**REPORT DOCUMENTATION PAGE**

---

**1. AGENCY USE ONLY (Leave blank)**

---

**2. REPORT DATE**

11-Nov-97

---

**3. REPORT TYPE AND DATES COVERED**

Final Report for 7/1/96 to 7/31/97

---

**4. TITLE AND SUBTITLE**

Communications through Plasma Sheaths: Alternative Approaches Using Nonlinear Properties of the Plasma

---

**5. FUNDING NUMBERS**

AFOSR Grant No. F49620-93-1-0058

---

**6. AUTHOR(S)**

A. C. Newell and V.E. Zakharov

---

**7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**

Department of Mathematics
University of Arizona
Tucson, Arizona 85721

---

**8. PERFORMING ORGANIZATION REPORT NUMBER**

---

**9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

Air Force Office of Scientific Research/PKA
Boiling AFB, DC 20331-0001

---

**10. SPONSORING/MONITORING AGENCY REPORT NUMBER**

---

**11. SUPPLEMENTARY NOTES**

---

**12a. DISTRIBUTION/AVAILABILITY STATEMENT**

Approved for public release; distribution unlimited.

---

**12b. DISTRIBUTION CODE**

---

**13. ABSTRACT (Maximum 200 words)**

We developed useful results in connection with the use of nonlinear plasma properties to enhance communication properties and improve drag reduction and flight characteristics of hypersonic vehicles. Over the past three years, we carried out a detailed investigation of the relevant plasma processes, such as Raman and Brillouin scattering, ion-acoustic pluses and fast electrons. The objective of this work was to find under what parameters of plasma and microwave these processes could be effective for transmitting a message written on the signal wave to the vehicle through the plasma sheath.

---

**DTIC QUALITY INSPECTED 4**

---

**14. SUBJECT TERMS**

---

**15. NUMBER OF PAGES**

1

---

**16. PRICE CODE**

---

**17. SECURITY CLASSIFICATION OF REPORT**

UNCLASSIFIED

---

**18. SECURITY CLASSIFICATION OF ABSTRACT**

UNCLASSIFIED

---

**19. SECURITY CLASSIFICATION OF ABSTRACT**

---

**20. LIMITATION OF ABSTRACT**

UL

---

*Standard Form 298 (Rev. 2/89)*

*Prescribed by ANSI Std.239-18*

298-102
Communications Through Plasma Sheaths: Alternative Approaches Using Nonlinear Properties of the Plasma
AFOSR F49620-93-1-0058

Final Report
7/31/97

A.C. Newell
Department of Mathematics, University of Arizona,
Tucson, AZ 85721
tel. 520-621-1486
fax 520-621-8322
anewell@math.arizona.edu

Co-Investigator
University of Arizona: V.E. Zakharov

OBJECTIVE

We developed useful results in connection with the use of nonlinear plasma properties to enhance communication properties and improve drag reduction and flight characteristics of hypersonic vehicles.

Over the past three years, we carried out a detailed investigation of the relevant plasma processes, such as Raman and Brillouin scattering, ion-acoustic pulses and fast electrons. The objective of this work was to find under what parameters of plasma and microwave these processes could be effective for transmitting a message written on the signal wave to the vehicle through the plasma sheath.

STATUS OF EFFORT

The results of our theoretical research is reported in the publications listed below. We established a scientific contact with Dan Katayama and his co-workers at the Phillips Laboratory, Hanscom AFB, who are considering testing our ideas experimentally in laboratory conditions.
As the request of this group, we have found the optimal plasma parameters and electromagnetic wave frequencies to be used in such an experiment with the answers to a number of theoretical questions.

The study of nonlinear plasma processes for communications with reentry vehicles revealed some properties of these processes that appeared to be very promising for solving another important problem, i.e., reduction of drag on a hypersonic airplane.

NEW FINDINGS

We showed that the nonlinear plasma processes are effective enough to be used for communications. Brillouin scattering is shown to give much stronger signal than Raman scattering, although it has to compete with a higher noise level resulting from turbulence. Fast electrons generated in the process of the resonant absorption of the signal wave are shown to penetrate plasma as deep as five to ten cm and, therefore, are capable of reaching the vehicle and transmitting information.
written on the signal wave. The best results can be achieved when several communication channels based on these processes are used simultaneously.

PERSONNEL SUPPORTED
Faculty
A.C. Newell
V.E. Zakharov

Post Docs
A. Pouchkarev
S. Nazarenko

Graduate Students
N. Komorova

PUBLICATIONS


INTERACTIONS/TRANSITION

Collaborative visit at Dayton AFB

TRANSITIONS
n/a

NEW DISCOVERIES, INVENTIONS, OR PATENT DISCLOSURES
none

HONORS/AWARDS
none