REPORT DOCUMENTATION PAGE

Title and Subtitle:
(DURIP-96) DEVELOPMENT OF A SPATIO-TEMPORAL SPIN RESONANCE NSOM FOR STUDIES OF MAGNETIC NANOSTRUCTURES

Author(s):
PROFESSOR AWSCHALOM

Performing Organization Name(s) and Address(es):
The Regents of the University of California
University of California, Santa Barbara
3227 Cheadle hall
Santa Barbara, CA 93106-5050

Sponsoring/monitoring agency name(s) and address(es):
AFOSR/NE
110 DUNGAN AVE ROOM 6115
BOLLING AFB DC 20332-8050

ABSTRACT
The low-temperature near-field scanning optical microscope (NSOM) was designed and constructed in the physics department at UCSB, and the associated optical equipment was purchased and successfully integrated. The resulting piece of equipment is one of the few running variable-temperature magneto-optical NSOMs in the country.
AFOSR DURIP-96 Award #F49620-96-1-0372

Professor D.D. Awschalom
Department of Physics, University of California, Santa Barbara, CA 93106

Development of a Spatiotemporal Spin Resonance NSOM for Studies of Magnetic Nanostructures

FINAL TECHNICAL REPORT

I) Equipment

We have successfully constructed a top-loading variable-temperature (1K - 300K) magneto-optical (0-7T) near-field scanning optical microscope which is capable of examining thin films and quantum structures with a spatial resolution of ~80 nm and a temporal resolution of 100 femtoseconds. Spatio-temporal measurement methods include photoluminescence (PL) and absorption spectroscopy/imaging, where high resolution (~70 μeV) spectra are obtained rapidly at any point on the surface (or below the surface) using nitrogen-cooled CCD arrays, and appropriate spatial images collected at a desired detection energy. This has been made possible by purchasing a femtosecond tunable laser system capable of generating an ultrafast white-light continuum within this time scale. The costs for this project are divided as follows:

(a) AFOSR DURIP Award: $90,000 Coherent Laser Model 9000 Regenerative Amplifier and Coherent Laser Model 9400 Optical Parametric Amplifier System. Equipment to enable full optical imaging spectroscopies within femtosecond time scales using an ultrafast white-light source.

(b) UCSB Cost Sharing: $30,000 Design, Construction, and Operation of Titanium Low-temperature Near-field Scanning Optical Microscope for top loading magneto-optical cryostat, including computers, optics, and electronics.

II) Summary of Research Projects

- **II-VI quantum dots, magnetic quantum dots, and strain-induced quantum dots**

 We have recently succeeded in the fabrication and direct observation of 0D exciton confinement in wide-gap II-VI quantum dots. These nanostructures are formed during the strained layer epitaxy of (cubic) CdSe (E_g = 1.75 eV) on ZnSe (E_g = 2.8 eV) with a lattice mismatch ~ 7%. The 0D nature of the confined electronic states in these quantum dots is directly revealed through PL spectroscopy with high spatial resolution (~ 100 nm) carried out using the low-temperature near-field scanning optical microscope. The smooth, inhomogeneously broadened lineshape of typical far field PL spectra is seen to evolve into a spectrum characterized by sharp, resolution-limited (0.8 meV) reproducible spectral features in the near-field, arising from a convolution of the delta-function density-of-states of each individual quantum dot region and an envelope determined by the statistical distribution of quantum dots. Measurements in II-VI CdSe quantum dots electronically coupled to adjacent MnSe magnetic layers have revealed the existence of magnetic quantum dots, exhibiting field-tunable Zeeman splittings in individual dots. These near-field optical spectra at low temperatures demonstrate the ability to fabricate and measure genuine “spin quantum dots” in applied magnetic fields, and explore spin-dependent phenomena in zero-dimensional structures. The observation of 0D states in II-VI nanostructures opens up exciting possibilities for studying static and dynamic spin dependent phenomena in “quantum spin dots” by the incorporation of magnetic ions into II-VI nanostructures. Finally, another scheme entails the use of the strain field from overgrown CdSe quantum dots to produce 0D confinement regions in a magnetic quantum well below that is separated from the dots.
by a ZnSe spacer. Such strain-patterned dots have recently been very successfully observed in III-V nanostructures and are found to exhibit high quantization effects along with a low degree of inhomogeneous broadening. We have used the NSOM to image zero-dimensional (0D) excitonic confinement in locally strained Zn$_{1-x}$Cd$_x$Se quantum wells. Strain fields from self-organized CdSe quantum dots locally modulate the band structure of a nearby quantum well (QW) in a heterostructure, resulting in confinement in all three dimensions. The 0D nature of excitonic confinement is verified by the observation of sharp lines in photoluminescence (PL) spectra. The temperature dependence of the PL lifetime is markedly different than that of the CdSe quantum dots, demonstrating tunneling from 0D to 2D electronic states. High-resolution spectra show that the PL lines from the localized states are split into linearly polarized doublets.

- **ferromagnetic patterning for magnetoelectronics**

In contrast to embedding magnetic moments within a semiconductor heterostructure, it is important to demonstrate an ability to guide spin-dependent transport using field gradients from magnetic films grown upon a semiconductor heterostructure. The spin-dependent properties of these magnetically-patterned nanostructures are resolved using both near-field scanning optical microscopy (NSOM) and magnetotransport studies. We have developed magnetically active II-VI diluted magnetic semiconductor (DMS) surface quantum well "substrates" upon which to epitaxially grow and pattern ferromagnetic Fe films in order to produce spin-dependent potentials. This material phase produces flux-focusing magnetic patterns which have included planar wedges and variable-spaced single domain particle arrays with nominally 0.1-0.5 micron feature sizes. These patterns are designed to create a field-driven spin-dependent energy landscape for optically-pumped or doped carriers and provide a basis for spatial measurements of electronic spin transport. We have grown a hybrid ferromagnetic-DMS quantum well structure by depositing a 50 nm thick epitaxial film of Fe on top of a single 12 nm quantum well containing 3 monolayers of Mn ions. This wet-etched single-crystal Fe film was processed using a newly developed chemical technique, *without any electronic degradation of the underlying semiconductor heterostructure*. The magnetic field due to the iron penetrates the quantum well near the edges of the patterned regions. A combination of NSOM photoluminescence, far-field Hanle effect, and time-resolved Faraday rotation measurements have been performed in and around these structures which demonstrate that the films can be processed without significantly altering the electronic properties of the quantum well.

- **NSOM of single and multiple InGaN quantum wells**

We have used near-field scanning optical microscopy to study photoluminescence (PL) in single and multiple InGaIN/GaN quantum wells. To our knowledge, these represent the first high-resolution spatial images of PL from a InGaN structures over a broad range of temperatures. Measurements have been made for temperatures between 50 and 295 K with spatial resolution of approximately 100 nm. One of the principal advantages of this technique is the capability of correlating spatially-resolved PL with topographic information, and the work is aimed at identifying the mechanism of strong optical activity in nominally very disordered material. All of the structures were grown at UCSB using MOCVD methods under the supervision of Professor Evelyn Hu. To our surprise, the strongest (~ 50%) spatial modulation in the PL intensity occurs in the vicinity of large (~ 500 nm diameter) pits in the heterostructure. Weaker (~15%) variations in the PL do not correlate directly with the presence of pits. In contrast, the green band luminescence (analogous to the yellow band in GaN) appears only when the sample is excited over the pits. A particularly important observation is that the spectrum of the quantum well PL shows no significant variations on the length scales probed in our experiment. We therefore find no evidence for the recombination of localized carriers (or quantum dots) in the InGaN/GaN system at temperatures above 50 K, despite several claims in the literature.

- **Publications using the new instrument**

