Maintenance Hazard Simulation: A Study of Contributing Factors

John Ianni
HUMAN RESOURCES DIRECTORATE
LOGISTICS RESEARCH DIVISION
2698 G Street
Wright-Patterson AFB OH 45433 7604

Kirby Clark
Lynnette Blaney
Robert Hale

BATTELLE MEMORIAL INSTITUTE
505 King Avenue
Columbus OH 43201 2693

Scott Ziolek
Thomas Bridgman

COMPUTER SCIENCES CORPORATION
1375 Piccard Drive
Rockville MD 20850

January 1997

Approved for public release; distribution is unlimited

Human Resources Directorate
Logistics Research Division
2698 G Street
Wright-Patterson AFB OH 45433 7604
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation, or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this paper and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This paper has been reviewed and is approved for publication.

John D. Ianni
JOHN D. IANNI
Program Manager

Bertram W. Cream, Chief
Logistics Research Division
Maintenance Hazard Simulation: A Study of Contributing Factors

Robert Hale
Kirby Clark
Lynnette Blaney

Battelle Memorial Institute
505 King Avenue
Columbus OH 43201 2693

Computer Sciences Corporation
1375 Piccard Drive
Rockville MD 20850

Armstrong Laboratory
Human Resources Directorate
Logistics Research Division
2698 G Street
Wright-Patterson AFB, OH 45433-7604

11. SUPPLEMENTARY NOTES
Armstrong Laboratory Monitor: John Ianni, AL/HRGA, DSN 785-1612. This paper is a reprint from the Third Annual Symposium on Human Interactive with Complex Systems, Dayton OH, 25-28 Aug 96, IEEE Computer Society

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This paper develops a foundation for the representation of hazardous conditions for animated maintenance simulation. Specifically, the objective of this study was to furnish methods to calculate and display hazard thresholds in a simulation system called DEPTH (Design, Evaluation for Personnel, Training, and Human Factors). DEPTH allows maintenance procedures to be graphically simulated using three-dimensional Human Figure Models (HFM) and computer-aided design geometry. By integrating existing equations and data to generate hazardous regions, DEPTH will be able to indicate when a human figure comes too close to an “unsafe” object. Once the capability is incorporated in DEPTH, it will be possible to develop safer weapon systems and maintenance procedures. This study focused on radiant and contact properties of objects including operating temperature, voltage, and noise as opposed to ambient factors such as arctic or tropical conditions.

14. SUBJECT TERMS
Maintenance
Personnel
Simulation
Training

Design
Hazard
Human Factors

15. NUMBER OF PAGES
18

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
SAR
Maintenance Hazard Simulation:
A Study of Contributing Factors

J. Ianni, K. Clark, L. Blaney, R. Hale,
S. Ziolek & T. Bridgman

Reprint

from
Third Annual Symposium on Human
Interaction with Complex Systems
Dayton, Ohio
August 25-28, 1996
Maintenance Hazard Simulation: A Study of Contributing Factors

John Ianni
U. S. Air Force Armstrong Laboratory

Kirby Clark, Lynnette Blaney and Robert Hale
Battelle Memorial Institute

Scott Ziolek and Thomas Bridgman
Computer Sciences Corporation

Abstract
This paper develops a foundation for the representation of hazardous conditions for animated maintenance simulation. Specifically, the objective of this study was to furnish methods to calculate and display hazard thresholds in a simulation system called DEPTH (Design, Evaluation for Personnel, Training, and Human Factors). DEPTH allows maintenance procedures to be graphically simulated using three-dimensional Human Figure Models (HFM) and computer-aided design geometry. By integrating existing equations and data to generate hazardous regions, DEPTH will be able to indicate when a human figure comes too close to an "unsafe" object. Once the capability is incorporated in DEPTH, it will be possible to develop safer weapon systems and maintenance procedures. This study focused on radiant and contact properties of objects including operating temperature, voltage, and noise as opposed to ambient factors such as arctic or tropical conditions.

Introduction
The DEPTH software provides maintenance analysis tools for evaluating logistics support requirements. In the design process, the time and cost required to modify a system's configuration can be significantly less using DEPTH compared to a fabricated mockup. By the time physical mockups are built, it is often too late to make changes for maintainability issues. DEPTH simulates a variety of man-machine interface tasks during design processes allowing necessary changes to be made before design implementation. Using DEPTH's HFM, designers can evaluate alternate system configurations and procedures to optimize maintainability. For example, designers can evaluate a removal operation as depicted by DEPTH's HFM in Figure 1.

Several factors are considered in maintenance simulation analyses. Many HFM programs determine if a human can reach an object and some even evaluate human strength limitations. However no graphical simulation determines when the HFM contacts or is in range of a potential hazard.

Given the importance of workplace safety, weapon system developers have expressed a need to evaluate
these factors in HFM simulations. For example, do maintainers troubleshoot a system in a noisy environment that requires ear protection? Will they be exposed to a heat source during a maintenance task? Will technicians be exposed to a high level of radio frequency or microwave radiation?

With HFM simulations, it is possible to display hazard conditions in real time. *Jack* [14], the articulated figure modeling system integrated into DEPTH, can be used to demonstrate cumulative effects of simulated radiant objects on HFMs with respect to the amount of hazard source potential, distance from hazard source, and time exposed. Simulated hazard results are given both numerically and visually by computation and gradual changes in the color around the affected areas, respectively. Figure 2 displays how radiant effects can be projected onto surfaces in close proximity to a hot valve. The projections from the source onto the arms and pipe are simulated using color changes.

![Figure 2. Projection of radiant effects.](image)

A hazard’s radiant properties and the human exposure limits are dependent on the amount of energy of the source, distance from the HFM to the source, and total exposure time. This concept is important for simulation purposes because the technique used to evaluate each hazard can be similar. Thus, the programmer implementing this functionality for DEPTH is not required to write special code for heat, noise, and other radiant effects. The DEPTH simulation will govern each condition in the same manner with the exception of the propagation algorithm and data used to evaluate exposure limits.

This study concentrated on evaluating existing formulas and data which provide DEPTH with relevant information to assess simulated hazards. The formulas and data may be used for computing the resulting exposure effects by the HFM and warning the user of high risk exposures.

The user will also be able to define their own regions independent of the algorithms in this study. An organization may have its own safety policies that are more or less restrictive than those stated in this report. Or there may be a need to simulate hazards that are not covered in this paper. For example, the intake of an operating jet engine is a significant hazard. A region around the engine should be defined as a hazard, but this is beyond the scope of this study.

Method

A search of hazard information including databases, military standards and industry standards was conducted to locate algorithms and data regarding human exposure limits. Over 4000 abstracts were collected and 47 references reviewed. Relevant environmental data and algorithms relating to human exposure limits for current, voltage, illumination, noise, vibration, temperature, microwave radiation, radio frequency radiation, x-radiation, gamma radiation, and ultraviolet radiation were collected.

Results

Table 1 presents the environmental data and algorithms consolidated for DEPTH. The categories studied are discussed in the following sections.

Current and Voltage

Specifications for safe exposure limits to electrical current and voltage were developed based on Hammer’s [6] resistance values for wet and dry hands. As described by Hammer, electrical current will stream through the body when it contacts a voltage or current source. DEPTH’s HFM will display a warning message when electrical shock is probable, and manifest a distinct color for all objects possessing dangerous current or voltage levels.

Lighting Conditions

Military Standard 1472-D [9] provides specifications for illumination including minimum lighting requirements. For a particular maintenance task, the illumination algorithm described in Table 1 provides the maximum allowable distance (Dmax) from the source to the work surface. If the actual distance is greater than Dmax, then DEPTH will display a warning message.
specifying that low illumination levels exist for a particular maintenance task.

Noise

Noise level limits, developed by OSHA [10], are used to describe two grades of hazards. The first hazard level, 80 dB or greater but less than 115 dB, permit short-term human exposure. The second hazard level, 115 dB or greater, is the maximum human exposure limit. Colored, transparent spheres emanating from each noise source determine the boundaries of each noise hazard in the DEPTH simulation. Future DEPTH versions may calculate the eight-hour time-weighted average (TWA) sound level.

Wind Chill Factor

The wind chill temperature, as defined by ASHRAE [2], provides a reliable method to express the combined effects of wind velocity and air temperature. If the wind chill temperature falls below safe exposure limits, then DEPTH will warn the user that the HFM is being exposed to freezing temperatures.

X-Radiation and Gamma Radiation

Maximum exposure limits for X-radiation and gamma radiation as defined by Cheever [3] are represented by graphical radiation hazard shells which define the minimum distance a human should operate from a radiation source. Dissipated radiation is dependent upon the source material.

Microwave, Radio and Ultraviolet

Maximum exposure limits for microwave and radio frequency radiation as defined by IEEE C95.1 [7], and ultraviolet radiation as defined by Largent, Olishifski and Anderson [8] and ACGIH [1] are given in Table 1. The algorithms for these environmental conditions are dependent upon several “look-up” tables.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Inputs</th>
<th>Algorithm</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current [6]</td>
<td>1. I = Current source in amperes</td>
<td>Safety threshold limit values:</td>
<td>If there is an alternating current source, then current (I) should be ≤ 4 mA, else a warning message is provided: “Danger, Electrical Shock Probable.”</td>
</tr>
<tr>
<td></td>
<td>2. Check to see if the source is alternating current (AC) or direct current (DC)</td>
<td>AC ≤ 4 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC ≤ 15 mA</td>
<td></td>
</tr>
<tr>
<td>Voltage [6]</td>
<td>1. V = Voltage of the source in volts.</td>
<td>Wet Hand Voltage Conversion Algorithm: I = V / 15,000Ω</td>
<td>If there is an alternating current source, then current (I) should be ≤ 4 mA, else a warning message is provided: “Danger, Electrical Shock Probable.”</td>
</tr>
<tr>
<td></td>
<td>2. Check to see whether the hand is wet or dry.</td>
<td>Dry Hand Voltage Conversion Algorithm: I = V / 400,000Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Check to see if the source is alternating current (AC) or direct current (DC).</td>
<td>Variables: V= Voltage in volts I = Current in amperes</td>
<td>If there is a direct current source, then current (I) should be ≤ 15 mA, else a warning message is provided: “Danger, Electrical Shock Probable.”</td>
</tr>
</tbody>
</table>

Table 1. Environment Data and Algorithms

156
Table 1. Environment Data and Algorithms (continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Inputs</th>
<th>Algorithm</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting Conditions [9]</td>
<td>1. $I =$ Intensity of the source in candela (cd)
 2. $D =$ Distance from the source to the surface in meters.
 3. $L_n =$ illumination requirements for surface at which the specific task is being performed in lux (lx)
Note: L_n is defined by MIL-STD 1472D.</td>
<td>Illumination Algorithm, Inverse square law: $D_{max} = (I / L_n)^{1/2}$ Additional Variable: $D_{max} =$ Maximum allowable distance from the source to surface, in meters (m) Other relevant equations: 1 cd = 12.57 lm 1 lx = 1 lm/m² 1 fc = 1 lm/ft² 1 fc = 10.76 lx</td>
<td>If the distance (D) is greater than D_{max}, then a warning message is provided: “The illumination level is too low for this working condition.”</td>
</tr>
<tr>
<td>Noise [10]</td>
<td>1. $dB_0 =$ Noise level measured 10 cm from the source.</td>
<td>80 dB Hazardous Shell Radius Algorithm: $R_1 = 0.1 \times (10 \ (dB_0 - 80) / 10)^{1/2}$ 115 dB Hazardous Shell Radius Algorithm: $R_2 = 0.1 \times (10 \ (dB_0 - 115) / 10)^{1/2}$ Variables: $dB_0 =$ Noise level measured 10 cm from the source $R_1 =$ the radius of the hazard shell in meters for a 80 dB sound level $R_2 =$ the radius of the hazard shell in meters for a 115 dB sound level</td>
<td>$R_1 =$ the radius of the hazard shell in meters for a 80 dB sound level. If human is inside of R_1, then a warning message is provided: “Caution, human is entering noise area.” $R_2 =$ the radius of the hazard shell in meters for a 115 dB sound level If human is inside of R_2, then a warning message is provided: “Danger, human is entering high level noise area that exceeds safety threshold.”</td>
</tr>
<tr>
<td>Condition</td>
<td>Inputs</td>
<td>Algorithm</td>
<td>Output</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Wind Chill Factor</td>
<td>1. (V =) wind velocity in m/s</td>
<td>Wind chill temperature algorithm:</td>
<td>If (t_w) is (< 0), then a warning message is provided:</td>
</tr>
<tr>
<td></td>
<td>2. (t_a =) ambient air temperature in deg C</td>
<td>(t_{eq} = -0.04544 \times \frac{(10.45 + 10 \times \sqrt{V} - V) \times (33 - t_a)}{(33 - t_o)} + 33)</td>
<td>“Danger, human is being exposed to a below freezing temperature.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: This equation is not reliable if (V > 22.2) m/s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variables: (V =) wind velocity in m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(equation only reliable if (V < 22.2) m/s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_a =) Ambient air temperature in deg C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_w =) Wind chill temperature in deg C</td>
<td></td>
</tr>
<tr>
<td>Radio [7]</td>
<td>1. (f =) frequency.</td>
<td>Refer to Table 2. The algorithm depends upon the frequency of the source.</td>
<td>If a radio radiation source is present, then a warning message is provided:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variables: (E =) electric field strength</td>
<td>“Danger, human is being exposed to radio frequency radiation. The time exposure limit is ((t))”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(H =) magnetic field strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S =) power densities (S), and induced currents, as they relate to a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>specific frequency (f =) frequency (MHz)</td>
<td>Note: The DEPTH program will calculate the exposure time limit ((t)) based on Table 2.</td>
</tr>
<tr>
<td>Microwave [7]</td>
<td>1. (S =) power density, W/cm(^2)</td>
<td>Refer to Table 3. The algorithm depends upon the frequency of the source</td>
<td>If power density (> 500) W/cm(^2), then a warning message is provided: “Danger,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and type of environment.</td>
<td>human is being exposed to high levels of microwave radiation.”</td>
</tr>
<tr>
<td></td>
<td>2. (f =) frequency.</td>
<td>Variables: (E =) electric field strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(H =) magnetic field strength</td>
<td>If power density (< 100) W/cm(^2), then there is no limit on time of exposure. A warning message is not required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S =) power densities (S), and induced currents, as they relate to a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>specific frequency (f =) frequency (MHz)</td>
<td>If power density (> 100) W/cm(^2) and less than 500 W/cm(^2), then the DEPTH program will calculate exposure time limits based on Table 3.</td>
</tr>
<tr>
<td>Condition</td>
<td>Inputs</td>
<td>Algorithm</td>
<td>Output</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>X-radiation [3]</td>
<td>1. Number of Roentgens per hour given off by the source</td>
<td>X-Radiation Hazard Shell Radius Algorithm: (d = ((R/hr)/MPD)^{1/2})</td>
<td>If human < d from the source, then a warning message is provided: “Danger, human is being exposed to high levels of X-radiation.”</td>
</tr>
<tr>
<td></td>
<td>2. Maximum Permissible Dose in Roentgens per hour</td>
<td>Variables: (d =) distance in feet (R/hr =) Roentgens per hour (MPD =) Maximum Permissible Dose in R/hr</td>
<td>If human ≥ d from the source, a warning message is not required.</td>
</tr>
<tr>
<td>Gamma Radiation [3], [13]</td>
<td>1. Name of the radioactive source and its quantity (or activity) in curies (C)</td>
<td>Allowable Dose Rate Per Hour Algorithm: (A = MPD/40) hours</td>
<td>If human < d from the source, then a warning message is provided: “Danger, human is being exposed to high levels of gamma radiation.”</td>
</tr>
<tr>
<td></td>
<td>2. (E =) energy being emitted by the radioactive source</td>
<td>Retrogen Per Hour at 1 Foot Algorithm: (R/hr) at 1 ft = (6) CEF</td>
<td>If human ≥ d from the source, a warning message is not required.</td>
</tr>
<tr>
<td></td>
<td>3. (F =) fractional yield</td>
<td>Gamma Hazard Shell Radius Algorithm: (d = (R/hr) at 1 foot/A)^{1/2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Maximum Permissible Dose in Roentgens/week</td>
<td>Variables: (R =) Roentgens (C =) strength of the source in curies (E =) gamma-radiation energy in MeV (F =) fractional yield of gamma-radiation per disintegration (d =) gamma hazard shell radius in feet (MPD =) Maximum Permissible Dose in R/week (A =) allowable dose rate per hr.</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet [1], [8]</td>
<td>1. (\lambda =) wavelength</td>
<td>For (\lambda) of 320 nm to 400 nm and (E < 1) mW/cm(^2) (t = 1000) sec.</td>
<td>If an ultraviolet radiation source is present, then a warning message is provided: “Danger, human is being exposed to ultraviolet radiation. The time exposure limit is (t).”</td>
</tr>
<tr>
<td></td>
<td>2. (E =) total irradiance OR (E_{eff} =) effective irradiance</td>
<td>For (\lambda) of 200 to 315 nm, with (E_{eff}) known (t = 0.003) J/cm(^2)/(E_{eff}) (\lambda =) wavelength in nm (t =) time exposure limit in seconds</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Maximum Permissible Exposure of Radio Frequency Radiation [7]

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (H) (A/m) | Power Density (S) E-Field (mW/cm^2) | Power Density (S) H-Field (mW/cm^2) | Average Exposure Time | |E|^2, | |H|^2 or S (minutes) |
|-----------------------|----------------------------------|----------------------------------|-------------------------------------|-------------------------------------|----------------------|-----------------|----------------|
| 0.003 - 0.1 | 614 | 163 | 100 | 1000000 | 6 | | |
| 0.1 - 3 | 614 | 16.3 / f | 100 | 10000 / f S | 6 | | |
| 3 - 30 | 1842 / f | 16.3 / f | 900 / f S | 100000 / f S | 6 | | |
| 30 - 100 | 61.4 | 16.3 / f | 1 | 10000 / f S | 6 | | |
| 100 - 300 | 61.4 | 0.163 | 1 | 1 | 6 | | |
| 300 - 3000 | | | f / 300 | f / 300 | 6 | | |
| 3000 - 15000 | | | 10 | 10 | 6 | | |
| 15000 - 300000 | | | 10 | 10 | 616000 / f^1.2 | | |

f = frequency in MHz

Table 3. Maximum Permissible Exposure of Microwave Radiation [7]

<table>
<thead>
<tr>
<th>Frequency Range (MHz)</th>
<th>Power Density (S) E-Field (mW/cm^2)</th>
<th>Power Density (S) H-Field (mW/cm^2)</th>
<th>Average Exposure Limit (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 - 3000</td>
<td>f / 300</td>
<td>f / 300</td>
<td>6</td>
</tr>
<tr>
<td>3000 - 15000</td>
<td>10</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>15000 - 300000</td>
<td>10</td>
<td>10</td>
<td>616000 / f^1.2</td>
</tr>
</tbody>
</table>

f = frequency in MHz

Conclusion

This report has discussed preliminary research in this area; more research and development is needed before hazard simulation is available for general use. Visual simulation and graphica: environments provide designers with new techniques to simulate the effects of environmental factors. HFM systems, such as DEPTH, can provide real-time graphical assessments of hazardous properties and objects. Hazard shells can define the boundaries of regions for the human to avoid. These boundaries, as illustrated in Figure 3, can also be used to monitor cumulative effects and warn when protective equipment should be used.

Acknowledgments

This study was lead by Mr. Robert Hale and Mr. John Ianni with significant support from Mr. Kirby Clark, Ms. Lynnette Blaney and Mr. Ron Stonum of Battelle; Mr. Scott Zioliosk and Mr. Thomas Bridgman of Computer Sciences Corporation; Dr. Jason Erlichman of Hughes Aircraft Company; Ms. Laurie L. Quill and Mr. Dave Kancler of the University of Dayton Research Institute; and Capt. Kurt Bolin of Armstrong Laboratory. The results of the study were provided to Hughes Missile Systems Company, DEPTH's prime contractor, for implementation.
References

Join The IEEE Computer Society

The IEEE Computer Society strives to be the leading provider of technical information and services to the world's computing professionals.

Computer Society Periodicals

Quality, quantity, and diversity are the hallmarks of the Computer Society periodicals. Computer magazine is the society's key communication vehicle, and a personal subscription is provided to every member as a part of the basic membership package. In addition, the society publishes 18 other specialized magazines and journals that are available to members at extremely low rates. The magazines focus on applications, while the transactions are oriented toward research. Join to start your subscription today.

Computer Society Contact Information

Residents of Europe:
IEEE Computer Society
13, Avenue de l'Aquillon
B-1200 Brussels
Belgium

phone: 32-2-770-2198
fax: 32-2-770-8505

Residents of Asia/Pacific Rim
IEEE Computer Society
Oshika Building
2-19-1 Minami Aoyama
Minato-ku
Tokyo 107, Japan

phone: 81-3-3408-3118
fax: 81-3-3408-3553

All Others
IEEE Computer Society
10862 Los Vaqueros Circle
PO Box 3014
Los Alamitos, CA 90720-1514

phone: 1-714-821-8380
fax: 1-714-821-4641

Computer Society home page at
http://www.computer.org

Computer Society Press

The Computer Society is the world's leading publisher of technical material in the computing field. Regardless of your specific discipline, you will find information that keeps you competitive and informed. An extremely broad spectrum of topics is covered, from product introductions to software applications to the latest research in computer architecture. To meet the many different needs of its members, the society publishes its literature in many different forms: periodicals, books, monographs, tutorials, conference proceedings, briefings, videotapes, and CD-ROMs. Join the Computer Society to stay current and competitive.

Conferences, Symposia, and Workshops

The Computer Society sponsors or cosponsors over 100 prestigious technical workshops, symposia, and conferences each year. We're proud to organize the premier technical meetings in the computer science and engineering profession. Our conferences provide you with innovative technology, global networking, volunteer opportunities, and 100% return on your membership investment. Our meetings cover key areas including software engineering, computer communications, microprocessors, test technology, supercomputing applications, pattern analysis and machine intelligence, computer graphics, design automation, and more. Join the Computer Society and receive substantial member discounts and advance notification of our meetings.

Technical Committees

Technical activities are the heart of the Computer Society. Members are invited to join and participate in up to four of the Society's 30 technical committees (TCSs) or task forces at no extra cost. TCSs are networks of professionals with common interests in specific areas of computing, and they directly influence the society's standards developments, educational activities, and conferences. More than half of the TCSs publish and distribute newsletters free to their members. TCSs are international, meet at conferences or through electronic dialogue, and range in size from 500 to 8,000 members. Join the Computer Society and begin networking with leaders in your field today.

Standards Activities

The IEEE Computer Society is a leader in developing standards, with significant impact on the computing industry. New standards study groups emerge with new areas of interest, and there are over 200 work groups related to the Society's 12 standards committees. Our Standards Activities Board was created to facilitate the initiation, development, promulgation, international adoption, and maintenance of computer and computer related standards. We aim to provide a forum for professionals to develop needed, technically excellent standards to serve worldwide providers, users, and implementers of information technology. All Computer Society members are invited to participate in standards development, and thousands do using their professional expertise to gain stature and serve the public interest. Join the Computer Society and participate in these activities.

Awards and Professional Recognition Programs

Peer recognition is a great source of professional pride and motivation, as well as an incentive to strive for technical excellence. To recognize its members for their outstanding achievements, the society sponsors an active and prestigious awards program and participates in nominations for IEEE awards and the highly respected designation of IEEE fellow. The awards honor technical achievements and service to the profession and society. By recognizing computer scientists and engineers at the top of their fields, the society highlights its commitment to excellence. Join the Computer Society and take part.