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Introduction 

Immunotherapies that have employed the adoptive transfer of lymphokine-activated killer (LAK) 
cells, tumor infiltrating lymphocytes (TIL), or tumor draining lymph node (TDLN) cells in combination 
with the systemic administration of interleukin-2 (IL-2) have resulted in the regression of several types of 
tumors in both humans and animals (1-4). In certain patients, responses have been observed in both renal 
cell carcinoma and melanoma. Few attempts, however, have been made to utilize this form of therapy for 
tumors of other histologic types, including those most prevalent in the overall patient population and often 
considered to be "poorly immunogenic". Breast cancer is an histology that falls within this category. 

It has been shown that T cells from some patients with breast cancer can specifically react to autologous 
tumor as measured in vitro by either cytotoxic activity or the release of cytokines (5-8). This finding has 
recently led to the molecular identification of breast cancer-associated antigens or peptides, e.g., MUC-1 
(6,7) and HER2/neu (8), that are recognized by autologous T cells from cancer patients. Although this rather 
new information raises the intriguing possibility for immune interventions in the treatment of breast cancer, 
the overall level and incidence of detectable T cell responses in these patients are rather low. This limitation 
could be due, in part, to: a) tumor-induced, active immune suppression (9) and/or defects in T cell signaling 
(10) in the cancer patient, which may actively down regulate the functional activity of antitumor effector 
cells. Recent data in rodents suggest that the latter deficit may be overcome by immunization with tumor 
cells that have been molecularly-engineered to secrete IL-2 (11); b) low incidence of antigen-reactive T 
cells. Although precursor CTL with activity against whole tumor cell targets or purified tumor peptides have 
been detected in peripheral blood and lymphoid tissue of some patients, by limiting dilution analyses their 
frequency is either absent or difficult to detect (12); and c) failure of host-derived T cells to recognize 
antigens on the tumor cell surface itself. In this regard, we have described significant inherent defects in 
antigen processing and presentation by certain human solid tumors that could be a crucial mechanism for 
their inability to stimulate the afferent arm of the immune response (13). 

Recent attempts to improve upon immunotherapy for human cancers include the genetic-modification of 
TIL to express exogenous genes encoding for antitumor cytokines (1-2, 14) or new "chimeric" receptor 
genes to redirect tumor antigen specificity (15), as well as the utilization of CTL-defined tumor peptides 
(7,8,16) and gene-modified tumor cells (17-19) as immunogens to generate more potent TIL or TDLN or to 
impact directly on established metastatic disease by serving as "therapeutic vaccines". We have been 
investigating novel approaches to enhance the activity of tumor vaccines in order to increase the frequency 
of tumor-reactive T cells, to overcome tumor-induced immune suppression, and to stimulate potent primary 
and secondary responses to poorly-immunogenic tumors. Our recent studies have involved the use of either 
dendritic cells (DC) as potent antigen presenting cells (APC) or certain chemokines as potent immune cell 
chemoattractants. 

Molecularly-engineered tumor cell vaccines have been shown in some published reports to be effective in 
reducing the size of preestablished tumor masses in rodents, but the issue of potency of tumor vaccination 
has become an important one. Most of the human clinical trials currently underway in gene therapy for a 
variety of different cancers involve introducing one of several cytokine genes into either tumor cells or 
autologous fibroblasts. The rationale for these trials is that, when reintroduced, these genetically modified 
cells will serve as sites of cytokine production and thus enhance immunity by several different mechanisms 
(depending on the cytokine of choice). To date, these include IL-2, IL-4, IL-7, IL-12, TNF-a, IFN-y, and 
GM-CSF. However, the ability to induce tumor regressions or inhibit metastases by cytokine/tumor vaccines 
has been shown in a number of preclinical animal studies to be overcome by larger tumor cell inocula or by 
prolonging the period of time between tumor establishment and subsequent tumor/cytokine vaccination. 

DC are highly potent APC of bone marrow origin (20,21), which have been shown to stimulate both primary 
and secondary T and B cell responses (22,23). Animal studies have indicated that DC are preferentially 
responsible for sensitization of naive T cells in their first exposure to antigen (24). Antigen distribution in 
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the host environment often favors uptake and presentation by DC rather than macrophages or B cells (25), 
and subsequent migration of primed DC to lymphoid organs enhances targeted presentation of antigens to 
the immune system (26). Antigen-pulsed DC have been used successfully in culture to sensitize naive mouse 
CD4+ T cells to a variety of antigens (27). When DC are cultured with exogenous proteins in vitro, 
presentation of antigen in a major histocompatibility (MHC) Class II context is favored (28), but a variety of 
treatments including peptide pulsing enables cultured DC to present antigen in a MHC Class I context as 
well (28,29). In addition, tumor-pulsed DC-rich preparations have been used successfully to treat established 
mouse tumors in vivo (30-32). 

That MHC Class 11-bearing APC primarily stimulate CD4+ T cells is of particular interest, since in several 
murine tumor models antitumor CD4 + T cells have proven capable of mediating tumor rejection or 
conferring protective immunity (33-35) and a human CD4 + T cell defined tumor antigen has been recently 
defined (36,37). In the animal models, the successful culture of antitumor CD4+ T cells has relied on 
immunization of rodents against a tumor or purified tumor protein and subsequent in vitro restimulation of 
sensitized T cells with macrophages or spleen cells pulsed with a purified tumor protein (34-38). Such 
strategies depend upon the availability of purified proteins; however, specific tumor rejection antigens are 
not yet known for many human tumors, including those of breast origin. Furthermore, the study of CD4 + T 
cells has been impeded because of the difficulty in expanding these cells in vitro. In contrast, it has proven 
far easier to expand antitumor CD8+ T cells, such as in the majority of human and mouse TIL studies. 
Recently, however, we have successfully developed a culture system to study the properties of antitumor 
CD4 + T cells that employ DC as APC. Our data have shown that relatively crude membrane preparations of 
tumor cells will suffice as sources of tumor antigen, avoiding the necessity for molecular identification of 
the tumor antigen for effective immunization (39-41). We have now identified for the first time specific 
CD4+ T cell reactivity to tumor cells both in the mouse and human (39-41). Moreover, methods are now 
available to generate sizable numbers of highly-enriched DC, both in humans and in rodents, by culturing 
progenitor cells in the presence of GM-CSF, TNF-a, and/or IL-4 (42-48). The establishment of DC cultures 
from the peripheral blood of adult patients has raised the very important possibility of now using these cells 
as immunotherapeutic agents for the treatment of breast cancer (30). 

With respect to cytokine gene-modified tumor cells, much of the work to date has employed interleukins, 
interferons, TNF-a, and hematopoietic colony stimulating factors (17-19,49). Another class of cytokines 
which has more recently received attention, is the chemokines (or chemoattractant cytokines). Chemokines 
are essential for leukocyte trafficking and inflammatory processes and share structural similarities, including 
four conserved cysteine residues which form disulfide bonds in the tertiary structures of the proteins (50). 
Traditionally, the chemokine superfamily has been divided into two subgroups: C-X-C (where X is any 
amino acid) and C-C, according to whether an intervening residue space the first two cysteines in the motif 
(50). This structural distinction has been shown to delineate a general distinction in the biological properties 
of these molecules: most C-X-C chemokines are chemoattractants for neutrophils but not monocytes, 
whereas C-C chemokines appear to attract monocytes but not neutrophils (50). Of importance, the C-C 
group has also been shown to be chemoattractant to lymphocytes. For example, the C-C chemokine 
RANTES is a chemoattractant for memory T cells in vitro (51) and human macrophage inflammatory 
proteins-1 a and -1 � (MIP-la, MIP-1 �) have been found to be chemoattractant for distinct subpopulations of 
lymphocytes including naive T cells and B cells (52). Recent evidence suggests that the C-C chemokine 
MCP-1 induces T cell migration as well (53). It should also be noted that natural killer (NK) cells migrate 
vigorously in response to RANTES, MIP-la, and MCP-1 (50). In addition to chemoattraction, RANTES has 
been recently shown to activate T cells (54,55), and many of the C-C chemokine members increase the 
adhesive properties of the cells for which they are chemoattractant (50,56). The discovery of a new protein 
suggests that the superfamily now has an additional branch, the 'C' branch. Lymphotactin, a molecule 
isolated from pro-T cells, clearly lacks the first and third cysteines in the four cysteine motif, but shares a 
great deal of amino acid similarity at its carboxyl terminus with C-C chemokines (57,58). Of importance, 
lymphotactin is the only superfamily member to date to be selectively chemotactic to lymphocytes only, as 
it does not attract either monocytes or neutrophils (57,58). 
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We have examined one of the C-C chemokines RANTES for its properties in vivo using a murine tumor 
model (59). We have shown that immunogenic murine tumor cells that stably produce human RANTES 
chemokine after gene-modification lose their ability to form solid tumor masses in vivo. Furthermore, this 
loss of tumorigenicity correlates with in vitro chemoattraction of tumor-specific T cells and appears to be 
mediated in vivo by various host-derived immune cells since the tumorigenicity of RANTES-secreting cells 
is restored when CDS+ and CD4+ T cells are depleted or when murine macrophage migration is inhibited 
(59). Thus, this study represents the first analysis of the functions of RANTES as produced from an in vivo 
source, and shows that the chemoattractant properties of this chemokine for monocytes and T cells as 
predicted from in vitro assays using human cells appear to be broadly relevant in this in vivo murine model. 
Other C-C chemokines, namely MCP-1 and murine TCA3, have been recently shown to inhibit in vivo 
tumor growth as well (50, 60). 

Given this background, this funded research proposal focuses on a series of studies to determine whether 
molecules potently and selectively chemotactic for naive and memory T cell subsets can be used in 
conjunction with tumor-pulsed DC to provide a highly effective means of both detecting and augmenting the 
immune response to breast cancer. 

Technical Objectives and Timelines 

The following Technical Objectives and their corresponding timelines were specified in the original 
funded grant application: 

1. To evaluate the capacity of human dendritic cells to detect T cell specific responses to autologous breast 
tumor in vitro (Months 1-48). 

2. To generate high, stable chemokine producer cells by the introduction and expression of the relevant 
genes in human fibroblast preparations (Months 1-36). 

3. To determine the capacity of the combination of chemokine-secreting cells and dendritic cells pulsed 
with autologous breast tumor to detect, attract, and augment specific, antigen-reactive T cells in vitro 
(Months 12-48). 

Body (Methods, Results, Discussion) 

The research conducted during the first year of this four-year award concentrated mainly on 
experiments proposed in Technical Objectives 1 and 2, with studies proposed in Technical Objective 3 to be 
initiated in year 2 of the award. Therefore, the laboratory effort has attempted to cohere to the original 
timetable (i.e. Statement of Work) provided in the grant application. All data figures and a table referred to 
in the text below are provided in the Appendix section of this annual report. 

(a) Technical Objective 1: Much of the proposed studies in this aim was focused on efforts to first 
optimize the generation/production of human dendritic cells (DC) to serve as potent antigen presenting cells 
(APC) in order to best detect and enhance low level specific T cell responses in vitro. This issue is a critical 
one, since breast tumors are considered to be poorly-immunogenic and, therefore, utilizing the most potent 
DC is paramount to being able to detect the stimulation of autologous, breast cancer-specific T cells. 
Because it has been shown that the level of "maturity" of peripheral blood DC can have demonstrable 
effects on the capacity of these cells to effectively present antigen(s) and trigger primary or secondary 
immune T cell reactivity, we had proposed to compare in our experiments three separate preparations of DC 
derived in the presence or absence of cytokines. Thus, in Technical Objective 1, we compared "cytokine­
driven" vs. "fresh" DC. Standard, well-established procedures were applied for the separation of enriched 
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DC from human peripheral blood and their subsequent pulsing with defined antigens (41,43,48,61-63). 
Following initial attempts to obtain sufficient numbers of "fresh" DC for exhaustive phenotypic and 
functional analyses, it became clear that this population provided an inadequate yield because "fresh" DC 
comprised only a very small percentage of the whole peripheral blood collections. Therefore, we have 
abandoned the study of "fresh" DC for practical and logistical reasons. Rather, we have now completed 
optimization studies of the generation of "cytokine-driven" (GM-CSF plus IL-4) human DC obtained 
from peripheral blood for yield, purity, phenotype, and function. Before optimization studies were 
begun, we evaluated the ability of peripheral blood-derived T cells from advanced breast cancer patients to 
respond to defined antigens [tetanus toxoid and Keyhole limpet hemocyanin (KLH)] that were pulsed onto 
DC generated from 7-day GM-CSF- and IL-4-supplemented cultures. CD4+ T cells or unfractionated T cells 
from two different advanced breast cancer patients showed potent and specific proliferative responses to 
autologous DC pulsed with either tetanus, after a single (Figure 1) in vitro stimulation, or to the poorly­
immunogenic antigen KLH, after three (Figures 2 and 4) but not one (Figures 1 and 3) in vitro 
restimulations (Figures 2 and 4). These results demonstrate that T cells obtained from advanced breast 
cancer patients can be "educated" in vitro to respond strongly to a poorly-immunogenic, well-defined 
antigen (i.e. KLH) only when presented by autologous "cytokine-driven" DC. Moreover, the studies 
show that it is possible to obtain functional DC from the peripheral blood of advanced breast cancer 
patients that have failed multiple standard therapies. 

We next performed a series of experiments to optimize the generation/production and further enhance the 
functional activity of DC. We examined the effect(s) of a variety of different recombinant cytokines (and 
concentrations) added (at different time points) to our standard 100 ng/ml GM-CSF and 50 ng/ml IL-4 
"cytokine-driven" DC cultures. Our screening of recombinant cytokines revealed that TNF-a (10 ng/ml) 
mediated the most potent activity, particularly when added to 7-day GM-CSF/IL-4-containing DC cultures 
and when allowing these cultures to continue for another 7 days after its inclusion (i.e. 14-day DC cultures). 
As shown in Table 1, the addition of TNF-a resulted in at least a two-fold increase in the overall number of 
DC recovered from 14 day cultures. As shown in Figure 5, FACS analyses also revealed enhanced 
expression of the critical co-stimulatory molecules CD80 and CD86 (black color histograms) in the TNF-a 
supplemented DC cultures compared to the non-supplemented ones (white color histograms). Most 
importantly, the addition of TNF-a resulted in substantial augmentation of several distinct functions of 
human peripheral blood-derived DC. TNF-a-treated DC from three different donors consistently showed a 
dramatic enhancement in the priming/stimulation of naive T cells in a 5-day primary allogeneic mixed 
leukocyte reaction (Figures 6 and 7). These former cells were also capable of mediating extremely potent 
APC activity of tetanus toxoid and candida albicans antigens to autologous T cells in 5-day proliferation 
assays (Figures 8 and 9). In this regard, the addition of TNF-a allowed for a significantly fewer number of 
DC to elicit T cell proliferative responses (Figure 9), with a concurrent dramatic reduction in the 
concentration of antigen(s) required for pulsing of DC to serve as effective APC (Figure 8). Similar attempts 
to mimic the effects of TNF-a on "cytokine-driven" DC by triggering with monoclonal antibodies to other 
members of the NGF receptor family, namely anti-CD27, anti-CD30, and the combination of anti-CD27 and 
anti-CD30, were not effective (not shown). The importance of these findings centers around the 
theoretical possibility that antigen(s) expressed by human breast cancer cells at very low amounts on 
the cell surface may now be effectively presented to autologous T cells when pulsed onto GM-CSF/IL-
4 "cytokine-driven" DC that have been additionally treated with TNF -a. [Similar studies utilizing 
actual patient-derived, breast cancer cell lysate-pulsed DC (as APC stimulators) and autologous T cells (as 
responders) will be initiated in year 2 of the funded project]. Lastly, and most important to the studies 
proposed in Technical Objective 2, TNF-a-treated DC were also found to be potently chemoattracted by the 
chemokines MCP-1 (Figure 1 0) and lymphotactin (Figure 11) when evaluated in standard microchemotaxis 
assays. (We also plan to evaluate additional recombinant chemokines, namely RANTES, MIP-1a, and MIP-
1�, for effects on DC in year 2 of our funded project). Thus, we have been successful in optimizing the 
generation of human peripheral blood-derived DC with enhanced functional properties as originally 
proposed in Technical Objective 1 of our funded grant application. Moreover, we have shown that 
autologous DC can be successfully derived from advanced breast cancer patients, which, upon 
pulsing, can stimulate potent tetanus toxoid- and KLH-specific proliferative responses by purified T 
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cells obtained from these same patients. This latter finding considerably lessons the potential concern 
of a compromised immune system in advanced breast cancer patients (as a result of multiple 
chemotherapy/radiation therapy regimens that are also immunosuppressive) hampering attempts to 
clinically develop and utilize dendritic cell-based vaccines in breast tumor immunization approaches 
in vivo. 

(b) Technical Objective 2: As stated in the Introduction, the primary goal of the funded application 
is to enhance the capacity of breast tumor-pulsed DC to trigger antitumor immune responses by including 
chemokine gene-modified fibroblasts to potently and selectively recruit specific immune cell subsets. The 
research directed in year one under Technical Objective 2 emphasized the construction of expression vectors 
containing the cDNAs encoding for five (5) distinct chemokines, transfection/transduction of fibroblasts, 
and analysis of chemokine production by molecular, ELISA, and/or functional assays. Our efforts have 
been highly successful. Our initial attempts to transfect fibroblasts with chemokine gene-containing 
expression plasmids were not fruitful, since transfection efficiencies and levels of chemokine production by 
the transfected fibroblasts were both low. In order to overcome these deficiencies, we thus modified our 
original proposed strategy and focused our efforts on constructing high-efficiency retroviral vectors. We 
have now successfully introduced the cDNAs encoding for lymphotactin (Ltn), RANTES, as well as 
macrophage inflammatory protein-1 beta (MIP-1 �) into the MFG-based retroviral vector backbone (Figure 
12). We are also currently completing the vector construction to express the monocyte chemotactic protein-1 
(MCP-1) and MIP-1a; given our success with the three other aforementioned chemokines we do not foresee 
any difficulties in doing so. Chemokine cDNAs were amplified by PCR and were introduced into the MFG­
based retroviral vector backbone with the start codon of the eDNA inserted precisely at the start codon of 
the deleted env gene (at the Ncoi site). The cloned chemokine cDNAs were then transcribed from the 
promoter/enhancer sequences in the retroviral long terminal repeat (L TR) sequence. Expression plasmids 
containing the MFG/chemokine eDNA constructs were transferred into both the amphotropic 'JINX-A and 
ecotropic 'VNX-E high-efficiency, transient packaging cell lines (obtained from Dr. G. Nolan, Stanford 
University). High-titer retroviral supernatant from these producer cells was used to infect murine NIH-3T3 
cells and autologous human fibroblasts. Genomic DNA of these transduced target cells was analyzed by 
PCR with two primers, one of which is located in the MFG 3'LTR and the second in the chemokine eDNA. 
The PCR results showed the integration of the MFG retroviral vectors with either Ltn, RANTES, or MIP-1 � 
eDNA sequences (Figure 13). The transgene expression of the chemokines in NIH-3T3 cells and autologous 
fibroblasts was examined by RT -PCR; RT -PCR fragments were strongly detected in the MFG/chemokine 
eDNA transduced cells compared to a complete lack of RT -PCR products in both control unmodified, 
parental cells and MFG backbone alone transduced cells (not shown). 

We then evaluated the level of production of chemokines in the culture supernatants of plated transduced 
fibroblasts by either ELISA or functional microchemotaxis assays (Figures 14 and 15). Significant levels of 
RANTES and MIP-� chemokine were produced from transduced breast cancer patient's fibroblasts (Figure 
14) and 3T3 cells (Figure 15, lower panel). Since an ELISA was not available for Ltn, we performed 
microchemotaxis assays with supernatant harvested from transduced 3T3 cells and found selective 
chemoattraction of CD4 + and to a greater extent CD8+ T cells purified from the peripheral blood of an 
advanced breast cancer patient (Figure 15, upper panel). Collectively, these results demonstrated the 
successful expression of three distinct chemokine cDNAs constructed into the MFG-based retroviral 
vector. Moreover, transduced fibroblasts have produced significant levels of biologically active 
chemokines from the introduced transgene(s). Thus, these chemokine-gene modified fibroblasts will now 
allow us to conduct our next proposed series of studies to combine them with tumor lysate-pulsed dendritic 
cells in an attempt to detect, attract, and augment specific, antigen-reactive T cells in vitro from breast 
cancer patients (Technical Objective 3). 

Conclusion/Significance 
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The significance of our research lies in the potential to develop a new, innovative molecular vaccine 
strategy for eventual use in breast cancer patients that employs chemokine gene-modified fibroblasts 
combined with tumor-pulsed dendritic cells to both recruit/concentrate relevant immune populations at the 
vaccination site (by secreted chemokines) as well as to activate the recruited T cells by potent presentation 
of tumor-associated antigens (by dendritic cells). This strategy may prove to be a highly effective means of 
both detecting and augmenting the immune response to poorly-immunogenic breasttumors that ultimately 
leads to tumor eradication. 

Plans 

The upcoming year will be the second year of the four-year support for this research project. No 
significant changes are anticipated with respect to the experimental design and methods of the 
Technical Objectives. We plan to complete the construction of the chemokine-gene containing retroviral 
vectors and optimize the conditions for transduction of fibroblasts from breast cancer patients to achieve the 
highest level of production of the relevant chemokine(s). We will also optimize the pulsing step of breast 
tumor lysates onto "cytokine-driven" autologous DC to generate the most potent elicitation of specific T cell 
reactivity in vitro. We will then initiate the combination approach of chemokine gene-modified fibroblasts 
and tumor-pulsed DC in vitro and begin to dissect the underlying mechanisms of antitumor T cell 
reactivities and chemoattraction observed. We also hope to increase our knowledge of the mechanisms ofT 
cell activation, recognition, and destruction of poorly-immunogenic tumors. Finally, we believe our 
experimental data will be sufficiently relevant to warrant the design and execution of a spin-off phase I 
clinical trial in patients with advanced breast cancer. 
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