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ABSTRACT

Every object has the ability to radiate and scatter electromagnetic waves. The

ability to predict frequencies of maximum radiation or scattering has been limited to

simple objects, such as dipoles, or objects with high degrees of symmetry. This thesis

describes modifications that can be made to a computational electromagnetic technique,

the Method of Moments, to allow for such predictions to be made for complex metallic

objects. This new technique has been implemented as a MATLAB computer program and

tested on objects with known resonance frequencies. Finally, the code's ability to handle

large complex objects is demonstrated by investigating the' resonance frequencies for a

Cessna aircraft.
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L. INTRODUCTION AND BACKGROUND

A. RESEARCH FOCUS

Electromagnetic waves interact with all objects in space but differently at different

frequencies. For example, the physical dimensions of an antenna, such as the length of a

dipole or the diameter of a circular horn, determine the frequency range of antenna

operation. Any metallic object can operate as an efficient antenna at a number of

frequencies. These frequencies can be referred to as the resonance frequencies or the eigen

frequencies of the object. The eigen frequencies can be determined analytically for

metallic bodies of simple shape or for objects with high degrees of symmetry. The eigen

frequencies for complex bodies must be determined numerically, using computer

implemented algorithms. The purpose of finding the eigen frequencies of complex metallic

objects is to determine the optimal frequencies for their use as antennas or to determine

optimal frequencies for their detection as radar targets. [Ref. 1] The starting point for

algorithm development is the well established Method of Moments (MOM). This

technique leads to a matrix equation which may then be used to formulate an

electromagnetic eigen-value problem.

This chapter provides mathematical and conceptual background for the MOM

technique. Chapter II explains the modifications of the MOM to formulate the algebraic

eigen-value problem whose solution provides the resonance frequencies of the object.

Chapter III explains the implementation of the eigen theory into a MATLAB computer

program and verifies the code for an object with known resonance frequencies. Chapter



IV shows examples of the code's use for eigen analysis of complex objects. Finally,

Chapter V presents conclusions and recommendations for further research.

B. ELECTROMAGNETIC AND MATHEMATICAL BACKGROUND

The Method of Moments is a numerical technique used to solve integral equations

which describe electromagnetic interactions for radiation and scattering problems. The

integral equations are set up to solve for the surface current densities induced on an object

due to a source. Once the theoretical equations have been formulated, the MOM can be

applied by discretizing and solving the problem using matrix techniques.

Applying the MOM technique [Ref. 2] to a single wire provides the building block

needed to consider more complex objects. MOM creates a discrete model of the object by

dividing the object into electrically small charge and current segments referred to as the

"basis." The amplitudes of these basis functions are not known and need to be

determined. The MOM result is a series of basis functions that approximates the actual

surface current distribution. Complex metallic objects can be approximated using wire

grid models, assuming that the surface current densities only vary longitudinally along the

wires and do not vary circumferentially. The currents at the ends of connected and non-

connected wires are of particular interest. The currents at non-connected segment ends

can be assumed zero, and the currents at the wire ends forming a junction should satisfy

Kirchoff's Current Law (KCL).

Once the wire has been segmented, as demonstrated in (Fig. 1-1), discrete

equations can be formulated directly from the physical layout of the problem.
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1(23)2

Figure (Fig. 1-1), Example of a segmented wire

The expressions for the electric and magnetic potentials ("mixed potential" MOM

formulation), make up the building block equations, and for any problem they can be

written as:

1N,
A.(m) y o(n)KA(m,n) (Eq. 1-1)

n=1

where the K's represent Green's function integrals (shown below), p (n) represents line

charge density, I(n) represents current, A(m) represents magnetic potential, (D(m)

represents electric potential, p. represents permeability, e represents permittivity, Ni
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represents the total number of current segments and Nq represents the total number of

charge segments.

K e 47rIF -' dI (Eq. 1-3)

Srepresents the z position of the segment in local coordinates, and k is the wavenumber.

The difference between KO and KA is in integral limits and location of observation points,

as will be seen in Chapter II. In addition, the equation of continuity is used:

-1
p(n) = (I(n + qw) + I(n + qw. - 1)) (Eq. 1-4)jgoAl4(n)

where n denotes a source point, m denotes an observation point and qwn denotes the

number of the wire to which the n-th source point belongs. The term 4lq(n) represents the

length of a charge segment, and co denotes the angular frequency. By substitution, (Eq.

1-1) and (Eq. 1-4) may be combined to provide an electric scalar potential equation

relying solely on current, as shown in (Eq. 1-5):

= o1 [ N• I(D(m) =- In__ T -n (I(n +qw.) - I(n +qw. -1)) Ko(m, n).

(Eq. 1-5)

By combining the tangential component of the electric field due to current, (Eq. 1-2), and

the gradient of electric scalar potential along the observed wire, an expression can be

formed for the total tangential electric field at the n-th observation point as:

EM(m)=- [(I(n + qw.) - I(n + qw. - 1))(Ko(m- iw, + 1,n) - K.D(m- iw.,n)
j o.d( m) n= l• ,(



Ni

- jWol_ I(n)KA(m,n) (Eq. 1-6)
n=1

where Ali(m) represents the length of a current segment. By requiring that the

voltage, E(m)Al(i,), be equal to the negative of the source voltage, (Eq. 1-6) can be

rewritten to provide equations which are functions of source voltage. (Eq. 1-6) can then

be written as a single sum using arrays to identify wire ends (start and stop):

V(m)= +_[Z,+ Z start(n) - Z3 Stop(n)]I(n) (Eq. 1-7)
n=1

where the equation has been simplified by the use of Zterml, Zterm2 and Zterm3 . These

can be written explicitly as:

Z,, = j6O9( A )KA(mn) (Eq. 1-8)

30 _ _Z•=-j 27r AlQn - iw. + 1) (K.(m - iw,. + 1,n - iw. + 1) - Ko(m - iw.,,n - iw. + 1))

(Eq. 1-9)

30 A
j= (K.(m- iw,. + 1,n - iw.) - Ko(m-iw,.,n - iw.))

27r Al,(n - iw.)

(Eq. 1-10)

where A. is the operating wavelength. The system of equations, (Eq. 1-7), can be written

in a matrix form:

[Vm] = [Zm,n][In]. (Eq. 1-11)

Once the Z terms have been formed and the source voltage is specified, the surface

currents on the wire can be found as:

5



[I] = [ZI].[V"I (Eq. 1-12)

For a system of equations written in matrix form, there is a special source-less

solution. This is referred to as the eigen problem:

[Z]-I = A-! (Eq. 1-13)

where A represents the eigen values of the matrix Z and I represents the associated eigen

vectors (eigen currents).

Using the concepts described above and Kirchoff's Current and Voltage

Laws, the concept of eigen frequencies can be introduced. In the next chapter, the

techniques for MOM modeling and matrix manipulation will be applied to form the basis

for finding eigen frequencies of metallic bodies of arbitrary shape.



H. MOM MODELING AND THE EIGEN SOLUTION

A. ELECTROMAGNETIC MODELING

The last chapter provided background in MOM electromagnetic modeling. This

background is important because of the need to initially define a problem in

electromagnetic terms. Once this step has been accomplished, an effort to manipulate the

model for the purpose of finding the eigen solution can be attempted.

The initial problem in creating a MOM model for a metallic structure is an

acceptable wire grid model of the object. This process involves the formulation of a

structure that adequately simulates the shape of the original object without defining a

problem which is too large to be solved on a computer. This concept will be dealt with

more in a later chapter involving computer coding of the theoretical results. It will be

assumed that a wire model for a metallic object has been created in order to begin the

building toward the eigen solution.

A wire grid model of an object can be assembled using a number of straight wires.

These wires can then be treated individually, and the effects of current and charge on each

wire can be summed at selected observation points. The first step in this process is to use

(Eq. 1-1), (Eq. 1-2) and (Eq.l-4) to formulate the expressions based on imposing the

boundary condition of vanishing tangential electric field on the surface of each wire.

Consider the electric field contributions by the electric scalar potential and magnetic

vector potential separately:

V1(m) = E.(m)Alb(m) =d(m) - (((m - 1)
(Eq. 2-1)
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V,(m) = E,(m)Al(m).

(Eq. 2-2)

The voltage across each segment can then be considered as a sum of three terms. One is

due to the gradient of the electric scalar potential. The second is due to the time variation

of the magnetic vector potential, and the third is due to voltage sources. The sum of these

three components must cancel to zero due to the imposition of PEC boundary conditions

of vanishing tangential electric field on the wire surface. The sum can be written as:

-V14(m) -VA(m) = V,(m)
(Eq. 2-3)

where V,(m) represents source voltage. The expressions for VA and V o can then be

substituted into the above equation and manipulated to group like terms for a formulation

that resembles (Eq. 1-1 1).

B. EIGEN PROBLEM FORMULATION

The matrix equation, (Eq. 1-11), applies to the case of an object driven by a

source voltage vector, V,. By setting the source voltage vector to zero, a solution can be

found which does not depend on the source voltage input. The solution for the source-

less problem is referred to as the eigen problem solution. The eigen problem solution has

two components: a set of eigen values and a corresponding set of eigen vectors. The

eigen problem formulation also involves approximations related to evaluation of Green's

functions integrals in closed form and implementation of wire junction conditions.



1. Simplification

To manipulate the equations for the MOM problem into the form of an algebraic

eigen problem, some simplifications and approximations are required. First, by multiplying

the equations by joEAl (where Al is the average charge segment length), the concept of a

normalized wavenumber can be introduced. The normalized wavenumber,,, is defined as:

o2 ye-Al 2 = Al2 = (-Al2) = I2
(Eq. 2-4)

where v. represents the velocity of propagation in the medium. Similarly we can express:

1
jo)EAl = jo IAl = jiY.

(Eq. 2-5)

and introduce a new "scaled" vector of unknown end "voltages:"

V1f•(n) = ICYoVd(n)

(Eq. 2-6)

where Y. is the intrinsic admittance of free space. The MOM equations can now be

written in a simpler form using the above notation. The sample equations below are given

for a straight wire with two charge segments as shown in (Fig. 1-1):

(K.(1.I) - K.(2,1))/. + (K.(1,2) - K.(ll) + K.(2,1) - K0 (2,2))12 + (K.(2,2) - K0 (1,2))1 3

A/

+ K2 Al ((2,1),L+ 1KA(2,2)12 + KA(2,3)13) = 0 (Eq. 2-7)
Aw 2

with the ends represented as:

9



- K.Dt,1)Ii + (K0 (1,1) - Ko(1,2))I 2 + Ko(1,2)I 3

Al
+ 2 - (K,(1,l)I, + K,(1,2)I2 + KA(1,3)I3) + V/6.1 = 0

All (Eq. 2-8)

- KD(2,1)I, + (Ko(2,1) - Ko(2,2))I 2 + Ko(2,2)I3

Al

+"K2 - (K4(3,1)Ii + K1(3,2)I2 + K4(3,3)I3) + V/402 = 0. (Eq. 2-9)
A13

In the above equations the K's represent Green's function integrals. These equations

illustrate the starting point for the MOM eigen analysis. The next step is to evaluate the K

terms. The following section explains the approximations used to simplify the Green's

functions such that numerical integration is avoided.

2. Green's Function Integral Evaluation

The Green's function integrals do not have closed form solutions over wire

segments and in general must be evaluated numerically. However, if the Green's function

is first approximated using Taylor series expansion, the integrals approximate the exact

answer and a closed form solution does exist. Therefore, we first expand the Green's

function into a Taylor series using:

e-jk(IF-F'k-r°) . e"jkr 1 1- jk(IF- F'I--r) .jkr e-j'r" [t1 + 1
471-F-F'I 47r IF-F'i - 4)r (l+ikr-) IF - jFk.

(Eq. 2-10)

The above expression can be simplified by introducing the normalized wavenumber ic.

10



4zl e- -'•.7r [+ IF 7•1 Al

(Eq. 2-11)

In order to remove the wavenumber from the exponential, a further approximation needs

to be made. The value of ro represents the distance between the source and the

observation points. The terms with the largest magnitude are the "self terms," for which

the source and observation points are the same and r"=O. Therefore, setting r0"--O

introduces no error for the terms that are the largest in magnitude, but phase errors are

introduced when the observation point is moved away from the source point. Fortunately,

the magnitude of the Green's function decreases as the phase error increases. This causes

the influence of the phase error to decrease as r, increases. Therefore, we can

approximate the Green's function by:

1(1 .1
___- 1- I

(Eq. 2-12)

The integrals for the approximated Green's function can then be simplified by splitting

them into real and imaginary parts:

KD(m,n) = Ke,(m,n) - j IC Kei(m,n)
(Eq. 2-13)

KA(m,n) = K&,.(m,n) - j. 1. KAi(m,n)
(Eq. 2-14)

where the electric potential K terms represent the integrals of the Green's function over

the n-th charge segment, and the magnetic potential K terms represent the integrals of the

11



Green's function over the n-th current segment. Each of the Green's function integrals

can be explicitly written as:

,•n)-j•.)4[•_(u+a+x +/ksr)]2 +[yr.- (U,'a + y. +1k,0]12 + [z- (ua+z g)2•

(Eq. 2-15)

K= high(n) igh(n)

ga,(m n) -"J,+. .dC ýh,,, (-(-)•+

(Eq. 2-16)

Km.(m,n)- J• j[x,•,_(ur_,+x•,.+u4] 2 +[y,,o,_(uz+y•. +u)] 2 +[z qacr,(c+z•,+) ]2

(Eq. 2-17)

KKm(m,n) = 4', 1. d1j = ýzgh,8,)- 8on.,.

(Eq. 2-18)

Introducing:

A = x- x.-u-a (Eq. 2-19)

B = u(Eq. 2-20)

C = y,-y-ua (Eq. 2-21)

D = ý, U(Eq. 2-22)

E z.-z.-uu,.a (Eq. 2-23)

12



F =(Eq. 2-24)

the denominators of the real parts of the approximated Green's function integrals can be

expressed as:

(A-B0)2 +(C-_D2 +(E F0)2 =(B2 +g 2 +F2 )e2 +(-2(AB+MD+E))g+(A2 +C2 +E2 ).

(Eq. 2-25)

Realizing that the first expression on the right hand side of this equation, B2+D2 +F2 ,

represents the addition of the squares of the orthogonal components of the unit vectors for

the wire, its value is equal to 1. The 1/r integrals can then be written as:

f1 2 -2(AB + CD + EF) + (A2 +C2 + E 2)

(Eq. 2-26)

The solution to an integral of this form depends on the determinant of the quadratic

equation in the denominator:

Det = 4[(AB + CD + EF)2 - (A2 +C 2 + E2 )]. (Eq. 2-27)

If the value of this determinant is zero, the analytic solution to the integral is:

K n (AB+CD+EF)J (Eq. 2-28)

otherwise:

K L(A - B,8)2 + (C - D3)2 + (E _ F3)2 +8 3_-(AB + CD + EF)1

K=InL (A-B,3)2 +(C-Dp3)2 +(E- F3)2 +ca-(AB+CD+EF)j

(Eq. 2-29)

13



The analytic solutions will be used in formulating the algebraic eigen value problem.

3. KCL and KVL

In order to form structures involving more wires, the concept of wire connection

needs to be addressed. It was discussed in Chapter I how the current for the free ends of a

wire will be assumed zero for a MOM formulation. When wires are connected, the

currents of the junction need to satisfy KCL (the sum of all the currents into the junction

equals zero), and the end potentials at each of the joined wire ends must be equal (KVL).

To account for KCL and KVL, augmentation matrices can be introduced:

D.I=0 (Eq. 2-30)

F-. = 0 (Eq. 2-31)

where the D matrix represents KCL connections, and the F matrix indicates KVL in the

structure. As an example, KCL for a single wire with three charge segments, as shown in

(Fig. 1-1) would be represented by:

D=-[ 0 001
0 0 0 "j (Eq. 2-32)

The KVL matrix would be empty for this example, since there are no wire connections,

but a three wire junction would produce the following KVL matrix:

F- 1  0 -1 (Eq. 2-33)

14



4. Eigen Solution

Returning to the MOM equations with the normalized wavenumber notation, (Eq.

2-4), as demonstrated in (Eq. 2-7), (Eq. 2-8) and (Eq. 2-9), we can write the MOM

equations in matrix format as:

C2A[ +BI + jCV = 0. (Eq. 2-34)

This system is then augmented by the KCL and KVL equations defined in

(Eq. 2-30) and (Eq. 2-3 1). To further simplify the matrix equations, normalized

wavelength will be introduced:

1

(Eq. 2-35)

Implementing the approximation for the Green's function integrals, (Eq. 2-13) and (Eq. 2-

14), the matrix equation, (Eq. 2-34), can be written as:

1 1jB) +~2•
(A, - j 1 A)I + v 2 (B, - j1Bi)I + ICy = 0.

V V (Eq. 2-36)

This simplifies to:

v 3Bj - jv 2BJ' + vAJ - jAJ + jv3CV =0. (Eq. 2-37)

Grouping terms with like powers of normalized wavelength, we get:

B[ IC jv2[B 0](I)+[ A, +VI[i =0.

v3 D 0 i 010 0 Yf- 0 0 Vf 0

-0 F

(Eq. 2-38)

We can annotate the individual matrices as:

15



br = [ ] (Eq. 2-39)

bi = [0 0] (Eq. 2-40)

ar = [0 0- (Eq. 2-41)

ai = [0 O. (Eq. 2-42)

Note that matrices br, bi, ar and ai are all square and equal in size. Now the matrix

equation, (Eq. 2-38), is pre-multiplied by the inverse of br:

inv(br) = fl (Eq. 2-43)

Since matrices bi, ar and ai have no terms in the (1,2), (2,1) and (2,2) position, the result

of the pre-multiplication by the inverse is:

V3 (Identity)('_ LV .Bi 0 ]C)'+D [#.A, O](IJ [.A: 0 ] =

(Eq. 2-44)

Recognizing that this is a current (1) and*"voltage" (yf ) formulation and that a solution for

currents only is sufficient and smaller in size, only the upper "half' of the matrix equation

that involves the current, I, needs to be retained:

(V3 - jv2f3B, + vf 1 A, - jf31A,)I = 0. (Eq. 2-45)

16



A solution for the normalized wavelength can be obtained from this equation, but in order

to do this, auxiliary vectors need to be introduced to linearize the cubic eigen problem.

These vectors can be represented as:

1L = V I (Eq. 2-46)

and

12 = v.11  (Eq. 2-47)

These vectors can be included in the system of equations, producing:

vI2 - 3fl1BJz + flAAJ 1 - jflýAJ = 0. (Eq. 2-48)

Combining (Eq. 2-46), (Eq. 2-47) and (Eq. 2-48) a "super-matrix" equation can be

formed:

[if.Bi -P3A. jIPAil [2121
1 • 0 0 II = V .

1 0 V] J -I- (Eq. 2-49)

Or written simply as:

AI =v-I. (Eq. 2-50)

The above is recognized as the standard algebraic eigen problem form as introduced in

(Eq. 1-13). Values for the normalized wavelength can be found using a standard algebraic

eigen solver. The normalized wavelengths can then be transformed into wavelengths and

frequencies using the relationships:

V
2TCAl (Eq. 2-51)

and

17



A (Eq. 2-52)

The eigen frequencies are the frequencies where the structure is

electromagnetically resonant. Each frequency has an associated eigen vector, which

represents the current distribution for the particular resonance frequency ("mode"). In

order to obtain the eigen frequencies and eigen currents, the theory must be implemented

in a computer code. The next chapter will describe the code to define and solve the eigen

problem and discuss its results.

18



m. IMPLEMENTATION AND TESTING

A. COMPUTER IMPLEMENTATION

The previous chapter showed that it is possible, with the introduction of certain

approximations, to obtain the electromagnetic resonance frequencies for metallic objects

modeled as collections of thin wires. It is not feasible to implement the eigen problem "by

hand" due to its size. The eigen problem formulation and solution need to be implemented

on a computer. In a computer implementation of the eigen formulation additional issues

must be considered. These will be explained in this section where the coding process of

the eigen problem is discussed. Once the code has been developed, it can be tested for

several objects whose resonant frequencies can be obtained analytically. This testing will

help to determine coding accuracy and the magnitudes of errors introduced by the

approximations made in formulating the eigen problem.

Prior to coding the problem, an overall strategy must be determined. The matrix

form of the eigen problem suggests MATLAB as a natural choice for coding. With

MATLAB the elements of the computer implementation process can be addressed, such

as: entering the problem geometry and defining wire segments, matrix assembly,

implementing KCL and KVL, and the super-matrix "fill." Finally, the solution and display

of eigen currents and the associated far-fields will be discussed.

1. Object Geometry Definition

The eigen program can not be run until an object is defined. In the case of the

eigen problem, a number of parameters are necessary to provide the algorithm with all of

19



the information pertinent to the solution process, such as the physical dimensions and

orientation of each wire.

Each wire is assumed to have a cylindrical shape defined by the wire length and

radius. It is important to note that the MOM model, as defined in Chapter I, requires

wire length to be much greater than its radius and segment length to be larger than the

radius as well ("thin wire" assumption) for an accurate solution. The wire grid model

should be created with this in mind. Another important consideration for the construction

of the wire model is the number of segments per wire. For good accuracy the MOM

model requires about ten samples per operating wavelength. The average segment length

thus defines the upper frequency limit for which an accurate eigen solution can be found.

It is assumed that wires are made of good conductors, defined by their permeability and

conductivity. In addition, lumped elements (resistors, capacitors and inductors) can be

added to the whole wire or some of its segments.

Wire position is defined with respect to "global" Cartesian coordinates. A "local"

coordinate system is defined for each wire to simplify the MOM implementation. The set

of local coordinates needs to be transformed to the global coordinates to account for the

interaction with other wires. This local to global coordinate transformation is

accomplished by rotation and translation of the local coordinate system. The transformed

local coordinates can be used to determine the distances between points on the wire

surface and arbitrary observation points away from the wire.

As each wire is entered, it can be identified within the program by a designated

wire number. The charge and current pulses associated with each of these wires can then
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be identified by their wire number and their individual pulse number on the wire.

Individual assignments of directional unit vectors can be made for each wire segment.

Now that the geometry and segmentation of the wires has been defined, the

connected wires can be identified. As it was noted in Chapter I, each end segment can be

considered to have zero current, unless it is physically connected to another wire. The

wire end segments can be identified by the use of an array, where a non-connected end is

indicated by a 0 and a connected end by a 1. Junctions are identified by assigning the

same "junction number" to all of the wire segments that are part of the particular wire

junction.

2. Matrix Assembly

Each wire has now been defined, as have the current and charge segments

associated with their respective wires. The translation of local to global coordinates now

allows (Eq. 2-15), (Eq. 2-16), (Eq. 2-17) and (Eq. 2-18) to be evaluated for each wire

segment. These Green's function integrals are then used in the matrices defined in (Eq. 2-

36). When evaluating the Green's function integrals, the determinant must be tested and

wire ends identified.

Terms can be added to the matrices A and B to account for lumped wire loading.

Since the A matrix represents the magnetic potential integral, inductive loading can be

added to the A matrix. The inductive lumped element loading is added to the real part of

A:

Ar = Ar+-L
30 (Eq. 3-1)
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where L represents a diagonal matrix the size of A whose diagonal values are the lumped

element inductances of each segment.

The capacitive and resistive lumped element loading can be implemented by adding

diagonal matrices to the B matrix. The lumped capacitors are added to the real part of the

B matrix, while the lumped resistances are added to the imaginary part of the B matrix:

1 1
Br = Br - Creciprocal

(Eq. 3-2)

Bi = Bi -- R.
30 (Eq. 3-3)

The B, matrix needs to be further augmented to account for the potential of each

wire end. Assigning each wire a start and stop end in reference to the assumed direction

along the local axis and creating a matrix of negative and positive l's to indicate the

respective end type, the B, matrix can be augmented with the newly created end potential

matrix. This augmented matrix now accounts for all electric scalar potential effects.

3. KCL and KVL for Wire Ends

Two conditions, KCL and KVL, must be imposed on each wire end. KCL

implements the continuity of current at a wire junction, and KVL implements the

continuity of potentials. When a wire end is not connected, KVL need not be imposed

since a zero end current can be assumed in the MOM model. KCL and KVL can be

imposed by augmenting the Br matrix. Because the number of KCL and KVL equations

equals the number of wire ends, the augmented matrix will be square.
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4. Super-Matrix Assembly

Now that all of the matrices have been modified to account for lumped loading,

wire end potentials and KVL and KCL, the super-matrix can be assembled with respect to

(Eq. 2-49). In order to accomplish this matrix assembly, the Br matrix needs to be

inverted, but due to the nature of the rest of the algorithm, only the upper left corner of

the inverse is needed. The super-matrix can now be solved for the eigen values, which in

turn give the model's resonant frequencies.

5. Presentation of Results

The results are presented for eigen frequencies (numerical values) and their

associated eigen currents and far-fields. MATLAB graphics features are used as will be

shown in the next section.

The following section verifies the eigen problem formulation, comparing computer

solutions to the analytic solutions.

B. VERIFICATION FOR A SINGLE WIRE

The eigen theory and its computer implementation can now be tested. The theory

and the eigen code can be verified by solving for the resonance frequencies of an object

which has a known analytic eigen solution and comparing these two sets of solutions. For

example, a single thin wire is an object of simple geometry with known resonance

frequencies, which can be found using:
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C 2mn sin(r)d 1
i=n- I--£ D Lr

27r(21n(--))
a - (Eq. 3-4)

where L indicates the length of the wire, a denotes the wire radius and n represents the

resonance number. [Ref. 3]

For the computer solution the model needs to first be entered and segmented to

indicate current and charge pulses. Segmenting a two meter long wire into twelve charge

segments, the model appears as in (Fig. A-1). The eigen program is then run, and the

resonance frequencies are compared with the known resonance frequencies from

(Eq. 3-4).

Frequency
Resonance Equation Eigen Percent

Mode (E3-4) Code Difference
1 73.98 MHz 76.48 MHz 3.3%
2 147.9 MHz 143.9 MHz 2.8%

The computer solutions for the first two resonance frequencies of the thin wire are very

close to the analytic solutions.

As noted in the previous section, the eigen program provides additional results.

The eigen vectors represent the current distributions at the resonant frequencies. The

magnitudes of the surface currents for the first two resonances are shown in (Fig. A-2)

and (Fig. A-3). The red regions indicate strong currents and the blue regions indicate

weak current. It is clear that the first resonant frequency has a current peak at the center,

akin to the half-wavelength dipole mode. The second resonance frequency has two

symmetric peak current regions off center, akin to the full wavelength dipole mode.
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Each eigen vector, or eigen current, has an associated electromagnetic field. Of

particular interest are the far-field patterns for each eigen frequency. These fields (for the

single thin wire) can be displayed as total field magnitude, (Fig. A-4) and (Fig. A-5), or as

the field magnitude for specific polarizations such as horizontal, (Fig. A-6) and (Fig. A-7).

The plots can have a section cut away to provide a better view of how the object is

oriented in relation to its field, as demonstrated for the first eigen frequency in (Fig. A-4)

and (Fig. A-6). Each of these field plots can be displayed in either three dimensions or as

a polar plot in each of the major planes as in (Fig. A-8), (Fig. A-9), (Fig. A- 10), (Fig. A-

11), (Fig. A-12) and (Fig. A-13). Additionally, a far-field sphere plot, (Fig. A-14) and

(Fig. A-15), can show the far-field magnitude, with the sphere's color indicating the

magnitude in that particular direction.

This chapter has provided the basics of implementing eigen theory into a computer

code. The eigen formulation and its computer code implementation were then successfully

verified for a simple object. The next chapter addresses the task of finding resonant

frequencies for complex objects.
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IV. EIGEN ANALYSIS FOR COMPLEX OBJECTS

In order to demonstrate the computer eigen analysis for complex metallic objects,

two examples are provided. The first example is of a PEC sphere for which the resonant

frequencies are known. This allows for a second check of the accuracy of the eigen code.

The second example is a Cessna aircraft. It is far more complex and is an example of an

object of practical interest.

A. CONDUCTING SPHERE

A sphere is a good example of a complex object for which the resonance

frequencies are known. A sphere also has some properties which require it to be handled

by the eigen code in a slightly different manner. It is obvious that a perfect sphere is

symmetrical with respect to any axis through the sphere's center. A configuration that

appears symmetric in that manner has multiple eigen vectors at the same eigen frequency.

This is called "mode degeneracy" and causes errors in the eigen solution. In fact, the

sphere is the worst case because of its perfect symmetry. To avoid the mode degeneracy

problem, the eigen algorithm can be adjusted toward a correct solution by making the wire

grid model of the object slightly asymmetric. This will cause "separation" of the

degenerate eigen modes and result in a number of modes with very close eigen

frequencies. The size of the eigen frequency "clusters" will be proportional to the amount

of asymmetry introduced to the wire grid model. The eigen frequencies in a cluster can be

averaged to generate the best approximation of the natural resonance frequencies of the

object, thus circumventing the mode degeneracy.
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The assembly of the wire grid model for a sphere provides insight into the MOM's

use of wire and segment spacing. In order to increase the accuracy the segment lengths

should be roughly equal; otherwise, the resultant matrix may be ill-conditioned. The

sphere's wire grid model used for this simulation is shown in (Fig. A-16).

A final consideration for running the eigen analysis for a sphere is the concept of

DC blocking. For any eigen problem where "loops" exist, there is a trivial solution for the

eigen values of zero. The trivial solution exists when the wire grid structure forms a

complete path, connecting all ends into a circle. This configuration allows for a DC

current to become an eigen vector at the zero eigen frequency. The existence of the zero

eigen value results in a very large conditioning number indicating an ill-conditioned matrix.

Capacitors can be added to block the DC current. These capacitors are included in the

model per (Eq. 3-2), and if their reciprocals are kept to a minimum in value, they will have

little effect on the results other than the removal of the zero eigen value.

The eigen frequencies of the sphere can be derived from the equation:

v- P,0

2 7ra (Eq. 4-1)

where p represents the characteristic values of a sphere, a is the sphere's radius and the

medium surrounding the sphere is described by e and p.. [Ref. 4]

The radar cross section (RCS) of a sphere in the Mie region, also provides an

estimation of its resonance frequencies. [Ref. 5]
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After entering the perturbed sphere into the eigen program and running the

simulation, the eigen frequencies produced by the simulation for a radius of .5 m can be

compared to those from (Eq. 4-1) and from [Ref. 5] (Sphere RCS vs. Frequency).

Frequency
Resonance Equation Eigen Percent

Mode (E4-1) Code Difference
1 82.12 MHz 91.7 MHz 11.7%
2 154.7 MHz 189.9 MHz 22.8%

Frequency
Resonance RCS from Eigen Percent

Mode [Ref. 51 Code Difference
1 95.4 MHz 91.7 MHz 4.2%
2 217.4 MHz 189.9 MHz 12.6%

The computer eigen solution provides the current density and the total electric

field pattern for each eigen frequency. These plots are provided for the first eigen

frequency as (Fig. A-17) and (Fig. A-18). The total radiated field with a cutout can be

seen in (Fig. A-19). The plots show the dipole-like far-field pattern for the sphere's first

mode. It should be kept in mind that more than one eigen current exists for this mode due

to the sphere's symmetry. However, all eigen currents for the same eigen frequency can

be obtained through rotation from each other by an "orthogonal" angle. The accuracy of

the eigen solution can be improved by increasing the number of wires in the sphere's wire

grid model at the expense of increasing computer time and required memory. The next

section will show that the eigen code can handle objects of even greater complexity.
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B. ELECTROMAGNETIC RESONANCE OF AN AIRCRAFT

In a more practical sense, the objects for which resonance frequencies are needed

are more complex than a thin wire or a sphere. The eigen code is capable of solving for

the eigen frequencies and eigen currents of complex objects. As an example, the eigen

code has been used to determine the resonance frequencies for the wire grid model of a

Cessna aircraft for which there is no analytic solution.

The eigen code is applied to the wire grid model of the Cessna aircraft,

(Fig. A-20), to determine the resonance frequencies, the first four of which are shown in

the table below:

Resonance Number Resonance Frequencies
1 8.282 MHz
2 8.333 MHz
3 12.51 MHz
4 18.35 MHz

These frequencies are of interest in detecting the aircraft using HF radar, for

example. Looking solely at the first eigen frequency, the current density on the aircraft,

(Fig. A-21), produces the total field pattern displayed in (Fig. A-22). From these graphs,

it is clear that the aircraft wings cause the first resonance, and the corresponding field is

similar to that of a dipole in the plane of the front edge of the aircraft wings.

The eigen algorithm has proved its ability to find eigen frequencies and eigen

currents for complex objects. In the following chapter, the eigen process will be summed

up, and recommendations will be made as to further research in this area.
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V. CONCLUSIONS AND RECOMMENDATIONS

Computational electromagnetics provides solutions to radiation and scattering

problems for bodies which are too complex in shape to solve for using analytic techniques.

The MOM technique allows one to form a matrix description of radiation or scattering by

a conducting object. The resulting matrices, which represent the electromagnetic model of

the object, can then be manipulated into a standard algebraic eigen value problem whose

solutions are the resonance frequencies of the model.

Testing of the computer eigen code for both simple and complex objects indicates

that the computer results are good approximations of the resonance frequencies. The eigen

currents associated with each eigen frequency show different regions of the object which

contribute to that particular eigen frequency.

The eigen code can be used for a number of applications such as determining an

object's usefulness as an antenna or finding the frequencies of maximum scattering for a

metallic object. In its current stage of development, the code is capable of finding

resonance frequencies for complex objects, but the complexity of an object is directly

proportional to the amount of difficulty in running the simulation with respect to memory

requirements and speed. A more detailed electromagnetic model produces a closer

approximation of an object's resonances, but at the expense of increasing required

memory and computation time.

Additional work can be done in determining faster and more efficient methods for

matrix manipulation, such as eliminating the inversion of the full augmented matrix Br and

implementing iterative eigen solvers to find only a limited number of eigen frequencies.
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These goals are feasible and their completion will contribute to increasing the scope of

eigen analysis applicability.
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"APPENDIX. EIGEN ANALYSIS FIGURES
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Figure (Fig. A-i), Segmented thin wire model
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Figure (Fig. A-2), Current magnitude for the thin wire model at 76.48 MlHz
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Figure (Fig. A-3), Current magnitude for the thin wire model at 143.9 MHz

.06

0.05
0.5-

-0.04

N 0-0.03

-0.02

-1 -0. -0. 001

0.500 0. 1 0.x

y
Figure (Fig. A-4), Total field magnitude for the thin wire model at 76.48 MHz
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Figure (Fig. A-5), Total field magnitude for the thin wire model at 143.9 MIHz
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Figure (Fig. A-6), Horozontal field magnitude for the thin wire model at 76.48 MIHz

35



.045

0.04

-0.035

0.03

).025

- 0.02

0.015

-1 
-0.5

-1 -0.5 0 3.005

0 00.5

y

Figure (Fig. A-7), Horozontal field magnitude for the thin wire model at 143.9 MHz
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Figure (Fig. A-8), XZ plane polar plot for the thin wire model at 76.48 MHz
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Figure (Fig. A-i1), XZ plane polar plot for the thin wire model at 143.9 MHz
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Figure (Fig. A-13), YZ plane polar plot for the thin wire model at 143.9 MHz
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Figure (Fig. A-14), Field magnitude of thin wire model at 76.48 MHz and at a distance of 1000 m
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Figure (Fig. A-15), Field magnitude of thin wire model at 143.9 MHz and at a distance of 1000 m
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Figure (Fig. A-16), Wire grid segmented sphere model for eigen simulation
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Figure (Fig. A-17), Current density fror the first eigen frequency for the sphere
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Figure (Fig. A-18), Total electric field pattern for the sphere's first eigen frequency
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Figure (Fig. A-20), Wire grid Cessna model for eigen simulation
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Figure (Fig. A-21), Current density for the first eigen frequency on the Cessna
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Figure (Fig. A-22), Total electric field pattern for Cessna's first eigen frequency with cut out
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