Experimental Micromechanics of Geomaterials Through Computer Visualization

Roman D. Hryciw

Department of Civil Engineering
University of Michigan
Ann Arbor, MI 48109-2125

AFOSR/NA
110 Duncan Avenue, Rm B115
Bolling AFB, DC 20332-8050

F49620-93-1-0406

F49620-93-1-0406

19971203 157

Approved for public release; distribution unlimited.

The objective of the research program was development of computer vision techniques for experimental soil micromechanics and for characterization of soils, both in the laboratory and in-situ. For micromechanics research, a particle tracking system consisting of state-of-the-art hardware and developed software tools, was assembled for monitoring the kinematics of particulate assemblies undergoing large strain deformations and flow. The utility of this system, the testing methodologies and the suite of developed applications: flow of soil through an orifice at the base of a container; the plowing of soil off of a plain strain embankment and the development of shear bands in soil around an advancing ribbed inclusion. The major demonstrated use for this system was in verification of discrete element models with particular focus on the development of strain localization and shear banding.
Final Technical Report

on

AFOSR Grant No. F49620-93-1-0406 (AASERT)

for support of Scott A. Raschke,
Ph.D. Candidate
at the
University of Michigan
Ann Arbor, Michigan

Experimental Micromechanics of Geomaterials
Through Computer Visualization

University of Michigan
Report No. UMCEE 96-25

submitted by

Roman D. Hryciw
Associate Professor of Civil Engineering
University of Michigan

October 30, 1996
Introduction

The present report includes a summary of work conducted under AFOSR Grant No. DAAH04-95-1-0227. This three-year AASERT Grant to the University of Michigan supported the research efforts of Scott A. Raschke, culminating in his anticipated award of a Doctor of Philosophy in Civil Engineering in December, 1996. Various components of the study also benefited from the following sources of funds:

"Interface Mechanics of Particulate Media With Ribbed Inclusions"
AFOSR Grant No. F49620-92-J-0216 (the parent grant)

"Computer Vision for Large Deformations in Particulate Media"
Army Research Office Grant DAAH04-95-1-0227

"Subsurface Vision Probe Development"
NSF Grant CMS-9510301

"Computer Vision Instrumentation for Continuous Soil Profiling"
Defense University Research Instrumentation Program
(DURIP Grant No. DOD-G-DAAH04-95-1-0574)

Dr. Raschke's dissertation is attached with this report. It is the most complete technical document acknowledging support under the AASERT grant. The following sections summarize the major accomplishments of the study and the technical publications resulting from the grant.

Summary of Research Accomplishments

The objective of the research program was development of computer vision techniques for experimental soil micromechanics and for characterization of soils, both in the laboratory and in-situ. For micromechanics research, a particle tracking system, consisting of state-of-the-art hardware and developed software tools, was assembled for monitoring the kinematics of particulate assemblies undergoing large strain deformations and flow. The utility of this system, the testing methodologies and the suite of developed computer vision programs that were developed was demonstrated in three different applications: flow of soil through an orifice at the base of a container; the plowing of soil off of a plain strain embankment and the development of shear bands in soil around an advancing ribbed inclusion. The major demonstrated use for this system was in verification of discrete element models with particular focus on the development of strain localization and shear banding.

In soil characterization, a laboratory testing system was developed for rapidly and accurately determining the grain size distribution of cohesionless soils (gravels to silts) from a series of digital images taken at various magnifications. Corrections for statistical bias were developed and excellent agreement was observed with grain size distributions obtained by conventional sieving. The final component of the study involved the design, construction and testing of an in-situ vision probe. The probe, which can be used in
conjunction with standard electronic cone penetrometers, captures subsurface images of the soil at two magnifications. The images may be digitized for subsequent computer vision analysis to determine grain size distributions. Just as importantly, the vision probe unambiguously provides information regarding the locations of interfaces between dissimilar soils and the thicknesses of even very thin anomalous soil lenses.

Technical Publications Acknowledging AFOSR Grant No. DAAH04-95-1-0227:


Planned publication: