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AFIT/DS/ENG/97-05

Abstract

Estimating the parameters of filtered sinusoids in noise from a finite number of obser-
vations has wide Air Force, DoD, and commercial interest. Whether constructing models
for time series analysis or estimating the velocity of moving targets, the ability to accurately
estimate the frequency, amplitude, and phase parameters of sinusoids is of paramount im-
portance. This research develops theoretical methods of analyzing filtered sinusoids in
noise and demonstrates their effectiveness on the problem of pulsed sinusoid parameter
estimation for Electronic Warfare (EW) applications. Specifically, within the context of
stochastic modeling , a new linear model, parameterized by a set of Linear Prediction (LP)
coefficients, is derived for estimating the frequencies of filtered sinusoids. This model is an
improvement over previous modeling techniques since the effects of the filter and the co-
efficients upon the noise statistics are properly accounted for during model development.
In addition, the LP coefficients which minimize the squared error between the system
model and the observations, are shown to be maximum likelihood coefficient estimates.
Two methods of estimating the coefficients, based on an iterative least squares (ILS) and
iterative total least squares (ITLS) solution to an over determined system of equations,
are derived and shown to be fixed point mappings of the coefficients within the domain of
allowable solutions. Application of this new linear model and the ILS estimator to the EW
problem shows the ILS algorithm outperforms the current estimation techniques by pro-
viding optimal frequency estimates for multiple, filtered, pulsed sinusoids at lower signal
to noise ratios. In addition, a bound for the estimation error of the LP coefficients and the
frequencies, based on one set of observations, is derived and used to gauge the quality of a
point estimate and establish associated confidence intervals. The results of this research,
whether taken individually or collectively, represent new contributions to the theory of
signal processing and parameter estimation and support the many applications requiring

accurate parameter estimation of both complex and real filtered sinusoids in noise.

xviii




PARAMETER ESTIMATION FOR
REAL FILTERED SINUSOIDS

1. Introduction
1.1 Problem

This dissertation investigates the problem of estimating the parameters of a linear
sum of filtered sinusoids and noise. Accurate estimation of the frequency, amplitude, and
phase parameters of a signal containing a sum of sinusoids in noise is a common task in
many applications in the field of applied science, engineering and statistics (39:407). For
example, in the field of forecasting, it is often desired to decompose a time series into its
main components of trend, irregular, cyclical and seasonal. This decomposition allows a
model of the time series to be constructed for time-series analysis and prediction (23:1-16).
Since a linear sum of sinusoids in zero-mean, normally distributed, white noise can be
used to represent arbitrary time-series data by these components (76), accurate model

construction relies on accurate estimation of the corresponding sinusoidal parameters.

Additionally, various types of radar systems require accurate frequency measure-
ments to determine the relative velocity of a target and to separate moving targets from
stationary objects (79:243-357). It is well known the electromagnetic wave reflected by
an object moving in relation to the radar will be compressed in the direction of motion
(74:464-466). This wave compression results in an apparent change in frequency, known
as the Doppler effect, between the transmitted signal and the reflected signal (77:68-148).
Since the amount frequency change is directly related to the relative velocity of the object,
the object’s velocity can be estimated by determining the difference between the carrier
frequency of the transmitted signal and the frequency of the received signal (64:727-728).
Thus, accurate frequency measurements are necessary for obtaining high resolution velocity

measurements and discriminating between moving objects and clutter (62).
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Figure 1.1 Electronic Warfare Receiver Block Diagram

1.2 Application

A critical military application which requires accurate sinusoidal parameter estima-
tion involves Electronic Warfare (EW) receivers. The primary function of an EW receiver,
" shown by the block diagram in Figurel.l, is to detect a pulsed radar signal, extract and
encode signal information, and pass this data to a classification system for radar system

identification (90:7-35).

The antenna and antialiasing filter are usually designed to intercept radar signals,
modeled by pulsed sinusoids as depicted in Figure 1.2, typically in the frequency range
2 — 18 GHz (90:10). The analog-to-digital converter then digitizes the signal and passes
the resulting discrete-time representation through a set of Intermediate Frequency (IF)
filters. These IF filters limit the number of time-coincident sinusoids processed by the
encoder and increase the Signal-to-Noise Ratio (SNR) of the sinusoids within the filter
passband (90:13). The function of a typical encoder is to extract the sinusoidal parameter
information present in the signal and provide point estimates of these parameters to the
classifier. The classifier then identifies the radar system generating the signal by comparing

these estimates with stored radar system signal descriptions.
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Figure 1.2 Typical Radar Signal: Digital representation of pulsed radar signal sampled at
fs = 60GHz. Signal parameters: Amplitude: b = 1, Frequency: F, = 3GH z, Phase:
¢=r/3.

Thus, accurate estimates of the sinusoidal parameters are critical for both the con-
struction of the classification system and for characterizing the waveform parameters of

the pulsed sinusoids prior to radar system identification.

1.8 Scope

The primary focus of this dissertation is limited to investigating and developing algo-
rithms which provide accurate point estimates of the parameters of real, filtered sinusoids
in noise. During algorithm development, the amplitudes, frequencies and phases of the
sinusoids are assumed to be deterministic and constant throughout the pulse. Though
recent research has been conducted to estimate the parameters of chirp signals (41),(72),
pulsed sinusoids still describe the majority of radar signals present and will provide a basis
for examining more exotic waveforms in the future (90:10). Additionally, the characteris-
tics of the EW receiver will assumed to be known and capable of being modeled as a finite
impulse response, linear, time-invariant filter. It is the sinusoidal parameters which are
unknown for this application. Furthermore, prior to filtering, the noise will be assumed

to be a zero-mean, normally distributed, uncorrelated, wide sense stationary random pro-
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cess with a known variance. Finally, the number of sinusoids present within any block
of data will be assumed known prior to providing parameter estimates. Identification of
the number of sinusoids present in a block of data is an area of research in its own right

and can be accomplished prior to the employment of parameter estimation techniques

(1), (4), (11), (18), (25), (41), (93).

1.4 Contributions

The results of this research, as delineated in Chapter III and Chapter IV, are high-

lighted via the original contributions below:

e Development of the true mathematical model for any digital system required to
estimate the amplitudes, phases and frequencies of filtered sinusoids in noise. Most,
if not all, digital signal processing systems implement a series of filters to condition
the noisy data prior to estimating the sinusoidal parameters. The model developed
as part of this research accounts for the effects of the filter in developing parameter

estimators.

e Derivation of Maximum Likelihood (ML) estimators for the amplitude, phase and
frequency parameters of filtered sinusoids in noise. By correctly accounting for the
correlation in the noise due to the effects of the filter, an accurate model of the
probability density function of the filtered signal is derived. ML estimation techniques
are then used to provide parameter estimators. Simulations indicate that failure
to incorporate the effects of the filter into the data model will lead to suboptimal

parameter estimates.

o Construction of the true general linear model, parameterized by a set of Linear
Prediction (LP) coefficients, for estimating the frequencies of filtered sinusoids in
noise. By properly incorporating the effects of both the filter and the LP coefficients
upon the noise, this new model represents the true linear model for estimating the

LP coefficients and the sinusoidal frequencies from the measurements.

o Application of fixed point theory to the estimation of the coefficients for the true

LP general linear model and development of the Iterative Least Squares (ILS) and
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Iterative Total Least Squares (ITLS) fixed point mapping functions. Simulations
indicate both methods provide minimum variance, unbiased estimates of the LP
coeficients, and consequently, the sinusoidal frequencies, over a wide range of SNRs

(98).

Derivation of the exact relationship between the ML frequency objective function
and the true LP general linear model for filtered sinusoids. Specifically, the set of LP
coefficients which minimize the squared error defined by the LP general linear model

are shown to provide ML frequency estimates and vice versa.

Development of an exact ML estimator, termed the Iterative Exact Gradient Descent
(IEGD) algorithm, for LP coefficient estimation. Simulations indicate the LP coeffi-
cients provided by the IEGD algorithm minimize the LP objective function thereby
providing ML estimates of the LP coefficients and, consequently, the sinusoidal fre-

quencies.

Proof that the two most commonly used methods of estimating the LP coefficients,
termed Iterative Generalized Least Squares (IGLS) and Iterative Quadratic Maxi-
mum Likelihood (IQML), are equivalent to the ILS and ITLS fixed point functional
mappings, not minimization algorithms as widely accepted. Although these two es-
timators do not minimize the LP objective function, simulations indicate they suffer

only a slight decrease in estimation accuracy, particularly at high SNRs.

Derivation of a novel method for bounding the estimation error of point estimates of
the LP coefficients and consequently, the frequencies, based strictly on one realization
of the measurement vector. Simulations indicate the estimates of the measurement
error can be used to establish confidence intervals for point estimates of both the LP

coefficients and the frequencies.

Construction of the data model which accurately describes the passage of real sinu-
soids through complex filters. The model shows the complex output of a band-limited
filter can be decimated at twice the rate as the corresponding real output without a

loss in estimation accuracy.
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Derivation of a complex form of the LP general linear model for estimating the
frequencies of complex, filtered sinusoids in noise. By properly incorporating the
effects of both the filter and the LP coefficients upon the noise, the complex, general
linear model developed represents the true linear model for estimating the complex

LP coefficients (97).

Development of a multirate, channelized, EW receiver based on a nonmaximally
decimated, polyphase realization of the Short Time Fourier Transform (STFT). This
patented implementation, (Serial Number 08/816,951), reduces the required encoder
processing speed requirements by a factor of 16 while simultaneously allowing pro-

cessing of multiple, filtered sinusoids (99).

Construction of a new and simplified ILS algorithm for estimating the frequency of
a single complex sinusoid in additive white noise. The method developed exceeds
the accuracy of other single sinusoid estimation techniques and can be implemented

using simple vector product operations (96).

Establishment of an approximate complex model of the data at the output of the EW
receiver. The derivations show the decimated complex output, actually generated
from the sum of real filtered sinusoids in real noise, can be approximately modeled

as being generated from the sum of complex filtered sinusoids in complex noise.

The results of this research, whether taken individually or collectively, represent a major
contribution to the theory of signal processing and parameter estimation. In particular, this
research builds the bridge connecting sinusoidal frequency estimation with LP linear sys-
tem modeling. Finally, this dissertation derives the connection between real and complex
sinusoidal parameter estimation. The estimators constructed as a result of this connection
will significantly improve the operational envelope of the Air Force’s next generation EW

receiver.

1.5 Overview

Chapter II reviews the current literature concerning real sinusoidal parameter esti-

mation techniques. Several estimation algorithms are briefly discussed to show that current
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research in the area of parameter estimation has neglected the effects of a filter upon the

sinusoids and noise.

Chapter III derives estimators for the amplitude, phase and frequency parameters of
filtered sinusoids in white noise. After describing the effects of a filter on sinusoids and
noise, a new data model is developed and ML estimators for the sinusoidal parameters are
constructed based on this model. Frequency estimation is then recast as the estimation of
the coefficients parameterizing the LP general linear model. After developing algorithms
for estimating these coefficients, this chapter concludes by introducing a novel method to

assess the accuracy of the coefficient and, consequently, the frequency estimates.

Chapter IV applies these estimation algorithms to a specific EW receiver architec-
ture. This chapter begins by deriving the architecture characteristics and showing how
substantial processing speed reductions can be obtained be employing multirate signal
processing techniques. After modeling both the real and complex forms of the data, the
performance of the estimation algorithms, within the operational envelope of the receiver,

is then documented and shown to provide improved parameter estimates.

Chapter V summarizes the original contributions of this dissertation.
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II. Literature Review: Sinusoidal Frequency Estimation
2.1 Introduction

This chapter reviews the current methods of estimating the frequencies of the sum of

P real sinusoids, s[m|, in additive noise, w{m|, from M observations y[m|, using the model

y(m] =zp:bk cos(2m fym + i) + wlm] = s[m] + wlm] (2.1)

k=1
Here, for 0 < m < M — 1, the amplitudes, {4}, phases, {¢:}, and frequencies, {fi}, are
deterministic but unknown. Since the amplitudes and phases can be found by a linear
least squares fit to the data once the frequencies are calculated (45)‘, (71), most research
in parameter estimation has focused on developing accurate frequency estimators. This
chapter begins by reviewing several methods of estimating the frequency of a single sinusoid

and concludes by examining the current methods for P sinusoids based on linear predictive

modeling.

2.2 Single Sinusoid Freguency Estimation

In many signal processing applications, the time and frequency components of a
block of data samples can be limited so that only one sinusoid exists throughout the data
block (71). For example, a bandpass filter can be used to limit the frequency range under
observation such that the filtered output can be considered as being from a single sinusoid

(90:21).

One method of estimating the frequency of a single sinusoid is via an amplitude
search of a set of Discrete Fourier Transform (DFT) coefficients followed by a frequency
interpolation based on these coefficients (71)

1 [Y{k+1)]
M Y (k+ 1)+ [Y (k)]

fi= (2.2)

Here |Y (k + 1)| and |Y (k)| represent the two largest adjacent DFT magnitudes. Since this
technique produces only coarse estimates which are dependent on the block length, further

optimization techniques must be employed to improve estimation accuracy (85).
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An alternative method for estimating the frequency of a single sinusoid employs the
conversion of the real sinusoid to its complex form. That is, the complex form of a sinusoid

in noise can be written as
i[m] = byl 1™ 4 pim] = b ™ {1 + 3[m]} (2.3)

Here, w is the radian frequency and #[m] = vg[m] + jv;[m] is a complex random noise
sequence described in Appendix G. One approach for estimating w,, and hence fi, relies
on extracting the instantaneous phase of 4[m]. Since the frequency of an analog signal
can be obtained by differentiating its instantaneous phase (5), a similar relationship exists
in the digital domain when the instantaneous phase of the complex sinusoids is given by
8,(m) = wym+¢,. Provided 8,(m) > 6,(m~—1), the frequency can be determined via simple
phase differencing (88). Assuming b, is large relative to the noise sample magnitudes, as

shown in Appendix J, #[m] can be written as (89)
i[m] = bye/lrmrertulmh = p, gH(m) (2.4)

Thus, large SNRs allow 8(m) to be treated as a linear function of the frequency, w, and

the phase, ¢,, corrupted by additive noise, v;{m].

This linear phase characteristic has been exploited to provide several simple fre-
quency estimators. One method, termed the Weighted Phase Averaging (WPA) algorithm,
extracts the phase after summing N samples of i[m] to achieve the new sequence g[m],

(36), (42),

2

N-1
ifm —n] = .;_[ 3 byeirln=ri+en ¢ gim _ | (2.5)
0 n=0

glm] =

2|~

n

If b, is large in comparison to the noise sample magnitudes, §[m| is approximated as (42)
§lm] = b eliwem+o-¥)ge=irml = op, £I8(m) (2.6)

Here, the quantities ¥ = w;[N — 1]/2 and o = sin(w; N/2)[sin(w; /2)]~? are real numbers

and the variable v[m] = a~! YN ! v;[m — n is random. Thus, form =N —1...M ~ 1,




the resulting phase difference, z[m| = 8[m] — 8[m — 1], has the vector form
z=2nfi1+ [Na]_1 Gv; (2.7)

Here 1 is a vector of ones while G is a sparse matrix defined by

1 fori =7

0 otherwise

If w[m] is a zero mean, normally distributed, independent, complex random variable with
variance o2, then, as shown in Appendix J, z will be a normally distributed random vector
with a mean of 27 f;1 and covariance matrix Kz = [Na\/fbl]_z 02GGT. As such, an
unbiased, minimum variance estimator for f is found via linear regression on 2 as (40:97)

7 = 17 [GGT] ™ 2
' emiTGGT

(2.9)

Figure 2.1 shows the accuracy of this estimator varies as a function of IV, the SNR,
and the frequency of the sinusoid (10). For N > 1, §{m] can be shown to be the output of
a low pass filter of length N (64:447); the improvement in SNR for low frequency sinusoids
is translated into a lower SNR threshold. However, once this threshold is reached, the
estimator with N = 1 outperformed the other values of N tested both as a function
of SNR and frequency. The reduction in accuracy for f > .5 is due to phase wrapping
ambiguities. Provided the SNR is high enough and the frequency range of the input sinusoid
is limited, this estimator will provide accurate frequency estimates and is relatively simple
to implement for real-time applications (17), (47). In addition, a simple modification of
this algorithm allows the rate of change of the frequency to be estimated in addition to

the carrier frequency (12), (34).

An alternative method, termed the Iterative Phase Averaging (IPA) algorithm, uti-
lizes an iterative approach for estimating the frequencies from the phase (85). Let f(k) be

the k** estimate of the frequency and define the variable gi[m] = @[m]e~7“*™. Then g;[m]
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satisfies the first order difference equation
e Mg m+1) — &M g [m] =0 (2.10)

where v, = %(wl — wy). For an arbitrary window function, t[m], of finite length M, then

-

M-
> (t{mle™™ — t{m + 1)) gi[m] = 0 (2.11)
m=0

Using the real and imaginary components to find the phase yields the iterative estimator

i SM (tm + 1] - t[m])alm]e—iesm
T Mo (tlm + 1] + t{m])d[m]e-iwsm

fk+1) = f(k) + (2.12)

For a complex sinusoid, the optimal window is the parabola given by t[m] = m(M —m) (85).
The main problem involved with using this estimator is obtaining a good initial frequency
estimate. Typically, the initial estimate is obtained from the Fast Fourier Transform (FFT)
bin with the maximum magnitude (85). As shown in Figure 2.2 this algorithm provides
accurate frequency estimates, both as a function of SNR and frequency, only when a good
initial estimate is attained. In addition, provided the noise can be modeled as a zero mean,
complex, normally distributed, uncorrelated random variable, this algorithm will provide
unbiased minimum variance frequency estimates when provided with a good initial estimate

(85).

2.3 Multiple Sinusoid Frequency Estimation

In general, for P real sinusoids in noise, accurate frequency estimation can be difficult.
If the sinusoids are well separated in frequency, the DFT can be used to provide accurate
frequency estimates. However, if the sinusoids are not approximately orthogonal over the
observation interval, DF'T processing is ineffective and other techniques must be employed
(45). For these cases, direct maximum likelihood techniques have been shown to provide
accurate frequency estimates (82). These techniques usually require an iterative, nonlinear
multidimensional search in the frequency domain and are too computationally intense to

be implemented in real-time.
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Alternatively, a simpler method for determining the frequencies can be accomplished
using linear predictive modeling techniques (57), (95). Let s[m] be a real signal consisting of
the sum of P real sinusoids, or modes. A 2P* order polynomial, A(z), which incorporates

these modes can be constructed as (73:484-485)

P 2P
Ao(z) = al0] H(l ~zz7 )1 -z27Y) = Za[p]z“" (2.13)
k=1 p=0

For P real sinusoids, the LP coefficients, afp] , are real and symmetric with a[p] = ¢[2P —p];
the P frequencies present in s[m] are roots to A(z) (8). In the time domain, the polynomial

becomes the Linear Prediction (LP) equation

2P

Z a[p]sfm —p] =0 (2.14)

p=0

When the sinusoids are corrupted with noise, the LP equation is satisfied only in a sta-
tistical sense. Consequently, several algorithms based on algebraic, iterative filtering, and
maximum likelihood techniques, have been developed to estimate the LP coefficients from

the observations, y{m].

2.3.1 Algebraic Techniques.  One technique of identifying the LP coefficients uses
an extended LP model of length L > 2P to account for noise modes (37) and constrains
the LP coefficients to satisfy the Forward-Backward LP (FBLP) requirements (45). The
resulting system of equations, formed by the substitution of y[m| for s[m] in the LP equa-
tion, is then solved using algebraic techniques to obtain the L** order polynomial A(z).
The P roots of A(z), whose magnitudes are closest to the unit circle, for 0 < f < .5, are

then used to provide the frequency estimates (43).

To construct the system of equations, define a as the vector of L +1 linear prediction
coeficients, @ = [1,a,]T, where the vector a, consists of the truncated form of a and
defined as a, = [a[1}...a[L]]T. In addition, define the M — L by L +1 forward observation

matrix, Yr, and the backward observation matrix, Yz, as

Yelp =y M +1-k-1); Yel,, =yM~L-1-k+] (2.15)
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fork=1...M —Land!=1...L+ 1. Concatenating Yr and Yjp into a single matrix

gives the FB observation matrix Yrp (45)
Yip=[YiYs| = {yfb|be]T (2.16)

where y;, is the first column of Yrpg. Finally, define the FB signal matrix, Srp, in a

manner similar to Yrp. The resulting system of equations to be solved becomes

Yia, = -y, (2.17)

One algebraic technique for solving this equation is based on a Least Squares (LS) so-
lution. In general, the optimal LS solution requires the rank 2P signal model matrix, Sy, to
be known exactly (43). Since the components s{m| are not available, the method proposed

by Prony simply substitutes y[m] for s{m] to obtain the LS estimate (73:406-408,491-493)
&, = —[YAYn| "' Yy, (2.18)

For a fixed number of measurements, this estimator will provide accurate estimates only
for large SNRs (82). In addition, as the number of observations, M, approaches infinity,

this estimator can be shown to be asymptotically biased (14).

Figure 2.3 shows the estimation accuracy of the LS algorithm for two real sinusoids
in zero mean, independent, normally distributed noise. For these sinusoids, above an
SNR of about 15dB the estimation accuracy improved as L increased from 4 to 14. This
indicates the extra coefficients are adequately modeling noise. However, this improvement

in estimation accuracy comes at the expense of rooting a large-order polynomial.

An alternate algebraic technique for obtaining the LP coefficients from Equation 2.17
is known as the Principal Eigenvalue (PE) method (44), (45), (91). This method provides
an estimate of the LP coefficients by first performing an eigenvalue analysis of the matrix

product [Y/}Y}] and then providing the estimate of @, based on this analysis (45), (91).
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from two roots of A(z) with magnitudes closest to unit circle for 0 < f < .5.

The resulting estimate of the LP coefficients becomes
2P
{lo = Z /\,_l‘v,‘v;r (-.YfTbyfb) (2-19)
=1

Here, the vectors v, are the orthonormal eigenvectors of the matrix product [Y,’{Yﬂ,] and
\; is an associated eigenvalue with A\; > A;... > Ap and {N} = O for il =2P +1...L.
The effect of using this truncated representation is to increase the SNR in the data prior

to solving for @, (44).

Figure 2.4 shows the estimation accuracy of the PE algorithm for two real sinusoids
in zero mean, independent, normally distributed noise. For these sinusoids, above an
SNR of about 8dB the estimation accuracy improved as L increased from 4 to 12. This
indicates the extra coefficients are adequately modeling noise. However, this improvement
in estimation accuracy comes at the expense of rooting a large order polynomial. In
addition, the improvement in the SNR threshold over the LS algorithm is due to the use

of only the four largest eigenvalues in the estimate of a,.
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A final algebraic technique of estimating the LP coefficients is based on a Total Least
Squares (TLS) solution to Equation 2.17(67), (30). That is, with a[0] = 1, the system of
equations to be solved becomes

YFBG. =0 (220)

Since y[m] = s[m] + w[m], the signal matrix, Sy, is now corrupted with noise and can be
represented as Yy, = Sy, + Ey, where Ey, can be interpreted as the matrix of errors (21)
The TLS solution for this over-determined set of equations is based on a Singular Valued

Decomposition (SVD) of Yrg, given by Yyg = ULVT, so that the estimate for @ becomes

1 — lL=+21P+1 V(lal)vl
a, apa VLDV (1,0)

(=1
I

(2.21)

where v; is the I*® column of V, the matrix containing the right singular vectors of Yrp

and V(1,1) is the first element of the I** column of V.
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from two roots of A(z) with magnitudes closest to unit circle for 0 < f < .5.

Figure 2.5 shows the estimation accuracy of the TLS algorithm for two real sinusoids
in zero mean, independent, normally distributed noise. For these sinusoids, above an SNR
of about 6dB the estimation accuracy improved as L increased from 4 to 12. Again, this
indicates the extra coefficients are adequately modeling noise. As with the LS and PE
estimates, this improvement in estimation accuracy comes at the expense of rooting a
large-order polynomial. In addition, the TLS has a lower SNR threshold than either the
LS or the PE algorithm. This is due to the fact the TLS algorithm accounts for the noise

in the observation matrix as well as the noise in the observation vector (67).

2.3.2 Iterative Filtering. Another technique for identifying the LP coefficients
exploits the property that any regular stationary random process can be represented as
the output of a linear system driven by white noise. This allows estimation of the LP co-
efficients to be accomplished using AR modeling techniques (59), (87:411-412). A popular
method for sinusoids is based on the Steiglitz-McBride method of linear system identifi-

cation via iterative filtering (78), (81), (82). The basic technique is to iteratively filter
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the observations, y[m|, with the inverse filter, 1/A(pz), derived from the LP coefficient
estimates, to obtain a new sequence yd[m]. Here, p is a convergence parameter, 0 < p < 1,
used to ensure stability of the inverse filter (14), (69). New estimates of the LP coefficients
are then obtained from analysis of this filtered data. Ideally, since the roots of A(z) cor-
respond to the frequencies of the sinusoids present in y[m|, the frequency response of the
inverse filter 1/A(pz) can be interpreted as 2P narrow bandpass filters centered near these
frequencies(69). Since the sinusoidal component of the filtered output, yg4(m], consists of
sinusoids at the same frequencies as the input sinusoids, the effect of the iterative filtering
is to increase the SNR at each iteration. The two methods most often used for LP coeffi-
cient identification are the Iterative Filtering Algorithm (IFA) and Parametric Filtering

(PF) Algorithm.

The IFA estimator exploits the LP orthogonality principle to find the coefficient

vector a (87:339). Let y[m] be estimated from 2P previous samples as

2P

glm] = alply[m - p] (2.22)

p=1

and let e[m] be the error between the estimate and the actual value of y[m]. Assuming
al0] = 1, the coefficient vector, @, which minimizes the mean square error, E{e[m|e[m]},

is found such that the error is orthogonal to the previous observations (87:338-341)

E{e[mly[m — k|} = 0=} all}r,, [k - 1] (2.23)

=0

for k = 1...2P and r, [k —l] = E{ylkly[l]}. Since r,{l] is not known, it too must be
estimated from the data (87:514-577). The IFA estimator uses the Burg algorithm with
p = 1 to estimate r,,[l] and the LP coefficients while ensuring the resulting polynomial,
A(z), is stable(39:161-171,228-229). In addition, an appropriate nonnegative window, such
as the Hamming or Optimal Tapered Burg Window, is often employed to reduce the
dependency of this estimator upon the phase of the sinusoids, (13), (35), (39:231). The
LP coefficients are then iteratively estimated using the filtered data and the algorithm

terminates upon convergence of the LP estimates (38), (39:417-419). This estimator is
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Figure 2.6 IFA Frequency Estimation Accuracy: MSE calculated at SNR inter-
vals of .5dB from 500 independent realizations of M = 30 samples of two sinu-
soids in noise. Parameters: [by = 1, fi = .2, = 7/8], [ba =1, fo = .22, 2 = 7/3];
SNR = -10logyy20% MSE = 5 X2 T2 (fp() - f)

i=1

relatively simple to implement and can be shown to provide maximum likelihood frequency

estimates for a large number of measurements (39:417-419).

Figure 2.6 shows the estimation accuracy of the IFA estimator for two real sinusoids
in zero-mean, independent, normally distributed noise. For these sinusoids, above an
SNR of about 7dB, use of the Optimal Tapered Burg Window provides the most accurate
frequency estimates over the SNR range of 7dB to 20dB. Regardless of the window used
however, the flattening of the MSE curves indicates this estimator becomes biased at high

SNRs for this small number measurements.

As an alternative to the IFA correlation based approach, the PF algorithm institutes
the sinusoidal constraints, a[p] = a[2P — p], and uses an LS methodology for estimating
the LP coefficients(14), (50), (51), (52), (53), (94). Here, the original observations, y[m),
are passed through a causal, infinite impulse response filter which is parameterized by a

set of symmetric scaling coefficients, d[p], to obtain the filtered data y4[m] as

Ya[m} = — Z_: d[plp*alplys[m — p| + y[m] (2.24)
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For P real sinusoids, the scaling coefficients, {d[p]}, are calculated as, (53).

1+ p%
pl+ pPPe

dlq] = (2.25)

forg=1... P. To obtain the LS estimate of the LP coefficients, the PF algorithm imposes
the sinusoidal constraints on a via a 2P + 1 by P matrix B so that a = Ba. Here, the
vector c is given by & = [1, a[1]... a[P]|T is the set of constrained LP coefficients. Defining
Yc as the constrained observation matrix, Yo = Yp(d)B = [y.]Y.], where y, is the first

column of Y, yields the PF estimator
& =-[YTY.]" Y]y, (2.26)

The LP coefficients are then iteratively estimated using the filtered data and the algorithm
terminates upon convergence of the LP estimates. This estimator is relatively simple to

implement and can be shown to be asymptotically unbiased as M approaches infinity (50).

Figure 2.7 shows the estimation accuracy of the PF algorithm for two real sinusoids
in zero mean, independent, normally distributed noise. For these sinusoids, above an SNR
of about 4dB, use of the convergence parameter of p = .96 provides the most accurate
frequency estimates over the SNR range of 4dB to 15dB. However, the flattening of the
MSE curves indicates this estimator becomes biased at high SNRs when the number of

data points is finite.

2.3.3 Mazimum Likelihood.  The final technique considered for estimating the LP
coefficients requires minimization of the following objective function, J(a), with respect to

the LP coefficients in a (6), (46), (68)
J(a) = aTYF(ATA) ' Yra (2.27)
Here, a = [a[0]...a[2P]]T while A is the M by M — 2P matrix of LP coefficients

alk -1 forli<k<l+2P
[A}k,l = (2.28)
0 otherwise
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Figure 2.7 PF Frequency Estimation Accuracy: MSE calculated at SNR inter-
vals of .5dB from 500 independent realizations of M = 100 samples of two sinu-
soids in noise. Parameters: [by =1, fi =.2,¢; = 75/8], bo =1, fo = .22,¢2 = 7/3);
SNR = -10logy20% MSE = ks T2, 330 (£6) - £,)
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The frequencies found from the LP coefficients which minimize J(a) provide maximum
likelihood frequency estimates (6), (63). Letting a = [a[0]...a[P)]T and imposing the

sinusoidal constraints via the 2P + 1 by P + 1 matrix B yields the new objective function
J(@) = aTBTYF(ATA)"'YrBa (2.29)

The most popular method of minimizing this equation is termed the Iterative Quadratic
Maximum Likelihood (IQML) algorithm (6), (46), (68). This algorithm constructs the
matrix A from the current estimate of a and minimizes J{a) with respect to a by im-
posing the constraint that aTa = 1 (75). Termination of this algorithm is reached upon
convergence of a. Though this algorithm involves an eigenvalue analysis of a P + 1 by
P + 1 square matrix at each iteration, relatively efficient methods of algorithm implemen-
tation have been developed (9), (29), (46). Indeed, this algorithm is currently the most
popular method of estimating the frequencies of multiple complex sinusoids in zero-mean,

independent, normally distributed noise (6), (46), (68), (63).
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Figure 2.8 IQML Frequency Estimation Accuracy: MSE calculated at SNR intervals
of .5dB from 500 independent realizations of M = 30 samples of two sinusoids in
noise. Sinusoid Parameters: (b, =1,fi =.2,¢ = 7f/8], (be =1, f2 = .22,¢0 = 7/3];
SNR=-10log;y20% MSE = s ¥2_, T2 (fp(6) = f,)?.

Figure 2.8 shows the estimation accuracy of the IQML algorithm for two real sinu-
soids in zero-mean, independent, normally distributed noise. For these sinusoids, accurate
frequency estimates were attained for SNRs above about 10dB using an initial estimate of
a = [1,0...0]". An improvement in the SNR threshold should be possible if a better ini-
tial estimate of @ were used. In addition, the fact that optimal estimates were attained for
all SNRs above the threshold indicates this algorithm can be used as a general frequency

estimator for large SNRs.

2.4 Summary

This chapter reviewed several frequency estimators for P real sinusoids in noise. For
P =1, relatively simple estimators can be constructed by extracting the phase of the
complex representation of the sinusoid. Simulations show these estimators will achieve
optimal frequency estimates provided the noise is a zero-mean, independent, normally

distributed, complex random variable.
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For P > 1, estimation of the frequencies was recast as the estimation of a set of
LP coefficients and several methods for estimating the coefficients were examined. The
first technique utilized the FBLP constraints to construct a linear system of equations
based on an L** degree polynomial. Simulations show that above a given SNR threshold,
the resulting LS, PE, and TLS estimators can provide relatively accurate estimates of
the frequencies of sinusoids in zero-mean, normally distributed, uncorrelated noise. This
accuracy comes at the expense of determining the frequencies from a large model order. In
addition, the optimal length of the model depends on both the number of sinusoids to be
estimated and their frequencies. These characteristics prevent this technique from being

used as a general estimator for the frequencies of P real sinusoids in noise.

The second technique employed Iterative Filtering methods to repeatedly filter the
data prior to estimation of the LP coefficients. The LP coefficients for a minimum order
polynomial were then estimated using the IFA and PF methods. Simulations show that
over a range of SNRs, these estimators provide accurate frequency estimates for sinusoids
in zero-mean, normally distributed, uncorrelated noise. However, these accuracies are
dependent on algorithm parameters and previous research indicates these algorithms can be
sensitive to the phases of the sinusoids (13), (35). These limitations prevent this technique

from being used as a general estimator for the frequencies of P real sinusoids in noise.

The third technique used to estimate the LP coefficients was based on maximum
likelihood techniques. By recasting maximum likelihood frequency estimation as a min-
imization of a nonlinear function, J(a), with respect to the LP coefficients, maximum
likelihood frequency estimates could be obtained as roots of a minimum order LP poly-
nomial. The LP coefficients were then estimated using the IQML algorithm to minimize
J(a). Simulations show this estimator provides accurate frequency estimates, above a
given SNR threshold, for sinusoids in zero-mean, normally distributed, uncorrelated noise.
This accuracy comes as the expense of an iterative eigenvalue analysis ofa P+1 by P+1

square matrix.

This review of the current methods of frequency estimation show that the true linear
model relating the LP coefficients to the frequencies of P real sinusoids in noise has not

been adequately established. This lack of a true model is evidenced by the many methods
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available for estimating the LP coefficients from the data. If the true model existed, the

accuracy of the estimators would be evaluated against the model itself.

In addition, no attempt has been made incorporate the statistical characteristics of
the noise into the construction of the LP coefficient estimators. Each of the estimators
examined in this chapter were evaluated under the assumption the noise was uncorrelated.
However, in general, when analyzing analog signals using digital methods, an antialiasing
filter is used to limit the frequency range of the analog signals under consideration. Any
noise passing through the filter will be correlated by the action of the filter. Accurate

estimation of the LP coefficients will require knowledge of how the noise is correlated.

Finally, there is currently no method to gauge the accuracy of a point estimate of the
LP coefficients, and consequently the frequencies, based strictly on a single realization of
the data. Knowledge that a point estimate is unbiased is inadequate for making decisions

based on the estimation accuracy. A bound on the estimation error must also be reported.

This dissertation will employ stochastic modeling techniques to construct the true
linear model relating the LP coefficients to the frequencies of P real, filtered sinusoids in
noise. Once this model is constructed, estimators for the LP coefficients will be derived
and their estimation accuracies evaluated. A method for bounding the coefficient and
frequency estimation error, based on a single realization, will then be developed and used
to establish confidence intervals for the frequency estimates. The estimators developed
from this research will then be applied to the Air Force’s next-generation EW receiver and

evaluated within the receiver’s operational envelope.
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III. Theory: Sinusoidal Parameter Estimation
3.1 Introduction

This chapter derives estimators for the amplitude, phase and frequency parameters
of filtered sinusoids in white noise. After carefully deriving a mathematical model describ-
ing the effects of a filter on sinusoids and noise, Maximum Likelihood (ML) estimators
for the sinusoidal parameters are developed based on this model. Estimation of the sinu-
soidal frequencies is then recast as the estimation of the coefficients of a Linear Prediction
(LP) general linear model and algorithms based on fixed point theory are developed for
estimating these coefficients. In this dissertation, the relationship between this general
linear model and ML frequency estimation is established. Moreover, two popular ML-type
methods for estimating the LP coeflicients are analyzed in depth and are shown to be fixed
point estimators. This chapter concludes by deriving a method to estimate the variance
of a point estimate of the LP coefficients and, subsequently, the frequencies, based solely

upon a single realization of the measurements and knowledge of the noise variance.

3.2 Filtered Data Model

This section derives a mathematical model for a real sinusoid passing through a
linear, time-invariant filter. With few exceptions, most digital signal processing systems
operate on signals which have been already been passed through various systems. In many
cases, each system can be modeled as a linear time-invariant filter. The model derived in
this section shows how to characterize and account for the effect of a system filter upon

the parameter estimation process and is an original contribution of this research.

3.2.1 Input Signal. Let the sampled signal, z[m], be the sum of a sinusoidal

signal, v|m], and zero-mean, independent, normally distributed noise, n[m|, so that

zm] = v{m] + nfm] (3.1)



Here, v[m] is defined as the linear sum of P discrete-time real sinusoids

P

P
v[im] = Z bicos(2mfym + @}) = Z v [m] (3.2)

k=1 k=1

where the amplitudes, {2}, phases, {¢}, and frequencies, {fi}, are assumed to be deter-
ministic but unknown quantities with constraints b2 > 0, 0 < ¢7 < 27, and 0 < f; < 0.5.

Assuming there are M, samples over which Equation 3.1 holds, in vector form
z=v+n (3.3)

where « = [z[M, - 1]...z[0]|]7, v = [v[M, - 1]...v[0]]T and n = [n[M, —1]...9[0]]T are
M,-dimensional vectors with real components. The problem is to estimate the amplitudes,
phases, and frequencies of the sinusoids given the observations, z, and knowledge that
the noise vector, 7, is a zero-mean, normally distributed, random vector with covariance
Ky = o%] where I denotes the identity matrix. In general, this simple model can not
be applied directly to most practical systems since the estimation process is typically
accomplished after filtering. Instead, the observations are taken at the output of a known

linear system or filter which induces a known covariance structure on the noise.

3.2.2 Output Signal.  Assume the linear system/filter model can be represented
as a finite impulse response, linear, time-invariant filter with NV real coefficients, {h[n]} for
n=0...N — 1. The frequency transfer function, H(e’*), as function of radian frequency,
w, is given by (66:193)

N-1
H(&¥) = Z h[n]e™“™ = |H(e/)|eI*™) (3.4)
where w = 2r f. With input z[m], for N — 1 < m < M, — 1, the steady state output y[m|

will be real and can be represented as the sum of the filtered sinusoid, s[m], and filtered

noise, w[m| (66:192-205). That is

y[m] = s{m] + wm| = Z_—: hinlv[m — n] + Z:: h[n|n[n — m] (3.5)




Alternatively, since y[m] is defined to be in the steady state, the sinusoidal component of

y[m], denoted s[m}, becomes

P
s[m] = Z by cos(27‘rfkm + Ox) (3.6)

k=1

Here by = |H(e/“*)|bS and ¢ = P(wi) + @3 define the deterministic effects of the filter
on the input sinusoidal amplitudes and phases. Now assume there are M samples of the
steady state output with M = M, — N + 1 > 0, and define the M, by M Toeplitz filter
matrix H as (40:570)

[ R0] ... A[N-1 0 0 ... 0 |
6 k[0 hiN —1 0o ... 0
H' = [.] . A . (3.7)
: 0 0
| 0 0 0 hl0] ... A[N —1] |
For m = N —1... Mo — 1, the output, y[m], can be written in vector form as
y=H'z=Hv+H n=s+w (3.8)

where y is defined as an M-dimensional vector with real components
v=[M -1.. .y[N-1]

while 8 and w are defined in a manner similar to y. The problem now is to estimate the
amplitudes, {b;}, phases, {¢:}, and frequencies, {f;}, of the sinusoids given the observa-
tions, y. To accomplish this estimation, a model for the observations will be developed
in terms of the frequencies present in the signal and a set of scaling coefficients which are

directly related to the amplitudes and phases.

3.2.3 Model Development. Since M, > M, the columns of H will be linearly
independent, and the noise vector, w, becomes a zero-mean, normally distributed, corre-

lated noise sequence with covariance matrix Ky given by Ky = ¢?HTH (86:56). This
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M by M square matrix is assumed to be nonsingular so that Ky, exists. The observation
vector, Y, can now be described as a normally distributed random vector with a mean vec-
tor my = 8 and a covariance matrix Ky = Kyy. Using trigonometric identities (100:457),

Equation 3.5 can be rewritten as

P
y(m] = sim] + wim| = }: bg cos(mwy) — b} sin(mwy) + wim] (3.9)

where the scaling coefficients, b} = by sin(éx) and b = b, cos(¢,), are directly related to

the phases and amplitudes (40:198). That is

[ tan~! |b /bg| if b > 0;5 > 0

7 —tan~! b /bS] ifbL > 0;b <0

7+ tan b2 /bS] if bl < 0;b5 <O (3.10)
| 2w —tan™" |bp/b| if b} < 0;bf >0

by = VBTGRP

Now define A as the deterministic signal matrix as A = [A;|A;] where the M by P matrices,

o =

A, and A,, are constructed as

cos(w[M, —1]) ... cos(wp[M, —1])
A= : : (3.11)
cos(wi[N —1]) ... cos(wp[N-1])
while
—sin(wy [M, —1]) ... —sin(wp[M, - 1))
Ay = : : (3.12)
—sin(wy [N —1]) ... —sin(wp[N -1})

With scaling vectors b, = [b; sin(¢,)...bpsin(¢p)|T and b. = [b; cos(¢;)...bp cos(¢p)]7,

a vector form of Equation 3.9 can be written as
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where b is the vector of scaling coefficients, b7 = [b7;b7] and the 2P columns of A are
linearly independent. This is equivalent to viewing y as a set of observations generated
from the deterministic system Ab corrupted by the colored noise vector w. The problem
of estimating the frequencies, phases, and amplitudes has been transformed into the prob-
lem of estimating the signal matrix A and the scaling coefficients b, and b,. Once the
scaling coefficients have been found, the associated phases and amplitudes can be found

by Equation 3.10.

3.2.4 Section Summary. This section derived the mathematical model for any
system required to estimate the amplitudes, phases and frequencies of filtered sinusoids.
Specifically, once the steady state has been reached, the output of a filter due to an input
consisting of a linear sum of P sinusoids in zero mean, independent, normally distributed
noise can be represented as the output from a deterministic system, Ab, corrupted by
zero mean, normally distributed noise with a covariance matrix, Kqy. Estimation of the
sinusoidal parameters has been recast as the estimation of the deterministic system Ab.

Methods for estimating the parameters of this model will be derived in the next section.

3.3 Sinusoidal Parameter Estimation

This section derives algorithms for estimating the amplitudes, frequencies and phases
of filtered sinusoids in noise. After reviewing estimation background in general, this section
covers the principles of maximimum likelihood estimation and employs these principles to

obtain parameter estimators for filtered sinusoids.

3.3.1 Estimation Background. In general, estimating the parameters of P sinu-
soids in noise deals with inferring the values of the unknown parameters from a set of obser-
vations (87:279). That is, from Equation 3.9, M measurements are obtained which contain
the P sinusoids embedded in noise. Since noise is a random quantity, each observation,
y[m|, becomes a random variable. Consequently, ¥ becomes a random vector. By defining
6 as a vector form of the parameters, 87 = [0:,0:,0:] =(by...bp;¢1... 00 f1... fp]T,
an estimator, or function of the data g;(x), can to be constructed which assigns a value to

8, as 8 = g,(y), for each realization of y. Here, 8 is called the point estimate of @ (61). As
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a function of a random vector, y, the parameter vector, 8, becomes a random vector with
statistical characteristics defined by the Probability Density Function (PDF) of y and the
form of g;(*). The accuracy of subsequent estimates are dependent primarily on the bias

and variance of the estimates generated by the estimator.

Formally, an estimator g;(*) is said to produce unbiased estimates of the true pa-

rameter vector, 8, if the expectation of 8 is equal to 8 (27:204). That is
E{8} =9 (3.14)

where E{x} denotes the expectation operator. Thus, on average, the unbiased estimator
will provide the true value of 8 (40:15-23). In addition, g;() is said to be the minimum
variance estimator if the variance of each component of 8 is less than the variance produced

by any other estimator (40:23). This implies g;(y) is the minimum variance estimator if
Ky — Ky >[0] fori#j (3.15)

Here K 6. denotes the covariance matrix of the estimate provided by g;(y) and the term
> [0] is interpreted as meaning the resultant matrix is positive semidefinite (40:44). If a
minimum variance unbiased estimator can be found, on average, the estimates obtained

will be closer to the true value than those provided by any other estimator.

A critical step in the development and analysis of point estimators is to accurately
model the PDF of the data (40:7). Since y is a random vector which contains the parame-
ters to be estimated, the PDF of y is said to be parameterized by 8 for @ € © and written
as p(y; @) to show this dependency. Here, O is called the parameter space and contains the
restrictions on the allowable values of § (27:201). Furthermore, since the actual value of
affects the probability of observing y, selection of the proper PDF describing the data is
critical in deriving a good estimator. From the data model of Equation 3.13, the measure-
ment vector, y, is an M-dimensional, normally distributed random vector with a known
covariance matrix resulting from the system filter matrix, H. The associated PDF of y is

thus parameterized by the scaling coefficients, b, and the frequencies, f f = [f;... fp|T.
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That is
- _ 1 -
p(y; 8) = (271 | Kup|~® exp[~ 5 (y — Ab)T K (y — Ab) (3.16)

where 87 = [bT, fT]. The accuracy of any estimator will be strongly dependent on how

well the estimator incorporates this knowledge of the PDF into its development.

3.8.2 Estimation Accuracy. To analyze the performance of any estimator, it is
useful to have a limit or bound which indicates the best estimation accuracy any unbiased
estimator may obtain from the available data (71). In particular, for sinusoidal signals
embedded in zero mean, normally distributed noise, the Cramer Rao Lower Bound (CRLB)

-

provides a limit on the accuracy any unbiased estimator, @, can attain. Hence
Ky—[F(O)] 2 0] (3.17)

Here, F(0) is the Fisher Information matrix defined by (40:44)

821np(y;0)} _ E{[alnp(y; 0)] [Blnp(y;o)]} (3.18)

7O, = -F { 86,06, 26 06,

Since the observation vector, ¥, is normally distributed with a mean, my, and covariance

matrix, Ky, the Fisher Information matrix can be shown to be given by (40:47)

@), = [i";;—”]r K] [%"é-’i] (3.19)

For sinusoids in noise, the CRLB will be a function of the frequencies, phases, and am-
plitudes present in the signal. Figure 3.1 shows the CRLB for frequency estimates, as a
function of the signal frequency, for one and two sinusoids. In Figure 3.1a, for the non-
filtered signal, the frequency estimation accuracy will be relatively constant except for
extremely small (f < 0.001) or extremely high (f > 0.499) frequencies. For the filtered
sinusoid, the estimation accuracy will be optimal within the filter passband. Figure 3.1b
shows a contour plot of the combined CRLB for the frequencies of two sinusoids in zero-

mean, normally distributed, independent noise. For this small number of measurements,
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M = 32, this figure indicates the estimation accuracy of any estimator will decrease dra-

matically for closely spaced sinusoids, (|f; — f2] < .02).

3.3.3 Estimator Evaluation. Since the CRLB is a complicated function of the
frequencies, phases and amplitudes of the sinusoids, there is no closed form expression
for determining whether an estimator which will achieve the bound for any arbitrary 6
(39:414) . Consequently, the performance of any estimator must be evaluated numerically
via Monte Carlo experiments (40:164-167). For this dissertation, the performance of an
estimator will be determined by conducting 500 independent trials at each free variable of
interest and determining the combined Mean Square Error (MSE) for each parameter to

be estimated.
P 500

1 .
MSE = S50P E Z(o,,,,- - 0,)? (3.20)

p=1i=1
The resulting experimentally obtained MSE will then be compared to the associated CRLB.
Though various techniques exist to construct estimators based on the PDF given by Equa-
tion 3.16, this dissertation will employ the maximum likelihood estimation technique. The
estimators provided by this technique are relatively simple to develop for signals embedded
in normally distributed noise and produce the approximate minimum variance unbiased

estimates for a moderate number (M > 30) of observations (40:157-198).

3.3.4 Mazimum Likelihood (ML) Estimation. The Maximum Likelihood (ML)
estimation technique is based on the assumption that a particular parameter vector, 6;,
generates different sets of observations than any other parameter vector, #;. Thus, any
given observation vector, ¥, is more likely to have been generated by one particular param-
eter vector @;, than any others (60:147). Obtaining an ML estimator involves specifying
the likelihood function and finding the values of the parameter vector which maximize this
function for a fixed observation vector (60:49). In general, when viewed as a function of
0 for a fixed observation vector, the PDF defined in Equation 3.16 is termed a likelihood
function (40:29). Thus, for a fixed observation vector y, the ML estimate for § maximizes
p(y;0). Equivalently, since the natural logarithm is a monotonically increasing function,

the ML estimate for # maximizes In{p(y; 8)}; the log likelihood function.
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Furthermore, if @ = g(@), where g(#) is an arbitrary k-dimensional invertible function

of 8, the ML estimate for a is given by

G =9(0me) (3.21)

This property, known as the Invariance Property of ML estimates, states that any invertible

function of an ML estimate will also produce an ML estimate (40:182).

3.3.5 Parameter Estimators.  From the PDF of y given by Equation 3.16, with
Ky assumed known, as shown in Appendix B, the ML estimate for @ can be obtained by

minimizing the following objective function, J(8), with respect to the parameters in :
J(8) = [y — Ab]T Kyl [y — Ab] (3.22)

Minimizing this function with respect to @ can be accomplished by minimizing with respect
to the scaling coefficients, b, and frequencies, f, individually. For a fixed ML estimate of
f, the ML estimator for b is unique and found as (22), (40:186)

b(ML) = [ATKgz Al ATKZly (3.23)

In addition, the statistical characteristics of b become (60)

E{b(ML)} =b and K; = [ATKzA]™

by = (3.24)

This estimator is known as the Best Linear Unbiased Estimator (BLUE) for a fixed set of
frequencies (40:140). The ML estimate for f, on the other hand, minimizes the following
objective function (40:186):

J(f) =y Kty - y"KG A [ATKG A ATK 'y (3.25)

This objective function, J(f), termed the ML frequency objective function, is a strongly
nonlinear function with respect to f. Since the ML estimates of the scaling coefficients,

b, are defined as a function of the frequencies, f, ML estimation of the frequencies is
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critical for obtaining accurate parameter estimates. The global minimization of this non-
linear function typically involves a computationally intensive search in the P-dimensional

frequency domain and various techniques have been tried to accomplish this search (80).

3.3.6 ML Frequency Estimation.  Since the term y?” Ky, y is a positive number,

minimizing J(f) can be accomplished by maximizing the following objective function
L(f) =y Ky AATKy AT AT Ky (3.26)

One convenient method of accomplishing this maximization involves the general method

of iterative gradient ascent
fE+1) = f(i) + D7'VIi() (3.27)

Here, each element of the gradient is found as

VLA, = [8{;’(;) ] = a.gg ) (3.28)
and D is the Hessian of J,(f).
_ L) _ Phf)
[Dli; = [&fafr]i,j = 5501, (3.29)

In the area of signal processing and numerical analysis, this technique is known as the
Newton-Raphson Technique (40:187) while in the area of pattern recognition, it is known
as the Conjugate Gradient Method (3:274-275). Regardless of the name, as shown Ap-
pendix E, the expression for the gradient becomes relatively simple while the calculation
of the Hessian is computationally intensive. An alternative method of maximizing J;(f)

can be found by using the direct gradient ascent maximization technique (7)

FGE+1) =F0E) +nG)VI() +v0)[f () - £ - 1)] (3.30)
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Here, the rate of convergence is controlled by the adaptive gain term 7(i) and the adap-
tive momentum term (). As with most iterative optimization techniques, there is no
guarantee the algorithm will ever converge. Even if it does converge, there is no guarantee
the global maximum has been attained, especially for nonconvex functions. The solution
achieved will only provide a local maximum and the accuracy of the estimate will depend

greatly on the location of the initial guess.

Figure 3.2 shows the convergence of this iterative technique for one and two filtered
sinusoids. Since the objective function, J,(f), contains more than one local maximum,
the initial estimate was obtained by evaluating J;(f) at equally spaced test points and
choosing the frequency with the largest J,(f). In both instances, the method of direct

gradient ascent found the global maximum in less than 30 iterations.

Figure 3.3, Figure 3.4, and Figure 3.5 show the estimation accuracy attained using
ML estimates of the parameters of one and two filtered sinusoids. This figure shows the ML
parameter estimates will achieve the CRLB , above threshold, only when the correlation in
the noise is correctly modeled. Assumptions that the noise is uncorrelated (white) leads to
an incorrect model and suboptimal estimates. Since most digital signal processing systems
incorporate an antialiasing filter as a minimum, the noise will always be correlated. The
results of these figures show the fallacy of using a white noise model to construct the CRLB

for filtered signals.

3.3.7 Section Summary.  This section derived ML estimators for the amplitude,
phase and frequency parameters of P filtered sinusoids in noise and represents an original
contribution of this research. Specifically, by correctly accounting for the correlation in
the noise due to the effects of the filter, an accurate PDF model of the measurements
was derived. Manipulation of the objective function derived from this PDF showed ML
frequency estimates provide ML estimates of the sinusoidal amplitudes and phases. Sim-
ulations indicate the method of gradient ascent can be used to provide the ML frequency
estimates provided the PDF model accurately describes the correlation in the noise due

to the filter. Failure to incorporate the filter effects in the ML model will lead to subopti-
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Maximizing Frequency Objective Function

35 ' ! Final Estimate = .1899
x — Algorithm Convergence
30 0 -~ Initial Test Points -

Initial Estimate = .1800

8.16 0.17 0.18 0.19 0.2 0.21 0.22 023 024 0.25 0.28

Frequency

(a) Sinusoid Parameters: (b = 1, f; = .191,¢% = 37/8], SNR = 0dB.

Maximizing Frequency Objective Function
0.22

T

x - Algorithm Convergence

02151

0.21

0.2

0.185

0.225
Frequency f1

0.1 L p
3.21 0.215 022

(b) Sinusoid Parameters: [b¢ = 1, f1 = .207,¢¢ = 37/8], [b3 = 1, f2 = .227, ¢3 = 47 /3]
and SNR = .5dB.

Figure 3.2 Maximizing ML Frequency Objective Function: J(f) calculated as
function of frequency at fixed SNR and block length M = 32. Initial estimates made
by choosing f with largest J(f) from uniform samples across filter bandwidth. Fil-
ter Parameters: Center Frequency: f. = .21; Bandwidth: fg = .2; Length: N = 32;
SNR calculated as SNR = —10log;4(20?).
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(b) Sinusoid Parameters: [b) = 1, f = .207,¢3 = 7/3}, (b = 1, fo = .227,¢% = 47 /3].

Figure 3.3 ML Frequency Estimation Accuracy: MSE calculated at SNR intervals of
.5dB from 500 independent realizations of M = 32 samples of sinusoids in noise. The
incorrect model assumed Ky = o2 while the correct model used Ky = c?HT H; Fil-
ter Parameters: Center Frequency: f. = .21; Bandwidth: f23 = ‘2305“39911: N =32
SNR calculated as SNR = —10log,((20%); MSE = 355 Yoo i (Fo(1) = fp)2.

=1
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Amplitude Measurement Accuracy
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Figure 3.4 ML Amplitude Estimation Accuracy: MSE calculated at SNR in-
tervals of .5dB from 500 independent realizations of M = 32 samples of si-
nusoids in noise. The incorrect model assumed Ky = 03] while the correct
model used Ky = oc?HTH; Filter Parameters: Center Frequency:f, = .21; Band-
width: fp =.2; Length:N =32; SNR calculated as SNR = ~10log;¢(20%) and

MSE = g Tpe1 Zima (o) = o)
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Figure 3.5 ML Phase Estimation Accuracy: MSE calculated at SNR intervals of .5dB
from 500 independent realizations of M = 32 samples of sinusoids in noise. The incor-
rect model assumed Ky = 021 while the correct model used Kqy = 02H TH; Filter
Parameters: Center Frequency: f. = .21; Bandwidth: fB =.2; Len {p 32 SNR
calculated as SNR = —10log;(20%) and MSE = k5 Zp_x T (fold) fo)?
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mal parameter estimators. The next section introduces an alternate method for frequency

estimation based on linear prediction modeling.

3.4 Linear Prediction (LP) Modeling

This section develops an alternate method of estimating the frequencies of pulsed
sinusoids based on Linear Prediction (LP) modeling techniques. Specifically, this section
derives the true linear model, parameterized by the LP coefficients, for estimating the
frequencies of P sinusoids in noise and is an original contribution of this research. Using
this model and properly accounting for the effects of the LP coefficients and the system
filter on the noise, estimation of the frequencies is recast as the estimation of the LP
coefficients. This section concludes by developing a bound on the LP coefficient estimation

€error.

3.4.1 Theoretical Background.  To show the relationship between sinusoidal fre-
quencies and a set of LP coefficients, consider a signal s{m], consisting of the sum of P
real sinusoids. As shown in Chapter II, there exists a set of 2P + 1 LP coefficients, a[p),
such that (8)

2P

5 alplsim — p} = 0

p=0

Since each frequency of s[m| is a zero of the polynomial, A(z), formed from the LP co-
efficients, the 2P frequencies present in s[m] can be found as roots to A(z). The search
for the P frequencies comprising the sinusoids in s{m] has been recast as the search for
the associated 2P + 1 LP coefficients. As shown in Chapter II, many algorithms based on
estimating these coefficients have been developed in the past. This dissertation employs
stochastic modeling techniques to derive a new method of LP modeling which is based on

the general linear system model (40:94-94)

t=Up+v (3.31)
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In this model, t is an M-dimensional vector called the measurement vector, ¢ is a P-
dimensional vector called the parameter vector, U is an M by P matrix called the obser-

vation matrix and v is called the measurement error vector (60:10).

3.4.2 Construction of the LP General Linear Model. A convenient method
of calculating the LP coefficients can be found by modeling Equation 2.14 in terms of
the general linear system model of Equation 3.31. Since Equation 2.14 must hold for
2P <m < M -1, a deterministic linear model, parameterized by the LP coefficients in

the vector a = [a[0]...a[2P]]T, can be constructed as

s(M -1} ... s]M-1-2P) a[0] 0
Sa = : f : =|: (3.32)
s(2P] ... s(0] a[2P] 0

or equivalently Sa = 0. Here, the M — 2P by 2P + 1 matrix S is deterministic with a
rank of 2P so that a resides in the null space of S (45). Imposing the constraint, a[0] = 1

yields the deterministic general linear model
8, = —S.a, (3.33)

Here, a, = [a[l]...a[2P]|, while s, is the first column of S and S, is the observation
matrix of the remaining columns of S. The vector, 8,, can now be thought of as being
generated from the deterministic matrix, —S,, so that only 4P + 1 samples are needed
to determine a, exactly. Unfortunately, s[m] is not usually available and estimates of a,

must be obtained using the noisy measurements y[m)].

3.4.3 Noise Effects in the Measurements. To study the affects of noise in the
measurements, assume S, is known exactly while the elements in 8, are corrupted with
additive noise, w[m|, so that s[m] = y[m] — w[m] for m = 2P... M — 1. In this case, the

form of the LP general linear model becomes

Y, = —S,a, + w, = 8, +w, (3.34)
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Here, w, can be viewed as the error between the measurement vector, y,, and the vector
8, generated by the LP general linear model. The least squares estimate for a, which

minimizes the sum of the squared errors is given as (60:31)
a(LS) = - [S7S,] 7 STy, (3.35)

A basic assumption for this solution is that the impact of the error in each measurement,
y[m], is the same (83:203). When this is not the case, a weight matrix, C~!, can be inserted
to provide the Weighted Least Squares (WLS) estimate (60:31),(40:141).

a(WLS) = — [STC™'S,] ™' sTC 1y, (3.36)

For the data model given by Equation 3.13, the noise is assumed to be zero mean and
normally distributed with covariance matrix Kqy. Thus, the measurement vector y, is

normally distributed with the following properties

Mean = my = -S,a, (3.37)

Covariance = Ky = Ky, (3.38)
As such, the ML estimate for the LP coefficients is given by (60:152-155),(40:185-187)
a,(ML) = - [STK.S.) " STKy.v, (3.39)
This estimate is unbiased with a covariance matrix given by (60:110-113)
Ka, 1) = [STKg. 8] (3.40)

If the deterministic observation matrix, S,, was known, the ML estimate obtained in
Equation 3.39 would represent the minimum variance, unbiased estimate obtainable from
the measurements. Unfortunately, the observation matrix must also be estimated from the

measurements.
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3.4.4 Noise Effects in the Observation Matriz.  The main drawback in using the
LP general linear model to identify the LP coefficients is that the effects of the noise are
embedded in the observation matrix. That is, since s[m] = y[m] — w[m|, the observation
matrix itself, S,, is perturbed by the noise. In terms of the true LP coefficients, the LP

general linear model becomes

Y, = —Y,a, + w, + Wea, (3.41)

where the matrices Y, and W, are defined in a manner similar to S,. Defining the error as

z(a) =w, +W,a,=Wa (3.42)

the perturbed form of the LP general linear model becomes

Y, = —Y,a, + z(a) (3.43)

The error vector, z(a), now has statistics which are dependent on the LP coefficients in
addition to the statistics of the noise vector w. To show this dependency, define A as the

M by M — 2P matrix of LP coefficients so that

(a0 ... a2P) 0O 0 ... 0
AT 0 a.[.O] al2P] 0 0 (3.44)
0 : 0
0o 0o ... 0 a0 ... a2P] |

This matrix has a rank of M — 2P and allows the error vector, z(a) to be written as
z(a) = w, + Woa, = Wa = ATw (3.45)

Since w is a zero-mean, normally distributed noise vector with covariance Koy, the error
vector is a zero-mean, normally distributed random vector with a covariance matrix, Kz(q),
given by

Kz = ATKwA =0’ATHTHA (3.46)
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In order to account for this colorization in the covariance matrix, let G(a) be a square
M ~ 2P matrix derived from the Cholesky decomposition of the error covariance matrix
(73:440-441).

GT(a)G(a) = %{ATHTHA]‘l = K;(la) (3.47)

Premutiplying Equation 3.43 by G(a) yields a new form of the LP general linear model
G(a)y, = -G(a)Y,a, + G(a)z(a) = —G(a)Y,a, + e(a) (3.48)

Here, e(a) is a zero mean, normally distributed random vector with covariance matrix

Kea) = I. The form of the LP general linear model now becomes
G(a)Ya = e(a) (3.49)

The estimation of the P frequencies in s[m| from Equation 3.13 has been recast as the
estimation of the 2P + 1 LP coefficients using the LP general linear model derived in
Equation 3.49. The number of LP coefficients to be estimated can be reduced further by

imposing sinusoidal constraints on the coefficients.

3.4.5 Imposition of Sinusoidal Constraints.  To properly estimate P real sinusoids
using the 2P** order polynomial, A(z), as shown in Appendix C, the LP coefficients must
be constrained to be symmetric about P so that a[p] = a[2P — p] for p =0... P (8). To
impose this constraint, let a = [a[0},...a[P]]T be a vector containing the constrained LP
coeflicients. Thus, a is related to & via the linear transformation @ = Ba. Here B is the

constraint matrix defined as

Ip Op
B = 0; 1 (350)
IBP Op
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and Op represents a vector of P zeros, Ip represents the P square identity matrix, while
IBp represents the P square ‘Backward’ identity matrix given by

1 forj=P+1—i
[IBpli; = (3.51)

0 otherwise

The search for the LP coefficients, contained in a, of a 2P order model has been reduced
to the identification of the P + 1 constrained coefficients contained in . Imposing these

constraints on the LP general linear model yields
G(a)YBa = G(a)Yca = e(a) (3.52)

Here, Yo is an M — 2P by P + 1 matrix of rank P + 1. Now let y, be the first column
of Yo and let Y, be an M — 2P by P matrix of the remaining columns of Y;. Defining
y.(a) = G(a)y, and Y.(a) = G(a)Y, while letting a, = [a[1]...a[P]]T, an alternate form

of the LP general linear model becomes
v.(a)=-Y.(ax)a, + e(a) (3.53)

Equation 3.53 represents the true general linear model relating the LP coefficients to the
frequencies present in P sinusoids in noise. The problem now is to estimate the LP pa-
rameters in a, and, consequently G(a), given the M observations. Before developing any
estimator for the LP coefficients, it is useful to have a bound on the accuracy that can be

obtained from the measurements.

3.4.6 Bounding the Estimation Error. In general, let a be a function of a random
vector @ so that a = g(8). It can be shown the CRLB for a can be derived from the CRLB

of @ as (40:45)
99(6)

Ko - [22)] (o) [ 2257

T
: ] > [0] (3.54)
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Again, F(8) is the Fisher Information matrix for 8 while

200) _ 20 559
For the LP coefficients, the functions relating the P unique coefficients to be estimated to

the corresponding frequencies can be found by expanding the LP polynomial

P

P
Za[p]z”’ = ]__I[z'2 — 2cos(2nf,)z™! + 1] (3.36)

p=0

In particular, for P =1

a[l] = —2cos(27 f1) = g1(f1) (3.57)

while for P =2

all] = ~2cos(2nfy) — 2cos(2nfy) = g1(f)

a2] = 2+ 4cos(27f,) cos(27 f) = g2(f) (3.58)

Figure 3.6 shows the CRLB for the LP coefficients for one and two sinusoids. For one
sinusoid, the estimation accuracy will decrease as the sinusoidal frequency approaches .25.
This is to be expected since small changes in the frequency around f = .25 will produce
large changes in the value of the LP coefficient. For two sinusoids, as shown by the contour
plot of Figure 3.6b, the estimation accuracy of the LP coefficients is primarily a function of
the frequency separation of the sinusoids. Consequently, the estimation accuracy decreases
dramatically for |f; — f2| < .02. This is to be expected since the CRLB for the frequencies

follows the same general form as the CRLB of the coefficients.

3.4.7 Section Summary.  This section derived the true LP general linear model
for estimating the set of P unique LP coefficients generating P sinusoids in noise and is an
original contribution of this research. Specifically, by properly incorporating the effects of
both the filter and the LP coefficients upon the noise, the LP general linear model derived
in Equation 3.53 represents the true linear model for estimating the LP coefficients. Any

other model relating the estimation of the LP coefficients to the sinusoidal frequencies will
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Figure 3.6 CRLB for LP Coefficients: Variance bounded as function of frequency at
fixed SNR of 10dB and block length M = 32. For two LP coefficients, contours found
as Var = .5(Var{a[l]} + Var{a[2]}) and plotted as —10log,4(Var). SNR calculated
as SNR = —10log;4(202).
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provide suboptimal frequency estimates. Estimating the frequencies has been recast as
estimating the coefficients of the LP general linear model. This derivation naturally leads
to the employment of a Fixed Point concept to determine the LP coefficients. This is one

of the main original contributions of this dissertation.

3.5 LP Coefficient Estimation: Fized Point Concept

This section derives the estimators to be used for estimating the LP coefficients as
defined by the LP general linear model derived in Equation 3.53. By viewing the optimal
estimates as fixed points in the domain of allowable solutions, this section develops two
alternate methods of estimating the LP coefficients. One estimator is based on an Iterative
Least Squares (ILS) technique and the other on an Iterative Total Least Squares (ITLS)
technique. Both of these estimators provide accurate estimates of the LP coefficients over
a wide range of SNRs and represent original contributions in the area of LP parameter

estimation.

3.5.1 Theoretical Background. = The technique to be used for estimating the LP
coefficients from the general linear model of Equation 3.53 is based on the theory of fixed
points and reviewed in Appendix D. To apply this theory to the estimation process, a
nonempty set, S, must be defined along with a function, d, which computes the distance
between any two members of S (33:1). Assuming the properties of a general distance
function hold, then the pair [S, d] is called a metric space (58:21). Now let £: S — S be
a function from a metric space (S, d] into itself. A point @ € S is called a fixed point of £
provided (2:92)

£la)=a (3.59)

In general, there are many requirements which must be satisfied for a fixed point of a
function to exist (33). However, the following two theorems will guarantee the existence of
a fixed point of an arbitrary nonlinear mapping, £, provided the metric space is adequately
defined:
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e Schauder’s Fixed Point Theorem - Let £ be a mapping on a Banach space, S such
that £: S — S is continuous and bounded and the image of each bounded set has a

compact closure. Then there exists in S a fixed point a of £ (33:152).

e Brouwer’s Fixed Point Theorem- Let £ be a continuous mapping on S.(0, 1), the unit
sphere in L-dimensional Euclidean space. If £(cy) € §,(0,1) for all a; € S;(0,1),
there exists a fixed point of £, denoted a in S(0,1) (33:116).

In this dissertation, the metric space to be employed for estimating the LP coefficients will

be subsets of the general L-dimensional Euclidean space.

3.5.2 Metric Space Definition.  Define Sy (0, k) as the set of L-dimensional vectors,

a=[o;...ar]T, with a; € R, such that the two-norm of « is finite.

L
lal’=aTa=) ol =k<w (3.60)
=1
This implies each component of a is finite. Thus, S;(0,k) is a closed and bounded set

of RL, the Euclidean L space (58). Now define a distance function , d(a, ;) for any
Qa;, € SL(O,,C) as

L
d(a;, a;) = \JZ(aa - a;)? (3.61)

=1
The pair, [S.(0,k),d], is a metric space. In addition, under this distance metric, R" is a
Banach space (58:112) and S.(0, k) is called compact (58:62). Provided a function £ can
be constructed which maps a; € §,(0,k) into a; € S;(0,k), then a fixed point of £ will
exist. The functions to be constructed will be based on the LS and TLS solutions to the

over determined system of equations given by

Y.(@)a, = -y, (a) (3.62)

3.5.3 [Iterative Least Squares Fized Point Mapping.

3.5.3.1 Theory. In general, the LS solution to Equation 3.62 consists of

finding the set of coefficients, a,, such that the sum of the squared terms of the error
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vector, e(a,), defined by

e(a,) = Y(a,)a, + y.(a,) (3.63)

is minimized (83:154). Thus, the optimal solution is given as
a, = arg(n&in{e(ao)Te(ao)}) (3'64)

This is the same as locating the point ¥,.(a,) in the column space of Y.(a,) which is
closer to y.(a,) than any other point (83:154). Thus, e(a,) must be perpendicular to the
columns of Y, (a,) so that YT (a,)e(a,) = 0 (87:524). Substitution yields the least squares

estimate derived from the observations as
&, = — YT (00)Ye(e,)] ™ Y (a0)y(a,) = £15(cx,) (3.65)

This is equivalent to finding the error vector, e(a,), of minimum norm which must be
added to the vector, —y.(c,), to bring it into the range of Y.(a,) (30), (67). To use this

function as an estimator of the LP coefficients, a fixed point must exist.

3.5.3.2 [Eristence. To show a fixed point exists for the LS mapping function,
£;5, let a; € Sp(0,k). The LS mapping of a; yields

a; = £15(ar) = - [YTGT(e)G(a)Y.]” [YTGT(ox))G(a)y.] (3.66)
To show a; € Sp(0, k), rewrite G(a;) in terms of its SVD as
G(a)) =UZVT (3.67)

where U = [u;...up—2p], V = [v;...Vp_2p] are square unitary matrices and ¥ is an
M - 2P square diagonal matrix containing the singular values of G{q;) arranged so that

o; > o; for i > j. Now, o; = A; /2 where A; is an eigenvalue of the nonsingular matrix
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AT Ky A;. Since, A; > 0 fort =1... M — 2P, the vector, ¢ = G(y)y,, can be written as
M-2P

= > Iunvly, (3.68)

m=1

Here, 2Tz < oo so that £ € Sp(0,k). Now, assuming Y, is of rank P, then the matrix
product, Y.(ey) = Y.G(ey) is also of rank P. Decomposing via the SVD yields

Y.(eu) = EDQT (3.69)

where E = [e;...ey_2p] and Q = [q, ... qp] are square unitary matrices and D is an
M — 2P by P diagonal matrix containing the nonzero singular values, d,, for p =1... P,
of Y.(a;). Thus

P
£rs(ay)|]® = a] a; d' 22Teefz <) d7%|x|® < o (3.70)
i= P¥p P
p=1

and for any o € Sp(0, k), then a; = £,.5(ay) € Sp(0, k).

To show £ is continuous, define the matrix R, as the M by M — 2P matrix with

1 fori=j+p
[Rplij=1|1 fori=2P—-p+j (3.71)

0 otherwise

fori=1...Mandj=1...M —2P. Thus, forp=0...P, R, is of rank M — 2P and so
is the sum of any P, such matrices. The matrix A can now be decomposed as the sum of

these matrices as

A=R,+ 2,,: alp|R, = R, + R(a) (3.72)

Using this decomposition, the M — 2P square matrix AT KyyA can be written as a rational
function of a as

ATKwA =R, + R(a)]” Kw R, + R(c)] (3.73)
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Because sums, products and inverses of rational functions are also rational functions, then
£;s(a) is a rational function of o (70). Therefore, £, is continuous everywhere it is
defined. Now, AT Ky 4 is invertible and of rank M — 2P. Since Y, is assumed to be of
rank P, then the matrix product Y,"[AT Ky A]~'Y, is of rank P so that its inverse exists.

Thus £15() is defined for all a and, as such, is continuous on Sp(0, k)(48:857).

Finally, to show £;5 is bounded, the limit as & grows unbounded must exist and be

bounded (70). First, define the set
Sp(0,1) = {x € R” :||z]| = 1} (3.74)

and let a« = Bx for B € R. Then

£,5(8z) = —{Yf [(%g-mzﬂ) Kuw (%‘im(z))} Yc}

-1

% [( 3 + R(z) )Kw<5 +R(:c)>} Y, (3.75)

Taking the limit as @ approaches infinity yields

dim £:5(82) = - (Y[R (2) KwR(2)]7'Y) " YT [RT (2) Kw R(@)] 'y, = £16.%(2)
(3.76)
Since R(x) is still of rank M — 2P, then £, .. (8z) is simply the solution to the weighted

least squares problem and is therefore a finite vector with ||£15 < (8%)||? < co. Finally, let

f(8)=_max £.5(8x) (3.77)

TESp(0.1)

As shown in (70), f(8) is a continuous function with

lim f(8) = max £rs5.(x) < oo (3.78)

B—x TeSp(0.k)
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Since f(f) is a continuous function bounded at infinity, so is its norm and the supremum

of f(3) is finite. That is (70)

sup||£s(a)]] = sup||f(B)]] < o0 (3.79)
a a

Thus, the supremum of the infinity norm of £,¢ is finite and maps the bounded set
Sp(0,k) C RP into itself. Finally, since £, is a continuous function that maps a convex
compact set into a convex compact set, then via Schauder’s Theorem (33:152-153), there
exists a fixed point such that a € Sp(0, k) such that £;s(a) = a. The fixed point obtained
using an iterative form of the LS function of Equation 3.65 will become the estimate of

the LP coefficients.

3.5.3.3 Application. From the true system model, where a indicates the
true LP coefficients,

yc(a,) = -Ye(a,)a, + e(a,) (3.80)

Clearly, the quantity —y.(a,) + e(a,) is in the range of Y.(c,). If the least squares

estimate, &, is given by Equation 3.65, substitution yields
& = [Y (@)Ye(a)] " Y (@) [Yeleo)e, — e(ax,)] (3.81)

For &, to be equal to a,, the error vector must be orthogonal to the columns of Y,(c,).
In this case, the true values of the LP coeflicients, &,, would be a fixed point of the Least
Squares mapping

a, = £15(a,) (3.82)

Now consider the iterative form of the LS mapping function £;;¢. From the system model,

at iteration 1,

- y.(a;) + e(a;) = Yo(aj)ex (3.83)

4]

The Iterative Least Squares (ILS) estimate for the LP coefficients is found from Equation
3.65 as

ot = - (YT (e))Ye(el)] " YT (ad)y(el) = £rus(al) (3.84)
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At each iteration, the squared error, calculated as
J(a}) = e (a))e(a}) (3.85)

is minimized with respect to the current LP coefficient estimate. When ai*! = a!, the
error vector, e(a') is orthogonal to the columns of Y;(a') and a! = £,5(a}). A fixed

point has been reached and the estimate of the LP coefficients becomes &, = o,

3.5.8.4 Simulations. Figure 3.7 shows a typical convergence of the ILS
algorithm for one and two filtered sinusoids. In both cases, the center frequency of the filter
was used to provide the initial LP estimates and less then ten iterations were required for
location of the fixed point. In addition, the fixed point located does not coincide with the
LP coefficients given by the minimum of the error surface. Figure 3.8 shows the estimation
accuracy of the ILS fixed point mapping for a single sinusoid as a function of SNR and
frequency. Figure 3.8a shows the ILS algorithm produces accurate frequency estimates
only when the LP general linear model incorporates the effects of the filter upon the
noise. Assumptions of uncorrelated (white) noise produce an incorrect model. In addition,
provided the correct model is used, the accuracy of the estimator is relatively independent
of the method of initialization above the SNR of about 3dB. For lower SNRs, the algorithm
becomes sensitive to the initial LP estimates and the threshold can be extended to about
0dB using the filter center frequency to provide initial estimates. Figure 3.8b, shows the
frequency estimation accuracy of the ILS.ﬁxed point estimator across the entire range of
frequencies for a sinusoid in zero-mean, normally distributed, uncorrelated noise. Using the
simple LS estimate as the initial estimate, this figure shows the ILS fixed point algorithm
provides optimal frequency estimates except for extremely low (f < .01) or high (f > .49).

frequencies.

Figure 3.9a shows the accuracy of the ILS fixed point estimator for the two widely
spaced sinusoids in zero-mean, independent, normally distributed noise. Using an initial
estimate obtained from the general LS solution, this figure shows the frequency estimates
obtained as a result of the ILS estimator are near optimal for SNRs above threshold. As

with a single sinusoid, Figure 3.9b shows the ILS algorithm produces accurate frequency
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estimates only when the LP general linear model incorporates the effects of the filter upon
the noise. Assumptions of uncorrelated noise produce an incorrect model and, conse-
quently, suboptimal estimates. For two sinusoids however, initializing the algorithm with
LP coefficients obtained near the center filter center frequency produced accurate estimates

at a slightly lower SNRs than those produced by a simple LS initial estimate.

The ability to estimate the frequencies of both widely and closely separated sinusoids,
either in independent or correlated, normally distributed noise, imply the ILS estimator

can be used as a general frequency estimator.
3.5.4 Iterative Total Least Squares Fized Point Mapping.

3.5.4.1 Theory. In forming the LS solution, the noise in the observation
matrix, Y;(a,), was ignored. The LS solution simply found the vector of minimum norm
which must be added to the vector —y_ (a,) to bring it into the range of Y.(a,). The TLS
solution attempts to account for the noise in the observation matrix, Y,(a,) in addition to

the noise in the y (a,) (21),(67),(87:533-538). First, Equation 3.62 can be rewritten as

w(@Ya)]| © | =0=Yo(a)a (3.86)
a,

The TLS solution for a seeks the matrix, F(c), of minimum Frobenius norm such that
the matrix sum, [Yo(a) + E(a)], is rank deficient (21), (67). Decomposing Yo (ax) via the
SVD yields

Ye(a) = U(a)Z(a)VT{(a) (3.87)

Here, U(a) and V(@) are unitary matrices which can be written in terms of their column

vectors as

Ula) = [uy(a)... upy—9p(a)] with u; € RM-2P (3.88)

Via) = [vi(a)...vpy(a)] with v; € RFH! (3.89)
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Fixed Point Convergence of I1L.S Algorithm
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Final Est: al = ~,7412 x-Algorithm Convergence

-0.8 -0.75 ~0.7 -0.85 -0.8 -0.55 -0.5 ~0.45 -0.4
LP Coefficient a[1]

(a) Sinusoid Parameters: {85 = 1, f; = .192,¢% = 7/3] and SNR = —5dB.
Final Objective Function Evaluation: J(ajrs) = 37.26, Jyry = 35.009.

Fixed Point Convergence of the ILS Aigorithm
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(b) Sinusoid Parameters: {bY = 1, f; = .207,¢0 = x/3}, (b =1, fo = 227,49 = 4x/3].
Objective Function Evaluation: J{cxrps) = 3.6088, Jayrry = 3.5230; SNR =5 dB.

Figure 3.7 ILS Fixed Pont Convergence: J(a,) calculated at fixed SNR and
block length M = 32. Ten iterations allowed for convergence. Filter Parameters:
Center Frequency: f. = .21; Bandwidth: fg = .2; Length: N = 32. SNR calculated
as SNR = ~10log,o(202).
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Frequency Measurement Accuracy
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(a) Sinusoid Parameters: [b = 1, f; = .192, ¢} = x/3], MSE at .5dB SNR intervals.
Filter Parameters:Center Frequency: f. = .21; Bandwidth: fg = .2; Length: N = 32.
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(b) Sinusoid Parameters: (b = 1,¢¢ = /3], SNR = 10dB.
MSE at .005 frequency intervals.

Figure 3.8 ILS Frequency Estimation Accuracy-One Sinusoid: MSE calcu-
lated from 500 independent realizations of block length M =32. Ten itera-
tions allowed for convergence. The incorrect model assumed Ky = %I while the
correct model used Ky =0?HTH. SNR calculated as SNR = —10log;,(20?);
MSE = g5 T2 (filil - f1).

=1
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Combined Frequency Measurement Accuracy
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(a) Sinusoid Parameters: [ =1, f; = .1797,¢¢ = n/3], [b§ = 1, f; = .3828¢3 = 4 /3].
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(b) Sinusoid Parameters: [b = 1, f; = .207,¢% = 7/3], b3 = 1, fo = .227,¢% = 47/3].
Filter Parameters: Center Frequency: f. = .21; Bandwidth: fg = .2 Length: N = 32.

Figure 3.9 ILS Frequency Estimation Accuracy-Two Sinusoids:  MSE calcu-

lated at SNR intervals of .5dB from 500 independent realizations of M = 32 sam-
ples of sinusoids in noise. The incorrect model assumed Ky = 02I while the
correct model used Ky =o?HTH. SNR calculated as SNR = —10log;,(202);

MSE = gig Tpuy Tima (Fp(0) = fp)2

3-35




In addition, L(a) is an M — 2P by P + 1 diagonal matrix of the singular values of Ye(a),
denoted o; for i = 1... P + 1, arranged so that ; > 0;... > 0p,; > 0. The TLS solution

for a is given by the mapping function, £, as (86:534)

vp.i(a)

N £r1s(a) (3.90)

& =

Provided V(a); p4+1 # 0, this solution is unique and provides the set of LP coefficients

associated with the matrix of minimum Frobenius norm, E(a) such that (21)
- y.(a) + e(a) € Range{Y.(a) + E(a)} (3.91)
In order to use this estimation technique for the LP coefficients, a fixed point must exist.

3.5.4.2 Eristence. To show a fixed point exists for the TLS mapping
function, let Sp,1(0,1) : {a € RP*'|aTa = 1} and let oy € Sp,1(0,1). The solution
provided by £1;5(;) is the right-most singular vector

v (8
a; = P+1( I)

B Via,ps (3.92)

Here, V(au)1,p41 is the first element of the P + 1 column of V(a,). Since this solution
can be scaled by any constant without changing the zeros of the LP polynomial A(2), a

modified form of the TLS mapping becomes

a; =vpy (o) = £rps(au) (3.93)

Since vpy1(ar)Tvps () =1, then a; = £rps(ay) € Sp41(0,1).

Now, to show £r5 is continuous, the TLS solution was found via the SVD of the
matrix product G(a)Yc. Since G(a) is a square M — 2P nonsingular matrix and Yy is
and M — 2P by P + 1 matrix of rank P + 1, then vp,, () exists for all a. Furthermore,

this solution is the same solution as the TLS solution of

YF [ATKwA) ™ Yoo =0 (3.94)
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This function is a rational function of @, and since sums, products and inverses of rational
functions are also rational functions, then £7;s(a) is continuous everywhere in its domain
(48:857). Since the TLS solution exists for all a € Sp4,(0,1), then £7,¢(a) is continuous
on Spy1(0,1). Thus, via Brouwer’s Fixed Point theorem, there exists an a € Sp,;(0,1)
such that a fixed point exists (33:116). The fixed point obtained via an iterative form of

the TLS solution will become the estimate of the LP coefficients.

3.5.4.3 Application. From the true system model, where a indicates the
true LP coefficients

Y. (a)a, = -y (a) + e(a) (3.95)

Again, the vector —y.(a) + e(a) is in the range of Y.(a). Rearranging terms gives
[Yo(a) - Wo(a)]a =0 (3.96)

Decomposing Yo () as the SVD yields the TLS estimate as

vpyi(a)

a=—-
V(a)i,ps1

(3.97)

For & to be equal to a, the matrix, —W¢(a), must be of minimum Frobenius norm. In

this case, the true values of the LP coefficients become a fixed point of the TLS function
a=£r.5(a) (3.98)

Now consider the iterative form of the TLS solution. From the system model, at iteration
1, the model yields
Ye(a')a' = e(af) (3.99)

The Iterative Total Least Squares (ITLS) estimate for the LP coefficients is found via the

mapping function, £;75, as

i+1 vP-H(ai) £ i
== « 3.100
Vo) rn res(a’) (3.100)
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At each iteration, the squared error is calculated as
J(a) = eT(a')e(a') (3.101)

When a'*! = a', the noise matrix, W(a') is of minimum Frobenius norm and the fixed

point has been reached so that o' = £/75(a’).

3.5.4.4 Simulations.  Figure 3.10 shows a typical convergence of the ITLS
algorithm for one and two filtered sinusoids. In both cases, the center frequency of the filter
was used to provide the initial LP estimates and less then ten iterations were required for
location of the fixed point. In addition, the fixed point located does not coincide with the
LP coefficients given by the minimum of the error surface. Figure 3.11 shows the estimation
accuracy of the ITLS fixed point mapping for a single sinusoid as a function of SNR and
frequency. Figure 3.11a shows the ITLS algorithm produces accurate frequency estimates
only when the LP general linear model incorporates the effects of the filter upon the
noise. Assumptions of uncorrelated (white) noise produce an incorrect model. In addition,
provided the correct model is used, the accuracy of the estimator is relatively independent
of the method of initialization above the SNR of about 3dB. For lower SNRs, the algorithm
becomes sensitive to the initial LP estimates and the threshold can be extended to about
0dB using the filter center frequency to provide initial estimates. Figure 3.11b, shows the
frequency estimation accuracy of the ITLS fixed point estimator across the entire range
of frequencies for a single sinusoid in zero mean, normally distributed, uncorrelated noise.
Using the simple LS estimate as the initial estimate, this figure shows the ITLS fixed point
algorithm can provide optimal frequency estimates except for extremely low (f < .01) or

high (f > .49). frequencies.

Figure 3.12a shows the accuracy of the ITLS fixed point estimator for the two widely-
spaced sinusoids in zero-mean, independent, normally distributed noise. Using an initial
estimate obtained from the general TLS solution, this figure shows the frequency estimates

obtained as a result of the ITLS estimator are near optimal for SNRs above threshold.

As for a single sinusoid, Figure 3.12b shows the ITLS algorithm produces accurate

frequency estimates only when the LP general linear model incorporates the effects of the
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filter upon the noise. Assumptions of uncorrelated noise produce an incorrect model and,
consequently, suboptimal estimates. For two sinusoids however, initializing the algorithm
with LP coefficients obtained near the filter center frequency produced accurate estimates

at a slightly lower SNRs than those produced by a simple TLS initial estimate.

The ability to estimate the frequencies of both widely and closely separated sinusoids,
either in independent or correlated, normally distributed noise, imply the ITLS estimator
can be used as a general frequency estimator. However, this estimator requires an SVD of

the M — 2P by P + 1 observation matrix at each iteration.

3.5.5 Section Summary. In this section, two methods, based on fixed point
theory, were derived for estimating the coefficients of the LP general linear model. One
method, termed the ILS algorithm, is based to an iterative least squares solution on an
over-determined system of equations while the other method, coined the ITLS algorithm,
is based on an iterative total least squares solution. Simulations indicate both methods
provide minimum variance unbiased estimates of the LP coefficients, and consequently, the
sinusoidal frequencies, over a wide range of SNRs. All other factors being equal, the ILS
method would be preferred over the ITLS method since the ITLS algorithm requires an
SVD of a M — 2P by P + 1 matrix at each iteration. Application of fixed point theory
to the estimation of the LP coeflicients and development of the ILS and ITLS fixed point
mapping functions is an original contribution of this research. The next section relates the

estimates found by these methods to the ML estimates of the LP coefficients.

3.6 LP Modeling/ ML Frequency Estimation Relationship

This section derives the exact relationship between the true LP general linear model
and ML Frequency estimation. Specifically, this section will show the LP coefficients,
defined by the general linear model of Equation 3.53, will provide ML frequency estimates
for filtered data provided the two-norm of the model error is minimized. This derivation,
establishing an exact relationship between ML frequency estimation of filtered sinusoids

and the LP general linear model, is an original contribution of this dissertation.
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Fixed Point Convergence of ITLS Algorithm
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(a) Sinusoid Parameters: [b¢ =1, fi = .192,49 = x/3], and SNR = -5dB.
Objective Function Evaluation: J{arrrs) = 38.71, Jyrn = 35.009.
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(b) Sinusoid Parameters: [bY =1, f; = .207,¢% = 7/3], [b3 = 1, f» = .227, 43 = 47/3].
Objective Function Evaluation: J(asrrs) = 3.6883, Jasrrny = 3.5230; SNR = 5dB.

Figure 3.10 ITLS Fixed Pont Convergence: J(a) calculated as function of LP coef-
ficients at fixed SNR and block length M = 32. Ten iterations allowed for con-
vergence. Filter Parameters: Center Frequency: f, = .21; Bandwidth: fg = .2;
Length: N = 32. SNR calculated as SNR = —10log,,(25?).
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Frequency Measurement Accuracy
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(a) Sinusoid Parameters: (b = 1, fi = .192,¢$ = 7/3], MSE at .5dB SNR intervals.
Filter Parameters: Center Frequency: f. = .21; Bandwidth: fp = .2; Length: N = 32.
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40

Figure 3.11 ITLS Frequency Estimation Accuracy-One Sinusoid: MSE cal-
culated from 500 independent realizations of block length M =32. Ten itera-
tions allowed for convergence. The incorrect model assumed Kyy = o2] while the
correct model used Ky = c?HTH. SNR calculated as SNR = —10log;,(20?%);

MSE = 55 £i21(hili] - f).
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Combined Frequency Measurement Accuracy
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(b) Sinusoid Parameters: [b = 1, f; = .207,¢¢ = n/3], [b3 = 1, fo = .227, 43 = 4x/3].
Filter Parameters: Center Frequency: f. = .21; Bandwidth: fp = .2; Length: N = 32.

Figure 3.12 ITLS Frequency Estimation Accuracy-Two Sinusoids: MSE cal-
culated at SNR intervals of .3dB from 500 independent realizations of M = 32
samples of sinusoids in noise. The incorrect model assumed Ky = ¢2I while the
correct model used Ky =o?HTH. SNR calculated as SNR = ~10log,,(20?);

MSE = g S0 T8 (5 0) - f)2.
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3.6.1 ML Objective Function Redefined. From Equation 3.25, to provide ML

frequency estimates, the objective function J(f) must be minimized with respect to f.
J(£) =y Kwy - v Ko ANTKy A ATK Gy

To minimize this ML frequency objective function , consider a vector space interpretation
of the minimization problem and assume that y has length M > 2P. From Equation 3.13,
since A is an M by 2P matrix with 2P linearly independent columns, the column vectors
of A, denoted

A=[AL Ay Agp] (3.102)

span a 2P dimensional subspace, Vj, of the real vectors, RM. As such, there exists an
M — 2P dimensional orthogonal subspace, denoted V;, which is spanned by the column
vectors in the matrix A,

A= [al,ag,...aM-gp] (3103)

For any vector ¥ € V; and 4 € V; then %74 = 0 (83:132-152). In particular, /\?aj =0 for
t=1...2Pandj=1...M —2P. Now let F be an M by M invertible matrix and define
the linear transformation upon the two sets of basis vectors as 9, = F\;, where 9, € V;,

and v; = F~Ta;, where v; € V;. In matrix form,

U=[1p,...0,0] = F[Ar... Aep] = FA (3.104)

L=y, Va2l = FTas...an2p] = FTA (3.105)

The columns of ¥ form a basis for V; while the columns of I form a basis for V; (26:92).
The projection of any vector z € RM into V] and V; can be written in terms of the matrices

¥ and I as (83:156),(73:46-47)

2, =V [UTU] T ¥z forz, €V (3.106)

z;=T [I‘Tl"]—1 ITz; for 2z, €V, (3.107)
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The signal energy, E, defined by the vector two norm ||z||* for 2 € RM, is projected
orthogonally into each subspace (26:181-226) as E = 27z = E; + E; where

E =27z, =2T¥ {QTW]“ Uz =27 [ -T(TTT)7'T7) 2 (3.108)
Er =272, = 2T 7] ' ITz = 27 [1 - ¥(¥70)~197] 2 (3.109)

For a fixed energy E, minimizing F; maximizes E, and vice versa. Now let F' be defined

by the Cholesky decomposition of the noise covariance matrix so that
Ky =F'F (3.110)
The ML frequency objective function, J(f), can then be written as
J(f) =yTFTFy — yTFTFAATFTFA) ' ATFTFy (3.111)
For z = Fy, and ¥ = FA, an alternate form of J(f) becomes
J(f) = 2Tz - T[0Ty v, (3.112)
Factoring the vector z and employing Equation 3.109 yields
J(f) = 2T [I - v(¥T) 0T z = 2TI(T7T)'I72 (3.113)

Minimizing the ML frequency objective function, J(f), is equivalent to minimizing E,,
the energy of the signal projected into V;. From Equation 3.109, since I' = F-T A4, this

minimization can be written in terms of the basis vectors a@; in A as
J(A) = yTFTFTAATF'FTA)'ATF'Fy = yTA(ATKwA) ' ATy (3.114)

Minimizing the ML frequency objective function defined by Equation 3.25 with respect

to f has been recast as minimizing Equation 3.114 with respect to the basis vectors in
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the matrix A. Proper selection of these basis vectors will prove critical for obtaining a

simplified estimator.

3.6.2 Determination of the Basis Vectors.  To determine an optimal set of basis
vectors, ay, consider the LP model of Equation 2.14. Substitution of s{m] = b cos(wym + ¢)

and expanding yields
P 2P
Z Z a[p]by {cos{wk[m — p]) cos(¢y) — sin(wi{m — p]) sin(¢y)} = 0 (3.115)

k=1 p=0

Since Equation 3.115 must hold for all w; and 2P < m < M - 1, using the substitution,

by = by sin(¢,) and bf = by cos(¢y), gives the property

2P

Z afp] cos(wi[m — p]) =0 (3.116)
2P
> alp]sin(wifm — p]) =0 (3.117)
p=0

Now define the vector of k zeros as 0; and the M-dimensional vector a, as
aj = [0¢,a[0]...a[2P], 0% _;p_;_,] (3.118)
for k=0...M — 2P — 1. Since the form of the basis vectors for V] can be written as

i = [cos(2mfi[M, — 1])...cos(2n fi[N - 1])]T (3.119)
Apti = —[sin(2n fi[M, — 1})...sin(2x f;[N — 1])}T (3.120)

fori=1...P, then alA; =0 for j =1...2P. The M — 2P vectors a; are orthogonal to
the columns of A. Furthermore, employing these vectors as the columns of A yields the
LP coefficient matrix defined by Equation 3.44. The M — 2P columns of A are linearly
independent and thus form a basis for V;, the subspace orthogonal to V;. In addition, each

column of A is derived from a single vector a so that J(A4) can be written as

J(a) = yTA(ATKywA) ATy (3.121)
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Minimization of J(f) with respect to f has been recast as a minimization of J(a) with
respect to a. The LP coefficients which minimize Equation 3.121 provide ML frequency
estimates (6). Furthermore, via the invariance property of ML estimators, the a which
minimizes J(a) is the ML estimate of the LP coefficients(40:185). As shown in the next
section, this ML estimate of the LP coefficients can also be obtained from the LP general

linear model.

3.6.3 Relationship to LP Model.  To show the relationship between ML frequency
estimation and the LP general linear model, let G(a) be the square M —2P matrix obtained
from the Cholesky decomposition of the matrix [ATKwA]-l. The ML frequency objective

function can now be written as
J(a) = yTAGT(a)G(a)ATy (3.122)

Employing the M — 2P by 2P + 1 matrix of measurements, Yy, and imposing the sinusoidal
constraints, so that @ = Ba, yields ATy = Yra = Yoa. Thus, an alternative form of
Equation 3.121 becomes

J(a) = aTYIG(a)TG(a)Yca (3.123)

By defining the error vector as e(a) = [e[M —1]...e[2P]]" and constraining af0] = 1
yields
e(a) = G(a)Yea =y (a) + Y(a)a, (3.124)

This equation is identical to the LP general linear model given by Equation 3.53. By prop-
erly incorporating the effects of the filter coefficients and the LP coefficients in developing
the LP general linear model, this derivation shows the exact relationship between the LP
coefficients and ML frequency estimates. The set of LP coefficients which minimize the
squared error defined by the LP general linear model will provide ML estimates of the
frequencies. Furthermore, via the invariance of ML estimators, the LP coefficients which

minimize the squared error are the ML estimates of the coefficients.
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3.6.4 Section Summary. This section derived the exact relationship between the
ML frequency objective function for filtered sinusoids and the LP general linear model
and is an original contribution of this research. Specifically, this section showed the set
of LP coefficients which minimize the square error defined by the LP general linear model
will provide ML frequency estimates and vice versa. The next section will derive an ML
estimator for the LP coefficients and derive the relationship between this estimator and

the ILS and ITLS fixed point estimators.

3.7 LP Coefficient Estimation: Objective Function Minimization

In this section, after deriving a method, termed Iterative Exact Gradient Descent
(IEGD), for obtaining exact ML frequency estimates using gradient descent algorithms
to minimize the constrained form of the LP objective function, J(eax), approximate ML
estimation techniques are examined. Specifically, this section will show the LP coefficients
found via the ILS fixed point mapping function are exactly equivalent to the Iterative
Generalized Least Squares (IGLS) approximate ML estimator developed in (31),(32)(70).
In addition, the LP coefficients found via the ITLS fixed point mapping function will be
shown to be exactly equivalent to the well known Iterative Quadratic Maximum Likelihood
(IQML) approximate ML estimator proposed in (6), (29), (30), (68}, (63),(75). The proof
of the equivalence of these estimators is an original contribution of this dissertation and

correctly casts the IGLS and IQML estimators as fixed point mappings.

3.7.1 Iterative Ezact Gradient Descent (IEGD). From the form of the objective
function J(a), as defined in Equation 3.123, the interpretation as the the familiar squared

error objective function is self evident
J(a) = e(a)Te(a) = a"YIG(a)TG(a)Yca (3.125)

Minimizing J(a) with respect to & becomes a P + 1 dimensional search for an estimate,
&, such that

&= arg{méi[n(aTYgG(a)TG(a)Yca)} (3.126)
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The a which minimizes J(a) will provide ML estimates of the frequencies and the LP

coefficients.

There are many methods for minimizing J(a) with respect to a. The method devel-
oped in this dissertation, termed the Iterative Exact Gradient Descent (IEGD) algorithm, is

based on an iterative gradient descent algorithm of the general form (15:140-141), (40:187),

ot =a - [D‘Iya—(c—?—)-” (3.127)
a=Q

where the vector 8J(a)/8a is the P + 1 dimensional gradient vector defined as (40:187)

dJ(a)] _dJ(a)
[ o ] = Fafi (3.128)
In addition, D is the Hessian of J(a) with (40:187)
_ (e
[Dli; = 3afildals] (3.129)

As shown in Appendix E, the gradient is relatively simple to implement while the Hessian
is a bit more complicated. Again, as with most iterative optimization techniques, there
is no guarantee the algorithm will ever converge. Even if it does converge, there is no
guarantee the global minimum has been attained. The solution achieved will only provide
a local minimum and therefore the accuracy of the estimate will depend greatly on the

location of the initial estimate.

Figure 3.13 shows typical solutions for the LP coefficients obtained using the IEGD
algorithm. In this figure, the results of the ILS fixed point estimator were used as an
initial guess for the IEGD algorithm. This figure shows the IEGD algorithm does indeed
find the minimum of J(a) and, consequently, the ML estimate of the LP coefficients and
frequencies. The main drawback to the IEGD algorithm, when compared to the ILS and
ITLS fixed point algorithms, is the added complexity of computing the Hessian at each
iteration. Typical methods for reducing this complexity treat the matrix ATKyyA as a

constant, impose a constraint on a and perform the minimization with respect to this
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constraint (6),(9), (29), (31),(32),(75). The two estimators based on this technique have
been termed the IGLS and IQML estimators.

3.7.2 [Iterative Generalized Least Squares (IGLS).  One method of performing an
approximate minimization is to constrain (0] = 1 and perform a gradient descent using
Equation 3.127 with the matrix product, C(a,) = ATKy A, treated as a constant. For

this constraint, the objective function becomes a function of the P remaining terms in a,
J(e) = y; [Clar)] 'y, + 297 [Cla))]  Yea, + a7 Y [Cla))] ' Yea, (3.130)

where C(a) is derived from the previous estimate of c,. Taking the gradient and evalu-

ating at a} yields the general iterative gradient descent algorithm
ot = af - 2D {Y [T [C(a)] Yea;, + Y [Cla))] "y, } (3.131)
Employing the Hessian matrix, D, yields
D =2YT[C(a})]'Y, (3.132)
Thus, the final form of this iterative gradient descent algorithm becomes
ol = —{Y[C(a))] Y.} YT [C(ed)] . (3.133)
Since [C(a})]™! = GT(a!)G(cat), and Y.(a}) = G(a})Y,, substitution yields

aif! = - [Y7(a))Y.(ad)] 7 YT (ad)y.(al) (3.134)

The approximate minimization of the ML objective function is identical to the ILS fixed
point mapping function, £;;5(cx), defined in Equation 3.84. This derivation is an orig-
inal contribution of this dissertation for it establishes the connection between the IGLS
algorithm developed in (31), (32) and (70) to the general method of gradient descent

minimization and correctly casts the IGLS algorithm as a fixed point ILS mapping.
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Figure 3.13 IEGD Algorithm Convergence: J(a) calculated as function of LP co-
efficients at fixed SNR and block length M = 32. Ten iterations allowed for
convergence. Filter Parameters: Center Frequency: f. = .21; Bandwidth: fg = .2;
Length: N = 32. SNR calculated as SNR = —10log;4(20?).
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3.7.3 lIterative Quadratic Mazimum Likelihood (IQML).  An alternative method
of performing the approximate minimization of J(a), with C(a) = AT Ky A held constant,
is to constrain a to be of unit length, a’a = 1, and iteratively minimize J(a) via an

eigenvalue analysis. That is, rewriting J(a) as
J(a) = aTYI[C(a")] 'Yea = 7Y (') Yo (a))a (3.135)

Again, C(a') represents a constant matrix obtained from the previous estimate of a;.

Using the method of Lagrange Multipliers yields the objective function (49:897-923)
Ji(a) = aTY (a))Ye(a)a - daTa (3.136)
Taking the gradient with respect to a and equating to zero produces
2Y7 (a')Ye(a)a — 22a =0 (3.137)

Under this unit length constraint, a is an eigenvector of the matrix product {YJ (a!)Yc(a')}.

Substituting into J(a) gives
J(a) = aTa =) (3.138)

The optimal estimate of & is the eigenvector associated with the smallest eigenvalue of the
matrix product {YZ(a*)Yc(a')}. Thus, for the IQML algorithm, each time an estimate of
a is obtained, it is reinserted into J(a) to produce a new estimate. This process continues
until convergence of the algorithm. An alternative explanation of this algorithm can be

obtained by considering the SVD of Y (a?) directly. That is, let
Yo(a) = U(a)Z(a)VT(a) (3.139)
Here, U(a) and V(@) are unitary matrices. Writing in terms of column vectors yields
Ula) = [uy(a)... upy_sp(a)] with u; € RM-2P (3.140)

V(a) =[v(a)...vp4(a)] withv; € RPH (3.141)
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In addition, () is an M — 2P by P + 1 diagonal matrix of the singular values of Y (a),
denoted o; fori = 1... P+1, and arranged so that o, > 03... > 0p4y > 0. Thus, in terms

of the unitary matrix V(a;)
YZ(a')Ye(a') = V(@) ET(a))E(a')VT(a') = V(a)A(a)V(a') (3.142)

Here, A(a') is the diagonal matrix of the eigenvalues associated with Y7 (a')Yc(a). Since
A; = o2, the eigenvector associated with the smallest eigenvalue is v p+1{a’), the right-most

singular vector obtained directly from the SVD of Yz(a'). That is

ai+1 = vp+1(ai) (3.143)

This solution is exactly the same as the unnormalized fixed point solution defined by the
ITLS fixed point mapping, £;r.s(a’), from Equation 3.100. This derivation is an original
contribution of this dissertation for it equates the IQML algorithm, previously developed as
a minimization algorithm, to an ITLS fixed point solution for . What has been interpreted
in the past as an approximate minimization is actually a fixed point determination for the

LP coefficients.

3.7.4 Algorithm Comparison. Figure 3.14 shows the average difference in the
squared error, at convergence, between the IEGD and ILS algorithms, and the IEGD and
ITLS algorithms, for the sinusoids tested. This figure shows the ILS estimator produces,
on average, a smaller squared error of the LP objective function then that produced by
the ITLS algorithm. Hence, the ILS estimator will provide LP estimates closer to the ML
estimates then those produced by the ITLS estimator. Figure 3.15 shows the frequency
estimation accuracy of each of these algorithms for both one and two filtered sinusoids.
As expected, for this data, the IEGD algorithm provides the most accurate frequency
estimates. However, these estimates are only slightly better than those provided by the
ILS and ITLS fixed point estimates, especially at large SNRs. This slight improvement
must be weighed against the additional complexity of calculating the Hessian matrix for

the IEGD algorithm at each iteration.
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Figure 3.14 LP Estimator Minimum Error Comparison: J(a) evaluated at con-
vergence for each algorithm. MSE calculated at SNR intervals of .5dB from 500
independent realizations of M = 32 samples of sinusoids in noise. Ten iterations
allowed for convergence of IEGD, ILS and ITLS algorithms. Minimum error found
from IEGD algorithm initialized via a at ILS convergence. Filter Parameters:
Center Frequency: f. = .21; Bandwidth: fg = .2; Length: N = 32. SNR calculated
as SNR = —10l0gyy(20%). MSE = &5 320 [J(erspe) - J(d)).
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3.7.5 Section Summary. This section developed an exact ML estimator, termed
the IEGD algorithm, for the LP coefficients based on the LP general linear model and is
an original contribution of this research. The estimator derived provides ML estimates of
the LP coefficients and, consequently, the frequencies of filtered sinusoids, by employing
an iterative gradient descent algorithm to minimize the squared error dictated by the LP
general linear model. In addition, this section derived the equivalence between the IGLS
and IQML algorithms and the ILS and ITLS fixed point estimators respectively. These
derivations show the IGLS and IQML algorithms are fixed point estimators and do not
minimize the LP objective function in general. Simulations show the IEGD algorithm
can provide ML frequency estimates by minimizing the LP objective function, though the
performance increase over the less complicated ILS/IGLS and ITLS/IQML algorithms is
negligible at high signal to noise ratios. In addition, for the simulations completed the
ILS/IGLS algorithm actually produced, on average, more accurate frequency estimates
than the more complicated ITLS/IQML algorithm. The IQML algorithm requires an
eigenvalue decomposition of a P + 1 by P + 1 square matrix at each iteration whereas
the ILS algorithm only requires the inversion of a P by P square matrix. This result is
surprising since the IQML algorithm has been widely accepted as the premier method of
estimating the frequencies of complex sinusoids in noise. Thus, if the small degradation in
performance over the IEGD can be tolerated, the ILS/IGLS estimator should be preferred
over the TLS/IQML estimator for providing minimum variance unbiased point estimates of
the LP coefficients and, consequently, the sinusoidal frequencies. The next section develops
a new method for determining the estimation accuracy for each point estimate of the LP

coeflicients and frequencies based solely on a single realization of the measurements, y.

3.8 Bounding the Estimation Error

Previous portions of this dissertation have developed methods of obtaining unbiased
point estimates of the LP coefficients and, consequently, the sinusoidal frequencies present
in a set of M observations. However, knowledge that an estimate is unbiased is not ade-
quate to fully characterize the estimates; the estimation error must also be quantified. For

sinusoids in noise, the accuracy of each estimate is a function of several parameters includ-
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ing the SNR, the number of measurements and the relative amplitudes, frequencies and
phases of the sinusoids (39:414,415). This section introduces a new method for bounding
the estimation error of the LP coefficient estimates and consequently, the frequency esti-
mates, based strictly on one realization of the measurement vector. Hence, the accuracy
estimate is data driven. This derivation is an original contribution of this research and
can be used to establish confidence intervals for both the LP coefficients and the frequency
estimates. In addition, knowledge of the accuracy of the estimate is critical for data fusion

algorithms and pattern classification systems.

3.8.1 Theory. Let 0 represent the true values of a set of P parameters and let 6

be an associated estimate. The estimation error of any one of the parameters, denoted ¢,
will be defined as 8, (61:345).
€p = ep - op (3144)

As a function of a random variable, this error is also a random variable and can best be
analyzed in probabilistic terms. That is, if ¢ is an arbitrary constant, the probability the

absolute error is less then ¢ is found as
P(le,l <t) =P(—t<e <) (3.145)

Calculation of this probability depends on the PDF of ¢, which is usually unknown. Pro-
vided the estimate is unbiased, however, a loose bound on this probability of error can
be found using only the variance of the estimate by employing Chebyshev’s Inequality
(27:58-59)

~

V{6
P(lep] > t) < EZ”} (3.146)
Letting t be an integer multiple of the standard deviation, t = kaép, yields
1
P(lep| 2 ko)) < ] (3.147)
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Thus, if the variance of an estimate for 6, can be calculated, a loose bound on the estimation

error can be achieved. Alternatively, confidence intervals can be formed as
P(6, —koy <0, <6, +ko; )=1-8 (3.148)

Here the quantity (1 — 3) is called the confidence coefficient and indicates the relative
frequency the interval defined by the estimate and the variance of the estimate will include
the true value of 6, (28:151-158). Again, this calculation depends on the exact form of the
PDF of the error, although a bound can be obtained from Equation 3.147.

Thus, if the variance of an unbiased estimate is known or can be calculated from
a single measurement vector, the accuracy of the estimate can be gauged by employing
Equation 3.147 or a confidence interval can be established via Equation 3.148. A method
to estimate the variance of a point estimate of the LP coefficients, using only the measure-

ments and a knowledge of the variance of the noise, is derived in the next section.

3.8.2 LP Coefficients.  To estimate the variance of an estimate of the LP coeffi-
cients, consider the effect of the system model on the measurements. From the LP general

linear model of Equation 3.49, since y[m] = s[m] + w(m] then

G(a)Ya = e(a) = G(a)Sa + G(a)ATw (3.149)
With a[0] = 1, this form of the LP general linear model can be written as

[e(a) — G(a)s,] = G(a)S,a, + G(a)ATw (3.150)

where s, is the first column of S and S, is an M — 2P by P matrix of the remaining

columns. The ML estimate for a, is unique and found as (40:186),(60)

a,(ML) = [SZ"GT(a)G(a)So]—I {STG"(a)[e(a) — G(a)s,]} (3.151)
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In addition, the statistical properties of this estimate are found as (40:186)

E{a.,(ML)} = a, (3.152)

' (3.153)

Kg, = [S]GT(a)G(a)S,]”
This gives the covariance matrix for the ML estimate of the LP coefficients in terms of
the deterministic model matrix S,. Unfortunately, the elements of this matrix are derived
from the deterministic signal, s[m], which is unavailable. To estimate the covariance matrix

from the observations, consider the expansion of the observation matrix defined by G(a)Y,.

Letting L = M — 2P, then

( Gin G122 -+ Q1L 11 y[M - 2] y[M - 3] y[L - 1] ]
M-=-3 M-4] ... L-2
G(a)Y, = 92’.,1 ng,z 92.,1, y[ . ] y[ . ] y[ ' ] (3.154)
| 921 9L2 .-+ GLL | | y[2P - 1] y[2P - 2] y[O] ]

Thus, each element of this matrix product can be viewed as the output of a finite impulse
response filter of length L. That is, fori=1...Land j=1...2P,
L-1

[Ga)Y.],; = > gimsy[M —m —1—] (3.155)

m=0

Now define the vector ¥, = [y[M - 2],...,y[0]]T and the matrix G; as the M —~ 1 by 2P

filter matrix

gi1 gie 0 0 0
0 g L 0 0
GT = gix gt . (3.156)
0 : 0
| 0 0 0 g gi,L |
Then, the i** row of G(a)Y, can be written as yTG;. Thus
Y7G"(a) = [GTy,...GLy)] (3.157)
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As a result, the matrix product [Y,7G%(a)G(a)Y,] can be written as
L
YIGT(a)G(a)Y, = > Gly,yGn (3.158)
m=1
Taking the expected value of this matrix yields
L
B{YTGT()G(a)Y,} = 3 GLE{y,y7}Gnm (3.159)

m=1

Now, with 8; and w, defined in a manner similar to y,, then y, = 8, + w;, so that
E{y,yT} = 8,87 + E{w,wT} (3.160)
Substitution into Equation 3.159 produces
L L
E{YIG"(a)G(a)Y,} = > GL8:8,Gmn + Y GLE{w,w]}Gn (3.161)

m=1 m=1

Since w, is a zero-mean, normally distributed random vector with covariance matrix

Ky = c*HTH, then

E{YTG"(a)G(a)Y,} = STGT(a)G(a)S, + o* EL: GTHTHG,, (3.162)

m=1
For any ML estimate of @, an estimate of the covariance matrix can be obtained as

M—-2P -1
Ky = [YOTGT(a)G(a)Yo -a* Y GﬁHTHGm] (3.163)

m=1

Finally, employing the symmetry constraints, a = Ba with a[0] = 1, the final form of the

estimate for the covariance matrix of the constrained coefficients in a, becomes

M-2P -1
Ka, = [YCTGT(ao)G(ao)YC -o’BT Y GQHTHG,,,B] (3.164)

m=1
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where Y. = Y,B. For large signal to noise ratios, assuming &, is relatively close to the

true value of a,, an estimate of the LP coefficient covariance matrix, Rao, becomes
o TA~T A A -1
Kg, = [V GT(4,)G(&0)Y.] (3.165)

Thus, using only the measurements and exploiting a knowledge of the noise variance, the
variance, V {*}, of each LP coefficient can be estimated as

V{alpl} = [Ra,) (3.166)

p.p

Substitution of this estimate into Equation 3.147 yields a bound on the estimation er-
ror. Alternatively, substitution of this estimate into Equation 3.148 provides a confidence

interval.

Figure 3.16 shows the accuracy of the variance estimates of the LP coefficients ob-
tained from the ILS estimator for one and two filtered sinusoids. For both cases, the average
value of the variance estimates coincides with the true variance of the LP estimates as given
by the CRLB. In addition, the variance of these variance estimates is extremely small. This
indicates each estimate of the variance will be relatively close to the true value of the vari-
ance so that Equation 3.147 and Equation 3.148 can be used to accurately characterize
the accuracy of a point estimate of the LP coefficients. This information can also be used

to determine the accuracy of the associated frequency estimates.

3.8.3 Sinusoidal Frequencies.  Previously, a method was derived to estimate the
variance of the LP coefficients from a single measurement vector and knowledge of the
noise variance. To map this estimate to the frequency space, a transformation must be
employed. In general, let & be an unbiased estimate of a and let K, be the covariance
matrix of the estimate. In addition, let f, = g,(a) be a scalar function of a. The variance

of f, can be estimated as (19:183),(20).

«

T
ag,,(a)] (3.167)

Vi)~ [ 5 ¢ [3gp(a)}

da

a=0CQ
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Thus, for a scalar function, g,(a), an estimate of the variance can be obtained provided

the first derivatives exist and & is not too far from a.

In general, there is no closed form function which relates the coefficients {alp]} di-
rectly to the frequencies {f,}. However, for P =1 and P = 2, and to a certain extent for
P =3 and P = 4, closed form functions relating the frequencies to the coeflicients can be
derived which allow Equation 3.167 to be employed to bound the estimation error for the

frequencies.

For one sinusoid, from Equation 3.57, From Equations the function relating f, to the

coefficient a(1] is given as

fHi= 2—17FCOS—1 {—;[1]} = g1(a[1]) (3.168)

On the interval 0 < f; < .5, then —2 < a[l] < 2 and the variance of the frequency estimate
becomes (48:462)

1

V{ifi} = ——————=V{a(l 3.169
{h) 4m2(4 — a[1]?) {al1l} a[1)=a[1] ( )

For two sinusoids, employing Equation 3.58 yields the relationships (53)

1 -1
fo=9p(c,) = 27 8 (up) (3.170)
where the quantity u, is defined as
1 +1

Up = g —a[l] + (-1)° \/a[l]2 —4a[2] +8 (3.171)

for p = 1,2, provided a[1]> — 4a[2] + 8 >= 0. Substitution for a[p] yields
[cos(2mf1) — cos(2n f5)]F >=0 (3.172)
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Since this inequality holds for all f, the mapping between f and a, exists. Taking the

derivative with respect to each parameter yields

agp(ao) 1 (__l)pam
" 8/ -i- 3.173
80[1] 8m,/1 - uf, [ \/a[ﬂ? — 40[2] T8 (3.173)
9gp(a,) _ 1 (=1)°
80[2] h 87r\/1 - ug [2 ‘/G‘HP — 4a[2] T+ 8 (3.174)
Thus, the variance of the frequency estimates becomes
13 gp(do) T g,,(ézo) ]
Vi = [ da, ] Ke, [““—aao ] (3.175)

These variance estimates can now be used to bound the estimation error or develop confi-

dence intervals for each point estimate of the frequencies.

Figure 3.17 shows the accuracy of the frequency confidence intervals, obtained from
Equation 3.148, for both one and two filtered sinusoids. Here, the ILS algorithm was used
to determine the LP coefficients while the variance estimates for the LP coefficients were
obtained from Equation 3.165. The variance estimates for the frequencies were calculated
from Equation 3.175. For this data, Figure 3.17 shows the percentage of time the confidence
intervals, developed from the point estimates, enclosed the true value of the frequency for
one, two and three standard deviations of the variance estimates. In each case, above the
SNR threshold, the confidence intervals established provide an accurate method of gauging

the accuracy of the point estimate of the frequency.

3.8.4 Section Summary. This section derived a method for bounding the esti-
mation error of the LP coeflicient estimates and consequently, the frequency estimates,
based strictly on one realization of the measurement vector, and is an original contribution
of this dissertation. Specifically, from the LP general linear model, this section derived a
method for estimating the variance of the LP coefficients based solely upon knowledge of
the noise variance and the set of measurements. This unbiased estimate of the LP variance
was then transformed into an estimate of the frequency variance for one and two sinusoids.

Simulations indicate these estimates of the measurement variance can be used to gauge
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Figure 3.17 Frequency Confidence Intervals: Confidence intervals established at SNR
intervals of .5dB from 500 independent realizations of M = 32 samples of sinu-
soids in noise. LP coefficients estimated by ILS algorithm. Ten iterations allowed
convergence. Filter Parameters: Center Frequency: f. = .21; Bandwidth: fg = .2;
Length: N = 32. Confidence interval: |fp(i) — fp| < kéy for k = 1,2,3. SNR calcu-
lated as SNR = —10log;4(202).
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the accuracy of the point estimates of both the LP coefficients and the frequencies. This
gauge can then be employed to develop confidence intervals to aid any decision making

process based on a single set of measurements.

3.9 Summary

This chapter derived estimators for the amplitude, phase and frequency parameters
of filtered sinusoids in noise. After deriving a mathematical model describing the effects of
a filter on sinusoids and noise, ML estimators for the sinusoidal parameters were developed
based on this model. During this development, it was shown that ML estimates of the
amplitude and phase parameters require ML estimates of the frequencies in addition to the
use of the correct system model. An ML estimator for the frequencies was then derived
based on an iterative gradient search employing the ML frequency objective function.
Simulations indicate this technique can produce minimum variance unbiased frequency

estimates provided the effects of the filter are correctly incorporated into the system model.

Since this ML frequency estimator can require many iterations to achieve conver-
gence, an alternative method for estimating the frequencies was developed based on linear
predictive modeling. Specifically, an equivalent general linear model, parameterized by a
set of LP coefficients was derived for estimating the frequencies of the sinusoids in noise.
The LP general linear model, derived in this chapter, properly accounts for the effects of
the LP coefficients and system filter on the noise and is an original contribution of this
research. Estimation of the sinusoidal frequencies was recast as the estimation of the LP

coefficients using the general linear model.

The ILS and ITLS estimators were then derived, based on fixed-point theory, to
estimate the LP coefficients of the general linear model from the measurements. The
development of these estimators represents an original contribution of this research. Simu-
lations indicate each of these estimators produce accurate estimates of the LP coefficients
and, consequently the frequencies, above a certain SNR threshold; convergence is attained

in a few iterations.
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This chapter then related the ML frequency objective function for filtered sinusoids to
the LP general linear model. The analysis showed that the LP coefficients which minimize
the sum of the squared errors as defined by the LP general linear model also provide ML
frequency estimates and is an original contribution of this research. An ML estimator for
the LP coefficients, termed the IEGD algorithm, was then derived based on an iterative
minimization of the LP general linear model squared error and is an original contribution of
this research. Simulations indicate this algorithm will provide the LP coefficients producing
the minimum squared error and consequently, ML estimates of the LP coefficients and

frequencies.

Since the IEGD algorithm can be computationally difficult to implement, the IGLS
and IQML approximate minimization algorithms were examined. Analysis revealed that
the IGLS algorithm is equivalent to the ILS fixed point estimator of the LP coefficients
while the IQML algorithm is equivalent to the ITLS fixed point estimator. This recasting
of the IGLS and IQML algorithms as fixed point estimators is an original contribution of
this research. Simulations comparing the performance of the ILS and TLS algorithms with
the IEGD algorithm indicate the IEGD algorithm produces frequency estimates which are
only slightly better than those obtained via ILS and ITLS. In addition, the simulations
indicated the ILS algorithm produces frequency estimates at least as accurate as those
produced by the ITLS algorithm. All other factors being equal, the ILS algorithm is thus
preferred over the ITLS algorithm since the ITLS algorithm requires an iterative SVD of

the observation matrix.

Finally, this chapter derived a method of bounding the estimation error of the point
estimates of the LP coefficients and the frequencies based only on the measurements and a
knowledge of the noise variance. This derivation employed the LP general linear model to
obtain unbiased estimates of the covariance matrix of the LP coefficients and is an original
contribution of the research. Simulations indicate the estimates of the variance are good

enough to allow confidence intervals to be established for the frequencies.
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IV. Application: Digital Electronic Warfare Receiver
4.1 Introduction

This chapter applies the ILS fixed point estimation technique to the digital EW re-
ceiver being built by the Air Force Research Laboratory/Wright Laboratory (AFRL/WL).
After discussing the general receiver architecture, models of the real and complex data out-
put from the receiver will be constructed. A method to efficiently implement the receiver
as a nonmaximally decimated, Uniform Discrete Fourier Transform (UDFT) polyphase
filter bank is then derived. After showing there is no loss in frequency estimation accuracy
attributable to the use of the complex data model as opposed to the real data model, a
new form of the LP general linear model is derived for complex sinusoids. Identification
of the LP coefficients for this model is then shown to be related to ML frequency estima-
tion and an ILS fixed point estimator is derived for estimating the LP coefficients. After
applying the ILS estimator to the receiver output for both one and two sinusoids, the
chapter concludes by showing the PDF of the complex filtered data can be approximated
as a complex multivariate Gaussian PDF. This approximation, in turn, allows a simplified

frequency estimator to be derived for a single complex sinusoid.

4.2 Digital Receiver Architecture

As shown in Figure 4.1, the basic structure of a digital channelized receiver can
be divided into the antialiasing filter, Analog-to-Digital Converter (ADC), filter bank,

demodulators, decimators and parameter encoders.

In general, the input signal can be modeled as the sum of P, analog pulsed sinusoids

in zero-mean, normally distributed, independent noise, 7(t)

P,
z(t) = v(t) +n(t) = Y _ b3 cos(2nFpt + ¢3) + 7(t) (4.1)

p=1
Here, F) is the analog frequency, ¢; is the phase, and bj is the amplitude of the pt* sinu-
soid. This analog signal is passed through a 34** order Chebyshev bandpass antialiasing

filter with critical frequencies as shown in Table 4.1 (16). This filter reduces the effects of
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Figure 4.1 EW Digital Receiver Architecture: K = 32 Bandpass Filters; R = 16 Deci-
mation Rate; 8-bit ADC with sample rate f, = 3GHz; Chebyshev Antialiasing Filter
with 1.5 GHz Bandwidth.

out-of-band interfering signals and noise while passing signals within a specific frequency
range for digitization (56:2). For bandpass sampling of real signals, the 1.5 GHz oper-
ational bandwidth, (BW), of this filter is related to the sample rate, f,, of the ADC as
2BW < f, < 4BW (84:125).

An analog signal passing through this filter is sampled by the eight bit ADC at a
sample rate of f, = 3 x 10° samples per second. The resulting digital signal, z|m|, becomes
(64:10)

z[m] = Za: by cos(2m fym + ¢7) + 1[m] (4.2)

p=1
where the digital frequency, f,, is related to the analog frequency, F}, via the transforma-
tion f, = F,/f,. Thus, the analog frequency range 1.5GHz < F, < 3GHz is inversely
mapped to the digital range 0 < f, < .5. Finally, the noise, n[m|, is zero mean and
normally distributed with a covariance matrix determined by the characteristics of the

antialiasing filter.

In order to provide for broadband instantaneous frequency coverage and allow for
simultaneous signal detection and estimation, the operational bandwidth is divided into

K = 32 specific frequency bands by employing a set of bandpass filters. The coefficients
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Table 4.1 Filter Critical Frequencies

Filter Type | Order | Freq Gain
Anti-aliasing | 34 1.4953(GHz) and 3.047(GHz) | —60dB
1.5047(GHz) and 2.953(GHz) | —3dB
Prototype 192 1/32 rads/sec —-60dB
1/64 rads/sec -3dB
k** Bandpass | 192 k/32+1/32 —60dB
k/32t1/64 -3dB

for the k** bandpass filter, &, [n], are complex and derived from a real, symmetric, lowpass
filter, ho[n], by
hi[n] = ho[n]ef? /K (4.3)

This prototype filter, ho[n], is an N = 192 tap, real, symmetric filter designed using the
McClellan-Parks algorithm to meet the frequency characteristics given in Table 4.1. Since
H(e/2") = Hy(el1?/=27/s) each channel of the filter bank will be a bandpass filter with
|Hi(e72"f)| = 0 for |f — fi| > 1/32. For a real signal, z[m], the output of the k** filter,

x(m], will be complex and given as the convolution sum

N-1 K~1N,-1
Tk[m] = Z ho[n]z[m — n|ef?™/K = Z z ho{l + nKz[m — 1 — nK]e?™ K (4.4)
n=0 =0 n=0

where N = KN, for integer N,. As shown in Appendix F, gi[m] can be interpreted
as the Short Time Fourier Transform (STFT) of z{m] as seen by a causal finite window
g[n] = ho{N — 1 — n] and evaluated at w = 2wk/K. Conversely, a real output, yx(m], can
be obtained by adding the outputs from channels k and K — 1 — k. In either case, since
the spectrum will be band-limited, the output of each filter can be translated to standard

frequency range via a set of modulators so that

tg[m] = gi[m]e™I™ (4.5)

This demodulation allows for a standard set of signal detection and parameter extraction

techniques to be developed for each channel.
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For EW applications, the speed at which the sampled data can be processed is much
slower than the data rate of the signals. In order to compensate, after demodulation, the
outputs of each channel can be decimated by an integer factor, R, so that 4¢[m| = @,[Rm].

Consequently, the spectrum of u¢[m| can be written as(64:102-102)

Vi(ev) = Z U (exp{ d ;227”.) }) (4.6)

r"‘O
This decimation process serves to scale the frequency spectrum of vi[m|.

After decimation, the output of each channel is passed to a parameter encoder which
estimates the parameters, such as amplitude, frequency and phase, of a pulsed sinusoid
within the channel and outputs a Pulse Discripter Word (PDW) containing these estimates.
These estimates, in turn, provide the data needed for a classification system to determine
the type of radar emitting the pulse. Before constructing the parameter encoder, the

output data must first be accurately modeled.

4.2.1 Real Data Model. Since all K = 32 filters are derived from a single
prototype and the output of each channel is modulated to a standard frequency band prior
to decimation, the output of each channel will be the same as the output, y[m], of a real
filter, h[n] with a bandwidth of 1/16, followed by an R-fold decimator. For the sampled
signal, z[m|, using the results from Chapter III, an expression for the decimated output

can be written in the form

y[m] = s[Rm] + w[Rm] = Z b, cos(2rRf,m + ¢,) + w[Rm] (4.7)

p=1

The decimator has effectively decorrelated the output noise by the decimation factor R
and scaled each sinusoidal frequency to Rf,. To prevent aliasing and allow for accurate
frequency estimation, R < .5K = 16. In addition, since several of the sinusoids will have
been greatly attenuated by the filter, the summation is now only over P where P < P,.
The problem now is to estimate the amplitudes, {b,}, phases, {¢,}, and frequencies, {f,},

of the sinusoids given the decimated measurements.
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Now assume there are M samples of the decimated steady state output and define
h as a vector of filter coefficients by h = [h[0],...,h[N — 1]|]T and the vector of R zeros as
0z = [0...0]T. Using these definitions, the R(M — 1) + N by M filter matrix, H, can be

written as
5 |
h OR OR
0 h ... O
H=| " R (4.8)
1 0z 0g ... h |

For m =0...M — 1, a vector form of the decimated output can be written as
y=H'z=Hv+Hnp=s+w (4.9)

The decimated noise vector, w, is a zero-mean, normally distributed, correlated noise
sequence with covariance Ky = 0?HTH. Again, using the results of Chapter 1II, define
the deterministic signal matrix , Az, as Ag = {A;|A;] where the M by P matrices, A; and
A,, are defined by

(A1), = cos(2nf,RIM -1+ N - 1])
[A2],, = —sin(2nf,RIM — |+ N - 1)) (4.10)

forl=1...M and p = 1...P. With scaling vectors b, = [b; sin(¢;)...bpsin(¢p)]|T and

b, = [by cos(¢1)...bp cos(#p)]T, a vector form of the decimated output becomes
y=AMb.+Ab,+w=Agb+w (4.11)

where R denotes the real data model. Here b7 = [bT;b7] and the 2P columns of A are
linearly independent. This is equivalent to viewing y as a set of observations generated
from the deterministic system, Agb, and corrupted by w. As such, the PDF for this model

becomes

p(y;0) = [27] M| Ky |~* exp[—%(y - Arb)T K (y — Arb)] (4.12)
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where 87 = [b7, fT]. As in Chapter III, the problem of estimating the frequencies, phases,
and amplitudes has been changed to the problem of estimating the deterministic signal
matrix Agx and the scaling coefficients b. and b,. The development of this model for real

filtered and decimated data is an original contribution of this research.

4.2.2 Complex Data Model.  Since the input signal is real, the outputs from chan-
nels 0,..., % — 1 contain the same information as the outputs from channels %, oK -1,
Thus, an alternative model for the data can be constructed by forming a complex model
for the data from channels 0,..., K/2 — 1. In addition, since each bandpass filter is formed
by modulating the prototype filter with a complex exponential and each filter output is
demodulated to a specific frequency band prior to decimation, it is possible to build a sin-
gle complex model for each channel based on a standard model. That is, with z[m] being
the sum of P, real sinusoids in noise and h[n| representing a complex filter band-limited

to 1/16, the decimated output, §{m], of any given channel can be written as
y[m] = §[Rm] + @w[Rm)| (4.13)

Here §[m] and w(m| represent the convolution of the real sinusoids, v{m], and noise, n[m],

with the complex filter. For steady state conditions,

= 1 & jwpm _J —juwpm  Jda

5lm] = Ex;blpej Pt 4 by e IUrMmel% (4.14)
where by, = b3|H(e/“?)|; ¢1, = ®(wp)+p; and by, = b9|H(e™7<7)| while ¢y, = ®(~w,) — ¢y.
Since the filter is band-limited, assuming only P complex sinusoids are within the filter

passband, the complex form of the output signal, §{m], becomes
P . .
gim] = be?Riemei®e 4 5[ Rm) (4.15)
p=1

The decimator has effectively decorrelated the output noise by the decimation factor R
and scaled each sinusoidal frequency to Rf,. To prevent aliasing and allow for accurate

frequency estimation, R < K = 32. Employing the complex data model for the output of
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each channel yields a method to increase the decimation rate, R, by a factor of 2 over the

real data model without losing information and is an original contribution of this research.

For this model, the complex noise output, w{m|, is a random variable which must
be described statistically. That is, W[Rm] = w,[Rm] + jw;(Rm] where w,[m| and w;[m]
represent the convolution of the real noise with the real and imaginary components of the
filter. Assuming there are M samples of the decimated steady state output, with the vectors
of filter coefficients defined as h, = [h.[0],..., A [N —1]]T, and h; = [h;[0],..., A [N - 1],
the R(M — 1) + N by M filter matrices, H, and H; can be written as

(h, 0g ... Og [ h, 05 ... Of |
Og h, ... O O h; ... 0

H=| 7 P m= | T (4.16)
LOH OR h,-_ _OR OR hi_

Then, in vector form w, = HT7 where w, = [w.[M - 1]...w,[0]]T and w; = HIn where

w; = [w;[M -1]...w;[0]]T. The real, augmented noise vector w” = {w?, w7] is a normally

3

distributed, zero mean random vector with covariance matrix

K | B H HOH, 4.17
w=e HTH, HTH, (417

In general, HTH; # HTH, and HTH; # —HT H, so that w cannot be formally represented

as a complex normally distributed random variable as defined in Appendix H.

To accurately model the complex data, 3, rewrite the vector in terms of the con-

catenation of the real vector, y,, and the imaginary vector, y;, as yT = [y7;y7] where
Y, = [y-[M - 1]...%.[0]]T and y; = [y:[M — 1]...4][0]]7. Expanding yields
P
ye[m] = Z b; cos(2mRfym) — b7 sin(27 Rf,m) + w,[Rm]
p=1
P
wlm] = Z bg sin(2m Rf,m) + bj cos(27 R f,m) + w;[Rm] (4.18)
p=1




As with the real data model, b; = b, cos(,) and b, = b,sin(d,) are real scaling coefficients.
Finally, with A; and A, defined be the M by P real signal matrices of Equation 4.10 then
Y. Al 4\2 bC W,

+ = Ach+w (4.19)
Y -A2 Ay bs w;

It

y"_."

where A¢ is the deterministic signal matrix for the complex model. Here, y and w € R*M,

while Ac € R*M*?P The PDF of y becomes

p(y;8) = 27| M| Kw|™ eXP["y Ach)T K (y — Acb)] (4.20)

This equation accurately models complex data derived from passing a real signal through a
complex filter and is an original contribution of this research. As with the real data model,
the problem of estimating the frequencies, phases, and amplitudes has been changed to

the problem of estimating the signal matrix A and the scaling coefficients b, and b,.

4.2.3 Receiver Implementation. In order to exploit the advantages of the dec-
imation process, the digital EW receiver described above is implemented as a multirate,
nonmaximally decimated, polyphase, UDFT filter bank where, in general, the number of
channels K, is an integer multiple of the decimation rate R. This unique implementation
allows every operation after the ADC to be performed at a rate of 1/R the rate suggested

by Figure 4.1.

To accomplish this data rate reduction, the prototype filter, ho[n] must decomposed

into K polyphase components E\(z) as (92)

K-1

Ho(2) = Y 27 Ey(25) (4.21)

=0

Here, Ei(2X) = Zf;;l ho[nK + l]z~"K and the integer N,, defined by KN, = N, is the
length of the [** polyphase filter. As shown in Figure 4.2, with the Inverse Discrete Fourier
Transform (IDFT) matrix, Wiprr, defined by [Wiper],, = /*™/X the output of the k**
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Figure 4.2 UDFT Filter Bank Polyphase Implementation

channel is given as
K-

Gx[m] = Z ti[m] exp{j27ik/K} (4.22)

=

-

where t;[m] is the output of the I** polyphase component. Thus, the z-transform of [m)]

becomes

=

i) = S 2~ exp{j2nkl/K}E\(:5) X (2) (4.23)

1]
=)

so that the transfer function for the k;; channel can be written as

- Ko
(zexp{—j2nk/K}) " E/(z¥) (4.24)

—

Hi(z) =

Ye(z) _
X(z)

Since (z exp{—j27k/K})X = 2X, evaluating Equation 4.24 at z = zexp{—j27k/K}, yields
H(2) = Ho(zexp{—j27k/K}) (4.25)

This shows §[m] is the output of a bandpass filter centered at w = 27k/K.

In order to reduce the speed at which the filter, IDFT matrix and modulators operate,
the R-fold decimators can be translated from the output of the modulators to the input

of the polyphase filters as shown in Figure 4.3. Letting 9§[m] be the decimated output of
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Figure 4.3 Nonmaximally Decimated Polyphase UDFT Filter Bank

the k** channel, then

K-1
#¢[m] = §e[Rm]e 7+ *m = Z t,[Rm]e 72mHl/K g=jur RM (4.26)
1=0
Since the first exponential term is independent of R, the decimators can be moved to

the inputs of the IDFT matrix to allow calculation of the IDFT and modulators at the

decimated rate. Decimating the output of the [** polyphase filter gives the sequence
g

s¢[m] = t;/{[Rm)] so that the z-transform of s¢[m| becomes

R-1 —ionK . o]
Si(z) = % Y E (Zx/aexp {J_;_:}) X (zl/nexp{ yﬁr}) 2R exp {12% }
r=0

(4.27)

Since the ratio K/R = F is an integer and exp{=22%%} =1 for all integers r then

1! -j2rr j2mrl
— F R -
Si(z) = Ey(= )—é ;:o X (z” exp{ F }) (z /R exp {T}) (4.28)
This is equivalent to replacing the filter F;(2¥X) with E;(2¥) and moving the R fold dec-

imator to the front of the filter bank as shown in Figure 4.3. All operations in the filter

bank are now accomplished at 1/R*® the rate of the input data.
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In terms of the time domain, the output of the [** polyphase component can be

written as

ho/[Kn/F +1], for n =pF for integer
] = (Kn/F +1] P ger p (4.29)

0, otherwise
Since N = K N,, the decimated output of each polyphase component becomes

No—1

tim] = Y holl + mK]z[Rm — | - nK] (4.30)
n=0
The IDFT output is then
K-~-1N,-1 ]
Gem] =3 S Roll + nK]z[Rm ~ 1 — nK]e*/K (4.31)
=0 n=0

This expression is equivalent to Equation 4.4 for the decimated case where m = Rm.

The unique implementation of a nonmaximally decimated polyphase filter bank for
K = FR = 32 consists of zero-padding each polyphase component filter with F' — 1 zeros
and decimating by R the input across all K channels prior to taking the IDFT. For the
real data model, since R < .5K, the maximum rate of decimation is 8. Alternatively, for
the complex data model, since R < K, the maximum rate of decimation is 16. Thus, if
the accuracy of the frequency estimates obtained from the complex data model are equal

to those obtained from the real data model, the complex data model should be employed.

As shown in Appendix I, this architecture for performing channelization via a non-
maximally decimated polyphase filter bank is mathematically related to a similar method
used by Rabiner and Crochiere (55). However, the architecture derived here requires only
N unique filter coefficients to produce the equivalent STFT. Conversely, the architecture
proposed by Rabiner and Crochiere (55) requires the installation of K, F-fold expanders
following decimators and uses F subsets of R unique filters; each of length N/R, for a
total of FINV filter coefficients to produce the equivalent STFT. This architectural design
is an original contribution of this research and has been accepted for publication (99). In
addition, the architecture has been assigned Serial Number 08/816,951 by the U.S. Patent
and Trademark Office and given a filing date of 21 Jan 97.

4-11



4.3 Parameter Estimation

4.3.1 Estimation Accuracy. As described in Chapter III, a critical step in the
development and analysis of point estimators is to accurately model the PDF of the data.
For both the real and complex cases, the data model was shown to be equivalent to viewing
y as a set of observations generated from the deterministic system Ab corrupted by the

zero mean, normally distributed, correlated noise vector w.
y=Ab+w (4.32)

where ¢ = R denotes the real data model and ¢ = C denotes the complex data model.
The problem of estimating the frequencies, phases, and amplitudes was changed to the
problem of estimating the signal matrix, A;, and the scaling coefficient vector, b, from the
measurements in Y. In addition, for both models, the PDF of the measurement vector had

the form

p(y;0) = [27] M| Kqp|~® exp[—%(y — Ab) Ky (y — Ab)] (4.33)

where M; = —.5M for the real model and M; = M for the complex model. For both
models, as shown in Chapter III, the CRLB, which provides a limit on the accuracy of any

unbiased parameter estimator, can be calculated from

K, - [aa—TZQ}T[KW]—l [a;z]y} > (0] (4.34)

Figure 4.4 shows the CRLB for the frequency of a single sinusoid using both the real
and complex models for data obtained from channel six prior to decimation. As shown in
the figure, the CRLB for the frequency of a sinusoid within the filter passband is nearly
the same for either model. Thus, there should be virtually no loss in estimation accuracy
attributable to the use of the complex data model instead of the real data model. However,
since the complex data can be decimated at twice the rate of the real data without aliasing,
the complex data model of Equation 4.19 will be employed to develop point estimates of

the sinusoidal parameters.
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4.3.2 ML Estimation. As shown in Chapter III, parameter estimators, whose
estimates of the sinusoidal parameters, 8 = [bT, fT]T, attain the CRLB, can be developed
by maximizing the parameter likelihood function. For the complex data model, the ML
estimate for @ can be obtained by minimizing the following objective function, with respect

to the parameters in 8:

8) = [y — Ach]” Ky ly — Acb] (4.35)

For a fixed ML estimate of f, the ML estimator for b is unique and found as (22), (40)
b(ML) = [ATKz Ac) ™ ATK gy (4.36)
The ML estimate for f, on the other hand, minimizes the following objective function (40):
J(f) = v Ky -y Ko} Ac (ALK Ac] ™ AZKwy (4.37)

Again, as shown in Chapter I1I, this objective function, termed the ML frequency objective
function, is a highly nonlinear function with respect to f. Direct minimization involved a
computationally intensive search in the P dimensional frequency domain based on gradient
search algorithms. In general, though the method of gradient search can provide accurate
frequency estimates, this technique usually requires too many iterations to converge, and
is too sensitive to the initial estimates for this EW application. Alternatively, a simpler
estimator for the frequencies can be developed by employing LP modeling techniques for

the complex data model.

4.3.3 LP Modeling.  In general, a complex signal, §[m], consisting of the sum of

P complex sinusoids can be represented as the sum of P complex modes (73:484-485)
P P
Z [bre?®] efrm = Z [bee?®*] 27 = s.[m] + jsi[m)] (4.38)

Here, z, = ¢/2™/* while s.[m] and s;[m] are the real and imaginary components of 5[m]. A

P* order complex polynomial, A,(z), which incorporates these modes can be constructed
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P, P,
Ao(2) = (0] JT(1 - 2ze27Y) = alple™ (4.39)

where the LP coefficients, d[p|, are complex quantities given by a[p] = a.[p] + ja;[p]. Thus,
A(e?*™) = 0 for each of the P frequencies present in 3[m]. Since each mode is a zero of
A(z), the P frequencies present in 3{m| can be found as roots to A(2) and the corresponding

time domain expression becomes the complex LP equation.

P

Z i[p]sm —p| =0 (4.40)

p=0

For this equation to be true for M data samples, 0 < m < M — 1, both the real and

imaginary components must be zero. That is

P

3 arlple:fm ~ p| - aifplsm ~ 5] = 0

P

2_arlplsilm = p] + ailpls,[m — p] = 0 (4.41)

To construct a matrix form of this equation for m = P... M ~ 1, define the LP coefficient
vectors, a, and a;, as a, = [a.[0]...a,.[P]]T and a; = [a;[0]... a;{P]|T and the component

signal matrices, S, and S;, as

(Siluy = 8. [M +1-k—1] (4.42)

[Si]k.l = S,'[M +1- k- l] (443)

fork=1...M—Pandl=1...P. Using these definitions, the complex LP general linear

model becomes

S = = Sac =0 (4.44)
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From the complex data model, since §{m| = 3[m| + w[m], in terms of the measurements,

the complex LP general linear model can be written as

Yr ”}/" ar Wr _‘Vi ar Zy
Yaca = = = =2z (4.45)
Y, Y, a; W, W, a; z
Here, the matrices, Y,, Y;, W, and W, are defined in a manner similar to S, and S; while

z, and 2z; can be considered as the real and imaginary error vectors. Finally, define A, as

the M — P by M matrix of real coefficients

a-[k—=1] forl<k<Il+P
[A"]k,l = (4.46)
0 otherwise

and A; as the associated matrix of imaginary coefficients

a;[k =1 forl<k<Ii+P
Ay, = (4.47)
0 otherwise

forl =1...M — P. The vector of errors, z, can be written as

Z, AT AT w,
z= = : TI = Alw (4.48)
Zi AI AR w,'

Here, A is the matrix of coefficients for the complex LP model. As a linear transformation
of w, a zero mean, normally distributed random vector, 2 becomes a zero mean, normally

distributed random vector with covariance matrix

Premutiplying Equation 4.45 by G(ac), the Cholesky decomposition of K3', yields a new

form of the complex LP general linear model

G(ac)Yac = Y(ac)ac = e(ac) (4.50)
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Here, e(ac) is a zero mean, normally distributed random vector with covariance matrix
Ke(ac) = I. The estimation of the P frequencies in §[m] has been recast as the estimation
of the 2P + 2 LP coefficients using the LP general linear model derived in Equation 4.50.
The number of LP coefficients to be estimated can be reduced further by imposing sinu-

soidal constraints on the coefficients.

As shown in Appendix C, for P complex sinusoids, the LP coefficients are complex
symmetric with a[p] = a[P—p|*. Thus only P+1 coefficients are necessary to determine ac
completely. As in Chapter III, let & be the set of P+1 real coefficients, a = [a[0] . .. ofP))",
With P being an even number, the symmetry constraints can be imposed by defining the

vector & as
(0] = ap[L]

alk + 1] = ag[k] fork=0...L-1 (4.51)
alL+1+1]=ag{l] fori=0...L -1
where L = P/2. Alternatively, if P is an odd number, let L = (P —1)/2. The symmetry

constraints can be imposed by defining the vector a as

al0] = ag|L]
alk + 1] = ag[k] fork=0...L-1 (4.52)
alL+1+1]=al] forl=0...L

In either case, the LP coefficient vector al = [a7,aT] can be derived from a as a¢ = Ba

where B is the matrix relating the P + 1 unique coefficients in a to ac.

Imposing these constraints on the complex LP general linear model yields
G(ac)YBa = G(a)Yca = e(a) (4.53)

The search for the LP coefficients, contained in ac, has been reduced to the identification
of the P+1 constrained coefficients contained in a. Here, Y is an M — 2P by P+ 1 matrix
of rank P + 1. Now let y, be the first column of Y and let Y, be an M — 2P by P matrix

of the remaining columns of Y. By constraining 0] = 1 and defining y.(a) = G(a)y,
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and Y.(a) = G(a)Y,, a final form of the complex LP general linear model becomes
y.(a) = -Y(a)a, + e(a) (4.54)

Equation 4.54 represents the true general linear model relating the LP coefficients to the
frequencies present in P complex sinusoids in noise and is an original contribution of this
research and has been submitted for publication (97). The problem now is to estimate the

P unique LP parameters in «, given the M observations with M > P.

4.3.4 LP Model-ML Frequency Estimation Relationship.  As described in Chap-
ter III, there exists a relationship between the complex LP general linear model of Equa-
tion 4.54 and the ML frequency objective function of Equation 4.37. First, assume that y
has length 2M > 2P and A¢ has 2P linearly independent columns. From Equation 4.19,
since A¢ is an 2M by 2P matrix with 2P linearly independent columns, the column vec-
tors of A¢, denoted A;, for : = 1...2P, span a 2M dimensional subspace, V;, of the real
vectors, R*M. As such, there exists a 2M — 2P dimensional orthogonal subspace, denoted
V2, which is spanned by the vectors, a; for j = 1...2M - 2P, such that if 9 € V| and
4 € V, then 7~ = 0 (83:132-152). Now consider the matrix A¢ given by Equation 4.48.
From Equation 4.41, for the complex sinusoids, AZA; = [0]. The 2M — 2P columns of
A are orthogonal to the 2P columns of A;. Furthermore, since the columns of A, are
linearly independent, they form a basis for V;, the subspace orthogonal to V;. Employing
the same steps as in Chapter III, minimization of J(f) with respect to f can be written

as a minimization of J(A¢) with respect to the basis vectors in A; where
J(Ac) = yT Ac(AT KwAc) ' Aly (4.55)

Finally, since each column of A¢ is derived from the LP coefficient vector, ac, then J(A4¢)
can be written as

J(ac) = agYT(AngAc)_lYac (4.56)
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Employing the complex sinusoidal constraints via the matrix B and taking the Cholesky

decomposition the inverse of AT Ky A yields

Ja) =a’YIG(a)TG(a)Yca (4.57)

T

By defining the real and imaginary error vectors as e.(a) = [e,[]M —1]...e.[P]]" and

eila) =[e[M -1]...¢ [P}]” and constraining a[0] = 1 yields
e(a) = Gla)Yca =y (a) + Y.(a)a, (4.58)

where e(a)? = [e.(a)T, e;(c)T] represents the concatenation of the real and imaginary
error vectors. This equation is identical to the complex LP general linear model derived
in Chapter III. By properly incorporating the effects of the filter coefficients and the LP
coefficients in developing the LP general linear model, this derivation shows the exact
relationship between the LP coefficients and ML complex frequency estimates. The set of
LP coefficients which minimize the squared error defined by the LP general linear model
will provide ML estimates of the frequencies. Furthermore, via the invariance of ML
estimators, the LP coefficients which minimize the squared error are the ML estimates of

the coefficients.

4.3.5 LP Coefficient Estimation. Ideally, the optimal estimator for the LP coef-
ficients would minimize J(a) so that the resulting frequencies would be ML estimates. As
discussed in Chapter III, minimization of J(a) with respect to « is a nonlinear optimiza-
tion problem. Direct minimization involved a computationally intensive search in the P
dimensional coefficient domain based on gradient descent algorithms. In general, though
the method of gradient descent can provide accurate LP coefficient, and consequently, fre-
quency estimates, this technique usually requires too many iterations to converge to an

answer and is too sensitive to the initial estimates for this EW application.

Alternatively, since Equation 4.54, has the same form as the LP general linear model
derived in Chapter 111, a fixed point estimator can be constructed to estimate o from the

complex data. As shown in Chapter III, the ILS and ITLS fixed point estimators were
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found to produce estimates nearly as accurate as those attained by the direct minimization
of J(a). However, these estimators took fewer iterations to converge and were less sensitive
to initial estimates. Since the ILS estimator was found to produce estimates as least as
accurate as the ITLS estimator while being less computationally intense, this estimator

will be used to provide frequency estimates of the decimated output of the EW receiver.

From the system model, with a® = Op, let a! be the i** estimate of the LP coeffi-

cients. Employing the ILS fixed point algorithm of Chapter III yields

) = - YN (@))Y.(ad)] " Y (ah)y(a) (4.59)
When ait! = o!, the error vector, e(a') is orthogonal to the columns of Y,(a) and
a, = £1.5(al). A fixed point has been reached and the estimate of the LP coefficients
becomes &, = as.

Figure 4.5 and Figure 4.6 show the accuracy of the true and the approximated ILS
estimator, in relation to the frequency estimation technique employed in the EW receiver,
for estimating the frequency of a single sinusoid at the filter output. As shown in these
figures, the ILS estimator attains the CRLB at an SNR approximately 5dB lower than
the current phase-based WPA estimator and maintains this accuracy across the passband
of the filter. In addition, the approximate ILS estimator, constructed with Ky = o21I,
performs almost as well as the true ILS estimator. This indicates the effect of the filter
and decimation serve to decorrelate the data enough that the approximate model should

be adequate for estimating the frequency of a single filter sinusoid.

Figure 4.7 and Figure 4.8 show the accuracy of the true and the approximated ILS
estimator for estimating the frequency of a two sinusoids at the filter output. At the
present time, the EW receiver does not have the capability to estimate the frequencies
of two time-coincident sinusoids within the filter passband. As shown in Figure 4.7a, for
two sinusoids with frequencies near the passband frequencies, the frequency estimates do
not reach the CRLB at low SNRs. This is probably due to the severe reduction in signal
amplitude occurring at the edge of the filter. Figure 4.7b shows the estimation accuracy

for two closely spaced sinusoids. Here, the decimated frequency separation of df = .01 can
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not be resolved through the use of a Fourier Transform. The approximate ILS estimator
appears to outperform the true ILS estimator at low SNRs. Close analysis of the figure
shows the approximate ILS estimator is providing biased frequency estimates at these
low SNRs. Above the threshold of about 1dB, both estimators perform about the same.
Finally, Figure 4.8c shows the accuracy of both ILS estimators for a more typical set of
signals. Here, since the two sinusoids are within the passband and are adequately separated
in frequency, both estimators attained the CRLB at less than —5dB. As with the single
sinusoid, the approximate ILS estimator performed as well as the true ILS estimator. Thus,
the approximate estimator should be adequate for estimating the frequency of two filtered

sinusoids.

4.3.6 Complez Model Approrimation.  For this particular prototype filter, h,[n],
and decimation rate, R = 16, experimental analysis shows HT H, ~ (0] and HTH, ~ HT H;.
Using these approximations, as shown in Appendix H, the PDF of the complex data model

can be written in the form of a complex multivariate Gaussian PDF (40:505-507)
p(#,8) = [n] M| K| exp { ~(5 - AB) K3} (5 — Ab)} (4.60)

Here, the M by P complex matrix, A is defined by [[\] . = eI RI[M-I+N-1] an{ the
complex vector b is defined by b, = b,e/®. In addition, Ky = o> H¥H where H is a
complex R(M —1)+ N by M filter matrix constructed using the complex filter coefficients
in Equation 4.8. This is equivalent to viewing §[m] as the output of a complex filter {A[n]}
due to a linear sum of P complex sinusoids in normally distributed, independent, complex

noise, fj{m]. Using this approximation, equations for the input and output data become
i[m] = 2;’:1 boe% e f» +film] and glm] = E,f’:l byei®r 2% s 1 j[m) (4.61)

where w[m| is a zero-mean, complex Gaussian noise sequence with a covariance matrix
given by Ky = o?H¥H. This approximation allows a simpler method of characterizing

the output of the digital receiver and is an original contribution of this research.
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4.3.7 Bounding the Estimation Error. As shown in Chapter III, the error in a
point estimate of the LP coefficient and, consequently, the frequencies can be bounded if
the variance in the estimates is known or can be calculated. From Equation 3.165, since the
complex LP general linear model has the same form as the real LP general linear model, an
unbiased point estimate of the variance can be calculated directly from the measurements
as

-1

Kg, = [YTGT(4,)G(&,)Y.] (4.62)

Figure 4.9 shows the average accuracy of the point estimates of the LP coefficient variance
for one and two filtered sinusoids. These results show the point estimates provided by

Equation 4.62 are, on average, very close to the true values of the variance.

The accuracy of the variance estimates indicates that confidence intervals for the
frequencies can be established directly from the variance estimates using Equation 3.148

from Chapter III. That is, once Kao has been estimated, the variance in the frequency
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estimate can be calculated from

Vi) = [M]Tkao [w—)] (4.63)

dJda,

where g,() is the function relating the LP coefficients directly to the frequencies. In partic-

ular, for a single complex sinusoid derived from the constrained LP coefficients, g,() and

V{} take the form
fi= —% tan~'{&[0]};  V{fi} =721+ &][0)*)"*V{a;[0]} (4.64)

Figure 4.10 shows results of using this equation to establish confidence intervals for the
frequency of a single sinusoid in the passband of filter. Thus, from the point estimates of
the frequency, f,, and standard deviation, Gy, the true frequency was within one, two and

three standard deviations of the estimate about 65%, 95% and 99% of the time.

For an EW receiver, knowledge of the estimation accuracy can improve the accuracy
of the classifications. Currently, the signal descriptions employed by typical EW classifi-
cation systems consist of range limit descriptions for the signal parameters. These range
limits are usually constructed with the ‘worst-case’ measurement assumption of a receiver
operating at threshold. This assumption forces the classification system to extend the
range limits of the signal models which induces regions in which the ranges overlap within
the models. This overlap in ranges, in turn, causes multiple identifications to be made for a
single signal. Providing an assessment of the goodness of an estimate, along with the point
estimate itself, can lead to improved classification accuracies by allowing the width of the
classification range limits to be compressed or expanded to match the actual measurement
accuracy. Finally, providing an estimate of the 'goodness’ of the measurement will allow

poor measurements to be discarded prior to classification.

4.3.8 Simplified Single Sinusoidal Estimator. Examination of the simulations
shows the effect of decimation by R = 16 is to decorrelated the noise such that the LS

estimates of & for f(w ~ 0,] are as accurate as those attained using the true noise
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covariance. This approximation will allow an extremely simple form of the LS estimator

to be implemented for a single sinusoid.

From Equation 4.40, with P = 1 and a[0] = 1 the LS fixed point estimator for

a[l] = @ = —e’*"f1, can be written as

~H (ZH } -1
Qipy = _?h (1‘},-”%;)_1 Yo (4.65)
i (AFA) 4,

Here §, = [§[M —1]...3[1)]T and §, = [§]M ~2] ... §[0]]” while A is the M — P by M matrix
of LP coefficients defined in a manner similar to the A matrix of Chapter IIl. Examination

of the matrix product shows /i,” A; has the following characteristics:

4

2 ifk=1
- g ifl=k+1
[Agf A‘.] = (4.66)
K a ifk-1=1
[ O otherwise

Using a Cholesky decomposition, AFA; = R;RH where R; is an M -1 by M — 1 lower

triangular matrix given by

’"TH fm=mn
Tmn = [R‘] mn =) @/ Fm-nmoyy ifn=m -1 (4.67)
0 otherwise

Expansion yields [f?," 1] = [@;]™ "¢mn where the real quantity, ¢,,, is zero for m > n
mn

and
(=)=

™ = T 2] o]

for n € m. Thus, ¢, is a known constant derived only from the real constants defined in

(4.68)

Fmm. Defining the M —1 by M —1 matrix D of constants so that dg = [D],, = 211:{:—11 CrkCnis
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then the matrix inverse calculations can be written as
iHi 1 M-t o -1 B -1 kg (2
[ : i]kl - ?;1 [ i ],m [ '}nl = [a]]" dwia] (4.69)

Thus, by constructing the vectors ¥; and @; from %, and ¥, as {¥;}n = @*{};}=m and

{t;}mn = @™ {Y,}m, a simplified estimator for &; can now be written as

o (A7A) e, wlpa,
o (Ard) g WD

a; =

(4.70)

The matrix inverse operation has been replaced by a simple vector-matrix-vector product
operation. This efficient representation is useful when the number of data samples, M,
to be processed becomes large. The development of this simplified estimator for a single
complex sinusoid is an original contribution of this research and has been submitted for

publication (96).

4.4 Summary

In this chapter, the ILS fixed point estimation technique was successfully used to
estimate the frequencies of sinusoids at the output of the digital EW receiver being de-
veloped by AFRL/WL (16). After discussing the general receiver architecture, models
were derived for the real and complex data output from bandpass filters and represent an
original contribution of this dissertation. The model derived for the complex data shows
the effective decimation rate of the output data be doubled over that of the real model

without a loss of frequency estimation accuracy.

A new method to efficiently implement the receiver as a nonmaximally decimated,
UDFT polyphase filter bank is then derived based on the complex data model. This deriva-
tion has been accepted for publication and has been assigned Serial Number 08/816, 951
by the U.S. Patent and Trademark Office (99).

Based on this architecture and the complex data model, a complex form of the

LP general linear model is developed for estimating the frequencies of P real sinusoids
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residing in the filter passband. This new form of the LP general linear model is an original

contribution of this research and has been submitted for publication.

Identification of the LP coefficients is then shown to be related to ML frequency
estimation and an ILS fixed point estimator is derived for estimating the coefficients.
For one sinusoid, simulations indicate the ILS estimator attains the CRLB for frequency
estimation at SNRs significantly lower than those currently employed in the receiver. The
ILS estimator was then successfully used to estimate the frequencies of two time-coincident
sinusoids within the filter passband; a capability which currently does not exist in the

receiver.

This chapter concluded by showing the PDF of the complex data can be approxi-
mately modeled as a complex Gaussian PDF. Using this approximation, a simplified fre-
quency estimator of a single sinusoid was derived which effectively removed the requirement
to invert an M — 1 square complex matrix. This new single frequency estimator for com-
plex sinusoids is an original contribution of this dissertation and is currently under review

for publication.

Finally, in addition to providing the Air Force with a complete probabilistic charac-
terization of their next generation digital EW receiver system, this dissertation derived a
new method of estimating the frequencies of filtered sinusoids. The frequency estimators
developed as a result of this research will greatly extend the operational envelope of the

EW receiver.
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V. Conclusion
5.1 Introduction

The dissertation investigated the problem of estimating the parameters of real and
complex filtered sinusoids in noise. In Chapter III, the general theory of parameter esti-
mation for real filtered sinusoids in noise was developed and used to construct accurate
parameter estimators. The resulting analysis, models, and estimators derived in this chap-
ter have applications across the spectrum of applied science, engineering and statistics. In
Chapter IV, the results of this research were applied to the Air Force’s next-generation
EW receiver. The resulting analysis, models, and estimators derived in this chapter led
to an efficient hardware implementation of the receiver while significantly improving the

receiver’s operational capability.

5.2 Theoretical Contributions

As shown in Chapter III, the first contribution of this research was a mathematical
model, given by Equation 3.13, for any system required to estimate the amplitudes, phases
and frequencies of real, filtered sinusoids. Specifically, this dissertation showed that the
steady state output of a filter, due to an input consisting of a linear sum of P real sinusoids
in zero-mean, independent, normally distributed noise, can be modeled as the output
from a deterministic system, Ab, corrupted by zero-mean, normally distributed noise, w,
with a covariance matrix, Ky, determined by the filter characteristics. Estimation of the
sinusoidal parameters was recast as the estimation of a deterministic system from the set
of measurements, ¥y, embedded in colored noise and a bound on the parameter estimation

accuracy was derived.

Using this model, a new set of ML estimators for the scaling parameters, b, and
frequencies, f, were derived which correctly account for the correlation in the noise due to
the effects of the filter. This dissertation showed the ML estimator for b, given in Equa-
tion 3.23, can be found via a simple linear regression on the measurement vector y once
an ML estimate of the frequencies, f, is made. The ML estimate of the frequencies, on the

other hand, is independent of b and can be found by optimizing the ML frequency objec-
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tive function, J(f), of Equation 3.25. Since this objective function is a highly nonlinear
function with respect to f, the ML frequency estimator derived in Equation 3.30 involved a
computationally intensive search in the P dimensional frequency based on gradient search
algorithms. Simulations indicate the accuracy of these ML estimators will achieve the the-
oretical bounds provided the correlation in the noise, due to the filter, is correctly modeled.
Failure to incorporate the filter effects in the ML model leads to suboptimal parameter
estimates. The main drawback in using these estimators for an EW receiver is that the
gradient search algorithm employed to provide ML frequency estimates usually required

too many iterations to converge and relied on an accurate initial estimate.

To overcome these drawbacks, the problem of frequency estimation was recast as the
problem of estimating the coefficients of the 2P order LP polynomial. After describing the
relationship between the LP coefficients and the sinusoids, a linear model, parameterized
by the LP coefficients, was derived in Equation 3.53. This model, which incorporates the
effects of both the filter and the coefficients upon the noise, is the true linear model relating
the LP coefficients to the filtered sinusoids in noise and is an original contribution of this

research (98).

Based on this general linear model, two estimators, based on fixed point theory, were
then derived for estimating the LP coefficients and represent another original contribution
of this research. The ILS estimator, as given by Equation 3.84, was based on an iterative
least squares solution to an over-determined system of equations. The ITLS estimator,
as given by Equation 3.100, was based on an iterative total least squares solution. Simu-
lations indicate both methods provide near-minimum variance, unbiased estimates of the
LP coefficients, and consequently, the sinusoidal frequencies, over a wide range of SNRs.
Furthermore, each algorithm usually took less than ten iterations to converge and was
relatively insensitive to the initial estimate. In addition, the initial coefficient estimate
can be obtained directly within the framework of the algorithms; no additional estimation
routines are required to provide the initial estimates. All other factors being equal, the
ILS method should be preferred over the ITLS method since the ITLS method requires an
SVD of an M — 2P by P + 1 matrix at each iteration.
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This dissertation then derived the exact relationship between ML frequency estima-
tion of the filtered sinusoids and ML estimation of the LP coefficients. Specifically, the
set of LP coefficients which minimize the square error objective function, J(a), defined
in Equation 3.124, was shown to provide ML frequency estimates and vice versa. This
original contribution led directly to the development of the IEGD estimator, given by
Equation 3.127, for minimizing J(c). This estimator provides ML estimates of the LP co-
efficients and, consequently, the frequencies of filtered sinusoids, by employing an iterative
exact gradient descent algorithm to minimize J(a). Simulations indicated the estimates
found via the IEGD algorithm do minimize the LP objective function thus providing ML
estimates of the LP coefficients and, consequently, the frequencies. However, this algo-
rithm usually required too many iterations to converge and was too sensitive to the initial

estimates to be of much use as a real-time frequency estimator.

This dissertation then proved the equivalence between the IGLS algorithm, previously
presented as a method of minimizing the LP objective function, J(a), and the ILS fixed
point estimator of Equation 3.84. This proof is an original contribution of this research
for it correctly casts the IGLS algorithm as a fixed point estimator, not a minimization

algorithm.

In addition, the IQML algorithm was proven to be exactly equivalent to the ITLS
fixed point estimator of Equation 3.100. This is another original contribution of this disser-
tation for it correctly casts the IQML algorithm, widely accepted as the premier method of
minimizing J(a), as a fixed point estimator, not a minimization algorithm. In addition, for
the simulations completed, the ILS/IGLS algorithm actually produced, on average, more
accurate frequency estimates than the more complicated ITLS/IQML algorithm. The
IQML algorithm requires an eigenvalue decomposition of a P + 1 by P + 1 square matrix
at each iteration whereas the IGLS algorithm only requires the inversion of a P square
matrix. Thus, if the small degradation in performance over the IEGD can be tolerated,
the ILS/IGLS estimator should be preferred over the ITLS/IQML estimator for providing

point estimates of the LP coefficients and, consequently, the sinusoidal frequencies.

Finally, a method was developed for bounding the estimation error of the LP coeffi-

cient estimates, and consequently, the frequency estimates, based strictly on one realization
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of the measurement vector. Specifically, as shown by Equation 3.165 , this dissertation
proved the point estimate of the covariance matrix of the LP coefficients is unbiased. This
derivation is an original contribution of this research and allows the estimate of the LP
coefficient variance to be transformed into an unbiased estimate of the frequency covari-
ance matrix. In addition, as shown in Equation 3.147 and Equation 3.148, from a single
estimate of the variance of the LP coefficients and the frequencies, the estimation error
can bounded and confidence intervals constructed. Simulations indicate these estimates
of the variance can be used to gauge the accuracy of the point estimates of both the LP
coefficients and the frequencies. This gauge can then be employed to develop confidence

intervals to aid any decision making process based on a single set of measurements.

5.3 Applied Contributions

In this dissertation, a new architecture, assigned Serial Number 08/816,951 by the
U.S. Patent and Trademark Office, was derived to implement a a nonmaximally decimated
UDFT polyphase filter bank. This architecture is based on a new data model relating
parameter estimation of real sinusoids to the parameter estimation of complex sinusoids
and is an original contribution of this research (99). Specifically, as shown in Figure 4.3,
this new data model transforms the estimation of the parameters of real sinusoids in real
colored noise to the estimation of the parameters of complex sinusoids in complex colored
noise. Estimation of the real sinusoidal parameters is recast as the estimation of the
deterministic linear system, Acb, from a set of complex measurements, ¥y embedded in
colored noise. Simulations for the EW architecture indicate this transformation can be

attained with negligible loss in estimation accuracy attributable to the complex model.

In addition, this new data model shows how complex data, originating from a sum
of real sinusoids in real noise passing through a complex bandpass filter, can be decimated
at twice the rate of the real data without a loss in parameter estimation accuracy. This
improvement in the decimation rate, exploited by transferring the decimators to input of
the filterbank as shown in Figure 4.3, allows a significant reduction in the speed at which

the filters, IDFT matrix, modulator and parameter encoder must operate.




Based on this new model for a complex representation of real sinusoids, a new set
of ML estimators for the scaling parameters, b, and frequencies, f, were derived which
correctly account for the correlation in the noise due to the effects of the filter. This
dissertation showed the ML estimator for b, given in Equation 4.36, can be found via
a simple linear regression on the measurement vector y once an ML estimate of f is
made. As with real sinusoids, the ML estimate of the frequencies, on the other hand, is
independent of b and can be found by optimizing the ML frequency objective function,

J(f) of Equation 4.37 .

Since this objective function, is a highly nonlinear function with respect to f, the
problem of frequency estimation was recast as the problem of estimating the coefficients
of the P** order complex LP polynomial given by Equation 4.40. After describing the
relationship between the LP coefficients and the complex sinusoids, a linear model, pa-
rameterized by the LP coefficients, was derived in Equation 4.54. This model, which
incorporates the effects of both the filter and the coefficients upon the noise, is the true
linear model relating the LP coefficients to complex filtered sinusoids in noise and is an

original contribution of this research (97).

Identification of the LP coefficients was then shown to be related to ML frequency
estimation and an ILS fixed point estimator was derived for estimating the coefficients.
For one sinusoid, simulations indicate the ILS estimator attains the CRLB for frequency
estimation at SNRs significantly lower than those attained by the estimation algorithm cur-
rently employed in the receiver. The ILS estimator was then successfully used to estimate
the frequencies of two time-coincident sinusoids within the filter passband; a capability

which currently does not exist in the receiver.

Finally, the results of this applied research showed the PDF of the complex data
out of a given chanuel of the EW receiver filterbank, can be approximately modeled as a
complex Gaussian PDF. Using this approximation, a simplified frequency estimator for a
single complex sinusoid was derived which effectively removed the requirement to invert an
M — 1 square complex matrix. This new single frequency estimator for complex sinusoids

is an original contribution of this dissertation and has been submitted for review (96).
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5.4 Summary

The results of this research, whether taken individually or collectively, represent
a major contribution to the theory of signal processing and parameter estimation. In
particular, this research builds the bridge connecting sinusoidal frequency estimation with
LP linear system modeling and derives the connection between real and complex sinusoidal
parameter estimation. In addition, the analysis, models and estimators constructed as a
result of this connection will significantly improve the operational envelope of the Air

Force’s next generation EW receiver.




Appendiz A. Vector-Matriz Differentiation

This appendix derives the identities involving the differentiation of matrix products.

A.1 Definitions

Let 0 be P dimensional vector with @ = [§, ...8p|T. Let ¢ be Q dimensional vector
with ¢ = [z, ...zg|T where each element of z is a function of §. That is z, = g,(@). The
first and second derivatives of & with respect to 8; and 6, are defined as

- -
50;), 08, 86:56; ], 06,06,

Let U be a K by L dimensional matrix where each element of U is a function of §. That
is ugy = gx1(0). The first and second partial derivatives of U with respect to §; and 6; are
defined as

[BU] 811,"1. [ 62U ] azuk,; (A2)
ki k.

30;),,  06;° 86,06, , 56,00,

A.2 Matriz- Vector Product Derivative

Let U be an M by N matrix and by an N dimensional vector. Let u,, , and z,

be functions of the variables #; and ;. In addition, let 2 = Uz. Then

2m  n Oumn 9z, dz _[aU dz

—_—— = —_— — —— = —_— U — .
56, 2= 50, " U™ Bg, 3, [ae..]‘” [ae.-] (4.3)

while the second partial derivatives become

Bz Y Py Fz,  Oupmn Oz, Oup, Oz,
56,06, = 256,00, "™ 2600, " oo, o0 T o6 6, Y
&z U &z aU1 [Ox oU [8z
AT [ PO ) i D el I e O il I .
56,36, [aeiaej] Tt [aeiae,] * [ao,.] [aa,-} + [ao,.] [ae,-] (45)




A.8 Matriz Product Derivative

Let U and V be L by K and L by L matrices respectively. Let ux; and v;,, be
functions of @ and define the matrix C as C = UTVU. Then

dcin i ZL: Qg O Bums (4.6)
= I,mUmn ki Q=7 Umn klVIm Q55— .
a0, = = 06, a6, ™ a6,
820‘, n Lz azuk 1 Buk ! 8’01 m Buk 1 8u,,, n
- = ; Vi,mUm,n + _""""—um,n + —_l’vl.m'_"","‘
00,06, ; mz=:1 06,99, m 08, 96, a0, a4,
+ a'uvk,l avl,mu +u 62"-’l,m " u a'vl,m au‘m,n
a6, a8, ™" *'a6,88, ™" "*' 58, a8,
auk ! aum n 8'"! m aum n 821l'm n
+ m k, - + U , v - A.?)
a6, "™ a6, "6, 98, = """ 56,06, (
In matrix nomenclature, the partial derivative with respect to 8, is
ac _rauT v 10}
Eog e erlE e
7 [ao,,] U+U [aop}U+U V5 (A.8)
while the partial derivative with respect to 8, and 6, becomes
2 - T 5T T
K O N 4 A P A oy
00,04, 188,96, 06, a6, a0, a6,
U T 18V A% oV [aU
7 (o) U+ o) U o) o)
* _ae,,] e,] Y 15e,06,1 0 T [38;] |29,
[oU T [aU 9V [9U *U
) v 3] 3o 2]
* _aoq] [ao,] * Laoq] a6,] TV | 36,99, (4.9

A.4 Inverse Dertvative

Let C by a symmetric, invertible matrix where each element is a function of ;. Then

(40:73-75)

aCc- _[acy .,
_*Bﬂi =-C [8_0,] C (A.10)
and
8*Cc! ac-tyrec &C aC1 [oCc!
- - e - S
96,06; [60,- ] [aei] 5606, ~° |7e,) |5, ) (A
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A.5 Vector-Matriz- Vector Product Derivative

Let ¢ be K dimensional vector and let C be a K by K positive definite matrix.

Furthermore, let the scalar J be defined as J = £7C~!'z. Then

8J L& oz -~ oz
aa - —=C! n m i n mC’_1 — £
08, ;mg 86, ~mnTn T Im e~ T InCmn g (A.12)
8*J K X &z, -1 dz,, 0C 1, 0T _, Oz,
36,86, ;::1,; 36,6, """ 25 a8, "~ T 38, C™n 38,
L 9am8Cn, L FCn . 9C5, 0z,
56, 66, " '™00,08, " "™ 6, 08,
OZm ,_, Oz, oC; ! oz, -, 6z,
* B8, Cmn e, T 59, 8, T >mCmnag. o, (4.13)
In vector-matrix notation, the partial derivative with respect to 6, becomes
oF _ 2 [aw]TC‘lz + a:TaC—l:c (A.14)
06, |08, a9, '
The partial derivative with respect to 8, and 6, can be written as
2 52 T T -1 T
2 - ol e B 5] el 2
96,00, 06,06, a0, a9, a0, a9,
+ 2[93]T[BC_1]:::+ T[agc—l] (A.15
30, | o8, T |6,08,] " 15)
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Appendiz B. Mazimizing ML Objective Functions

This appendix derives the scalar and vector identities pertinent to optimization of
real objective functions with respect to real and complex vectors. These identities are then

used to obtain ML estimators for real and complex data.

B.1 Real Data ML Mazimization

Letb=1b... bQ]T be a vector of Q real parameters. Let z = [z, ... :cQ]T be a vector
of constants and let 4 be a square Q by Q matrix defined by [A],; = ay. Finally, let J be

a scalar function of b so that the gradient of J with respect to b is defined as

(B.1)

T
Vb.]=[aj BJ]

The results of applying this gradient to vector products and vector-matrix-vector products
is given in Table B.2. With 87 = [bT; fT] and A a function of f only, the likelihood

function is defined as
p(y;0) = (27~ ¥|Ku| ¥ expl—5(y ~ Ab)T K (3 ~ Ab) (82)
Taking the natural logarithm yields the log-likelihood function L(y;#) as
L(yi0) =~ n(2m) - 3 o Kwl - 3y~ A6 Ky~ A8 (B3)
Assuming Kyp is known, then maximizing L(y; @) is the same as minimizing
Jr(8) = [y — Ab]" K3 [y — Ab] (B.4)
Expanding yields

Jr(0) = yTKgiy — 26T ATKjy + bTATK 3 Ab (B.5)
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Taking the gradient with respect to b yields
(VpJr(8)] = —2ATKg'y + 2AT K Ab (B.6)

Setting equal to zero and solving for b yields the ML estimator which is found via a linear

regression on § provided f is given.
bur = [ATKg AT ATK 'y (B.7)
Substitution of by into Jg(8) yields the ML frequency objective function.
Ja(f) =y Kwy - y" K A [ATKg Al ATK Gy (B.8)

This function must be minimized with respect to f to obtain ML estimates. Once f,,; is

found, then 5M ¢ is found via Equation B.7.

B.2 Compler Data ML Mazimization

Let the complex number b; be defined by real scalers b;5 and b;; so that b = bir+7bir
and let Z; be a complex number defined in a similar fashion. Let J be a function of a
complex variable, b;. The goal is to find b; so that 8J/8b; = 0 indicating a stationary point
with respect to b; (40:517-519) (24:890-894). In general, J is not an analytic function and
cannot be differentiated with respect to l;i using the normal rules of differential calculus.

Instead, the following definition will be applied (40:517)

87 _1
ob;, 2

br ’ Bbiy

aJ . aJ ] (B.9)

Note, the derivative is zero if and only if the partial derivative of each of the real and
imaginary parts is identically zero. Using this definition, scalar functions defined by J
can be minimized over b;z and b;; simultaneously (40:515-520). Table B.2 defines the

appropriate scalar derivatives used for maximizing the complex ML objective function.
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Y &
Now, let b = [bl e bQ] be a vector of complex parameters and let & = [z, ... iQ]T

be a vector of complex constants. Furthermore, let J(f)) be any scalar function of b and

define the gradient of J with respect to b as the vector

T
J aJ
8b, b

The results of this gradient, applied to a vector product and a vector matrix product, are

given in Table B.2 and these definitions will be used to minimize the ML objective function.

With 87 = [BT; fT] and A a function of f only, the likelihood function was defined as
p(#:6) = [27]M|Kuw| ™ exp(~(¥ ~ Ab)* K5 (§ - Ab)] (B.11)
Taking the natural logarithm yields the log-likelihood function L(y; @) as
L(56) = -MIn(2r) - In|Kuw| - [§ - AB] " K[ - A (B.12)

Assuming Koy is known, then maximizing L(#; ) is the same as minimizing

P L AP S
Jo(8) = [ - Ab] " Ky [y — Ab| (B.13)
Expanding yields
Jo(8) = g7 K1y - b7 AH Ko -9 Ky Ab+ bTAFR-1RD (B.14)

Taking the gradient with respect to b yields
[v570)] = - [A"kg9) + [\ K5 Ab) (B.15)

Setting equal to zero and solving for b yields the ML estimator which is found via a linear

regression on ¥ provided f is given.
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Table B

.1 Derivatives and Gradients

Real Gradients

J= b Ab = Zk:l Zl:l I;;&Hi)g

§i = Zk 1bkaks = [Zk 1 8k:d ]

Component Vector
Function Derivative Gradient
J=blz=37 1. g; =z VpJ] =
J = bTAb = ZS:I ZIQ=1 b,,ak,b, = Zk_.l ak,bk + Zl 1 a.,,b; [Vb]] = Ab + ATb

Complex Scalar Derivatives

Component Vector
Function Derivative Gradient
J = b; = big + jbis Eag]_ — _;_ O(Digb-:-i'bill _ja(ban;.ljbil) =1 N/A
J =5 = big - jbu =5 | Mg - j%gmball =0 N/A
J = z7b; ‘g;"; = 3zir — jzu] - Llza +jzirl = £] N/A

Complex Gradients

Component Vector
Function Derivative Gradient
J= '”b S Eiby o=z b(:i-Hb) =z°

b(b Ab) = [a7h]

b = [AHEZA] T AK G

Substitution into J- (@) yields the ML frequency objective function.

Je(f) =9"Kg

i - 3R A[A RG]

(B.16)

(B.17)

This function must be minimized with respect to f to obtain ML estimates. Once f,,; is

found, then b, is found via Equation B.16.
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Appendiz C. Linear Prediction Coefficient Constraints

This appendix derives the Forward and Backwards Linear Prediction (FBLP) con-
straints and the symmetry conditions placed on the LP coefficients for the real and complex
forms of the LP model. To impose the sinusoidal constraints on the LP coefficients, define
the V by N identity matrix as Iy and the N by N ‘Backwards’ identity matrix as By,
where [IBy] = §[N — k — I + 1]. Finally, define the IV element zero vector as oy and

Wi = 27\"fk.

C.1 Real Sinusoids

C.1.1 FBLP Constraints.  Let s[m] be the sum of P real sinusoids in noise and

suppose the Forward LP coefficients solve
L
S afljsfm -1} =0 (C.1)

=0

for L > P. For a set of M samples, with m =0... M — 1, substitution yields

al0]cos(wpm +¢) = -1, a[l] cos(wgm + éx) cos(wil) (©2)
0 = YL, afl]sin(wim + ) sin(wil) |
for m =L...M — 1. Now consider the Backward LP model given by (87:418-422)
L
b[0]s[m — L} = = >_ bll]s[m — L +1] (C.3)
=1
For a set of M samples, substitution yields
bl0] cos(w[m — L] + ¢) = =L, bll] cos(wi[m — L] + ) cos(wil) c.4)

0 — YL, bl sin(we[m — L] + &) sin(wyl)




form—-L=0...M — L —1. Thus, with b[l] = q[l], real sinusoids solve both the forward
and backwards LP models.

Yhoalllsim =1 = 0 form=L...M -1

(C.5)
Zf:oa[l]él[m-%l] = 0 form=0..M-L-1

C.1.2 Symmetry Constraints.  For the general 2P* order LP model, the real LP

coefficients, alp], solve

2P P 2P
2_alplsim —pl =0=3_3_bealp|cos(wi[m —pl + &) (C.6)

Expanding the real sinusoid, s[m], yields

P 2P
LZ by cos(wrm + @) Z a[p] cos(wep)

P 2P
+ LZ b sin(wim + ¢¢) Y _ a[p] sin(wep)| =0

=1 p=0 =
(C.7)
For this equality to hold for all w; and m requires (8)
2P 2P . _
> alp]cos(wep) + a[0] = Y ap](e?*P + e73*P) + 24[0] = 0 (C.8)
p=1 p=1
2P ' 2p ‘ '
Y alplsin(wep) = 3 afpl(e+? — e747) = 0 (C.9)
p=1 p=1
Solving these equations simultaneously yields
¥2F alp)(e*?) +af0] =0 and Y27 afp](e~3*?) + a[0] = 0 (C.10)
Multiplying the second summation by e/?’“* and expanding both produces
a[0] + a[l]e’* + a[2]e“*?. .. a[2P — 1]es(2P-1) 4 q[2Pleiws2P = (c.11)

a[2P] + a[2P - 1]e?“* + a[2P — 2]e?**? ... a[l]e/*(2P-1) 4 g[0]e/ws?P = 0

Since these equalities must hold for all w; then a[p] = a[2P — p] for p = 0... P. Now
let a = [a[0]a[1]...a[P]]T be a vector containing the unique LP coefficients and let a =

[a[0]...a[2P]]T be a vector containing all the LP coefficients. Then a is related to a via
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the linear transformation a = Ba where

Ip O,
B=| of 1 (C.12)
IBP o,

The search of the LP coefficients, contained in a, of a 2P** order model has been reduced

to the identification of the P unique coefficients contained in a.

C.2 Complez Sinusoids

C.2.1 Forward Backward Linear Prediction.  Let §[m| be the sum of P complex

sinusoids and suppose the Forward LP coefficients solve
L
Y al)im -1 =0 (C.13)
=0
for L > P. For a set of M samples, withm =L...M -1, then
L
al0]3[m] = = Y all)s[m — 1] (C.14)
=1
Substituting for §{m| gives, for each frequency

L
af]ef ™ = =Y a[l]efermeivnt (C.15)
=1
for m = L... M — 1. Now consider the backward LP model (87:418-422)
-~ L -~
b0]3lm — L]* = = > b[l]3[m — L +1]* (C.16)
I=1

Substitution for the complex sinusoid yields

L
bl0jeIwrIm=Ll = — §™p[l]emwlmLlgmdunl (C.17)
=1




Letting n = m — L and &[l] = b{l] provides

§in+1]" = (C.18)

[V]n

1=0

forn=0...M — L — 1. Thus, a complex sinusoid solves both the forward and backward

LP model
Yhoallfm-1]=0 form=L...M-1

(C.19)
Seeal][5m+1]"=0 form=0...M~-1-1L

C.2.2 Symmetry Constraints.  Let §{m] be the sum of P complex sinusoids. The

set of P complex LP coefficients, a[p], solve

P P P '
Za[p] m-p|=0= Z belvs™ Z alple~i«*? (C.20)
p=0 k=1 p=0
To be zero for all w; and I;k # 0 requires
Z:;l a[ple”i*? +3[0] =0 and E:’:l a[p]*el*? +a[0]* = 0 (C.21)

Multiplying the first summation by e/“*f and expanding yields

a[0]e’ F + a[1)efws(P-1)  G[P — 1]e/* +&[P] =0

‘ . ' (C.22)
a[P]*e P + [P — 1] e (P-D) _ [1]" e’ +a[0]* = 0

Since this equation must hold for all wg, this implies a[p] = a*[P —p] for p =0...P. In
addition, for P > 1 complex frequencies, it can be shown (63) when Zf:l we =m(20+ 1)
for any integer I, the real part of a[0] = 0. Conversely, when 25:1 wy = 2l for any integer
I, the imaginary part of @[0] = 0. To impose these constraints, let P be an even number
and N = P/2, then @[N] is a real number since &[N] = a[N]*. Imposing the complex

conjugate symmetry constraints yields the real vector a = [a[0]... a[P]]T where

al0] = ag[N] (C.23)
alk+1] =aglk] fork=0...N-1 (C.24)
alN+1+l=af] fori=0...N-1 (C.25)
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Only P + 1 coefficients determine a completely. The LP coefficient vector a” = [a%, aT]

can be derived from o as a = Bga where Bg is the 2P + 1 by P matrix

Oy In
1 0%
Oy IBy
Oy Onw
0 O0F
| On Onw

(C.26)

Finally, if P is an odd number, let N = (P — 1)/2. The symmetry constraints can be

imposed by defining the vector « as

al0] = ag|NV]
alk + 1] = aglk]
alN+1+1]=al] forl=0...N

fork=0..N-1

(C.27)

The LP coefficient vector a” = [a%, a7] can be derived from a as @ = Ba where B is the

2P + 1 by P matrix

Oy Iy
1 o%
1 0%
Oy IBw
0y Ow
0 0%
0 o%

Ox
0
0

On

Iy

0y

0y

Onw
On
On
Onw
On
1
-1

| On O~ —-IBy Oy ]

(C.28)

For both the real and complex sinusoids, imposing these constraints yields the true form

of the LP general linear model

C-5

G(a)YBa = G(a)Yoa = e(a)

(C.29)




Appendiz D. Fized Point Theory

This appendix summarizes the Fixed Point theory pertinent to this dissertation.

D.1 Definitions

D.1.1 Linear Space. Let R be a given field and let S be a nonempty set with
rules of addition and scalar multiplication which assigns to any ¢,y € S a sum such that
z+y € Sand toany z € S and ¢ € R, a product such that cx € S. Then S is called a
linear space over R if the following properties hold (26:28), (54:141):

e For an vectors ¢, y,w € S, then (z +y) + 2 =z + (y) + 2).

o There is a vector in S, called the zero vector, 0, for which £ + 0 = z for any vector
in S.

o For each vector ¢ € S, there is a vector in S, denoted —z, for which =z + (-z) = 0.

e For any vectors, z,y € S,z +y=y+ <.

e For any scalar ¢ € r and any vectors z,y in S, then c(z + y¥) = cx + cy).

e For any scalars, ¢;,¢; € R and ¢ € S, then (¢; + ;) = ;& + ¢, .

e For any scalars, ¢;,¢c; € R and © € S, then (c;6)x = ¢;(co)

e For the identity scalar 1 € R, then 1x = « for any vector = € S.

D.1.2 Euclidean N-Space. Euclidean N-space consists of all ordered N tuples,
called vectors & = [z, ...zx]7, of real numbers such that RY = {z|z, € R} (58:18). The
i** element of = will be denoted z;. Vector addition is defined as z = z + y so that
z; = Ty + ;. Scalar multiplication is defined for a € R as 2 = ax so that z; = az;. Using
these operations, it can be shown Euclidean NV space is a vector space of dimension N over

the field of real numbers (26:29).




D.1.3 Metric Space. Let S be a nonempty set and let £, y € S. A distance
function, d(x,y) € R, is called a metric on S if the following hold (33:1),(58:21)

dlz,y) > 0 forallz,ye S
d(zx, = 0 ifx =

(z,y) i y (D.1)
dlz,y) = d(y,x) forallz,y €S
d(z,z) < d(z,y)+d(y,z) forallz,y,z€S

For Euclidean N-Space, the distance metric is defined as
N
d(z,y) =z —yll = Z(fci - ¥i)? (D.2)

=1

In addition, the inner product is defined by (z,y) = Zf;l Ty, = xy.

D.1.4 Complete Metric Space. A sequence, {z;} € RV, is called Cauchy if, for
every real number € > 0, there is an integer N such that, for integers, I,k > N then
llzr — xi|| < € (58:45). A metric space is said to be complete if and only if every Cauchy
sequence {x;} C R converges to a point in R¥. Since a sequence {x;} € R" converges to
a point in R¥ if and only if its a Cauchy sequence, Euclidean N-space, under the distance

metric defined above, is a complete metric space (58:45-46)

D.1.5 Banach Space. A normed space, S, is called a Banach space if S is a
complete with respect to the metric space defined by d(z,y). Thus, the Euclidean space

defined above is a Banach Space.

D.1.6 Open and Closed Sets. Let A be a subset of RY. Then A is an open set if|
for each € A, there exists some real number € such that for each y € RY which satisifies
d(z,y) < ¢, then y € A (58:34-35). A set B C RY is said to be closed if its set complement
in RY is open (58:37).

D.1.7 Bounded and Compact Sets.  Let A be a subset of RY. Then A is bounded

if and only if there is some arbitrarily large constant K such that ||z|| < K for every ¢ € 4




(58:62). Let A be a subset of the Euclidean space RY. Then A is said to be compact if A
is bounded and closed (58:62).

D.1.8 Continuous and Bounded Functions.  Let A be a subset of RY. Let £ be
a mapping such that £: A — R and let z, € RY. Then £ is continuous at z, if (58:79)

zlir%o £(z) = £(z,) (D.3)

Furthermore, £ is said to be bounded on A if, for every @ € A, there exists some finite K
such that {|£(x)}| < K.

D.1.9 Fized Point. Letx, € S, and let the function £ be defined on S. Then z,
is a fixed point of £ if £(z,) = =,.

D.2 Fized Point Ezxistence Theorems

D.2.1 Schauder’s Fized Point Theorem. Let S be a compact subset of a Banach
Space and let the function £ be a mapping such that £ : S — S is continuous and bounded
on S. There exists a fixed point, z, € S such that £(z,) = =, (33:152).

D.2.2 Brouwer’s Fized Point Theorem. Let S be the subset of RY consisting of
all vectors  such that ||z|| < 1. If the function £ is continuous on S, then there exists a

fixed point, z, € S such that £(z,) = =, (33:116).
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Appendiz E. Objective Function Gradients

This chapter employs the identities from Appendix A to derive the gradient descent
algorithms for minimizing the ML frequency objective function and the LP coefficient

objective function.

E.1 ML Frequency Objective Function Gradient

From Chapter III, the ML estimate for f maximizes an objective function of the
following form function J(f) = 2T7C~'x where f = [fi... fp|T, ¢ = ATKgy, and C =
ATKy A. Here, only A is a function of f.

cos[2nfi(M, —1)] forj=p
Ai; = sin[2nf;(M, i) forj=P+p (E.1)

0 otherwise

forp=1...P and ¢ = 1... M. In this case, the partial derivative with respect to f,

becomes
—2n(M, — i) sin[2n f;(M, — 1)] forj=p
oA
[W] =4q —2n(M, —1i)cos[2nf;(M, —i)] forj=P+p (E.2)
Pdij
0 otherwise

In a like manner, the partial derivative with respect to f, and f; becomes

FA

[afaf] = 4r*(M, —i)sin2nf,(M, —i)] forj=P+pandp=gq (E.3)
p9Jqli;

’ 0 otherwise

Thus, using the results from Equation A.3, and Equation A.8

oz [ 0A (E.4)

T
——] Ky A+ATKY [——

(5] ma -2 o

i
|
i
\
|
|
\
|

—4m* (M, —i)?cos[2nfj(M, —i)] forj=pandp=gq
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while, from Equation A.5 and Equation A.9,

T

8213 I 82A -1
1 35,87, .af,,afq] Kwy (E5)
| 8*C oA 1T . (6A]T ., [0A
35,00 .3fp3fq} K“’A+[8_fp] K {57]
16f, 3f, 8f,0f,

|
|
| IS 2
+ —-] Ky [GA]+ATK,]}[ oA ] (E.6)
By employing Equation A.14 and Equation A.15, the partial derivatives of J(f) with

respect to f, and f, can now be written

g = 2[66—}6—]TC"1a:+mTa;:1z (E.7)
P p 4
s = *lorar) o =2l [ J=w2 (58] < 57
T -1 -1 -1
o) G lee e )= o) e

E.2 ML Objective Function Gradient

From Chapter 3, the LP objective function to be minimized has the form J(a) =
zTC~'z where £ = Y.a and C = ATKyA. Here the M by M — 2P matrix A is defined

a0 0 ... 0
al0) ... O
a[2P] : . 0
A= (E.9)
0 a[2P] ... a[0]
0 0 0 a2P]

Now define the matrix R, as the M by M — 2P matrix with

1 fort=j +p
(Rplij= |1 fori=2P—p+j (E.10)

0 otherwise




fori=1...Mandj =1...M - 2P. Thus, the matrix R, is of rank M forp =0... P
and so is the sum of any P such matrices. With a = [a[0]...a[P]|7, the M — 2P square

matrix A can be written as a rational function of « as
P
A=R,+) cofp|R, (E.11)
p=1

Finally, define e, as the vector [e,], = 1 for p = ¢, and zero otherwise. Using these
definitions and the results of Equation A.3 and Equation A.5, the first and second partial

derivatives of & with respect to a become

oz aY, ox

m = -éa—[‘;]z + YCE[H =Y.e, (E.12)
8’z ay, de, _
—-—8a[p]aa[q] = me, + Yca—m =0 (E13)

In a similar fashion, from Equation A.8 and Equation A.9, the first and second partial

derivatives of C with respect to a become

T
3—(?[?_] N [%ﬂ Kwd + 4" Kw [%ﬁ,ﬂ = RJKwA+ ATKyR, (E.14)
8*C 9
Balploalg] dalg] [RIKwA + ATKwR,| = RTKwR, + RFKwR,  (E.15)

Finally, employing the results of Equation A.10 and Equation A.11 for the inverse and
Equation A.14 and Equation A.15 for J(a) allows the first and second partial derivatives

to be written as

8aJ(a) o 1T ., act
i) = L5 ‘JTC Tt el (E:10)
#Ja) oz 1T ac! oz 17 [ oz
Bolpdalg 2[_&4{1} 'a‘a[q'l“z[‘aam] [‘aa[q'l}
8z 1T 8Cc? & c-1
-+ 2[@] —aa—h)]-$+mez (El?)
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Appendiz F. Short Time Fourer Transform/Filter Bank Equivalence

This appendix shows how the Short Time Fourier Transform (STFT), evaluated at
K equally spaced frequencies, can be implemented as a filter bank with K bandpass filters

centered at wy = 27k/K.

Let w(n] be a real, finite causal window of length N. The STFT of a real sequence,

z[m], over this window is defined as (65:714)

N-1
X(m,e) =Y winjz[m + nje~" (F.1)

n=0

Usually, the STFT is evaluated at a set of specific frequencies, w = w; = 27k/K, for
0 < k < K — 1. As such, the STFT can be written as

N-1
Xi(m) = Z wln]z[m + nje 7" (F.2)

n=0

Explicitly, this describes the STFT obtained by sliding z{m] past w([n] one sample at a time
so that the calculation of X;(m) and X,(m + 1) represents an overlap of N — 1 samples
of z[m]. In many cases, this maximal overlap is unnecessary in providing an accurate
description of the signal in the time window, w([n]. Instead, the STFT can be defined in
terms of the overlap between two successive blocks of data z([n| as (65:720)
N-1
Xi(m) = Z wln|z[Rm + nje 7" (F.3)
n=0

Here, there is an overlap of N — R sample points in the calculation of X;(m) and X;(m+1).

Now, let hy[n] be a real, causal, low pass filter of length N. A bank of bandpass filters,

centered at wy = 27k/K, can be constructed by modulating the prototype coefficients as
hi[n] = ho[n]e?™kn/K (F.4)

for k=0... K — 1. In this case
Hi(e7*) = H,(elo2mk/ K]y (F.5)
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The output of the k** filter, §,[m], to an input, z[m], is given as the convolution sum

Ulm] = Z- hi[nlz[m — n| = Z— holn]z[m — n]el?4n/K

Now let ho[n] be the causal version of the reversed window w(n| (65:716).
ho[n] = w{N — 1 —n]

In this case, the output of the k** filter can be written as
N-1 |
gk[m] = Z ‘UJ[N -1- n]z[m - n]eﬂ’rkn/x

n=0

so that
N-1

Gim+N-1=Y w[N-1-nlzg[m+ N —1-n]e?*¥

n=0

Letting [ = N — 1 — n and interchanging the order of summation reveals

N-1
Hm+N-1] = Z wlljz]m + e~ 2TRI-N+1)/K
=0
Factoring the extraneous phase term and relating to Equation F.3 shows
y [m+N_1] )e_]2‘)\’kN 1)/K
Now let the output of the k** channel be decimated by a factor R. Then
N-1
Ge[Rm+ N —1] = > wll]z[Rm + l|e 72 -N+1/K
=0

Factoring the extraneous phase term and relating to Equation F.11 shows

y,,[Rm+N _ 1] )eﬂxk(N 1)/ K

(F.6)

(F.8)

(F.9)

(F.10)

(F.11)

(F.12)

(F.13)

These equations show the STFT, with a data overlap of N — R, can be implemented by

decimating by R, the output of each channel of a filter bank.
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Appendiz G. Compler Random Variables and Vectors

This appendix provides the definitions of complex random variables and vectors and

discusses their general properties.

G.1 Random Vartables

Let up(k] and u;[k] represent real samples from separate random time series with the

joint PDF, p(ug(k], ur[k]). Let i[k] be the complex representation, @{k] = ug[k] + ju;[k].

The squared two-norm of @(k], denoted |i[k]|?, is defined as (40:500-501)

|a[k]]* = ulk]"u[k] = un(k]® + ur[k]®

(G.1)

where the * denotes complex conjugation. The distribution function for @[k] is defined in

terms of the joint distribution of ug{k] and u,[k]. That is, for a fixed value @° = u% + jus,

the distribution function is defined as (87)[17-47]
F3(@°) = Pr(ilk] < u°) = P(uglk] < ug;urlk] < uf)
and is related to the density function f;(i) as
@) = [ @i = [ [ fopunun)dundu
Now let ¥ be the region defined by
U= {0° < afk] < @'} = {uf < uplk] < up}{{uf < uilk] < uj}

The probability that i[k] € ¥ is defined as

P ew) = [ " fa(da = / / " funanlum undu
The mean of 4[k] is defined as the expected value of each component

mk] = E{a[k]} = E{ug[k]} + jE{ui[k]} = mg[k] + jm[k]

G-1
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The variance of @[k] is defined as (40:500-501)
V{alkl} = E{lalk] - m[k]|} = E{|alk]|’} - |m[k]]* = V{ualk]} + V{ulk]}  (G.7)

The correlation between (k] and i[l] is defined as
raalk, 1] = E{alkla(l]'} (G.8)

and describes how well the values of @[n] at time samples k and ! track each other (87:141).
In particular, if rg 3|k, {] is zero, then i[k] and %[l] are said to be uncorrelated. Additionally,
since V{i[k]} is equal to the sum of the variance of each component, then ug[k] and u;[k]

are uncorrelated at the k** sample. The covariance of u[k| and @[!] is defined as
Cov{u[k],a[l]} = E{(alk] - m{k])(all] - m{l))"} = E{alklall]"} - mk]'ml]  (G.9)

In general, if @[k] and 4[l] are independent, then Cov{i[k],a[l]} = 0. The converse is not

necessarily true (86:56).

G.2 Random Vectors

Let ug = [ug[M —1]...ug[0]]” and u; = [u[M ~1]...%;[0]]7 be random vectors
obtained from two different time sequences. The complex vector representation for the
two sequences is defined as & = ©pg + ju; and the squared two-norm of @, denoted |u|? is
defined as (87:22-39)

|a2 = @4 = uFug + uTu; (G.10)

where the H operation indicates complex conjugate transpose. The distribution function
for i is defined in terms of the joint distribution of ug and u;. For a fixed vector #° =

u% + ju$, the distribution function is defined as

Fg(a°) = Pr(@) < 4° = P(ug < up;ur < up) (G.11)
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and is related to the density function
) u° us us
Fy(a®) = / fa(@)di = / Frnss (wr, ur)dugdu; (G.12)
Let ¥ be the region defined by
U= {a’ <a<a'} = {up <up < up[)uf <ur <uj} (G.13)
The probability that % € ¥ is defined as
i (A o uk ,ul
PlueV¥)= / fy(a)du =/ furu, (g, ur)dugdu; (G.14)
i us, Jue

The expected value, or mean m, of a complex random vector is defined as the expected

value of each component
m = E{a} = E{ug} + jE{u} (G.15)
where
E{[d].} = /::(ua[n] + jur[n]) fupu, (Wr, ur)dugduy = mg(n| + jmyn] (G.16)
The correlation matrix for 4 is defined as
Ry 4 = E{ua®} (G.17)

so that [Rg gley = Taalk,!]. If 4[k] and 4[l] are uncorrelated, then Ru.u is a diagonal
matrix with the variance of each time sample on the diagonal. The covariance matrix of

i, denoted Ky, is defined as
Ky = E{(a — m)(@ — m)¥} (G.18)

so that
= E{(a[k] — m[k])(a[l] - m{i])"} (G.19)



Finally, let A be an N by M complex matrix of full column rank and let bbean N by 1
complex vector. Then, if § = A4 + b, where @ is a random vector with a mean of rhy; and

a covariance matrix, Ky, then ¢ has a mean, denoted ﬁzg, and a covariance of matrix,

denoted I~{y, of (40:502)
‘ﬁ'ly = /irh& +8 and f{g = fikﬁfiﬁ (G.20)

G.3 Wide Sense Stationary

A random process is said to be Wide Sense Stationary (WSS), if the expected value
of i[n] is independent of n and the correlation function function is a function only of the

spacing between samples (87:140-155).
E{i[n]} = aconstant and rg4(k,l] = raalk -] (G.21)
Now let @ be a random vector with correlation matrix Ry . If 4 is a WSS sequence, then
(Ru ales = raalk = 1] = rea[l — k] (G.22)

This correlation matrix is an Hermitian Symmetric, Toeplitz matrix.

G-4




Appendiz H. Complex Normally Distributed Random Vectors

This appendix describes how to represent a real, normally distributed random vector
as a complex normally distributed random vector. Let the vector u be the concatenation
of the M dimensional real vectors ug and u; so that u7 = [u%,u7]. Furthermore, let u
be normally distributed with mean, myq,, and covariance, Ky, defined by

mua A -B
my = i Ku= (H.1)
My, B A
where A = Ky,u, = Ku,u, is a symmetric matrix and B = Ky,u, = —Ku,u, is a skew

symmetric matrix. The PDF for u can be written as
p(u) = [27]"M|Ku| ™'/ exp{-.527 Ky 'z} (H.2)
where £ = u — mq. From this form, the inverse of Ky, can be written as (40:556-572)

. | E -F
K = (H.3)
F E

where E = (A+ BA™'B)"' =ET and F= —(A+ BA™'B)"'BA™! = —F7. Then, since
KyKg' = I = Ki' Ky, the following identities apply:

AE-BF=1I=FA-FB and BE+AF=0=FA+ EB (H.4)
Using these identities, the argument of the exponential becomes
"K'z = 25Ezpg + 2T Fep — 25 Fz; + 2T Ex, (H.5)

Now define @ = ug + ju; and let the complex covariance matrix of & be Qu = A + Bj.

- 1
Furthermore, assume the form of the inverse can be written as [Qu] = C + Dj. Since

QuQz =1=Q7'Qq, then I = AC - BD + j(AD + BC) = (CA- DB) + j(DA+ CB).
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From Equation H4, C = E and D = F so that Q-t‘; = FE + Fj. Thus

7Qz't = «lExp+alEz; - afFz;+zlFzp
+ j(@hFzr~zTFEzp+ cfEx; + 21 Fx)) (H.6)
Since F = —FT and E = E7 then 25 Fzg = 2T Fz; = 0 and —2TEzg + z}Ex; = 0.
Hence, from Equation H.5
:i:HQalzi: =z Ky'e =z Exp + ] Ex; ~ e 5 Fz; + o Fap (H.7)
Finally, the determinant of the covariance matrix can be written as (40:572)
|Kul = |A||A+ BA™'B| (H.8)
But, A+ BA"'B = (A~ jB)(A™!)(A + jB) so that
|Kul = |4lQgllQalla™Y = |Qq/ (H.9)
Thus, the representation of the complex form of u is given as
p(@) = [27]™|Qq| ™" exp{~ 5(&t — y)" Q7! (& — 1hg)} (H.10)
where Q, = Kurun + i Ku, us- Now let ~a = 2Qy4 Then (83:214)
Qul =27"|Kqy| (H.11)
The complex form of u, that is 4, is given as
p(@) = [7]™¥|Kq|™ exp{~(a — thq) " K 5! (@ - 1hy)} (H.12)
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Here K = 2(Kuqus + jKu, us). For each element of the covariance matrix, for k,1 =

1... M, then u; and ug are uncorrelated since

Cov{ug[kjur[l]} = Cov{us(klu;[l]} and Cov{u;[kJugll]} = —Cov{ugp(k]u[l]} (H.13)




Appendiz I. Alternate Architecture

This appendix, shows how the proposed method of implementing the nonmaximally
decimated polyphase UDFT filter bank, though architecturally different, is mathematically
related to the method proposed by Rabiner and Crochiere when the decimation factor M
is related to the number of filters K by K = FM for integer F (55).

I.1 New Architecture

As shown in Figure 4.3 the new architecture for implementing the nonmaximally
decimated UDFT Sfilter bank is to zero pad each polyphase component filter with F — 1
zeros and decimate, by M, the input signal across all K channels prior to taking the IDFT
of the filter outputs at time n. Let hy[n] be a causal low pass filter of length N. This filter

can be decomposed into K polyphase components Ei(z) as (92)
K-
Z 2 ¥ Ey(2%)  where Ei(z Z ho[nK + k|2~ "X (I.1)
k=0 n=0

In terms of the time domain, the filter coefficients can be written as

ho([Kn/F + k| for n =pF for integer p
el = (1.2)

otherwise

Since ex[n] is nonzero only for integer multiples of F' the output of each polyphase compo-

nent can be written, without any loss of generality, as

ty[n] = i ho[Ki + k|z[Mn — k - Ki] (1.3)

T i=0
At time n, the output of the I'* channel is the IDFT of the sequence t;[n] so that

K-

,...‘

> ho[Ki+ klz[Mn — k — Ki]e*m*/K (1.4)

k=0 t=0

This is equivalent to calculating the Short Time Fourier Transform (STFT) of z[n| over the

window w{n] = ho[~n| , overlapped with N — M data points, and evaluating at w = 27l/K.
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1.2 Previous Architecture

As shown in Figure I.1a, in the method proposed by Rabiner and Crochiere, the
data is decimated by K, expanded by F, and filtered with K polyphase filters prior to
performing the IDFT on these filter outputs (55). Alternatively, as shown in Figure I.1b,
this implementation is equivalent to partitioning the polyphase filter coefficients into F
separate blocks, indexed by 1 <! < F. Each block is comprised of M separate branches,
indexed by 0 < m < M — 1, with the m*® branch polyphase filter P,,(z) given by

Pmin] = h[Mn+m] forn >0 (1.5)

The k** component of the polyphase representation for 0 < k < K — 1 can be evaluated in
terms of the block index ! and the branch index m as k = M (! —1) +m. The data entering
the m** branch of the I** block, z; m[n], is simply the signal z[n] shifted by M(l — 1) + m.

Tymin] =zn - M( -1) - m] (1.6)
This data is then decimated to produce the sequence
Um[n] = 2 [Kn] = z[Kn - M(l - 1) = m)| (I.7)
Upon expanding by the factor F, the new sequence becomes

Uy min/F] when n = Fn, for integer n
wln] = { ‘ s (L8)

0 otherwise

Thus, the output of the m*® branch of the I** block can be written as
oo
Sim[n] = me[i]v,,m[n -1 (1.9)
—t
Taking into account the F' — 1 zeros between the samples of v, ,[n| gives

sumln+ £ = S plFi+ flal o ~ Ki — M(1 = 1) - m] (L10)

1=0
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where f;=0,1,...,F — 1 and n = Fn, for integer n;. In terms of the prototype filter,

s,,m[Fn, + fl] = i ho[Kl + AMf‘ +m]z[Kn, - K1 - M(l - 1) - m] (Ill)

i=0
Since g n[n] is just 8, m[n — F + 1}, this output can be written as
GmFru+ i+ F=1]= Z ho|Ki+ M f; + m]z[Kny - M(l - 1) — Ki — m] (I.12)
i=0

At a specific time, n,, the IDFT is performed over the outputs from the polyphase filters.

Then, for time synchronization of each delayed filter output, gi.m[n,},
Fryy+ fi+F-l=n, (I.13)
forl=1,2,...F and f; =0,1,... F — 1. From the first block, | = 1, of M filter outputs
Fny+fi-1=Fn+ fi =1 (I.14)

Since 0 < f; < F — 1, then, for time synchronization, n; = n; + g;F, where

0 for l S F - .fl
g = (I.15)
1 forl>F+1-f
so that fy = f; — 1 +1— g, F. The output of the IDFT p** channel at time n, is
F M-1 .
Qp[no] = Z Z ‘Il,m[no]e"_kz[M(l—l)+m] (1.16)
1=1 m=0

Conversely, in terms of k, the output of the p** channel of the IDFT can be written as
K-1

Qplno] = Y qilno|e® ¥ (1.17)

k=0

I-3




1.8 Architecture Relationship

This section derives the relationships between the two architectures. From Equa-

tion 1.3, for ti[n], let k = M fi + m and n = Fn, + f; — | + 1. Substitution yields

trpemFru+ fi—14+1] = {::ho[Ki+Mf,+m]:c[M(Fn,—l+1+f,)—Ki—Mf,~m] (1.18)

1=0

Thus, referring to Equation 1.12, shows
tM/,+m[FTL1 +fg —l+1] =q,'m[an+F—l+f1] (119)

Making the substitution for n, = Fn; + F — 1+ f; and using Equation .15 with [ = 1
yields
Qim[no] = taisi-giFyem[Fr1 + fi] (1.20)

Using k = M(l — 1) + m gives

tup+elFny + fi for 0 < k< M(F—f,) -1
teomporo Fra + fi] for M(F-fi)<k<K-1

gk[no) = (1.21)
or equivalently,

qk [no] = tmod(Mf1+k)K [Fnl + f],] (122)

This shows the outputs of the channels of the K polyphase filters proposed be Rabiner and
Crochiere are time related to the outputs of the new method. At n,, with Q,(n,] = Q[p]
and Tp| = y,{Fn, + f1], the IDFT output is

K-1 K-1
Qlpl Y qlkle™™™ /X and  Tip] = Y t[k]e> /X (1.23)

Using the MODg operation defined by Equation 1.22 gives

Qlp] = e~ MA /KT (124)
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The outputs of the K filter banks introduced by Rabiner and Crochiere are related, via a
time dependent phase term, to the outputs of the nonmaximally decimated UDFT filter
bank.
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b: Equivalent Architecture
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Figure .1 Conventional Nonmaximally Decimated UDFT Filter Bank
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Appendiz J. Phase Noise Analysis

This appendix shows the covariance matrix of the noise introduced to the phase term
of a filtered complex sinusoid will, in general, depend on the frequency of the signal to be

estimated.

Let w be a zero mean normally distributed complex noise vector with covariance
matrix, Ky, derived from M samples of two noise sequences, w; = {wi(M —1]...w;[0]]7
for i = R, I so that w = wg + jw;. A single complex sinusoid embedded in this noise be

written as

jlm] = by dT 1M+ L j(m] = b2 ™ (1 + §[m] (J.1)

- —1
Here #{m| = vg[m| + jus[m] = [bleﬂ*""‘] w[m|. Assuming the magnitude, by, is large
in relation to the magnitude of the noise samples for all m, the magnitude and phase of

[1 4+ 9[m]] can be written as

|1+ 3[m]| = /(1T +vg[m])? + v[m]? = 1

(J.2)
{1+ 9[m]} = - tan'l{r&%} ~ vy[m]
Now, expanding vr{m] yields
1 .
vr[m] = b [cos(2m fym + ¢, )wi|m] — sin(27 fim + é1)wr[m]] (J.3)
1
For M samples, v; = [v;[M — 1]...v;[0]]T can be written as
1
v1=E-[Cw1—SwR] (J4)
1
where C and S are diagonal matrices with
Cii = cos(2n fi[M —i] + ¢1) (J.5)
S;,' = sin(27rf1 [M - Z] + ¢1) (J.6)

Since w; and wp are zero mean, normally distributed random vectors with covariance ma-

trices, Kw, w,, Kwgr,wr; and Ky, wy, the vector v is a zero mean, normally distributed
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random vector with covariance matrix

1 2
K’Ul = [E] [CK‘IDr.'w:CT - CKw;.wRST - SKwR.wlcT + SKwR'wRST] (J7)

In general, the covariance matrix of v; is dependent on f, the frequency to be estimated.
For the special case when wg[m] and wj[m| are uncorrelated and independent random

variables, then

o?

le,'wl = K'wn,wn = "2"1 (Js)
K’wn.'wl = Kwt.wn = [O] (Jg)
The covariance matrix, Ky,, becomes
Kyp, = [ 2 ]2 [CCT + §57) = [irf (3.10)
7 Vb, ~ Vb ‘

and is independent of f;.
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