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Abstract
A morphological instability characterized by the separation of grain
pairs and the disappearance of grain boundaries is a common feature in
polycrystalline bodies that are constrained from shrinking during mass
transport. This instability, know as de-sintering, occurs during grain
coarsening as sequentially observed for thin films with columnar
microstructures constrained by a substrate, fibers with a 'bamboo’
microstructure constrained by a matrix, and powder matrices within
composites. De-sintering is a common phenomena in partially dense,
polycrystalline bodies; it occurs concurrently with densification
phenomena and is emphasized in composites where the partially dense
matrix is constrained from shrinking by a reinforcement network. De-
sintering occurs in any lower density region were shrinkage is
constrained by the average shrinkage of the body.
L Introduction

The reader must pull out their Introduction to Ceramics
(Kingery et al., 1976) and turn to.pages 482 and 483 to study the
consecutive micrographs, supplied by C. Greskovich and K. Lay,
showing the microstructural development of alumina oxide during
densification. A quick glance should tell even the causal student that
grain growth can be concurrent with densification.  The four
micrographs on these two pages clearly show that the particle size of
the initial powder compact, and the size of the grains for the partially
dense compacts after heat treatments at 1700 °C for 1, 2.5 and 6 minutes.
The gain size increases by about an order of magnitude between each
pair of consecutive micrographs. Concurrent to this enormous amount of
grain growth is a comparable growth of pores. If the large amount of
grain growth does not bother the serious student, who expects to




understand densification, the concurrent growth of the pores should
trigger a lack of comprehension. That is, although the student can not
read about a comprehensive link between grain growth and
densification, at least the text explains grain growth in terms of either
grain boundary motion or coarsening, i.e., the mass transfer between
grain surfaces. On the other hand, since our Ceramic texts only show
why and how pores in a powder compact can disappear during
densification, it should be incomprehensible to the serious student to see
them grow as clearly illustrated in the sequential micrographs
supplied by Greskovich and Lay.

The objective of this review is to explain the why and how of
pore growth during densification. The why and how have simple
answers, but the remaining paper will detail their explanation. Why
is answered by recognizing that the growth of a void can reduce the
surface to volume ratio of the solid, and thus, best reduce the free
energy of the system under some circumstances. How is answered by
stating that just as voids can become smaller by the formation necks
between touching particles, a phenomenon know as sintering, voids can
also become larger (e.g., link together) when the neck and grain
boundary between two grains disappear, a phenomenon described as de-
sintering.

As it will be seen, the explanations to these simple answers
require some constraint to shrinkage during the densification process.
That is, within the body, a portion of the partially dense material
needs to be partially constrained from shrinking by surrounding
material. Since the voids within these regions are constrained from
decreasing their free energy by shrinking,, i.e., decreasing their surface
to volume ratio, they, instead, decrease their free energy by coalescing
to become larger. Coalescence requires grain pairs, which had
previously formed necks, to de-sinter. It will also be shown that de-
sintering is generally, but not exclusively, associated with grain
growth. Namely, de-sintering can also occur when grain pairs are
pulled apart as one region, linked to another via the grain pairs, move
in opposite directions. Although the linking together of voids via de-
sintering does not decrease the free energy as much as if they were to
disappear, any reduction of free energy appears kinetically expedient.

The review initiates with conditions where constraint to
shrinkage is more obvious, viz., where grain growth occurs in dense,
polycrystalline fibers and films which are fully constrained from
shrinking. It then moves to composites, where the powder matrix is
either partially or fully constrained from shrinking by a reinforcement
phase. The reader is then asked to return to the four micrographs
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mensioned above to discover that the reason for pore growth in powder
compacts is now more obvious.
2. Morphological Instability of Polycrystalline Fibers

The de-sintering phenomena associated with the instability of
polycrystalline fiber is the easiest to see and explain, and has great
similarity to the instability phenomena associated with grain pairs in
partially dense networks. In its own right, tRe thermal stability of
fibers is an important concern in composite materials technology. At
high temperatures, the fibers can undergo grain growth. As shown
elsewhere (Miller and Lange, 1989), mass transport can dramatically
change the morphology of fibers, such that they become a collection of
isolated grains that replaces the original fiber. This phenomenon is
caused by the reduction of free energy (minimizing the interfacial
energy per unit volume) that is concurrent with grain growth. Plateau
(1873) was the first to show that when the length of a cylinder exceeds
a critical value, its surface energy per unit volume can be decreased by
breaking into spheres. Rayleigh (1945) expanded this observation into
his theory of liquid jet instability to show that a cylindrical liquid jet
of radius r could continuously decrease its surface energy by breaking
into droplets, when subjected to symmetrical disturbances with
wavelengths greater than 2rr. Nichols and Mullins (1965) further
extended this concept to solid rods within a solid body. These
experimentally verified theories rely on the fact that large amplitude
diametrical perturbations can grow by mass transport along the
cylinder axis. Miller and Lange (1989) showed through theory and
experiments that large amplitude perturbations in a polycrystalline
cylinder, developed by grain boundary grooving, will break the fiber
into individual grains provided that the mass centers of the grains are
fixed, and the grain size to fiber diameter ratio exceeds a critical
value.

Figure 1 illustrates a polycrystalline fiber that has under gone
grain growth until the grains, assumed to be nearly identical, have
equilibrium shapes, i.e., truncated spheres, shown in configuration a
(assuming all interfacial energies are isotropic). For configurations a, b
and ¢, the fiber is unconstrained and free to move. For this case, as the
grain size increases, e.g., by every other grain consuming its neighbor
from configuration a to b to ¢, the fiber will shrink to maintain a
constant ratio between its surface area and its grain boundary area,
which depends on the energy ratio of these two interfaces (Kellett and
Lange, 1989). In this case, the grains maintain their shape as truncated
spheres. It is obvious that the unconstrained fiber continuously




decreases its free energy during grain growth until it becomes a single,
spherical grain.
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Figure 1 a) Schematic of a polycrystalline fiber that increases its grain size as its
mass centers are either free to move (a, b, ¢) or fixed (a, b’, ¢'). b) Configurational
change as a function of the configuration angle, y.

For configurations a, b’ and ¢, the fiber is constrained from shrinking,
e.g., by a surrounding matrix. For this case, the ratio of the surface
area to grain boundary area decreases during grain growth, the grains
can not maintain their equilibrium shape as truncated spheres, and
eventual, the fiber breaks into a number of isolated, spherical grains as
observed in experiments (Miller and Lange, 1989).

To determine the conditions where the fiber breaks into
isolated grains, Miller and Lange (1989) devised a simple model, shown
in Fig. 1b, that allows the free energy change to be calculated and the
determination of the equilibrium configuration of a polycrystalline
fiber. The fiber is embedded within a homogeneous matrix material,
which has an interfacial energy with the fiber, ys. The initial
“bamboo” structure of the fiber is modeled by identical cylindrical
grains of length D and diameter t. The aspect ratio of the grain, 'a’ =
D/t, is used in subsequent calculations. The angle, vy, defined by the
surface normals at the grain boundary, is initially 180°. It was assumed
that the grain centers are fixed at a distance L and that the grains
develop a barrel shape during grain boundary grooving and second, each
grain retains its initial mass. With these assumptions, the surface and
grain boundary area of each grain can be expressed as a function of v,
which describes the deepening of the grain boundary groove.

The total free energy of each grain is given by:

E=As¥s + AbW (1)
where Ag is the grain surface area, Ay, is the grain boundary area, v is
the surface energy, and yp is the grain boundary energy. The surface
energies are related through Young’s relation:




(2)
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where e is the equilibrium dihedral angle. The determination of Ag
and Ap as a function of 'a’ and vy allows the energy of a grain,
normalized by the energy of the initial, cylindrical grain to be
expressed as a function of 'a’ and w. ~

Figure 2a shows the normalized energy plotted as a function of
the configurational angle y for an equilibrium dihedral angle, e =
150°. The free energy is plotted for three grain aspect ratios; for a fixed
fiber diameter, the aspect ratio will increase as the grain size
increases. For each case, the free energy, Ef, is plotted as y decreases
from 180° to the value of y where the grain boundary disappears.
Beyond this point, the free energy is assumed to decrease continuously
until it coincides with the normalized free energy of the sphere, Es,

when y=0.
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Figure 2 a) Normalized free energy of grain as a function of the configuration
angle, for 3 different aspect ratios. b) Equilibrium Configurational Diagram for
Fibers with different aspect ratios.
As shown in Fig. 2a, the free energy of the fiber with the

smallest aspect ratio, 'a’ = 1.5, decreases to a minimum while the fiber
is still continuous; for this minimum v is near ye. Since any further
decrease in y will result in a higher free energy, the continuous fiber is
the equilibrium configuration. For an increased aspect ratio of 'a’ = 2,
the normalized free energy again decreases to a minimum corresponding
to a continuous fiber. In this case, further decreasing y would first
increase and then decrease the free energy of the fiber, reaching
another minimum for a row of spherical grains. The minimum free
energy of the connected fiber is higher than that of the unconnected
spheres. Thus for this case, the intact configuration is metastable; to
achieve the equilibrium configuration, an energy barrier must be
overcome. When the aspect ratio is further increased to ‘a’ = 3, the row
of spherical grains again has the lowest free energy. In this case the




free energy continuously decreases with  w. Such fibers will always
break into a row of spheres, provided that mass transport can occur.

The lowest energy configuration for any given set of initial
conditions can be represented with an equilibrium configuration
diagram. For polycrystalline fibers, the minimum energy configuration
can be dxsplayed as regions in aspect ratio vs, equilibrium dihedral
angle ('a’ vs. ye) space. The boundary between these regions is
determined by the condition that both'configurations have identical
free energies as shown by the solid line in Figure 2b. Whenever the
initial conditions of ‘a’ and e fall below this line, the lowest free
energy configuration is a continuous fiber. Above this line, the lowest
free energy configuration is a row of identical spheres. The region of
continuous fiber metastability can also be illustrated on the equilibrium
configuration diagram. In this region, which is illustrated by the
middle curve 'a’ = 2 in Fig. 2a, an energy barrier must be overcome. The
lower bound of this region is the solid line, whereas the upper bound is
the dashed line.

As shown, the instability is a natural phenomena when gram
growth occurs in a polycrystalline fiber constrained from shrinking.
With sufficient grain growth, the fiber will break into isolated spheres
to reduce its free energy, i.e., its surface to volume ratio. If these same
isolated spheres were touching one another, they would sinter together
to further lower their free energy and produce one of the configurations
shown in Fig. 1a for the unconstrained fiber. The ratio of free energy for
the unconstrained fiber (Ey) and the constrained fiber that has broken
into isolated spheres (E¢) is the energy reduction due to sintering can be
expressed as [6]
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When the dihedral angle, e, is 150 °, it can be seen from Fig. 2a that
when grain growth occurs such that the aspect ratio 'a’ becomes equal to
2.5, the constrained fiber breaks into isolated spheres to reduce its free
energy by = 7 % (free energy reduction for grain growth between ‘a’' = 1.5
to 2.5), whereas eq (3) shows that if the same fiber were unconstrained,
it would be able to reduce its free energy by another 28 %. Thus, the free
energy reduction produced when the constrained fiber breaks into
isolated spherical grains is significant (7 %), it is only 1/5 the free
energy reduction (0.07/[0.07+0.28]) that could have been realized if the
fiber were free to shrink.




3. Morphological Instability of Polycrystalline Films

Whereas Nichols and Mullins (1965) had shown that holes
would not develop in either amorphous or liquid thin films, Srolovitz
and Safrin (1986) were the first to show that the growth of pin holes in
a polycrystailine film was possible by deepening of the groove at a
three grain junction during grain growth. Miller, Lange and Marshall
(1990) confirmed this idea through experiments and further developed
the thermodynamics of this break-up process in the same manner
described above for the polycrystalline fiber.

The break-up of a polycrystalline film into isolated grains due
to grain growth is, an important problem. Generally this break-up
phenomenon is unwanted, e.g., the film may be expect to either protect
the underlying substrate, or carry an electric current. On the other
hand, use can be made of the film after it breaks into isolated island,
e.g., the isolated islands can be 'seeds’ for grain growth during
subsequent deposition of material (Miller and Lange, 1991).

The instability phenomena associated with polycrystalline
thin films is directly analogous to that discussed above for fibers.
Namely, once the grains within the film develop a columnar
microstructure (each grain spans the film thickness), further grain
growth will cause a free standing film to shrink. When shrinkage is
constrained by the adherence to a substrate, the film will lower its free
energy by eventually breaking into isolated islands. The free energy
change associated with this instability can be model similar to the
fiber. The initial film is assumed to be flat with a thickness t,
composed of identical grains with the shape of hexagonal prisms with
a center to center distance (grain size), D. The configuration angle, y
initiates with a value of 180° and decreases during grain boundary
grooving and further decreases to -180 ° as the isolated grain ‘dewets’
the substrate. (A wetting angle is defined, 8 = (x - y)/2, which
physically explains the negative values of y once the grain boundaries
disappear.) In the case of the polycrystalline film, the free energy per
grain is given by:

E=AsYs + Abtb + AiYi + Asub Ysub, (4)
where subscripts s, b, i, and sub stand for surface, grain boundary,
interface and substrate, respectively. Analogous to the fiber case, the
different interfacial areas can be expressed in terms of the aspect ratio
of the grain, (L/t) and the configuration angle, y. The only different
between the free energy functions for the fiber and film is the larger
number variables. Similar to the fiber case the free energy (eq 4) can be
expressed as a function of the configuration angle, for a specific set of
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interfacial energies, expressed by ratios, and thus, by angles (analogous
to the dihedral angle). Like-wise, similar to the fiber story, all
information can be summarized with multi-variable, equilibrium
configuration diagram were the boundaries in this diagram are
conditions where two configurations (e.g., the covered and ‘island’
configuration) have the same free energy.
4. Constrained Densification of Powders

The densification of powder compacts containing reinforcements
for ceramic matrix composites introduced the subject of constrained
densification to the powder densification community. As detailed
elsewhere (Lam and Lange, 1994) different models were put forth to
explain the incomplete (or absence) of composite shrinkage. Figure 3a,
which shows a periodic distribution of spherical, dense inclusions
distributed within a powder compact can be used to explain why the
reinforcements prevent the composite from achieving full density.

Consider two slices removed from the composite shown in Fig.
3a, one containing the inclusions, and one taken from between the
inclusions, that only contains the powder matrix. Fig. 3b shows that if
each slice were heated to allow the powder to densify, the slice
containing the inclusions were shrink less because it contains a smaller
fraction of the powder, which is the only phase that shrinks. In the
composite, this differential shrinkage can not be tolerated unless the
slices containing the inclusions were subjected to a sufficient
compressive stress to cause the densifying matrix to deform into the
regions were shrinkage is constrained. When the powder matrix is a
crystalline material that undergoes growth as it densifies, and thus
becomes very resistant to deformation by the small 'sintering stresses’,
high density and low density regions develop within the matrix phase
during its 'densification’ (Sudre and Lange, 1992).
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Figure 3 a) Powder matrix containing inclusions; b) Slices (otted in composites)
shrink after matrix densification; matrix slice shrinks more. ¢) Unit cell showing
dense matrix between closer inclusions, and partially dense matrix within cell.




For the periodic array (Lam and Lange, 1994), the matrix
between the inclusions with the smallest spacing (cell edges), becomes
dense, whereas the matrix at the center of the cell is constrained from
shrinking as shown in Fig. 4c. When the inclusions do not initially
touch one another, then the composite shrinks until the matrix between
the inclusions becomes fully dense. If the inclusions already form a
touching network, then the composite does not shrink as the matrix
undergoes densification by the development of large crack-like voids as
discussed below.

Unlike the fibers and films that start off as dense bodies, the
de-sintering phenomena within the powder matrix of the composite is
concurrent with its densification. This seemingly contradictory
statement occurs because powder regions within the matrix do fully
densify, but voids within the matrix concurrently grow. As illustrated
in Fig. 3c, shrinkage within the powder matrix is not uniform, i.e.,
dense and low density regions arise due to different constrains. In
addition, cracks present in the matrix suffer large opening
displacements (without growth) as opposing regions across the crack
shrink in opposing directions. Observations show that two- and three-
grain bridges shown in Fig. 4a,b exist between denser regions as
schematically illustrated in Fig. 4c (Sudre and Lange, 1992). De-
sintering is sequentially observed to occur at these bridges, causing the
opposing regions to be less constrained (no longer connected to an
opposing region) and allowing these regions to increase their density.
When the grain bridges de-sinter, the voids appear to grow bigger.
Thus, although the composite may not shrink at all, the matrix will
undergo densification, where some voids within the powder matrix
shrink and disappear, while others link together and grow larger.

il = P
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Figure 4 a) Two grain bridge and b) three grain bridge between denser regions in
powder matrix phase. c) Schematic of void distribution within matrix phase,
where regions are linked by two- and three-grain bridges (Sudre and Lange, 1992)




De-sintering can occur in an identical manner as illustrated
above for the fiber, viz., by grain coarsening, which would be best
illustrated by Fig. 4b, i.e., the disappearance of the smaller, central
grain. Concurrent with grain coarsening, opposing regions will exert a
tensile stress on the connecting grain pairs (arrows in Fig. 4), which, in
effect, also increases their aspect ratio. Calculations that involve
either coarsening, or tensile extension or both, lead to similar free
energy functions as discussed above for the grain pairs in the fiber
analysis, and similar configurational equilibrium diagrams. As grain
become larger, new grain pairs now link other regions, and these grain
pairs undergo de-sinter, to further unconstrained the densifying regions.
These events are certainly not isolated, but occurs simultaneously
throughout the matrix, and continue until a dense, polycrystalline
matrix is formed that contain reinforcements and voids. Since the
constrain to shrinkage within one regions is directional, depending on
the location of neighboring inclusions, the voids tend to develop a
directional character, and appear crack-like-not a good omen for a
structural ceramic. ‘ '

5. Concluding Remarks

As reviewed above, the microstructural instabilities associated
with grain growth in fiber and film, constrained from shrinking is
caused by a phenomenon where previously formed grain pairs, de-sinter
to reduce their free energy. A greater free energy reduction would have
been achieved if the grain pairs remained intact and their mass centers
could move together during grain growth. Similar phenomena occur
within the partially dense matrix of ceramic composites. Here, either
non-touching or touching reinforcement networks give rise to the
constraint to shrinkage. Microstructural observations of the constrained
network are very similar to the micrographs shown on pages 482 and
483 of Introduction to Ceramics by Kingery et al. (1976) Since these
micrographs are taken for a ceramic powder that does not contain
reinforcements, the question arises: What gives rise to the constrain to
shrinkage within a powder compact. The answer to this must be the
non-uniformity of the powder compact itself, leading to connective
network that densify before others, thus constraining the shrinkage of
more porous regions. These denser networks are easily observed in the
micrographs on pages 482 and 483.

Before this review is closed, it should be pointed out that de-
sintering also occurs in two phase systems. One type of two phase
system, is where the second phase is non-connective, i.e., an inclusion
phase. When the ‘'inclusion’ phase becomes mobile, i.e., diffuses as
rapidly as grain boundaries move in the major phase, it collects at 4-




grain junctions (Lange and Hirlinger, 1984). For this case, the ratio of
the inclusion to grain size remains constant. Since this subject would
require several more pages of this review, the reader is asked to see
how this is connected to the phenomenon of de-sintering. When the
volume fraction of the second phase is large enough, it becomes a
connective, polycrystalline, interpenetrating phase. Growth of grains
within the connective, interpenetrating phdse also requires de-
sintering which the reader might also ponder. In fact, the second phase
might be considered a void phase that does not disappear. De-
sintering also occurs in powder compacts that sinter and coarsen by
evaporation-condensation; in this case the size of the void phase
increases with the grain size to produce larger, self-similar
microstructures. Thus, as stated above, de-sintering is a pervasive
phenomena.
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