Re: "Interfacial Culprits: Targeting Proteins of Byssal Adhesion"
Principal Investigator: Dr. J. Herbert Waite.

Dear Dr. Ward:

Enclosed is the final report for ONR grant N00014-89-J-3121. The report summarizes the significant results obtained during the entire period of support and is being distributed as per your recommendations. Please call if you have questions or need additional information.

Sincerely,

J. Herbert Waite
Professor, Marine Chemistry/Biochemistry

cc: Defense Technical Information Center (DTIC)
Barry L. Copeland - Administrative Contracting Officer, ONR
Director - Naval Research Laboratory
CMS Business Office - University Of Delaware Research office
Interfacial Culprits: Targeting Proteins of Byssal Adhesion.

J. Herbert Waite

University of Delaware
77-79 E. Delaware Avenue,
Newark, DE 19716

Office of Naval Research
800 North Quincy Street,
Arlington, VA 22217-5660

Marine mussels (*Mytilus*) form permanent adhesive bonds with hard surfaces in their environment. The adhesive plaques of the byssus are situated in closest proximity with the bonded foreign surface. Of the four proteins known to be present in byssal plaques, we have isolated, characterized, and cloned several variants of Mefp-3. These are small basic proteins (5 to 7 kDa) with two prominent post-translational modifications, 3, 4-dihydroxyphenylalanine and 4-hydroxyarginine. Laser desorption studies of byssal plaques indicate Mefp-3s to occur at or near the interface.
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1.	Agency Use Only (Leave blank).
Block 2.	Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
Block 3.	Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).
Block 4.	Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
Block 5.	Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels: C - Contract, G - Grant, PE - Program, PR - Project, TA - Task, WU - Work Unit, Accession No.
Block 6.	Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
Block 7.	Performing Organization Name(s) and Address(es). Self-explanatory.
Block 8.	Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
Block 9.	Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
Block 10.	Sponsoring/Monitoring Agency Report Number. (If known)
Block 11.	Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.
Block 12a.	Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).
Block 12b.	Distribution Code.
Block 13.	Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.
Block 14.	Subject Terms. Keywords or phrases identifying major subjects in the report.
Block 15.	Number of Pages. Enter the total number of pages.
Block 16.	Price Code. Enter appropriate price code (NTIS only).
Block 20.	Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
FINAL REPORT

Grant#: N00014-89-J-3121

PRINCIPAL INVESTIGATOR: Dr. Herbert Waite

INSTITUTION: University of Delaware

GRANT TITLE: Interfacial Culprits: Targetting Proteins of Byssal Adhesion

AWARD PERIOD: 1 January 1993 - 30 September 1996

OBJECTIVE: To investigate the identity and distribution of proteins at or near the adhesive interface of the byssus, the holdfast structure in fouling marine mussels (Mytilus).

APPROACH: Normal cross-linking of proteins in the byssal adhesive plaques is perturbed by a temperature shock i.e. 18° to 8°C. Proteins are extracted from the plaques using acidic buffers containing 8M urea. These proteins are purified by reversed phase HPLC and sequenced by Edman chemistry and matrix-assisted laser desorption ionization mass spectrometry coupled with carboxypeptidase digestion. Sequence of other variants is generated by the polymerase chain reaction using oligonucleotide primers constructed from N- and C-terminal sequences.

ACCOMPLISHMENTS: Mefp-3 is a family of small proteins ranging in size from 5,000 to 6,500 daltons. All have similar compositions in which glycine, asparagine, 3,4-dihydroxyphenylalanine (DOPA) and tryptophan prevail, and all contain the exotic modification 4-hydroxyarginine. Of the estimated 30 or more variants in the family, we used pulsed liquid automated Edman sequencing in combination with matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) to elucidate the primary structure of variant F (collaborator V. Papov at MIT). Using the sequence, we (collaborator K. Inoue at MBI, Japan) have constructed synthetic oligonucleotide primers to reverse transcribe and PCR-amplify related mRNA transcripts and derive complete sequences for these using PCR rapid amplification of cDNA ends (RACE). The complete cDNAs of seven variants have been discovered and many others are suggested. These results reflect a conserved N-terminus and hypervariable C-terminus. The functional basis for variability is not known. In order to determine whether Mefp-3 has a role in byssal adhesion, we (collaborator Mark Ross at NRL) have irradiated the underside of α-cyano 4-hydroxycinnamic acid-impregnated byssal plaques. It was found
that molecules with masses in the range 5-6.5 kDa prevail near the interface. Many of these correspond to Mefp-3 precursors isolated from the foot, even to the point of having similar distributions in arginine hydroxylation. Curiously, there appears to be some correlation between surface type, e.g. glass, steel, polyethylene etc, and the variant of Mefp-3 detected.

Methods developed during the grant period include a temperature-induced retardation of cross-linking in the byssus, protocol for isolation of a highly basic family of peptides, MS-MS characterization of hydroxylated post-translational modifications, laser desorption of interfacial proteins from the adhesive plaques, and a technique for measuring the stability constants between DOPA containing peptides and Fe (III).

CONCLUSIONS: Marine mussels (*Mytilus* species) are one of many invertebrate groups that form permanent adhesive bonds with hard surfaces in their environment. The adhesive plaques of the byssus are situated in intimate proximity with the bonded foreign surface. We have isolated four proteins extracted from byssal plaques. Two were previously characterized: *Mytilus* foot proteins (Mefp) 1 and 2. A third, Mefp-3, has recently been sequenced by three independent methods: Edman degradation, laser desorption mass spectrometry, and cDNA sequences. Direct irradiation of matrix-impregnated plaque bases for laser desorption-ionization mass spectrometry suggests that Mefp-3 is located at or near the adhesive interface.

SIGNIFICANCE: Our studies suggest that Mefp-3 is at or near the adhesive interface of byssal plaques. Whether that makes it the culprit of fouling remains to be determined in future studies.

PATENT INFORMATION: None.

AWARD INFORMATION: None.

