The research investigated under this grant has focused on the basic problem of time-domain electromagnetic scattering and propagation in various physical environments. An issue of particular importance has been dispersion, and how it is manifested in the time domain. Particular dispersive environments that have been investigated are periodic and quasi-periodic propagation and scattering, short-pulse propagation in lossy, dispersive soils. With regard to this latter topic, a significant problem of interest involved short-pulse electromagnetic scattering from buried targets, with a focus on buried mines. The research on short-pulse wave phenomenology has motivated a new research thrust, in which the underlying phenomenology is exploited in the development of what has been termed "wave-oriented" signal processing. Particular signal processing algorithms that have been investigated including the Gabor transform, the wavelet transform, and windowed superresolution processing. In this context, we have also performed sophisticated Cramer-Rao bound studies to assess the ultimate accuracy of such algorithms when the data is contaminated with additive noise. Finally, the phenomenology is being exploited in the development of new wave-based time-frequency algorithms, in particular the wave-based methods of matched pursuits. This algorithm is very useful for the denoising of scattering data and is not being placed in the context of a decision-theoretic paradigm.
Final Technical Report on

Investigation of UWB Time-Domain Electromagnetic Phenomenology

subcontract on AFOSR grant 49620-93-1-0093

from Polytechnic University

09/01/95 - 06/30/96
Total Funding: $135,701

Principal Investigator

Lawrence Carin
Department of Electrical and Computer Engineering
Duke University
Box 90291
Durham, NC 27708-0291
PH: (919) 660-5270 FAX: (919) 660-5293
Email: lcarin@ee.duke.edu
I. Summary

The research investigated under this grant has focused on the basic problem of time-domain electromagnetic scattering and propagation in various physical environments. An issue of particular importance has been dispersion, and how it is manifested in the time domain. Particular dispersive environments that have been investigated are periodic and quasi-periodic propagation and scattering, short-pulse propagation in waveguides, and short-pulse propagation in lossy, dispersive soils. With regard to this latter topic, a significant problem of interest involved short-pulse electromagnetic scattering from buried targets, with a focus on buried mines.

The research on short-pulse wave phenomenology has motivated a new research thrust, in which the underlying phenomenology is exploited in the development of what has been termed "wave-oriented" signal processing. Particular signal processing algorithms that have been investigated include the Gabor transform, the wavelet transform, and windowed superresolution processing. In this context, we have also performed sophisticated Cramer-Rao bound studies to assess the ultimate accuracy of such algorithms when the data is contaminated with additive noise. Finally, the phenomenology is being exploited in the development of new wave-based time-frequency algorithms, in particular the wave-based method of matched pursuits. This algorithm is very useful for the denoising of scattering data and is now being placed in the context of a decision-theoretic paradigm.

II. Graduate Students

Several graduate students have been supported or partially under this research grant, leading to the successful completion of PhD dissertations. The students and their dissertation titles are listed below.

1. Teng-Tai Hsu
Dissertation title: Frequency and time-domain analysis and signal processing of waves scattered from finite arrays

2. Stanislav Vitebskiy
Dissertation title: Ultra-wideband, short-pulse ground-penetrating radar

3. David R. Kralj
Dissertation title: Ultra-wideband, time-domain electromagnetics

III. Publications in which grant support is acknowledged

IV. Books Edited in which grant support acknowledged

V. Patents derived from this work

None