4. TITLE AND SUBTITLE
LIPOSOMES AS ADJUVANTS FOR VACCINES

6. AUTHOR(S)
C.R. ALVING

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Walter Reed Army Institute of Research
Washington, D.C. 20307-5100

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Ft. Detrick, Frederick, MD 21702-5012

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)
REVIEW OF LIPOSOMES AS VACCINES
THIS IS A REVIEW ARTICLE

14. SUBJECT TERMS
LIPOSOMES
VACCINES

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

15. NUMBER OF PAGES
8

16. PRICE CODE

18. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

DTIC QUALITY IMPROVED 2
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

- C - Contract
- G - Grant
- PE - Program
- PR - Project
- TA - Task
- WU - Work Unit
- Element
- Accession
- No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number. (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

- DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."
- DOE - See authorities.
- NTIS - Leave blank.

Block 12b. Distribution Code.

- DOD - Leave blank.
- DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
- NASA - Leave Blank.
- NTIS - Leave Blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
New Generation Vaccines
Second Edition, Revised and Expanded

edited by

Myron M. Levine
University of Maryland School of Medicine
Baltimore, Maryland

Graeme C. Woodrow
Biotech Australia Pty. Ltd.
Sydney, New South Wales, Australia

James B. Kaper
University of Maryland School of Medicine
Baltimore, Maryland

Gary S. Cobon
Biotech Australia Pty. Ltd.
Sydney, New South Wales, Australia

Marcel Dekker, Inc.
New York • Basel • Hong Kong
Liposomes as Adjuvants for Vaccines

Carl R. Alving
Walter Reed Army Institute of Research, Washington, D.C.

I. INTRODUCTION

Numerous reviews of liposomes as carriers of antigens and adjuvants have been published since 1990 [1–7]. Liposomes have the advantage of being biodegradable vehicles that mimic the lipid structure of natural lipid bilayer membranes. Because of this, insoluble membrane antigens can often be reconstituted in a form that exposes purified antigenic epitopes, such as purified viral antigens, in conformations that are presumed to be similar to those found in the original organism [8,9]. Liposomes are also avidly ingested by phagocytes, cells then serving as antigen-presenting cells [10–12]. In addition to these natural attributes, liposomes also have the convenient characteristic of encapsulating soluble antigens and then serving as permeability barriers for slow release of the antigens. Besides antigens, additional adjuvants, such as lipid A (the lipid moiety of gram-negative bacterial lipopolysaccharide) or lipophilic muramyl dipeptide (MDP) derivatives and analogs, can be incorporated either into the lipid bilayer or encapsulated (if soluble) in the aqueous regions [3,6].

A. Safety of Adjuvants

Safety, and the perception of safety, of adjuvant formulations remains one of the most important considerations in the development of novel adjuvants [13–16]. A dramatic example of the role of safety comes from the experience with incomplete Freund’s adjuvant (IFA), a potent water-in-oil adjuvant formulation. More than 150,000 persons in the United States, and more than a million people worldwide, were successfully administered vaccines containing IFA as a constituent in the 1950s and 1960s [17]. This experience would suggest that IFA could fulfill the pressing worldwide need, particularly among developing nations, for a useful and inexpensive generic adjuvant. Unfortunately, although several retrospective studies have not found any increased incidence of cancer, autoimmune diseases, or any other apparent long-term toxicity in vaccinees [18–20], 40 localized cystic reactions requiring surgical intervention among 900,000 vaccinees in the United Kingdom in the 1960s caused abandonment of large-scale applications of IFA [17]. Despite a recommendation in 1968 for resumption of widespread use of IFA in the United States [17], the perception, whether appropriate or not, that IFA might be unsafe has burdened IFA with a difficult and tarnished historical reputation that may raise hurdles for ultimate acceptance by users and vaccine regulatory agencies. The historical lesson of IFA, in which local cystic reactions prevented commercial acceptance of a potent vaccine adjuvant, has been a unique motivating force that has driven vaccine developers to achieve safety optimization of modern adjuvants, including liposomal adjuvant formulations.

In the course of studying the preclinical safety of an influenza vaccine containing IFA, more than seventy monkeys were studied histologically and serologically for more than a year, and local reactions were minimized or eliminated by appropriate refinement of the IFA constituents [17]. Recently, the onerous problem of preclinical testing of novel experimental adjuvants, particularly those that have been previously tested in a phase I trial with a different antigen in humans, has been ameliorated in the United States by productive communication between vaccine makers and the Food and Drug Administration, resulting in considerable simplification and some degree of standardization of phase I preclinical safety testing [21].

207
Table 1 Induction of Cytotoxic T Lymphocytes by Liposome-Encapsulated Antigen

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Liposome composition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHC antigens (H-2 in mice)</td>
<td>Egg PC/CHOL (70:30 w/w)</td>
<td>Hale [29]</td>
</tr>
<tr>
<td>MHC antigens (H-2 in mice)</td>
<td>Egg PC/CHOL (70:30 w/w)</td>
<td>Hale and McGee [30]</td>
</tr>
<tr>
<td>Human colon tumor antigens</td>
<td>PC/CHOL/PA (7:2:1)</td>
<td>Raphael and Tom [31, 32]</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>DOPC/DOPS (4:1) and DOPE-PHC (4:1)</td>
<td>Harding et al. [33]</td>
</tr>
<tr>
<td>Murine hemoglobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovine ribonuclease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hen egg lysozyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>DOPC/DOPS (5:2:3)</td>
<td>Reddy et al. [34]</td>
</tr>
<tr>
<td>In vivo studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemagglutinin neuraminidase</td>
<td>MDP and MDP/CHOL (1:1 w/w)</td>
<td>Nerome et al. [36]</td>
</tr>
<tr>
<td>Ovalbumin β-galactosidase</td>
<td>DOPE/DOSG (5:2:3)</td>
<td>Reddy et al. [37]</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>DOPE/DOSG (1:1) and DOPC/PS/CHOL (5:2:3)</td>
<td></td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>DOPE/DOSG (1:1) and DOPC/PS/CHOL (5:2:3)</td>
<td>Zhou et al. [35]</td>
</tr>
<tr>
<td>Holocaust polyoma virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB-231 breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrophage-monocyte fusion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| [**Key:** CHEMS, cholesterol hemisuccinate; CHOL, cholesterol; CS, circumsporozoite; DCP, dicetyl phosphate; DMPC, dimyristoyl phosphatidylcholine; DMPG, dimyristoyl phosphatidylglycerol; DOPC, dioleoyl phosphatidylcholine; DOPE, dioleoyl phosphatidylethanolamine; DOPS, dioleoyl phosphatidylserine; DOSG, 12-dioleoyl-sn-3-sn-glycerol; DPPC, dipalmitoyl phosphatidylcholine; DPPG, dipalmitoyl phosphatidylglycerol; DPG, dipalmitoyl succinylglycerol; lysoPC, lyso phosphatidylcholine; lysoPE, lyso phosphatidylethanolamine; MHC, major histocompatibility antigen gene complex; PA, phosphatidyacetic acid; PC, phosphatidylcholine; PHC, palmitoyl homocysteine; PS, phosphatidylserine; SA, stearylalmine.]
| Multiple antigen peptide system (MAPS) from GP120 of HIV-1 | | |
| (B2M-P3C) | | |
| Glycoprotein B from HSV | | |
| Ovalbumin | Cationic lipids (dioleoyloxypropyl-trimethyl- | Walker et al. [41] |
| Repeatless P. falciparum CS protein | ammonium methyl sulfate DOTAP) | |
| SIV gag protein-derived peptide (pinC) | Commercially available DOTAP | Chen et al. [42] |
| SIV gag protein-derived peptide (M90-07A) | DMPC/DMPG/CHOL/lipid A (0.9:0.1:0.75:0.026) | White et al. [43] |
| | PS/CHOL (9:1)-envelope glycoproteins and | Miller et al. [44] |
| | lipids of Sendi virus | |
| | DMPC/DMPG/CHOL/lipid A (0.9:0.1:0.75:0.026) | Yasutomi et al. [45]|

II. SAFETY AND POTENCY OF LIPOSOMAL VACCINES

Liposome formulations, including liposomes containing extremely high concentrations of potentially dangerous endotoxic lipid A, have regularly and routinely passed the current preclinical safety tests in the United States and have shown little reactogenicity in human trials [22]. Several unpublished phase 1 trials, using three different antigens—two malaria antigens and one human immunodeficiency virus (HIV) antigen—currently involving more than a hundred volunteers,
<table>
<thead>
<tr>
<th>Disease or etiologic agent</th>
<th>Antigen</th>
<th>Route of immunization</th>
<th>Animal</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Killed Plasmodium falciparum merozoite antigen</td>
<td>IM</td>
<td>Owl monkey</td>
<td>Siddiqui et al. [46,47]</td>
</tr>
<tr>
<td>Malaria</td>
<td>Multiple antigen peptide from Plasmodium yoelii circumsporozoite protein</td>
<td>SC</td>
<td>BALB/cByJ mice</td>
<td>Wang et al. [48]</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Hexasaccharide-lipid conjugate</td>
<td>IP, or IV</td>
<td>BALB/c mouse</td>
<td>Snippe et al. [49]</td>
</tr>
<tr>
<td>Epstein-Barr virus--induced lymphoma</td>
<td>MA gp340</td>
<td>IP</td>
<td>Cottontop tamarin</td>
<td>Epstein et al. [50]</td>
</tr>
<tr>
<td>Rabies virus</td>
<td>Glycoprotein</td>
<td>IM</td>
<td>Hamster</td>
<td>Perrin et al. [51]</td>
</tr>
<tr>
<td>Snake venom</td>
<td>Whole venom</td>
<td>SC</td>
<td>TFW mouse</td>
<td>New et al. [52]</td>
</tr>
<tr>
<td>Carpet viper</td>
<td>Whole venom</td>
<td>IV</td>
<td>Sheep</td>
<td>Theakston et al. [53]</td>
</tr>
<tr>
<td>Rattlesnake</td>
<td>Whole venom</td>
<td>SC or IV</td>
<td>TFW mouse</td>
<td>Freitas et al. [54]</td>
</tr>
<tr>
<td>Scorpion toxin</td>
<td>Toxic fraction</td>
<td>SC</td>
<td>C57B1/6 mouse</td>
<td>Chaves-Olortegui et al. [55]</td>
</tr>
<tr>
<td>Dental caries induced by: Streptococcus sobrinus</td>
<td>Ribosomal protein</td>
<td>PO</td>
<td>Germ-free rat</td>
<td>Gregory et al. [56]</td>
</tr>
<tr>
<td>Dental caries induced by: S. mutans</td>
<td>Anti-idiotypic antibodies</td>
<td>PO</td>
<td>Germ-free rat</td>
<td>Jackson et al. [57]</td>
</tr>
<tr>
<td>S. mutans</td>
<td>Serotype-specific carbohydrate</td>
<td>PO</td>
<td>Germ-free rat</td>
<td>Michalek et al. [58]</td>
</tr>
<tr>
<td>Melanoma</td>
<td>B16 tumor-associated antigens</td>
<td>SC</td>
<td>C57B1/6 mouse</td>
<td>Phillips et al. [59]</td>
</tr>
<tr>
<td>Influenza A virus</td>
<td>Free inactivated virus (mixed with liposomes containing IL-2)</td>
<td>IP</td>
<td>BALB/c mouse</td>
<td>Mbawuike et al. [60]</td>
</tr>
<tr>
<td>Herpes simplex virus</td>
<td>Glycoprotein D</td>
<td>IC</td>
<td>Guinea pig (female Hartley)</td>
<td>Ho et al. [61,62]</td>
</tr>
<tr>
<td>Herpes simplex virus</td>
<td>Glycoprotein D</td>
<td>IP</td>
<td>C3H/HeN mouse</td>
<td>Brynestad et al. [63]</td>
</tr>
<tr>
<td>Herpes simplex virus</td>
<td>Free glycoprotein D (mixed with liposomes containing IL-2)</td>
<td>SC</td>
<td>Guinea pig (female Hartley)</td>
<td>Ho et al. [64]</td>
</tr>
<tr>
<td>Leishmania major</td>
<td>Lipophosphoglycan and gp63</td>
<td>IV</td>
<td>BALB/c mouse</td>
<td>Kahl et al. [65]</td>
</tr>
<tr>
<td>(cutaneous leishmaniasis)</td>
<td>Membrane antigen p30</td>
<td>IP</td>
<td>Swiss-Webster mouse</td>
<td>Bülow and Boothroyd [66]</td>
</tr>
<tr>
<td>Toxoplasma gondii</td>
<td>Ovalbumin</td>
<td>IV</td>
<td>C57BL/6 mouse</td>
<td>Zhou et al. [67]</td>
</tr>
<tr>
<td>Thymoma (transfected with ovalbumin)</td>
<td>Four SIV envelope-β-galactosidase fusion proteins</td>
<td>IM</td>
<td>Rhesus macaque</td>
<td>Alving et al. [68]</td>
</tr>
</tbody>
</table>
have now supported the previous observation of minimal or absent systemic or local reactogenicity of an aluminum hydroxide–adsorbed liposomal adjuvant formulation containing high concentrations of lipid A [22]. The liposomal formulation has consistently induced very high levels of antibodies, surpassing the immunostimulating capabilities of many other adjuvants. Although liposomes induce strong specific lymphoproliferative responses in humans, in two instances where they have been examined, the liposomes have not yet succeeded (nor have other adjuvants) in causing any substantial induction of circulating cytotoxic T lymphocytes (CTLs).

A liposomal hepatitis A vaccine manufactured in Switzerland has been found to have an excellent record of safety and potency and has recently been commercially licensed in Switzerland [9,23–27]. As compared with aluminum hydroxide adsorption of the antigen, the liposomal hepatitis A vaccine exhibited significantly reduced pain at the site of injection in volunteers [9,24]. Very high titers of antibodies were induced by a single injection of the vaccine [24].

When tested in nursing home patients, a liposomal influenza vaccine containing hemagglutinins from three strains of influenza provided the highest geometric mean titers, the highest rates of fourfold or more increases of titer, and the highest rates of protective titers against influenza as compared with commercial whole-virus vaccine and subunit vaccines [26]. A multiantigen “super” combination vaccine is being planned that will contain hepatitis A antigen, hepatitis B surface antigen, diphtheria, alpha- and betatetanus, as well as hemagglutinin and neuraminidase from three different influenza strains [27]. Although the phenomenon of “antigenic competition” did cause some interference between antigens in this complex vaccine, this was largely or completely overcome by changing the ratios of constituents.

A liposomal vaccine containing hemagglutinin and neuraminidase antigens from influenza was tested in a phase I trial in Japan [28]. The liposomal adjuvant formulation included a lipophilic MDP constituent (B30-MDP). When compared with three hemagglutinin vaccines that were currently being used, the liposomes induced higher antibody titers against two strains and lower titers against the third. The formulation exhibited some degree of systemic and local reactogenicity that was attributed at least in part to the B30-MDP.

III. GENERATION OF CYTOTOXIC T LYMPHOCYTES

Liposomes have been demonstrated by many laboratories to have considerable potency, both in vitro and in vivo as adjuvant formulations for induction of CTLs in experimental animal models. Table 1 summarizes many of the studies that have been published in this area.

IV. ANIMAL MODELS OF PROTECTIVE IMMUNITY

Although liposomes have been successfully applied as potent immunostimulating agents for vaccines in humans, numerous additional potential vaccine applications could be developed. The scope of potential vaccine applications has been demonstrated with appropriate animal models. Table 2 summarizes many of the published reports in which putative liposomal vaccines have been tested for the ability to induce protective immunity against experimental challenge with the appropriate disease-causing agent. The range of possible applications provides considerable optimism that the liposomal platform will be a useful adjunct to the development of a broad spectrum of modern vaccines.

REFERENCES

7. Alving CR, Koulchin V, Glenn GM, Rao M. Liposomes as carriers of peptide antigens: Induction of antibodies and cytotoxic T lymphocytes to con-
23. Product license No. 572, Hepatitis A vaccine, issued to Swiss Serum Institute on 15 July 1994 by Section of Immunobiological Products of Bundesamt für Gesundheitswesen, Switzerland.

