} \rightarrow \text{N}_2 + \text{O}$ is fast, $k = 3.4 \times 10^{-11}$ cm3 molecules$^{-1}$ s$^{-1}$ at 298 K67. In a separate experiment 25, the N$_2$ flow was replaced by a comparable flow of Ar and the relative
concentration of the $\text{N}_2(A \, ^3\Sigma_u^+, \nu' = 3)$ was monitored by laser-excited fluorescence techniques in order to place an upper limit on the concentration of the atomic nitrogen in the reaction zone. No $\text{N}_2(A \, ^3\Sigma_u^+, \nu' = 3)$ laser-excited fluorescence emission signal was observed above the noise in the background. We corrected the null $\text{N}_2(A \, ^3\Sigma_u^+, \nu' = 3)$ measurement for the $\text{N}_2(A \, ^3\Sigma_u^+, \nu')$ population distribution 22,25,33 and wall loss in the reaction zone 37,62. Then, assuming a worse case scenario in which all of the N_2-impurity would be dissociated into atomic nitrogen in the metastable generation region, we estimate an upper limit of $\sim 5 \times 10^9$ molecules cm$^{-3}$ for the atomic nitrogen concentration. Based on this value the subsequent reduction of any NO product formed in the titrre reactions from the reaction $\text{N} + \text{NO}$ would amount to less than 0.2% of the total NO.

Several of the interactions can be eliminated as possible sources of $\text{NO}(X \, ^2\Pi_l)$. First, the reaction $\text{N}_2^* + \text{O}_2(X \, ^3\Sigma_g^-)$, where $\text{N}_2^* \equiv \text{N}_2(A \, ^3\Pi_u^+)$, $\text{N}_2(B \, ^3\Pi_u^+_g)$, and $\text{N}_2(W \, ^3\Delta_u)$ states, can be eliminated since there is no $[\text{NO}(X \, ^2\Pi_l)]_{\text{observed}}$ detected in the preliminary $\text{N}_2(A \, ^3\Sigma_u^+, \nu') + \text{O}_2(X \, ^3\Sigma_g^-)$ measurements and all of the above species would have been present in the reaction zone in either the low- or high-$[\text{N}_2]$ experiments. Second, the reaction $\text{N}_2(A \, ^3\Sigma_u^+, \nu' \leq 2) + \text{O}_2^*$, where $\text{O}_2^* \equiv \text{O}_2(a \, ^1\Delta)$ and $\text{O}_2(b \, ^1\Sigma_g^+)$, can also be eliminated as a source of $\text{NO}(X \, ^2\Pi_l)$ since the O_2^* is present in the high-$[\text{N}_2]$ $\text{N}_2(A \, ^3\Sigma_u^+, \nu' \leq 2) + \text{O}(^3\Sigma)$ experiments. Third, the reaction $\text{N}_2(A \, ^3\Sigma_u^+, \nu' \leq 2) + \text{O}(^3\Pi)$ can be eliminated since no $[\text{NO}(X \, ^2\Pi_l)]_{\text{observed}}$ is detected in the present investigation. Fourth, it is unlikely that the reactions $\text{N}_2(B \, ^3\Pi_u^+) + \text{O}(^3\Sigma)$ or $\text{N}_2(W \, ^3\Delta_u) + \text{O}(^3\Sigma)$ are responsible for the production of $\text{NO}(X \, ^2\Pi_l)$ because of their short lifetimes ($\tau \sim 8\mu$s) and low concentrations in the reaction zone. There remain two possible sources of product $\text{NO}(X \, ^2\Pi_l)$: $\text{N}_2(A \, ^3\Sigma_u^+, \nu' \geq 3) + \text{O}(^3\Pi)$ and/or $\text{N}_2(A \, ^3\Sigma_u^+, \nu' \geq 3) + \text{O}_2^*$. Very little is known about the excited state surfaces of N_2O. Molecular correlation diagrams for the $\text{O} + \text{N}_2$ reaction in $C_{\infty v}$, C_2v and C_s symmetries have been constructed by Michels59.

42
Without a detailed knowledge of the activation barriers and other surface characteristics, a 50% branching fraction can be estimated for the \(\text{NO}(X^2\Pi_r) + N(4S, 2D) \) product channel in \(C_{syv} \) symmetry where three of the six surfaces are reactive\(^6^8\), \(i.e., \) the \(1\Sigma, 5\Pi \) and the \(5\Sigma \). In \(C_{2v} \) and \(C_3 \) symmetries only 1/3 of the surfaces are reactive\(^6^8\). While the formation of the \(\text{NO} + N(4S, 2D) \) in the reaction \(N_2(A^3\Sigma_u^+) + O(3P) \) can be explained using correlation diagrams, it appears that the major \(N_2(A^3\Sigma_u^+) \) deactivation process proceeds via a curve crossing mechanism to form \(N_2(X^1\Sigma_u^+) + O(1S) \) with the direct formation of \(\text{NO}(X^2\Pi_r) \) being negligible for \(N_2(A^3\Sigma_u^+) \) in the low vibrational levels, \(i.e., v' \leq 2 \). The magnitude of the observed increase in the \(\text{NO} + N(4S, 2D) \) branching fraction from \(\leq 2\% \) of the \([N_2(A^3\Sigma_u^+, v' \leq 2)]_{\text{Total}}\) for the reaction \(N_2(A^3\Sigma_u^+, v' \leq 2) + O(3P) \) to \((57 \pm 14\%) \) of the \([N_2(A^3\Sigma_u^+, 3 \leq v' \leq 6)]_{\text{Total}}\) for the reaction \(N_2(A^3\Sigma_u^+, v' \geq 3) + O(3P) \) is consistent with the predictions made using the molecular correlation diagrams; however, it suggests that there is an energy barrier associated with this channel.

3.4 PROGRAM ENHANCEMENTS TO THE NO(2\Sigma^+, v' \rightarrow X^2\Pi_r, v'') \(\gamma \) BANDS SYNTHETIC SPECTRUM GENERATION CODE

The analysis of the rotational structure of the \(\text{NO}(2\Sigma^+, v' \rightarrow X^2\Pi_r, v'') \) \(\gamma \) bands observed in the energy transfer reaction \(N_2(A^3\Sigma_u^+, v') + \text{NO}(X^2\Pi_r) \) has been described in detail previously\(^2^1\).

The original computer code was developed using Microsoft’s BASIC Professional Development System v7.x, electronic term energies presented in Huber and Herzberg\(^4^3\) and energy level equations presented in Engleman \textit{et al.}\(^6^9\) for the \(\text{NO}(2\Sigma^+) \) and \(\text{NO}(X^2\Pi_r) \) states. Agreement with published line assignments for low \(N' \) values is excellent\(^6^9\); however, the agreement is not as good for \(N' > 15 \), \(i.e., \) \(d\lambda \sim 0.5 \) \(\text{Å} \) at \(N' = 25 \). Since the calculated line positions for \(N' \geq 15 \) were only in satisfactory agreement with the observed line positions, the rotational temperature of the \(\text{NO}(2\Sigma^+) \) state was determined using a Fractional Area Technique\(^2^1\). This technique is not sensitive to the absolute location of the line positions and provides a satisfactory method to determine the rotational temperature of the product \(\text{NO}(2\Sigma^+) \).
To improve the agreement between the observed and calculated line positions the code was modified to use the energy level equations for a $^2\Sigma-^2\Pi$ system found in Huber and Herzberg43. Agreement between the calculated and observed wavelengths for the NO($^2\Sigma^+, v' \rightarrow ^2\Pi_r, v''$) γ bands in the updated code is excellent for low N' and for high N' the agreement between the calculated and observed line positions was better than that obtained using the Engleman \textit{et al.}69 data. Recently, a manuscript published by Amiot \textit{et al.}70 was found in the literature. Their work provides better electronic term values for the NO($^2\Pi_r$) state and these values were incorporated into the Synthetic Spectrum Program during the program’s conversion from DOS to Windows. The new version of the program was developed using Microsoft’s Visual BASIC v3.x Professional Edition. The new term values provide excellent agreement with published line assignments69 for both the low and high N' values. A summary of the reported line assignments and the calculated line positions is presented in Tables 6 and 7 for the F_1 and F_2 components of the NO($^2\Sigma^+, v' \rightarrow ^2\Pi_r, v''$) $\gamma_{0,0}$ band, respectively. The Engleman \textit{et al.}69 data represents the observed line assignments. The difference between the observed and calculated line positions in cm$^{-1}$ is presented in Tables 8 and 9 for the F_1 and F_2 components of the NO($^2\Sigma^+, v' \rightarrow ^2\Pi_r, v''$) $\gamma_{0,0}$ band, respectively. For clarity, the difference between the observed and calculated line positions in Å is presented in Tables 10 and 11 for the F_1 and F_2 components of the NO($^2\Sigma^+, v' \rightarrow ^2\Pi_r, v''$) $\gamma_{0,0}$ band, respectively. For this analysis the wavelengths were calculated by simply taking the reciprocal of the calculated energy and multiplying this result by 108. The small vacuum-to-air correction is not applied to these calculations47. As seen in Tables 10 and 11 the agreement between the observed and calculated line positions is excellent for low N', independent of the term energies used and expressions used to calculate the T_{E+V+R} value. For high N', \textit{i.e.}, N' >5, only the data published by Amiot \textit{et al.}70 provides excellent agreement between the observed and calculated line positions. The anomalous deviation in Table 11 for the Amiot \textit{et al.}70 data for the dR$_2$ branch at N' = 10 is due to the fact that the reported line is a blend and not a single line assignment. The difference between the Herzberg and Amiot data presented in Tables 6 through 11 is the source of the term energies for the ground state of NO. The energy level equations are the same for both sets of data. In general, the Amiot term energies
provide better than a factor of 10 improvement over the Herzberg term energies in the accuracy of the calculated line positions.

Table 6: Reported and Calculated Energies for the F(1) component of the NO A-X v'=0, v''=0 band

<table>
<thead>
<tr>
<th>N</th>
<th>P(1), Wavenumbers</th>
<th>Q(1), Wavenumbers</th>
<th>R(1), Wavenumbers</th>
<th>S(21), Wavenumbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engelman</td>
<td>Herzberg</td>
<td>Amiot</td>
<td>Engelman</td>
</tr>
<tr>
<td>0</td>
<td>44193.94</td>
<td>44194</td>
<td>44193.93</td>
<td>44198.92</td>
</tr>
<tr>
<td>1</td>
<td>44189.57</td>
<td>44189.66</td>
<td>44189.55</td>
<td>44197.83</td>
</tr>
<tr>
<td>2</td>
<td>44185.82</td>
<td>44185.96</td>
<td>44185.79</td>
<td>44197.46</td>
</tr>
<tr>
<td>3</td>
<td>44182.66</td>
<td>44182.91</td>
<td>44182.66</td>
<td>44197.69</td>
</tr>
<tr>
<td>4</td>
<td>44180.21</td>
<td>44180.31</td>
<td>44180.16</td>
<td>44198.53</td>
</tr>
<tr>
<td>5</td>
<td>44178.32</td>
<td>44178.75</td>
<td>44178.29</td>
<td>44199.96</td>
</tr>
<tr>
<td>10</td>
<td>44178.32</td>
<td>44179.63</td>
<td>44178.33</td>
<td>44216.79</td>
</tr>
<tr>
<td>15</td>
<td>44193.94</td>
<td>44196.52</td>
<td>44193.97</td>
<td>44248.91</td>
</tr>
<tr>
<td>20</td>
<td>44224.97</td>
<td>44229.24</td>
<td>44229.08</td>
<td>44296.61</td>
</tr>
<tr>
<td>25</td>
<td>44271.28</td>
<td>44277.52</td>
<td>44271.53</td>
<td>44359.54</td>
</tr>
</tbody>
</table>

Table 7: Reported and Calculated Energies for the F(2) component of the NO A-X v'=0, v''=0 band

<table>
<thead>
<tr>
<th>N</th>
<th>P(2), Wavenumbers</th>
<th>Q(2), Wavenumbers</th>
<th>R(2), Wavenumbers</th>
<th>O(12), Wavenumbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engelman</td>
<td>Herzberg</td>
<td>Amiot</td>
<td>Engelman</td>
</tr>
<tr>
<td>0</td>
<td>44078.07</td>
<td>44078.06</td>
<td>44078.03</td>
<td>44074.05</td>
</tr>
<tr>
<td>1</td>
<td>44074.4</td>
<td>44074.46</td>
<td>44073.38</td>
<td>44085.95</td>
</tr>
<tr>
<td>2</td>
<td>44074.4</td>
<td>44074.46</td>
<td>44073.38</td>
<td>44085.95</td>
</tr>
<tr>
<td>3</td>
<td>44077.27</td>
<td>44077.40</td>
<td>44077.26</td>
<td>44089.27</td>
</tr>
<tr>
<td>4</td>
<td>44077.63</td>
<td>44077.9</td>
<td>44077.68</td>
<td>44093.12</td>
</tr>
<tr>
<td>5</td>
<td>44078.59</td>
<td>44078.96</td>
<td>44078.63</td>
<td>44097.51</td>
</tr>
<tr>
<td>10</td>
<td>44091.35</td>
<td>44091.45</td>
<td>44127.42</td>
<td>44128.45</td>
</tr>
<tr>
<td>15</td>
<td>44117.59</td>
<td>44120.21</td>
<td>44117.81</td>
<td>44170.77</td>
</tr>
<tr>
<td>20</td>
<td>44157.44</td>
<td>44162.10</td>
<td>44157.85</td>
<td>44227.71</td>
</tr>
<tr>
<td>25</td>
<td>44211.09</td>
<td>44218.52</td>
<td>44211.73</td>
<td>44298.29</td>
</tr>
</tbody>
</table>

Table 8: Reported and Calculated dEnergies for the F(1) component of the NO A-X v'=0, v''=0 band

<table>
<thead>
<tr>
<th>N</th>
<th>dP(1), Wavenumbers</th>
<th>dQ(1), Wavenumbers</th>
<th>dR(1), Wavenumbers</th>
<th>dS(21), Wavenumbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engelman</td>
<td>Herzberg</td>
<td>Amiot</td>
<td>Engelman</td>
</tr>
<tr>
<td>0</td>
<td>44193.94</td>
<td>-0.06</td>
<td>0.01</td>
<td>44198.92</td>
</tr>
<tr>
<td>1</td>
<td>44189.57</td>
<td>-0.09</td>
<td>0.02</td>
<td>44197.83</td>
</tr>
<tr>
<td>2</td>
<td>44185.82</td>
<td>-0.14</td>
<td>0.03</td>
<td>44197.46</td>
</tr>
<tr>
<td>3</td>
<td>44182.66</td>
<td>-0.25</td>
<td>0.00</td>
<td>44197.69</td>
</tr>
<tr>
<td>4</td>
<td>44180.21</td>
<td>-0.30</td>
<td>0.05</td>
<td>44198.50</td>
</tr>
<tr>
<td>5</td>
<td>44178.32</td>
<td>-0.43</td>
<td>0.03</td>
<td>44199.56</td>
</tr>
<tr>
<td>10</td>
<td>44178.32</td>
<td>-1.31</td>
<td>-0.01</td>
<td>44216.67</td>
</tr>
<tr>
<td>15</td>
<td>44193.94</td>
<td>-2.58</td>
<td>-0.03</td>
<td>44248.91</td>
</tr>
<tr>
<td>20</td>
<td>44224.97</td>
<td>-4.27</td>
<td>-0.11</td>
<td>44296.61</td>
</tr>
<tr>
<td>25</td>
<td>44271.28</td>
<td>-6.24</td>
<td>-0.25</td>
<td>44359.54</td>
</tr>
</tbody>
</table>
Table 9: Reported and Calculated dEnergies for the F(2) component of the NO A-X v^u=0, v^v=0 band

<table>
<thead>
<tr>
<th>N</th>
<th>44078.07</th>
<th>0.01</th>
<th>0.04</th>
<th>0.00</th>
<th>44074.05</th>
<th>-0.04</th>
<th>-0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>44077.40</td>
<td>-0.06</td>
<td>0.02</td>
<td>44085.95</td>
<td>-0.06</td>
<td>-0.03</td>
<td>44069.42</td>
</tr>
<tr>
<td>3</td>
<td>44077.27</td>
<td>-0.13</td>
<td>0.01</td>
<td>44089.27</td>
<td>-0.11</td>
<td>-0.03</td>
<td>44097.90</td>
</tr>
<tr>
<td>4</td>
<td>44077.63</td>
<td>-0.27</td>
<td>-0.05</td>
<td>44093.12</td>
<td>-0.18</td>
<td>-0.04</td>
<td>44105.17</td>
</tr>
<tr>
<td>5</td>
<td>44078.59</td>
<td>-0.38</td>
<td>-0.04</td>
<td>44097.51</td>
<td>-0.26</td>
<td>-0.03</td>
<td>44112.98</td>
</tr>
<tr>
<td>10</td>
<td>44091.35</td>
<td>-1.22</td>
<td>-0.10</td>
<td>44127.42</td>
<td>-1.03</td>
<td>-0.11</td>
<td>44160.81</td>
</tr>
<tr>
<td>15</td>
<td>44117.59</td>
<td>-2.62</td>
<td>-0.22</td>
<td>44170.77</td>
<td>-2.32</td>
<td>-0.21</td>
<td>44220.54</td>
</tr>
<tr>
<td>20</td>
<td>44157.44</td>
<td>-4.66</td>
<td>-0.41</td>
<td>44227.71</td>
<td>-4.16</td>
<td>-0.33</td>
<td>44294.47</td>
</tr>
<tr>
<td>25</td>
<td>44211.09</td>
<td>-7.43</td>
<td>-0.64</td>
<td>44298.29</td>
<td>-6.78</td>
<td>-0.56</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 10: Reported and Calculated dWavelengths for the F(1) component of the NO A-X v^u=0, v^v=0 band

<table>
<thead>
<tr>
<th>N</th>
<th>2262.75</th>
<th>0.00323</th>
<th>-0.00036</th>
<th>2262.50</th>
<th>0.00353</th>
<th>0.00148</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2262.98</td>
<td>0.00461</td>
<td>-0.00102</td>
<td>2262.55</td>
<td>0.00717</td>
<td>0.00410</td>
</tr>
<tr>
<td>3</td>
<td>2263.17</td>
<td>0.00702</td>
<td>-0.00169</td>
<td>2262.57</td>
<td>0.00773</td>
<td>0.00159</td>
</tr>
<tr>
<td>4</td>
<td>2263.33</td>
<td>0.01276</td>
<td>-0.00005</td>
<td>2262.56</td>
<td>0.00698</td>
<td>0.00097</td>
</tr>
<tr>
<td>5</td>
<td>2263.46</td>
<td>0.01547</td>
<td>-0.00246</td>
<td>2262.52</td>
<td>-0.03557</td>
<td>0.00251</td>
</tr>
<tr>
<td>6</td>
<td>2263.55</td>
<td>0.02224</td>
<td>-0.00133</td>
<td>2262.45</td>
<td>0.02160</td>
<td>0.00369</td>
</tr>
<tr>
<td>10</td>
<td>2263.55</td>
<td>0.06732</td>
<td>0.00072</td>
<td>2261.59</td>
<td>0.06235</td>
<td>0.00069</td>
</tr>
<tr>
<td>15</td>
<td>2262.75</td>
<td>0.13224</td>
<td>0.00169</td>
<td>2259.94</td>
<td>0.12778</td>
<td>0.01185</td>
</tr>
<tr>
<td>20</td>
<td>2261.17</td>
<td>0.21835</td>
<td>0.00568</td>
<td>2257.51</td>
<td>0.21117</td>
<td>0.01651</td>
</tr>
<tr>
<td>25</td>
<td>2258.80</td>
<td>0.31848</td>
<td>0.01291</td>
<td>2254.31</td>
<td>0.30985</td>
<td>0.02429</td>
</tr>
</tbody>
</table>

Table 11: Reported and Calculated dWavelengths for the F(2) component of the NO A-X v^u=0, v^v=0 band

<table>
<thead>
<tr>
<th>N</th>
<th>2268.70</th>
<th>-0.00046</th>
<th>-0.00201</th>
<th>2268.91</th>
<th>0.00185</th>
<th>0.00031</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2268.74</td>
<td>0.00309</td>
<td>-0.00103</td>
<td>2268.30</td>
<td>0.00288</td>
<td>0.00134</td>
</tr>
<tr>
<td>3</td>
<td>2268.74</td>
<td>0.00679</td>
<td>-0.00041</td>
<td>2268.13</td>
<td>0.00561</td>
<td>0.00149</td>
</tr>
<tr>
<td>4</td>
<td>2268.72</td>
<td>0.01385</td>
<td>0.00252</td>
<td>2267.93</td>
<td>0.00916</td>
<td>0.00195</td>
</tr>
<tr>
<td>5</td>
<td>2268.68</td>
<td>0.01930</td>
<td>0.00232</td>
<td>2267.70</td>
<td>0.01357</td>
<td>0.00154</td>
</tr>
<tr>
<td>10</td>
<td>2268.02</td>
<td>0.06275</td>
<td>0.00514</td>
<td>2266.16</td>
<td>0.05315</td>
<td>0.00591</td>
</tr>
<tr>
<td>15</td>
<td>2266.67</td>
<td>0.13460</td>
<td>0.01130</td>
<td>2263.94</td>
<td>0.11870</td>
<td>0.01056</td>
</tr>
<tr>
<td>20</td>
<td>2264.62</td>
<td>0.23902</td>
<td>0.02108</td>
<td>2261.03</td>
<td>0.21265</td>
<td>0.01687</td>
</tr>
<tr>
<td>25</td>
<td>2261.88</td>
<td>0.38011</td>
<td>0.03279</td>
<td>2257.42</td>
<td>0.34555</td>
<td>0.02844</td>
</tr>
</tbody>
</table>

How do the deviations between the observed and calculated line positions compare with the resolution of the 2 M vacuum-ultraviolet spectrophotograph-monochromator? The 2 M vacuum-ultraviolet spectrophotograph-monochromator wavelength calibration performed on November 29, 1995 provides an absolute wavelength uncertainty of 0.86 Å at a dial reading of 3,425.00 units (2,260.17 Å). This uncertainty is based on the estimated uncertainties of the calculated
coefficients. This uncertainty should introduce only a linear constant offset to the observed emission spectrum and, therefore, not effect the assignments made in our measurements. For these measurements the spectral resolution of the 2 M vacuum-ultraviolet spectrograph-monochromator is ~2 cm⁻¹ which is equivalent to ~0.13 Å at 2,597.4 Å. For \(N' \leq 25 \) the deviation between the calculated and observed line positions is smaller than the instrumental resolution using the data reported by Amiot et al.⁷⁰ for the NO(\(\chi^2\Pi_t \)) state. The error in the assignments is then limited by the resolution of the 2 M vacuum-ultraviolet spectrograph-monochromator and not the calculated line positions, and the effect on our reported temperatures should be well within the limits of our uncertainties, \textit{i.e.}, ±10%.

The next question that arises is, 'How does the use of the Herzberg or Amiot data effect the results that we reported for the rotational temperature of the NO(\(A^2\Sigma^+, v'=0 \)) using the term energies and equations reported by Engleman et al.⁶⁹⁷? ' The reported²¹ rotational temperatures for the product NO(\(A^2\Sigma^+, v'=0 \)) observed in the energy transfer reaction \(N_2(A^3\Sigma_u^+, v') + NO(X^2\Pi_t, v''=0) \) are (1,272 ± 49) (1σ), (1,349 ± 18) (1σ) and (1,626 ± 41) K (1σ) at pressures of ~2.8, ~2.0 and ~1.1 Torr, respectively. To compare the data using the new term energies and energy level equations, the Fractional Areas associated with each emission spectrum were recalculated and the entire data set was recompiled using Quattro Pro v6.0 (Novell). A summary of the calculations is presented in Table 12. The temperatures reported previously were calculated using a sixth order polynomial fit to the Fractional Area Analysis data obtained from an analysis of the synthetically generated NO(\(A^2\Sigma^+, v' \rightarrow \chi^2\Pi_t, v'' \)) γ bands. The results of a similar analysis are presented in the column labeled Engleman 2, n=6 in Table 12. As expected, the agreement between the previously reported values²¹ and the re-evaluated data is very good. The small differences are due to the selection of slightly different background intensities for the photoelectric emission spectra. An improvement in the analysis process was made by utilizing a cubic-spline interpolation of the \(T_{\text{Rotational}} \) vs. \(\frac{\text{Area}_{2330-2355}}{\text{Area}_{2330-2372}} \) rather than fitting the data to an nth-order polynomial. The cubic spline interpolation provides a much smoother fit to the data and a more accurate representation of the data. With the exception of the low pressure data, we
see a slight increase in the estimated rotational temperature of the NO($A \ 2\Sigma^+, v' = 0$) using a cubic-spline fit to the data calculated using the Engleman term energies and energy level equations. The estimated rotational temperature of the NO($A \ 2\Sigma^+, v' = 0$) is seen to increase slightly when we use the Amiot et al. data for the NO($X \ 2\Pi_r$) state. The Amiot et al. is in very good agreement with that reported previously.

<table>
<thead>
<tr>
<th>Table 12. Temperature Analysis Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Pressure Torr</td>
</tr>
<tr>
<td><Avg> =</td>
</tr>
<tr>
<td>d <Avg> =</td>
</tr>
<tr>
<td>Count =</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td><Avg> = 2.16</td>
</tr>
<tr>
<td>d <Avg> = 0.01</td>
</tr>
<tr>
<td>Count = 42.00</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td><Avg> = 1.04</td>
</tr>
<tr>
<td>d <Avg> = 0.05</td>
</tr>
<tr>
<td>Count = 7.00</td>
</tr>
</tbody>
</table>

3.5 GENERAL MODIFICATIONS AND CODE ENHANCEMENTS

In addition to the enhancements made to the code that is used to generate the NO($A \ 2\Sigma^+, v' \rightarrow X \ 2\Pi_r, v''$) γ bands and NO($B \ 2\Pi_r, v' \rightarrow X \ 2\Pi_r, v''$) β bands, synthetic spectra modifications were made to the Data Acquisition Software and Data Analysis Software that is utilized to collect and analyze the experimental data. The data acquisition computer was upgraded from a IBM 286 compatible system to a 386 compatible system.

4 CONCLUSIONS

From these experiments of reacting NO($X \ 2\Pi_r, v'' = 0$) with N$_2(A \ 3\Sigma^+_u, v'$) with v' having values of v' = 0, v' = 0 and 1, and v' = 0, 1 and 2 we have obtained branching ratios of emissions associated
with the excited product states. The branching ratio for the \[\frac{\text{NO}(A, v' = 0)}{\text{NO}(B, v' = 0)} \] is determined to be (1.54 ± 0.21), (3.28 ± 0.42) and (7.67 ± 1.48) for \(N_2(A 3\Sigma_u^+, v') \) vibrational level distributions of \(v' = 0, v' = 0 \) and 1, and \(v' = 0, 1 \) and 2, respectively. The production efficiency of the \(\text{NO}(B 2\Pi_r, v') \) state is much more sensitive to the vibrational level population distribution of the \(N_2(A 3\Sigma_u^+) \) than is the vibrational level distribution of the \(\text{NO}(A 2\Sigma^+) \) state. The intensity of the 1,\(v'' \) transition of the \(\text{NO}(A 2\Sigma^+, v \rightarrow X 2\Pi_r, v'') \) \(\gamma \) bands is observed to increase by a factor of \(\sim 2 \) relative to the intensity of the 0,\(v'' \) transition of the \(\text{NO}(A 2\Sigma^+, v' \rightarrow X 2\Pi_r, v'') \) \(\gamma \) bands as the vibrational level population distribution of the \(N_2(A 3\Sigma_u^+, v') \) is shifted from a vibrational level distribution of 1.00 : 0.00 : 0.00 to 1.00 : 0.29 : 0.11 for \(v' = 0, 1 \) and 2, respectively. The intensity of the emission from the 0,\(v'' \) transition of the \(\text{NO}(B 2\Pi_r, v' \rightarrow X 2\Pi_r, v'') \) \(b \) bands is observed to increase by a factor of \(\sim 5 \) relative to the intensity of the emission for the 0,\(v'' \) transition of the \(\text{NO}(A 2\Sigma^+, v' \rightarrow X 2\Pi_r, v'') \) \(g \) bands for the same \(N_2(A 3\Sigma_u^+) \) vibrational level population distributions. It is conceivable, therefore, that a \(N_2(A 3\Sigma_u^+, v') \) distribution which has a greater percentage of its population in \(v' \geq 1 \) levels compared to our work would result in larger \[\frac{\text{NO}(A, v' = 0)}{\text{NO}(B, v' = 0)} \] ratios.

Our experimental measurements show that changes in the ratio \[\frac{\text{NO}(A, v' = 0)}{\text{NO}(B, v' = 0)} \] from the energy transfer reaction \(\text{CO}(a 3\Pi, v') + \text{NO}(X 2\Pi_r) \) are due to changes in the vibrational level population distribution of the \(\text{CO}(a 3\Pi) \) state and not due to \(N_2 \) impurities in the buffer gases as previously reported\(^{17} \). As in the case of the energy transfer reaction \(N_2(3\Sigma_u^+, v') + \text{NO}(X 2\Pi_r) \), it is necessary to characterize the vibrational level distribution of the metastable precursor state, \textit{e.g.}, the \(\text{CO}(a 3\Pi) \) state, when interpreting emission observed using remote sensing techniques. We
see a factor of approximately 6.5 increase in the \([\text{NO}(B \, ^2\Pi \, \nu^' = 0)]\) relative to the \([\text{NO}(A \, ^2\Sigma^+, \nu^' = 0)]\) when the vibrational level population distribution of the \(\text{CO}(a \, ^3\Pi, \nu^')\) is increased from \([\nu^' \geq 1] \sim 0.016 \ [\nu^' = 0]\) to \([\nu^' \geq 1] \sim [\nu^' = 0].\) Similar behavior is observed in the energy transfer reaction \(\text{N}_2(A \, ^3\Sigma^+_u, \nu^') + \text{NO}(X \, ^2\Pi \, \nu^')\) where we observed a factor of 5 increase in the \([\text{NO}(B \, ^2\Pi \, \nu^' = 0)]\) relative to the \([\text{NO}(A \, ^2\Sigma^+, \nu^' = 0)]\) for the \(\text{N}_2(A \, ^3\Sigma^+_u)\) vibrational level population distribution of \(\nu^' = 0\) and \(\nu^' \leq 2\) measurements. To extract the precursor \(\text{CO}(a \, ^3\Pi)\) and \(\text{N}_2(A \, ^3\Sigma^+_u)\) concentrations from the product emissions from the \(\text{NO}(A \, ^2\Sigma^+, \nu^' \rightarrow X \, ^2\Pi \, \nu^\prime\prime)\) \(\gamma\) bands and \(\text{NO}(B \, ^2\Pi \, \nu^' \rightarrow X \, ^2\Pi \, \nu^\prime\prime)\) \(\beta\) bands, it is necessary to take into account the vibrational level distribution of the precursor states.

The present investigation has answered two questions. First, the \(\text{NO}(X \, ^2\Pi \, \nu^') + \text{N}(4S, 2D)\) product yield accounts for \(\leq 2\%\) of the \(\text{N}_2(A \, ^3\Sigma^+_u, \nu^' \leq 2) + \text{O}(3P)\) interaction. This is qualitatively consistent with the high \(O(1S)\) yields observed previously but somewhat smaller than suggested by those studies. Second, the \(\text{NO}(X \, ^2\Pi \, \nu^') + \text{NO}(X \, ^2\Pi \, \nu^')\) product yield in the reaction \(\text{N}_2(A \, ^3\Sigma^+_u, \nu^' \leq 6) + \text{O}_2(X \, ^3\Sigma^-_g, \nu^\prime\prime = 0)\) represents \(< 0.1\%\) of the \([\text{N}_2(A \, ^3\Sigma^+_u)]_{\text{Total}}\). The \(\text{NO}(X \, ^2\Pi \, \nu^') + \text{N}(4S, 2D)\) product yield accounts for \((5.7 \pm 1.1)\%\) of the \(\text{N}_2(A \, ^3\Sigma^+_u, \nu^' \leq 6) + \text{O}(3P)\) interaction; however, if we consider the reaction \(\text{N}_2(A \, ^3\Sigma^+_u, 3 \leq \nu^' \leq 6) + \text{O}(3P)\) the branching fraction could be as large as \((57 \pm 14)\%). Our investigation, while ruling out the formation of \(\text{NO}(X \, ^2\Pi \, \nu^') + \text{N}(4S, 2D)\) from the low vibrational levels of \(\text{N}_2(A \, ^3\Sigma^+_u)\), raises the question of a possible \(\nu\)-level dependence for the \(\text{NO}(X \, ^2\Pi \, \nu^') + \text{N}(4S, 2D)\) product yield in the reaction \(\text{N}_2(A \, ^3\Sigma^+_u) + \text{O}(3P)\).
5 REFERENCES

50. J. M. Thomas, D. H. Katayama, “Branching fractions of the product NO($^2_Σ^+,v$'=0,1) and NO(2_Π_t,v'=0) emissions observed as a function of v’ in the energy transfer reaction N$_2$(A $^3_Σ^+,v$') + NO(X 2_Π_t,v’=0),” Chem. Phys. Lett. 214(2), 250 (1993).
52. E. C. Zipf, "A laboratory study on the formation of nitrous oxide by the reaction of N\textsubscript{2}(A) + O\textsubscript{2} → N\textsubscript{2}O + O," Nature (London) 287, 523 (1980).

56. I. W. M. Smith, Kinetics and dynamics of elementary gas reactions, ed. (Butterworths, Boston, 1980).

57. N. Sadeghi, D. W. Setser, "Primary N\textsubscript{2}(B) vibrational distributions from the excitation-transfer reaction between Kr* and Xe* atoms and N\textsubscript{2}," Chem. Phys. Lett. 82, 44 (1981).

59. J. Balamuta, M. F. Golde, "Formation of Electronically Excited Oxygen Atoms in the reaction Ar(3P\textsubscript{2,0}) and Xe(3P\textsubscript{2,0}) atoms with O\textsubscript{2}," J. Phys. Chem. 86, 2765 (1982).

60. K. Schofield, "Rate constants for gaseous interactions of O(2 1D\textsubscript{2}) and O(2 1S\textsubscript{0}) - Critical Evaluation," J. Photochem. 9(1), 55 (1978).

63. D. Levron, A. V. Phelps, "Quenching of N\textsubscript{2}(A) by N\textsubscript{2}, Ar, and H\textsubscript{2}," J. Chem. Phys. 69, 2260 (1978).

68. H. H. Michels, Correlation diagrams for N\textsubscript{2}O in C\textsubscript{m\textbar}v, C\textsubscript{2\textbar}v and C\textsubscript{8} symmetries (1984).

70. C. Amiot, R. Bacis, G. Guelachvili, “Infrared study of the X 2Π v=0,1,2 levels of 14N16NO. Preliminary results on the v=0, 1 levels of 14N17O, 14N18O, and 15N16O,” Can. J. Phys. 56, 251 (1977).

71. L. G. Piper, “The excitation of O(1S) in the reaction between N2(A) and O(3P),” J. Chem. Phys. 77, 2373 (1982).

6 PRESENTATIONS

“Rotational temperature of the product NO(A 2Σ+) state formed in the energy transfer reaction CO(α 3Π, v' ≤ 3) + NO(X 2Π, v) determined using both high and low resolution detection techniques: a work in progress,” Joseph M. Thomas and Daniel H. Katayama, XXII Informal Conference on Photochemistry, University of Minnesota, June 17-21, 1996 (Oral Presentation).

7 PUBLICATIONS

“Branching fractions of the product NO(A 2Σ+, v'=0 and 1) and NO(B 2Π, v'=0) emissions observed as a function of v' in the energy transfer reaction N2(A 3Σ+, v') + NO(X 2Π, v")=0),” Joseph M. Thomas and Daniel H. Katayama, Chem. Phys. Letters 214(2), 1993, 250-256.

“Branching fractions of the product NO(A 2Σ+, v'=0, 1 and 2) and NO(B 2Π, v'=0) emissions observed as a function of v' in the energy transfer reaction CO(α 3Π, v') + NO(X 2Π, v")=0),” Joseph M. Thomas and Daniel H. Katayama, Chem. Phys. Letters 241, 1995, 583-590.

"Rotational temperature analysis of the non-thermal NO(A $^2\Sigma^+$,v'=0) distribution observed in the energy transfer reaction CO(a $^3\Pi$,v' \leq 4) + NO(X $^2\Pi_r$,v"'=0)," Joseph M. Thomas and Daniel H. Katayama, to be submitted.

8 KEYWORD LISTING

<table>
<thead>
<tr>
<th>Active nitrogen</th>
<th>nitrogen monoxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>bimolecular energy transfer</td>
<td>NO(A $^2\Sigma^+$)</td>
</tr>
<tr>
<td>branching fractions</td>
<td>NO(B $^2\Pi_r$)</td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>photoelectric emission spectroscopy</td>
</tr>
<tr>
<td>CO(a $^3\Pi$)</td>
<td>plasma chemistry</td>
</tr>
<tr>
<td>emission spectra</td>
<td>product emissions</td>
</tr>
<tr>
<td>energy transfer</td>
<td>rapidly pumped discharge-flow reactor</td>
</tr>
<tr>
<td>kinetics</td>
<td>rotational temperature</td>
</tr>
<tr>
<td>Metastable nitrogen</td>
<td>synthetic spectra</td>
</tr>
<tr>
<td>N$_2$(A $^3\Sigma^+_u$)</td>
<td>vibrational temperature</td>
</tr>
<tr>
<td>nitric oxide</td>
<td></td>
</tr>
</tbody>
</table>