The objective of this project was to define specifications of a hybrid integrated wavelength division multiplexed laser source, to identify the appropriate vendor, and to negotiate an acceptable price structure. In consultation with a number of user groups and the DUTRI P program at University of Maryland (PI: Prof Mario Dagenais) we have determined the set of specifications for the four wavelength WDM array.
Final Technical Report

AFOSR Contract F49620-95-1-0535
September 30, 1995 to July 29, 1996
Monitored by Dr. Alan Craig

"WDM Laser Sources for the Defense University (Testbed) Research Internet Program (DUTRIP)"

Colorado State University
Department of Electrical Engineering
Fort Collins, CO 80523

PI: Henryk Temkin
Office: (806) 742-1264
Email: htemkin@coe2.coe.ttu.edu
Final Technical Report

AFOSR Contract F49620-95-1-0535
September 30, 1995 to July 29, 1996

"WDM Laser Sources for the Defense University (Testbed) Research Internet Program (DUTRIP)"

I. Research

The objective of this project was to define specifications of a hybrid integrated wavelength division multiplexed laser source, to identify the appropriate vendor, and to negotiate an acceptable price structure.

II. Results

In consultation with a number of user groups and the DUTRIP program at the University of Maryland (PI: Prof. Mario Dagenais) we have determined the following set of specifications for the four wavelength WDM array:

1) Emission wavelengths of DFB lasers:
 channel 1: 1549.32 nm
 channel 2: 1552.52 nm (the reference of 193.1 THz.)
 channel 3: 1555.75 nm
 channel 4: 1558.99 nm

 All channel wavelengths to be accurate to ± 0.3 nm

2) SMSR > 30 dB under 40 mA peak-to-peak modulation and 8.2 dB extinction ratio (SONET OC-48 spec.)

3) Threshold current < 30 mA

4) External efficiency >0.2 mW/mA

5) Fundamental transverse mode operation up to $I_{DC} = 100$ mA
6) Power coupled into single mode fiber @100 mA \> +6.0 dBm

7) Modulation bandwidth \(\leq 2.5 \text{ Gb/s} \)**

8) Four ECL inputs to drivers: ECL, 25 \(\Omega \)

9) Four single mode outputs, optical isolator in each laser package.

10) Back facet monitor in each laser package

11) Front panel setting of laser bias current and temperature for each laser.

12) Front panel indicator lights to indicate operation of each laser

* All wavelengths and spectral properties measured at a chip power output of 5 mW.

The wavelength may be trimmed with a TC cooler, as long as other specs are maintained.

** modulation bandwidth is limited by the driver chip.

Additional Considerations
The vendor will (a) provide available test and reliability data, and (b) establish the device code and make it available to other customers at a fixed price.

These specifications were discussed with a number of vendors. Ortel Corporations was identified as a low cost supplier capable of satisfying all of the above specifications.

We have also established a testing methodology for WDM arrays. The results were presented in an SPIE paper, attached.

III. Personnel

Henryk Temkin, Professor, Principal Investigator

D. V. Kuksenkov, Senior Research Associate, now at Texas Tech University