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Chapter 1

Background and Document
Format

An adequate supply of clean, drinkable water is plainly one of our most basic needs.
The earth’s subsurface provides thirty-five percent of the total municipal water
supply and most rural drinking water in this country [145]. Contamination of this
important resource poses serious health concerns and is forcing our society to weigh
public safety against the cost of cleanup. Cleaning up contaminated groundwater
resources requires an in-depth understanding of fluid flow and constituent transport
and transformation processes.

The goal of this research is to improve our ability to predict groundwater flow
and contaminant transport behavior in heterogeneous media to support remediation
design and decision making. Toward that end, this work shows that macroscopic,
stochastic, discrete-network modeling is an effective tool for predicting flow and
transport behavior in porous media. This first chapter provides a foundation for the
work that follows by establishing the importance of numerical modeling in ground-
water remediation and by discussing problems encountered by practicing engineers
and scientists using current techniques.

1.1 Groundwater Contamination

Leaking underground storage tanks, uncontained surface spills, and inadequate
refuse disposal have caused widespread contamination of our subsurface water re-
sources, a problem that represents an enormous future burden to our society. For
example, contamination at Department of Defense (DoD) facilities is a major ob-
stacle to military base closure plans and the return of these lands to public use.
Thanks to the earth’s resilience, pollution at some sites can be remedied by extract-




ing any persisting sources of contaminant and allowing natural processes to degrade
or dilute the remaining contaminant. However, at many sites, natural attenuation is
not sufficient and we must remove the offending substances. Unfortunately, efforts
beyond natural attenuation are costly and their effectiveness is uncertain. Using
current remediation practices, estimates for cleanup costs at DoD sites are near 30
billion dollars [104]. The potential for sizable cost savings, both within and outside
the government, is fueling much research in groundwater remediation technology.

No two remediation problems are identical, greatly complicating the task of
developing clean-up strategies. The soil’s physical. chemical, and biological fabric
vary from site to site. Further, detailed fluid flow patterns and the composition of
contaminants are unique to each site. For these reasons, we cannot rely on historical
performance of a remediation strategy to predict its utility at another site. Each
contaminated site must be considered individually.

1.2 Natural Heterogeneity and Scales of Interest

Any mention of ‘homogeneous’ media implies averaging over a spectrum of scales.
Porous media consist of soil particles and voids and. therefore, are heterogeneous at
the scale of individual particles. Natural sediments are also heterogeneous at larger
scales because the soil particles’ shapes and sizes and the depositional processes that
placed them are not uniform. The resulting spatial variability in physical structure
causes a great assortment of characteristic length and time scales in flow and trans-
port behavior. Table 1.1 shows geological features of interest occurring from the size
of individual pores to the scale of the basin and defines spatial scale labels that are
adopted in this work. These definitions do not imply a discrete hierarchy of scales of
heterogeneity, as porous media may display a continuous spectrum of characteristic
lengths [26].

In the past, heterogeneity beneath the aquifer unit has been neglected. This is
so because regional-scale water supply analyses seek composite fluxes at the tens-
of-meters scale and smaller-scale variations in the flow field are inconsequential.
However, when considering transport through porous media, the range of spatial
and temporal scales of importance increases substantially. For systems containing
hydrologic and chemical processes, the range of significant length scales extends over
15 orders of magnitude and the time scale over 17 orders of magnitude [37]. The
implications of such a wide range of scales of interest are significant and will be
discussed in the chapters that follow.




Table 1.1: General length scale categories for heterggeneity.
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1.3 Remediation in Naturally Heterogeneous Media

Early remediation attempts conceptualized geologic media too simply. Within a
stratum defining an aquifer unit, soils normally were assumed uniform, largely be-
cause data were not available to characterize strata in more detail. The groundwa-
ter remediation community is coming to realize that multi-scale physical, chemical,
and biological heterogeneity in porous media render traditional remediation tech-
nologies uncertain, if not altogether ineffective [105]. Consequently, few sites can
be declared clean, despite the billions of dollars that have been spent on ground-
water remediation [16, 147]. Today, the effects of heterogeneity are appreciated,
if not well understood, and remediation schemes are being designed accordingly.
For example, simple pump-and-treat methods are being abandoned as stand-alone
solutions. When evaluated in homogeneous laboratory samples and with numer-
ical models of homogeneous media, pump-and-treat methods seemed appropriate.
However. when installed in naturally heterogeneous soils, these schemes have re-
quired an intolerable amount of time to ‘sweep’ contaminants from the medium. On
closer inspection, the role of heterogeneity becomes clear. Contaminants in higher
permeability regions are removed readily by the passing water but those in lower
permeability regions are effectively trapped by the absence of local fluid flow. In
extreme cases, contaminant in low permeability regions may move only by molec-
ular diffusion. Innovative schemes are emerging to remediate contaminants in low
permeability zones. However, additional physical and chemical processes associated
with these schemes dramatically increase the complexity of these svstems. With-
out effective tools to anticipate performance of these methods in real media, costly,
long-term, site-specific, field-scale remediation trials will be needed.

1.3.1 Tools for Assessing Remediation Plans.

Often, careful consideration must be given to several candidate remediation strate-
gies before one or more is selected for a particular site. The high cost of field con-
struction and project operation requires well-planned remediation schemes whose
effectiveness is judged before field work begins. Constructing a full-scale or pilot-
scale remediation scheme to evaluate its abilities is seldom practical. Analytical
evaluations are limited to gross simplifications of the field setting and normally
are only useful for preliminary screening of alternatives or simple numerical model
testing. Thus, by elimination, numerical simulation is a primary tool for remedial
scheme assessment.

Remediation plans must be assessed at the engineering or macroscopic scale as
defined in Table 1.1. Even with recent and anticipated computing advances, pore




scale simulations are impossible even for moderately-sized laboratory samples. We
are resigned to analyses performed at time and length scales much coarser than the
scales of the smallest and quickest processes, meaning that we must be content to
substitute constitutive parameters for indescribable detail [37].

1.3.2 Practical Problems.

Laboratory testing and numerical modeling suffer important weaknesses in hetero-
geneous media. Problems encountered by practitioners in this field include:

o Laboratory-derived parameters may not apply at the field scale. Laboratory
testing is useful only if the parameters that result are applicable at the scale
of the remedial project analysis. Field testing yields parameters that may
be orders-of-magnitude different than those obtained by laboratory evalua-
tion of a core from the same site [53]. Because these parameters should be
medium/fluid properties, this dependence on scale implies a breakdown in the
description of the physics. That is, scale dependence is not only a problem of
measurement technique. It is a limitation of the theory that produced the ef-
fective, laboratory- or macroscopic-scale parameters we are trying to measure.

o Interpretation of field and laboratory measurements is difficult. An instru-
ment does not measure quantities at a mathematical point in space and time.
Rather, an instrument provides an average measure over an observation win-
dow for a finite duration [24]. The size and shape of this window are usually
unknown. Further, variability at many scales implies that a measurement at
one location may be significantly different than one taken very nearby. A
measurement taken in the same location with a different instrument (and dif-
ferent averaging window) may produce a different result. Also, to ‘measure’ a
property, other properties must be known. For example, to estimate sorption
behavior from a breakthrough test, the dispersivity must be known. Thus, a
problem with understanding one process may impede observing another, even
if the second process is adequately understood.

e Parameters in the governing equations lose their physical significance. The
parameters used in the governing equations depend on how and at-what-scale
measurements are made. Therefore, in practice, these ‘properties’ become
calibration knobs used to match available observations. The resulting quasi-
empirical equations match field behavior in the limited range of conditions
for which they were calibrated, but can be poor predictors when conditions
change. Lack of precedence in applying a particular scheme at a particular site
requires that predictive methods not depend solely on empirical relationships.




In summary, to make measurements and calculations practical, it is necessary to
deal with media consisting of several scales that are lumped, for analysis purposes,
into regions of homogenized material. The central problem is performing practi-
cal measurements and computations at the engineering scale without including the
nearly unlimited number of variables necessary to define the medium completely.

1.4 Document Outline

The work described here is the development and testing of an alternative, macro-
scopic, application-oriented numerical simulation approach that helps assuage some
of these practical concerns. The document detailing this work is divided into three
major parts with a total of nine chapters. Part I contains four chapters providing
the background, problem description, and rationale for the approach chosen. Part II
contains four draft journal articles describing the present work. Part III contains a
single, brief chapter summarizing this work and suggesting future efforts. An outline
of the structure follows, with a brief description of the subject covered within each
chapter:

e PART I: Introduction

— Chapter 1 justifies the need for this work in practical terms.
— Chapter 2 identifies problems with continuum-mechanical methods.
— Chapter 3 details the processes to be studied.

— Chapter 4 rationalizes the approach taken.

e PART II: The Present Work
— Chapter 5 describes the numerical model for flow and tracer transport.
— Chapter 6 discusses network creation to match observations.

— Chapter 7 explores network behavior in more detail.

— Chapter 8 describes a field-scale network model for immiscible flow.
e PART III: Summary
— Chapter 9 summarizes this effort and proposes future work.

Because the chapters in Part II are drafts of journal articles and must be under-
standable as separate documents, the reader must endure some redundancy.




Chapter 2

Continuum Mechanics and
Heterogeneous Media

Nature’s intricacy confounds attempts to describe its structure and behavior in
detail. Historicallv, scientists and engineers have relied on the continuum hypothesis
to permit description of natural processes at a manageable scale [40]. A continuum
is a purely mathematical concept valid for describing perfectly continuous bodies.
In a mathematical continuum, each point within the material domain is occupied,
permitting definition of extensive properties for the medium. Real materials are, of
course, discrete and the continuum concept never strictly applies. We must speak
in terms of equivalent continuous media that behave the same as real media in
some averaged sense. Therefore, the process of constructing a continuum theory
involves redistributing discrete data to infinitely many mathematical points within
the material domain. Then, well-established techniques of numerical analysis may
be applied to reduce the number of degrees of freedom to a manageable level.

This chapter is devoted to application of the continuum hypothesis to porous
media. Its purpose is to establish theoretical causes for practical problems described
in the preceding chapter (laboratory derived parameters that do not apply at the
field scale, difficulty in interpreting lab and field data. and macroscale parameters
that have lost their physical significance). This chapter is purposely general because
the basic problems are common to many discrete materials. The following chapter
will address these same issues for a few specific processes.

A continuum representation for porous media replaces indescribably-fine-scale
data with their spatial and temporal averages. This permits us to construct equa-
tions and interpret measurements with the averaged variables that are valid at the
coarser scale. A simple example using void fraction is shown in Figure 2.1. In the
figure, pore scale values for void fraction are binary (0 or 1), but their continuum




representation is a smoothly varying quantity lying somewhere between 0 and 1.
Note that the averaging shown in the figure does not reveal anv boundary effects,
because the averaging window was modified near boundaries to include only the
interior of the domain.

According to Baveye and Sposito [7], the classical macroscopic, local continuum
view in porous media has rested on two fundamental assumptions:

e The physical properties of the medium are associated with field variables de-
fined at the centroids of representative elementary volumes (REVs).

o The time and space dependence of these field variables can be described with
differential balance equations for mass, momentum, and energy.

2.1 The Representative Elementary Volume

Consider the hypothesized variation in an averaged property value with changes in
averaging volume. Figure 2.2 shows a hypothetical, porous medium and the cross
sections of several, spherical, averaging volumes. Figure 2.3 shows the postulated
relationship between averaging volume and an average property value, volumetric
porosity.

The shape of the curve in Figure 2.3 has important ramifications and deserves
further discussion. Although not the first work to propose the existence of an
REV, Bear’s exposition [10] may be the most frequently cited in the context of
groundwater. Parallel concepts, such as the sensitive volume in fluid mechanics [6],
exist in other fields. The following rationale for the REV parallels that of Bear. The
property chosen for examination is volumetric porosity, defined as

#i(Vi) = v

(2.1)

where (V); is the volume of void space within V;.

Bear begins with a verv large volume V; centered around a mathematical point
Z (as in Figure 2.2). As this volume is decreased, Bear describes the three regimes
encountered. For large values of V;, gradual variations in ¢; are observed (as in Fig-
ure 2.3). These are caused by macroscopic, stratigraphic layering in the medium.
At some scale, depending on the distance from Z to a layer boundary, these fluc-
tuations diminish. Only small amplitude fluctuations in the porositv are observed
due to spatial distributions in pore and grain sizes. As the volume declines beneath
Vo and approaches the dimensions of a single pore, observations of porosity vary
substantially. As the volume approaches zero, the porosity becomes zero or one, de-
pending on whether Z is located in a void or in a solid. This process could continue




Void Fraction

Void Fraction

Figure 2.1: Schematic showing maps of local (above) and areally-averaged (below)
void fraction.




Figure 2.2: Schematic of a porous medium and cross sections through several spher-
ical averaging volumes.
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Figure 2.3: Hypothetical volumetric porosity versus the volume of the averaging
region (similar to Bear [10], Bavye and Sposito [7] and Batchelor [6]).
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beneath the fluid continuum or solid continuum to the molecular scale and below.
The porosity is defined as

8(2) = lim W22

7 (2.2)

The volumes V; and V,, are assumed to vary smoothly which implies that ¢ is a
continuous function. The volume V4 is the REV.

Seeking an ‘unambiguous’ value for the averaged quantity (mass density in his
paper), Hubbert [67] extrapolated the plateau in Figure 2.3 toward zero averaging
volume and assigned the plateau value to a point in the medium (7]. Marle [90]
(as cited in [7]) asserted that the length scale for averaging should correspond to
the plateau region in Figure 2.3, so the averaged value will be independent of the
averaging region length scale (REV dimension). Bear [10] proposed that the lower
limit of this plateau region is the threshold between the microscopic and macroscopic
domains and labeled that averaging volume with characteristic length V4 to be the
REV.

The REV dimension is based on the following criteria [11].

e Average values should be independent of the size and shape of the REV.
o Average values should be continuous and infinitely differentiable.

e The linear dimension (D) of the REV should be much greater than the char-
acteristic length of the soil grains (d) and much less than the macroscopic
characteristic length over which significant changes in average macroscopic
quantities of interest occur (L) [144, 60]. The plateau in Figure 2.3 corre-
sponds to the range of D, such that d <« D < L.

Armed with these assumptions, differential conservation equations in terms of the
averaged properties can be constructed that are valid in the range of D.

2.2 Problems with the Traditional REV Concept

Although the traditional REV concept has been in use for years in the study of
groundwater, it is considered to be too restrictive and theoreticallv unverifiable in
porous media {7, 23]. Whitaker concluded that the REV idea implies a linear varia-
tion in the macroscopic variable over the dimension of the REV [144]. Therefore, the
continuum approach, in this form, is not applicable for resolving detail beneath the
REV scale (e.g., wave propagation with wavelengths shorter than the lower bound
of the REV size or a solute plume smaller than the lower bound of the REV [5]).
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Baveye and Sposito [7] suggest that the plateau required for the REV definition
may not exist. This is supported by Cushman and others [24, 101] who argue that
real media possess structure at all scales (so-called ‘evolving’ heterogeneity) which
precludes the existence of an REV.

In heterogeneous media, if a plateau exists for which the average value is insen-
sitive to the averaging volume, the corresponding averaging volume may be large.
REV theory asserts that measurement beneath that scale is invalid. By one esti-
mate, the REV for contaminant transport at a particular field site would exceed 100
km in one dimension [97]. Measurements and computations cannot be restricted to
such large scales, and must be performed at scales beneath the REV size.

2.2.1 Indifference and Invariance.

The classical REV concept requires that the REV dimension exhibit invariance
and indifference [7]. Invariance means that it retains the same geometric character
regardless of the time or its spatial position. This requirement was weakened by
Cushman [23] so that the REV could deform smoothly in space and time, permitting
the study of materials with gradual spatial variation in properties. Indifference
means that the REV retains the same configuration regardless of the field variable
being averaged. Further, for multiple state variables, a single, common REV must
be found for all variables being averaged [5]. Bear and Braester recognized that
the REV could be different sizes for different physical properties (Figure 2.4) [12]
and that the valid range of the composite REV is the intersection of the individual
property ranges.

2.2.2 Local Continuum.

In practice, measurement and computation are made without regard to the size of
the representative elementary volume. Even if the dimensions of the REV were
computed or estimated (which they are not), nowhere in the usual theory can that
size be used. It does not enter into the mathematical description. The tacit as-
sumption is that the REV is small compared to the measurement or computation
scale, thus implying a ‘local’ continuum in the sense of Edelin [39]. Using local
continuum mechanics, differential balance laws written for a body of finite dimen-
sions are assumed to apply at a mathematical point as the control volume for which
these balances were constructed tends to zero. By definition, the local continuum is
defined in terms of infinitesimal elements which can contain no information about
the characteristic lengths of the medium. In a local continuum, response depends
on properties and state at a point, not on surrounding points.
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Figure 2.4: Different REV sizes for different properties (modified from Bear and
Braester [12]).
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Real porous media often are observably not continuous. Variation from the soil
grains and pores themselves through depositional layering is often plainly visible
with the human eye. These media defy accurate representation with a local con-
tinuum approach because the scale of heterogeneity is finite. Thus, properties at a
‘point’ are actually averages of surrounding points. Heterogeneous media are more
suited to description with non-local continuum mechanics as in Eringen [41]. Im-
properly treating the medium as a local continuum is responsible for much of the
difficulty with measurement and simulation identified at the end of the last chapter.

2.3 The Weight-Function Approach

The weight function approach was first advocated by Matheron [91] and continued
by Marle [90] (cited by [24]) and Bavye and Sposito [7]. This approach includes the
REV concept as a special case. In this so-called ‘relativist’ approach, mMacroscopic
variables are defined as convolution products of their microscopic counterparts. For
example, the property A would be averaged

Ame)EA*Mx—&ﬂw@JJ)ﬂ/ (2.3)
where V = averaging volume, [L?],
z = position vector, [L],
¢ = dummy variable of integration, [L],
t = time, [T], and
w = weight function.

The weight function is defined such that

/w@zﬁdeL (2.4)
JV

The weight function approach to averaging does not assume indifference or invari-
ance and, thus, is more flexible than the REV concept. For a constant w equal to
the inverse of the volume, the local volume average (REV) is returned.

Baveve and Sposito [7] suggested that the weight function in the convolution
should correspond to the instrument used to measure the property. This approach
allows us to resolve differences in measurements taken with different instruments.
Baveye and Sposito [7] derived macroscopic balance laws for fluid flow and transport
using the convolved average quantities. In theory, these equations are valid at anv
scale if all measurement and interpretation are performed with the same averaging
function. However, this approach assumes that averages are taken in an infinite
domain. For now, this approach does not account for the boundaries imposed by
measurement practices.
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2.4 Consequences of a Continuum Approach in Natural
Soils

The continuum approach tries to replace a heterogeneous medium with a homoge-
neous continuum. When concepts from local continuum mechanics are applied to
describe heterogeneous media, several problems arise, including:

¢ scale dependence of parameters, and

e inadequate description of coupled processes.

2.4.1 Scale Dependence of Parameters.

At the laboratory scale, where most processes are investigated, macroscopic varia-
tions cannot be observed. Given enough samples, an estimate of field-scale variability
may be surmised. Spatial continuity or correlation of properties, which defines the
larger characteristic lengths, is more difficult to extract from spot measurements.
Thus, behavior measured at the laboratory-scale must be synthesized to estimate ef-
fective behavior at the engineering scale. Processes with characteristic length scales
or time scales larger than the scales of measurement exhibit an apparent size or
time dependence. Observations made at scales beneath the REV size must vary
with the scale of observation, a fact that arises from the verv definition of an REV.
The apparent scale effect explains laboratory-measured values that do not resemble
field-scale observations. It also accounts for difficulty in interpreting laboratory and
field observations. Even if one adopts the weight function approach, the apparent
scale effect will persist because boundary conditions have not been considered. If a
boundary lies within the integral-averaging region defined by the weight function, a
scale effect in property measurement will emerge.

In heterogeneous porous media, we lack a separation between the processes’
characteristic scales and the scale of observation. If a clear scale separation exists,
we may use traditional, local-continuum-mechanical ideas to interpret measurements
and perform simulations. The following cases are presented using saturated fluid
flow as the example process and hydraulic conductivity as the averaged parameter.

e Process scale << observation scale. For this case, we may often average effec-
tively to the observation scale. For example, in a uniform homogeneous porous
medium, a rational, constant saturated hvdraulic conductivity parameter can
be determined to represent the macroscopic effect of pore-scale flow.

e Process scale >> observation scale. In this situation, we can resolve the pro-
cess discretely, including as much detail as is necessary and practical. For
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highly resolved pore-scale models, saturated conductivity may be determined
simply by accumulating the observation-scale flows and averaging afterward.

e Fine process scale << observation scale << coarse process scale. Here we
may average the fine-scale process and resolve the coarse-scale process. This
corresponds to a porous medium composed of several distinct, homogeneous
units. Conductivites may be determined at the observation scale and the
layering (coarse process scale) may be resolved discretely by spatial variability
in the observation-scale parameters. This condition is normally assumed in
remediation modeling.

When the characteristic length for a process and the observation scale are simi-
lar, this traditional philosophy breaks down. Unfortunately, in natural soils, this
condition may very common.

2.4.2 Inadequate Coupling.

When volume averaging is performed, information about variability beneath the size
of the averaging volume is lost. If a mean value is sought, the lost information may
not be important. However, if two properties in a coupled process are averaged to
the macrosopic scale before they are coupled (e.g., multiplied), the result may be
different than would be obtained by performing the averaging after coupling. That
is, the average of products may not equal the product of averages. For example,
let A and B be properties to be averaged. Express these quantities as mean values
(denoted by the overlines) plus zero-mean perturbations (indicated with primes),

A = A+ A4,
B = B+DB.

The averages of A and B are, obviously, A and B, and the product of their averages
is A - B. If we take the mean of the product of A and B, we have

A B=(A+A) (B+B)=4A-B+4 - B. (2.5)

The right side of this equation contains the product of the averages and an average
of the product of the perturbations. If A and B are uncorrelated and the sample
population is sufficiently large, the average of the product of perturbations will be
zero. However, if A and B are correlated, it follows that the discrepancy will grow as
the variance in the distributions of A and B increase. When averaging heterogeneous
properties, structure and variability may be lost over a wide range of scales. Often,
constitutive laws are simply attempts to recover the macroscopic effects of this lost
microscopic information (A’ BY).
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In the context of groundwater, consider the coupling between conductivity (K)
and head (H) in steady flow through a one-dimensional, heterogeneous medium [10].
0 O0H 0°H OKOH
K=K+ ——— =
0z Ox 0z2 = Or Oz
When we homogenize this medium by seeking a composite, constant conductivity,
we replace this equation with

(2.6)

0*H
z?
where K, is the effective conductivity. However, unless K is spatially uniform or
the spatial derivatives of K and H are random and uncorrelated, Equation 2.6 does
not behave like Equation 2.7. This problem does not arise because our statistical
sample size is inadequate. There is no single value for K, that captures the behavior
of both terms in Equation 2.6. This problem may manifest itself as an apparent
scale effect.

K.=—5 =0 (2.7)

Constitutive theories are required to ‘close’ the system of equations produced
by balance laws. These constitutive theories necessarily are quasi-empirical in their
origins and are ‘proven’ by their ability to reproduce a few, specific behaviors. If
the observations used to ‘prove’ the constitutive theory are from a limiting case,
such as long-time behavior, the theory may not be universally valid. In this regard,
observation-scale heterogeneity has caused time-tested methods from homogeneous
analyses to fail in some cases. In these cases, parameters become the calibration
knobs discussed in the prior chapter. Again, a pertinent example is conservative
transport. In a particular soil, a plume’s growth rate due to dispersion may become
nearly constant after travelling several thousand meters and its growth beyond that
point will be described well by traditional, asymptotic theory. However, if the
questions being asked are on the tens or hundreds of meters scale, the asymptotic
transport equation is not useful.

2.5 Problem Summary

There are two key problems that hinder our description of heterogeneous materials.
First, there may be finite-size structures in the material. Second, fine-scale vari-
ables may not be independent random distributions and macroscopic effects of their
correlation may be significant and difficult to capture.
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Chapter 3

Process Descriptions and
Problem Definition

Before complex chemical and biological processes in porous media may be studied
effectively, the basics of fluid flow and conservative transport must be mastered.
The processes chosen for detailed study in this work are:

e saturated, Darcian fluid flow,
e advection-dominated, conservative transport, and
e flow of multiple, immiscible fluids.

Although the volume of literature on these subjects is daunting, unresolved
problems persist. To be valid in multi-scale heterogeneous media, solutions to these
problems should be process oriented and not macroscopic, empirical descriptions.
For this reason, a detailed review of the physical processes and the classical governing
equations at both the microscopic and macroscopic scales is warranted. This chapter
concludes by describing the difficulties encountered by the present methods when
confronted with heterogeneity.

3.1 Saturated Fluid Flow

3.1.1 Flow in a Single Pore.

At the scale of a pore (still large enough for the assumption of a fluid continuum to
be valid) the Navier-Stokes equations describe fluid motion [13]. For incompressible
flow (constant fluid density, py), the equation of fluid flow is
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a—u—i—u-Vu:——l—VP-{—quu-i—g (3.1)
ot s
where u = fluid velocity, [LT™!],
t = time, [T],
ps = fluid density, [ML73],
P = fluid pressure, [ML™'T72],
v = kinematic viscosity of the fluid, [L2T~!], and
g = gravitational acceleration, [LT~?].

Bold variables indicate vector quantities. Square brackets contain the fundamental
dimensions of each variable in mass (M), length (L), and time (T) units.
The momentum transport equation (Equation 3.1) may be recast in non-dimensional

form [82], and rearranged to give,

2 * 2
Z—T?;:* + Reu* - V*u* = —;ﬁ)f V*P* + V*2u* + —aﬁgg* (3.2)
where Re = aU/v, the Reynolds number, [—],

a = characteristic length (perhaps the radius of the pore), [L],

T = characteristic time, [T],
Py = reference pressure, [ML™1T2],

U = maximum fluid velocity magnitude in the pore, [LT~1],

g = magnitude of the gravitational acceleration, [LT 2.

The variables are non-dimensionalized by physical quantities relevant to the prob-

lem,

. U

u = —
U

P
P = —
I50
f*—t
=5
V* = Va,
. g
g*==.
g

If the Reynolds number is very small compared to the coefficients preceding each of
the other terms,

a2

a
R — —_
e<<uT = U<<T’
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Re<<C[L]—£ = U< /g0, (3.3)

the inertial term is negligible and the creeping flow approximation is valid [13]. In
steady, creeping flow (large T), the fluid seeks an equilibrium between the gradient
in potential and the viscous diffusion of momentum. Returning to dimensional form
and expressing gravitational term as hydrostatic pressure potential, these conditions
reduce Equation 3.1 to

V(P + pgz) = pfz/V2u. (3.4)

where z is the position above a datum, [L].

Within a single pore, fluid velocity magnitudes near the pore walls are small
compared to those near the center of the pore. If the pore is conceptualized as
a straight cylinder and fully-developed laminar flow exists, the velocity magnitude
distribution within the pore is parabolic (Figure 3.1) with zero velocity at the pore
walls (Poiseuille flow). The fully-developed velocity profile in a horizontal tube is

2 2
yy = ——{a° —a 3.5
w =g (0® ~ ) (35)
where u; = velocity magnitude along the pore, [LT‘I],

I = position along the pore, [L],

a = lateral distance from the pore centerline, [L], and

ap = pore radius, [L].

3.1.2 Flow Through a Pore Network.

As additional, interconnected pores are included, the problem becomes equivalent
to a complex pipe network. At a pore junction, ignoring inertia, fluid flow will
subdivide in accordance with the resistance provided by each pore and the potential
gradient along the pores.

3.1.3 Macroscopic Preferential Flow in Heterogeneous Media.

Likewise, macroscopic flow through heterogeneous media can be similar to flow
through a network of pipes. Fluid will bypass regions of low permeability in favor
of easier paths. Because the contrast in permeability can be high, the medium may
resemble voids and solids at any scale (Figure 3.2).
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Figure 3.1: Poiseuille flow in a cylindrical pore.
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Figure 3.2: Preferential flow in a macroscopically heterogeneous medium.

23




At the macroscopic scale, the classical flow equations may be derived by invoking
the continuum assumption. The equations are assumed to be valid in a weighted-
average (e.g., REV) sense as described in the previous chapter. Beginning with
conservation of mass of the fluid, these equations are

0
5 (Pr®) ==V (pra) + s (3.6)
where ¢ = volume-averaged porosity of the material, [—],
g = Darcy flux, [LT7!] and
gs = source or sink of fluid mass, [ML™3T~1].

Darcy flux is simply the volume of fluid passing through a unit cross-sectional
area of porous medium per unit time. Equation 3.4 may be simplified (e.g., [33])
to produce a differential equation that reflects Darcy’s law for flow through porous
media

k
=-7 (VP + pegV2z), (3.7)
where &k = intrinsic permeability of the material, [L?],
p = dynamic viscosity of the fluid, [ML~1T~1],
pc = composite fluid/constituent density, [M L_S], and
z = vertical position above a datum, [L}].

Combining these, we arrive at the macroscopic, saturated flow equation

0 k
57 (@r1) =V - | L= (VP + pegV2)| + 0 (38)

3.2 Conservative Solute Transport

Historically, solute transport has been divided into a translational component (ad-
vection) and a spreading component (dispersion). Advection is caused by the bulk
(average) fluid motion carrving the solute particles along. Dispersion covers all
solute motion not described by advection. In practice, dispersion is an amalgama-
tion of several distinct processes that operate in very different manners. Dispersion
consists of

e molecular diffusion,
e Taylor dispersion,
e flow branching, and

e path-dependent travel time.

Each components of dispersion will be analyzed separately and in an stationary
reference frame.
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3.2.1 Molecular Diffusion.

Molecular diffusion is the net movement of species from higher concentration to
lower concentration due to Brownian motion of the individual molecules [13]. This
process is depicted in Figure 3.3 and diffusive flux is described accurately by Fick’s
law of molecular diffusion [13]

de
where J, = mass flux in the x direction due to molecular diffusion, [MT —1],
D,, = coeficient of molecular diffusion, [L2T7Y], and

¢ = concentration, [ML73].

Molecular diffusion is present regardless of the fluid velocity, but represents only
a small contribution to total dispersion at the REV scale, except in nearly stagnant
fluid. For this reason, molecular diffusion is neglected in many numerical models.
The speed at which contaminants diffuse depends on the structure of the pore space.
Contaminants migrating by diffusion must follow tortuous paths created by the
existence and nonuniform distribution of soil grains. Thus, a diffusion coefficient
from a water-only batch experiment will overestimate the rate of diffusion in the
pore space of a porous medium.

3.2.2 Taylor Dispersion.

Recall the description of Poiseuille flow in a single, straight pore. When a solute
is introduced, variation in velocity magnitude across the pore’s width contributes
to spreading of the solute. Travel time for a solute particle in the pore depends on
the fraction of time it spends in the low velocity region near the pore wall and the
fraction it spends in the higher velocity region near the center. Molecular diffusion,
which acts in all directions, causes solute particles to move among the streamlines
and experience a variety of velocity magnitudes during their trek along the pore
[17). This effect is termed Taylor dispersion [134] or Taylor-Aris dispersion (3] and
is diagramed in Figure 3.4.

If the travel time along the pore is large compared to the time for diffusion across
the pore (t large and a small), such that ¢ Dy, / a? >> 1, the dispersive behavior obeys
Fick’s law of diffusion with an exaggerated coefficient. Using moment analysis, Aris
[3] confirmed the coefficient rigorously and determined that the spreading reaches
this asymptotic condition exponentially in time. In a macroscopic medium. Taylor
dispersion in a pore is generally a small contributor to the total dispersive flux. It
is overwhelmed by the large-scale dispersive effects to be discussed in the coming
paragraphs.
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Figure 3.3: Schematic of the molecular diffusion process showing the time evolution
of the position of Brownian particles in a box.
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Brownian particle
at time = 0

Figure 3.4: Schematic of Taylor dispersion.
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3.2.3 Pore-Scale Transport Equation.

Within a pore, transport is normally described by a one-dimensional advection-
dispersion equation (ADE).

dc _ O(we) 9, 0c
%= "o TalPa)k

D is a scalar dispersion coefficient that contains a Taylor dispersion component and

(3.10)

a molecular diffusion component,

au?
D=———4+D 3.11
8D, O™ (3:11)
where T = average velocity magnitude in z, [L/T], and

= pore radius, [L].

3.2.4 Flow Branching.

Consider a slightly larger sample that contains several interconnected pores. For
fluid to pass through an interconnected porous medium, it must frequently subdivide
itself among the pores and rejoin at pore intersections [115]. If the fluid contains
solute, this branching effect causes a spreading of the solute mass. This particular
phenomenon is not caused by variation in the velocity magnitude. It is present even
if the average pore velocities along each of the paths are identical (as in Figure
3.5). In this case, flow branching causes no dispersion in the direction of flow, only
perpendicular to it. Neglecting small travel time differences caused by molecular
diffusion and Taylor dispersion, all particles will arrive at the downstream boundary
at the same instant. This hypothesis is supported by Sahimi’s finding [120] that, in
a numerical model consisting of a regular, rectangular network of tubes oriented at
45 degree angles to the direction of flow, a solute spreads only laterally, not in the
direction of flow.

Although molecular diffusion is a small contributor to dispersion, without it,
flow branching would not spread the constituent. Molecular diffusion causes mixing
and permits molecules to move among streamlines. Without molecular diffusion, all
molecules beginning on a streamline stay on that streamline through branch points,
thus following the same path through the medium.

The dispersive effect caused purely by flow branching may be isolated by consid-
ering a classical demonstration of the Gaussian distribution (Figure 3.6). Releasing
many balls in the same location over an array of equally-spaced, offset nails and
collecting them in bins beneath demonstrates spreading caused by the ability to
choose alternate paths. This process is a function of the number of rows of nails,
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Figure 3.5: Flow branching at the pore scale in a discrete medium.

29




but is scale independent. In other words, if the geometric configuration is retained,
the same distribution results, regardless of scale. This mechanism causes the dis-
persion coefficient to be a tensor. That is, macroscopic flow in z produces spreading
in y and in 2, even in a medium with no inherent orientation. This spreading is a
consequence of the material’s discreteness.

3.2.5 Path-Dependent Travel Time.

The final component of dispersion is path-dependent travel time. If the mean ve-
locities in two parallel pores are different, travel times along these pores will differ.
When several, interconnected pores are involved, the variety in paths and, therefore,
travel times increases (Figure 3.7). Path-dependent travel time normally constitutes
the majority of dispersion in the direction of flow, with the rate of dispersion de-
pending on the distribution of travel times.

3.2.6 Classical Macroscopic Transport Equation.

Plumb and Whitaker [110] use volume averaging to show that if the ADE (Equation
3.10) is valid for a solute migrating through a pore, and if the macroscopic scale
is large compared to the small-scale (pore-scale) variability, an ADE with modified
coefficients may be applied at the macroscopic scale. The traditional macroscopic
equation for conservation of mass for dilute concentrations of a conservative, miscible
contaminant is

Oc

5
with u being the seepage velocity. The dispersion coefficient in Equation (3.12) is
normally prescribed by

-V - (uc) + V- (DVe) (3.12)

Dij = (aL — aT)zj;%ll —+ aTﬁéij -+ Dméij (313)
where o« = longitudinal dispersivity, [L],
ar = transverse dispersivity, [L],
6;; = Kronecker delta, [-], and
D,, = molecular diffusion coefficient. [L?/T).

3.2.7 Field-Scale Transport in Heterogeneous Media.

One can imagine that the processes comprising dispersion at the field scale are
similar to those described for a network of pores. Preferential flow at the macroscopic
scale, described earlier, is a large-scale equivalent to flow branching. Obstacles
to be avoided may be large, causing considerable spreading perpendicular to the
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Figure 3.6: Balls and nails analogy for dispersion by multiple paths.

31




Figure 3.7: Path-dependent travel time. Each laver has a different seepage velocity
with the average displacement indicated by the dashed line.
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macroscopic flow path. Further, because these paths are of unequal lengths and
conductivities, each path will have a different travel time. These two effects cause
the majority of dispersion at the field scale. Mass that chooses higher conductivity
paths will emerge first, while mass that must pass through lower conductivity regions
will emerge later.

In summary, dispersion is not a monolithic process. It is composed of several
very different sub-processes. More importantly, dispersion is not diffusion, although
it is usually modeled as a diffusion process with the ADE. In a field setting with
a natural spectrum of heterogeneities, dispersion will be dominated by differential
advection at spatial scales much larger than the pore scale. The only truly diffusive
component in total dispersion is molecular diffusion. Taylor dispersion in the pores
and molecular diffusion may be ignored in many practical applications with little
consequence. There are exceptions, generally in cases with regions of very low
velocity, for which the inclusion of molecular diffusion may be crucial.

3.3 Immiscible Fluid Flow

The theory of immiscible flow through porous media is important because it de-
scribes two physical systems that are encountered often in the assessment of reme-
diation plans; air and water flow in the unsaturated zone, and the motion of non-
aqueous phase liquid (NAPL) contaminants. Drinking water standards for these
organic contaminants are usually very stringent, and their solubilities, although
small, usually exceed these standards by orders of magnitude. Their relatively low
solubilities permit the immiscible fluid to act as long-term, continuous sources of
dissolved contaminant to passing groundwater.

The physics of immiscible flow have been studied in a variety of disciplines
including petroleum engineering, chemical engineering, and, more recently, water
resources engineering. The following paragraphs briefly describe a few key processes
relevant to the work that will follow:

e capillary barriers,

o capillary entrapment,

e capillary hysteresis, and
e fingering.

At the pore scale, flow of immiscible fluids is identical to single fluid flow with
one exception, surface tension. Intermolecular attraction prevents some fluid pairs
from mixing with each other, causing the formation of fluid-fluid interfaces. When
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the surface of the soil grains shows a preference for one of the fluids, the presence
of interfaces causes a capillary force. The Young-Laplace equation [38] describes
the resulting pressure difference across the fluid-fluid interface as a function of the
surface tension and the radius of the interface

p, = 20cosb (3.14)
m
where P. = capillary pressure, [M L*lT‘z],
o = surface tension, [MT 2],
6 = contact angle, [—], and
rm = mean radius of curvature of the interface, [L].

Because a soil’s pore radii are normally small (on the order of microns), the
capillary pressure may be large. Further, spatial variability in material type and
pore size cause dramatic differences in capillary pressure resulting in well-defined
preferential flow patterns.

3.3.1 Capillary Barriers.

When a pore’s radius is sufficiently small, the capillary pressure resisting invasion
of the non-wetting fluid may exceed the driving pressure gradient, and the non-
wetting fluid will not invade this pore. When this effect occurs for all pores at a
material interface, an entire invading fluid front may be arrested by capillary force.
This effect is labeled a capillary barrier. Highly heterogeneous soils often contain
dramatic variations in physical properties, permitting formation of capillary barriers
[71].

3.3.2 Capillary Entrapment.

Once non-wetting fluid has entered a medium. bubbles or ganglia (larger, connected
blobs) of this fluid may become surrounded by the wetting fluid and immobilized.
This effect is pore-scale capillary entrapment. Using analvtical calculations, Hunt
et al. [68] proposed that DNAPL ganglia in homogeneous media may be large and
the amount of trapped fluid significant. In heterogeneous media, entrapment may
occur in pockets or layers of coarser material surrounded by fine grain material. This
macroscopic entrapment may result in large quantities of immobile contaminant [71].

3.3.3 Capillary Hysteresis.

Entrapment is also important in describing the macroscopic capillary-pressure-versus-
saturation function. Because of entrapment. capillary-pressure-versus-saturation
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curves for drainage will be different than those for imbibition. Therefore, knowing
the saturation is not sufficient to predict the capillary pressure. Capillary pressure is
a function of the pore-scale state of the fluids in the medium. To know the capillary
pressure at the macroscopic scale, we must know the history of saturation. This
effect is capillary or saturation hysteresis and reflects a poor macroscopic descrip-
tion of the pore-scale process. Hassanizadeh and Gray have proposed macroscopic
capillary pressure versus saturation relationships that include fluid-fluid interfacial
surface area to lessen the memory effect [62].

3.3.4 Fingering.

When one fluid displaces another, it may do so as a non-uniform front. The term
fingering is used loosely to describe such nonuniform displacement. Two phenomena
are credited with creating this nonuniformity

e viscous or gravitational instability, and
e heterogeneity-driven preferential flow.

Glass et al. [56] have studied the occurrence and description of fingering in a water-
air system in layered soils. In their experiments they were careful to ensure homo-
geneity within each layer. Even so, heterogeneity is credited with causing irregular
finger spacing and merging of fingers.

Kueper and Frind [83] provide an overview of immiscible fingering in porous
media in which they state that ‘natural porous media contain heterogeneities at a
fine enough scale such that no distinction need be made between stable and unstable
displacements.” They suggest that true instability is an academic question when
considering real soils. They also propose that non-uniform flow be termed channeling
rather than fingering to distinguish it from unstable displacement. This implies that,
if one can describe preferential flow due to heterogeneity, true instability is not a
concern. But, the same processes that give rise to instabilities may enhance the
tendency for immiscible flow to flow through channels.

3.4 Effects of Heterogeneity

The classical equations derived for flow and transport through macroscopically ho-
mogeneous media have been applied in macroscopically heterogeneous media with
mixed success. Problems will be discussed in three groups; asymptotic parameters,
pre-asymptotic parameters, and breakdown of the governing equations.
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3.4.1 Asymptotic Parameters.

As has been stated repeatedly, the classical flow and transport equations were
founded on the premise that the scale of observation is significantly larger than
the characteristic length of heterogeneity (asymptotic conditions). Because the
asymptotic scale in heterogeneous media may be very large, macroscale constitutive
variables must replace information lost over a wide range of scales. Characteristic
length of the process is unimportant at the asymptotic scale and determining these
macroscopic constitutive variables relies solely on capturing the proper coupling.

The correct macroscopic effective conductivity results from a coupling between
the local conductivity and the macroscopic pressure gradient. If the pressure gra-
dient were constant over the entire field, the effective conductivity would equal the
arithmetic average of the small-scale conductivities. On the other hand, if the ve-
locity were constant over the field, the effective conductivity would approach the
harmonic mean of the small-scale sample values. In reality, the effective conductiv-
ity lies between these two extremes and is a function of the statistical distribution
of the small-scale conductivities.

Asymptotic macrodispersion is the coupling of the ‘mean-removed’ velocity and
concentration. Small-perturbation methods have been used successfully to compute
this coupling for small variance in velocity (conductivity) and for certain statistical
distributions of velocity and concentration [53].

3.4.2 Pre-Asymptotic Parameters.

Because the problem scale necessary to achieve asymptotic conditions may be large
or infinite, pre-asymptotic behavior is very important. For example, measured con-
ductivity changes with changes to the screened interval in a well [30]. Tests per-
formed on a well with a veryv small screened interval may measure a relatively local
conductivity, but when a well’s screen intercepts several lavers, the value produced
is a composite. Field data collected by Molz et al. [96] and Rovey and Cherkaur [69]
demonstrate a scale dependence in hydraulic conductivity. In Rovev and Cherkaur’s
data, the natural logarithm of the hydraulic conductivity measurements increased
linearly with the logarithm of the test radius until an asvmptote was reached be-
tween 20 and 200 meters. Doll and Schneider [36] attributed an observed scale
dependence of hydraulic conductivity to the existence of macropores. Figure 3.8
shows averaged observations of hydraulic conductivity versus measurement volume
for three carbonate units and a general form of the scale dependence of conductivity
from Shulze-Makuch and Cherkaur [124].

As for solute transport. consider the well-studied problem of a plume resulting
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from an instantaneous point injection. This discussion follows closely that given by
Peters and Howington [109]. Under asymptotic conditions, Equations (3.12) and
(3.13) predict the resulting plume spreads at a constant rate longitudinally with the

dispersivity described by
1do,2

2 dT
where for a plume with total mass cg, the travel distance of the plume centroid, 7,
is given by

(3.15)

_—-1— OOT x)dx
m_CO/_OO.,c( )do (3.16)

and 1 oo
052 = — / z2c(x)dz. (3.17)
€0 J—o0

For a constant dispersivity, Equation (3.15) implies that the size of the plume, as
measured by o, increases as the square root of the distance it travels (o « ﬁ) For
a uniform mean flow, the plume’s centroid position and its travel time are related
by the constant velocity, which means that o o« v/%.

Laboratory and field observations of the apparent dispersivity of a conserva-
tive solute plume indicate a strong correlation with the scale of observation [47,
2, 52, 100]. Figure 3.9 shows field observations discussed by Anderson [2]. This
scale dependence occurs primarily because the plume encounters increasingly large
structures in the heterogeneity [125]. These observations of actual plume growth
show that the rate of plume spreading increases nearly linearly with travel distance
(0 o T). From Figure 3.9 it is apparent that an REV for the dispersivity parameter
may be very large for natural soils. Similar observations of scale dependence in
apparent dispersivity are presented by Gelhar et al. [55] and by Schulze-Makuch
and Cherkauer [124].

A plume’s growth rate can be described by

Qg = pob. (3.18)

where p and b are empirical parameters. Plume growth consists of two distinct
phases. In the first phase, the rate of plume growth increases linearly with plume
size (b is almost universally observed to be close to one). In the second phase,
after the plume becomes large, b tends to zero, o becomes constant, and the plume
grows in accordance with the Fickian model in the traditional advection-dispersion
equation. A transition region exists as b decreases from near one to near zero and
o becomes a constant equal to p.

Gelhar [53] and Matheron and de Marsily [92! discuss a stratified flow model
that displays plume growth during the pre-asymptotic phase. In this model, flow
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is parallel to the bedding and each stratum may have a different fluid velocity.
Transport in the stratified flow model is similar to a horse race (Figure 3.10) which
is a simple analogy to Figure 3.7. Each horse in this model has its own constant
speed. Therefore, at any instant. the speed of each horse is perfectly correlated with
its speed at any prior or future time. As a result of this perfect velocity correlation,
the pack of horses will separate at a rate much faster than predicted by a diffusion
model, implying uncorrelated velocities.

In fact, this situation corresponds to a value of b equal to one in Equation 3.18.
Spreading of the plume about its center of mass due to the different velocities is
given by: \

ay = U_iﬁ = 0,°T. (3.19)
K
where K is the mean hydraulic conductivity. This equation may be recast in the
form of Equation (3.18) to give
Qp = %am = %az (3.20)
where 7 and o, are the mean and variance, respectively, of seepage velocity in the
layers.

Comparison of Equations (3.18) and (3.20) reveals that p = 0,,/% and b is one
for this stratified aquifer. Velocity magnitudes of each solute ‘particle’ are constant,
leading to a perfect correlation between the distance of the particle from the plume
centroid and the particle velocity. Similarly, during pre-asymptotic growth of a
plume from an instantaneous source, solute velocities are correlated with distance
from the plume’s centroid. Asymptotic behavior develops as the correlation is lost.
Empirical fits have produced b values ranging from 0.755 (field data) to 1.13 (all
data) [4], 0.83 (scale > 100 m) to 1.53 (scale < 100 m) [100], and 1.07 [124] for

observations spanning several orders of magnitude in length.

3.4.3 Breakdown of the Advection-Dispersion Equation.

Dispersion is conceptualized as a Fickian process almost without exception for prac-
tical analyses. Therefore, it is assumed to behave like molecular diffusion even
though Dagan [30] reported that “there is no a priori reason to believe that the
diffusion type equation is valid at all.” Sposito et al. [132] say that the question
as to the validity of the Fickian assumption is “tantamount to asking for what
broad classes of spatially varying coefficients in a laboratory scale CDE [convection-
dispersion equation] can its fundamental solution be approximated asymptotically
by a Gaussian density function.” Dagan [30] states that “the problem of transport
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by convective motion differs essentially from that of molecular transport.” The tra-
ditional dispersion model assumes these two processes have the same fundamental
form and behavior. Defense of these equations is largely founded on their per-
formance in controlled laboratory experiments on homogeneous soil columns [10].
Taylor [133, 134] has been credited [2] with first proposing a Fickian law for disper-
sion and early experimental work supported this contention [9]. Some researchers
have questioned the applicability of a Fickian model [2, 138, 61] on the basis of
the observed scale dependence. Hassanizadeh [61] further objected to the implied
infinite propagation speed of solutes in the Fickian model of dispersion.

Supporters of the Fickian model recognize that this model is valid only after a
sufficient length of time for process development, but contend that it is valid in the
asymptotic condition [53]. This is often justified using a moving-observer argument
for one of two very common problems,

e evolution of an impulse point source of solute, and

e spreading of a moving front created by a continuous source of contaminant at
an inflow boundary.

For a developing plume from a point source, the observer is made to move with the
centroid of the plume. If the mean advection is removed. the remaining velocities
(and, corresponding mass flux) may be represented by a zero-mean random pertur-
bation. If the correlation structure in these perturbations are negligible (asymptotic
limit), this process is analogous to Brownian motion at the molecular scale which
drives diffusion. The asymptotic condition is reached quickly in homogeneous media,
explaining how the Fickian model was originally adopted. Most early theory and
experiments were performed with homogeneous media. However, in heterogeneous
media, the velocity field has structure and the motions will not be random.

Some physical situations simply are not amenable to representation by a Fickian
model with macroscopic coefficients. Among these are:

e evolution of a continuous point source,

e transport in media with heterogeneity at all scales (fractal or evolving hetero-
geneity), and

e transport in flow that is parallel to the bedding in a stratified aquifer [92].

For an instantaneous point source, the centroid location, plume size, and travel
time are related and interchangeable as independent variables (assuming the velocity
of the plume centroid is a constant). This is not true for the continuous point
source. To match growth of a plume from a continuous injection, dispersivity would
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need to vary with distance from the source. In essence, each Lagrangian point
would need a time-dependent dispersivity. In an Eulerian approach, dispersivity
would depend on the local definition of plume size which would make the equations
nonlocal. Using a single value for macroscopic dispersivity to describe the growth
of a plume from a continuous source is not possible. The diffusive Fickian model
predicts omnidirectional spreading, unlike the small scale advection it represents.
With a large diffusive effect, non-physical upstream transport of contaminant is
predicted. With a small diffusion coefficient, the upstream migration is limited, but
downstream spreading is underestimated.

3.4.4 Phase Dispersion in Immiscible Flow.

When observed from a distance, spreading of an immiscible fluid can resemble the
spreading of a conservative tracer in single-phase flow. For this reason, some have
advocated immiscible flow with a Fickian dispersion term to account for nonuni-
formity of the displacement (e.g., [111, 85]). There are serious problems with this
approach. First, the process is not diffusion. At the pore scale, the fluids do not
mixed. Partial saturation is a macroscopic quantity that only exists upon spatial av-
eraging. Spreading is caused by small-scale fingering and by the same processes that
spread a miscible plume. Second, capillary barriers are discontinuities that are diffi-
cult to represent with parabolic flow equations. Numerical smearing at the capillary
barrier may cause non-physical migration of the non-wetting phase (NAPL) across
the barrier. Once the barrier is broken, the relative conductivity across the barrier
is non-zero and the model will predict migration of the non-wetting phase. Numer-
ical spreading across capillary barriers will be even more difficult to avoid with the
inclusion of phase dispersion, and a numerically predicted immiscible contaminant
plume may be vastly different than that observed in a heterogeneous medium.

3.4.5 Other Complications.

In some instances, the dispersion term has been modified to incorporate simple
chemistry [50]. Because we extract coefficients from bulk testing (for example,
breakthrough curves from column tests), it is difficult to isolate individual pro-
cess parameters. The implication is that dispersivity (as it is used) is not a medium
property [101], but a function of the constituents, fluid, and medium. Dispersivity
has also displayed a mild dependence on velocity, indicating a non-linear relation-
ship between dispersion coefficient and velocity [10, 120, 61], and on concentration
gradient [61], making the dispersion coefficient even more ambiguous.
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Chapter 4

Modeling Philosophies and the
Proposed Approach

All modeling represents a compromise among the realism of the model, resources
available to gather data, and resources available to represent that data. The art
of modeling lies in devising the optimal strategy for capturing the most significant
information with the fewest degrees of freedom and, to the greatest extent possi-
ble, discarding only that information that is redundant or represents ‘higher-order’
variation.

Modeling philosophies may be categorized by the level of discrete structure in-
cluded explicitly, and that which is left for the constitutive parameters (Figure 4.1).
At one end of the spectrum, the medium is treated as a homogeneous material. All
variability is included statistically in the form of macroscopic effective parameters.
This is the approach adopted in the macrodispersion work of Gelhar [53], Dagan
[30], and others. At the other extreme, discrete-medium models attempt to re-
solve structure and variability explicitly. This approach is represented by pore-scale
models that describe fluid flow and transport in the interstices of a medium. Most
practical groundwater model applications rest in the middle; large-scale stratigra-
phy is described explicitly and sub-formation-scale heterogeneity is handled through
macroscopic parameters. Present alternatives for addressing the problems with tra-
ditional groundwater flow and transport theory in heterogeneous media tend toward
one or the other extreme in Figure 4.1. For the following discussion. these two ap-
proaches are labeled effective-parameter approaches and discrete-medium modeling
approaches.

Because we can never know the spatial details of a medium’s heterogeneity in
a natural field setting, their effects are often included in a stochastic rather than
deterministic fashion. As Gelhar points out [53], the question as to a medium’s het-
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Figure 4.1: Modeling philosophies categorized by level of discretization.
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erogeneity being stochastic or deterministic is an academic one. The actual medium
is not random. It is a deterministic, normally static, geologic structure through
which fluids and constituents move. A stochastic representation is convenient and
permits us to quantify our inadequate knowledge of the spatial structure of the
medium.

The two modeling philosophies include uncertainty at different points in the
modeling process. Effective-parameter (or stochastic-continuum) approaches ac-
count for variability within the governing equation formulation. The solution con-
sists of a mean and variance in the solution variable, providing a direct estimate of
uncertainty in the solution. In the stochastic, discrete-medium approach, observa-
tions are coupled with a statistical description of the medium to generate informed
guesses (realizations) about the details of the true medium. Flow and transport
through each realization of the medium is modeled deterministically. This approach
relies on simulating multiple realizations and post processing of results to assess
uncertainty. Averaging of the solution variables is delayed until after simulation,
preserving proper coupling, but often at great computational expense.

Effective properties and ensemble-average solutions enjoy some important ad-
vantages over discrete-medium modeling, but they also suffer some weaknesses. On
their behalf, thev provide direct estimates of mean concentration fields and of uncer-
tainty without performing simulations on many realizations. The most important
detraction from effective-parameter approaches is that solutions to the stochastic
governing equations are possible only for a few situations. Macro-parameters for
dispersion in converging or unsteady flows and for unsaturated or multiphase flows
are still under study. The variance in lognormal hydraulic conductivity in real porous
media may easilv violate the limits imposed by the small-perturbation assumption
that the variance in lognormal conductivity is much less than one. Further, statis-
tical homogeneity assumed by many of these approaches is not always appropriate.

The following review is intended to be a discussion of modeling philosophy. As
such, not everv work in a particular area is included. A few, representative articles
are provided as examples of each approach. The discussion is divided into three
areas:

1. asvmptotic effective parameters
2. pre-asymptotic and non-asymptotic effective parameters, and
3. discrete medium modeling.

This brief review is followed by a rationale for the path chosen in this effort.
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4.1 Asymptotic Effective Parameters

Asymptotic parameters are those that have ceased to display scale dependence and
are nearly constant. These macroscopic parameters must maintain consistency with
the small-scale physics being averaged to be applicable for a wide range of hydrologic
conditions and contaminant configurations. Derivation of asymptotic parameters is
possible only under certain conditions. Gelhar [53] states that parameters derived
from statistical analyses of single realizations will be valid, ensemble coefficients
only if the overall length of the sample is larger than the scale of heterogeneity by
at least an order of magnitude.

4.1.1 Asymptotic Effective Conductivity.

Using a perturbation technique, Gutjahr et al. [57] derived effective conductivity
for an n-dimensional, isotropic medium (n = 1,2, 3). Their approach assumes that

e the REV concept and the continuum equations are valid,

e the problem is large compared to the correlation scale of the medium properties
(implying ergodicity), and

e perturbations about the mean are small so that the first-order perturbation
equations are accurate.

Ergodicity means that spatial averaging of a single realization (or the experience of
a single tracer particle) is equivalent to averaging over an ensemble of realizations.

The procedure used by Gutjhar et al. [57] to derive the effective conductivity
parameter is

1. emplov a local Darcian flow equation,
2. decompose the head and conductivity into mean and perturbation terms,
3. discard second-order and higher perturbation terms, and

4. relate the spectrum of head to the spectrum of conductivity and compute an
expected value for effective conductivity.

The expression that resulted from their work is

K. =K, [1 + <% - l) aﬁ] , (4.1)

n
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where K. = effective conductivity, [LT ],

K, = geometric mean conductivity, [LT7Y],
n = dimension of the medium, [~],
of? = variance in lognormal conductivity, [—]-

Using a ‘self-consistent’ approach, Dagan [28] also found that the effective con-
ductivity is the geometric mean of the small-scale values for a two-dimensional
medium. Gelhar and Axness [54] extended this result to anisotropic media (Ap-
pendix A). They also postulated that, for perturbations larger than first order, the
effective conductivity may be given by

K. = Kgexp K% — %) 0’f2:| (4.2)

a result that was also found by Dagan [30].

Another approach to computing effective conductivity is real-space renormal-
ization [79]. In this method, fine-scale realizations of the hydraulic conductivity
are generated using observations and statistical descriptions. Then, beginning at
the small scale and working upward, the effective conductivity is computed on a
group of cells. For saturated flow and simple cell groups (2x2in2D,0or2x2x2
in 3D), the calculations may be performed analytically. This process continues on
successively coarser grids until the desired computational resolution is achieved. To
compute the local conductivity on the group of cells, one must assume boundary
conditions. Typically, to compute the K, component of effective conductivity in a
two-dimensional problem, specified pressure conditions are applied in the z direc-
tion and no-flow boundaries are applied in y. To compute the Ky, component, the
boundary conditions are swapped. This restriction causes some inaccuracy, espe-
cially for anisotropic systems with strong off-diagonal components of conductivity.

4.1.2 Asymptotic Macrodispersivity.

Applying stochastic theories for conservative transport in porous media consists of
three basic steps [113]

1. approximating hydraulic conductivity as a spatially random field,
2. relating velocity variations to variations in conductivity, and
3. computing macrodispersivities from the predicted velocity spectrum.

By replacing the concentration and velocity variables of the traditional trans-
port equation with their respective means and perturbations, mean and perturbed
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transport equations may be derived. Appendix B relates the spectrum of fluxes
(Sgiq;) to the spectrum of lognormal conductivities (Sys) in Fourier space

kik k;k
Suey(¥) = K52 (m — 522 (85 — 25 ) 770 (4.3)
where k£ = the wave number vector, [—],
Jm = the mean head gradient in direction m, [—],
Jn = the mean head gradient in direction n, [—].

For a three-dimensional, statistically isotropic medium with an exponential co-
variance model for the conductivity, it may be shown [53] that

Aij = 0,i#j
2
oA
Ay = —f2
Y
2
offay, dar
Agg = Agg = <1 + > 4.4
22 33 15y ar (4.4)
where A;; = macrodispersivity tensor components, [L],
v = flow factor, [-],
A = correlation length, [L], and
ar = transverse dispersivity, [L].

Others have presented similar forms for asvmptotic macrodispersivities, includ-
ing Dagan [30], and Neuman [103]. This same approach permits the prediction of
concentration variance as a function of the lognormal variance in hydraulic conduc-
tivity, the macroscopic concentration gradients, and lateral dispersivity.

4.2 Pre-Asymptotic and Non-Asymptotic Coeflicients

By using non-constant constitutive parameters, some aspects of pre-asymptotic be-
havior may be reproduced. For example, Dagan suggests that the dispersivity is a
function of time in the pre-asymptotic regime [30]

1dX11
D(t) = = 4.5
(= 5= (45)
where X1; is the displacement covariance tensor defined by
8 4 8 8 1
2 —t
L) = , — — - - - - . 4
X11(t) 20'f 4 3+17 t3+t2 <l+t>€ } (4.6)

Rajaram and Gelhar [113] proposed a plume-scale-dependent dispersivity. Only
those velocity correlations with length scales smaller than the dimension of the plume
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contribute to dispersion. Velocity structures larger than the plume that cause it to
meander are excluded from the dispersivity computation. This is accomplished by a
low-wave-number filter on the velocity correlation spectrum [113]. This remedies the
problem of overestimating growth rate of individual plumes when using macrodis-
persivites derived from ensemble-average equations [112]. If the meandering effect
is not removed, plumes with different centers of mass are averaged directly. The
second moment of the ensemble average of the concentration field is given by

Mi(t) = 3°0) + B(E(t) - #:(0) (5(8) — 35(8)] (4.7)

ij

o<
(%) =E [’n'{ /oo (2 — () (s — F5(O)ela, Odz | irj=1,2,3.  (48)
ij

The second term in Equation 4.7 represents this variation in the position of the
plume’s center of mass. The first term represents the desired dispersion term which
is the rate of spreading about a plume’s center of mass. By averaging multiple real-
izations, these two effects are not discriminated. A plume-scale-dependent relative
dispersivity is given as

. £ 400 N
Alrj(f,l,%:) = %ddglm = u%/o ’ ./_oo olik1—ak?)§ {1 L >, (1) Suiuj(k>dkd'£

(4.9)
where Sy,; is the velocity spectrum. This approach predicts a finite asymptotic
dispersivity in fractional Gaussian conductivity fields, depending on the initial plume
configuration {113].

Other attempts to account for the scale effect of dispersivity include the work of
Wheatcraft and Tvler [143] and Neuman [100]. Wheatcraft and Tyler fit a fractal
streamtube model to match the trend in observed dispersivity provided in Figure
3.9. This model predicts a continuous increase in dispersivity for a fractional Gaus-
sian medium. Neuman [100] analyzed field observations to determine that the spatial
correlation of hydraulic conductivity scales with the fractal dimension D~ E+0.75,
where E is the topological dimension, [—]. This analvsis assumes that the conduc-
tivitv fluctuations at different scales are statistically independent, even though there
is no proof that this is a valid assumption [142].

As discussed earlier, all physical systems are discrete at some scale and repre-
sentation of these svstems as local continua is valid only under certain conditions.
Eringen {41] states that
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“All bodies are nonlocal in character, and the locality represents ap-
proximations valid for only a certain limited class of physical phenomena
in which the interaction of distant subbodies are unimportant.”

Non-local theories have been used in such areas as turbulent flow [93], crack tip
propagation [41], and wave propagation [41, 77, 48]. Koch and Brady [80] were the
first to apply non-local theory to advection-diffusion problems.

“Generally, any problem that requires the solution of integrodifferen-
tial equations with spatial integrals can be said to be nonlocal in char-
acter.” [41]

Koch and Brady {80] began by stating that

“When the length scales and time scales on which a transport process
occur are not much larger than the scales of variations in the velocity field
experienced by a tracer particle, a description of the transport in terms
of a local, average macroscale version of Fick’s law is not applicable.”

With that motivation, they derived a non-local description of transport, beginning
with a local transport equation

dc

where ¢ includes the convective and diffusive flux.
g =uc— DnpVe (4.11)

Expanding the velocity and concentration in terms of expected values (denoted in
angle brackets), and perturbations (denoted with primes)

v =u— (u) (4.12)
d=c—{c) (4.13)
Substituting these terms in equation 4.10 and removing the mean equation gives

d /
d_cf + V- (ud' = DV + /') = —u/ - V{c) + V - (¥'¢). (4.14)

Neglecting products of perturbations, this equation is solved to obtain

t
d = / / P(x — m,t — t))u/(z1) - Vi{c)dzidty (4.15)
JO Jz
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where the transition probability P is the probability of finding a constituent particle
at (z,t) given that it was at (z1,%;). P satisfies the following equation

%—f+v-(uP—Dm-vp) = §(z — 71)(t — 1) (4.16)

With some assumptions, the concentration perturbation solution may be used to
compute a non-local dispersion coefficient

D = Dpb(z — z1)6(t — t1) + (v (z) P(z — =1, t — t1)w'(71))- (4.17)

Koch and Brady (81, 80] show good agreement between local and non-local theory
for times greater than about 10 advective timescales (v/k/U, where k is the intrinsic
permeability and U is the mean tracer velocity magnitude). The non-local dispersion
coefficient is said to be valid at all times and give a full concentration profile. The
effective diffusivity is equal to the molecular diffusivity in the limit of short distances
and early time.

One may arrive at a non-local form of the governing equations by several meth-
ods. Cushman and Ginn [26] show that a non-local equation for transport may be
obtained by derivation from statistical mechanics, building on fundamental molec-
ular hydrodynamics theories derived by Boon and Yip [15]. Cushman and Hu [27]
provide a summary of non-local theories for transport in porous media including
the effects of diffusion, dispersion, and sources. Lenormand [86] proposed the use of
non-integer spatial derivatives of concentration to describe the scale dependence of
dispersivity. Because a non-integer derivative is expressed as a convolution integral,
it is simply a particular form of a non-local model with a fractal basis (see {89]).

4.3 Discrete Medium Models

Discrete models are those that attempt to resolve the important scales of variability
explicitly, rather than through constitutive parameters. There are two distinct types
of discrete medium models. In the first type, each component in the discrete model
corresponds to a physically tangible piece of the actual medium. Examples include
pore-scale fluid flow simulations using a network [43] and molecular dynamics [1].
Each throat in the network model has a one-to-one correspondence with a pore in
the medium. Likewise, molecules and their interactions are simulated individually
in molecular dynamics. This type of discrete model is not practical for this work
because we cannot hope to include every molecule or every pore in a macroscopic
simulation.

When a physical system contains more detail than can be included practically,
a different sort of discrete model mayv be constructed. In this, the second-type
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discrete model, the individual elements obey rules from which the realistic large-
scale behavior emerges, even though each component in the discrete model may
have no correspondence to a particular element in the physical system. Lattice gas
and lattice Boltzmann methods are commonly used examples of this type of discrete
model [49]. These techniques do not presume to capture the physics of molecular
motion. Instead, they use packets of mass and momentum that obey prescribed
collision rules. These rules are constructed to enforce large-scale mass conservation
and momentum transport behavior. If enough detail is included in these models, the
averaged behavior is not distinguishable from averages taken on the actual system.

A heterogeneous porous medium may be approximated by subdividing a ficti-
tious continuum into small gridblocks with properties taken from a statistically-
generated random field. This work was pioneered by Warren and Skiba [141] who
simulated miscible displacement through a three-dimensional, rectangular array of
homogeneous blocks with block conductivites taken from a lognormal distribution.
The block-to-block conductivities were uncorrelated. but they did observe an in-
crease in dispersion with block size. Smith and Freeze {129] and Smith and Schwartz
[130] extended this work by including correlation structure larger than the gridblock.
For each set of parameters, deterministic governing equations were approximated
numerically. By doing this for a wide range of input parameters and statistically
analyzing model output, an assessment of uncertaintv may be made. This is gener-
ally recognized as the Monte Carlo approach for assessing uncertainty and is gaining
popularity with increasing computer power and availability.

In practice, realizations of the medium properties are generated in detail that
is limited only by the capacity of the available computer resources. Random field
generators are used to create media that have the same character of the field setting
under study. Such character is represented by the mean, variability, and spatial
persistence of a medium property. Figure 4.2 shows a traditional geological charac-
terization and a high-resolution characterization of a Lawrence Livermore National
Laboratory (LLNL) site [84].

Discrete medium modeling is consistent with the ideas of Molz et al. [95]

“In modeling dispersion phenomena. it appears that more emphasis
should be placed on ... the accurate determination of hydraulic con-
ductivity variations ... and less on incorporating somewhat arbitrary
dispersion coefficients into complex mathematical models.”

Discrete models are desirable because thev are not subject to the limitations of
effective-parameter theories when confronted with porous media containing large
conductivity variance or long-range correlation structure. Availability of computer
resources defines a lower limit on the size of the computational elements. Only those
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Figure 4.2: A coarse, layered realization (top) and a high-resolution realization
(bottom) of the LLNL site (from the LLNL website [84]).
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scales between this minimum size and the upper limit defined by the simulation
domain may be represented. This is restricted to, at most, a few of orders of
magnitude variation in the scales of structure represented. The disadvantage of
discrete models is computational expense [118].

Another approach to high-resolution modeling is the random walk method for
simulating transport. Pure random-walk modeling is like Brownian motion and,
thus, represents Fickian dispersion well. Scheidegger [123] proposed that transport
in media with correlation is like a random walk with some memory. Scheibe [122]
used a correlated random-walk model to capture the velocity correlation structure
and pre-asymptotic dispersion.

4.4 Approach Selected for the Present Work

The goal in simulating remediation schemes is to determine whether the scheme
proposed has a reasonable chance of success in cleaning up the site under study.
An effective-parameter (stochastic-continuum) model generates an ensemble mean
concentration field (average plume). The ensemble mean concentration field is an
overly-smoothed representation that may lead to optimistic cleanup-time estimates.
A stochastic discrete-medium model produces a single, potential plume (typical
plume) with the same basic character and complexity as the contaminated site under
study. A scheme’s performance in the field is better judged by its ability to remediate
several typical plumes than an average plume. Both schemes offer estimates of local
concentration variance which may be useful in evaluating threshold reactions or
competitive sorption.

Based on these considerations and an interest in modeling for remediation design
and operation, a discrete-medium modeling approach is chosen for this work. The
particular tvpe of model chosen is a discrete-network model applicable at the field
scale and consistent with the non-local vision of porous media. This model qualifies
as a discrete model of the second type discussed earlier. The individual throats of
this model do not correspond to pores in the medium, nor to they map directly to
a particular piece of the porous medium. These throats represent potential avenues
for fluid and constituent to travel from one point to another within the medium. It
will be shown in the following chapter that this model is consistent with non-local
transport theories.
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Chapter 5

Discrete Network Modeling for
Flow and Conservative
Transport Through Porous
Media

Abstract

A macroscopic, stochastic, discrete network modeling approach is
presented to describe transient or steady, variable-density fluid flow and
conservative transport through heterogeneous porous media. This model
addresses the issues of scale dependence of constitutive parameters (con-
ductivity and dispersivity) and generally non-Fickian dispersive trans-
port at the scale of remedial-action design (tens or hundreds of meters).
These problems arise because heterogeneous media resist description by
simple, continuum-based, differential governing equations. Stochastic
discrete-medium models like this one are contrasted with stochastic con-
tinuum methods that produce modified constitutive parameters. This
approach is shown to be consistent with discretizing non-local governing
equations.

Flow and transport are solved in deterministic networks that are indi-
vidual realizations of the poorly-known medium. The network consists of
one-dimensional throats and volumeless connections. Flow through the
throats is modeled as if each throat contains a uniform, homogeneous
material. Pressures are determined that enforce continuity at the throat
connections. Transport is modeled as pure advection in each throat with
perfect mixing of constituents at the connections. The network permits
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higher resolution in the velocity and concentration fields than in pres-
sure.

The network produces pressure solutions that are comparable to stan-
dard discretization techniques (for example, continuous finite elements).
Transport in the network is mass-conservative and process-correct, and
is shown to capture pre-asymptotic and asymptotic growth rates of a
tracer plume. The model also correctly predicts the plume formed by a
continuous point source to be wholly downstream in the absence of dif-
fusion. A demonstration calculation is provided for density-dependent
flow and transport. Observation of the discrete network is possible by
spatial averaging. Early results from implementation of the model on
parallel computer architectures indicate significant potential.

5.1 Background

At many sites with contaminated groundwater, active remediation is unavoidable
and we must choose from a long and growing list of remediation schemes. Ideally,
candidate schemes are compared before construction begins. To make credible com-
parisons in natural soils, our ability to measure and simulate remediation processes
must not be compromised by the existence of multi-scale heterogeneity. Historically,
we have relied on local continuum mechanical descriptions, meaning that we replace
the discontinuous, discrete medium with one containing smooth, continuous, local
properties. This permits the construction of local differential balance laws on which
our numerical modeling and measurement interpretation are presently based. These
equations represent an attempt to fit real media into a mathematical continuum and
have proven sufficient when the characteristic size of the heterogeneity structure is
negligibly small.

5.1.1 Scale Dependence of Parameters.

Observations in discrete media are made as averages in space and time. When
the maximum characteristic length of heterogeneity is small compared to the scale
of averaging or observation (measuring instrument window or discrete numerical
element), the local continuum assumption is appropriate and we may average effec-
tivelv. However, when characteristic lengths of heterogeneity are not small, prob-
lems arise. A primary svmptom of heterogeneity is apparent scale dependence of
parameters in the governing equations.

The most celebrated example of scale dependence in the groundwater community
is the dispersivity parameter. Dispersivity measured for a laboratory specimen may
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be several orders of magnitude smaller than one measured for a fully-developed
plume in the field [2, 55] (Figure 5.1). This effect was noted many years ago by
de Josselin de Jong [32], who found that the apparent diffusion coefficient was a
function of travel distance. The rate of change of concentration of a conservative

solute is given by

—g% = -V - (uc)+ V- (DVc) (5.1)
where ¢ = concentration of solute, [M/L?),
t = time, [T},
u = seepage velocity from a decoupled flow solution, [L/T), and
D = dispersion coefficient tensor, [L?/T].

The dispersion coefficient is composed of a hydrodynamic dispersion term and a
molecular diffusion term
U

Dij = D% + Dméij = (aL — aT)—ZL—j + aTu,&:j + Dméij (5.2)

where D

hydrodynamic dispersion coefficient, [L2/T),

6ij = Kronecker delta, [-],
D™ = molecular diffusion coefficient, [L?/T],
a; = longitudinal dispersivity, [L],
ar = transverse dispersivity, [L],
u;,u; = velocity magnitudes in the i and j directions, [LT71], and
4w = mean fluid velocity magnitude, [LT ).

Hyvdrodynamic dispersion typically is much larger than molecular diffusion. Equa-
tion 5.1 predicts that a solute plume resulting from an instantaneous point source
of solute spreads longitudinally (the z direction in this case) at a constant rate
described by

1 dog2
=Qr ==~ 5.3
o = o0 = 5 53
where for a plume with total mass ¢g, the first spatial moment inzis
1 o0
T=— ze(z)dr (5.4)
Co J—-o0
and the second spatial moment in z is
2 _ 1 [ o
0z° = —/ z¢c(z)dx. (5.5)
€y J—o0

Equation 5.1 predicts that the size of the plume, as measured by o, increases as
the square root of the distance it travels (o o VZ). For a uniform mean flow the
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Figure 5.1: Observed variation in dispersivity with distance traveled (modified from
Anderson [2]).
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plume centroid and travel time are related by the fluid velocity. Thus, o, « Vi.
Observation of actual plume growth shows that the rate of plume spreading increases

nearly linearly with travel distance (o « ) [53].

5.1.2 Non-Fickian Dispersion.

The existence of finite-scale heterogeneities has another important consequence.
Non-negligible heterogeneity exposes inconsistencies in the governing equations. Dis-
persion is not diffusion, even though the traditional model used to describe disper-
sion is Fick’s law of molecular diffusion with an exaggerated coefficient, e.g. [38]. A
diffusion model describes dispersion well under some conditions. Fick’s law applies
when the principal mode of dispersive transport is by random, Brownian-like mo-
tions. This mode is possible for problems that exhibit symmetrical behavior about
the mean motion of the contaminant. For example, if an observer travels with the
mean speed of a plume evolving from an impulse point source, the plume seems to
spread nearly symmetrically. When this plume is large compared to the size of the
heterogeneities, each contaminant particle’s motion appears random. The position
of a particle of contaminant relative to the plume centroid indicates nothing about
its relative speed. In other words, the particle’s velocity is uncorrelated in time.
This is analogous to Brownian motion, explaining why a diffusion model predicts
asymptotic plume growth rates. This situation also applies to breakthrough curves
from column experiments. However, the mechanisms for dispersion are not those
for diffusion, and Fick’s law is justified only as an approximation in the asymptotic
limit.

When a medium’s characteristic length scales are finite, a different. picture
emerges. A particle leading the plume’s centroid is probably traveling faster than
the centroid, and vice versa. Therefore, a contaminant particle’s present velocity,
relative to the plume speed, is an indication of its future relative speed. A positive
velocity correlation exists in time, and the Fickian model does not apply. Further,
for problems that do not satisfy the symmetry requirements, a Fickian model for
dispersion will never model the behavior correctly. For example, with a continuous
injection of tracer, one cannot easily remove the mean motion of the plume. Tracer
particles near the source of injection will exhibit correlated motions that will decay
as the particles move downstream.

5.1.3 Scale Separation.

~ A fundamental issue here is a lack of separation between the observation and aver-
aging scale and the characteristic length for a process.
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“In general, events distinguished by a great disparity in size have
little influence on one another; they do not communicate, and so the
phenomena associated with each scale can be treated independently.”
[146]

Most effective averaging theories assume that the underlying structure is small com-
pared to the averaging volume and this required separation exists. This conforms
to the idealized conceptual model of porous media that has prevailed for the last
several decades. Porous media have been assumed heterogeneous at the pore scale
and the formation scale (Figure 5.2). Each formation was assumed to be composed
of a single, homogeneous porous material. That is, the formation size was conceived
as being so much larger that the grain size, heterogeneity at the pore scale was
‘averaged’ away. This averaging was formalized in the definition of the REV [10].
Formation-scale heterogeneity has been modeled explicitly in numerical simulations.
Unfortunately, conceptual models that assume structure exists only at the pore
and aquifer scales are often inaccurate for natural porous media (Figure 5.3). Nat-
ural soils contain heterogeneity with an entire spectrum of characteristic lengths,
with limited scale separation as illustrated in Figure 5.2 adapted from Herrmann
et al. [65]. With a continuum of scales present, it is difficult to model all scales
explicitly and, in practice, one must attempt to capture representative scales.

5.1.4 Stochastic Continuum versus Stochastic Discrete Models.

Models that account for uncertain heterogeneity in the medium may be categorized
as stochastic-continuum models or stochastic-discrete models [118]. Stochastic con-
tinuum models produce effective parameters that include the effects of variability
in medium properties. In their simplest form. effective parameters are constants or
are some function of a global property such as plume age, size, or distance trav-
eled. Examples of effective parameter modeling in heterogeneous media include the
macrodispersion work of Gelhar [53], Dagan [29], and Neuman [103] and the effective
conductivity work of King [78], Dagan [28], and Gelhar [53]. Much work continues
toward solving stochastic-continuum equations, but solutions still are possible for
only a few idealized conditions. Converging flows and unsaturated or multiphase
flows are still under study. Many stochastic theories neglect second-order and higher
terms in the perturbation expansion. Variance in lognormal hydraulic conductivity
in real porous media may easily violate the limits imposed by the small perturba-
tion assumption that the variance in log hydraulic conductivity is small (of < 1).
Further, long-range correlation structure violates the premise that the medium is a
statistically-homogeneous random field.
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Figure 5.2: Hypothetical distribution of characteristic lengths in an idealized
medium (above) and a more realistic soil (below).
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Figure 5.3: Schematic of multi-scale heterogeneity in porous media (adapted from
Herrmann et al. [65]).
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Stochastic discrete models solve simplified forms of the governing equations in
detailed, statistically-generated, deterministic media. This type of model attempts
to resolve many scales of variability explicitly, rather than through macroscopic
constitutive parameters. Stochastic-discrete models are desirable because they are
not limited by the assumption of small variance in property values and are capable
of simulating many processes for which no solution to the stochastic equations is
yet possible. Discrete medium models are capable of handling large conductivity
variance and long-range correlation. However, discrete-medium models may only
resolve detailed structure within a limited range of scales and any measure of uncer-
tainty in the results must be addressed through multiple-realization, Monte-Carlo
simulations. With these considerations, the primary disadvantage of discrete models
is generally computational expense [118].

The goal in practical remediation modeling is decision support. We must choose
and defend the most cost-effective remediation strategy that will clean up a site.
Modeling must predict a scheme’s likelihood of success for the particular site under
study. A stochastic-continuum model generates an ensemble mean concentration
field (average plume) and a concentration variance field. An ensemble concentra-
tion field is an average of the plumes that would result from simulating transport
through all possible statistical realizations of the medium. This plume is effectively
a probability map for transport. It gives the probability of finding a tracer particle
at a particular location, given that it was introduced at the injection point at time
0. A stochastic discrete-medium model produces a single, potential plume (typi-
cal plume) that has the same large-scale character as the problem under study. A
scheme’s performance cleaning up this typical plume is probably a better indicator
of performance in the actual soil than its ability to remediate an ensemble-average
plume. For this reason and our desire to evaluate remedial scheme performance,
a stochastic discrete medium modeling approach is proposed to simulate fow and
transport through heterogeneous media.

5.1.5 Overview of Stochastic Discrete Medium Modeling.

There are two basic types of discrete-medium models. In the first type, each compo-
nent in the discrete model corresponds to a piece of the actual medium. An example
is pore-scale fluid flow simulation with a network. Each throat in the network model
has, in theory, a one-to-one correspondence with a pore in the medium. These mod-
els are not of practical interest for this work because we cannot hope to include
every pore in a macroscopic simulation.

A heterogeneous medium may be approximated by subdividing the domain into
small gridblocks with properties taken from a statistically generated random field.
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This work was pioneered by Warren and Skiba [141] and Heller [64]. In their work,
block property assignments were made independently. Smith and Freeze {129] and
Smith and Schwartz [130] extended this work by including correlation structure
larger than the gridblock. For each set of parameters, deterministic governing equa-
tions were approximated numerically.

In practice, realizations of the medium properties are generated in detail that
is limited only by the capacity of the available computer resources. Random field
generators are used to create media that have the same structural character of the
field setting under study [137].

When a physical system contains more detail than can be included practically, a
different sort of discrete model may be constructed. In this, the second-type discrete
model, the components represent only the larger scales of structure and behavior.
Each component in the discrete model may not correspond to a particular structure
in the physical system. Lattice gas and lattice Boltzmann methods are common
examples of this type of discrete model [49]. These techniques do not presume to
capture the physics of molecular motion. Instead, they use packets of mass and
momentum that obey prescribed collision rules. These rules are constructed to
enforce large-scale mass conservation and momentum-transport behavior. If enough
detail is included in these models, the averaged behavior is not distinguishable from
averages taken on the real system.

This document describes a discrete network model for field-scale simulation of
saturated flow and conservative transport through heterogeneous porous media. The
model falls into the second type of discrete-medium models. Each throat represents
a potential path from one location in the domain to another.

5.1.6 Discrete Network Modeling.

Network representation of the pore space dates back to the work of Bjerrum and
Manegold [14] (cited in [118]) for single-phase flow and, for two-phase flow, Fatt
[43]. De Josselin de Jong [32] performed calculations in a pore-scale network to
examine dispersion. Bear [8] proposed a series of mixing cells connected by channels
to describe tracer transport through soil pores. Perfect mixing was assumed in the
cells and perfect translation in the channels. This model is equivalent to a network
with nodal storage. Sahimi et al. [119] used network-computed fluid velocites to
drive particle transport. Sahimi and Imdakm [121] added molecular diffusion to this
network.

Network modeling of flow and transport through fractured media has been prac-
ticed for several years including Schwartz et al. [126] and Tsang et al. [139]. How-
ever, network model representations of macroscopic porous media are uncommon.
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Ewing and Gupta [42] present a domain network approach to simulate quasi-static
drainage and imbibition. In this approach, the domain is divided into equal-size
subdomains. Within each subdomain, all pores are assumed to have the same radii,
and there may be many pores within a single subdomain. Communication among
subdomains is performed only at the subdomain interfaces. Sahimi [116] suggested
that a percolation network could be constructed in which each bond of the network
could represent a homogeneous region of the medium. Mukhopadhyay [98] extended
these ideas by constructing a correlated percolation network model to represent me-
dia with infinite-length correlation structure. Yortsos et al. [148] apply percolation
theory to macroscopic, heterogeneous media in the context of immiscible flow.

The popularity of network-like discretization aproaches is increasing in other
fields as well. For example, in network thermodynamics [106], a discrete network is
considered an expression of combinatorial topology rather than the point-set topol-
ogy that leads to partial differential field equations. Thus, the network graph con-
tains information on system structure that is not available in bare differential equa-
tions [106]. This approach has been used to exploit similarities between electrical
networks and coupled flows with driving forces [66]. The fluid flow problem is
discretized in space, but not in time, producing a network structure that may be
evaluated with well-developed methods from circuit analysis [66]. Likewise, network
discretizations (or network-like, edge-based finite elements) are offered as comple-
mentary decomposition alternatives to finite difference or finite element represen-
tations of the domain for fluid dynamics computations [58, 107]. These network
discretizations are valued for low storage needs and computational efficiency with
accuracy comparble to traditional discretizations [107].

5.2 Justification of the Network Approach

Because there have been few network models designed to represent the field scale,
some justification of the network approach is appropriate. The network is an ap-
pealing conceptual model because of its structural and functional similarity with
the pore scale. Further, it is a reasonable conceptual model at the macroscopic
scale. Heterogeneity creates preferential flow paths at all scales. Flow subdivides
and bypasses lower permeability regions creating an interconnected network of flow
paths. This and many other approaches may be shown to be valid representations
of the porous medium because they honor the fluid balance law and may be shown
to obey a macroscopic Darcy’s law {108].

As with a real porous medium, the network is viewed through an averaging filter

(i.e., a measuring instrument) for comparison to observations. Averaging removes
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degrees of freedom by imposing smoothness. Therefore, there are an infinite number
of detailed images that will produce the same average image. If enough of the
‘right’ kind of sub-observation detail is included, images averaged from the network
simulation and from observation of the real medium cannot be distinguished. The
network is simply a coarsened discrete system that is a lower-order approximation
of the actual, detailed medium.

In high-resolution discrete-medium modeling, we impose a separation between
the scale of observation and the scale of effective parameter averaging (Figure 5.4).
We install reasonable, deterministic structure beneath the observation scale to create
this separation. Because we cannot resolve all scales, we must use averaged effective
parameters at some scale. This approach simply removes some of the burden from
the constitutive parameters, placing it on computation.

5.2.1 The Network as a Discrete Approximation of Non-local Equa-
tions.

In addition to its functional similarity to the pore scale and its simplicity, a network
may be shown to be consistent with non-local descriptions for low and transport
[81, 25, 102]. We begin with a convolution integral equation describing non-local

advection 5‘ P
t)
(e, / / (z —z',t — t/)a—:,d:c'dt' (5.6)

If we assume the kernel (¥) is a smooth, differentiable function, we may use in-
tegration by parts to move the spatial derivative of concentration onto the kernel
function. This produces an integral involving concentrations, boundary conditions
at infinity, and initial conditions involving concentration.

t o0 ! —
ac(aa;,t) _ / / oV (z aﬂf/," t)c(m’,t')dm'dt'
A J— T

t
+ /0 [U(e - o't - )e(a, )], dt (5.7)

o0

We define points in space and time that might correspond to nodes in a numerical
approximation. Assuming that the concentration field is a smoothly varying func-
tion, we may express the concentration anywhere in the field as a linear combination
of the concentrations at these nodes

t)=3_ Nici={N}"{c} (5.8)
where N; defines values of the averaging or interpolating function at node ¢. The
advection equation becomes

86(“ // 0%(x . E= ) NV ds'at {c) + B (5.9)
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where B represents the boundary terms. The change in concentration with respect
to time at any location in the domain becomes a weighted summation of the con-
centrations at the nodes

86(-’Ii,t) _ t poo B‘I’(]I—Jrl,t—t') i ) |
- Z (/o ./_oo oz’ Nidz'dt + Bi | ¢i (5.10)

ot

Choosing different functions to apply these weightings leads to different numerical
approximations. Presenting this in a simpler form,

Oc(z,t) ‘ N
== Y (Fi(e,t) + B)ci. (5.11)

i
By evaluating the rate of change of concentration at each node, a system of equations
is retrieved.

Oc;
-5% =) (Fij + Bj)ej. (5.12)
i

where Fy; = Fi([z,t];) with [z,]; being the z-f pair at the j space-time node.

This process has reduced the convolution integral to a potentially complex finite-
difference stamp in space and time. At time ¢, the rate of change in concentration
is a weighted sum of all previous times for all ‘upstream’ nodes. Advection through
a network produces exactly the same form of difference equations. If the spacing of
the nodes in the numerical grid exceeds the range of the convolution integral’s kernel
function, the numerical approximation appears to be that of a local problem. Only
the nearest neighbors and the most recent time period will contribute. In fact, when
the kernel function is a Dirac delta operator, local advection is retrieved. However,
when the numerical grid spacing is less than the range of the kernel function, the
difference stamp may become quite complicated, involving points far removed in
space and time. In either case, this stamp may be replaced, without loss of informa-
tion, by a network through which there is pure advection. A network is a graphical
interpretation of the system of equations 5.12. This network may have coordina-
tion numbers much larger than those common to classical network models and may
have ‘non-local’ connectivity absent in the physical pore-scale network. The key to
the approach taken here is that it is more straightforward to calibrate the network
directly than it is to determine the kernel function in the non-local equation.

5.2.2 Comparison to High-Resolution Continuum Models.

Although their origins differ, the network model and the finely-discretized continuum
[137, 136] are very similar in application. Both rely on the adequate resolution of the
velocity variation and small-scale coupling with concentration to reproduce disper-
sion. Both rely on geostatistical methods to create realizations of the medium. Both
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have the same general modeling philosophy, which is to embed the salient features
of the geological medium, the correlation structure, the macroscopic permeability,
and anisotropy directly into the computational model.

Although not as widely used, the network approach may enjoy a few advantages
compared to high-resolution continuum models. For example, the network permits
us to partially separate the resolution in pressure from that in velocity, because
pressure is computed at the connections and velocity is computed in the throats. We
may increase or decrease the relative resolution associated with these two variables
bv altering the coordination number. The network permits us to install throats with
a length distribution that honors the spatial correlation structure and anisotropy
in the medium. The equations solved in the throat are one dimensional, making
the addition of processes simpler than in a multidimensional framework. Lastly, the
fact that the network decomposes so cleanly into many one-dimensional problems
makes it a strong candidate for parallel computer processing.

5.3 Brief Description of the Model

Applying the stochastic discrete-network model developed in this work consists of
three major exercises: (1.) creating the network, (2.) simulating flow and transport,
and (3.) visualizing the results.

5.3.1 Creation of the Network.

The network consists of throats of arbitrary cross section that meet at zero-volume
connections. To avoid boundary effects, the desired simulation domain is situated
within a larger bounding box. Connection positions are established randomly within
this bounding box. The number of connections created is determined by the desired
average connection spacing. A minimum connection spacing is enforced to prevent
the creation of very short throats for which the computational time step mayv be
impractically small. Throats are created to join the connections in accordance with
a probability function that decays with inter-point spacing. That is, the odds of two
connections being joined by a throat decrease as the connections are farther apart.
After throats have been created, the region between the simulation domain and the
bounding box is discarded. Throats that cross the boundaries of the simulation
domain are truncated at the boundaries. Boundary conditions are applied to these
truncated throats during flow and transport simulation. A coarse network. the
simulation domain, and the bounding box are shown in Figure 5.5.

Throat properties are assigned from statistical distributions. The network may
be constructed in a fashion to honor macroscopic measurements such as porosity,
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conductivity, and dispersivity. The process for accomplishing this is described in
Chapter 6. The network embodies all the geologic character of the medium, includ-
ing flow and transport properties.

5.3.2 Governing Equations for Fluid Flow.

By conservation of fluid mass in a control volume, the change in storage is balanced
by the net flux through the surface and the internal sources,

LAM _ Alpr9)e _ Alpra)y _ Alesa)z | p1Qs (5.13)
V At Az Ay Az |4 '
where V = size of the control volume, [L?],
M = mass of fluid in the control volume, [M],
t = time, [T},
ps = fluid density, [ML™3],
g = fluid flux through the face, [LT~1}, and
Qs = source of fluid, [L3T71].

The change in storage occurs through rearrangement of soil grains and compres-
sion of the fluid. The volume of solids is assumed to be invariant. The change in

storage is

1AM O Ops 0o

—_ =L = p—>_ e 5.14
where ¢ is the porosity. The porosity is assumed to be constant for simplicity and
to permit the straightforward tracking of all fluid mass. All compressive storage is

lumped into the fluid part of the total compression,

1AM ip_f_

= ) 1
V At ot (5.15)
The flow equation (5.13) becomes
Opy PsQs
ud s RS v A s 5.16
5 V- (pra) + =5 (5.16)

When this is applied in one dimension along the throat with no internal sources of
fluid, we have

Opy O

bl BT = 5.17
¢+ 51 (Pr0) =0 (5.17)
where [ is the position along the throat, [L]. The variational statement for this
equation is

./oL v <¢%‘ + %(pfq)) dl =0 (5.18)
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where w is a weight function, [—], and L is the throat length, [L]. Separating these
terms and performing integration by parts on the second term gives

0 Ly
/ wofLdl — [* =2 (ppa)il - fwosalf = 0 (5.19)

Swapping the order of integration and differentiation in the first term gives

% (/OL “’”fdl> - /0 (?9, (pra)dl — [wpsqlg =0 (5.20)

Here we elect to enforce the variational statement with a constant weight function.
This serves two purposes. First, it keeps the flow solution as simple as possible.
Second, it keeps the problem symmetric in the presence of density variability, an
important feature for numerical implementation. This choice leads to

L
bo (/0 pfdl) - lpsalf =0 (5.21)

Because the throat is effectively the control volume under these conditions, the flow
equation is trivial. It simply states that the rate of change of mass in the throat is
the difference in mass flux through the two ends.

The total mass of fluid must be conserved at each junction of the throats (con-
nection) for each time step. Therefore, we must determine the fluid mass flux at
each end of the throat. The total flux along the throat (gr) is the sum of fluxes due
to total potential (¢p) and to compression (q¢).

gr =qp + qc (5.22)

Darcy’s law for exchange of momentum relates the difference in potential to the
fluid flux [10]

1 = == (VP + pcg¥2) (5.23)
where &k = intrinsic permeability of the medium, [L?],
p = dynamic fluid viscosity, [ML™1T1],
P = fluid pressure, [ML™1T?],
pc = density of the fluid/constituent mixture, [M L], and
g = gravitational accelaration, [LT7?].

Expressing the pressure in terms of an equivalent, fresh-water pressure head,

k
qp = 2 (V(pogho) + pcgVz). (5.24)
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The fresh-water density and the gravitational acceleration may be extracted to pro-
duce

ap = =09 (Vh +—Vz> (5.25)
p po

Recasting in terms of total, fresh-water head (Hp), the potential flux is
ap = —Ko22 (VH + (%9 - 1) gvz> (5.26)
0

where Kj is the saturated hydraulic conductivity of the medium, g is the dynamic
viscosity of fresh water, and pg is the density of fresh water. The total compression
is

AV ¢, VAP
= 5.27
Qo="3r = At (5.27)
where ¢, is the fluid compressibility. Recasting pressure as pressure head (ho),
eV A(pogho) 3h0
=2 " T~V 5.28
Qc A7 ~ Vg7, (5.28)

The time derivative of the pressure head is equal to the time derivative of the total
head. After dividing by the volume, we have the compressive flux per unit volume
of fluid.

OH,
@ = cppog——at". (5.29)
The total flux is
OH,
qr = —Ko (VH + (PC >sz> + cppog——g. (5.30)
© Po ot
In one dimension along the throat,
po (OHo <ﬂc ) 3z> 0Hy
= K2 | ——= = _ - —_ 5.31

To solve the pressure problem, we need only know the end fluxes for each throat. By
continuity in a one-dimensional throat, without fluid compression, the flux at everv
position along the throat must be constant. Because conductivity may vary with
density and viscosity, the conductivity may not be constant along the throat. The
effective conductivity for the one-dimensional throat is the harmonic mean of the
variable conductivity. The composite density and compressibility are computed as a
volume averages over the throat. Then, the compression term is compiled at the ends
of the throats. This effectively assigns one-half the total throat compressibility to
each end of the throat, thus producing a diagonal matrix in the time term. Lumping
slightly reduces the spatial accuracy of the solution [20], but simplifies the solution
process. With compression, the flux profile along the throat is linear.
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The discrete equation for flux in the throat is
 Kp[1 -1 1 (L /pe [1 —1]
= 2[4 T - (G-l Ve
+ L/L dl[l 0}{1{} (5.32)
3L Jo PP o 1) VHON '

where K}, is the effective, saturated hydraulic conductivity in the throat and the
dotted quantity indicates a temporal derivative.

5.3.3 Conservation of Fluid Mass at the Connections.

We wish to enforce conservation of fluid mass at each connection and for each time
step. Because all throats have the same cross-sectional area, we may write the
fluid-mass conservation statement as

nt

S

S psan = (5.33)

n=1 t
where Sy is the source of fluid mass per unit time, [M7T~!] and A is the cross
sectional area of the throats, [L?]. We may replace this conservation of mass state-
ment with a fluid volume balance because there is no storage at the connections
themselves.

nt nt
OHy 1
p = ——— - . 5.34
n§:1q 5 n§=1 5P0Cp9 (5.34)

When the coefficient of compressibility is non-zero and the head at a connection
is changing with time, fluid will be entering or leaving ‘storage’. At each connection,
the inbound and outbound fluid volumes may differ, but the inbound and outbound
fluid masses will balance. Further, the inbound constitutent masses are distributed
within each time step at each connection. Thus, densities and concentrations are
affected by the fluid compressibility. The throat-level flux equations are assembeled
into a global problem using Equation 5.34, permitting the computation of total
fresh-water head at the connections.

5.3.4 Remark on Solution Variables.

The choice of solution variable may have dramatic consequences for numerical ac-
curacy. For example, in a gram-centimeter-second system, reasonable values for
permeability may be 10~12¢cm while 100 m of water represents a pressure of 107

L_s~2. This range of values is difficult to manipulate numerically. By using

g-cm™—
total fresh-water head, saturated hydraulic conductivity, specific gravity, and spe-

cific viscosity, and by specifving gravitational acceleration times compressibility as
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a single value, we take advantage of as much cancellation as possible. This keeps
solution values in a reasonable range and minimizes potentially serious numerical
problems associated with finite precision.

5.3.5 Time Integration.

A first-order, backward Euler scheme is used to advance the solution in time. To
further simplify the process, the buoyancy force (the C' matrix in Equation 5.35) is
lagged a time step, making the flow and transport equations weakly coupled and
iteration is avoided. The method is unconditionally stable, but lagging the buoyancy
effect limits the practical length of a time step for the flow computation to maintain
accuracy. In matrix form, the equation solved is

(IM] + At [B)) {Ho}"*' = [M] {Ho}" + At [C] {2} + At{gs}- (5.35)
where
M] = %{__11 _11] (5.36)
B = %.Achogdl[(l) ?] (5.37)
c] = %/OL<’/’)—‘°)’— )dl{_ll ‘11] (5.38)

5.3.6 Solution Procedure.

A diagonally-preconditioned, conjugate-gradient, iterative solution scheme was used
to solve the linear svstem of equations for total head. Because the network may be
well connected, the bandwidth on the matrix may be large compared to traditional
simulation methods. To avoid forming this potentially large matrix, a matrix-free
solution scheme was adopted. The matrix-vector product, ([M]+ At[B]) {Ho},
is computed by compiling the contributions from each throat at the connections.
This process requires more operations than multiplying a pre-formed matrix with
a vector, but saves considerable memory. The pressure solution is found simply by
enforcing continuity at the connections. The total volume imbalance accumulated
at each connection is used as the residual for the iterative solution scheme.

5.3.7 Transport.

Conservative transport in the network assumes perfect mixing at the connections
and perfect advection along each throat, which is functionally similar to the pore-
scale transport model advanced by Bear [8]. Throat end fluxes corresponding to
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the converged head solution are used to drive transport. Equation 5.32 is consistent
with a linear flux distribution in the throat when compression is present, and a
constant flux when the fluid is incompressible. The linear velocity profile is used to
solve the pure advection problem in each throat

Jdc Jdc

where u(l) is the linear seepage velocity along the throat. The seepage velocity is
related to the flux through the porosity (¢), v = ¢/¢. The porosity is constant
within each throat, but need not be constant over the entire domain.

(5.39)

5.3.8 Throat Discretization.

To maintain high resolution and minimize numerical dissipation in the constituent
concentrations, each throat is discretized into segments. Each segment has a length,
a fluid mass, and a mass for each constituent. Because the transport equation is
pure advection, the segments may be moved intact with the seepage velocity in the
throat (Figure 5.6). To include the effects of compression, the segment interfaces
move with the velocity as follows

At du
(1. + —Q-El_>
Sp = u; At + S (1 ~ _é_tﬁ) (5.40)
2 dl
where Sy = position of the segment interface, [L],
u; = velocity at the ¢ end of the throat, [LT 11
At = time step size, [T,
du/dl = slope of the velocity profile along the throat, [T71].

This scheme preserves the total flux at each end of the throat prescribed by the flow
solution while preventing segment boundaries from overlapping.

Segments may be created or deleted as fluid enters and leaves the throat. A
segment is only created if there is a measureable difference between the concen-
tration in the throat and that in the inbound fluid. Once a preset ceiling has been
reached in the number of segments in an individual throat, some of the segments are
merged. Neighboring segments with similar concentrations are merged first to min-
imize smearing of concentration fronts. Segments are stored in a common ‘circular’
array, permitting resolution to be allocated wherever needed. Thus, transport com-
putations in the network are made with an adaptive computational mesh capable
of adding and removing resolution as needed.
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Figure 5.6: Translation of segment boundaries in response to a linear flux profile.
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5.3.9 Time Advancement.

The transport solution is explicit in time. Therefore, a Courant condition defines
the maximum time step size. The time step limit is the minimum travel time for

any throat in the domain.
At < (£> . (5.41)
min

v

Using an explicit scheme decouples the transport solution into many, indepen-
dent one-dimensional problems. Because there is no storage at the connections, a
two-step process is needed. During the first step, at each connection, inbound fluid
and contaminant are collected. In outbound throats, voids are created by trans-
lating the segment boundaries. The accumulated fluid and constituents are mixed
fully at each connection. During the second step, the voids are filled with the mixed
fluids and constituents. There is an implied volume at each connection that is set
by the amount of fluid accumulated over a time step. This volume does not affect
the rate of transport, but does affect the amount of mixing. Therefore, the time
step controls the resoution of concentration in the transported quantities. Complete

mixing at the connections also implies a local dispersion that will be discussed in
Chapter 6.

5.3.10 Observation of the Network.

Observation of the network is central to the applicability of the network model itself.
Figure 5.7 shows how visualization is equivalent to applying a filter to the results.
Before filtering, the network and the actual medium are structurally similar, but
their scales are distinctly different. After averaging to the same resolution, detail
beneath that scale is removed, and the two solutions contain the same amount of
information. If enough detail is included in the network, the two average solutions
may be virtually identical.

A post-processing visualization program was written to compute spatial averages
of the network results for interpretation. Fluid masses and constituent masses in the
network are distributed to uniformly spaced nodes in a visualization mesh (Figure
5.8). Trilinear interpolation is used to accumulate the quantities. If all nodes in
the visualization mesh contain mass, all nodes are retained and a visualization mesh
composed entirely of hexahedra is written to file for viewing. If all nodes do not
contain mass, only those containing mass are retained and a mesh composed entirely
of tetrahedra is constructed. This capability permits viewing of individual throats if
desired, an ability especially useful when checking the correctness of code changes.
In keeping with the theory behind the network, observation should be made at scales
larger than the average length of a throat in the network. Therefore, the desired

80




Observational
Filter

Discrete Network

Pore Scale Medium

Figure 5.7: Observation of the actual medium and the network.

81




Nodes in the :
Observation Mesh ;

Segmented Throat
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resolution in observation sets the maximum inter-connection spacing for network
creation. _

The network is a discrete medium. Therefore, plots of average quantity versus
averaging volume may be created to estimate the existence and size of represen-
tative elementary volumes. Figure 5.9 shows the spatially averaged velocity and
concentration with change in averaging volume. These plots show that the pressure
observation reaches a stable value for very small averaging area. The velocity re-
quires a larger averaging volume to become stable. The average concentration does
not reach a stable observation because there are large-scale trends in the data. For
these applied boundary conditions, the head field is nearly a planar function. Thus,
increases in averaging area incorporate compensating values making the observa-
tions verv stable. Because velocity is a derivative of the pressure, it is expected to
be more variable than pressure in heterogeneous media. Observation of the velocity
field become stable once the averaging area includes a sufficient statistical sample.
Logically. the REV for velocity will be similar to the the REV for conductivity.
For this reason, the averaging area for velocity may need to be larger than the
medium’s correlation length that defines the size of physical heterogeneities. The
concentration field is far from a statistically random distribution. As averaging area
increases. it includes more of the plume’s mass, causing the average concentration
value to increase. Once the majority of the plume has been included, additional
increases simply add zero-concentration fluid to the average, causing a continuous
decrease in the average concentration. Therefore, no REV for concentration can be
found.

5.4 Selected Results from the Network Model

The network model was run for a few, select problems. Some of these results parallel
those given in a recent paper by Peters and Howington [109].

5.4.1 Growth of a Plume From an Instantaneous Source.

Flow and transport were computed through a porous slab. Twenty thousand con-
nections were placed randomly in a two-dimensional domain 2500 m long and 1000
m wide. These connections were joined with 50,000 throats laid out isotropically
with a maximum throat length of 30 m and a minimum throat length of 8 m. Con-
ductivities in the throats were drawn randomly from a lognormal distribution with
a lognormal mean of 0.0 m/d and a lognormal variance of 1.0. Fluid flow through
the throats was simulated as incompressible to achieve steady flow immediately. To-
tal freshwater head was prescribed at each end of the rectangle and the sides were
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declared to be solid boundaries. Five kilograms of constituent were introduced in
the first two days of the simulation at a single connection located near the upstream
boundary and at mid-width. Figure 5.10, shows the plume’s development in time.
Figure 5.11 contains a sequence of images centered at the midpoint of the domain.
The first image shows the entire domain. The second shows about half the domain
in each direction. The third shows a closeup of the throats in the network. Near
the center of each image, there is a high concentration value that may be used for
orientation when comparing images.

The rate of plume growth, reflected by the apparent dispersivity, is shown in
Figure 5.12. Apparent dispersivity values were computed using the first and second
spatial moments of the modeled plume. The model output displays a linear growth
rate for the plume with travel distance over the entire simulation and closely matches
the solid line showing the trend in measured field data proposed by Arya [4]. An
asymptotic state, characterized by a constant apparent dispersivity, is not reached
for this problem. The apparent dispersivity is highly variable when the plume is
small, but the trends in spatial moments stabilize as the plume size approaches four
times the largest throat length. Growth of a plume at a rate faster than is predicted
by a Fickian model (with a local coefficient) is consistent with the findings of Sahimi
[117] in well connected networks.

5.4.2 Growth of a Plume From a Continuous Source.

Figure 5.13 shows the model-computed concentration field near steady state for an-
other problem of practical interest, the continuous point source. These calculations
were made with the same network used for the instantaneous source. Apparent dis-
persivity near the source will be small, but that farther downstream may be much
larger. This poses significant problems when trying to use effective coefficients in
a Fickian model for dispersion. For this problem, there is no asymptotic state for
which a Fickian model with effective coefficients will provide satisfactory results.
If an effective coefficient is used, the analytical solution for Equation (3.12) pre-
dicts substantial upstream migration of the solute. This non-physical diffusion is
shown in Figure 5.14 which compares longitudinal cross sections through plumes
predicted by the advection-dispersion equation (ADE) and the network model. The
meandering nature of the plume in the network model makes it difficult to define
a representative concentration profile. Because there is no dispersion coeflicient in
the network model, a common ground on which to make comparisons was needed.
Results from the instantaneous point source problem (Figure 5.12) were used to es-
timate an effective, macroscopic dispersion coefficient for use in the ADE. Using this
effective dispersion coefficient in the ADE produces substantial upstream spreading
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Figure 5.10: Concentration fields from an impulse source of tracer. The field is
shown early in its development (top), after 1500 days (middle), and after 2500 days
(bottom). Red indicates higher concentration and blue, lower concentration.
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Figure 5.11: A single snapshot of the developed plume shown in successively greater
detail. The images show the entire domain (top), the center quarter of the domain
(middle), and a very small fraction of the domain at the center (bottom).
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Figure 5.13: Contours of the spatially averaged concentration field for the continuous
source (red is higher concentration, blue is lower).
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of the solute (Figure 5.14). The effect becomes negligible at an upstream distance
equal to about five times the assumed dispersivity (5a;). Downstream, but near the
source, the network model produces concentrations slightly higher than those from
advection-dispersion theory. Farther downstream of the source, the two approaches
agree very closely.

5.4.3 Demonstration of Density Dependent Flow.

The network was also used to demonstrate density-dependent flow. Two columns of
water were positioned side-by- side in a thin, vertical slab that is 100 m on a side
by 10 m thick. All boundaries on the slab are defined as solid. One of the columns
contained fresh water while the other contained a dense constituent. The presence of
this constituent at a concentration of 1.0 g/g produced a fluid/constituent mixture
with a specific gravity of 1.5. The fluid containing the dense contaminant pushed
its way to the bottom of the container. Figure 5.15 shows four images in the time
evolution of the dense wedge. This is noteworthy because it shows that the network
model is capable of simulating salt-water intrusion and other density-dependent flow
problems.

5.5 Parallel Computer Implementation

Because the network model decomposes an n-dimensional physical problem into
many one-dimensional numerical problems, it is well suited for implementation on
a parallel computer architecture (single instruction, multiple data). The machine
chosen for the parallel work is a Cray T3D with 256 processors. Each processor in
the T3D is a Digital Equipment Corporation Alpha processor with 8 megawords of
random access memory. The machine used is located at the Minnesota Supercom-
puter Center. As a first step, vendor-specific Fortran compiler directives were added
to the code to distribute the data storage and the workload requirements among the
Pprocessors.

5.5.1 Load Balancing.

The most common method for distributing work to processors is geographically.
The domain is subdivided to distribute the work approximately evenly. This type
of distribution has the advantage of minimizing communication requirements among
the processors. For example, with a simple structured numerical mesh and a dis-
crete numerical approximation that relies only on nearest neighbor information,
only those elements that border the subdomain boundary will require information
from another processor to perform its duties. However, if the discretization changes
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Figure 5.15: Time evolution of the dense wedge. Time sequence is upper left (initial
condition), upper right, lower left, lower right.
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as the problem evolves, as with an adaptive mesh, the amount of work associated
with each geographic region is not constant. This leads to an imbalance of work
among the processors. Some processors will finish their work long before others. At
synchronization points, the processors must wait until all are finished before pro-
ceeding. Partitioning algorithms to address these issues are the subject of present
research (e.g., Karypis [76]). A trade-off exists between the amount of time required
to repartition the problem to the processors versus the time lost to a poorly balanced
workload.

Because the throats are discretized adaptively in the network model, partition-
ing problems arise. A single, geographical distribution of throats to processors will
not produce a balanced workload for a moving concentration plume. This problem
was addressed by adopting a cyclical distribution of the throats to the processors.
The throats are distributed randomly in space and the first throat is assigned to the
first processor, the second throat to the second processor, and the (N + 1)th throat
is assigned to the first processor (where N is the number of processors being used),
etc. This approach relies on the fact that there will be many more throats than
processors. With enough throats, each processor will have approximately the same
total amount of work to do, because, on average, all processors will have the same
percentage of throats within the plume. The disadvantage of this is that interproces-
sor communication is maximized. A future effort will examine the potential benefits
of using alternative partitioning techniques with an optimal mix of geographical and
cyclic partitioning.

5.5.2 Performance.

To evaluate the degree to which the code and the problem are ‘parallel’, a speedup
curve normally is created. The particular speedup measure chosen (Figure 5.16)
shows normalized run times for the code for a fixed problem size. In an ideal
‘parallel’ code, there is no overhead or latency, and running on /N processors causes
the code to run N times faster. This idea may be expressed with the following
equation for speedup

t N

—_— = — (5.42)

ty 1+ N4
where t1, ty, and #;(N) are the time for a single processor, time for N processors,
and the latency time, respectively. Assuming that the latency time does not depend
on the number of processors chosen, it is apparent that the speedup will approach a
constant value as N approaches infinity. That constant value is the ratio of the single
processor run time to the latency. Further, if we assume that latency is additive, we
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may examine latency by individual subroutine to determine the best place to focus
optimization resources.

A few simulations were conducted with an early version of the discrete network
model. The test problem contained about 20,000 connections and about 50,000
throats. A steady flow field was computed and transport was simulated for about
700 time steps. This problem represents a relatively small problem and a very short
simulation time. For this problem, the model achieves about 60 percent of ideal
speedup for 8 processors and only 25 percent of ideal for 32 processors. The asymp-
totic speedup is estimated to be about 12, regardless of the number of processors
used. This implies that about 9 percent of the single processor run-time is consumed
by computations that are inherently serial. However, the subroutines that perform
the implicit head computations and the transport through the throats show about
75 percent of ideal for 32 processors. Much of the large latency is created by input
and output which presently are handled by a single processor. To investigate this, a
single simulation was made with 32 processors for which each processor wrote to an
individual file. This improved the speedup at 32 processors from 25 percent to 31
percent. These results are promising for more computationally intensive problems
requiring less input and output and additional computations at the throat level.
Further, adding physical and chemical processes will likely increase the fraction of
work being done at the throat level, which is highly parallel. Work is underway to
convert this code to a more portable parallel format and to improve the input/output
procedure.

5.6 Summary of Findings

The stochastic discrete-network model for flow and transport through porous media
has proven to be a viable alternative to traditional discretization and simulation
methods. The network is an efficient and intuitive method for including the effects
of finite-size heterogeneity. The network is a simple, easily-implemented, discrete
approximation of formal non-local theories for flow and transport.

The network reproduces the observed scale dependence of the apparent disper-
sivity, regardless of the choice of boundary conditions. Further, the network pro-
duces physically-correct, wholly downstream contaminant spreading in the absence
of diffusion.

The network offers some computational advantages not realized with other high-
resolution simulation approaches. First, the network permits partial decoupling of
the resolution in the pressure and velocity solutions, improving computational effi-
ciency. Further, by mapping the multi-dimensional porous medium to a network its
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computational dimensionality is reduced to one. Therefore, the network’s structure
is well-suited for parallel computer architectures.
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Chapter 6

Conditioning Isotropic, Discrete
Networks to Match Observed
Properties of Flow and Tracer
Migration in Porous Media

Abstract

Macroscopic, stochastic discrete network modeling of flow and trans-
port through porous media is a rational alternative to traditional numer-
ical approximation techniques that discretize the domain into a contin-
uous field of finite elements or finite volumes (Chapter 5). The network
model offers comparable definition in the pressure field and a more re-
fined velocity field to drive transport. This approach displayvs reasonable
flow and transport behavior for both asymptotic and non-asymptotic
conditions.

For this approach to be useful for practical remediation modeling, we
must be able to construct networks that accurately represent the soils
at individual remediation sites. Therefore, these networks must match
common field and laboratory observations for that site. Toward that
goal, this paper addresses two issues: (1.) anticipating macroscopic flow
and transport behavior prior to simulation, and (2.) selecting network
construction parameters that produce desired behavior. By combining a
local renormalization of conductivity for each patch of throats with ex-
isting stochastic theory, the effective conductivity of a particular network
may be estimated, even for large variance in local conductivity. Empir-
ical relationships are derived to compute normalized velocity deviation
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and position-velocity correlation as functions of the problem dimension,
the correlation length, and the installed throat conductivity variance.
When combined, these relationships predict asymptotic longitudinal and
lateral apparent dispersivities. A step-by-step procedure for construct-
ing isotropic networks to approximately match observed flow and con-
servative transport properties is presented. Where asymptotic property
measurements are not available, the network may be constructed using
statistical descriptions of ‘point’ observations.

A stochastic discrete network has been presented as an intuitive conceptual
model for macroscopic, heterogeneous porous media in Chapter 5. Flow and conser-
vative transport through these discrete networks appear physically reasonable and
are process-consistent with flow and transport in the actual medium. Further, it has
been shown that a network model emerges naturally from non-local governing equa-
tions. The network has demonstrated an ability to reproduce asymptotic and pre-
asymptotic plume growth, matching observed trends in scale-dependent apparent
dispersivity from Chapter 5. However, if the network model cannot be conditioned
to match site-specific observed information, it is of little practical value.

This chapter provides a plan for endowing the network with the measurable
properties of a particular medium. It begins by critically evaluating our ability to
solve the ‘forward’ problem. That is, can macroscopic flow and transport prop-
erties of a particular network be predicted prior to simulation? Specifically, can
macroscopic effective conductivity and apparent dispersivities be anticipated? This
evaluation is followed by a heuristic procedure for addressing the ‘inverse’ problem
— constructing finely-resolved networks to match desired macroscopic properties.

6.1 Structure of the Network

The structure of these macroscopic-scale networks differs fundamentally from tra-
ditional discretization approaches. This network implementation consists of throats
with arbitrary cross-sectional shape that meet at volumeless connections. Connec-
tions are placed randomly throughout the domain, while maintaining a minimum
inter-connection spacing. Throats bridge between these connections to define flow
paths.

6.1.1 Basic Structural Scales.

The network model consists of three basic structural scales: (1.) an individual
throat or tube, (2.) a patch of throats with a common connection, and (3.) the
macroscopic scale containing many patches (Figure 6.1). Individual throats are
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sub-observation or ‘subgrid’ components. Throat information must be averaged to
the patch scale for spatial interpretation. The patch represents the minimum scale
at which a ‘continuum’ could be imagined and, thus, is the smallest meaningful
observational scale. Bulk properties such as effective conductivity from a pump test
or dispersivity from a tracer test must be compared at the macroscopic scale which
includes many patches.

6.1.2 Throat Characteristics.

Throats are treated as though they contain porous material. The conductivity of this
material may vary substantially from throat to throat, but is assumed homogeneous
within a single throat. Darcy’s law is assumed to predict fluid flux in response to
gradients in potential. This is in contrast to the common assumption of Poiseuille
flow through open, cylindrical pores in many pore-scale network models. Throats
are considered three-dimensional objects, although they may be arranged in a plane
to produce a two-dimensional approximation, or along a line to provide a one-
dimensional model. Further, because each throat is internally uniform and boundary
conditions are confined to the ends of the throats, flow and transport solutions within
each throat reduce to one dimension. :

If the network is interpreted as an approximation to a non-local flow and trans-
port problem (see Chapter 5), the throats simply represent vehicles for transport-
ing information among connections. Throats enforce appropriate transit times for
fluid and constituent masses traveling between connections. In the present model,
transport along throats is by pure advection. There is no molecular diffusion or
dispersion in the throat transport equation. Thus, each throat contains a discrete
history of concentration at the upstream connection. Conceptualization of a throat
as a straight cylinder, or any other geometrical shape, is simply for convenience.
Throats are not required to be straight or cylindrical. Therefore, any mathematical
intersection among throats in the space between connections is neglected. Throats
are permitted to exchange mass only by mixing at the connections.

6.1.3 Throat Length Distribution.

This network’s topology is not restricted to a ‘nearest-neighbor’ connectivity as it is
for most networks. In theory, any two connections in the domain may be joined by
a throat. Each pair of connections is visited and a probability function is applied
to determine whether a throat should exist between these connections. A uniform
random number between 0 and 1 is chosen and compared to the probability function
value. If the probability function value exceeds the random number, the throat is
added to a pool from which the desired number of throats will be drawn. The
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Figure 6.1: Structural hierarchy in the network.

100




probability function consists of three regimes,

1.0, 0.0< & < s,
(=)
PEO=3 P\ 0 ) .o, (6.1)
(5/5)"_1 3 S 6 = Smaxs
0.0, Emaz < €.
where P = probability function, [—],

& = separation distance, [L],

s = average connection spacing, [L],

a = probability decay coefficient, [L], and

€maz = maximum throat length, [L].

This form of probability function strongly encourages local connectivity in the
network. For a separation distance () less than the average spacing (s), the prob-
ability of throat creation is 1.0 and these throats are always added to the pool. For
spacing greater than some prescribed maximum (€maz), the probability of throat
creation is 0.0 and these throats are excluded. Between these bounds, the probabil-
ity decays exponentially with separation distance. The decay variable, a, determines
the rate of probability decay with separation distance. Large values of a result in
very slow decay in probability with increasing separation distance, while small a
values cause more rapid decay.

The denominator in Equation 6.1 adjusts the function to simulate a constant
number of ‘chances’ with separation distance. In multiple dimensions, there are
many more point comparisons to be made at a separation distance of 2§ than at
€. Therefore, given the same probability of throat creation at these two separation
distances, more throats 2¢ in length would be created. Dividing by the denominator
reduces probability with separation distance to offset the increase in the number of
point pairs. This achieves a throat-length distribution that is independent of the
problem dimension. Thus, the distribution of throat lengths in the medium will
match the exponential decay function prescribed by the numerator.

Because each throat acts like a lens of homogeneous material, the distribution
of throat lengths corresponds to the distribution of structural sizes in the medium.
Therefore, the throat probability function describes the spatial correlation of con-
ductivity in the medium. Correlation structure is often quahtiﬁed by a correlation
length. In geostatistics, the principal correlation length or range is taken to be the
separation distance than contains about 95 percent of the structural sizes present
in the medium [35). Using this definition, the correlation length for Equation 6.1
lies between 3a and s+ 3a. In a structured network, the average connection spacing
and the minimum connection spacing are the same value. Thus, no throats shorter
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than the average connection spacing (except truncated boundary throats) will ex-
ist. In this case, the correlation length, J, is s + 3a. When connections are placed
randomly, throats longer than the minimum connection spacing, but shorter than
the average connection spacing, will exist. Their existence reduces the number of
throats in the region between s and &4, thereby reducing the correlation length.
As an approximation, the correlation length will be taken to be

A = min (émaz, 3a) (6.2)

6.2 Predicting Effective Conductivity

The problem of predicting the effective conductivity of a heterogeneous medium has
been studied extensively by the oil production industry and, more recently, by the
water resources community. Two of the more common approaches for computing
effective conductivity are upscaling by renormalization (e.g., [78]) and estimation
by stochastic theory (e.g., [28]). Renormalization computes an estimate of effective
conductivity by solving a simple flow problem on successively larger subdomains
until the subdomain size becomes the desired measurement size. Stochastic theories
estimate the effective conductivity by solving small-perturbation approximations to
stochastic flow equations. We will use a combination of these two approaches to
estimate effective conductivity in the network.

6.2.1 Stochastic Theory Predictions.

Gutjahr et al. [57], Gelhar [53], and Dagan [28], among others, have presented
theoretical estimates for effective conductivity. Gutjahr et al. [57] derived effective
conductivity for an n-dimensional, isotropic medium (n = 1,2, 3).

Within the limitations of the small perturbation assumption and assuming that
the REV and continuum concepts apply, the effective conductivity for an isotropic,
randomly heterogeneous medium is

K. =K, [1 + G - %) oﬁ] , (6.3)
where K, = the effective conductivity, [LT™!],
K, = the geometric mean conductivity, (LT,
n = the dimension of the medium, [—],
of?2 = the variance in lognormal conductivity, [].

This indicates that in two-dimensions, the predicted effective conductivity is the
geometric mean of the individual values,

K.=K,. (6.4)
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This relationship was determined theoretically by Dagan (28], Gutjahr et al. [57],
and Gelhar and Axness [54] and confirmed numerically by Follin [45] as cited in [114].
Follin found this expression to hold for large variance (a]% as large as 16). Gelhar
and Axness [54] extended this result to anisotropic media (Appendix C). They also
conjectured that, for large perturbations (o f2 > 1), the effective conductivity may
be given by

K. = Kgexp [(% - —1-) af2]. (6.5)

n

The validity of this equation was analyzed by Desbarats [34]. Further, an equation
consistent with Equation 6.5 was also proposed by Dagan [31].

6.2.2 Mapping Throat Conductivities to Connections.

Because throat conductivities are scalar quantities with orientation imposed by
throat direction, the throats represent a level of structure not found in spatially
continuous discretizations. Thus, some preprocessing of the network data must be
performed before stochastic theories for effective conductivity may be tested. We
must convert scalar throat conductivity values to multidimensional, tensor conduc-
tivities that represent a prescribed volume of the medium. Two procedures are
presented for mapping the throat conductivities to the connections for interpreta-
tion or comparison to measurement:

e patch volume averaging, and
e patch renormalization.

Volume averaging is simply arithmetic averaging of the values weighted by the vol-
umes of material or fluid they represent. The volume average is the sum of the
individual throat contributions for the patch. accounting for orientation

CN
ZninthKt
Ky = til—-C—N——, (6.6)
RZ
t=1
n; = cosp,
nj = C€OsY
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where K;; = components in the patch conductivity tensor, [LT~!],
CN = coordination number for this patch (the number of
throats that are attached at the connection), [—],
B = angle between the throat vector and the flow direction, [—],
v = angle between the throat vector and
applied head gradient, [—],
V; = throat volume, [L3],
K; = individual throat conductivity scalar, [LT™!].

Arithmetic averaging of this sort implies that every throat in the domain expe-
riences a common, macroscopic head gradient. Therefore, flow through each throat
is determined entirely by the throat’s orientation and conductivity and is not af-
fected by local variability in head gradient. If this assumed unit head gradient were
applied to each throat in a patch and the resulting throat fluxes computed, there is
no expectation that fluid conservation would be enforced at the center connection.

An alternative approach for computing patch or connection-scale conductivity
will be called patch renormalization. This approach considers each patch of throats
that share a common connection to be a separate test specimen. A macroscopic
unit head gradient prescribes the heads on the periphery of the patch. Head at
the center connection is computed to enforce conservation of fluid mass at that
connection (Figure 6.2). Conservation of fluid at the center connection requires
that the individual, outbound throat fluxes, ¢, sum to zero

CN n
> g— =0. (6.7)
t=1 ln‘ll

By Darcy’s law, in the one-dimensional throats, the flux is linearly proportional
to the gradient in head
AH H; — H,
= K = — K} -— = 6.8
q t A7 t I, (6.8)
where H is the total head, [L], and [ is the position along the throat, [L]. Combining
these two equations, we may solve for the head at the center connection, H,, in terms
of the heads on the periphery of the patch, H;, the throat conductivities, K}, and
the throat lengths, L;.

H=tL" (6.9)
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Figure 6.2: Diagram of a patch of throats.
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Using the position of the center connection as a reference and defining heads relative
to that position, a unit gradient in the j direction produces

Hy = —n;L; (6.10)

at the connections on the exterior of the patch. The equation for head at the center

connection becomes
CN
D Kim;
_ t=1

H, = (6.11)

TKt'
t= Lt
Flux through each throat in the patch may be determined using this head. Then, by
summing the directional contributions of each throat, a net directional flux through
the connection may be computed. Because we assumed a unit head gradient, the re-
sulting flux is a component of the connection conductivity tensor. The conductivity

in the i direction caused by a unit gradient in the j direction is

1 CN 1 CN Kt )
Kij=Qij =35> ma= EniL—t(Hc — n;Ly). (6.12)
i=1 t=1

25
By applying a unit head gradient in three orthogonal directions, all nine components
of the full patch conductivity tensor may be computed. The matrix is symmetric,
including only six distinct values. The resulting patch or connection-level conductiv-
ity tensors are comparable to the element-level conductivity tensors in a continuum
model formulation.

6.2.3 Numerical Experimentation for Effective Conductivity.

A series of numerical experiments were conducted with the network to test the ap-
plicability of the effective conductivity equations. The experiment matrix, detailed
in Table 6.1, was designed to explore the effects of throat length distribution and
throat conductivity variance on the effective conductivity. The first digit in the
experiment label indicates the dimensionality of the network. Probability decay in
the table shows the values used for a in Equation 6.1.

Many properties of the networks were held constant among the experiments.
These constants are given in Table 6.2. The coordination number is the average
number of throats meeting at a connection. Enforcing a minimum spacing is nec-
essary to maintain a reasonable time step size for the explicit transport solutions.
Because the same seed is used for the random number generator in each of the
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Table 6.1: Numerical Experiment Matrix

Experiment | Maximum Throat | Probability Variance of Ln
Label Length (m) Decay (m) | Throat Conductivity
2D1A 36. 9999. 0.0
2D1B 36. 9999. 1.0
2D1C 36. 9999. 2.0
2D1D 36. 9999. 3.0
2D2A 60. 9999. 0.0
2D2B 60. 9999. 1.0
2D2C 60. 9999. 2.0
2D2D 60. 9999. 3.0
2D3A 60. 22. 0.0
2D3B 60. 22. 1.0
2D3C 60. 22. 2.0
2D3D 60. 22. 3.0
2D4A 250. 22. 0.0
2D4B 250. 22. 1.0
2D4C 250. 22. 2.0
2D4D 250. 22. 3.0
3D1A 100. 9999. 0.0
3D1B 100. 9999. 1.0
3D1C 100. 9999. 2.0
3D1D 100. 9999. 3.0
3D2A 200. 60. 0.0
3D2B 200. 60. 1.0
3D2C 200. 60. 2.0
3D2D 200. 60. 3.0
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Table 6.2: Basic properties of the networks in the experiment matrices.

Property 2-D Networks | 3-D Networks
Average Coordination Number 8.6 11.7
Domain Length (x) 2500 m 2500 m
Domain Width (y) 1500 m 1500 m
Domain Thickness (z) 10 m 1500 m
Average Connection Spacing 18. 60.
Minimum Connection Spacing 11. 35.
Approximate Number of Connections 11000 25000
Mean In Throat Conductivity 0.0 0.0
Approximate Number of Throats 50000 150000

two-dimensional experiments, the position of the connections will be identical in the
networks. The same holds true for all the three-dimensional experiments.

A pool of potential throats is created for each experiment according to the prob-
ability function (Equation 6.1). The desired number of throats is then selected from
this pool. Conductivities are assigned randomly from the lognormal distribution as
the throats are selected. The throat conductivity distributions are shown in Figure
6.3. These distributions are from experiment series 2D1, but, because we are work-
ing with such large statistical samples (50,000 throats or more), the distribution is
virtually identical to the other experiment series, both two- and three-dimensional.
Figure 6.4 shows the length distribution for each two-dimensional experiment se-
ries. Within a experiment series, the networks are topologically identical. Only
the conductivity distribution changes. Figure 6.5 provides length distributions for
a three-dimensional experiment series (3D1). To create these contoured images, the
fluid and constitutent masses moving through the network were averaged to a 125
X 75 x 1 structured observation grid. The resolution of the observation grid (20 m)
was chosen to be not less than the average connection spacing (18 m). If a finer
grid is chosen, holes in the contoured image begin to appear.

Experiment series 2D1 minimizes throat-length variability and the network is
well connected locally. In series 2D2, some longer throats are permitted, but the
throat-length frequency is held nearly constant. Experiment series 2D3 has the same
range of throat lengths as series 2D2, but the distribution in series 2D3 is biased
toward shorter throat lengths. Series 2D4 permits a few throats that are much
longer than the other series. In series 2D1, 2D2, and 2D3, the principal correlation
length is set by the maximum throat length. In 2D4, the probability decay function
controls the correlation length.
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Figure 6.3: Histograms of In throat conductivity for experiment series 2D1. Upper
left, 2D1A, upper right, 2D1B, lower left, 2D1C, and lower right, 2D1D. These
distributions are virtually identical for all other experiment series.
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Figure 6.4: Histograms of throat length for the two-dimensional networks. Upper
left, 2D1, upper right, 2D2, lower left, 2D3, and lower right, 2D4.
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Figure 6.5: Histograms of throat length for the three-dimensional networks. Upper,
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Figures 6.6 and 6.7 show contours of the z-direction, In-transformed, patch-
renormalized conductivity for an applied gradient in the z direction (InKps;) for
series 2D3. Figures 6.8 and 6.9 show the same plots for the y direction with an
applied gradient in the z direction (InK,,.,). Figures 6.10 and 6.11 show the cor-
responding contours of total head for series 2D3 when a macroscopic, unit gradient
in total head is applied to the boundaries in the x direction. As variance in throat
conductivity increases from experiments 2D3A to 2D3D, irregularities in the head
field increase. However, even with a variance in In throat conductivity of 9.0, the
head field only deviates slightly from the planar solution for homogeneous media.
This supports the idea that the pressure field is relatively insensitive to underlying
variability in velocity.

6.2.4 Analysis of Results for Effective Conductivity.

Steady fluxes were computed through the downstream boundaries for each of these
experiments. The observed macroscopic effective conductivites computed from these
fluxes were compared against predictions from stochastic theory. Patch conductiv-
ities were computed using the renormalization procedure in Equation 6.12. The
arithmetic, geometric and harmonic means of these patch condutivites were com-
puted for comparison. The arithmetic mean, K, is simply

Ko=L13 K (6.13)
a—np - D .

where np is the number of patches and K, is the patch conductivity tensor [LT~!].
The geometric mean of the patch conductivities, Ky, is computed by

—_— np

Ky, = enKp — eTp L Z ln(Kp)) ) (6.14)
np _—
p=1

and the harmonic mean of the patch conductivites, K}, is given as

(6.15)

Patch conducitivites are tensors and matrix manipulation rules apply. To perform
objective exponentiation or inversion, each patch tensor must be rotated to its prin-
cipal orientation such that the eigenvalues of the matrix lie along the diagonal.
Then, the operation may be performed on the diagonals and the rotation reversed
to produce the tensor expanded.
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Figure 6.6: Contours of patch-renormalized In conductivity (Kzz) for experiments
2D3A (top) and 2D3B (bottom). Reds indicate higher conductivity values and blues,
lower.

113




l&;( : 0.000
S5

o

3
3
2.

LLLOOm—L
223288148188

PO——N LW
888483838

L-b8
883
Ay

- B3
f 2=

b -

7 Ve vl
W6 s 4K

Figure 6.7: Contours of patch-renormalized In conductivity (K ,) for experiments
2D3C (top) and 2D3D (bottom). Reds indicate higher conductivity values and
blues, lower.

114




2
1
i

Ho.
i 0.
0.
0.
N o
-1
-1
2

EEVEAEY

88Es

Figure 6.8: Contours of patch-renormalized In conductivity (Kgy) for experiments
2D3A (top) and 2D3B (bottom).

115




3y

SOO ==
38883

-0,
0
-1
-1.
-2

83ixs

OO0 =N
888338

o
Saness

33338

Figure 6.9: Contours of patch-renormalized In conductivity (K;,) for experiments
2D3C (top) and 2D3D (bottom).

116




Figure 6.10: Contours of total head for experiments 2D3A (top) and 2D3B (bottom).
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Figure 6.11: Contours of total head for experiments 2D3C (top) and 2D3D (bottom).
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Figure 6.12 shows the arithmetic mean, the geometric mean, the harmonic mean,
Equations 6.3 and 6.5, and network results for experiment series 3D1. Gelhar’s
small-perturbation theory [53] (Equation 6.3) appears to provide an acceptable es-
timate for effective network conductivity in the figure. Equation 6.3 is compared
against all observations (two and three dimensional) in Figure 6.13. The agree-
ment is generally very good. But, for large patch variance in two dimensions, the
predictions and measurements begin to diverge. The geometric mean tends to un-
derpredict the effective conductivity of a set of tensors with large variance and
variable orientation. This effect may be attributed to local anisotropy in the patch
conductivity tensor. Two factors control the local anisotropy, coordination number
and throat conductivity variance. For random network layout, all pacthes will be
anisotropic. However, for coordination numbers less than about 6 in two dimensions
or about 10 in three dimensions, the local anisotropy becomes much stronger. As
throat conductivity variance increases, local isotropy is lost, regardless of the coor-
dination number. Perhaps this effect was not observed in three-dimensions because
the coordination number is higher and there are more paths around low conductivity
regions.

Stochastic theory assumes that the observation scale is large compared to the
size of heterogeneities in the medium (represented by the correlation length). To
examine the consequences of non-negligible correlation length on the effective con-
ductivity, a simple experiment was conducted. A network was created to represent
a column of porous material and its effective conductivity determined. The column
was successively shortened and effective conductivity measured. The results of this
experiment, shown in Figure 6.14, indicate that, with all throats in the network
having the same throat conductivity, no measureable difference in conductivity is
noticed. However, when the throat conductivities are not uniform, the correlation
length may influence the effective conductivity. Conductivity is shown to be nearly
constant for domains larger than 3 times the correlation length. Beneath that size,
the effective conductivity increases as the domain size decreases. Thus, the REV
for conductivity is approximately 3 times the correlation length for this example.

6.3 Predicting Apparent Dispersivity

6.3.1 Statistics of Dispersion.

Transport character is embodied by the rates of translation and spreading of a
conservative tracer. These rates may be measured conveniently using the rates of
change of spatial moments of a plume developing from an instantaneous point source
of tracer. Gelhar [53] defines the dispersivity as one half the ratio of growth of the
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Figure 6.12: Comparison of conductivites from the network, various means, and
stochastic theory for experiment series 3D1.
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second spatial moment with respect to the first spatial moment of the tracer. With
macroscopic flow in the z direction, the dispersivity in the longitudinal direction is

do,? )
_ l7ae ldo,
az—aL——iE _§df (6-16)
dt
where for a plume with total mass cg
1 o0
T= —/ ze(x)dx (6.17)
€0 J—o0
and
1 o0
0% = —/ z2c(z)dz. (6.18)
€0 J—co

The fundamental relationship 6.16 may be explored in more detail. To simplify
this analysis, the plume is assumed to consist of N neutrally-buoyant contaminant
particles that are transported with the local advective velocity. Again, the growth of
an instantaneous point source of tracer is examined. At any time after the placement
of the particles the second moment of the mass about the centroid of the plume is

1 2
o= N Z('E, —7) (6.19)
i=1

where without loss of generality each particle is assumed to have a unit mass. The
centroid 7 is

1 N
N =1

The rate of change of the second moment is obtained by a straightforward time
differentiation of Equation (6.20)

do?2 2 & T
o =N ;(-’Ei - T)(&; — ) (6.21)

Equation (6.21) can be rewritten in terms of the particle velocities u; = 7; and the
centroid velocity 7 = 7 as

do? 2 N —
=N }__:('1‘z - T)(u; — 7). (6.22)
i=1

The right hand side of Equation (6.22) is twice the covariance of particle position
and its velocity, Sgz,. The covariance can be expressed in terms of the variance of
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the two quantities and their coefficient of correlation pg,, where —1 < pg, < 1.
Thus, '
do?
dt
The rate of spreading of a plume is often quantified by the apparent dispersivity
back-calculated from observed data using Equation (6.16). Combining Equations
(6.23) and (6.16), the apparent dispersivity is related to plume statistics by

= 2030 Pzu- (623)

ap = 22Tl (6.24)

u

Regrouping, we have
Oy

0 = (Capra) (E) . (6.25)
A similar procedure may be used to examine lateral dispersivity. The lateral
equivalent of Equation 6.22 is

do? 2 Y _ _
N ;(m, —7)(v; — 7). (6.26)

where 7 is 0.0. Ultimately, we have an expression for lateral dispersivity
P .
oy = (oypyv) (%) : (6.27)

6.3.2 Numerical Experimentation for Contaminant Transport

To explore the relationship between network structure and apparent dispersivity,
transport was simulated through the experimental networks described in Table 6.1.
A conservative tracer was injected at a position one tenth of the domain length from
the left boundary and centered laterally and vertically. The tracer was injected at
a rate of 1000 g/d for a period of 5 days. Figures 6.15 and 6.16 show plumes for
series 2D3. Again, each experiment series corresponds to a fixed network topology
with throat conductivity variance increasing from experiments A to D. Because
effective conductivity increases substantially with increasing variance, the plumes
travel at much different rates. The figures compare plumes at different times for
which the developmental stages are similar. From these images, it is apparent that
increases in conductivity variance increase longitudinal dispersion. However, the
lateral growth of the plumes appears much less sensitive to changes in conductivity
variance. Figures 6.17 and 6.18 show plumes for experiments 2D1C, 2D2C, 2D3C,
and 2D4C. These experiments maintain the same variance while the throat-length
distribution changes. Again, these are shown at different simulation times to permit
well-developed plumes to be shown for each experiment. Lateral plume growth is

124




seen to increase somewhat with increasing throat length. Figure 6.19 shows an
isosurface and contours of concentration for a three-dimensional series (3D1C). The
isosurface value is 10~7 times the initial injection concentration. These experiments
show an elongation of the plume as throat conductivity variance increases.

Even though the network model includes no dispersion term in the transport
equation it solves, it is convenient to measure plume growth in terms of an equiv-
alent, apparent dispersivity derived from observed spatial moments of the tracer
concentration field. Apparent longitudinal dispersivity is plotted against travel dis-
tance for series 2D3 in Figure 6.20. Figure 6.21 shows the same plots for lateral
dispersivity. These curves show definite growth of the apparent dispersivity with
travel distance or measurement size; the so-called ‘scale effect’. Although the be-
havior of the dispersivity measure is erratic until the plumes reach an adequate size,
the curves follow the same general growth trend observed by Anderson [2] and Arya
et al. [4]. At some large travel distance, the curves break away from this trend and
approach a constant value for dispersivity. Networks with smaller throat variance
are shown to reach asymptotic conditions (nearly constant dispersivity) for shorter
travel distances than networks with larger variance.

Figures 6.20 and 6.21 also confirm the prior observation that longitudinal disper-
sivity is more sensitive than lateral dispersivity to changes in throat conductivity
variance. Note that asymptotic lateral dispersivity is not zero as is predicted by
some stochastic continuum theories [30]. The network contains an implied local
dispersion caused by complete mixing of masses at the connections, resulting in
non-zero asymptotic, apparent lateral dispersivity values.

Asymptotic dispersion behavior is achieved when a plume becomes sufficiently
large compared to the size of the velocity structures [113]. However, travel distance
is not always a good measure of plume size. Plots similar to Figures 6.20 and 6.21
are given in Figures 6.22 and 6.23 wherein the dispersivity is plotted as a function of
the plume size measured by o,. These plots show slightly less dependence on throat
conductivity variance in the pre-asymptotic region, demonstrating that plume size
is a better predictor of a plume’s dispersivity than travel distance.

Often, dispersivity is compared to travel time. This convention stems from pure
diffusion where spreading rates reveal dispersivity proportional to the square root
of time (@ o« t¥,w = 1/2). Ideally, travel time and plume centroid position are
related by a constant which is the seepage velocity. However, travel distance of the
plume centroid and travel time are not interchangeable until the plume centroid’s
speed stabilizes. In heterogeneous media, this asymptotic condition is not reached
quickly. Evaluating dispersivity as a function of travel time leads to the ideas of
subdiffusive transport (w < 1/2) and superdiffusive transport (w > 1/2) [118].
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Figure 6.15: Contours of tracer concentration for developed plumes in experiments
2D3A (top) and 2D3B (bottom).
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Figure 6.16: Contours of tracer concentration for developed plumes in experiments
2D3C (top) and 2D3D (bottom).
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Figure 6.17: Contours of tracer concentration for developed plumes in experiments
2D1C (top) and 2D2C (bottom).
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Figure 6.18: Contours of tracer concentration for developed plumes in experiments
2D3C (top) and 2D4C (bottom).
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Figure 6.19: Isosurface and contours of tracer concentration for experiment 3D1C.
Red indicates lower concentrations, blue, higher.
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Figure 6.21: Apparent lateral dispersivity versus centroid travel distance for series
2D3.
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Figure 6.22: Apparent longitudinal dispersivity versus plume size for series 2D3.
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Figure 6.23: Apparent lateral dispersivity versus plume size for series 2D3.
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These distinctions are not necessary. In porous media, subdiffusive transport should
occur only when the plume is small and confined to a relatively low permeability
region. In this case, the plume speed is small compared to the mean fluid velocity in
the medium and /% overestimates the rate of plume growth. Measuring dispersivity
as a function of plume size takes these differences into account automatically.

Figures 6.24 and 6.25 show the longitudinal and lateral dispersivities for ex-
periment C in each of the 4 two-dimensional series. The structure of the network
seems to have little effect on the apparent longitudinal dispersivity, but substantial
effect on the apparent lateral dispersivity. Table 6.3 summarizes many of the re-
sults from these experiments. In the table, g is the Darcy flux, [LT~1Y, uf is the
longitudinal, mass-averaged velocity, [LT1], A is the correlation length in the net-
work, [L], a; are the apparent dispersivities, [L], pziu;0z; are the position-velocity
correlation terms, [L], o, /ur are the normalized velocity deviations, [—], and 4
is the direction index (L, Ty, Tv), [-]. Time-dependent statistical measurements
were taken at a consistent travel distance of the plume centroid of 1100 m. For the
three dimensional ‘C’ and ‘D’ experiments, the leading edge of the plume exited the
downstream boundary before the centroid traveled 1100 m, and measurements were
made for travel distances between 850 and 1000 m. This was necessary because
mass exiting the boundary greatly affected the plume statistics, invalidating further
apparent dispersivity measurements.

6.3.3 Analysis of Results for Transport.

As a tracer plume becomes large compared to the velocity structures in the medium,
the mass-averaged tracer velocity will approach the medium’s mass-averaged fluid
velocity. The mass-averaged fluid velocity, also known as the seepage or linear pore
velocity, is computed by

Vs = Q/d)e (6-28)

where vs is the seepage velocity and ¢ is the effective areal porosity (or simply
the effective porosity). Effective porosity describes the fraction of the domain con-
taining ‘mobile’ fluid [33]. The effective porosity permits us to include the effect
of low- or zero-permeability regions in the medium on the seepage velocity. In the
absence of ‘immobile’ fluid, the volumetric porosity and the effective porosity will be
equal (assuming equality of areal porosity and volumetric porosity). The volumetric
porosity for these numerical experiments was arbitrarily set to 1.0. Therefore, the
difference between the Darcy velocity and the asymptotic, mass-averaged transport
velocity in Table 6.3 reveals the effective porosity. For zero variance in the throat
conductivities, the effective porosity and volumetric porosity are virtually equal.
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Figure 6.24: Apparent longitudinal dispersivity for ln throat conductivity variance
of 4.0 with different throat length distributions.
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Table 6.3: Results from Flow and Transport Simulations.

Exp. q uL A Pru;Oz; Ou; /UL o
Label | (m/d) | (m/d) | m) | (m) (m) (m)
2D1A | 43 44 36 24 / 84 81 /.77 20/ 6.4
2D1B .54 .5 36 29 / 6.6 13/11 38/71
oDIC| 89 | .93 | 36 | 49/50 2.0/ 16 100 / 8.2
2DID | 1.6 1.7 36 63 /4.2 2.8 /23 177 /9.9
9D2A | 42 | 42 | 60 | 33/13 82/ 82 97 /11
°D2B | 53 | 54 | 60 | 37/ 11 1.4/ 1.1 50 / 12
2D2C 93 94 60 58 / 8.7 22/18 125 / 16
2D2D | 18 | 19 |60 | 67/79 3.0/26 201 / 21
9D3A | 42 | 42 | 60 | 29/9.1 83/ 82 24/ 74
oD3B| 54 | 55 |60 | 32/80 14/ 1.1 4/91
oD3C | 93 | 10 |60 | 44/786 2.1/ 1.7 93 /13
oD3D | 18 | 2.3 | 60 | 49/81 2.7/23 134 / 19
2D4A | 42 42 66 39/ 14 .82/ .80 32/11
2D4B .56 .56 66 42 /11 14/11 56 / 13
2D4C 1.0 1.0 66 57 /94 23/18 130 / 17
2D4D 2.0 2.3 66 67 /9.0 3.1/26 206 / 23
3DIA | 28 | 28 |100]50/20/21 |10/ 86/ .86 51 /17718
3DIB| .37 | 38 |100]49/16/16|1.6/1.2/12| 77/19/19
3DIC| 69 | 81 |100|60/12/12|24/1.9/1.9|143/23/22
3D1D 1.5 24 100 |61 /11 /11128/23/23|170/26/25
3DIA| 27 | 29 |180|67/28/28 |11/ 91/ 91| 70/25/%
3DIB| 36 | .37 |180{75/21/21]|16/1.2/12|119/26/26
3DIC| .71 | .80 |180|87/16/16|24/1.9/19|206/30/30
3DID| 16 | 22 |180|92/13/14|30/24/25|218/32/36
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However, as the variance in throat conductivity increases, the transport velocity be-
comes increasingly larger than the Darcy flux, indicating a decrease in the effective
porosity. It is logical that effective porosity should be a function of the variability
in the throat conductivities. As variance increases, the degree of preferential flow
through the network increases and more near-zero permeability regions are created.
Simple regression of the data suggests the following empirical equation

_1)2
¢e = ¢ (1 —_ gn_l_(i)}l-aft2) . (629)

We know that asymptotic behavior (nearly constant dispersivity) occurs when
the size of the plume is sufficiently large. A rule of thumb (for example, [53]) is that
the plume must travel about 10 correlation lengths before becoming asymptotic.
This has been supported by laboratory observations of Irwin et al. [72] who found
that dispersion of a front in a one-dimensional packed column became asymptotic
after traveling about 20-30 correlation lengths. However, plots showing travel dis-
tance of a plume versus apparent dispersivity (for example, Figure 6.20) and those
showing plume size versus apparent dispersivity (for example, Figure 6.22) expose
a problem. These plots show that networks with the same correlation length may
reach asymptotic conditions at much different travel distances or plume sizes. This
implies that an expression defining the travel distance or plume size necessary to
reach an asymptotic state should include conductivity variance.

Determining the travel distance or plume size at which plume growth becomes
asymptotic is difficult because the transition to a constant dispersivity is a grad-
ual one and there is much short-time variability in the observations. However,
the asymptotic dispersivitv may be estimated with some precision and the pre-
asymptotic trend in the observations is known. Assume that the asymptotic state
begins at the intersection of the constant dispersivity line and the pre-asymptotic
trend. This is a measurable quantity. The pre-asymptotic trend is followed more
closely when apparent dispersivity is plotted against plume size rather than travel
distance. Therefore, an empirical equation describing the pre-asymptotic trends in
dispersivity as a function of plume size was determined from network observations
to be

o, ~ "% (6.30)

for two and three dimensions. Using this expression and the nearly asymptotic
dispersivities listed in Table 6.3, we may estimate the relationship among plume size,
correlation length, and conductivity variance. Empirical relationships derived from
these limited data indicate a significant dependence on the conductivity variance.
The following relationships define the longitudinal plume size for which asymptotic
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dispersivity conditions may be expected, in two and three dimensions, respectively.

1 4
e 6.31
0$L>/\(Uft+1+oft+100ft) ( )

) (6.32)

Oz > A (Uft + -
These are coarse approximations designed to show interdependence for the data
collected and should not be taken as universal. They show a marked increase in
the plume size required for asymptotic conditions as the variance in conductivity
increases. These and other data may be used in the future to examine the idea
of an apparent correlation length that includes the conductivity variance. This
implies that, as conductivity variance increases, the size or relative importance of
the high-conductivity structures increases.

Equation 6.25 is the fundamental relationship between plume size and the statis-
tical properties of the network. Figure 6.26 shows plume size, correlation coefficient,
velocity variance, and the product of plume size and correlation coefficient for a sin-
gle test. For large plumes, the term o, /UL can be taken as a constant that is a
network property. Therefore, for a;, to become constant at the asymptotic limit,
the product oz, pz,., must become constant. That is, pz,,; must become very small
as the plume grows in size. This situation is fully consistent with the idea that there
is a transition from an initially well-correlated plume to an ultimate condition of
Brownian motion. For if the particle’s velocity is perfectly correlated to its position
relative to the centroid, pg,, is 1.0. If the particle’s position and velocity are not
correlated (i.e. pgin; — 0, With 04ipziu; 7 0), the particles are essentially undergoing
random motion that can be described as a Brownian process. Evidently, the growth
of a; results from the relationship between plume size, o, and correlation, pgiy,.

The two components of asymptotic dispersion ( priy,/ur and Ozipg.;) were
analyzed separately. Non-linear regression of the observed, normalized velocity de-
viations (o, /UL, ¢ = L, Ty, Ty) were performed. The resulting empirical equations

are
Oy, _ (347 4+3n> (3—n> 9 _
= ( 6 ) + ( 20 o5t + 5 ) O n=23
Our 6+n> (ﬁ) (7—277,) 2 _
e ( 0 + = ) ore + —50 ) 7fv n=2,3, (6.33)

where n is the dimension of the problem. These asymptotic, normalized, velocity
deviation terms proved to be insensitive to the different network topologies and
correlation lengths used in these experiments. Figure 6.27 shows network observa-
tions and these empirical equations for longitudinal and lateral velocity deviation

140




100 oo ........................ ...... / ............ .......

Travel Distance of the Plume Centroid, m

Figure 6.26: Transport statistics for experiment 2D3B.
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for the two-dimensional experiments. These data show a small quadratic trend with
increasing throat conductivity variance. The intercepts describe velocity variation
due to the network topology when all throats have the same conductivity value.
In two dimensions, the longitudinal and lateral values for this intercept are about
0.80. This intercept value may be estimated analytically by assuming an infinite
coordination number and perfect isotropy. Each throat’s velocity magnitude in the
direction of the applied pressure gradient is cos?f. Flow perpendicular to the di-
rection of applied gradient is sin# cosf. By integrating over all possible angles, the
mean velocity magnitude is computed to be 1/2 v; and the variance in velocity is 1/8
vy, where v; is the velocity magnitude in a throat parallel to the applied gradient.
Thus, the normalized deviations in velocity should be 1/+/2 (or 0.7071) in both the
longitudinal and lateral directions. This is close to the observed value of 0.8. The
difference may be due to less-than-infinite coordination number.

Figure 6.28 shows trends in normalized velocity deviations versus increase in
throat conductivity variation for the three-dimensional tests. The three-dimensional
results show nearly linear behavior.

Gelhar [53] offers a relationship between the velocity variance and the conduc-
tivity variance for isotropic, statistically homogeneous media. These equations are
only valid in the ergodic limit and for small velocity variance. In three dimensions,

8 os2J?
02 = —=L (6.34)
“ 15 K,*
1 042J?
2 f
0,2 = — (6.35)
¢ 15 K,°

where J is the head gradient in the longitudinal direction. These equations suggest
a constant ratio of longitudinal to lateral velocity variance of 8. In two dimensions,

0.2 = -g-an'ﬁQ (6.36)
oy2 = %aﬂ# (6.37)

and the same ratio is 3. These indicate that there should be a constant ratio between
o, /UL and oy, /UL that is v/8 in three dimensions and v/3 in two dimensions. The
network observations produce a nearly constant ratio of 1.2 for all observations
except two-dimensional networks with zero throat variance for which the ratio is
1.0. '

Regressions were also performed on the second term in the dispersivity (0 z; Pziui)-
Observations of these quantities in the network model show dependence on both cor-
relation length, and throat conductivity variance. The resulting empirical equations
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Figure 6.27: Normalized velocity deviations versus standard deviation in throat
conductivity for the two-dimensional experiments.
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Figure 6.28: Normalized velocity deviations versus standard deviation in throat
conductivity for the three-dimensional experiments.
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are
of(n —3)
9\ (——-——f I
oLPLu;, = |1+ - 1—0"6 + a1 10'ft (6.38)
A1 e
OTPTur —~ 3 (-2—7?, + 9= n) . (6.39)

In three dimensions, the longitudinal correlation term reduces to a linear function
of the correlation length and the conductivity variance. In two dimensions, the lon-
gitudinal term’s dependence on correlation length diminishes with increasing con-
ductivity variance. In fact, in the limit of infinite conductivity variance (o — o)
with finite correlation length, the longitudinal correlation term is independent of the
correlation length. The lateral correlation term shows the opposite effect. For large
conductivity variance, the lateral term approaches a linear function of correlation
length. These effects are demonstrated in Figure 6.29 which shows the empirical
equations and model observations for a single experiment series.

The empirical equation predictions are compared against the model observations
in Figure 6.30. This figure simply demonstrates that the empirical equations in terms
of problem dimension, correlation length, and throat conductivity variance capture
most of the variability in the observations.

When the two sets of empirical equations (Equations 6.33 and 6.38) are com-
bined, we have an empirical expression to describe apparent asymptotic dispersivity
in networks. Figures 6.31 and 6.32 show empirical predictions of dispersivity ver-
sus network model observations. Because these data come from 6 different network
topologies in two and three dimensions with throat conductivity variances ranging
from 0 to 9, there is some confidence in these empirical equations for anticipating ap-
parent dispersivities, given the basic structural elements of the network (dimension,
correlation length, and throat conductivity variance).

6.4 Creating Networks to Match Macroscale Observa-
tions

The preceding sections have demonstrated an ability to empirically estimate macro-
scopic effective conductivity and apparent dispersivity of a given network prior to
simulating flow and transport. This ability will now be used to create networks
having desired macroscopic properties given from field testing at a particular site.
The goal is to supplant the actual porous medium with a much coarser medium (the
network) having the same flow and transport character. Flow and transport char-
acter includes the volumetric fluid content, resistance to fluid flow, and observable
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constituent spreading. If these properties are matched for all desired observation
scales, the network medium and the actual medium are, for simulation purposes,
identical.

6.4.1 Network Parameters.

Parameters that control the network structure and dictate flow and transport be-
havior are:

e average connection spacing,

e maximum throat length,

¢ mean In throat conductivity,

e variance in In throat conductivity, and

e probability decay parameter for throat creation.

Note that no transport properties are assigned when simulating conservative trans-
port. All transport properties are inherent in the network structure itself.

Like other ‘inverse’ problems, establishing fine scale data (individual throat prop-
erties) to match coarse property measurements is not a well-posed problem. The
resulting network is not unique. There exists an infinite number of networks that
produce the same averaged macroscopic behavior. It seems logical to begin with the
most difficult feature to match, dispersivity, and work toward the simplest feature,
porosity.

6.4.2 Matching Apparent Dispersivity.

Equations 6.33 and 6.38 are empirical expressions describing apparent dispersivities
as functions of dimension of the network, the correlation length, and the throat
conductivity variance. These equations may be used to create nomographs showing
the interdependence among the parameters and the dispersivities. Figures 6.33 and
6.34 show these nomographs and the data used to create the empirical equations they
depict. Far from the cloud of data points, little confidence should be placed in these
curves as they represent significant extrapolation. These graphs reinforce the earlier
discussion that the longitudinal dispersivity is controlled largely by conductivity
variance, while lateral dispersivity is controlled more by correlation length. These
tendencies are physically consistent with the ideas presented in Chapter 3. Lateral
dispersion is caused primarily by flow division and longitudinal dispersion is caused
primarily by travel-time variation. The degree of separation by flow division is
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governed by the lengths of the throats. Travel-time variation results from differences
in individual throat conductivities.

These relationships mean that, to get very small lateral dispersivities seen in
nearly homogeneous materials, the correlation length must be very small. This
implies that the average connection spacing must also be small and the resolution
must be high. This is true for continuous discretization schemes (such as finite
elements or finite volumes) as well. For these schemes, numerical smearing of the
plumes may overwhelm small values of physical dispersion unless much resolution is
employed.

Longitudinal and lateral dispersivities measured from field tracer tests or inter-
preted from contaminant plume growth rates are used to select the appropriate con-
ductivity deviations and correlation length from the nomographs. Knowing these,
the throat conductivity variation used in network generation is simply the square of
the standard deviation.

The average connection spacing must be set to provide adequate spatial resolu-
tion in the domain, permit a reasonable number of throats beneath the correlation
length, and not exceed a tolerable limit on the number of connections to be sim-
ulated for the given computational resources. The average connection spacing, s,
defines the number of connections by

N~ —. (6.40)

where Vj is the volume of the simulation domain in three dimensions, the area of
the simulation domain in two dimensions, or the length of the simulation domain in
one dimension.

Coordination numbers should about 8 in two dimensions and 11 in three di-
mensions to adequately represent the possible throat orientations and approximate
isotropy. These requirements increase as the conductivity variance increases. Aver-
age coordination number may be estimated

2N

CN = N,

(6.41)

where CN is the approximate average coordination number, N is the number of
throats in the domain, and N, is the number of connections in the domain. The
network model will function with smaller coordination numbers, but our ability to
anticipate behavior is lessened. When coordination numbers are small the discrete-
ness of the medium can ‘jump’ scales. That is, the medium begins to ‘see’ a min-
imum discrete scale that is larger than the average connection spacing. It behaves
as though it were a coarser network. To ensure these desired coordination numbers,
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the average connection spacing should not exceed about two-thirds the correlation
length. Therefore, the average connection spacing should be the minimum of the
spacing needed for resolution or two-thirds the correlation length.

Knowing the average connection spacing, a minimum connection spacing must
be provided for random connection placement. A minimum spacing of about 60
percent of the average is usually a good value. This minimum is easy to produce
when generating random numbers and does not restrict the time step unduly. As
the minimum spacing approaches the average spacing, we must generate very many
random numbers before finding a satisfactory connection distribution. If the con-
nections are distributed in a spatially-regular fashion (as with a structured grid),
the minimum spacing is not required.

The maximum that length and probability decay functions must be assigned. If
the average connection spacing and the correlation length are separated by a factor of
3 or more, the probability decay function should be used to establish the correlation
length. This will encourage better local connectivity with enough longer throats to
produce the desired correlation length. In this case, one third the desired correlation
length should be used for the probability decay function and the maximum throat
length should be set to some value larger than the correlation length (perhaps 1.5
times the correlation length).

If the average connection spacing and correlation length are not separated by a
factor of 3, added emphasis on local connectivity is probably not needed. Therefore,
the maximum throat length may be set to the correlation length and the decay
parameter may be set to some large value (perhaps the correlation length or larger).
Finally, the number of throats should be chosen to achieve the desired coordination
number using Equation 6.41.

6.4.3 Matching Effective Conductivity.

At this point, the throat topology has been established and the required throat
conductivity variance is set. The mean In throat conductivity, s, must be computed
to produce the desired effective conductivity. Topology and conductivity variance
fix the dispersive character of the network. Changing iy does not affect apparent
dispersivities. Therefore, the network generator uses a reference value for ;15 and the
defined network topology to compute the geometric mean of the patch conductivities
and the variance in patch conductivities. These quantities are used in Gelhar’s small
perturbation expression (Equation 6.3) to compute an interim effective conductivity,
K. Arevised pf is computed by linear scaling of the computed and desired effective
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conductivities,

us =In (e“r I;_) (6.42)

[+
where p, is the reference mean In conductivity (usually 0), and K, is the desired
effective conductivity, [LT~!] ,

When direct effective-conductivity measurements are not available, a tracer
plume’s movements may be used to estimate conductivity of the medium. From
the tracer motion, the instantaneous speed of the plume’s centroid is needed. Di-
viding the total travel distance of the plume by the arrival time of the peak con-
centation provides an average velocity. This velocity may be significantly different
than the bulk seepage velocity and the asymptotic plume speed. A plume’s speed
only approaches the bulk seepage velocity in the asymptotic limit. Therefore, the
plume must travel great distances before its composite travel time is similar to that
predicted by the asymptotic seepage velocity and the distance traveled. Ideally,
two late-time images of the plume could be used to provide a more representative
velocity measurement.

With an estimate of the asymptotic plume speed, we may compute a correspond-
ing effective conductivity. Equation 6.29, predicts the effective porosity from the
volumetric porosity and throat conductivity variance. This effective porosity relates
bulk seepage velocity to a composite Darcy flux. With an estimate of the head
gradient from pressure contours, an effective conductivity may be computed using
this Darcy flux. Then, mean throat conductivity may be computed as before.

6.4.4 Matching Porosity.

Estimates of volumetric porosity may be extracted from core samples, from tracer
experiments, or, lacking other data, from literature values based on classification of
material in the boring logs. In its present form, the network model defines porosity
as a constant value for the domain. Porosity of the network is controlled by a
single value, the cross-sectional area of the throats (Ar). This same value for cross-
sectional area is applied to all throats in the domain. The volume of each throat
is simply the throat length multiplied by Ar. Therefore, this cross-sectional area
may be scaled to match the desired porosity. The network topology must be defined
before this scaling can be performed. Throats in the network are created with a
nominal cross-sectional area and their volumes are accumulated. Ar is computed

as follows.
ApdVy

nthroats

S Vi
m=1

A = (6.43)
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where Ar = modified cross-sectional area i, [L?],

Ap = reference throat cross-sectional area (chosen to be 1), [L2],
¢ = desired volumetric porosity, [—],

Vi = volume of the simulation domain, [L3], and

Vm = original volume of throat m, {L3].

For spatially variable porosity, a similar scaling could be performed in subregions
over which the porosity might be assumed constant. Or, a more realistic represen-
tation of porosity may be obtained by assigning porosity to individual throats in a
stochastic manner. Hassan and Cushman [59] demonstrate that non-uniform poros-
ity dramatically affects transport behavior. \

6.4.5 Application of the Conditioning Procedure.

!
The following steps summarize the procedure for creating isotropic networks to l
match macroscopic parameters ‘

e Use the desired longitudinal and lateral dispersivities and Figures 6.33 and \
6.34 to estimate correlation length and throat conductivity deviation.

e Set the average connection spacing based on the desired correlation length,
desired spatial resolution in the results, and available computational resources.

e Set the decay parameter and maximum throat length to match the choices of
correlation length and average connection spacing.

e Select the desired number of throats to ensure an adequate coordination num-
ber.

e Obtain the desired effective conductivity in one of two ways,

— directly from a field test or other measurement, or

— from an estimate of instantaneous plume speed in the asymptotic regime,
a computed effective porosity, and an estimate of the average head gra-
dient.

e Set the volumetric porosity to match observations. modified to account for
effective versus total porosity.

This procedure for network generation was followed to create and evaluate a
two-dimensional and a three-dimensional network. Table 6.4.5 shows the requested
properties, the network parameters, and the measured macroscopic properties after
simulating flow and transport.

156




Table 6.4: Examples of conditioned networks.

| 2-D Networks |

3-D Networks

Desired Properties

Apparent Dispersivities (m) 105 / 20 150 / 18 / 18
Asymptotic Plume Speed (m/d) 1.5 1.0
Computed Parameters
Correlation Length ( m ) 90. 85.
Standard Deviation in In K, 1.8 2.9
Variance in In Throat Conductivity 3.2 8.4
Effective / Volumetric Porosity 0.97 0.66
Average Connection Spacing (m) 25. 55.
Maximum Throat Length (m) 100. 85.
Probability Decay Parameter ( m ) 30. 9,999.
Effective Conductivity (m/d) 1.45 0.66
Resulting Properties
Average Coordination Number 9.5 8.8
Mean In Throat Conductivity 0.587 -0.538
Darcy flux (m/d) 1.61 0.57
Asymptotic Plume Speed (m/d) 1.76 0.81
Asymptotic Dispersivities 95.0 / 15.6 | 157.7 /214 /17.7
Number of Connections 5,991 33,555
Number of Throats 28,430 147,799
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The resulting media produced dispersivities that were very near the requested
values. Observed asymptotic plume speeds were reasonably close to those requested.
The speed was overestimated in the two-dimensional case and underestimated in the
three-dimensional case. In the three-dimensional case, the coordination number was
allowed to dip beneath the recommended value to conserve computation time. This
fact is probably responsible for the discrepancy between the desired and observed
plume speeds. This three-dimensional network contains almost all possible throats
shorter than the prescribed correlation length. Therefore, the coordination number
cannot be increased significantly without decreasing the average connection spacing.
If, after this process is completed, the resulting macroscopic properties are not close
enough to the desired properties, the input parameters may be adjusted.

6.5 Creating Networks From Laboratory-Scale Obser-
vations

When asymptotic, macroscopic properties are not available, the network must be
created to honor small-scale observations. These observations may consist of many
‘point’ values of conductivity taken from soil borings. A very different procedure is
followed to generate the network. The two basic steps are:

e define large scale stratigraphy or hydrogeologic units, and

e define statistical distributions for use within each distinct hydrogeologic unit.

6.5.1 Hydrogeologic Units.

The medium cannot be known wholly, but the hydrogeologic units that comprise the
study area may be delineated with some confidence. The philosophy employed in
this modeling approach is that, when possible, large scale structure in the medium is
established deterministically. Structure that exists beneath that scale is introduced
statistically. At sites with very little information, perhaps no distinct units may be
identified and all structure must be entered statistically.

Boring logs or penetrometer tests define contacts that separate hydrogeologic
units. The lateral extent and continuity of these strata may be estimated by intelli-
gent interpolation using ‘soft’ information such as depositional environments. Point
measurements may be analyzed statistically to determine distinct populations. The

resulting soil type maps are assigned to a material mesh consisting entirely of tetra-
hedra.
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6.5.2 Sub-Unit Statistical Distributions.

Throats will be generated and throat properties will be assigned based on mem-
bership in a particular hydrogeologic unit. The statistical pools from which throat
properties are chosen are assumed not to change within a unit. The quantities to
be determined for each soil type are:

e probability decay parameter for throat creation,
e mean In throat conductivity, and

e variance in In throat conductivity.

By design, the probability decay function is similar to an exponential semi-
variogram for conductivity. The two functions describe the same physical property,
the spatial persistence of a given value of hydraulic conductivity. If ample point
measurements are available within a soil type, a semivariogram may be fit to the
data [73]. A semivariogram model (Figure 6.35) is used as a measure of spatial
persistence of a particular property (e.g., conductivity). The variogram for hydraulic
conductivity is given by

1€ = o= SIK (e +6) ~ K (o) (6.44)
i=1

An exponential model to describe the semi-variogram is
(&) = ¢ +of(1 -7t (6.45)

where ¢ is the nugget and the sill or asymptote is the variance of conductivity,
o2. The range of the semivariogram is the principal correlation length. For the
exponential model, the range is approximately 3a [35]. Thus, the probability decay
parameter is approximately equal to a in the semi-variogram model. Given the
correlation length, the average connection spacing may be computed as before.

If all that is known about a medium’s structural scales is that they are larger
than the measurement of interest, the correlation length may be assigned some large
number. Plume growth will follow the appropriate trend in the pre-asymptotic
regime and an asymptote will not be reached. The maximum throat length should
be selected as some number larger than or equal to the correlation length, permitting
the correlation length to be enforced by the decay parameter.

All fluid must pass through the connections. Therefore, the connection or patch
conductivities describe the conductance of the network. It follows that point obser-
vations of conductivity should be considered equivalent to patch-averaged conduc-

tivity in the network. The mean sample conductivity must be converted to estimate
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the necessary throat mean conductivity. This conversion must account for orienta-
* tion of the throats. The topological anisotropy in the network is summarized by the
‘material tensor’. This tensor is computed by assigning a unit scalar conductivity
to each throat and computing the volume average of the orientations. With a unit
throat conductivity, Equation 6.6 reduces to

CN

Z ninth

t=1
CN
SV
t=1

As the coordination number increases in an isotropic network, this tensor approaches
a diagonal tensor with values of 1/n in the diagonal entries, where n is the spatial
dimension of the problem. Thus, for an isotropic network, in three dimensions,

N = (6.46)

100
[NJ={ 0 & 0 |,
00 3
and in two dimensions,
Lo
[N] N (’ 2 ) ,
0 3
and in one dimension,
[N]=1. (6.47)

To impose the effect of orientation, the observed mean may be multiplied by the
inverse of the material tensor to estimate the necessary mean throat conductivity,

-1 m
pg=In (E_(j)_e‘_‘_) (6.48)

where i, is the mean of the measured conductivities for this soil type, (LT~ and
b is a coefficient that accounts for local anisotropy. For a medium that is globally
isotropic (or nearly so), the inverse material tensor is equivalent to multiplying by
the dimension of the problem.

bn e”’”) (6.49)

uf=l"<“7—

In the limit of infinite coordination number, b is 1.0. For the coordination num-
bers tested here, this coefficient appears to be about 1.15. For example, in an
isotropic, two-dimensional network, the mean of the throat conductivities should be
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about twice the mean of the patch conductivities divided by the porosity. Throat
conductivity variance must be set to provide comparable variability in the velocities
between the network and the soil. Thus, the network and the soil should have similar
conductivity variances. Perhaps the installed network variance should be reduced
slightly to account for velocity variance caused by orientation. This orientation-
based velocity variance was observed in these tests to be less that 0.25.

The number of throats and number of connections are set as they were be-
fore. Creating these networks similar to unconditional simulation in geostatistics
[35]. This process creates equally-probable realizations of the medium, but does
not include the ability to enforce conductivity at a particular point in the domain.
Monte Carlo simulation is needed to assess risk and estimate uncertainty. Because
this network-generation process does not attempt to match effective, macroscopic
properties, the approach is not restricted to isotropic networks. This procedure for
generating networks from small scale observations is offered as an untested guide
based on accumulated experience and observations from the model.

6.6 Conclusions

Existing theory for predicting effective conductivity was shown to provide accept-
able results for a wide range of network configurations and conductivity variability.
Empirical equations were needed to describe normalized distributions of velocity
and velocity-position correlation that comprise an alternative form of the defini-
tion of dispersivity. When combined, these empirical expressions predict well the
asymptotic longitudinal and lateral dispersivities for the networks tested.

If asymptotic, macroscopic estimates of effective conductivity or apparent dis-
persivity are available, networks may be created to provide these desired properties
with little or no trial-and-error. This process was demonstrated to be reasonably ac-
curate for both two- and three-dimensional networks. Asymptotic conditions cannot
be predicted on the basis of correlation length alone. Conductivity variance must
also be considered. Correlation length is important for establishing apparent lateral
dispersivity and may dictate the minimum resolution required for a simulation.
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Chapter 7

Detailed Analysis of Flow and
Transport Behavior in A
Macroscopic, Discrete Network

Model of Porous Media

Abstract

Fluid flow and conservative tracer migration through stochastic, dis-
crete networks are analyzed in detail. Network simulations are compared
to known behavior, analytical solutions (where appropriate), experimen-
tal observations, and behavior of continuum-based models of groundwa-
ter flow and transport. Fluid flux through the network obeys a Darcian
relationship in a macroscopic sense. Therefore, network results compare
well with analytical solutions and continuum-model solutions for steady
and transient Darcian flow through homogeneous media. Further, the
network is shown to honor fluid-flux and head-gradient relationships ob-
served in laboratory experiments conducted by the University of Col-
orado [70, 51].

Transport of a conservative tracer through the network is shown to
be consistent with historical evidence of Gaussian concentration distri-
butions in porous media. However, the network results are not fully
consistent with advection dispersion theory. Differences between the
two theories are discussed. The network demonstrates an ability to
model observed transport in laboratory experiments with acceptable ac-
curacy. The network also produces reasonable, but unverified behavior
for density-dependent fluid flow.
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Chapter 5 presents an alternative approach for simulating flow and transport
through porous media that is based on stochastic discrete networks. These networks
are created by mapping the volume of porous material into many, interconnected,
one-dimensional conduits. These conduits (called throats) should not be confused
with individual pores in a porous medium. This representation is intended at a much
larger scale. The throats could be imagined as a well-connected system of fractures
within an impermeable matrix. Thus, instead of mapping a fracture system to
an equivalent porous medium [118], this approach maps a porous medium onto an
equivalent fracture network.

Chapter 5 shows the network model’s ability to reproduce the apparent scale
effect in dispersivity and physically-correct, wholly-downstream tracer migration in
the absence of diffusion. Chapter 6 demonstrates a procedure for creating discrete
networks to display desired macroscopic properties. Here, we provide a more detailed
evaluation of flow and transport behavior in the network and compare network
results to observations in real porous media. The comparisons will be grouped into
three categories,

e steady and transient saturated fluid flow,
e conservative transport in steady, saturated flow,

e density-dependent and variable viscosity flows.

Comparisons include documented analytical solutions for steady and transient flow
through porous media and laboratory observations of fluid flux through homoge-
neous and heterogeneous experimental packings [70]. Network predictions for con-
servative transport are assessed for their consistency with known tracer transport
behavior and are compared with advection-dispersion-theory predictions. Density-
dependent flows are computed with the network model and assessed qualitatively.

7.1 Saturated Fluid Flow

Throats meet and exchange mass at connections that are assumed to contain no
volume. Each throat in the network conducts fluid as a homogeneous porous mate-
rial. Therefore, at low Revnolds’ number, flux, ¢, through each throat is described
by a one-dimensional Darcy’s law (for example, [33])

AH
= 7.1
¢ X — (7.1)
where H is the total head, [L], and [ is the position along the throat, [L]. The
constant of proportionality is the scalar hydraulic conductivity for that throat,

K, [LTY.
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Adopting a larger view, the network is simply a coarse porous medium consisting
of many flow paths (throats), not unlike the pore-scale structure. At this larger scale,
bulk fluid flux through this coarse medium may be related to applied gradients in
total head. It is not surprising that, when viewed in a spatially-averaged sense, the
network also obeys a Darcy-like law for fluid flux. This result is shown analytically
by Peters [108].

Because the discrete network produces a macroscopic approximation of Darcy
flow, the network and traditional, discretized-continuum models approximating the
Darcy flow equation yield similar results. In fact, one could easily construct a
network and a finite difference approximation having identical coefficient matrices
for solving the global head solution. Obviously, solving the same linear system
results in the same total head field for both approaches. Network structures con-
taining longer-range connectivity lead to coeflicient matrices with additional entries,
but the fundamental behavior of the macroscopic head field is similar. Thus, flow
through discrete networks, like flow through discretized continua, should approach
macroscopic, analytical solutions for Darcian flow through homogeneous media. To
demonstrate the behavior of fluid flow in the network, some example problems are
solved for both steady and transient flow.

7.1.1 Analytical Solutions for Steady, Saturated Flow

Steady, Darcy flow equation may be solved analytically for simple boundary con-
ditions and homogeneous media (for example, [46]). For example, steady flow in a
confined aquifer bounded by parallel ditches produces a linear distribution of piezo-
metric head between the two, known water levels at the ditches. To examine this
case, a network consisting of 1000 randomly positioned connections and 5000 throats
lving in an x — y plane was constructed. Constant total heads of 120 m and 100 m
were applied at 2 = 0 and = = L, respectively. Solid boundaries were installed at
y =0 and y = L. Because of symmetry in y, the boundaries in y are equivalent to
infinite domain and the problem is, effectively, one dimensional. Figure 7.1 shows
a plan view of the contours of the piezometric surface from the network simulation
and a plot of network results (along a line y = L/2) versus the analytical solu-
tion. The network results were averaged to a uniform 51- x 51-node visualization
mesh for interpretation. Agreement is generally verv good. Near the boundaries,
a slight effect from averaging can be seen. Averaging becomes one-sided near the
boundaries, causing an apparent underprediction at the upper end and an apparent
overprediction at the lower end for this planar solution.

Another well-studied analytical solution is steady flow to a well in a confined
aquifer [33]. The simplest solution is for a well at the center of circular island. The
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Figure 7.1: Steady flow between two ditches in a confined, homogeneous aquifer.
Contours of the piezometric surface (top) and cross-section comparing network re-
sults and the analytical solution for Darcy flow (bottom).
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well is screened over the entire depth of a constant-thickness, homogeneous, confined

aquifer. This solution is Theim’s formula,

Q Te
ho—h=s—=ln™ (7.2)
where hy = fixed head on the boundary, [L],

h = piezometric head, [L],
Q = volumetric flow rate through the well, [L3T~],
K = saturated hydraulic conductivity, [LT™!]
B = thickness of the aquifer, [L],
re = distance from the well to the island boundary, [L], and
r = radial position from the well, [L].

In truth, Theim’s formula is only valid when fixed head is applied on the bound-
ary (the well-in-an-island problem). However, in an infinite aquifer, drawdown
(hg — h) would be very small at some large radius because the flow is converg-
ing. As radius increases, the area of the face of an imaginary cylinder increases,
while the total flow rate through this face remains constant. Therefore, the specific
flux and the head gradient diminish with r. We may use this approximate solution
in an infinite aquifer to obtain an approximate head distribution in a rectangular
domain by employing the method of images or superposition [33]. One simply accu-
mulates the effects of many wells, both real and artificial, to enforce the boundary
heads.

Our problem has a single pumping well at the center of a rectangular island. A
single image well is needed across each boundary to inject fluid at the same rate
the real well withdraws it, thus creating offsetting effects and no drawdown along
the boundaries. However, each of these image wells requires another image well to
offset its effects on the far boundarv. Thus, the series is infinite, but converges. This
process was used to create an approximate analvtical solution for this problem.

The network created for the two-ditch problem was also used to simulate the well
problem. A uniform, constant head was applied to all boundaries. At the center
of the domain, 5 m3/d were extracted from a single connection. Figure 7.2 shows
predicted head values and the analytical solution. The network-produced drawdown
curve closely follows the analytical solution. As with other discrete approximations,
the accuracy of the network solution near the well is a function of the resolution.

The two solutions presented, steady flow between two ditches and steady flow
to a well, are simple test cases that have been used to test continuum models of
Darcy flow for many years. They are given here to reaffirm that macroscopic flow
in a discrete network is very similar to macroscopic flow in a discretized continuum
model for Darcy flow.
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Figure 7.2: Steady flow to a well in a confined, homogeneous aquifer. Contours
of the piezometric surface (top) and comparison of network results and analytical

solution (bottom).
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7.1.2 Comparison to Laboratory Measurements of Steady, Satu-
rated Fluid Flow

To further explore the behavior of the network model, simulation results were com-
pared against laboratory data collect by Tllangasekare et al [70]. The testing appa-
ratus is summarized here and is described in more detail by Illangasekare [70] and
Garcia [51]. Flow aspects are discussed here. Transport for these same experiements
is discussed in the next section of this chapter. The experimental device is a 244
em x 122 em x 6.2 em horizontal tank (Figure 7.3). Fixed heads are applied to the
boundaries in the longest dimension. The top and bottom boundaries and the sides
are solid walls. Experiments were conducted with homogeneous and heterogeneous
packings.

For the homogeneous packings, the tank was filled uniformly with a #30 sand.
The saturated hydraulic conductivity and volumetric porosity of this sand were
determined in separate testing to be 0.116 cm/s and 0.47, respectively [51]. The
ends of the tank were packed with gravel to facilitate an even application of the
constant head boundary conditions. The gravel, estimated by Garcia [51] to be
about 4 cm wide, was separated from the sand by a screen and filter material.
Therefore, an effective tank length of 236 cm was adopted for the remainder of
these comparisons.

Fluid flux through the slab was measured under steady flow conditions with fixed,
different heads applied at each end of the tank. Heads were measured at 45 internal
sampling ports distributed throughout the domain (Figure 7.4). The prevailing
hydraulic gradient was estimated using head values measured in the sampling ports
nearest the end boundaries. This measured head gradient was considered a more
reliable measure than the applied head boundary conditions {70]. This gradient and
the sample length were used to create appropriate boundary conditions.

Several pieces of information were needed to construct the network. These in-
clude an average interconnection spacing, a maximum throat length, the mean In
conductivity for the throats, and the variance in In throat conductivity. A single
material type was used to represent the sand. Because the porous slab is very thin,
a two-dimensional network layout was selected.

This medium was a carefully-packed, artificially-homogeneous material. The
largest characteristic lengths in this medium were estimated to be on the order of
several grain diameters. Therefore, the network that best represents this medium
is one that contains only short throats. Interconnection spacing and maximum
throat length were set to be 2.0 cm and 4.0 cm, respectively to provide resolution
comparable to a 118 x 61-node regularly-spaced mesh. The flow solution is not
sensitive to the choice of these spacings. Virtually the same flow solution could be
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Figure 7.3: Diagram of the experimental tank at the University of Colorado (from
Illangasekare [70]).
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obtained on a coarser network. However, transport comparisons to be discussed
later reveal that, even this resolution is too coarse to describe multidimensional
transport through this homogeneous material. The throat-creation decay parameter
was arbitrarily set to some large number to encourage most connections closer than
4 cm to be joined with a throat. These parameter choices provided about 7,500
connections and 37,000 throats.

A small variance in In throat conductivity (0.5) was installed to approximate
local irregularities among the flow paths. Chapter 6 proposed that observed con-
ductivities should be compared to patch conductivity values, not throat values. The
following equation was provided to approximately relate mean patch conductivity
to mean throat conductivity in isotropic networks

nb—

K; = ?Kp (7.3)
where n = dimension of the problem, [-],
b = anisotropy coefficient, [—],
¢ = porosity, [—], and
K, = patch conductivity, [LT~1].

The anisotropy coefficient adjusts the conductivity to account for a finite coor-
dination number. If an infinite number of throats were represented on a patch, the
patch would be perfectly isotropic. Small coordination numbers mean that there
will be significant anisotropy at the patch level. As the coordination number ap-
proaches infinity, the anisotropy coefficient tends to 1. For coordination numbers
near 10, this coefficient is about 1.15.

Not all void space in a porous medium is equally accessible to the flowing fluid.
There are recirculation zones and local, low-permeability zones. We may separate
the mobile and immobile fluids explicitly during the calculation or we may treat
the immobile fluid as part of the matrix. For these exercises, the immobile fluid
was treated as solid and not included in the throat volumes. Therefore, an effective
porosity was needed to create the network. DeMarsily [33] offers a ratio of about 0.8
for effective to total porosity for sands. With a measured volumetric porosity of 0.48,
the sand in the experiment should have an effective porosity of about 0.38. Using
this porosity and the permeameter-measured conductivity for this sand (.116 cm/s
or 6.96 cm/min), Equation 7.3 suggests a throat conductivity of 42.13 ecm/min.
When tested, the resulting network produced a computed, mean patch conductivity
of 8.12 em/min and an estimated effective conductivity of 0.13 cm/s.

Illangasekare et al. [70] conducted several fluid flow experiments in this homoge-
neous packing. Two experiments were selected for comparison to the network model.
For this discussion, they will be labeled HMTEL (homogeneous tracer experiment
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1) and HMTE? (homogeneous tracer experiment 7). The effective conductivities
of the material, as packed, were experimentally estimated to be 10.65 cm/min for
HMTE! and 8.51 em/min for HMTET [51]. Both exceeded the permeameter mea-
surement of 6.96 cm/min. Observations indicated a measureable decrease in the
effective conductivity of the slab with the age of the tank [51].

The constructed network medium was used, without adjustment, to compute
fluid conductance. In HMTEI, the applied head boundary conditions were 55.94
cm on the right, and 49.10 cm on the left. These heads are slightly modified from
those given by Garcia [51] to account for a 236 cm simulation domain. The resulting
flowrate through the network was 171 cm3/min. Illangasekare et al. [70] observed
a flowrate of 228 em?® /min. Similarly, HMTE7 was simulated with boundary heads
of 67.33 cm and 65.62 cm. The computed flowrate was 42.75 cm3/min and the
observed flowrate was 46.95 cm3/min. The desired flux through the network was
met by linearly scaling the mean value of the pre-calibration throat conductivity
distribution and regenerating the network. Figure 7.5 gives observed contours of
total head from Garcia [51] and those computed with the network for HMTEL. The
measured and modeled heads are similar and, not surprisingly in this homogeneous
medium, nearly planar.

Illangasekare et al [70] also explored flow and transport through controlled het-
erogeneous media. The heterogeneous packing used five sands for which the hy-
draulic conductivity ranged from about 6 m/d to over 1000 m/d. The frequency
of occurrence of these sands was designed to match a lognormal distribution. The
tank was subdivided into 200 compartments, each 12.2 em x 12.2 cm and 6.2 cm
deep. The cells at the ends of the tank were made smaller to permit the installa-
tion of a gravel reservoir for uniform application of boundary heads. Within each
compartment, a single sand type was placed. The spatial distribution of sand types
was designed by the Waterways Experiment Station and the University of Colorado
using a simulated annealing algorithm from Deutsch and Journel [35]. The objec-
tive was to create a medium with long-range continuity of material properties. The
variogram used to generate the packing was anisotropic with a range of about 90
cm along the tank’s long dimension and about 18 cm across the tank. The realiza-
tion chosen contained higher conductivity paths toward the interior of the domain
to minimize the effects of lateral boundaries on transport through the sample. Af-
ter creating the experimental medium, its properties were analyzed. The resulting
mean conductivity in the lognormal distribution was 5.77 cm/min, the observed
variance in lognormal conductivity was 2.86 [51], and the observed longitudinal cor-
relation length (or range) was about 111 cm [51]. Figure 7.6 shows the distribution
of sands in the domain. The gray border is a bounding box used only during network

173




Direction of Flow

No Flow

PBSH uRISu0)

........... wvw.lla\l ..
e ® [ [ 3 o=
S ~ps- e
[ ) [ 3 e=r ® = °
e b Py SD—— N
e LR B R M ETT T
® [ ki P A A Y T e
“ev & Tes TeR TTwe—
....... 9 LG mrmm e
TTTeR T ex  ex P P
s o s et 808 ——— -
..... ll\l.\\\.«"tl. —.
e TN o o
e, - T —
L [ B l X3 P PY

PBOH JUBISUO))

No Flow
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construction to avoid boundary effects and is not part of the simulation domain.

The heterogeneous experiment may be simulated by the network in two ways.
Because we know the material type at each position in the domain, we may discretize
the domain into many, nearly homogeneous regions and assign properties based on
spatial position. Or, we may create a network using only the histogram of these
material types and a measure of their spatial continuity. Taking the first approach,
Figure 7.6 was used as a material mesh, defining the large-scale heterogeneity. This
documents the ability to perform conditioned simulation using the network. El-
ements in a material mesh provide a map for assigning throat properties. Each
material type points to a particular statistical distributions used for throats lying in
that element. Throats that cross element-type boundaries are assigned the harmonic
mean of conductivities drawn from the two conductivity distributions.

The interconnection spacing was set relatively small and maximum throat length
was kept short to resolve the conductivity blocks. An average connection spacing
of 3 em was chosen to provide about 4 connections across the smallest material
element (12 ¢m). The maximum throat length was selected to be 6 cm and the
throat length distribution was made uniform by selecting a large probability decay
parameter. Each material was assigned a small conductivity variance to represent
local non-uniformity and a mean throat conductivity for each material type was
computed with Equation 7.3.

An alternative method for constructing the network uses only the statistical
distributions of conductivity and a measure of the characteristic lengths. Taking
this approach, a single material type was chosen to represent the entire domain.
Within this material type, the mean throat conductivity was computed by applving
the mean from the lognormal distribution of sand conductivities, 5.77 cm/min, as
the patch value in Equation 7.3. This suggested a distribution with a mean throat
conductivity of 34.92 em/min. The variance in In throat conductivity was assigned
to be the same as the sand-type distribution. 2.86 [51]. The throat-probability-decay
parameters were given by Garcia’s fitted variogram, 37.2 ¢m in the longitudinal and
about 7.2 cm in the lateral [70]. The created network was comparatively very
coarse, requiring only 370 connections and about 1200 throats. This coarseness was
possible because only the statistical distribution of characteristic lengths needed
to be resolved. The largest characteristic length in this material is about 1 m.
Therefore, an interconnection spacing near 10 em was possible. The maximum
throat length was set to be about 240 ¢m and the exponential-decay probability
function determined which throats to create.

This statistical network medium had the same distribution of properties as the
experimental medium, but included no information about the relative position of
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Figure 7.6: Distribution of materials in the experimental tank. Red indicates #8
sand, orange, # 16 sand, green, #30 sand, blue, #70 sand, and navy, #110 sand.
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the materials. Taking this strictly statistical approach to network creation forfeits
the ability to look at spatial detail inside the domain. This is evident by compar-
ing details of conductivity. Volume-averaged conductivities are shown for the two
approaches in Figure 7.7. In the network with only statistical structure. material
continuity is ensured by throat lengths. This structure is not apparent when viewing
connection-level average conductivities. The head distribution with statistical struc-
ture resembles a perturbed linear pressure drop, whereas the head field in Figure
7.8 contains obvious spatial structure.

Boundary heads applied to both networks were 57.03 ¢ on the right and 55.44
cm on the left boundaries, assuming the same 236 cm medium length. Contours of
head for the two networks are given in Figure 7.8. Again, the internal head structure
between the two network media are vastly different, but the total head drop is the
same. Head values from the experiment were not available.

Observed flow through the network with explicit structure was 51.0 em? /min,
which is verv near the experimental value of 50.2 em? /min. Without modification,
the measured flowrate through the statistical-structure network was about 100.3
cm3/min, or nearly twice the observed flowrate of 50.2 em?®/min. Given the 3
order-of-magnitude range of conductivity values in the individual sands, this factor
of 2 seems a reasonably close pre-calibration approximation. The mean of the throat
conductivity distribution was scaled to be 17.47 cm/min to match the observed flux.

The alternative network structures presented here represent the extremes. Most
applications will fall between these two approaches to network creation. Large-
scale stratigraphic structure may be provided by a material mesh and the remaining
structure would be added statistically.

7.1.3 Transient, Saturated Flow

Transient fuid flow must account for storage in the matrix-fluid system caused
by compression of the fluid and solid and by rearrangement of the matrix [46]. In
continuum models, this is normally handled through a storage coefficient multiplying
the time derivative in the flow equation. The fluid/matrix system is assumed to
compress elastically, permitting fluids to move in and out of storage with no change
in material properties (e.g., porosity). A similar approach is adopted in the network.
Storage in the matrix/fluid combination is lumped into an apparent compression.
greatly simplifving the model’s internal accounting. The specific storage may be
related to the compressibility by

Ss = cppg@ (7.4)
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Figure 7.8: Computed head fields with the heterogeneous packing.
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where S, = specific storage, [L71],

cp = apparent compressibility, [T2LM ],
p = fluid density, [ML™3], and
g = gravitational acceleration, [LT~2].

With this knowledge, transient flow through the network may be compared with
transient, Darcian flow through saturated porous media. There are several analyt-
ical solutions for transient, Darcian flow, including the two problems chosen here,
transient flow to a well and a traveling pressure wave. The Theis solution describes
transient flow to a well in an infinite domain (for example, [33]).

_ Q@ [T
Wt = g | (7.5)

un = @s- (76)
= total head, [L],
pumping rate, [L3T 1],
hydraulic conductivity, [LT™!],
aquifer thickness, [LT~?],
time, [LT 2], and
= radial distance from the well, [L].

ﬁ:*UdNQE
I

'The network simulation was performed in a square, bounded domain, and the
method of images was used to estimate the analytical solution (Figure 7.9). The
network reproduces this snapshot of transient growth of a cone of depression with
reasonable accuracy. The transient head at a point 20 m from the well is examined
in Figure 7.10. For elapsed time larger than 4 days, the comparison between ana-
lytical and network solutions is very good. For elapsed time less than 4 days, the
network predicts early arrival of measurable drawdown. The network is a coarse
discretization of the medium, while the analytical solution assumes a perfect contin-
uum. The discreteness of the network tends to smear the large spatial gradients in
head seen in the first 4 days. Similar effects should be expected with most discrete
approximation to diffusion-like equations.

The network model was used to simulate a traveling pressure wave in a confined
porous medium of uniform thickness. Initially, total head is uniform throughout
the domain. At time 0.0, a step change in the pressure is applied to one boundary.
This pressure discontinuity propagates through the domain and degenerates. In a
semi-infinite domain, the solution is given by

:I?Ssl/2
h(zx,t) = h; + hy erfc <W> (7.7)
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Figure 7.9: Transient flow to a well in a confined, homogeneous aquifer. Contours
of the piezometric surface (top) and comparison of network results and analytical

solution (bottom) for an elapsed time of 15 days.
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where h; = initial, uniform total head, [L],
hy = step increase in total head, [L], and
x = position from the boundary, {L].

If we examine travelling pressure wave early in its motion, the downstream
boundary will see only a small effect, and the semi-infinite solution is an acceptable
approximation. Figure 7.11 shows the network results and the analytical solution
for the traveling wave at a time of 12 days. The agreement is acceptable, but the
numerical simulation consistently lags behind the analytical solution.

These comparisons confirm that the network model matches analytical solutions
of Darcy flow, experimental observations, and continuum numerical model descrip-
tions. The computational effort required to solve the network should be comparable
to explicit, continuum numerical models with nodal resolution similar to the con-
nection spacing. Thus, there is no significant advantage or disadvantage associated
with the network for saturated flow simulation.

7.2 Conservative Transport in Steady, Saturated Flow

Historically, conservative transport through porous media has been represented by
the advection-dispersion equation (ADE) that describes a mean translation and a
diffusive spreading of tracer

de _

5 -V - (uc) + V - (DVc) (7.8)

where = concentration of solute, [M/L3],

time, [T,

seepage velocity from a decoupled flow solution, [L/T], and
= dispersion coefficient tensor, [L2/T].

c
t
U
D

The dispersion coefficient is composed of a hydrodynamic dispersion term and a
molecular diffusion term

Dij = DZ + Dm5ij = (aL e aT) u,:] + OzTU(Sij + Dm5ij (7.9)
where D¢ = hydrodynamic dispersion coefficient, [L?/T],

8;; = Kronecker delta, [—],

D™ = molecular diffusion coefficient, [L?/T],

ar = longitudinal dispersivity, [L],

ar = transverse dispersivity, [L],

u;,u; = fluid velocity magnitudes in the ¢ and j directions, [LT1], and

v = mean fluid velocity magnitude, [LT~!].
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Figure 7.11: A transient pressure wave moving through a homogeneous porous
medium. Contours of the piezometric surface (top) and comparison of network
results and analytical solution (bottom) for an elapsed time of 12 days.
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The dispersion term uses a diffusion coefficient to represent unresolved differen-
tial advection about the mean motion. This approach is used in practice because it
has been shown to match historical observations, normally from laboratory studies
[2]. These observations indicate that, after long travel times, a continuous injection
at the boundary of a packed column produces a sigmoidally-shaped concentration
profile along the column and an instantaneous source produces a nearly Gaussian
concentration profile [30], shapes that are consistent with the ADE. In heterogeneous
media, the parameters in the ADE display a dependence on the scale of observation,
making the equation difficult to use [2]. If parameters are fitted to match a particu-
lar plume state, those parameters are not necessarily valid at any other stage in the
plume’s development. Further, a large dispersion coefficient may predict artificial,
omnidirectional diffusive spreading.

Highly-resolved simulations of heterogeneous media attempt to resolve the ve-
locity field in detail, shifting much of the burden of plume growing to the advection
term from the dispersion term. Often, these approaches rely on a diffusion model
to describe the effects of ‘sub-grid-scale’ velocity variation.

The network model simulates conservative transport as pure advection in the
throats (no molecular diffusion at present), and perfect mixing at connections.
Without a diffusion term, the network produces a directionally-biased, downstream
mixing effect. The network model has been shown to produce visually-realistic
tracer concentration plumes whose growth matches observed trends. This chap-
ter compares transport in discrete networks to advection-dispersion theory and to
observations from homogeneous and heterogeneous laboratory experiments. The
purpose here is to examine differences between discrete network simulation and
advection-dispersion theory and to evaluate the network’s ability to reproduce ob-
served behavior. ‘

The network-model view of transport and the advection-dispersion equation rep-
resent the same physical behavior in different ways. Although the parameters in the
ADE are unsubstantiated in heterogeneous media, practitioners have been able to
fit the ADE to their data satisfactorily for many years [2]. Therefore, for transport
through the network to be a credible representation of transport in porous media,
it must display some similarity with ADE solutions. The network was compared
against three analytical solutions for the ADE,

1. an instantaneous point source in a macroscopically uniform flow field,
2. a continuous point source in a macroscopically uniform flow field, and

3. a continuous boundary source in a macroscopically uniform flow field.
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Table 7.1: Network Properties.

Parameter Value
Domain Length (z) 2,500 m
Domain Width (y) 1,500 m
Domain Height (2) 1,500 m
Interconnection Spacing 60 m
Maximum Throat Length 100 m
Mean Throat Conductivity 1.0 m/d
Variance in In Throat Conductivity 4.0
Number of Connections 25,000
Number of Throats 150,000

One objective here was to determine whether ADE parameters could be found to
approximate concentration profiles produced by the network. To permit these com-

parisons, a single three-dimensional network was created with the properties listed
in Table 7.1

7.2.1 Instantaneous Point Source of Tracer.

Steady flow through the network was computed with constant heads applied to the
boundaries in the longest dimension. These heads were designed to produce a unit
macroscopic gradient. One thousand grams of tracer per day were injected for 5
days at a position (250, 750, 750) within the domain (Figure 7.12). Plume growth
was observed for 1500 days after the injection ceased. A snapshot of the plume was
taken at 1205 days. At this time, the leading edge of the plume has reached the
downstream boundary and mass was beginning to exit the simulation domain.

The analytical solution for an instantaneous point source in a three-dimensional
domain is [128]

oz, y, 2,t) = M exp _("I:_mc)2 _ (y_yc)2_ (z_zc)2
2 R (r33 Dy Dy D) 12 4Dyt 4Dt 4Dt
(7.10)
where ¢ = concentration, [AML3],
M = mass of tracer injected at time 0. [M], and
TeyYes 2 = coordinates of the centroid of the plume, [L].

The apparent seepage velocity is approximated by the plume centroid’s distance
from the point of injection and the elapsed time. Individual dispersivity values may
be isolated by examining the ratio of concentrations along a line in one coordinate
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direction. For example, taking two concentration values along a line of constant y
and z, we have
—(z1 — 2c)% + (72 — )2

C1
2 ser : 7.11
o P 4Dt (7.11)

Knowing that D, is simply the apparent seepage velocity times the apparent dis-
persivity, ua;, we may compute the appropriate dispersivity to fit the ADE.
Cross-sections through the network plume are compared to analytical solutions
to the ADE in Figures 7.13 and 7.14. Concentration profiles were taken near the
apparent center of the developing plume at position (1150, 800, 780). It is apparent
that ADE parameters may be found that closely match the network plume in the
lateral (y) cross section (Figure 7.13). In the longitudinal direction (z), the network
plume shows a nearly Gaussian distribution over much of its length (Figure 7.14).
The exceptions are for £ < 250 m for which the network concentrations are iden-
tically zero, and several spikes in concentration occurring for z less than 1000 m.
ADE predictions of non-zero concentration upstream of the injection location are
not physically possible. The spikes correspond to pockets of low permeability mate-
rial that have delayed some of the tracer migration. When the tracer plume passed
that position, plume concentrations were much higher. Tracer delayed in these low
conductivity throats retains this high concentration until reaching the ends of these
throats, when mixing reduces their values. These spikes will not travel with the
developing plume, but will be gradually depleted, providing a source of tracer to the
rear of the plume and producing long tails on concentration breakthrough curves.
The ADE solution with longitudinal dispersivity of 140 m and lateral disper-
sivities of 20 m nearly matched the observed concentration profile for much of its
length. These are the constant coefficients needed over the life of the plume to cre-
ate the Gaussian distribution shown in Figure 7.14. We know that the dispersivities
began much smaller than these values and have grown with the plume’s size (Chap-
ter 5). Network simulation permits us to compute an instantaneous value of these
parameters. The longitudinal and lateral dispersivities are measured by

ar = (0zppziu) <%> (7.12)
ar = (0zpPrrs) (%) (7.13)
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Figure 7.13: Lateral cross-sections through plumes predicted by the advection dis-
persion equation and the network model for an instantaneous source of contaminant.
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dispersion equation and the network model for an instantaneous source of contami-
nant.
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where «; = longitudinal dispersivity, [L],

ar = transverse dispersivity, [L],
oy, = standard deviation in longitudinal tracer particle position, (L],
0z = -standard deviation in transverse tracer particle position, [L],
pzpu = longitudinal position-velocity correlation coefficient, -],
pzpv = transverse position-velocity correlation coefficient, [—]

o, = standard deviation in longitudinal velocity, [LT~Y,

o, = standard deviation in transverse velocity, [LT‘I], and

@ = longitudinal speed of the plume centroid, [LT -1,

Figure 7.15 shows a measure of plume size versus travel distance for a scale-
dependent dispersivity and a constant dispersivity. The constant dispersivity pre-
dicts linear growth with distance while the scale-dependent disperstvity, an empirical
fit taken from Arya [4], shows a nearly parabolic shape. Where these two lines in-
tersect, the two theories predict the same, pre-asmptotic plume centroid position
and plume size (by this measure). Therefore, we may find a velocity and a constant
dispersivity that will produce a plume matching these statistics. The instantaneous
dispersivity is prescribed by the slopes of these lines. Using Arya’s [4] empirical
equation, the ratio of instantaneous dispersivity to the equivalent constant disper-
sivity may be computed to be a constant at 1.75.

The instantaneous speed of the plume is measured as the tracer-mass-weighted
fluid velocity in the domain. The instantaneous velocity is significantly lower than
that needed to fit the ADE. When the plume is small, its speed often is much larger
than the bulk fluid velocity. A small plume is able to find preferential paths of higher
conductivity through which to move. As the plume becomes larger, it encompasses
more of the velocity structure and its speed more closely resembles the bulk fluid
velocity.

Often, detailed plume images are not available and the ADE parameters are
fit to a concentration breakthrough curve at a fixed location. Figure 7.16 shows
concentration breakthrough curves for the network plume and two ADE solutions
at = = 1158 m. Note that the spikes seen in the plume cross section never arrive at
this observation point. The network plume breakthrough may be fit very well with
an ADE. However, the ADE parameters that best fit the breakthrough curve are
slightly different that those needed to fit the plume cross-sections.

These comparisons demonstrate a strong similarity between the network model
plumes and those predicted by the ADE. However, the network remains fixed, while
the ADE parameters (advection velocity and longitudinal and lateral dispersivities)
vary depending on when and how the parameters are extracted.
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Figure 7.15: Plume characteristics for constant and scale-dependent dispersivities.

30000

/
25000 - /
/ 20,
/
/
20000 | /
/
15000 -
/
//
10000 -
/
/
/ — — Pre-Asymptotic Plume Growth
5000 - J/ (Derived from Arya, 1988)
J/ ——— Fickian Plume Growth
v
~
O = T T T T
0 200 400 600 800 1000

Travel Distance of the Plume Centroid, m

192




35 |

30 A ; /'\ ---@--- Network Model Observations at (1158,720,780).
i & | —— ADEwith o =140m, op =20m, u=0.788 m/d.

25 4 ] "\ | —- ADEwith o= 125m, o =16m,u=089 m/d.

20 A

15 1

Concentration, ppm

10 1

0 500 1000 1500 2000 2500 3000 3500
Time, d

Figure 7.16: Concentration breakthrough curves taken at (1158, 800, 780) for the
network plume and two ADE solutions.
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7.2.2 Continuous Point Source of Tracer.

Leaking underground storage tanks, slowly-partitioning entrapped NAPLs, and dis-
solving solid contamination resemble continuous point sources. To examine a con-
tinuous point source, mass was injected at a constant rate (1000 g/d), for the entire
simulation time (4400 d), at the same position as the instantaneous source. After
this amount of simulation time, the concentration field was observed to be virtually
steady. Mass entering the injection well was nearly offset by mass exiting the down-
stream boundary. The analytical solution for the steady-state concentration field
with a continuous point source is [128]

dM/dt (a:—r)v}
T,y,2,00) = 7.14
An%50) = oDy Du e [ 2Ds. (7-14)
1/2
D D
2 2 Urx o lUzr
r = ¢+ Yy =+ 2= 7.15
< V', Dﬂ) (7.15)

A longitudinal cross section of concentration was taken near the injection loca-
tion. This concentration profile and two ADE solutions are given in Figure 7.17.
The network plume correctly shows no upstream spreading in the absence of molec-
ular diffusion. In the figure, one ADE curve is given for near-asvmptotic properties
taken from the instantaneous point source simulation at 1205 d. This curve shows
good agreement with the network model downstream of the injection point. How-
ever, those parameters incorrectly predict significant upstream migration of tracer.
The other ADE curve was created by arbitrarily reducing dispersivities to lessen the
effect of the upstream spreading. Substantial upstream motion persisted, even with
these smaller coefficients, and the downstream predictions are poor. The shape of
these ADE curves depends on the ratio of longitudinal to lateral dispersivity, but,
in general. the upstream migration for this problem only becomes negligible at a
distance from the source equal to several times the longitudinal dispersivity. In our
case, that is several hundred meters.

7.2.3 Continuous Boundary Source of Tracer.

A continuous source of tracer was applied to the upstream boundary of the network
described in Table 7.1. This is effectively a one-dimensional problem although, in
such a heterogeneous medium, tracer moves through preferential flow paths. By av-
eraging tracer concentrations laterally and vertically, the concentration field becomes
a one-dimensional, smooth, spreading front. The ADE may be used to estimate the
apparent dispersivity of this medium as one would fit a column test. The analytical
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Figure 7.17: ADE and network simulation concentration profiles along the approx-
imate centerline of a plume from a continuous point source injection of tracer.
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solution for a diffusing concentration front is [128§]

c(z,t) = %9 [erfc (———;DL;;?2> + exp (%%) erfc (—;Dt;s/gﬂ (7.16)
where ¢g is the concentration at the upstream boundary. The 0.25¢¢ and the 0.50¢q
concentration values were monitored in the network simulation to ‘back-calculate’
the apparent dispersivity. Figure 7.18 shows computed dispersivities for the constant
boundary source and for an instantaneous point source in the same network. The
two measurement techniques produce similar behavior in apparent dispersivity.

Seepage velocity used in the dispersivity computations was the asymptotic ve-
locity. The speed of the ¢p/2 concentration value approaches the asymptotic value
prescribed by the bulk fluid velocity (Figure 7.19) for long-time simulation. If an
instantaneous velocity is used, the apparent dispersivity behavior is much different.

7.2.4 Summary of the Comparisons with Advection-Dispersion The-
ory.

The ADE may be fitted to well-developed instantaneous-source plumes and to the
downstream portion of continuous-source plumes. Unfortunately, the parameters
computed are only valid for the conditions of that test. If the concentration state
must be predicted for another time or another set of boundary conditions, the
ADE may produce inaccurate results. Time-dependent or plume-scale dependent
coefficients will not resolve these issues for problems other than instantaneous point
sources.

7.2.5 Comparision of the Network Model Against Laboratory Data.

Plumes from the network do not coincide with analytical solutions for the ADE,
but seem to match observational evidence that has led to the ADE’s acceptance.
Therefore, the network should produce valid predictions of tracer transport. This
proposal was tested by comparing the network against transport observations from
laboratory experiments conducted at the University of Colorado [70, 51].

The homogeneous experimental packing discussed earlier was examined with a
point source and a line source. For HMTE?, five liters of 1.2 g/l potassium bromide
solution was introduced at the upstream boundary. Given a measured, constant flux
through the boundary (46.95 cm®/min), this injection lasted 106 min. Bromide was
measured in samples taken from the tank effluent.

To simulate experiment HMTE7 with the network model, the mean throat con-
ductivity was adjusted from the prior flow testing so that the network and experi-
mental fluxes matched. Tracer was introduced at a constant concentration all along
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the upstream boundary of the network. The computed and observed concentrations
at the end of the tank are shown in Figure 7.20.

The network model contains no dispersion parameters. The only coefficients
available for manipulation were the throat lengths, conductivity variance, and the
effective porosity. This is a homogeneous medium, suggesting that the throat lengths
must remain short (i.e., on the order of the actual pore size). The peak arrival times
of the simulated and observed plumes were similar, indicating that the effective
porosity is appropriate. Increasing variance in throat conductivity would improve
the prediction of first arrival of the plume, but would diminish the peak concentra-
tion. Therefore, although a better fit to the data may be possible by modifying these
parameters, the values chosen during the flow comparisons were judged acceptable.
The very early arrival in the experiment may be due to additional dispersion in
the inlet and outlet reservoirs that contain gravel, screening, and fabric, and in the
tubing and valves.

The same tank was used to examine a point injection of benzene-saturated wa-
ter. Five ml/min of benzene-saturated water was injected for 4 hours into port
16 (Figure 7.4). Benzene concentrations were monitored in samples taken from
ports downstream for an additional 4 hours. To simulate this problem with the
network model, a point source of water and a point source of tracer mass were in-
jected at a connection corresponding to the location of port 16. Comparisons were
made between the model and the observations at ports 13 and 12, located directly
downstream of the injection. The plume profiles revealed comparable shapes with
substantial error in the position of the leading and trailing edges of the plumes.
Further, amplitudes of the concentration profiles predicted by the model were only
a small fraction (about 30 percent) of the observed amplitudes. The network model
produced too much lateral spreading of the solute.

Lateral dispersivity is dictated by the correlation length in the network. The
longest throats in the original network were 4 cm. A much finer network would
be needed to reproduce the observed small lateral dispersivity. It was established
during the flow comparisons that the head field for this medium is verv nearly
planar. Further, the tracer is confined to a small portion of the domain for these
simulations. Therefore, a subdomain 100 cm long and 40 cm wide was created. This
subdomain extended in longitudinal dimension from the 70 e¢m position to the 170
cm position, including the injection location and both observation ports (13 and
12). Laterally, the computational subdomain was positioned to stradle the injection
and observation ports. The linear pressure field was interpolated to the ends of the
subdomain and no-flow boundaries were assumed on the lateral boundaries. With
this smaller domain, an interconnection spacing of 0.4 ¢m and a maximum throat
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Figure 7.20: Simulated and measured concentration breakthrough curves for
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length of 0.8 cm were possible. The limitation here is the time step size which is
controlled by the minimum travel time for a throat in the domain.

To maintain consistency with longitudinal spreading induced by the network in
HMTE?, the throat conductivity variance was increased slightly, further reducing
the time step size. That the variance must increase as the resolution increases is
logical. With more resolution, less media are represented by each throat, thereby
reducing the effects of averaging and increasing variance. The resulting tracer con-
centration contours are shown in Figure 7.21. Breakthrough curves for this plume
are compared to observations in Figures 7.22 and 7.23. Although the amplitudes are
improved with increasing resolution, more resolution will be needed to reproduce
the very small lateral spreading indicated by the observed data. Garcia [61] sug-
gests a lateral dispersivity of 1 mm or less. This value is consistent with the trend
in peak concentration versus resolution in Figure 7.24. The observed peak is near
0.45. To achieve this, an interconnection spacing of about 2 mm with a maximum
throat length near 4 mm will be needed. The resolution required for this problem
exceeds the computational resources available on the desktop workstation used for
this study.

A breakthrough curve was examined with the heterogeneous experiment (HTTE4).
Again, 5 1 of 1.2 g/l potassium bromide solution was introduced at the upstream
boundary of the tank. Fresh water followed the potassium bromide solution. Com-
parisons were made for both types of network discretization, explicit structure and
statistical structure. Figure 7.25 shows concentration plumes for both networks.
Both display preferential paths through the medium. Consequently, breakthrough
curves for both networks and the experimental tank are similar (Figures 7.26 and
7.27). To resolve the explicit structure required about 3000 connections and 14000
throats. The network with only statistical structure was created with 370 connec-
tions and about 1200 throats.

Asymptotic macrodispersivity was estimated by Garcia [51] to be about 106 cm
for this material. This parameter is intended only for the asymptotic state. Using
such a large dispersivity for this pre-asymptotic problem would produce a severely
smeared plume.

The network was designed to represent naturally heterogeneous media. To sim-
ulate homogeneous media and examine lateral spreading will require substantial
resolution. Most continuum codes will experience similar problems with numerical
dispersion. Unless the lateral extent of the plume is resolved in detail, numerical
dispersion will dwarf the physical dispersion, artificially spreading the contaminant.
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Figure 7.22: Simulated and measured concentration breakthrough curves for
HMTEL1 (Port 13).
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Figure 7.25: Concentration plumes for the network with explicit structure (above)
and statistical structure (below) HTTEA4.
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Figure 7.26: Simulated and measured concentration breakthrough curves for HTTE4
with explicit structure.
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7.3 Density-Dependent Flows

The network was also used to simulate a few problems in density-dependent flow. A
thin, vertical slab that is 100 ¢m on a side by 10 ¢m thick was mapped to a discrete
network. All boundaries on the slab were defined as solid. A layer of fluid containing
a dense, miscible tracer was placed over a layer of fresh water. The presence of
this constituent at a concentration of 1.0 g/g produced a fluid/constituent mixture
with a specific gravity of 1.5. The dense fluid seeks the bottom of the sample
amid much mixing. Figure 7.28 shows four images during this overturning process.
Figure 7.29 shows an alternative contouring of the final image from Figure 7.28. All
normalized concentrations greater than 0.25 are colored red while concentrations less
than 0.25 are colored blue. This permits us to see a miscible fingering phenomenon
in the displacement. The finger spacing is approximately 25 cm in this coarse
system. These simulations simply show potential use of the network for density-
dependent flows. Additional work in this area is needed to develop confidence in
the quantitative results.

7.4 Conclusions

Discrete network modeling is shown to be an effective approach for simulating sat-
urated fluid flow and conservative transport in macroscopic, heterogeneous porous
media. Fluid flow through the networks compares well with macroscopic solutions
for Darcy flow and with laboratory observations. Transport through the networks
provides acceptably close matches with laboratory data and is compatible with
advection-dispersion theory under appropriate conditions. Further, the network
permits direct installation of characteristic length distributions, thus simulating
pre-asymptotic transport mechanisms very efficientlv. In summary, the network
approach is an efficient and effective direct simulation tool that avoids the use of
dispersion parameters while producing correct flow and transport behavior.
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Figure 7.28: Time series of the overturning of an unstable density configuration.
Elapsed time increases from upper left (initial condition), to upper right (6000 s),
to lower left (14000 s), to lower right (20000 s). Red indicates higher concentration
and blue indicates lower concentration.
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Figure 7.29: Alternative contouring for an elapsed time of 14000 s in the overturning
problem. Red indicates relative concentration greater than 0.25 and blue indicates
relative concentration smaller than 0.25.
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Chapter 8

Discrete Network Modeling of
Immiscible Flow Through
Porous Media

Abstract

A stochastic, discrete network modeling approach is offerred to sim-
ulate the movement of immiscible fluids through porous media. Im-
miscible fluids follow preferential flow paths defined by heterogeneity at
many spatial scales. Immiscible displacement often occurs as nonuni-
form, finger-like flow. Lenses of fine material may act as capillary bar-
riers while lenses of coarse material act as capillary traps. These flow
features are difficult to capture with contemporary numerical models of
immiscible flow. '

Each throat in the network corresponds to a macroscopic path within
in the modeled medium. The distribution of throat lengths represents
the larger scales of heterogeneity in the medium. Immiscible low through
the each throat in the network is modeled as sharp-front displacement.
Like its pore-scale counterparts, this macroscopic network permits no

partial saturations. Rather, partial saturations emerge in terms of spa-
tial averages of the network state. Saturated hydraulic conductivities

and entry heads are defined randomly for the throats. The model demon-
strates reasonable behavior for drainage and imbibition and shows promise
for modeling capillary barriers and localized, macroporous-breakthrough
phenomena.

This work extends a stochastic discrete network approach for saturated flow and
conservative, miscible transport presented in Chapter 5 to simulate immiscible fluid
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flow. The hallmark of this approach is keeping model process descriptions simple,
but consistent with known behavior at the small scale. When enough resolution
is included, complex, macroscopic behavior emerges. Consequently, the discrete
network approach often requires substantial spatial resolution, but is less reliant
on constitutive models than are traditional modeling techniques. The problem of
immiscible fluid flow in porous media, with its complicated, saturation-based con-
stitutive models, seemed an ideal candidate for this approach.

8.1 Immiscible Fluid Flow in Heterogeneous Media

Many liquids do not mix appreciably with each other and move as separate fluid
phases through porous media. If the medium is not equally attracted to each of
the fluids, a capillary force will exist, greatly complicating flow behavior. Predictive
capability for immiscible fluid flow is necessary to evaluate flow in the unsaturated
zone and to assess the migration and residual distribution of non-aqueous phase
liquid contaminants (NAPLs). Drinking-water standards for these contaminants
are usually very stringent, and their solubilities, although small, usually exceed
these standards by orders of magnitude. Their relatively low solubilities permit the
immiscible fluid to act as long-term, continuous sources of dissolved contaminant
to passing groundwater. Hydrodynamic extraction techniques will only rarely be
sufficient to remove nonwetting fluid isolated by capillary forces [68].

When describing saturated fluid flow and conservative transport, physical het-
erogeneity is important. But, for immiscible flow, it is paramount. For example,
two media with different pore size distributions may produce similar flow and dis-
persion characteristics, but remarkably different immiscible flow behavior. Material
property changes may arrest advancing fluid interfaces. Several key processes for
immiscible flow are dictated by the variability and position of material properties

e capillary barriers,
e capillary entrapment, and

e channeling (fingering).

8.1.1 Capillary Barriers and Capillary Entrapment.

Natural soils often contain dramatic variations in physical properties. When an
invading non-wetting fluid encounters a material interface and the pore radii in that
material are sufficiently small, the invading fluid front may be arrested (Figure 8.1).
The capillary force creates a barrier to the non-wetting fluid.
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Figure 8.1: Experimental observation of a capillary barrier caused by a fine grain
lens and capillary entrapment in a coarse-grain lens (from Illangasekare et al. [71]).
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As a non-wetting fluid travels through the medium, bubbles or ganglia (larger,
connected blobs) of this fluid may become surrounded by wetting fluid and im-
mobilized as demonstrated by Schwille [127]. Mechanisms for the existence and
mobilization of these ganglia are discussed by Hunt et al. [68]. In macroscopically
heterogeneous media, entrapment may occur in pockets or layers of coarser material
surrounded by fine-grain material (Figure 8.1). The fraction of pore space occupied
by this trapped non-aqueous liquid may be as high as 20 to 30 percent [71].

8.1.2 Channeling or Fingering.

When one fluid displaces another, it may do so as a non-uniform front. The term
‘fingering’ is loosely used to describe such nonuniform displacement. In ideal, homo-
geneous material, fingering may arise from instability that produces a bifurcation
in the solution path. In natural porous media, fingering is attributed to small-scale
preferential flow paths rather than instability [83]. Because conductivity of a fluid
phase depends strongly on the fraction of pore space occupied by that fluid, there
exists a feedback mechanism in finger formation. In fact, experimental observations
suggest that, at material interfaces, breakthrough may occur in an extremely limited
range, perhaps a single macropore [22]. Fluid escaping from one pocket of coarse
material may appear in another coarse lens down gradient with no visible path. The
result of this displacement process is shown in Figure 8.2.

8.2 Modeling Approaches

Modeling of immiscible flow through heterogeneous media may be approached in
several ways, including,

e traditional, discretized continuum equations,
e streamtubes or streamlines,

o network models.

8.2.1 Continuum-Based Flow Equations.

In this, the traditional approach for modeling macroscopic immiscible flow, the
fluids are assumed to coexist in a mixture of partial saturations (S). Each fluid
phase is described by local mass balance and local momentum transport (Darcy’s
law). Without source or sink terms, and assuming an incompressible matrix and
fluids, the governing equations take the form
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Figure 8.2: Observed distribution of non-aqueous contaminant showing macroscale
entrapment and evidence of macroporous breakthrough [22].
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where ki;j = intrinsic permeability, (L,
krw, kmmw = wetting and non-wetting phase relative permeabilities, [—],

Uw, Unw = wetting and non-wetting phase viscosities, (M L‘lT‘l], and
P,,P., = wetting and non-wetting phase pressures, [M L1772

Note that repeated indices (4,7) imply summation. Repeated 7, w, and nw do not
imply summation. These equations are coupled through the capillary pressure which
is given by

Pc(Sw) = Phw — Py (83)

and the sum of saturations
Sw + Snw = 1. (84)

These equation assume that there is no interfacial shear.

Constitutive equations are required to relate the saturation to capillary pressure
and to estimate the local permeability of the medium to each fluid phase. The most
widely used constitutive equations for immiscible flow are the Brooks and Corey
equations [18] and the van Genuchten equations [140] because each of these permits
analytical computation of relative permeability. The Brooks and Corey equations

are
Po = Pc(Sw) = Pd(Se)—T (8.5)
2.3
kew = kew (Sw) = S&° (8.6)
24
krnw = kenw (Sw) = (1= 58.)° (1 — 82" ) (8.7)
where P; = displacement pressure, [M L7172,
Se = effective saturation, [—], and
A = pore index, [—].

Hassanizadeh and Gray [63] concluded that the single-phase Darcy’s law cannot
be extended directly to apply to multiple fluid phases. Further, they determined
that saturation-based, hysteretic relationships for capillary pressure and relative per-
meability are theoretically ‘unsatisfactory’ [63] and proposed inclusion of interfacial
area in the constitutive relationships to remove hysteresis [62].
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Butts and Jensen [19] suggested that it is possible to construct useful macroscopic
constitutive parameters for immiscible low when the immiscible fluid plume is much
larger than the characteristic length of heterogeneity. However, they stated that the
development of appropriate effective parameters to include the effects of small-scale
fingering is unfinished. In summary, the described immiscible fluid flow processes
are difficult to capture with traditional, local-continuum-based formulations.

When observed from a distance, spreading of an immiscible fluid can resem-
ble the spreading of a conservative tracer in single-phase flow. For this reason,
some have advocated immiscible flow with a Fickian dispersion term to account for
nonuniformity of the displacement {111, 85]. This approach compares well with a
few, high-resolution numerical simulations of immiscible flow. However, one author
acknowledged [111] that a Fickian dispersion model will only be valid for random het-
erogeneities with limited spatial correlation. Further, a diffusion-based flow model
will overpredict mixing of the fluids and capillary barriers will be difficult to rep-
resent accurately. Numerical smearing at the capillary barrier causes nonphysical
migration of the non-wetting phase (NAPL) across a barrier {71]. Once the barrier
is broken, relative permeability across the barrier is finite and the continuum model
will predict migration of the non-wetting phase.

8.2.2 Streamtube or Streamline Modeling.

Streamtube or streamline modeling offers an efficient method for simulating immis-
cible displacement for oil recovery in heterogeneous reservoirs. In the streamline
technique of Thiele et al. [135], a two- or three-dimensional, single-fluid pressure
solution was computed on a fine grid. Particle paths were traced to determine
streamlines. These streamlines were used as one-dimensional paths along which a
simplified immiscible displacement was computed. Changes in the flow field required
recomputation of the streamlines. Rather than map the old interface position to the
new streamlines, they elected to project the solution from known initial condition.
Therefore, this method is inappropriate for problems with dramatic changes in flow
direction. Further, this approach cannot easily include nonuniform initial conditions
or the effects of gravity [135].

8.2.3 Network Modeling.

Many researchers have used network models to represent porous media, e.g., [43,
21, 94, 88]. The vast majority of these were pore-scale models in which the size
of network components were approximately the size of a soil grain. These models
produced capillary-pressure hysteresis with saturation [74] while using very simple
fluid flow models at the pore-level. Pore-scale network models also have shown
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the ability to simulate capillary entrapment in media with organized heterogeneity
larger than individual pores [44]. Most network models have represented fluid flow
as quasi-static. In this model, when the driving pressure overcomes a pore’s entry
pressure, the pore is invaded completely. There are some network models that sim-
ulate dynamic fluid flow, assuming Poiseuille flow in each pore [87]. However, there
are very few examples of macroscopic network models for immiscible flow through
porous media. Of these, most have focused on the representation of interconnected
fractures as a network [99]. Yortsos et al. [148] constructed a network model in
which each network pore represented a macroscopic region of the porous medium.
They simulated quasi-static drainage to examine percolation issues.

8.3 Discrete Numerical Modeling Philosophy for Im-
miscible Flow

Within a single pore in a porous medium, immiscible flow is not remarkably com-
plicated. Only when we include many interconnected pores, does behavior become
complex. The discrete network approach taken here assumes that the same logic
applies at the macroscopic scale. We propose to keep the model physics very simple
within small lenses of porous material, and rely on resolution to produce complex
macroscopic behavior. A stochastic, discrete network approach was chosen to ex-
amine immiscible flow.

8.4 Numerical Approximation for Immiscible Flow

Stochastic discrete networks represent a porous medium as many, interconnected,
one-dimensional throats (Chapter 5). Flow properties are assigned randomly to the
throats. Flow and transport through this discrete network are approximated nu-
merically, assuming perfect advection in the throats and mixing at the connections.

8.4.1 Assigning Throat Properties.

Following the work for conservative transport in Chapter 5, each throat acts as
though filled with homogeneous porous material. Assuming a narrow pore-size dis-
tribution, one-dimensional immiscible displacement through this medium will occur
as a nearly sharp front. This is equivalent to a discontinuous capillary pressure ver-
sus saturation curve in traditional modeling context. For such a curve, the macro-
scopic capillarv pressure is defined entirely by the entry pressure and the residual.
Given this, the assumption of distinct fluid phases at the macroscopic scale is not
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unreasonable. Presently, the throat-level residual is limited to an immobile wetting
fluid.

Each throat in the network is assigned a scalar saturated hydraulic conductivity
and a single entry head. Both of these values are selected randomly from given dis-
tributions. Observations of real soils have indicated that conductivity and capillary
pressure are related [38]. For similar soil types, the Leverett J function has been
used to relate permeability, &, capillary pressure, P,, surface tension o, and porosity,

¢
J(S) = é\/g (8.8)

where S, is the wetting fluid saturation, [—]. Thus, for comparable saturation
states and the same fluids and porosity, the quantity P,v/k is nearly constant for
the different materials. For each material, a mean hydraulic conductivity X and a
mean displacement pressure Py are known from their distributions. A constant J
value is computed using these mean values and the throat displacement pressures
are defined

— | K
Py = Pyy/ —. 8.9
=P\ 7= (8.9)
This results in perfect, inverse correlation between conductivity and entry pressure
or entry head. The displacement pressure is not allowed to fall beneath a prescribed

minimum value.

8.4.2 Flow Solution in Each Throat.

Throats in the network are subdivided as necessary into non-uniform-length seg-
ments as described in Chapter 5. Each segment in the throat contains a single,
mobile fluid phase. Partial saturations are not simulated. Partial phase saturations
are computed only when averaging for observation or computation of body forces.
Flow through the throats is dyanmic. An immobile wetting-phase fluid fraction
accounts for residual due to adsorbed water or recirculation in the crevices.

Each discrete segment within a throat contains one mobile fluid mass and m
conservative constituent masses. As with saturated flow, flow through the throats is
one dimensional. Segments move intact along the throat. The flux profile along the
throat is linear for compressible fluids and constant for incompressible fluids. Flux
is computed along the throat,

_ 0Hy H, pc Oz OHy
qr = K"u(az +f+<g—1)gal>+cppog BN (8.10)
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where ¢r = flux, [LT7Y,

Ko = saturated hydraulic conductivity of the throat, [LT~1.
po = dynamic viscosity of fresh water, [ML™'T -1,
p = local dynamic viscosity, [M LT},
Hy = total head expressed in fresh water, [L],
H. = capillary head expressed in fresh water, [L],
pc = density of the fluid/constituent mixture, [M L73], and
g = gravitational acceleration, [LT~2].

The differences between saturated flow through a network and immiscible fluid
flow through the network are the addition of a capillary force and a more complex
fluid distribution scheme at the connections. Capillary force is computed using
apparent saturation state of the individual throat taken from the previous time
step. This saturation-based capillary force was found to be more stable one based
on individual interfaces.

8.4.3 Conservation of Fluid Mass at the Connections.

Total luid mass is conserved at the connections. This conservation statement per-
mits computation of total head at the connections required to enforce mass conser-
vation over the time step. This process is identical to that given in Chapter 5 with
the solution variable being the local total head.

During a time step, each connection accumulates and distributes fluid mass and
constituent mass. On the first of two passes, voids are created in ‘outbound’ throats
consistent with the velocities implied by the global head solution. Fluids enter-
ing the connection must be distributed logically to fill these voids. Logically, the
most non-wetting fluid would seek out the throat with the smallest entry pressure.
Therefore, ‘outbound’ throats at a connection are filled in order of decreasing entry
pressure (the throst with the highest entry head is filled first). Reservoirs of ac-
cumulated fluid at each connection are depleted in order of decreasing wettability
(Figure 8.3). Constituents are fully mixed within each phase at the connections.
Presently, no interphase constituent mass transfer is permitted, although it would
be straightforward to do so.

8.5 Results of Network Model Simulation

Immiscible flow was examined in several network model media. The network model
is three dimensional. To save computation time, these simulations were made in a
quasi-two-dimensional domain.
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Figure 8.3: Procedure for filling voids in the throats.
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8.5.1 Immiscible Displacement.

A network was created in the z—y plane to represent a porous slab 100 cm by 100 cm
and 10 em thick. The network was filled initially with wetting fluid. The downstream
boundary was assigned a constant total head of wetting fluid equal to 100 em. The
upstream boundary was assigned a constant non-wetting-fluid head of 150 cm. The
remaining boundaries were defined solid. A very small variance in conductivity (0.1)
was assigned isotropically. The mean and minimum entry heads were set to 5.0 cmn.
The fluids were assumed incompressible, with identical specific gravities and specific
viscosities. Figure 8.4 shows the apparent saturations of the displacement upon
averaging to the observation mesh. At this observation resolution, the displacement
front looks non-uniform with obvious small-scale channeling. By averaging the same
network simulation to a coarser observation mesh, the displacement front appears
much smoother and more uniform (Figure 8.5).

8.5.2 Spontaneous Imbibition.

A network with similar dimensions was created in the z — z plane to explore gravity
drainage and imbibition. Throat conductivities were assigned from a lognormal
distribution with a variance of 1.0. Entry heads were assigned with Equation 8.9
using a mean entry head of 10 ¢m and a minimum entry head of 10 cm (Figure
8.6). Initially, the network throats were filled completely with non-wetting fluid
(no residual wetting fluid). The specific gravities of the wetting and non-wetting
fluids were set to 1.0 (water) and 0.00123 (air), respectively. The bottom boundary
of the network was established as a reservoir of wetting fluid with a head equal
to the static head of the non-wetting fluid (0.123 cm). The top boundary was
attached to a reservoir of non-wetting fluid with a total head of 100 c¢m, implying
a pressure head of zero (gage). Spontaneous imbibition pulled the wetting fluid
into the network. Imbibition ceased when the capillary force was offset by the self-
weight of the wetting fluid (Figure 8.7). Behind the imbibition front, the medium
contains very little residual non-wetting fluid. The height of capillary rise is only
slightly larger than the minimum entry head of 10 cm. Although many throats with
larger entry heads exist in the network, the height of capillary rise is restricted to
continuous paths of high entry pressure.

8.5.3 Primary Drainage.

The same network and boundary conditions used for imbibition were used to in-
vestigate drainage. The network was initially filled with wetting fluid. The heavier
wetting fluid was displaced through the bottom bouary by the lighter non-wetting
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Figure 8.4: Contours of apparent saturation for fine observation of immiscible dis-
placement.
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Figure 8.5: Contours of apparent saturation for coarse observation of immiscible
dispalcement.
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Figure 8.6: Contours of spatially-averaged entry head for
porous slab.
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Figure 8.7: Contours of apparent saturation for imbibition in the network.

227




fluid entering at the top. Contours of the apparent saturation of non-wetting fluid
near equilibrium are shown in Figure 8.8. Substantial entrapment of wetting fluid is
observed throughout the domain. The magnitude of wetting-phase residuals seem
physically unrealistic, but are appropriate for the physics represented in the network.
Each throat drains when the weight of fluid overcomes the capillary resistance. The
weight of fluid is controlled by the orientation of the throat while capillary force is
independent of orientation. Thus, nearly horizontal throats experience very little
drainage of the wetting phase. This saturation profile confirms that the network be-
haves differently than a one-dimensional bundle of capillaries [75]. In the network,
we must consider interconnectivity and orientation of the throats.

8.5.4 Capillary Hysteresis.

If the entire simulation network is treated as a single porous medium sample, we may
determine composite capillary pressure versus saturation (P,~S) curves. A capillary
pressure versus saturation curve may be developed by applying known wetting and
non-wetting phase pressures to the boundaries of the network and observing average
saturations. These experiments have been performed with quasi-static, pore-scale
network models for several years [131]. Because the macroscopic network is function-
ally similar to these pore scale networks, one expects similar behavior, although at
a different scale. Non-wetting residual at the throat level is not modeled explicitly.
Thus, non-wetting residual occurs by larger-scale bypassing of throats containing
non-wetting fluid.

Figure 8.9 shows drainage followed by imbibition. For these tests, both fluids
have the same specific gravity. The medium is filled initially with wetting fluid. The
non-wetting fluid head is increased incrementally until the medium ceases to drain
with increasing non-wetting fluid head. The medium was allowed to equilibrate for
each combination of boundary pressures. For these medium and fluid properties,
drainage stops at an average wetting-fluid saturation near 0.3. The non-wetting
fluid head is then gradually decreased, permitting the wetting fluid to displace the
non-wetting fluid. Some of the non-wetting fluid remains in the medium, causing
hysteresis in the capillary pressure versus saturation curves.

8.5.5 Capillary Barrier.

A vertical porous slab was created with two types of material (Figure 8.10). Throats
lying in the upper material were assigned a uniform entry head of 10 ¢m. Throats
in the lower material were assigned entry heads from a one-sided distribution with
a mean of 45 cm and a minimum of 45 ¢m with variance assigned through the
Leverett scaling process. Figure 8.11 shows contours of the entry head for the
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Figure 8.8: Contours of apparent saturation for gravity drainage in the network.

229




160

140 -

120

100

80 -

60

40 -

Capillary Pressure Head, (cm)

\\\
N

0.0 0.2 04 0.6 0.8 1.0 1.2

20 -

Wetting Phase Saturation

Figure 8.9: Capillary pressure versus wetting-fluid saturation for drainage and im-
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capillary barrier problem. An immiscible, non-wetting fluid with a specific gravity
of 2.0 was injected at a point above the material discontinuity. The non-wetting fuid
proceeded downward and spread. As the dense, immiscible fluid came in contant
with the capillary barrier, it spread laterally and began to pond. Non-wetting fluid
saturations in the plume remained much less than 1.0. Flow in the throats crossing
the boundary ceased at the first appearance of the non-wetting fluid. Therefore, any
wetting fluid that is bypassed during the initial invasion has no path to escape. As
the head above the material interface increased, the capillary barrier was overcome.
Displacement occurs only at a few, localized ‘weak’ points rather than a large front.
Further, the displacement appeared to be discontinuous in time. This is physically
similar to the breakthrough processes observed in the laboratory [22]. To produce
this behavior with traditional, discretized continuum models would require a more
complex, two- or three-dimensional computation on a very highly resolved mesh.

8.6 Conclusions and Additional Work

At the pore scale, immiscible fluids remain distinct. When these fiuids are described
as a continuous mixture, constitutive parameters must be concocted to describe the
macroscopic effects of the fluid-fluid interfaces. These constitutive parameters are
complex to implement numerically, difficult to measure, and incapable of predicting
some observed physics.

This discrete network modeling approach for immiscible flow retains distinct
fluid phases in a macroscopic representation of the medium. The network model
produces reasonable, macroscopic immiscible low behavior without relying on com-
plex constitutive models. Capillary hysteresis emerges from simulation with the
network. The network simulates the correct physical phenomena behind capillary
barriers and non-wetting phase residuals. However, because flow solutions in the
throats are one-dimensional, it tends to overestimate wetting phase residuals for the
gravity drainage problem. The present computational scheme is acceptable for small
gradients in entry head. However, because the applied capillary force is determined
from the prior time step, the time step may become quite small when a moving
interface encounters a material discontinuity. An improved scheme for applying
capillary force should be derived.

231




Figure 8.10: Diagram of the material types used to simulate a capillary barrier. The
green material around the exterior defines a bounding box used only for network
generation.
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Figure 8.11: Contours of entry head for the capillary barrier problem.
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Figure 8.12: Contours of apparent saturation for the capillary barrier problem.
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Figure 8.13: Contours of apparent saturation showing localized breakdown of the
capillary barrier problem.
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Chapter 9

Conclusions and Future
Directions

Our drinking water supply is priceless. However, in the near future, the depth of
our society’s pockets will be tested by the cost of environmental remediation. To
minimize these costs, effective groundwater remediation schemes must be designed
and operated using field and laboratory testing and credible numerical simulation of
fluid flow and contaminant fate and transport. Natural heterogeneity compromises
our ability to use laboratory and field measurements in concert with field-scale
numerical simulation.

9.1 Brief Summary of Findings

This study concludes that the best approach for simulating fluid flow and contami-
nant transport in heterogeneous media is to resolve as much detail (even statistical
detail) as possible, relying on constitutive parameters only at the finest scale re-
solvable. Measurements of macroscopic. effective flow and transport parameters
may depend strongly on the measurement scale and technique. Time-dependent
or tracer-plume-scale dependent equation coefficients are valid only for particular
situations (an instantaneous point source in a macroscopically-uniform flow field).
Rather than extend these effective parameters, this effort focused on the efficient
representation of discrete structure to reproduce macroscopic behavior.
Highly-resolved discrete structure may be achieved in several ways,

e finely-discretized continuum modeling with random conductivity fields,
e stochastic discrete network modeling presented here, and

e particle-based transport modeling.
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Present computing resources are considerable, but not infinite. Therefore, res-
olution must be included intelligently. Discretized continuum models normally re-
quire the number of pressure and velocity unknowns to be approximately equal.
Network modeling permits some decoupling of the pressure and velocity resolutions
because pressure is computed at the network connections and velocity in the throats.
Thus, the coordination number controls the ratio of velocity to pressure unknowns.
Particle-based transport schemes permit almost complete separation of the flow and
transport resolution, but detailed velocity structure is needed to produce the proper
dispersive behavior. Coarse resolution in the velocity fields might be coupled with
a correlated-random walk approach to simulate dispersion {123, 122, 108].

Simulating saturated fluid flow with a discrete network and with a comparably-
discretized continuum model produces similar answers with similar computational
cost. However, the network structure offers a potentially more efficient way to model
transport. It allows direct inclusion of characteristic length and conductivity distri-
butions in the model medium. This permits us to reproduce the velocity structure
and variability that dictate dispersion. For this reason, the network reproduces ob-
served plume growth behavior, physically-correct, wholly-downstream dispersion (in
the absence of molecular diffusion), and reasonable matches to laboratory scale ob-
servations. Further, this nearly direct connection with the velocity statistics makes
it possible to condition networks to model large-scale heterogeneity explicitly. For
isotropic media, networks may be created with approximately the correct effective
conductivity and asymptotic dispersivity. In the pre-asymptotic regime, plumes in
the network grow nearly linearly with plume size. Thus, network structure dictates
transport behavior and is not invalidated by changes in hydrologic conditions or
contaminant configurations.

Because the philosophy here is to model, discretely, the distribution of charac-
teristic lengths, the resolution required increases substantially with the degree of
homogeneity. The network has a tendency to overpredict dispersion in a homoge-
neous material. This resolution requirement also exists with discretized continuum
models that suffer from numerical dissipation of large gradients.

9.2 Ideas for Future Work

Much remains to be explored in the use of stochastic discrete networks for modeling
flow and transport through porous media. Specific work may be grouped into the
following categories:

e exploring behavior and correctness of the existing model.

e conditioning networks to honor site-specific data,
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e improving numerical accuracy and speed,
e incarporating additional processes.

The network model is a non-traditional, unstructured, n-phase, m-component,
locally-adaptive numerical model for simulating steady or transient flows with vari-
able density and viscosity and conservative transport with mobile and immobile
fluid fractions. Many aspects of this model remain unverified. For example, the
model contains the framework for three-phase flow, but throat-scale constitutive
rules for applying a capillary force with three or more phases are missing. Be-
cause the macroscopic, discrete network is a non-traditional modeling technique,
additional confirmation is needed to support the network’s credibility as a valid
alternative. The network should be applied to additional laboratory data sets and
to documented field data. Density-dependent and multi-phase flow behavior in the
network appears reasonable, but should be explored thoroughly and compared to
observations. The network demonstrated an ability to produce miscible fingering.
Finger spacing should be checked against stability theory [56] and compared to
laboratory observations.

We must also extend our ability to create networks that honor field observations.
The procedure for network creation (Chapter 6) has a theoretical foundation, but
requires empirical equations to establish a few parameters. The range of validity of
these equations must be determined. Further, conditioning networks in anisotropic
media must be examined.

To this point, more attention has been paid to process descriptions than compu-
tational speed and efficiency. Explicit transport computations often require a small
time step size. The step size is limited by a Courant condition that is the shortest
time to evacuate a throat. This restrictive time step size might be relaxed by adopt-
ing a reasonable transport step size for accuracy, and using a semi-implicit scheme
to compute direct mass transfer from the upstream to the downstream connection
during the step. This would sacrifice some time accuracy by permitting a numerical
smearing for the sake of increased speed.

Immiscible flow in the network is computationally inefficient because velocities
resulting from the application of large capillary forces cause severe time-step restric-
tions. Improved schemes for damping oscillations near a discontinuity in capillary
pressure are needed.

This work has demonstrated that pressure solutions are much less sensitive to
the underlying network structure than are transport computations. This suggests
that the network structure itself might be adapted in time to be coarse in regions
without constituent transport and more detailed in regions with transport. This

238




might be accomplished by imbedding simple structures for which the flow solution
is known without computation (e.g., a Wheatstone bridge). This structure would
provide the same fluid flux for the equivalent structures, but a variety of velocities to
cause dispersion. Further, transport computations might easily be limited to those
throats containing constitutent mass.

Other network generation ideas may be explored. Presently, distribution of con-
nections randomly in the domain is a time-consuming process because a minimum
interconnection spacing is enforced. Perhaps nodes from an automatically-generated
tetrahedral mesh might define connection locations for the network. This approach
would control interconnection spacing and build on years of previous research. In-
stead of assigning throat properties from a material mesh, geostatistics might be
used to assign patch-level statistics. Throats leaving a connection would be given
attributes to honor patch-level statistics.

The network model’s capabilities should be expanded to include additional pro-
cesses needed to simulate remediation. Molecular diffusion, simple sorption, and
reaction should be added. The network should be able to discriminate between
diffusion-limited retardation and actual sorption. At present, porosity is assigned
to be a constant value globally. Porosity should be assigned randomly from distri-
butions keyed to material type.

An intriguing feature of the network model is the distribution of concentrations
it produces within an observational-averaging volume. In the network, throats are
subdivided into segments, each containing fluid masses and constituent masses. Be-
cause each throat knows nothing about its position relative to the other throats,
network results must be averaged to an observation mesh for interpretation and
comparison to observations. Therefore, each observation-mesh average value may
contain contributions from tens of throats and hundreds of segments, each with a
potentially different concentration. Observation in real soils is a similar process. A
sample of fluid is withdrawn and fully mixed. Fluids contributing to the sample may
have had different concentrations, even though they were very near each other. For
some reactions, knowing the average concentration in a region is adequate. However,
some reactions require certain critical conditions (e.g., a threshold concentration)
to proceed. An average value may suggest that no reaction is occurring, but locally,
the necessary conditions may exist.

To demonstrate local variability in concentration, a quasi-two-dimensional net-
work with about 11,000 connections and 50,000 throats was used to simulate growth
of an instantaneous point source. The network domain was 2,500 m long and 1,500
m wide and 10 m thick. An observation mesh of 81 x 51 x 2 was used to view
the plume. A single node was selected at the center of the observation mesh. For
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a single snapshot in time, all segment concentrations contributing to that node’s
average concentration were tabulated. A frequency histogram of these 987 individ-
ual segment concentrations was created (Figure 9.1). The volume-averaged nodal
concentration in the observation mesh is 0.97 g/m?, but many segment values were
nearly twice the average value. Further, over 40 percent of the segments contained
no constitutent mass. There is no evidence to suggest that the distribution of con-
centrations found in the network resembles the distribution in real soils, but it is an
interesting area for study.

The discrete network reaffirms that highly-resolved models with simple model
physics can simulate flow and transport processes in both the early-time and late-
time regimes. Compared to other high-resolution models, the discrete network offers
a more efficient and direct means of representing spatially-uncertain discrete struc-
ture. The model also shows promise for modeling elusive multi-fluid flow processes.
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Figure 9.1: Histogram of concentration within a single observational-averaging vol-
ume.
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Appendix A

Computation of Effective
Conductivity

Gelhar [53] begins with an expression for Darcy’s law

_ 09
Qi=-Kg- (A1)

where g; is the flux in direction i, [LT~!], K is hydraulic conductivity, [LT7Y), ¢ is
the potential, [L]. The potential and the logarithm of conductivity are decomposed
into their mean and zero-mean random components

¢=H+h, E|¢] = H, E[h] =0, (A.2)
InK = F + f, E[lnK] = F, E[f] =0, (A.3)

where E indicates an expectation. By taking the expectation of both sides of the

Darcy equation

0¢ r sO(H + h)] F [ <8H oh )]

;] = = 2 L =— . (A4
[Q ] [K(?Tz] E [e ¢ Ox; ¢ Ele Or; * or; ( )
Beacuse the conductivity distribution is lognormal,

F-K, (A.5)

where K, is the geometric mean of the conductivity distribution, [LT~1]. Further,
the exponential for conductivity variation, f, may be approximated by a Taylor

series

efz(1+f+f2/2+f3/3+...>, (A.6)

leaving

(A7)

E[Qi| = -K,E [((1 +f4 1224 23 ) gH gf)]
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At this point, terms that are third-order perturbation and higher are assumed neg-
ligible. Given that

f2 B 0,2 f AS
with o2 7 being the variance in the perturbations of In K, the equation becomes
o2 ¥ oh
i = K i — —_ E — . A-g
E[Qy glJ <1+ - o] (A.9)

where J; is the large scale gradient in head [—].
To evaluate the remaining expectation term, begin with the head distribution
for an isotropic, heterogeneous medium

0 Oh
K—|=01=123. A10
Oz; < 37‘z> 1 (A.10)
Differentiating and dividing through by InK gives
2
0¢ OInKO o k2o (A.11)

+ ——
O0xi? Or; Ox;
Decomposing K and ¢ into their mean and perturbed components, expanding, and
taking the expectaions yields the following equation for the mean head distribution
0°H OF 0H h
P DU 0f O]
8.’171'2 81"1 37‘1 37‘1 37‘1

By subtracting this mean equation from the original, we are left with the random

(A.12)

component or mean-removed equation

02h +6F8h, 4 BfaH_E{(?f_aﬁ] _ of Oh
Assuming the second order perturbation terms to the right of the equal sign are
small, we are left with

(A.13)

0%h Oh of
——ail?12 + A;ng:;; — Jza—n = 0,
oF
Ai - -8-77’
g =1 (A.14)

A solution to this problem is possible using spectral representations for h and f.

h(z;) = / e*i™d 7y (k)

R

Flai) = / e dZ s (k) (A.15)

g
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where Z is a stochastic process with the following properties

E[dZ] = 0 (A.16)
E[dZ(wl)dZ*(WQ)] = 0, W175WQ (A.17)
E[dZ(w)dZ*(w)] = S(w)dw (A.18)

and S is the spectral density function. Using these represetations for h and f in the
random component equation and integrating over the wave number produces

ikiJidZy o

= k2 2 4 kg2 A.19
i k1© + ko + k3 ( )

dZy = —
Finally,

Oh
E[Eﬂf} /zk EldZpdZj] = Ji /msff( )dk = J;Fy; (A.20)

where

If the gradient in the mean conduct1v1ty and the gradient in the head are assumed
slowly varying in space, and thus locally constant, we get

of? .
Elq] = KgJ; <(1 + -—é—) bij — Fij> = KijJ; (A.22)

in which Kij represents the effective conductivity.

For a two dimensional, statistically isotropic system with no trend in the mean
conductivity (4; = 0), F;; may be evaluated to show that the effective conductivity
is the geometric mean,

' Kij = Ky6; (A.23)
In a three dimensional, perfectly layered system with statistical isotropy in the plan

view,
~ ~ 1 9
Kin=Kp=K;(1+ §O'f
k33 = Kg <1 — %O’f2> . (A24)

For the more general case in three dimensions with statistical anisotropy, the result
is

Ki=K, [1 +o? (% - gn>] ,i=1,2,3 (no sum on 1) (A.25)

but g;; could only be evaluated numerically [53].
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Appendix B

Relating o to gy

To relate the variance in conductivity to the variance in specific flux, Gelhar [53]
begins with the expanded version of Equation A.9.

E[Qi| = K, [Ji <1+3;—f> —E{ng] +] (B.1)

To get the flux perturbation equation, this mean equation is subtracted from a
Darcy expression for total head (mean plus perturbation),

O(H+h
¢ =Qi— E[Qi] = “‘K_(_aW——) — E[Qi]. (B.2)
The resulting equation for the perturbation of flux is
O(H + h) o?s [ oh }
- - ‘ Ml B ceed B.3
a K . KQ[J,(1+ 5 Eamif+ (B.3)

At this point, only the first order perturbation terms are retained, leaving

Using a two term approximation for the exponential. the equation for the perturba-
tion in flux becomes

oh
g =K, (Ji - 53;) . (B.5)
Rearranging and taking the gradient of both sides produces
0%h 0 1 Og;
= 2 (Jf) — — 2 B.6
a.’L‘iZ 6.’1’1( zf) Kg 6.7‘7 ( )
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Substituting this expression for the Laplacian of head perturbation into Equation
A .14 vields
0 1 0g; of oh
——(Jif) - —=— —Ji=— + Ai— =0. B.7
Bmi( f K4 0x; Ox; + " Oz (B.7)
Here, Gelhar uses the spectral representations for h and f as before to solve this
equation. For A; = 0, the spectrum of fluxes may be related to the spectrum of

conductivities as follows

kik kik
Seia; () = Kg2TmJn <6im - %) (6j - %) Ss5(k) (B8)
For a three-dimensional statistically-isotropic medium, this leaves
i 2 _ io.quQ
a 15 ~2
1o 2q2
Ogs = 0q32 = 15 {yQ (B.9)
with
q
y=— (B.10)
gJ
In two dimensions,
3
O'Q12 = gaf2q2
1
a'q22 = ga'f2q2 (B.11)
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Appendix C

Macrodispersion Coefficients

Beginning with the macrodispersivity equation that is valid after large displacement

time[53]
A= / S‘]i‘l;‘ (k)dk (C 1)
Y Jk q2[ik1 + aLk12 + aT(k22 + k32)] '

For a two-dimensional, isotropic medium, the macrodispersivity tensor becomes

Ay = 0,i#] (C.2)

Al = o (C.3)
O'f2

Agy = ——8—(aL+3aT) (C4)

For a three-dimensional. isotropic medium with an exponential covariance model
for conductivity

oA
Apn = —[2— (C.6)
Y
orla 4o
Aoy = Azz = {5’7L <1 -+ aLT> (07)
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