Interdisciplinary Symposium on Computational and Applied Mathematics

J. Tinsley Oden

The University of Texas at Austin
TICAM, TAY 2.400
Austin, TX 78712

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution unlimited.

Mathematical modeling, computer simulation, and numerical and computational mathematics have had a revolutionary influence on how scientific research is done. Every day new applications appear which demonstrate the dramatic increase in the role of computer simulation to model a variety of natural phenomena in order to both better understand them and to uncover new scientific principles and data. To explore these diverse topics, the need for interdisciplinary interaction and collaboration has become evident. These topics were the basis of an interdisciplinary symposium held at the University of Texas in April 1995.

The symposium brought together leading researchers to assess the increasing opportunities in scientific research on computational mathematics and computer simulation, including mathematical modeling using numerical methods, high performance computing for large-scale applications, specialized applications in biology, environmental studies, numerical science, penetration mechanics, and wavelets and image processing together with the role of computer simulations in engineering analyses, manufacturing, and design.
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1.	Agency Use Only (Leave blank)
Block 2.	Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least year.
Block 3.	Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).
Block 4.	Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
Block 5.	Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels: C - Contract PR - Project G - Grant TA - Task PE - Program WU - Work Unit Element Accession No.
Block 6.	Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
Block 7.	Performing Organization Name(s) and Address(es). Self-explanatory.
Block 8.	Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
Block 9.	Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
Block 10.	Sponsoring/Monitoring Agency Report Number. (If known)
Block 11.	Supplementary Notes. Enter information not included elsewhere such as, prepared in cooperation with... Trans. of... To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a.	Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NORFORM, REL, ITAR).
DOD	See DoDD 4230.25, "Distribution Statements on Technical Documents."
DOE	See authorities.
NASA	See Handbook NHB 2200.2.
NTIS	Leave blank.

Block 12b.	Distribution Code.
DOD	Leave blank
DOE	Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports
NASA	Leave blank.
NTIS	Leave blank.

| Block 13. | Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report. |

| Block 14. | Subject Terms. Keywords or phrases identifying major subjects in the report. |

| Block 15. | Number of Pages. Enter the total number of pages. |

| Block 16. | Price Code. Enter appropriate price code (NTIS only). |

| Block 20. | Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited. |
INTERDISCIPLINARY SYMPOSIUM ON
COMPUTATIONAL AND APPLIED MATHEMATICS

FINAL REPORT

J. Tinsley Oden

September, 1997

DAAH04-95-1-0160

The University of Texas at Austin

Approved for public release: distribution limited.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS
REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION,
POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER
DOCUMENTS.
INTERDISCIPLINARY SYMPOSIUM ON COMPUTATIONAL
AND APPLIED MATHEMATICS

Mathematical modeling, computer simulation and numerical
and computational mathematics have had a revolutionary influence
on how scientific research is done. However, every day new
applications appear which demonstrate the dramatic increase in the
role of computer simulation and mathematical modeling for
engineering analysis, manufacturing and design, and the
unprecedented use of computer simulation to model a variety of
natural phenomena in order to both better understand them and to
uncover new scientific principles and data. To explore these diverse
topics, the need for interdisciplinary interaction and collaboration
has become evident. This special issue contains invited papers
embracing the main areas pertinent to mathematical analysis,
modeling, computer simulation, methodology, and algorithms. These
topics were the basis of an interdisciplinary symposium held at the
University of Texas in April 1995 to celebrate the inauguration of
the new Computational and Applied Mathematics Ph.D. Program and
the establishment of a new research center devoted to this area,
TICAM: The Texas Institute for Computational and Applied
Mathematics.

The symposium brought together leading researchers to assess
the increasing opportunities in scientific research on computational
mathematics and computer simulation, including mathematical
modeling using numerical methods, high performance computing for
large scale applications, specialized applications in biology,
environmental studies, material science, penetration mechanics, and
wavelets and image processing together with the role of computer
simulations in engineering analyses, manufacturing, and design.
This symposium was designed to help lay down specific directions
for interdisciplinary graduate research that incorporate
computational mathematics, and to provide a forum for a diverse
group of scholars and researchers in computational and applied
mathematics.
Many of the topics presented at the symposium (e.g. high performance computing, finite elements, object-oriented programming) are represented at national meetings as topic areas and there have been specialty conferences on, for example, wavelets; but the purpose at this symposium was to focus on the interdisciplinary aspects of the subject and to explore the interactions between these areas.

Invited papers presented at the Symposium were published in a special issue of *Journal of Computational and Applied Mathematics* 74 (1996) 1. The following is a list of papers published in this volume. An extra 100 copies of this volume have been ordered, but not received to date.

A.N. Agarwal and P.M. Pinsky
Stabilized element residual method (SERM): A posteriori error estimation for the advection-diffusion equation.

Computational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation.

O. Axelsson
The stabilized V-cycle method

I. Babuska, B. Andersson, B. Guo, J.M. Melenk and H.S. Oh
Finite element method for solving problems with singular solutions

Z. Bai, M. Fahey and G. Golub
Some large-scale matrix computation problems

R. Barrett, M. Berry, J. Dongarra, V. Eijkhour and C. Romine
Algorithmic bombardment for the iterative solution of linear systems: A poly-iterative approach

Smoothing and accelerated computations in the element free Galerkin method

The effect of dissipation on solutions of the generalized Korteweg-de Vries equation

J.H. Bramble and J.E. Pasciak
Least-squares methods for Stokes equations based on a discrete minus one inner product

B. Engquist and O. Runborg
Multi-phase computations in geometrical optics

R.E. Ewing
Multidisciplinary interactions in energy and environmental modeling

T.J.R. Hughes and J.R. Stewart
A space-time formulation for multiscale phenomena

T. Karkkainen, P. Neittaanmaki and A Niemisto
Numerical methods for nonlinear inverse problems

J.T. Oden and Y. Feng
Local and pollution error estimation for finite element approximations of elliptic boundary value problems

A.L. Pardhanani and G.F. Carey
Efficient simulation of complex patterns in reaction-diffusion systems

S. Shaw, M.K. Warby and J.R. Whiteman
Discrete schemes for treating hereditary problems of viscoelasticity and applications

D.M. Young and D.R. Kincaid
A new class of parallel alternating-type iterative methods

The following researchers were supported for their travel to the Symposium through funds provided by this grant.

Randy Bank, University of California, San Diego
Gene Golub, Stanford University
T.J.R. Hughes, Stanford University